
TECHNICAL UNIVERSITY OF CRETE

DEPARTMENT OF PRODUCTION ENGINEERING AND
MANAGEMENT

DECISION SUPPORT SYSTEMS LABORATORY

Development of a multi-agent system for the support of
group decisions utilizing argumentation and multicriteria

methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης
ομαδικών αποφάσεων και διαπραγμάτευσης με επιχειρήματα, με χρήση

πολυκριτήριων μεθόδων

Ph.D. Thesis

by

Konstantinos-Dimitrios Tzoannopoulos

Supervising Professor: Nikolaos F. Matsatsinis
Professor, Tecnhical University of Crete

Chania, 2011

This page intentionally left blank.

TECHNICAL UNIVERSITY OF CRETE

DEPARTMENT OF PRODUCTION ENGINEERING AND
MANAGEMENT

DECISION SUPPORT SYSTEMS LABORATORY

Development of a multi-agent system for the support of
group decisions utilizing argumentation and multicriteria

methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων

υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση

πολυκριτήριων μεθόδων

Ph.D. Thesis

by

Konstantinos-Dimitrios Tzoannopoulos

Supervising Professor: Nikolaos F. Matsatsinis
Professor, Technical University of Crete

Chania, December 2011

 (Signature)
...................................

KONSTANTINOS-DIMITRIOS TZOANNOPOULOS

© 2011 – All rights reserved

Σελ. 4

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

The author would like to thank the staff of the Decision Support Systems Laboratory
and especially Mrs. Lia Krasadaki,M.Sc. Production Engineer, for their

assistance in this Ph.D. thesis.

Furthermore, the author would like to thank his family for all their support through
the process of his doctorate studies. Special thanks are extended to software

engineer Konstantinos Bokaris for lending his invaluable advice and
expertise for the development and debugging of the software that

accompanies this thesis.

Σελ. 5

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

Abstract

Group decision making is one of the most important and frequently encountered processes
within companies and organizations, both in the public and private sectors (Turban 1988).
The understanding, analysis and support of this process is difficult, due to the ill-structured,
dynamic environment and the presence of multiple Decision Makers (DMs); each DM has
his or her own perceptions and views on how the problem should be handled and which
decision should be made (Jelassi et al. 1990).

Thanks to the developments in multicriteria decision making methodologies and the
increasing popularity of computerized MCDM methods, scientists and professionals have
been provided with a set of tools whose usage can be advantageous in solving problems
with multiple criteria. However, it is evident that the effectiveness of such procedures when
used by multiple DMs remains to be proven. This necessitates the use of practical
aggregation methods to extend the existing MCDM methodologies, as well as the
computing methodologies, to support group decision problems (Iz and Krajewski 1992).

The use of Group Decision Support Systems (GDSSs) is crucial when multiple
persons are involved in the decision making process, since each DM has his or her own
perceptions of the context and the decision problem at hand. In environments of this kind,
the occurrence of conflicts among the members of the decision-making group is frequent.
This conflict is referred to as interpersonal conflict (Bogetoft and Pruzan 1991). Factors that
contribute to the occurrence of interpersonal conflicts include different values and
objectives, different criteria and preference relations, lack of communication support among
the members of the decision-making group etc. Noori (1995) recognizes that, from a
practical point of view, conflicting objectives among the members of a group often exist due
to interpersonal differences and goal incongruities.

In coping with interpersonal conflicts, the aim is to achieve consensus among the
DMs; in such problems, Multi-Criteria Decision Aid (MCDA) methods may be a useful
tool. As argued by Bui and Jarke (1986), MCDM/MCDA methods provide an elegant
framework for three important GDSS tasks: (a) representing multiple viewpoints of a
problem, (b) aggregating the preferences of multiple DMs according to various group norms
and (c) organizing the decision process. The framework offered by MCDM is simple but
structured, while the simplicity of its outputs makes communicating, coordinating and
aggregating individual analyses in the group decision making process easier. Jarke (1986)
states that MCDM methods can serve as formal tools for preference surfacing and
aggregation, as well as negotiation and mediation, in both cooperative and non-cooperative
decision situations. Thus, the multiple criteria process of a GDSS is a key aspect of the
system, as it provides a structured and integrated framework for the assessment of
alternatives and criteria and for solution compromise.

Σελ. 6

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

Multiple agent (multi-agent) systems have become a valuable tool in the field of group
decision making and, recently, their application has been extended in the sector of group
decision making using multicriteria decision analysis techniques. For the decision making
process in a multi-agent context, numerous techniques and methodologies have been
proposed and implemented over the years, providing various solutions and approaches to the
problem of group decision making.

The term “interaction” rather than “argumentation-based negotiation” has been
chosen, because, although this methodology did actually begin as argumentation-based
negotiation (Sycara 1989b, Parsons et al. 1998), it has now branched out and evolved into a
completely unique type of multi-agent interaction in its own right, overcoming and
surpassing the limitations of game-theoretic negotiation. It appears to be a very viable and
promising methodology, because of the close and efficient approximation of the procedure
used by human decision makers it achieves.

This thesis proposes a Group Decision Support methodology and software system that
attempts to support a group of decision makers bestowed with the solution of a choice
problem (i.e. a problem of the problematic α), beginning from a set of individual ordinal
rankings and using a combination of a heuristic algorithm and an argumentation protocol for
the building of a consensus among the decision makers. The heuristic algorithm serves as a
method of accelerating the argumentation-based negotiation on the alternatives.

This thesis is part of the 03ED375 research project, implemented within the
framework of the “Reinforcement Programme of Human Research Manpower” (PENED)
and co-financed by National and Community Funds (75% from E.U.-European Social Fund
and 25% from the Greek Ministry of Development-General Secretariat of Research and
Technology).

Keywords: multi-criteria decision analysis, UTASTAR, argumentation, argumentation-
based negotiation, group decision support, consensus

Σελ. 7

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

This page intentionally left blank.

Σελ. 8

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

Group decision making is one of the most important and frequently encountered processes
within companies and organizations, both in the public and private sectors (Turban 1988).
The understanding, analysis and support of this process is difficult, due to the ill-structured,
dynamic environment and the presence of multiple Decision Makers (DMs); each DM has
his or her own perceptions and views on how the problem should be handled and which
decision should be made (Jelassi et al. 1990).

Thanks to the developments in multicriteria decision making methodologies and the
increasing popularity of computerized MCDM methods, scientists and professionals have
been provided with a set of tools whose usage can be advantageous in solving problems
with multiple criteria. However, it is evident that the effectiveness of such procedures when
used by multiple DMs remains to be proven. This necessitates the use of practical
aggregation methods to extend the existing MCDM methodologies, as well as the
computing methodologies, to support group decision problems (Iz and Krajewski 1992).

The use of Group Decision Support Systems (GDSSs) is crucial when multiple
persons are involved in the decision making process, since each DM has his or her own
perceptions of the context and the decision problem at hand. In environments of this kind,
the occurrence of conflicts among the members of the decision-making group is frequent.
This conflict is referred to as interpersonal conflict (Bogetoft and Pruzan 1991). Factors that
contribute to the occurrence of interpersonal conflicts include different values and
objectives, different criteria and preference relations, lack of communication support among
the members of the decision-making group etc. Noori (1995) recognizes that, from a
practical point of view, conflicting objectives among the members of a group often exist due
to interpersonal differences and goal incongruities.

In coping with interpersonal conflicts, the aim is to achieve consensus among the
DMs; in such problems, Multi-Criteria Decision Aid (MCDA) methods may be a useful
tool. As argued by Bui and Jarke (1986), MCDM/MCDA methods provide an elegant
framework for three important GDSS tasks: (a) representing multiple viewpoints of a
problem, (b) aggregating the preferences of multiple DMs according to various group norms
and (c) organizing the decision process. The framework offered by MCDM is simple but
structured, while the simplicity of its outputs makes communicating, coordinating and
aggregating individual analyses in the group decision making process easier. Jarke (1986)
states that MCDM methods can serve as formal tools for preference surfacing and
aggregation, as well as negotiation and mediation, in both cooperative and non-cooperative
decision situations. Thus, the multiple criteria process of a GDSS is a key aspect of the
system, as it provides a structured and integrated framework for the assessment of
alternatives and criteria and for solution compromise.

Multiple agent (multi-agent) systems have become a valuable tool in the field of group
decision making and, recently, their application has been extended in the sector of group
decision making using multicriteria decision analysis techniques. For the decision making
process in a multi-agent context, numerous techniques and methodologies have been

Σελ. 9

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

proposed and implemented over the years, providing various solutions and approaches to the
problem of group decision making.

The term “interaction” rather than “argumentation-based negotiation” has been
chosen, because, although this methodology did actually begin as argumentation-based
negotiation (Sycara 1989b, Parsons et al. 1998), it has now branched out and evolved into a
completely unique type of multi-agent interaction in its own right, overcoming and
surpassing the limitations of game-theoretic negotiation. It appears to be a very viable and
promising methodology, because of the close and efficient approximation of the procedure
used by human decision makers it achieves.

This thesis proposes a Group Decision Support methodology and software system that
attempts to support a group of decision makers bestowed with the solution of a choice
problem (i.e. a problem of the problematic α), beginning from a set of individual ordinal
rankings and using a combination of a heuristic algorithm and an argumentation protocol for
the building of a consensus among the decision makers. The heuristic algorithm serves as a
method of accelerating the argumentation-based negotiation on the alternatives.

This thesis is part of the 03ED375 research project, implemented within the
framework of the “Reinforcement Programme of Human Research Manpower” (PENED)
and co-financed by National and Community Funds (75% from E.U.-European Social Fund
and 25% from the Greek Ministry of Development-General Secretariat of Research and
Technology).

Keywords: multi-criteria decision analysis, argumentation, argumentation-based
negotiation, group decision support

Σελ. 10

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

This page intentionally left blank.

Σελ. 11

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of
group decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

TABLE OF CONTENTS

I INTRODUCTION 1

I.1 HISTORICAL REVIEW .. 1
I.2 ACKNOWLEDGEMENTS .. 2
I.3 LITERATURE REVIEW ... 3

I.3.1 Previous negotiation/argumentation systems and protocols ... 3
I.3.2 Multicriteria protocols, applications and implementations .. 7
I.3.3 Present and future research trends .. 9
I.3.4 The scope of this thesis: Combining MCDA methods, heuristics and argumentation in
Group Decision Support .. 10

I.4 DEFINITIONS – THEORETICAL BACKGROUND ... 11
I.4.1 Advantages of argumentation vs. negotiation .. 16

II THE PROPOSED METHODOLOGY ... 20

II.1 GENERAL METHODOLOGICAL FRAMEWORK .. 20
II.1.1 The Ranking stage .. 21
II.1.2 Elaboration on the aforementioned phases .. 21
II.1.3 Identification of Negotiable Alternatives .. 28
II.1.4 The Argumentation Stage ... 36
II.1.5 Innovations, challenges and changes in the proposed methodology and software 46

III THE PROPOSED SOFTWARE . 50

III.1 REQUIREMENTS AND BRIEF FOR THE SOFTWARE ... 50
III.1.1 Implemented features .. 51
III.1.2 Functions of the proposed software .. 52

III.2 STRUCTURE OF THE PROPOSED SYSTEM ... 52
III.3 USING THE PROPOSED SYSTEM .. 55

III.3.1 Starting the application ... 56
III.3.2 Creating a new decision problem ... 58

III.4 RETRIEVING AN EXISTING PROBLEM FROM THE DATABASE ... 68
III.5 SCOPE FOR FUTURE DEVELOPMENT .. 78

IV CONCLUSIONS ... 80

IV.1 FUTURE WORK ... 80

 REFERENCES .. 83

 APPENDIX .. 90

Σελ. i

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

I INTRODUCTION

This chapter is an introduction to
multicriteria group decision support
using argumentation. In the beginning, a
short historical review is presented; the

basic notions (multicriteria group
decision support, argumentation) are set
forth. Finally, the scope of this thesis is
presented.

I.1 Historical review

Group decision making is one of the most important and frequently encountered processes
within companies and organizations, both in the public and private sectors [Turban,
(1988)]. The understanding, analysis and support of this process is difficult, due to the ill-
structured, dynamic environment and the presence of multiple Decision Makers (DMs);
each DM has his or her own perceptions and views on how the problem should be handled
and which decision should be made (Jelassi et al 1990).

Thanks to the developments in multicriteria decision making methodologies and the
increasing popularity of computerized MCDM methods, scientists and professionals have
been provided with a set of tools whose usage can be advantageous in solving problems
with multiple criteria. However, it is evident that the effectiveness of such procedures when
used by multiple DMs remains to be proven. This necessitates the use of practical
aggregation methods to extend the existing MCDM methodologies, as well as the
computing methodologies, to support group decision problems (Iz and Krajewski 1992).

The use of Group Decision Support Systems (GDSSs) is crucial when multiple
persons are involved in the decision making process, since each DM has his or her own
perceptions of the context and the decision problem at hand. In environments of this kind,
the occurrence of conflicts among the members of the decision-making group is frequent.
This conflict is referred to as interpersonal conflict (Bogetoft and Pruzan 1991). Factors
that contribute to the occurrence of interpersonal conflicts include different values and
objectives, different criteria and preference relations, lack of communication support
among the members of the decision-making group etc. Noori (1995) recognizes that, from a
practical point of view, conflicting objectives among the members of a group often exist
due to interpersonal differences and goal incongruities.

In coping with interpersonal conflicts, the aim is to achieve consensus among the
DMs; in such problems, Multi-Criteria Decision Aid (MCDA) methods may be a useful
tool. As argued by Bui and Jarke (1986), MCDM/MCDA methods provide an elegant
framework for three important GDSS tasks: (a) representing multiple viewpoints of a
problem, (b) aggregating the preferences of multiple DMs according to various group

Σελ. 1

Chapter

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

norms and (c) organizing the decision process. The framework offered by MCDM is simple
but structured, while the simplicity of its outputs makes communicating, coordinating and
aggregating individual analyses in the group decision making process. Jarke (1986) states
that MCDM methods can serve as formal tools for preference surfacing and aggregation, as
well as negotiation and mediation, in both cooperative and non-cooperative decision
situations. Thus, the multiple criteria process of a GDSS is a key aspect of the system, as it
provides a structured and integrated framework for the assessment of alternatives and
criteria and for solution compromise.

Multiple agent (multi-agent) systems have become a valuable tool in the field of
group decision making and, recently, their application has been extended in the sector of
group decision making using multicriteria decision analysis techniques. For the decision
making process in a multi-agent context, numerous techniques and methodologies have
been proposed and implemented over the years, providing various solutions and approaches
to the problem of group decision making.

The term “interaction” rather than “argumentation-based negotiation” has been
chosen, because, although this methodology did actually begin as argumentation-based
negotiation (Sycara, 1989b, Parsons et al. 1998), it has now branched out and evolved into
a completely unique type of multi-agent interaction in its own right, overcoming and
surpassing the limitations of game-theoretic negotiation. It appears to be a very viable and
promising methodology, because of the close and efficient approximation of the procedure
used by human decision makers it achieves.

In this thesis, a multi-criteria Group Decision Support System (GDSS) is presented,
which helps a group of Decision Makers (DMs) solve a choice problem, i.e. a problem in
which the DMs are presented with a number of alternatives and have to choose the one that
seems to be optimal for them (problematic α). To achieve this, the software aggregates and
the preferences of the individual (DMs); these preferences are formulated into individual
ordinal rankings of the alternatives. Then, the GDSS attempts to build a consensus among
the DMs by applying a combination of a heuristic algorithm – more specifically, the
Negotiable Alternative (NAI) algorithm [Bui 1985, Bui and Shakun 1987) – , which has
been adapted to the needs of this particular methodology and an argumentation protocol
that enables the DMs (or agents that represent them) to negotiate using arguments for and
against each alternative, in order to eventually propose the best commonly accepted
alternative. The method chosen for the disaggregation of the DMs’ preferences is the
UTASTAR (Siskos and Yannacopoulos 1985, Siskos et al. 2005). Following the
calculation of the DMs' individual ordinal rankings is the NAI algorithm stage. Finally, the
argumentation protocol is based on a framework presented by Amgoud et al [Amgoud et al
(2005)] and provides automatic argument generation and assessment-evaluation by
comparing the strengths of the arguments. The strength of each argument is determined by
already given or calculated data (criterion weight, performance of the alternative on the
specific criterion).

I.2 Acknowledgements

This thesis is part of the 03ED375 research project, implemented within the framework of
the “Reinforcement Programme of Human Research Manpower” (PENED) and co-

Σελ. 2

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

financed by National and Community Funds (75% from E.U.-European Social Fund and
25% from the Greek Ministry of Development-General Secretariat of Research and
Technology). The author gratefully acknowledges the cooperation and assistance of the
project’s scientific advisor Prof. Nikos F. Matsatsinis, fellow PENED researchers Pavlos
Delias, Klio Lakiotaki and Stelios Tsafarakis, and the assistance of the staff of the
Technical University of Crete’s Decision Support Systems Laboratory (ERGASYA). Also,
the author wishes to thank software engineer Konstantinos Bokaris for lending his expertise
in the Java programming language and his invaluable advice for the development and
debugging of the accompanying software.

I.3 Literature Review

I.3.1 Previous negotiation/argumentation systems and protocols

In the field of group decision making, many researchers have presented decision
methodologies; comprehensive lists of such methodologies can be found in Hwang and
Ling (1987) and Matsatsinis and Samaras (2001).

In this chapter, an attempt will be made to document and present, in a manner as
concise and complete as possible, the most important developments and advances in the
field of multicriteria group decision making, with emphasis given to systems implementing
multi-agent and multi-user argumentation.

NEGO, presented by Kersten (1985), is a two-stage interactive procedure of
individual proposal formulation and negotiation that leads to compromise based on the
generalized theory of negotiations’ formulation developed by Kersten and Szapiro (1985).
The Co-oP system is one of the most well-known and documented implementations (Bui
1987, Bui and Jarke 1986): it is a GDSS for cooperative multicriteria decision making. It
can be used either for the ranking of alternatives using the Analytic Hierarchy Process
(AHP) method (Saaty 1980) or for selecting one, and only one, alternative using the
ELECTRE method (Roy 1968).

MEDIATOR (Jarke et al. 1987) is a negotiation support system based on evolutionary
systems design and database-centered implementation with many applications (Giordano et
al. 1988, Shakun 1988, 1991). Kersten (1987) discusses the role that MEDIATOR and
NEGO can play in negotiations. Lewandowski’s SCDAS (Lewandowski 1989) is a system
that can support a group of DMs working together on selecting the best alternative from a
finite, given set of alternatives. Vetchera (1991) makes use of the multi-attribute utility
theory to develop a general framework for group decision support combining the reduction
in cognitive strain provided by individual views with feedback processes. Iz and Krajewski
(1992) propose extensions in three single decision maker procedures for multicriteria
problems based on interactive multiple objective linear programming (MOLP) techniques.

Carlsson et al. (1992) present Alicia & Sebastian, a system for formalizing consensus
reaching within a set of DMs trying to find and agree upon a mutual decision. In Alicia &
Sebastian, the AHP method is used to model the preferences of each DM. In Dyer and
Forman (1992), it is argued that the AHP method (Saaty 1980) works well for group
decision making, because it offers numerous benefits as a synthesizing mechanism in group
decisions. In their aforementioned work, Dyer and Forman describe four ways in which the

Σελ. 3

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

AHP method can be applied to the common objectives context: (1) consensus, (2) voting or
compromising, (3) forming the geometric means of individuals’ judgements, and (4)
combining results from individual models or parts of a model. JUDGES (Colson and
Mareschal 1994) is a descriptive GDSS for the cooperative ranking of the alternatives.

Choi, Suh and Suh (1994) discuss the applicability and practicality of the AHP
method in a GDSS for a new provincial seat selection in South Korea. Csáki et al. (1995a,
1995b) present WINGDSS, a GDSS designed to support one or more DMs from different
fields but with a common interest in ranking a finite set of alternatives that are
characterized by a finite set of criteria and attributes. Salo (1995) developed an interactive
approach for the aggregation of the DMs’ preference judgments in the context of an
evolving value representation. Stanoulov (1994, 1995) presented the dichotomic matrix
multiple criteria optimization (DIMCO) method, which is an outranking approach for
individual and group decision making. Noori (1995) presented a conceptual design of a
GDSS named NTech-GDSS, developed to guide management through the process of
evaluating and adopting new technologies. Barzilai and Lootsma (1997) use the
multiplicative AHP method (Lootsma 1993), a variant of the original AHP method, to
reach a joint decision by incorporating the relative power of the DMs.

Obviously, the number of argumentation-based multi-agent group decision support
systems cannot be overwhelmingly large; while it is true that multi-agent systems play an
increasingly important role in the field of decision making, argumentation-based multi-
agent decision support systems are a very recent development. Thus, it is understandable
that, among multi-agent DSSs, the number of systems that make use of multicriteria
decision analysis (MCDA) methods can only be relatively small. For historical reasons
only, some important works shall be mentioned. The PERSUADER system by Sycara
(1989a, b, 1990) was perhaps the first argumentation-based multi-agent system; it operated
in the field of labour negotiation and involved three agents: an agent representing a labour
union, an agent representing a company and a third agent acting as a mediator. Its task was
to model the iterative exchange of proposals and counter-proposals so that the parties
would reach an agreement. The negotiation involved multiple issues (wages, pensions,
seniority, etc). It must be noted here that the inherent ability of argument-based multi-agent
systems to handle multiple-issue problems does not make them multicriteria applications.
In PERSUADER, the argumentation used a model of each agent’s beliefs; these beliefs
captured an agent’s goals and interrelationships among them.

Aiming to broaden the scope of argumentation research and encourage the
development of more ambitious computer implementations than those available at the time
(e.g. the OpEd and SIBYL systems), John A. A. Sillince (1993) proposed a system, in
which agents attempted to make claims by using tactical rules (e.g. fairness and
commitment) and said what other claims were supported or attacked by the claims they
made. The claims could be sets of claims connected by attacking and supporting links.
Over the course of the debate, a shared argument map was generated; this map was
controlled by a set of strategic rules; the purpose of these rules was to keep the location of
focus within the argument map under control. An aspect of his work that differentiated it
from other research works of the time was the lack of a requirement for truth propagation
and consistency maintenance. The arguments’ strength was calculated in terms of a number
of structural constraints by means of an evaluation function. That way, invulnerability to
attack due to self-inconsistency was just one of several criteria (other criteria included
constructiveness, relevance and familiarity). The arguments themselves were mappings

Σελ. 4

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

from source to target domains and were constructed by three knowledge sources: quasi-
logic, value transfer and emotional appeal.

Dung (1995) contributed a seminal paper, in which he studied the fundamental
mechanism used by humans in their argumentation, in order to implement it on computers;
he developed an argumentation theory, with the acceptability of arguments being the
central notion. He approached argumentation as a special form of logic programming,
where negation is failure and introduced a general logic programming-based method for the
generation of meta-interpreters for argumentation systems, a method similar to the
compiler-compiler concept in conventional programming. The way of looking at arguments
he proposed was more abstract: rather than looking at the internal structure of individual
arguments, he suggested that one looks at the overall structure of the argument. He
modeled such an abstract argument system A as a pair:

A ≡ <X, →>,

where

• X is a set of arguments (what the members of X are is irrelevant);

• → ⊆ X × X is a binary relation on the set of arguments, representing
the notion of attack.

Karacapilidis et al. (1996) presented an argumentation-based framework written in
Java, which supported defeasible and qualitative reasoning in a multi-agent context. The
logic applied was interval-based, combined with an inference engine which served the
purposes of refining the agents’ knowledge, checking consistency and concluding the issue.
Like Sycara’s PERSUADER, this framework supports multiple-issue argumentation.
Taking the lead from Dung (1995), Verheij (1996) proposed a model for the argumentation
stages; each stage was characterized by the arguments taken into account and their status
(defeated or undefeated). His approach provided good understanding of the argumentation
process, because sequences of stages could be interpreted as lines of argumentation – from
this stage approach two new types of extensions emerged, with their definitions formalizing
the idea that as many arguments were being taken into account as possible. He also
concluded that the argumentation stage approach, which is a generalization of the
admissible sets approach, provides better insight into the procedural nature of dialectical
argumentation than the admissible sets approach.

Simon Parsons, together with Carles Sierra and Nick R. Jennings (Parsons et al.
1997), aiming to provide a better alternative to the usual agent architectures, which were
somewhat ad hoc in nature, proposed an agent design approach based on multi-context
systems, which are a framework allowing the definition and interrelation of distinct
theoretical components, and argumentation, in order to allow the development of agent
architectures equipped with a formal model in logic and a direct link between this model
and its implementation. As an example of this approach, they presented a case study of the
strong realist Belief-Desire-Intention model. Chris Reed and Derek Long (Reed and Long
1997) presented an ordering technique designed to enhance coherence in a persuasive
discourse, so that the resulting functionality could generate plans closely resembling
structures found in natural argument.

Σελ. 5

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

Karacapilidis and Papadias’ proposal (Karacapilidis and Papadias 1997) was for a
group decision and argumentation support system for cooperative and non-cooperative
discourses, which provided agents with means of expressing and weighing their individual
arguments and preferences; the aim was the selection of a certain choice. This system also
supports defeasible and qualitative reasoning in the presence of ill-structured information.
The entire argumentation process is performed through a set of discourse acts, which call a
variety of procedures to propagate information in the corresponding discussion graph. Also,
Karacapilidis, in collaboration with Brigitte Trousse (Karacapilidis and Trousse 1997),
presented an argumentation system for cooperative design on the web, whose features were
almost identical to the one mentioned above – perhaps the system presented by
Karacapilidis and Trousse was the predecessor of the one proposed in Karacapilidis and
Papadias, (1997). In Karacapilidis and Trousse (1997), a report was made on the
integration of Case-Based Reasoning techniques, used for the resolution of current design
issues through the consideration of previous similar situations, and the specification of
similarity measures among the various argumentation items, with the estimation of the
variations among the participating designers’ opinions being the goal.

In 1998, Karacapilidis and Papadias (1998) developed HERMES, a web-based (thus
providing inexpensive access to a broad public) GDSS written in Java and employing
multi-agent argumentation, capable of handling incomplete, qualitative and inconsistent
information, equipped with mechanisms for weighing arguments. HERMES organized the
existing knowledge in a discussion graph consisting of issues, alternatives, positions and
preference relations. It could be used for distributed, synchronous or asynchronous
collaboration, overcoming the requirement for the agents to be in the same place and
working at the same time. Argumentation was carried out through a set of discourse acts
triggering appropriate procedures for the propagation of information in the graph. Although
HERMES was capable of handling multiple issues, it did not incorporate multicriteria
decision theory methodologies.

Kraus, Sycara and Evenchik (1998) presented argumentation as an iterative process
for a multi-agent environment where self-motivated agents strive to persuade each other
and bring about a change in intentions; argumentation was dealt with as a mechanism for
the achievement of cooperation and agreements. Through the usage of categories identified
from human multi-agent negotiation, the utilization of logic for the formulation and
evaluation of arguments was demonstrated. Furthermore, a general Automated Negotiation
Agent, based on their logical model, was presented. This system enabled the user to analyse
and explore different negotiation and argumentation methods in a non-cooperative
environment without a centralized coordination mechanism. Another argumentation
framework was proposed by Parsons, Sierra and Jennings (1998): it provided a formal
model of argumentation-based reasoning and negotiation and detailed a design philosophy
that ensured a clear link between the formal model and its practical instantiation. Other
dialogue frameworks for multi-agent argumentation have been presented by Reed (1998)
and Sierra et al. (1998): the former paper offered a formal characterization which clearly
distinguished persuasion from negotiation and also introduced three other dialogue types –
then, Reed proceeded to set all five types in a coherent framework; the latter was basically
a negotiation/argumentation framework, i.e. the agents exchanged proposals and counter-
proposals, backed by arguments. The argumentation in the framework presented by Sierra
et al. (1998) was persuasive, because the exchanges were able to change the mental state of
the agents involved.

Σελ. 6

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

Boella, Hulstijn and van der Torre (2006) introduced a logic of abstract
argumentation which captures Dung’s theory of abstract argumentation, based on
connectives for attack and defense, and extended it to a modal logic of abstract
argumentation that generalizes Dung’s theory and defines variants of it. They also use this
logic to relate Dung’s theory of abstract argumentation to more familiar and traditional
conditional and comparative formalisms, illustrating ways of reasoning about arguments in
meta-argumentation.

Wooldridge, McBurney and Parsons (2006) proposed an approach to the formalization of
argument systems; taking the view that arguments and dialogues are inherently meta-
logical (and the view that any proper formalization of arguments must embrace this aspect
of their nature) as their starting point, they developed a formalization of arguments using a
hierarchical first-order meta-logic in which statements in successively higher tiers of the
argumentation hierarchy refer to statements further down the hierarchy. This provides a
clean formal separation between object-level statements, arguments about these object
level statements, and statements about arguments.

I.3.2 Multicriteria protocols, applications and implementations

The first steps towards the integration of MCDA methods in multi-agent DSSs were the
Tête-à-Tête, described in Maes et al. (1999), along with Logical Decisions for Windows,
which was produced by Logical Decisions, Inc. and also described in Guttman and Maes
(1998). Tête-à-Tête used multi-attribute utility theory. Its further development continues
nowadays by the Frictionless Commerce company, which was co-founded by Robert
Guttman and Alexandros Moukas. It was quite an innovation, because, whereas the agents
in all the other e-commerce systems of the time negotiated on the product’s price, Tête-à-
Tête’s agents negotiated on a multitude of product attributes, such as warranties, features
etc. Furthermore, it was not just a system with argumentation over multiple issues, but went
further, employing techniques and ideas taken from multi-attribute utility theory.

Matsatsinis et al. (1999) presented an agent-based system which implemented a
consumer-based methodology for product penetration strategy selection in real world
situations. In this system, the agents were simultaneously considered according to a
functional and a structural level. In the functional level, the system had three agent types:
task agents, information agents and interface agents assuming the fulfilment of the task
through cooperation, information gathering tasks and mediation between the users’ agents
and the artificial ones respectively. In the structural level, there were elementary agents
based on a generic reusable architecture, as well as complex agents considered as an agent
organization created dynamically in a hierarchical way. Karacapilidis and Moraïtis (2001)
developed a web-based multicriteria e-commerce system incorporating the use of
argumentation. In this system, salesmen and customers delegate their roles to the agents.
The messages passed between these agents can completely contain the associated parties’
points of view towards a market transaction. Describing things in a more specific manner,
an offer request consists of a list of the product’s attributes the customer wants to know
about, a partial order of their importance and the constraints imposed. From the salesman’s
side, an offer proposal can be made according to information conveyed in the customer’s
offer request. This system also has a few advanced features; for instance, the agents stay in
the market permanently, thus learning from it. The agents can act proactively to initiate a

Σελ. 7

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

transaction. More importantly, an interactive multicriteria decision-making tool has been
integrated into the system, enabling the agent-buyer to perform a comparative evaluation of
the proposals semi-autonomously. More recently, Moraïtis and Tsoukiàs (2003)
demonstrated how argumentation can be used in the decision aiding process, implying the
use of multiple criteria. Additional work was done by Dimopoulos et al. (2004) on the
subject of argumentation-based modeling of decision aid for autonomous agents; this
model is presented as amenable to automation and can be embedded in autonomous agents
in order to enable them to support a decision maker or completely substitute him. Decision
aiding is treated as a defeasible reasoning process.

While not a multicriteria system in itself at the moment, the work on argument-based
negotiation presented by Kakas and Moraïtis (2006) deserves mentioning, because the
researchers have clearly stated their intention to expand their proposed argument-based
negotiation protocol to use multicriteria techniques from decision theory in the evaluation,
on behalf of the agents, of the exchanged offers and counter-offers. In the already
developed protocol, offers by the negotiating parties are linked to different arguments that
the agents can build according to their individual argumentation strategies. The proposed
protocol can take the agents’ different roles and context of interaction into account if
necessary, i.e. when the arguments’ strength depends on these factors. The agents can adapt
their negotiation strategies and offers as necessary during the course of the negotiation.
Additionally, this system uses abduction, enabling the agents to find negotiating conditions
to support an argument for an offer, extending the negotiation object in order to assist the
reaching of an agreement.

An important ongoing project is called HealthAgents (Lluch-Ariet et al. 2008),
González-Vélez, H. et al. 2006, Arús et al. 2006). It is a combination of a distributed DSS
(d-DSS) and a distributed data warehouse (d-DWH). It will provide advanced distributed
data mining functionalities for the analysis and interpretation of brain tumour data. The
system’s d-DWH will include the world’s largest network of interconnected databases
(Data Marts) of clinical, histological and molecular phenotype data of brain tumour
patients. The d-DSS’s mission will be to facilitate evidence-based clinical decision making
using MR and genetic-based tumour classifications and will also include new criteria from
the automated analysis of each local database. The goal of the HealthAgents project is to
create a user-friendly web-based d-DSS for the accurate diagnosis and prognosis of brain
tumours. Particular attention will be paid to child brain tumours, whose aetiology and
social impact differ to those of adult brain tumours. The researchers involved had also set
up an informative website for their project at http://www.healthagents.net; now that website
is defunct and the entire project in its stable version has been released to the user and
developer community as Free/Libre and Open Source Software at the SourceForge
repository (https://sourceforge.net/projects/healthagents/).

A year earlier, in 2005, Amgoud et al. (2005) presented a general formal
argumentation framework for multi-criteria decision making by a group of DMs. In their
work, autonomous agents engage in a dialogue looking for a common agreement on a
collecttive choice. The setting of this framework has three main components: the agents,
their reasoning capabilities and a protocol. The agents are supposed to hold certain beliefs
about their environment and the other agents, along with their own individual goals. The
beliefs have a degree of certainty (i.e. they are more or less certain) and the goals may or
may not have equal priorities. The agents are also supposed to be able to make decisions,
revise their beliefs and support their points of view using arguments about the positive and

Σελ. 8

https://sourceforge.net/projects/healthagents/
http://www.healthagents.net/

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

negative aspects of each decision (i.e. of each alternative). A multicriteria decision problem
was formalized within a logical argumentation system and an illustrative example was
provided. Amgoud, in collaboration with other researchers, has also proceeded to become a
prolific researcher in the field of argumentation-based decision making, with numerous
articles; most of them build and improve upon existing techniques she has proposed and
she has proposed argumentation frameworks and protocols both for multi-agent and single-
agent contexts.

In 2010, Meir Kalech and Avi Pfeffer (2010) proposed a multi-agent model which
attempts to address the problem of decision making with dynamically arriving information,
i.e. with information that changes over time. In many real-world problems, there is a cost to
waiting for more information, which raises the question when one should stop waiting and
make the decision. Should the decision maker(s) stop and make the best decision possible
or should they wait until more information arrives that will enable them to make a better
decision? This model characterizes the influence of dynamic information on the utility of
the decision. Using this base as a model, Kalech and Pfeffer (2010) presented an optimal
algorithm that guarantees the best time to stop. However, this model is quite complex: its
complexity is exponential in the number of candidates. They also presented an alternative
framework in which the different candidates are sold separately. The alternative framework
is analyzed formally and the way in which it leads to a range of specific heuristic
algorithms is shown. Through experiments, they evaluated the optimal and the simplest
heuristic algorithms, which demonstrated that the heuristic algorithm is much faster than
the optimal algorithm and the utility of the winning candidate found by the heuristic
algorithm is close to the optimum.

Again in 2010, Rahwan and Tohmé (2010) addressed the problem of collective
decision making by a set of agents who, starting with conflicting knowledge bases (i.e.
each has its own set of legitimate subjective evaluation of a set of arguments), had to reach
a collective evaluation of their arguments. They analyzed an argument-wise plurality
voting rule, demonstrating that it suffers from a fundamental limitation. Using a general
impossibility result, they showed that this limitation is more fundamentally rooted and,
finally, demonstrated a way to circumvent this impossibility result with additional domain
restrictions.

I.3.3 Present and future research trends

So far, the number of multicriteria multi-agent decision support systems is rather limited.
This is understandable, as MCDA methodologies have only recently begun to be integrated
in multi-agent decision support systems. Most of the multi-agent decision support systems
using argumentation and/or argumentation-based negotiation, including multicriteria ones,
are e-commerce systems, aiding the purchase process, with one of those systems
(HealthAgents) targeting the medical diagnosis and prognosis field.

The process of designing and/or developing a new product using the combination of
multiple agents (which correspond to multiple users/decision makers that are represented
by the agents), MCDA and argumentation or argumentation-based negotiation appears to
be still largely unexplored by researchers. The development of such a system seems
possible and would certainly have a place in the decision support systems market,
especially if it had such desirable characteristics as web-based operation, support for

Σελ. 9

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

synchronous and asynchronous collaboration and interfacing with popular database
systems.

I.3.4 The scope of this thesis: Combining MCDA methods, heuristics and
argumentation in Group Decision Support

In this thesis, a methodological framework is proposed, and an example software
application is developed and presented, that addresses the problem of supporting a group of
decision makers (DMs) who want to choose from a set of actions (alternatives) in a
collaborative multiple criteria context. In this methodology, a multi-criteria method is
combined with a heuristic algorithm and an argumentation framework; the multi-criteria
method used is the UTASTAR method (Siskos and Yannacopoulos 1985, Siskos et al.
2005) . The UTASTAR method is applied in order to:

1. Calculate the relative utility values for every individual DM.

2. Calculate each individual DM's ranking of the alternatives.

After this phase, a heuristic algorithm known as the Negotiable Alternative Identifier
algorithm (Bui, 1985, Bui and Shakun 1987, Bui and Yen 1995) is employed to determine a
set of negotiable alternatives, i.e. alternatives that the DMs would consider, even if they are
not at the top of their individual ordinal rankings. This algorithm might seem redundant at
first, but it serves as an accelerator for the argumentation process that will follow
afterwards, by significantly reducing the number of alternatives upon which the agents
representing the DMs will negotiate.

It is after the completion of this stage that an argumentation process commences so
that one alternative will be eventually proposed to the group of DMs. Intuitively, one would
expect that combining the individual ordinal rankings of the alternatives from most
preferable to least preferable with the NAI algorithm would suffice; it would be quite easy
for someone to argue that the alternative that made it to the top of the ranking list is the one
that should be eventually chosen. Indeed, this thought makes sense in the context of single-
user decision support. When confronted with a group of decision makers, each with his/her
own personal preferential profile, the matter becomes more complicated, as each DM's
ranking of the alternatives varies, often greatly, from the rankings of the other DMs. In this
case, a consensus must be sought among the DMs on a collectively acceptable compromise.

Starting from the DMs' individual preferences on the alternatives, NAI classifies the
alternatives into three classes of preferences: the most preferable, the preferable and the
least preferable. Within each class, relatively small differences in preferences among
alternatives may make it reasonable for a DM to consider them interchangeable. This
provides the DM with a certain degree of flexibility; the result of this flexibility is that a
collective solution acceptable by all DMs can be reached.

After the application of the NAI algorithm, three subsets of alternatives are created
from the initial set and each DM's individual ranking: the most preferable, the preferable
and the least preferable. It is obvious that, of these three sets, the ones most likely to
contain the best compromise are the set of the most preferable and the set of preferable
alternatives. Then, on these individual sets an intersection operation is performed so that
one set of most preferable, one set of preferable and one set of least preferable alternatives

Σελ. 10

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

will be created for the entire group of DMs. On many occasions, the set of most preferable
alternatives contains only one alternative, which allows the decision-making procedure to
be completed quite soon. There are, however, decision problems where the set of most
preferable alternatives contains more than one alternatives; there are even occasions where
one alternative (or more) that appear in some DMs' sets of most preferable alternatives, but
not in some others'. In such cases, other techniques are necessary.

It is at this point where the argumentation module comes in; starting from the subset
of preferable alternatives (instead of the subset of most preferable), a multi-round
argumentation procedure commences among the multiple agents that represent the DMs.
Each agent has its beliefs about the environment and the other agents: each agent has its
own ordinal ranking and cardinal preferences (expressed by the utilities) of the alternatives,
as well as its own individual weights of the criteria. These are all provided by the
UTASTAR method. Then, these agents, which are supposed to be able to make decisions,
revise their beliefs and support their points of view using arguments, which are expressed
mathematically using the aforementioned utilities and criteria weights, engage in an
argumentation-based negotiation using a general protocol, in order to reach a commonly
acceptable solution.

Understandably, it can be argued that argumentation as a method is not necessary in
multi-criteria decision making and/or multi-criteria decision support; the aggregation
functions that can be mimicked in an argumentation-based approach would be considerably
simpler than sophisticated aggregation functions (such as a general Choquet integral).
There are, however, several reasons for combining MCDA methods and argumentation:

The first reason is the fact that argumentation provides the DMs (or the agents) with
the ability to (a) justify their positions, (b) change their positions.

The second reason is that in some multi-criteria decision problems there are criteria
that are intrinsically qualitative in nature; and there are also examples of multi-criteria
decision problems where even quantitative criteria (i.e. they are of a numerical nature), are
perceived in a qualitative manner. An example of this is a decision problem where a DM
wants to buy a beach house – in such a problem, the criterion of proximity to the sea, which
is quantitative, is often modelled as a qualitative one (Amgoud et al. 2006)

A third reason is the usefulness of developing models that work in a way similar to
how humans deal with decision problems. Such models offer DMs tools whose logic they
can more easily understand and, therefore, they can more easily accept the end results.
Furthermore, it must be noted that argumentation offers a unified setting that can handle
inference, as well as decision making under uncertainty. Finally, the logical setting of
argumentation offers DMs the opportunity to have the values of consequences of the
various alternatives assessed using a non-trivial inference process from various pieces of
knowledge, possibly under uncertainty or even partly inconsistent.

I.4 Definitions – Theoretical background
First, a few necessary definitions should be provided, so that the reader will be given a
better idea of this work’s subject. While there is still no universally accepted definition of
an agent, the following definition appears to work well for this thesis’ purpose:

Σελ. 11

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

• An agent is a computer system that is situated in some environment, and that is
capable of autonomous action in this environment in order to meet its design
objectives (Wooldridge and Jennings 1995).

The present thesis, however, is not concerned with agents in general, but with
intelligent agents. It is not an easy task to provide an answer to questions like ‘when do we
consider an agent to be intelligent?’ and ‘what is intelligence?’. One way of answering
such a question would be to list the kinds of capabilities an intelligent agent would be
expected to have. Wooldridge and Jennings (1995) have provided the following list:

• Reactivity. Intelligent agents are able to perceive their environment, and
respond in a timely fashion to changes that occur in it in order to satisfy their
design objectives.

• Proactiveness. Intelligent agents are able to exhibit goal-directed behaviour by
taking the initiative in order to satisfy their design objectives.

• Social ability. Intelligent agents are capable of interacting with other agents
(and possibly humans) in order to satisfy their design objectives.

Furthermore, this thesis deals with multiple agents as used in the context of a group
decision support system (GDSS) or group support system (GSS); group decision support
systems are a subset of the software systems known as decision support systems. It is rather
hard to give a definition of a decision support system. Because of this difficulty, several
definitions exist. For instance, Finlay et al. (1994) define a DSS broadly as a computer-
based system that aids the process of decision making. Turban (1995) was more precise by
defining it as “an interactive, flexible, and adaptable computer-based information system,
especially developed for supporting the solution of a non-structured management problem
for improved decision making It utilizes data, provides an easy-to-use interface, and allows
for the decision maker’s own insights.” Between these two extremes, there are also other
definitions. For Keen and Scott Morton (1978), DSSs couple the intellectual resources of
individuals with the capabilities of the computer to improve the quality of decisions (“DSS
are computer-based support for management decision makers who are dealing with semi-
structured problems”). For Sprague and Carlson (1982), DSSs are “interactive computer-
based systems that help decision makers utilize data and models to solve unstructured
problems.” So, it becomes apparent that a single, universally accepted definition for
decision support systems does not exist. Of course, a group decision support system (GDSS
or GSS) is a DSS designed to support a group of decision makers.

The process of reaching agreements in a multi-agent environment has long been
based on negotiation. Although it would be fairly easy for someone to confuse negotiation
with auction, these two forms of interaction are quite different. Auctions are indeed useful
for allocating goods to agents, but they are too simple for many settings, as they are only
concerned with the allocation of goods. For reaching agreements on matters of mutual
interest, richer techniques for reaching agreements are required. The generic term given to
these techniques is negotiation. Rosenschein and Zlotkin (1994) have proposed a number
of negotiation techniques for use by artificial agents. Before discussing these techniques,

Σελ. 12

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

however, it would be useful to say a few things about negotiation in general. Generally
speaking, any negotiation setting will have four different components (Wooldridge (2002):

• A negotiation set. This represents the space of possible proposals that agents can
make.

• A protocol. This defines the legal proposals that agents can make, as a function
of prior negotiation history.

• A collection of strategies: one for each agent – these determine what proposals
the agents will make. Usually, the strategy an agent plays is private, i.e. the fact
that an agent is using a particular strategy is not generally visible to other
participants in the negotiation (although most negotiation settings are ‘open
cry’, in the sense that the actual proposals made are seen by all participants).

• A rule. This determines when a deal has been struck and what this agreement
deal is.

Usually, negotiation proceeds in a series of rounds, during which every agent makes a
proposal at every round; the proposals made by the agents are defined by their strategy,
must be drawn from the negotiation set and must be legal, according to the protocol. If an
agreement is reached – as defined by the agreement rule – , then the negotiation process is
terminated with the agreement deal.

There are some attributes that determine the complexity of the negotiation. The first is
whether multiple issues are involved. The most obvious example of a single-issue
negotiation is two agents negotiating only on the price of a good that is up for sale. In a
scenario like this, the agents’ preferences are symmetric, meaning that a deal that is more
preferred by one agent is certain to be less preferred by the other – and vice versa. Such
scenarios are simple to analyze, as what represents a concession will always be obvious: if
the seller is to concede, he must lower the price of his proposal, and if the buyer is to
concede, he must raise his proposal’s price. Obviously, in multiple-issue scenarios, the
agents negotiate over the values of multiple attributes, which may or may not be
interrelated. In such negotiations, what constitutes a concession is usually much less
obvious. There is, however, a considerable drawback: involving multiple attributes in the
negotiation makes the space of possible solutions grow exponentially. Also, the complexity
of most negotiation domains and the kind of values the attributes in question might have
makes things even worse.

Another source of negotiation complexity is the number of agents involved in the
process and the way in which they interact. There are three possibilities (Wooldridge
2002):

• One-to-one negotiation. Here, one agent negotiates with only one other
agent.

• Many-to-one negotiation. A single agent negotiates with a number of other
agents. An example of this kind of setting is an auction. For analysis’ sake,

Σελ. 13

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

many-to-one negotiations are often treated as a number of concurrent one-to-
one negotiations.

• Many-to-many negotiation. Here, many agents negotiate with many other
agents simultaneously. In the worst case, with n agents involved in the
process in total, there can be up to n(n – 1)/2 negotiation threads, making the
analysis of such negotiations a rather formidable task.

For the above reasons, most attempts to automate the negotiation process have
examined simple settings, i.e. single-issue, symmetric, one-to-one negotiations. That is the
type of negotiation most commonly analysed in most of the research work, with the
possibility of multiple-issue negotiation implied, but usually left unexplored.

Rosenschein and Zlotkin (1994) have described a number of negotiation domains.
The first type of negotiation is the task-oriented domain (TOD) (pp. 29-52). A task-
oriented domain is a triple

<T, Ag, c>,

where

• T is the (finite) set of all possible tasks;

• Ag = {1, …, n} is the (finite) set of agents participating in the negotiation;

• c = ℘(T) → R+ is a function defining the cost of executing each subset of
tasks: the cost of executing any set of tasks is a positive real number.

The cost function must satisfy the following two constraints: first, it must be monotonic.
Intuitively, this means that adding tasks never decreases the cost. Formally, this constraint
is defined as follows:

If T1, T2 ⊆ Τ are sets of tasks such that T1 ⊆ T2, then c(T1) ≤ c(T2).

The second constraint dictates that the cost of doing nothing is zero, i.e. c(∅) = 0.

In a task-oriented domain <T, Ag, c>, an encounter occurs when the agents Ag are
assigned tasks to perform from the set T. It can be said, intuitively, that, when an encounter
occurs, there is potential for the agents to reach a deal by reallocating the tasks among
themselves. Formally speaking, an encounter in a TOD <T, Ag, c> is a collection of tasks

< T1, …, Tn>

where, for all i, we have that i ∈ Ag and Ti ⊆ T. A TOD together with an encounter within
the TOD is a type of task environment, which defines the characteristics of the environment

Σελ. 14

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

in which the agent must operate, together with a task – or set of tasks – that the agent must
carry out in the environment.

Another type of negotiation domain is the worth-oriented domain (WOD). Whereas
in a TOD the task(s) are explicitly defined and each agent is given a set of tasks to
accomplish, the WOD is more general. The goals are specified through the definition of a
worth function for the possible states of the environment, which implicitly means that the
agent’s goal is to bring about the state of the environment with the greatest value. A
question that readily occurs is how an agent can bring about a goal. It is assumed that the
agents have a set of joint plans at their disposal; these plans are joint because the execution
of one of them can require the involvement of several different agents. Also, these plans
transform one state of the environment to another. To reach an agreement in a TOD, the
agents negotiate over a distribution of tasks to agents; here, the agents negotiate over the
collection of joint plans and, as mentioned previously, it is in an agent’s interest to reach an
agreement on the plan that will bring about the state of environment with the greatest worth
[Wooldridge, (2002)].

Formally speaking now, a worth-oriented domain (WOD) is a tuple [Rosenschein and
Zlotkin, (1994, p. 55)]

<E, Ag, J, c>

where

• E is the set of possible environment states;

• Ag = {1, …, n} is the set of possible agents;

• J is the set of possible environment states;

• c : J × Ag → R is a cost function, assigning to every plan j ∈ J and every
agent i ∈ Ag a real number which represents the cost c(j,i) to i of executing
plan j.

An encounter in a WOD <E, Ag, J, c> is a tuple

<e, W>

where

• e ∈ E is the initial state of the environment;

W : E × Ag → R is a worth function, assigning to each environment state e ∈ E and
each agent i ∈ Ag a real number W(e, i) representing the value or worth of state e to agent i.

Σελ. 15

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

I.4.1 Advantages of argumentation vs. negotiation

Typically, a decision-making progress utilizing multiple agents involves the
implementation of a game-theoretic negotiation system. However, there are several
disadvantages to this approach (Jennings et al. 2001):

Positions cannot be justified. When a group of humans negotiates, they justify
their claims and stances. If someone attempts to sell somebody else a product, the
seller will try to justify the price asked, invoking the features it has. In turn, the
prospective buyer could justify his proposal for a lower price by explaining that
some of the features are not quite necessary to him/her. In general, negotiating
through a particular game-theoretic approach may make it difficult to understand
how an agreement was reached, an issue that becomes all the more important in the
e-commerce world, where the task of buying and selling goods is delegated to
agents. It makes sense for the owner of the agent to ask why the agent paid this
much for this product; if it cannot explain how it reached this agreement in terms its
owner can understand and relate to, this agreement will not be easily acceptable. If
agents are to act on humans’ behalf in this capacity, the human users need to be able
to trust their decisions.

Positions cannot be changed. In game theory, it is assumed that an agent’s utility
function is fixed and cannot be changed as the negotiation goes on. This could be
true, in one sense, from the point of view of an objective, external, omniscient
observer. But not from a real-life human’s point of view, which is subjective and
personal. The fact that, in real life, a person has only incomplete information on
his/her hands should also be taken into account. So, as the persons negotiate, their
preferences do change.

It is these limitations of game-theoretic negotiation that have necessitated the emergence of
argument-based negotiation (Sycara, 1989b, Parsons et al. 1998). In simple words, multi-
agent argumentation is a process by which one agent tries to convince another that a state
of affairs is true or false (Wooldridge 2002). During the process, agents put forward
arguments for and against propositions, combined with justifications for their arguments’
acceptability – a process that bears a notable resemblance to the way humans interact to
persuade each other of their positions’ validity and acceptability.

The philosopher Michael Gilbert suggests that, if argumentation is to be viewed as it
happens between humans, at least four different modes of argument (Gilbert 1994) can be
identified:

1. Logical mode. This resembles mathematical proof. Its nature tends to be
deductive (‘if we accept that A and that A implies B, then we must accept that
B). It is perhaps the paradigm example of argumentation and is the kind of
argument one expects to see in a court of law or in a scientific paper.

2. Emotional mode. This type of argument involves appeals to feelings,
emotions and attitudes.

3. Visceral mode. This is the physical, social aspect of human argument.

Σελ. 16

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

4. Kisceral mode. The kisceral mode involves appeals to the intuitive, mystical
or religious.

The logical mode is regarded as the ‘purest’ or ‘most rational’ kind of argument.
Wooldridge (2002) proposed an argumentation system based on the one proposed by Fox et
al. (1992) and Krause et al. (1995). It constructs a series of logical steps (arguments) for
and against propositions of interest. It closely mirrors the way human dialectic
argumentation Jowett (1875) proceeds and so it forms a promising basis for a multi-agent
dialectic argumentation framework (Parsons and Jennings 1996).

In classical logic, an argument is a series of inferences that lead to a conclusion. By
writing Δ ⊢ φ we mean that a sequence of inferences from premises Δ exists that allows us
to establish proposition φ. In the argumentation system proposed by Wooldridge (2002),
the traditional form of reasoning is extended by explicitly recording the propositions used
in the derivation, making the assessment of a given argument’s strength possible, by
examining the propositions on which it is based. Below, the basic form of arguments is
given:

Database ⊢ <Sentence, Grounds>

where

• Database is a set of logical formulae (possibly inconsistent);

• Sentence is a logical formula known as the conclusion;

• Grounds is a set of logical formulae such as

1) Grounds ⊆ Database; and

2) Sentence can be proven from Grounds

Intuitively, it can be said that Database is a set of formulae ‘agreed upon’ among the agents
taking part in the negotiation process. This database provides a common ground among the
agents. With this common ground given, an agent makes the argument <Sentence,
Grounds> to support his claim that Sentence is true. Grounds is a set of formulae such that
Sentence can be proven from it; thus, Grounds provides the justification for the agent’s
claim that Sentence is true.

Formally, if Δ is a database, then an argument over Δ is a pair <φ, Γ> where φ is a
formula referred to as the conclusion and Γ ⊆ Δ is a subset of Δ known as the grounds or
support, such that Γ ⊢ φ. The set of all such arguments over database Δ is denoted by Α(Δ).
Arg, Arg’, Arg1 … stand for members of Α(Δ).

For a given proposition, an agent can build several arguments; some will be in favour
of the proposition, some against it – in the latter case they are for its negation. It is
desirable to provide a way to flatten the set of arguments into a measure of how favoured

Σελ. 17

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

the proposition is, in order to determine whether the set of arguments as a whole are in
favour of the proposition. Attaching a numerical or symbolic weight to arguments and then
using a flattening function to suitably combine them is one way to do this. Another way is
to determine how good the arguments are by using their own structure.

Two important classes of arguments can be identified:

Non-trivial argument. An argument <φ, Γ> is non-trivial if Γ is consistent.

Tautological argument. An argument <φ, Γ> is tautological if Γ = ∅.

The idea of defeat between arguments is defined as:

Defeat. Let <φ1, Γ1> and <φ2, Γ2> be arguments from some database Δ. The
argument <φ2, Γ2> can be defeated in one or two ways. First, <φ1, Γ1> rebuts <φ2,
Γ2> if φ1 attacks φ2. Second, <φ1, Γ1> undercuts <φ2, Γ2> if φ1 attacks ψ for some ψ
∈ Γ2 (Wooldridge, 2002).

Defining attack:

Attack. For any two propositions φ and ψ, φ attacks ψ if and only if φ ≡ ¬ ψ
(Wooldridge 2002).

Walton and Krabbe (1995) suggested a typology of six different modes of dialogues, which
are summarized in Table 1. The first mode (type I) is the ‘canonical’ form of
argumentation; i.e. an agent tries to convince another that something is true, while
deliberation (type IV) seems to be the mode closest to the needs of the decision-making
process.

Σελ. 18

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

Type Initial situation Main goal Participant’s aim

I. Persuasion conflict of opinions resolve the issue persuade the other

II. Negotiation conflict of interests make a deal get the best for
oneself

III. Inquiry general ignorance growth of knowledge find a ‘proof’

IV. Deliberation need for action reach a decision influence outcome

V. Information

seeking

personal ignorance spread knowledge gain or pass on
personal knowledge

VI. Eristics conflict/antagonism reaching an
accommodation

strike the other party

VII. Mixed various various various

Table 1: The dialogue types as defined by Walton and Krabbe [Walton and Krabbe (1995)]

Σελ. 19

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

II THE PROPOSED

METHODOLOGY

This chapter presents, and elaborates on,
the methodology proposed for the
solution of the decision problem at hand.
More specifically, the structure and logic
of the methodology is presented and
documented. This chapter is structured as
follows: i) it presents the general

methodological framework; this
presentation is divided in the Ranking
Stage, the NAI algorithm and the
Argumentation stage. ii) All three stages
are divided and organized in steps, which
are presented and described.

II.1 General methodological framework

A group faces the problem of selecting an action from a set of actions (alternatives). These
alternatives presented to the group are valued by a family of criteria. Let A = {α1, α2, ... αn}
be the set of alternatives, g = {g1, g2, ... gm} the consistent family of criteria and D = {d1, d2,
... dq} the decision makers that form the group. The choice problem is divided into three
sub-problems, which are solved consecutively, with the first sub-problem's output being the
second sub-problem's input and the second sub-problem's output being, eventually, the
third problem's input.

In the first sub-problem, the aim is to form each individual DM's ordinal rank order
of the alternatives according to the problem's given criteria and the views of each DM. In
the second sub-problem, a possible set of negotiable alternatives is produced from the
different ordinal rankings of the DMs using the Negotiable Alternatives Identifier (NAI)
algorithm. Finally, in the third sub-problem, a multi-criteria argumentation framework is
applied on the set of negotiable alternatives so that an alternative will be chosen. These
three sub-problems will be called stages for the rest of this thesis. Thus, the decision
problem becomes a three-stage problem. These stages are:

• The Ranking stage

• The Negotiable Alternatives Identification stage

• The Argumentation stage

Σελ. 20

Chapter

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

II.1.1 The Ranking stage

In this stage, the proposed system solves the problem of ranking the alternatives for each
individual DM. This stage consists of the following phases:

II.1.1.1 Setup phase

In this phase, the alternatives and criteria are defined and the group norms (i.e. the
procedures by which the group of DMs will operate) are determined.

II.1.1.2 Assessment of the preferences of the group members

A rank order of the alternatives is constructed according to the preferences of the individual
DMs through the application of the UTASTAR method (Siskos and Yannacopoulos 1985).
The UTASTAR method has been chosen primarily because it enables each individual DM
to analyze his/her behavior and cognitive style according to the general preference
disaggregation framework (Jacquet-Lagrèze and Siskos, 1982, Siskos 1980, 1985, Siskos
and Yannacopoulos 1985, Siskos et al. 1993). This approach aims to help the DM improve
his/her knowledge about the decision situation and his/her preference/value system in order
to reach a consistent decision. In the UTASTAR method, it is assumed that the model of
the DM's preferences is additive, which is not always true, as there are decision problems
where this assumption does not apply. However, the assumption of a linear preference
system helps in the simplification of the problem and also makes it easier to assess the
DM's preference system.

II.1.1.3 Calculation of relative utility values for each alternative and DM

In this phase, the utilities of each alternative (which are derived in phase 2) are normalized,
so that a relative utility value that reflects the tendency of each DM to select or reject an
alternative will be calculated.

II.1.1.4 Ranking of the alternatives

In this phase, a disaggregation of the relative utility values is performed and, taking into
consideration any special knowledge or expertise of each DM, an individual rank order of
the alternatives is constructed for each DM.

II.1.2 Elaboration on the aforementioned phases

II.1.2.1 Setup phase

In this phase, the DMs that form the group are called upon to decide on an initial set of
alternatives and criteria, which may be altered during the process. The already existing

Σελ. 21

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

literature (Keeney and Raiffa 1976, Keeney 1992, Roy 1996, Kirkwood 1997) provides a
thorough discussion of guidelines, methods and tools for the selection of a set of
alternatives and the construction of a consistent family of criteria. The common set of
dimensions (alternatives and criteria) that was used in the case of MEDIATOR (Jarke et al.
1987) can be used to provide a representation of the group decision problem.

In real life, it is not uncommon to accept the fact that, for certain tasks, certain
members of the decision-making group are more qualified for the selection of the final
decision because of factors such as knowledge, expertise, skills etc. This attitude is adopted
in the proposed methodology and it is modeled by granting each DM with a decision power
bk, which represents each participant's ability to influence the outcome of the decision-
making process.

The decision power variables offer the advantage of respecting the particular
characteristics and abilities of each DM, while ensuring that the decision will be made
collectively through the participation and cooperation of all the group members. In
practical collective decision environments, this type of weighted scheme appears frequently
(Laruelle and Widgren 2000, Van Houtven 2002 Turnovec 2002, Leech 2002, Uno 2003,
Felsenthal and Machover 2004) and it has been included in decision support systems Csàki
et al. (1995a, 1995b). Barzilai and Lootsma (1997) point out that, although many decisions
are made in boards, committees and councils and not by individual DMs, little attention is
paid by multicriteria decision analysis to the power relations in groups, although power
games are always present. According to the authors, if the assumption is made that all
group members share equal weights then alternatives weakly supported by the “powerful”
members have little chance of being eventually adopted by the group, even if they are well-
supported by a multicriteria analysis. However, in the case of this thesis, the DMs are
considered to have equal decision powers for the sake of simplicity. Furthermore, the DMs
are considered to be working in a cooperative context.

II.1.2.2 Assessing the preferences of the group members

Following the determination and the formulation of the problem (i.e. alternatives, criteria
and decision powers), the process continues with the assessment of each individual DM's
preferences. Although all individual DMs should share the same set of criteria, each DM
can assign different weights to each criterion. So, if a DM considers a certain criterion to be
unimportant, s/he can assign zero weight to it. The weights of the criteria are expressed
implicitly in each DM's assessment and are calculated by the UTASTAR method.

For this stage of the methodology, a ranking problematic has been chosen for the
following two reasons:

 1. According to Roy (1985), there are four reference problem statements, each of
which does not necessarily preclude the others:

(a) Choosing one action from A (choice) – problematic a

(b) Sorting the actions into predefined and preference-ordered categories (sorting) –
problematic β

(c) Ranking the actions from the best to the worst (ranking) – problematic γ

(d) Describing the actions in terms of their performances on the criteria

Σελ. 22

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

(description) – problematic δ

 2. Group decision making offers the advantage of the potential to gather and combine
the information to which each group member has access (Dose 2003).

In a study of rank-order effects (Hollingshead 1996), groups have been found to be more
likely to exchange information and to consider all alternatives thoroughly when members
were asked to rank order alternatives rather than simply choosing the best one. Thus, the
ranking problematic appears to satisfy the needs of group decision making quite well.

The UTASTAR multicriteria method (Siskos and Yannakopoulos 1985) is applied on
the preferences expressed on the set of alternatives in order to capture each group member's
preferences. With a weak-order preference structure (≻, ~), where ≻ signifies the strict
preference and ~ the indifference on a set of actions or objects, the method aims to adjust
additive utility functions based on multiple criteria in such a way that the resulting
preference structure will be as consistent as possible with the initial structure. In the
original context in which UTA and its later variations (one of which is the UTASTAR
method) were developed, the additive utility model is estimated based on an ordering of a
reference set; the results are extrapolated to the complete set of alternatives. In the problem
at hand, though, the DMs are asked to provide their evaluation on the complete set of
alternatives. This approach will not cause any problems in most situations, except in cases
where there is a large number of alternatives.

Each criterion is defined under the form of a real-valued monotone function gi : A →
[gi* , gi

*] ⊂ R in such a way that gi(α), α ∈ A represents the evaluation of the action a on the
criterion gi and gi* , gi

* respectively represent the level of the most desirable and the least
desirable criterion.

The UTASTAR regression's aim is to estimate additive utilities:

u(g) = u1(g1) + u2(g2) + … + um(gm) (1)

satisfying that

ui(gi*) = 0 ∀ i (2)

∑
i=1

m

ui(g i
*)=u1(g1

*)+ u2(g 2
*)+ . ..+ um(gm

*)=1 (3)

The UTASTAR method guides the DM to a process of gradual learning of his
preferences. The solution is the one that maximizes the DM’s satisfaction. What happens,
though, if the results produced by the model are not in agreement with the individual DM?
In this case, several types of feedback to Phase 1 (the Setup phase) can be considered.
Having returned to the Setup phase, the DM can:

• Change the criteria

Σελ. 23

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

• Change the weak order of the alternatives

• Make tradeoffs among the criteria

In order to assess every marginal value function, the evaluation scales of each criterion
(especially in the case of quantitative criteria that are easily measurable) are discretised in a
limited set of points:

Gi={g i*

1, g i*

2,
… , g i*

l , g i*

ai=g i¿} (4)

On the other hand, the set of actions (alternatives) A = {a1, a2, …, ak} is rearranged in such
a way that a1 is the head of the ranking and ak is its tail. Since the ranking has the form of a
weak order, for each pair of consecutive actions (aj, aj + 1) one of the two following
relations holds:

aj ≻ aj + 1 (preference)

aj ∼ aj + 1 (indifference)

Whereas the original UTA method introduced a single error σ(a) to be minimized for each
a ∈ A, the UTASTAR method introduces two errors leading to better results (Fig. 1).

Figure 1. Ordinal regression curve (ranking versus global value)

Σελ. 24

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

The main computational procedure employed in UTASTAR uses linear programming
techniques to find additive value (utility) functions that are as consistent as possible with
the ranking on A.

Step 1. Express the global value (global utility) of the alternatives u[g(aj)], j = 1, 2, …, k,
first in terms of marginal values (marginal utilities) ui(gi) and then in terms of variables:

w il=u i(g i
j+ 1

)−ui(g i
l
)⩾0 , (5)

i = 1, 2, …, n, l = 1, 2, …, ai – 1, (6)

by means of the relations

u i(g i
1
)=0 and u i(g i

l
)=∑

i=1

l−1

w il ∀ i and l > 1. (7)

Step 2. Introduce two error functions, σ+ and σ- on A by writing, for each pair of
consecutive alternatives in the ranking, the analytic expressions

Δ(a j , a j+ 1)=u [g (a j)]−σ +
(a j)+ σ -

(a j)−u [g (a j+ 1)]+ σ +
(a j+1)−σ -

(a j+1) (8)

Step 3. Solve the linear program

minimize z = ∑
j=1

k

[σ+ (a j)+ σ -(a j)] , (9)

subject to the set of constraints:

Δ (a j , a j+ 1)⩾δ if aj ≻ aj+1

Δ (a j , a j+ 1)=0 if aj ∼ aj+1

∀ j=1,2 ,… , k−1 , (10)

∑
i=1

n

∑
l=1

ai−1

wil=1 , (11)

w il⩾0, i=1,2,… , n , (12)

l=1,2,… , ai−1 , (13)

σ +
(a j)⩾0, σ -

(a j)⩾0, j=1,2 ,… , k , (14)

Σελ. 25

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

where δ is a small positive number.

Step 4. Test the existence of multiple or near optimal solutions of the linear program (9)-
(14) (stability analysis). In case of non-uniqueness, find the mean additive value function of
those (near) optimal solutions that maximize the objective functions

p i=ui(g i
*
)=∑

l

wil ∀i=1,2,… , n on the polyhedron (10)-(14) bounded by the new

constraint

∑
j=1

k

[σ+
(a j)+ σ -

(a j)]⩽ z*
+ ε , (15)

where z* is the optimal value of the linear program in Step 3 and ε is a very small positive
number. Fig. 2 on the next page illustrates the Ranking Stage in the form of a flowchart.

Σελ. 26

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

Figure 2. Illustration of the Ranking Stage.

Σελ. 27

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

II.1.3 Identification of Negotiable Alternatives

After the assessment of each DM’s preferences in the previous stage has been completed,
all group members will have reached a final ranking of the alternatives, which is consistent
to their initial preferences and the original weak order. There is, however, one problem:
since DMs have different preferences, it is not uncommon to encounter conflicts and
disagreements among the individual rankings; this prevents the selection of a unique and
commonly accepted group ranking of the alternatives.

This necessitates the usage of a method that will seek a point of consensus, i.e. a
compromise among the possibly conflicting individual rankings. This is where a heuristic
algorithm named the Negotiable Alternative Identifier (NAI) algorithm proves to be
especially useful. NAI classifies the alternatives into three classes of preferences: the most
preferred, the preferred and the least preferred. Within each class, relatively small
differences in preferences (in the case of this thesis' proposed methodology, preferences are
expressed by the utility values of the alternatives) among alternatives may make it
reasonable for a DM to consider them more or less interchangeable.

As a result of this flexibility, the generation of a collective solution or a set of
collective solutions that are acceptable to all DMs becomes possible. The NAI algorithm,
which entails multiple rounds of group consideration, is a formalized consensus-seeking
methodology based on an intuitive procedure observed in negotiations. This procedure is
typically described as follows: “The group members have failed to find a consensus.
However, if some are willing to accept solutions other than their first choice, but which are
not that far different preference-wise from the first choice, then a common solution that is
acceptable by all members can be found”. The underlying concepts of the NAI algorithm
shall be discussed in section II.1.3.1. In section II.1.3.2 the NAI methodology and its
mathematical model shall be described.

II.1.3.1 Consensus-Seeking: Problem definition and basic concepts

II.1.3.1.1 Definition of the Problem

1. All DMs share the same exhaustive and mutually exclusive alternatives, where n is
the number of alternatives and m is the number of DMs participating in the solution
of the group decision problem.

2. Prior to the group decision making process, each DM d has performed his/her own
individual assessment of preferences (the Ranking Stage described earlier). For
example, the DM can use an additive utility method [Fishburn, (1974a, b), Siskos
and Yannakopoulos (1985)] or perhaps the Analytic Hierarchy Process [Saaty,
(1980)] to obtain utilities. The output of this analysis is a vector of normalized
cardinal preferences on n alternatives rd = [rdi], where rdi ≥ 0 for i = 1, …, n, d = 1,

…, m, and ∑
i=1

n

rdi=1

Σελ. 28

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

3. Furthermore, the vector of ranking, rd, is sorted according to an order of decreasing
importance. This notion of preference corresponds to a complete asymmetry
preorder. In other words, rd1 represents the relative preference of the most preferred
alternative and rdn the relative preference of the least preferred alternative.

4. Given the vector rd, Rds can be defined as the cumulative preference that a decision
maker gives to the first s alternatives:

Rds=∑
i=1

s

rdi (16)

II.1.3.1.2 Expansion/Contraction/Intersection Concept

Beginning with individual and cardinal rankings of the alternatives, the NAI algorithm is
motivated by the following observations: First, the possibility of reaching a consensus can
be improved if the DMs exhibit some flexibility regarding their individual assessment of
preferences. Second, they should be able to identify exchangeable or negotiable
alternatives.

As proposed by Bui and Shakun (1988), the NAI algorithm, which attempts to help
DMs who exhibit flexibility in their assessment of the preferences , is based on the
observations that the determination of the cardinal ranking of a set of alternatives is
influenced by two factors:

1. The total number of the alternatives that are being evaluated affects the intensity of
preferences. Often, the greater the number of alternatives, the weaker the relative
importance of the alternatives is. This means that, when the DMs are presented with
a greater number of alternatives, it becomes more difficult for them to tell which
one is more important (or better) than the other.

2. The distribution of marginal difference among the alternatives is rarely uniform. For
example, some alternatives share close evaluation (e.g., A and B with respective
scores 0.33 and 0.32), while others score significant marginal difference (for
instance, C and D with 0.25 and 0.11 respectively).

NAI is characterized by a triplet of operations: expansion, contraction and
intersection. The objective of the first operation is to assess individual preferences by
locating possible areas of compromise. In effect, when a DM ranks his/her preferences, the
order is constantly subject to re-evaluation. He/she logically chooses the alternative that is
ranked first; however, he/she may consider others, depending on their relative distances
from the first.

NAI groups the alternatives (which, in this thesis and its accompanying software,
have already been ranked by the UTASTAR method in the Ranking Stage) into three
classes of preferences: the most preferable, the more preferable and the least preferable
subsets. Within each class, negligible differences in preferences among alternatives would
increase the confidence of the DMs not to discriminate among them. Consequently, it
would make it easier for the DMs to trade them interchangeably. In other words, grouping
alternatives that share close evaluation corresponds to expanding the preference space(s) of
the DM from one best alternative to a set of more or less equally preferred ones.

Σελ. 29

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

The contraction operation constitutes the second phase of the NAI algorithm. Given
a subset of comparatively satisfactory alternatives obtained from the expansion mapping,
the second operation attempts to identify those that might exhibit a stronger preferential
distribution than others. Therefore, if among the preferred alternatives, there still remains
an unequal distribution of preferences, the NAI algorithm provides an indicator that
distinguishes the most preferable alternatives from the preferable ones.

Finally, the third and last step of the NAI algorithm is the intersection operation. It
derives a collective solution (or a number of collective solutions) that is (are), in principle,
acceptable by all group members. Consensus is reached when there is at least one
alternative that appears in every group member's subset of the most preferable alternatives.
As a result, a collective solution is one that is acceptable by all the DMs to whom it may be
suggested.

If, however, the intersection operation fails to identify a collective solution, this could
be seen as an indicator that another form of consensus seeking or compromise should be
tried.

II.1.3.2 Heuristics for Consensus Seeking

II.1.3.2.1 NAI Heuristic

As mentioned earlier, the distribution of preferences among alternatives reflects the extent
to which the alternatives are related to each other. With alternatives ranked by cardinal
preferences, the Structural Index of Preferences of the Subset consisting of the first j
alternatives, Sidj, can be defined as follows. For a decision maker d,

SI d j=(
1
j
)M d

(j) , (17)

where

M d
(j)=(

1
j−1

)∑
k =1

j−1

M d k j , (18)

and

M d k j=
(
Rd k

k
)

Rd j−Rd k

j−k

, (19)

Σελ. 30

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

where j = 2, …, n and k = 1,..., j-1 is a summation index. Here, it is assumed that the
denominator is not zero. Otherwise, it is assumed that Md k j = ∞.

In other words, Md k j is the ratio between the cumulative preference per alternative
assigned to better alternatives and that of the remaining alternatives. M d

(j) is an average

value of Mk. The structural index SIdj puts this average M d
(j) on a per-alternative basis.

The value of SIdj is a function of the number of alternatives j, as well as the

distribution of the DM's preferences rdi. In theory, SIdj varies between
1
j

 (i.e., a situation

in which the DM is completely indifferent w.r.t the alternatives) and ∞ (i.e., the maximum
“disequilibrium” or imbalance in the distribution of preferences). Furthermore, it can be

argued that the closer SIdj's value is to
1
j

, the easier it is for the DM to negotiate with

other members of the group. On the other hand, the degree of flexibility in negotiation
becomes smaller as the value of SIdj becomes higher.

The NAI algorithm's function is broken down in three basic operations:

Operation 1: Expansion. Given a set of n ranked alternatives, the subset of preferable
alternatives can be defined as the one consisting of the top alternatives, say n*, that are
clearly more preferable to the others, i.e. n – n*. The identification of the number of
preferable alternatives n*, as well as the reasoning of the approach, are described below:

• Define n – 1 subsets of alternatives: the first subset is composed of the first two
alternatives (j = 2). The second is composed of the first three alternatives (j = 3),
etc. The (n – 1)th subset is the entire set of alternatives itself (j = n).

• For each subset of j alternatives, compute its structural index of preferences, SIdj,
where j = 2, …, n.

• The subset containing the preferred alternatives is the one that has the lowest SIdj:

SI d , n*=min {SI d j} (20)

where n* represents the first n* alternatives that form the subset of the preferred
alternatives (2 ≤ n* ≤ n).

But why should the lowest value of SIdj be chosen as the cut-off point? This choice
can be intuitively justified by observing that the lower the SIdj's value is, the more uniform
the distribution of preferences among alternatives becomes. Thus, by choosing n* that has
the minimum value of SIdj, it can be inferred that the DM d has distributed his/her
preferences among the n* alternatives more or less evenly. In other words, numerical
differences between the n* alternatives are not significant enough to assert that none of the
alternatives is clearly worse than another to the extent that it should be rejected.

From a group decision problem solving point of view, a higher SId,n* value indicates
that the DM d has a strong and clear choice. Consequently, there may be little room left for
concession. On the other hand, a low SId,n* suggests that the DM d would exhibit some

Σελ. 31

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

indifference to the alternatives, and therefore any of these could be acceptable.

Operation 2: Contraction. In this operation, the idea is to find out which subset of the
preferred set constitutes the most preferred subset. Given n* preferred alternatives, a second
cut-off point can be identified by following the steps set forth below:

• Define n* - 1 subsets of alternatives in a bottom-up fashion: the first bottom subset
is composed by the n* alternatives minus the top one (the one that is at the top of the
ranking). The second subset is composed by n* alternatives minus the first two top
alternatives, and so forth. Finally, the (n* - 1)th bottom subset contains only one
alternative, the one just above the cut-off point for the preferred set.

• Compute the arithmetic mean r ī of the cardinal preferences of each subset i',
where i' = 1, …, n* - 1 corresponds respectively to the first to the (n* - 1)th bottom
subset as defined in the first step.

• For i* = 1, …, n* - 1, compute the preference ratio index, Cd,i* as follows:

Cd , i*=
ri*

r i

(21)

where ri* is the cardinal preference for alternative i*, the last top alternative defining
a cut-off point separating the bottom subset from the alternatives above. It must be
noted that the cardinal preferences of the alternatives in the preferred set, n*, are
renormalized so that their sum equals one.

• Choose the second cut-off point i* by maximizing the Cd,i* preference ratio, i.e.,
max{Cd,i*} for i* = 1, …, n* - 1. The rationale for this is as follows: If Cd,i* is large,
then there is a significant relative drop between the preference value ri* of the
alternative just above the cut-off point compared to the average preference ri of the
alternatives in the subset below. Thus, max{Cd,i*} is a good criterion for the subset
of the preferred alternatives at the top of the preferred set.

In other words, the alternatives situated above this second cut-off point are
considered to be the most preferable. It is assumed that the DM would be reluctant to
reject them. In a situation of complete indifference, all Cd,i* = 1 are maximum and the
algorithm would set i* = n*.

Operation 3: Intersection. Given all individual subsets of i* (most preferable) alternatives,
an intersection operation can be performed to identify a possible consensus solution (or
more possible consensus solutions, if they do exist). In a similar manner, an intersection
operation can be performed on individual subsets of n* (preferable) alternatives.

II.1.3.2.2 The Intersection Impasse and two procedures to overcome it

The above has proved to be useful, since it captured, at least partially, the human behavior
in decision making (Bui, 1987). If each DM selects his/her own i* and deletes all the others,

Σελ. 32

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

then there might be no common alternative in every DM's most preferred set i*. This means
the following:

i1
*
∩i 2

*
⋯im

*
−1∩im

*
={} (22)

where m is the number of DMs. In other words, the most preferred alternatives have an
empty intersection. To overcome this difficulty, Bui and Yen (1995) propose two
procedures:

Procedure 1. This procedure is an iterative process. In every iteration, it removes the
alternatives that are the least likely to be accepted as candidates, i.e. if no common
alternative is identified in every DM's most preferred set i*, then the alternatives that fall in
the least preferred set, the n – n*, will be removed and the preferences distribution will be
reallocated to the ines remaining in the more preferred set n*.

In every iteration, the procedure recalculates ri, SΙdj and Cd,i* to find the new cut-off
points to divide the n into n* and n - n* and to divide the n* into i* and n* - i*. This procedure
continues until a common alternative (or a number of common alternatives) is identified in
every DM's most preferred set i*. The procedure assumes that the preference distribution is
indifferent to the removal of the least preferred alternatives. There is, however, no general
guarantee that this procedure will lead to a consensus.

Procedure 2. This procedure differs from procedure 1 in that it expands the size of the
most preferred set downward until an alternative is identified in every DM's most preferred
set. The length of the procedure depends on the distribution of preferences. If the
allocations do not deviate widely, reaching a solution only takes two steps. Otherwise,
completion of all four steps presented below is required.

Step 1. For each DM d, find the following two bounds:

Cd , min=mini ∈(n*−i *)
{Cd i} (23)

Cd , max=max i∈(n*−i*)
{Cd i} (24)

These are the upper and lower limites of Cd , n*−i* .

Step 2. For each DM d and value t∈[0,1] , identify id(t), which is the largest value of i
such that

Cd , i≥Cd ,max−t⋅(C d , max−C d ,min) (25)

Σελ. 33

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

These steps represent the fact that because the DMs cannot find an alternative that appears
in everyone's most preferred set id

* , they have to further expand the size of the most
preferred set by including part of the alternatives in the more preferred set n* - i*. Then, the
lowest value of t is selected such that the DMs have at least one common alternative of all
expanded most preferred sets, and any one of the common alternatives can be accepted as
the solution.

Application of the above two steps will always provide a solution unless there is no
common alternative in the preferred sets of the DMs. In such a case, the preferred sets
should be expanded again before applying the above procedure. The expansion can be done
as follows:

Step 3. For each DM d, find the following two bounds:

SI d , min=min j∈(n−n*)
{SI dj} (26)

SI d , max=max j∈(n−n*)
{SI dj} (27)

Step 4. For each DM d and value t∈[0,1] , calculate jd(t), which is the largest value of j,
such that

SI d , j≤SI d ,min+ t⋅(SI d , max−SI d , min) (28)

The smallest value of t is selected such that the expanded preferred alternative sets
have at least one common element. Steps 1 and 2 are then used with the expanded preferred
alternative sets.

The aforementioned procedures were Bui and Yen's propositions for breaking a
possible intersection impasse. Although this thesis uses the NAI algorithm as a method for
accelerating and verifying the argumentation process and not as the main method of
reaching a consensus, both these procedures are implemented in order to ensure that no
empty intersection occurs; that way, it is guaranteed that the argumentation stage will have
alternatives on which the agents will negotiate.

On the next page, figure 3 presents the NAI algorithm in the form of a flowchart.

Σελ. 34

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

Σελ. 35

START
(from the end

of the Ranking Stage)
Phase 1: Expansion Operation

1. Define n – 1 subsets of alternatives:
the first subset is composed of the first two alternatives (j = 2).

The second is composed of the first three alternatives (j = 3), etc.
The (n – 1)th subset is the entire set of alternatives itself (j = n).

2. For each subset of j alternatives,
compute its structural index of preferences,

SIdj, where j = 2, …, n.

3. The subset containing the preferred alternatives
is the one that has the lowest Sidj:

where n* represents the first n* alternatives

that form the subset of the preferred alternatives (2 ≤ n* ≤ n).

Phase 2: Contraction Operation.

1. Define n* - 1 subsets of alternatives in a bottom-up fashion:

The 1st bottom subset is composed by the n* alternatives
minus the top one (the one that is at the top of the ranking).

The (n* - 1)th bottom subset contains only one alternative,
 the one just above the cut-off point for the preferred set.

2. Compute the arithmetic mean of the cardinal preferences of each subset i' .

3. For i* = 1, …, n* - 1, compute the preference ratio index, Cd,i* as follows:

4. Choose the second cut-off point i* by maximizing the Cd,i*

preference ratio, i.e., max{Cd,i*} for i* = 1, …, n* - 1.

SI d , n*=min {SI d j}

Cd , i*=
r i*

r i

Phase 3: Intersection Operation

END – Proceed to
Argumentation Stage

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

Figure 3. The NAI Algorithm

II.1.4 The Argumentation Stage

As has been mentioned earlier, the NAI algorithm is used as a method for accelerating the
reaching of a consensus on a commonly accepted solution through an argumentation-based
negotiation procedure. What the NAI algorithm basically does in this context is to reduce
the number of possible alternatives from the initial set of n alternatives to a smaller set of
preferable (i.e. negotiable) alternatives n*. This provides an opportunity to complete the
argumentation process in fewer iterations (rounds), having excluded all the alternatives that
the DMs do not consider negotiable.

It is in this stage that the collective choice is being made by the DMs (and the agents
that represent the DMs). To apply this approach, this thesis adapts an argumentation
framework proposed by Amgoud, Belabbes and Prade (2005), using the output of the NAI
algorithm as its input. The setting of the framework used in this thesis has three main
components: the agents/DMs, their reasoning capabilities and a protocol. The agents/DMs
are supposed to maintain certain beliefs about their environment and other agents/DMs,
together with their own goals. These beliefs are generally more or less certain and the goals
may or may not have equal priority. Furthermore, the agents/DMs are supposed to be able
to make decisions, revise their beliefs and support their point of view using arguments. The
protocol used in this thesis governs the high-level behavior of the interacting agents/DMs,
specifying the legal moves in the dialogue.

Argumentation is especially useful, as it helps explain and support the choice made
by the group of decision makers, not only providing the users with a “good” choice, but
also with the reasons underlying the recommendation made by the GDSS, in a format
easily comprehensible by the average decision maker, who could very well be a layman,
without significant knowledge on matters of Operations Research, Game Theory,
Argumentation and Artificial Intelligence. Furthermore, argumentation-based decision
making is similar to the way humans deliberate and finally make their decisions. Of course,
the idea of basing decisions on arguments pro (for the alternative) and cons (against the
alternative) is not new at all; it is very old and was actually stated in a more or less formal
fashion by Benjamin Franklin more than two centuries ago.

Several attempts have been made to formalize this idea; the most important ones
were by Fox and Parsons (1997), Fox and Das (2000), Bonet and Geffner (1996), Amgoud
and Prade (2004), Amgoud, Belabbes and Prade (2005) and Amgoud, Bonnefon and Prade
(2005).

The proposed approach applies the ideas presented by Amgoud, Belabbes and Prade
(2005) and incorporates them as the argumentation stage of the presented methodology and
software. The argumentation stage presented here is basically an automated system for
argumentation-based negotiation. Automated negotiation is not a new concept; Rahwan et
al. (2003) have investigated the matter before and various approaches have been proposed,
including game-theoretic approaches (these usually assume complete information and
unlimited computation capabilities), heuristic-type approaches that attempt to cope with
these limitations, and argumentation-based approaches, such as those presented in Amgoud
et al. (2000a, 2000b), Kakas and Moraïtis (2003), Kraus, Sycara and Evenchik (1998) and

Σελ. 36

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

Parsons, Sierra and Jennings (1998), which emphasize the importance of exchanging
information and explanations between negotiating agents in order to mutually influence
their behaviors (e.g. an agent may concede a goal having a small priority). The first two
types of settings do not allow for the addition of information or for exchanging opinions
about offers. Integrating argumentation theory in negotiation provides a good means of
supplying additional information and also helps agents convince each other by using
adequate arguments during a negotiation dialogue.

The argumentation stage presented here considers agents/DMs having knowledge
about the environment graded in certainty levels and preferences expressed under the form
of more or less important goals. These goals can intuitively be identified with the criteria of
the GDSS. Thus, the criteria provided in the early stage (the Ranking Stage) of this GDSS
are the goals used in the Argumentation Stage presented and discussed here. The reasoning
model of the agents/DMs is based on an argumentative decision framework, as the one
proposed in Amgoud and Prade (2004) in order to assist the agents/DMs to decide about
what to say during the dialogue and to support their behavior by founded reasons, namely
“safe arguments”. This argumentation stage focuses on argumentation-based negotiation
dialogues where autonomous agents (representing the DMs) try to find a joint compromise
about a collective choice that will satisfy at least all their most important goals, according
to their most certain pieces of knowledge.

A general and formal framework for handling these negotiation dialogues is
presented here, along with a protocol that specifies rules of interaction among the agents.
As the agents negotiate about a set of offers (i.e. alternatives) in order to choose the best
one from their common point of view, it is assumed that the protocol is run, at most, as
many times as there are offers. Since the alternatives used in the Argumentation Stage are
the ones provided by the NAI algorithm, the protocol is not run n times, but n*. Each run of
the protocol consists of the discussion of one offer (alternative) by the agents/DMs. If that
offer (alternative) is accepted by all the agents/DMs, then the negotiation ends successfully.
Otherwise, if at least one agent/DM rejects it strongly and does not revise its beliefs in light
of new information, the current offer is – at least temporarily – eliminated and a new one is
discussed, initiating a new round.

Two examples are offered to illustrate the function of the entire system, beginning
from the setup of the decision problem, using the Ranking Stage to assess the DMs'
preferences, then proceeding to identifying negotiable alternatives using the NAI Heuristic
and, finally, feeding the results of the NAI Heuristic into the Argumentation Stage for the
determination of the commonly acceptable solution. The examples will be presented and
explained later on.

II.1.4.1 Mental States and their Dynamics

First of all, a convention needs to be made; for reasons of simplicity and brevity, since each
DM is represented by and identified with his/her respected agent, the term agent/DM will
be replaced by the term “agent”, unless it is considered necessary in a certain context. The
mental states of the agents are represented by bases modeling beliefs and goals in terms of
certainty and importance respectively. As per Amgoud and Prade (2004), Sierra et al.
(1997), each agent is equipped with 2n bases, where n is the number of agents participating
in the negotiation.

Σελ. 37

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

Let L be a propositional language and W f f (L) the set of well-formed formulas built
from L. Each agent ai has the following four bases:

K i={(k p
i , ρp

i
) , p=1, sk} , where k p

i
∈W f f (L) is a knowledge base gathering the

information the agent has about the environment. The beliefs can be less or more certain.
They are associated with certainty levels ρp

i .

Gi={(gq
i , λq

i
) , q=1, sg } , where gq

i
∈W f f (L) is a base of goals to pursue. These

goals can have different priority degrees, represented by λq
i . As mentioned earlier, in

this system the criteria are identified with the goals.

GO j
i
={(gr , j

i , γr , j
i

) , r=1, s go(j)} , where j≠i , gor , j
i

∈W f f (L) , are (n – 1) bases
containing what the agent ai believes the goals of the other agents aj are. Each of these
goals has a priority level γr , j

i .

KO j
i
={(ko t , j

i , δt , j
i

) ,t=1, sko(j)} , where j≠i , kot , j
i

∈W f f (L) , are (n – 1) bases
containing hat the ai believes the beliefs of the other agents aj are. Each of these beliefs has
a certainty level δ t , j

i .

The latter case is useful only if the agents intend to simulate the reasoning of the
other agents. In negotiation dialogues where agents are trying to reach a common
agreement (a consensus), it is more important for each agent to consider the beliefs it has
on the other agents' goals (criteria) rather than those of their knowledge. Indeed, a
consensus can be more easily reached if the agents ensure that their offers may be
consistent with what the believe the goals of the other agents are. So, in what follows, the
bases KO j

i will be omitted. Furthermore, it must be noted that, in this particular system
(and, in all likelihood, other systems of this kind), the negotiation process is greatly
facilitated by having the same criteria for all DMs (and, consequently, their respective
agents).

The different certainty levels and priority degrees are assumed to belong to a unique
linearly ordered scale T with maximal element denoted by 1 (corresponding to total
certainty and full priority) and a minimal element denoted by 0, corresponding to the
complete absence of certainty or priority. m denotes the order-reversing map of the scale.
More specifically, m(0) = 1 and m(1) = 0. The corresponding sets of classical propositions
when weights are ignored shall be denoted by K* and G*.

II.1.4.2 Argued Decisions

In Amgoud and Prade (2004), a formal framework for decision-making under uncertainty
on the bases of arguments that can be built in favor of or against a possible choice was

Σελ. 38

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

proposed. This approach has two advantages, which have already been mentioned in earlier
sections of this thesis: First, decisions can be more easily explained. Second,
argumentation-based decision-making is closer to the way humans make their decisions
than approaches which require explicit utility functions and uncertainty distributions.
Decisions for an agent are computed from stratified knowledge and preference bases as
explained in section II.1.4.1 This approach distinguishes between a pessimistic attitude,
which focuses on the existence of strong arguments that support a decision, and an
optimistic one, which focuses on the absence of strong arguments against a decision. This
approach can be related to the estimation of qualitative pessimistic and optimistic expected
utility measures. Such measures can be obtained from a qualitative plausibility distribution
and a qualitative preference profile that can be associated with a stratified knowledge base
and a stratified set of goals (Amgoud and Prade 2004). However, in this thesis it is
indicated that this approach also works well with measures being provided by a preference
disaggregation method (such as any method of the UTA family; in this thesis, the
UTASTAR method was chosen).

In this thesis, the syntactic counterpart of these semantical computations is only used
in terms of distribution and profile (which has been proven to be equivalent for selecting
the best decisions), under its argumentative form.

The idea is that a decision is justified and supported if it leads to the satisfaction of at
least the most important goals of the agent, taking into account the most certain part of
knowledge. Let D be the set of all possible decisions, where a decision d is a literal. This
set D corresponds to the set of alternatives that the agents/DMs are presented with.
However, since in this thesis the NAI heuristic is used as an accelerator for the
argumentation module, the alternatives in D are not the ones in the initial set of
alternatives, but instead they are the ones in the preferred set of alternatives, as determined
by the NAI algorithm.

Definition 1 – Argument PRO: An argument in favor of a decicion d is a triple A = <S, C,
d> such that:

• d ∈D
• S⊆K * and C⊆G*

• S∪{d } is consistent
• S∪{d } ⊢ C
• S is minimal and C is maximal (for set inclusion) among the sets satisfying the

above conditions.

S = Support(A) is the support of the argument, C = Consequences(A) its consequences (the
goals which are reached by the decision d) and d = Conclusion(A) is the conclusion of the
argument. The set AP gathers all the arguments that can be constructed from <K, G, D>.

Because of the stratification of the bases Ki and Gi, arguments in favor of a decision are
more or less strong for i.

Definition 2 – Strength of an Argument PRO: Let A = <S, C, d> be an argument in AP.
The strength of A is a pair <LevelP(A), WeightP(A)>, such that:

• The certainty level of the argument is LevelP(A) = min{ρi | ki ∈ S and (ki, ρi) ∈ K}. If
S=∅ then LevelP(A) = 1.

Σελ. 39

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

• The degree of satisfaction of the argument is WeightP(A) = m(β), with β = max{gj |
λj ∈ G and (gj, λj) ∉ C}. If β = 1, then WeightP(A) = 0 and if C = G*, then WeightP(A)
= 1.

Then, strengths of arguments make the comparison of pairs of arguments possible in the
following manner:

Definition 3: Let A and B be two arguments in AP. A is preferred to B, denoted A ≿P B, iff
min{LevelP(A), WeightP(A)} ≥ min{LevelP(B), WeightP(B)}.
So, arguments are constructed in favor of decisions and those arguments can be compared.
Then decisions can also be compared on the basis of their pertinent arguments.

Definition 4: Let d, d' ∈ D. d is preferred to d', denoted d ⊳P d', iff ∃ A ∈ AP,
Conclusion(A) = d such that ∀ B ∈ AP, Conclusion(B) = d', then A ≿P B.
This decision process is pessimistic in nature since it is based on the idea of ensuring that
the important goals are reached. An optimistic attitude can also be modeled. It focuses on
the idea that a decision is all the better as long as there is no strong argument against it.

Definition 5 (Argument CON): An argument against a decision d is a triple A = <S, C,
d> such that:

• d ∈D
• S⊆K * and C⊆G *

• S∪{d } is consistent
• ∀ gi ∈C, S ∪ {d} ⊢ ¬ gi
• S is minimal and C is maximal (for set inclusion) among the sets satisfying the

above conditions.
S = Support(A) is the support of the argument, C = Consequences(A) its consequences (the
goals which are not satisfied by the decision d) and d = Conclusion(A) is the conclusion of
the argument. The set AO gathers all the arguments that can be constructed from <K, G,
D>.

It must be noted here that the consequences considered here are the negative ones. Again,
argument can be more or less strong or weak.

Definition 6 – Weakness of an Argument CON: Let A = <S, C, d> be an argument in
AO. The weakness of A is a pair <LevelO(A), WeightO(A)>, such that:

• The certainty level of the argument is LevelO(A) = m(φ) such that φ = min{ρi | ki ∈ S
and (ki, ρi) ∈ K}. If S=∅ then LevelΟ(A) = 0.

• The degree of the argument is WeightΟ(A) = m(β), such that β = max{gj | λj such that
gj ∈ C and (gj, λj) ∈ G}.

Once the arguments and their weaknesses have been defined, pairs of arguments can be
compared. It is plain to understand that the DM(s) shall prefer decisions that only have
weak arguments against them, i.e. what the optimistic attitude is interested in is the least
weak arguments against a decision that is being considered. This leads to the following two
definitions:

Σελ. 40

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

Definition 7: Let A and B be two arguments in AO. A is preferred to B, denoted A ≿O B, iff
max{LevelO(A), WeightO(A)} ≥ max{LevelO(B), WeightO(B)}.

As in the case of the pessimistic attitude, decisions are compared on the basis of their
relevant arguments.

Definition 8: Let d, d' ∈ D. d is preferred to d', denoted d ⊳O d', iff ∃ A ∈ AO,
Conclusion(A) = d such that ∀ B ∈ AO with Conclusion(B) = d', then A ≿O B (A is preferred
to B).

This approach can be illustrated by using the two points of view (pessimistic and
optimistic on an example about deciding or not to argue in a multiple agent dialogue for an
agent that is not satisfied with the current offer.

Example 1. The knowledge base is K = {a → suu, 1), (¬ a → suu, 1), (a → ¬ aco, 1),
(fco∧ ¬ a →aco, 1), (sb, 1), (¬ fco → ¬ aco, 1), (sb → fco, λ), (0 < λ < 1) with the
intended meaning:

suu: saying something unpleasant
fco: other agents in favor of current offer
aco: obliged to accept the current offer
a: argue
sb: current offer seems beneficial to the other agents.

The base of goals is G = {(¬ aco, 1), (¬ suu, σ)} with (0 < σ < 1). The agent does not want
to say something unpleasant, but it is more important not to be obliged to accept the current
offer.

The set of decisions is D = {a, ¬ a}, i.e. arguing or not.

There is one argument in favor of decision “a”: <{a → ¬ aco}, { ¬ aco}, a>. There is also
a unique argument in favor of the decision “¬ a”: <{¬ a →¬ suu}, {¬ suu}, ¬ a>.

The level of the argument <{a → ¬ aco}, { ¬ aco}, a> is 1, while its weight is m(σ).
Regarding the argument <{¬ a →¬ suu}, {¬ suu}, ¬ a>, its level is 1 and its weight is
m(1) = 0.

The argument <{a → ¬ aco}, { ¬ aco}, a> is preferred to the argument <{¬ a →¬ suu},
{¬ suu}, ¬ a>.

From a pessimistic point of view, decision a is preferred to decision ¬ a since <{a → ¬
aco}, { ¬ aco}, a> is preferred to the argument <{¬ a →¬ suu}, {¬ suu}, ¬ a>.

Now, from an optimistic point of view, there is one argument against decision “a”: it is the
argument <{a → suu}, {¬ suu}, a>. There is also a unique argument against the decision
“¬ a”: <{sb, sb → fco, fco∧ ¬ a →aco }, { ¬ aco}, ¬ a>.

Σελ. 41

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

The level of the argument <{a → suu}, {¬ suu}, a> is 0 whereas its degree is m(σ).
Regarding the argument <{sb, sb → fco, fco∧ ¬ a →aco }, { ¬ aco}, ¬ a>, its level is
m(λ) and its degree is 0. Then the comparison of the two arguments comes down to
comparing m(σ) to m(λ).

This comparison is what will determine the final recommended decision when using the
optimistic approach.

This argumentation system will be used to make decisions about the offers to propose in a
negotiation dialogue. The following definition is the same as Definition 1, but here the
decision is about offers.

Definition 9 (Argument for an Offer): An argument in favor of an offer x is a triple A =
<S, C, d> such that:

• x∈X
• S⊆K * and C⊆G *

• S (x) is consistent
• S (x) ⊢ C(x)
• S is minimal and C is maximal (for set inclusion) among the sets satisfying the

above conditions.

X is the set of offers, S = Support(A) is the support of the argument, C = Consequences(A)
its consequences (the goals which are reached by the offer x) and x = Conclusion(A) is the
conclusion of the argument. S(x) – and, respectively, C(x) – denotes the belief state – and,
respectively, the preference state – when an offer x is proposed.

Example 2. This example presents the case of an agent who wants to propose an offer
corresponding to its desired holiday destination. The set of available offers is X = {Tunisia,
Italy}.

The knowledge base is K = {(Sunny(Tunisia), I), (¬ Cheap(Italy), β), (Sunny(x) →
Cheap(x), 1)}

The preferences base is: G = {(Cheap(x), 1)}

The decision to be made by the agent is whether Tunisia or Italy should be offered.
Following the last definition, it has an argument in favor of Tunisia: A = <{Sunny(Tunisia),
Sunny(x) → Cheap(x)}, Cheap(Tunisia), Tunisia>

There is no argument in favor of Italy, as it violates the agent's goal, which is very
important. So, the agent will offer Tunisia.

Σελ. 42

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

II.1.4.3 The Negotiation Protocol

II.1.4.3.1 Formal setting

In this section, the formal protocol for the handling of negotiation dialogues among many
(n ≥ 2) agents is presented. The agents have to discuss several offers, so the protocol will
be run as many times as there are non-discussed offers and such that a common agreement
has not yet been found. The agents take turns to start new runs of the protocol and only one
offer is discussed during each turn.

A negotiation interaction protocol is a tuple 〈 Objective, Agents, Object, Acts, Replies, Wff-
Moves, Dialogue, Result 〉 such that:

Objective is the aim of the dialogue, namely to find an acceptable offer.

Agents is the set of agents participating in the dialogue, Ag = {a0, … , an-1}.

Object is the subject of the dialogue. It is a multi-issue dialogue, denoted by the tuple 〈O1,
… , Om〉, m ≥ 1. Each Oi is a variable taking its values in a set Ti. Let X be the set of all
possible offers. Its elements are x = 〈x1, … , xm〉, with xi ∈ Ti..

Acts is the set of possible negotiation speech acts: Acts = {Offer, Challenge, Argue, Accept,
Refuse, Withdraw, Say nothing}.

Replies: Acts → Power(Acts) is a mapping that associates each speech act to its possible
replies:

• Replies(Offer) = {Accept, Refuse, Challenge}
• Replies(Challenge) = {Argue}
• Replies(Accept) = {Accept, Challenge, Argue, Withdraw}
• Replies(Refuse) = {Accept, Challenge, Argue, Withdraw}
• Replies(Withdraw) = ∅

Well-founded moves (Wff-moves): {M0, … , Mp} is a set of tuples Mk = 〈Sk, Hk, Movek〉,
such that:

• Sk ∈ Ag, the agent which plays the move is given by the function Speaker(Mk) = Sk.
• Hk ∈ Ag \ {Sk}, the set of agents to which the move is addressed is given by the

function Hearer(Mk) = Sk.
• Movek = Actk(ck) is the uttered move where Actk is a speech act applied to a content

ck.

Dialogue is a finite non-empty sequence of well-founded moves D = {M0, … , Mp} such
that:

• M0 = 〈S0 , H0, offer(x)〉: each dialogue starts with an offer x ∈ X.
• Movek ≠ offer(x), ∀ k ≠ 0 and x ∈ X: only one offer is proposed during the dialogue

at the first move.

Σελ. 43

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

• Speaker(Mk) = ak modulo n: the agents take turns during the dialogue.
• Speaker(Mk) ∉ Hearer(Mk): This condition forbids an agent to address a move to

itself.
• Hearer(M0) = aj, ∀j ≠ i: the agent ai which performs the first move addresses it to

all the agents.
• For each pair of tuples Mk, Mh, k ≠ h, if Sk = Sh then Movek ≠ Moveh. This condition

forbids an agent to repeat a move that has already been performed.

These conditions guarantee the non-circularity of the dialogue D, i.e. that the dialogue will
not repeat the same moves.

Result: D → {success, failure} is a mapping which returns the result of the dialogue.
• Result(D) = success if the preferences of the agents are satisfied by the current offer.
• Result(D) = failure if the most important preferences of at least one agent are

violated by the current offer.

This protocol is based on dialogue games. Each agent is equipped with a commitment store
(CS) [MacKenzie, (1979)] that contains the set of facts it is committed to during the
dialogue. Using the idea introduced in [Amgoud, Maudet and Parsons, (2002)] of
decomposing the agents' commitment store (CS) into many components, it is supposed that
each agent's CS has the structure:

CS=〈 S , A , C 〉

with:
CS.S containing the offers proposed by the agent and those it has accepted (CS.S ⊆
X).
CS.A being the set of arguments presented by the agent (CS.A ⊆ Arg(L)), where
Arg(L) is the set of all arguments that can be constructed from L.
CS.C being the set of challenges made by the agent.

At the first run of the protocol, all the components of the CS are empty. This is not the case,
of course, when the protocol is run again, because agents need to keep their previous
commitments in order to avoid repeating what they have already said and done during the
previous runs of the protocol (this ensures the non-circularity of the dialogue).

II.1.4.4 Conditions on the negotiation acts

Here, the pre-conditions and post-conditions (effects) for each act will be specified. For the
agents' commitments (CS), only the changes to effect are specified. It is supposed that the
agent ai addresses a move to the (n – 1) other agents.

Offer(x) where x ∈ X. The idea is that an agent chooses an offer x for which there are the
strongest supporting arguments w.r.t. Gi. Since the agent is cooperative (meaning that it

Σελ. 44

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

tries to satisfy its own goals taking into account the goals of the other agents), this offer x is
also the one for which no strong argument against it exists (using GO j

i instead of Gi).
Pre-conditions: Among the elements of X, choose x which is preferred to any x' ∈
X such that x ≠ x', in the sense of definition 4, provided that there is no strong
argument this offer (i.e. with a weakness degree equal to 0) where Gi is changed
into GO j

i , ∀ j ≠ i in definition 8.
Post-conditions: CS.St(ai) = CS.St – 1(ai) ∪ {x}.

Challenge(x) where x ∈ X. This move incites the agent which receives it to give an
argument in favor of the offer x. An agent asks for an argument when this offer is not
acceptable for it and it knows that there are still non-rejected offers.

Pre-conditions: ∃ x' ∈ X such that x' is preferred to x w.r.t definition 4.
Post-conditions: CS.Ct(ai) = CS.Ct – 1(ai) ∪ {x}: The agent ai which played the
move Challenge(x) keeps it in its CS.

Challenge(y) where y ∈ W f f (L). This move incites the agent which receives it to give an
argument in favor of the proposition y.

Pre-conditions: None.

Post-conditions: CS.Ct(ai) = CS.Ct – 1(ai) ∪ {y}: The agent ai which played the
move Challenge(y) keeps it in its CS.

Argue(S) with S = {(kp, ap), p = 1, s} ⊆ Ki is a set of formulas representing the support of
an argument given by agent ai.

Pre-conditions: S is acceptable.

Post-conditions: CS.St(ai) = CS.St – 1(ai) ∪ S. If S is acceptable, the agents aj revise
their base Kj into a new base (Kj)*(S).

Withdraw An agent may withdraw from the negotiation if it does not have an acceptable
offer to propose.

Pre-conditions: ∀ x ∈ X, there is an argument with maximal strength against x, or
(X = ∅).

Post-conditions: (Result(D) = failure) and ∀ i, CSt(ai) = ∅. As soon as an agent
withdraws, the negotiation ends and all the commitment stores are emptied. The
dialogue is presumed to end this way because the aim is to find a compromise
between the n agents participating in the negotiation.

Accept(x) where x ∈ X. This move is performed when the offer x is acceptable for the
agent.

Σελ. 45

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

Pre-conditions: The offer x is the most preferred decision in X in the sense of
definition 4.

Post-conditions: CS.St(ai) = CS.St – 1(ai) ∪ {x}. If x ∈ CS.S(ai), ∀ i, then Result(D)
= success, i.e. if all the agents accept the offer x, the negotiation ends with x being
the compromise.

Accept(S) S ⊂ W f f (L).

Pre-conditions: S is acceptable for ai.

Post-conditions: CS.At(ai) = CS.At – 1(ai) ∪ S.

Refuse(x) where x ∈ X. An agent refuses an offer if it is does not consider it acceptable.

Pre-conditions: There exists an argument in the sense of definition 5 against x.

Post-conditions: If ∀ aj, ∄ (S, x), i.e. if no acceptable argument for x exists then X
= X \ {x}. A rejected offer is removed from the set X. Result(D) = failure.

Say nothing: This move allows an agent to skip its turn if it has already accepted the
current offer or if it has no argument to present. This move has no effect on the dialogue.

II.1.4.5 Properties of the negotiation protocol

Property 1: Termination. Any negotiation among n agents managed by this protocol
ends, either with Result(D) = success or Result(D) = failure.

Property 2: Optimal Outcome. If the agents do not misrepresent the preferences of the
other agents (GO j

i), then the compromise found is an offer x which is preferred to any
other offer x' ∈ X in the sense of definition 4, for all the agents.

II.1.5 Innovations, challenges and changes in the proposed methodology and software

Admittedly, in an area where many researchers try to present new advances every year, it is
not particularly easy to find a niche that provides enough room for innovation compared to
what other scientists have achieved and/or are working on at the specific time. However,
the combination of, and improvement upon, existing techniques is promising, as it provides
a way to enhance the performance of a given set of methodologies and contribute to the
creation of an approach that combines the advantages of each method used, while allowing
for the avoidance of their shortcomings.

As mentioned before in this thesis, three techniques are combined for the solution of
the choice problem that the group of DMs are facing; the UTASTAR preference
disaggregation method, which provides each DM's individual ranking of the alternatives, as

Σελ. 46

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

well as the utilities (marginal and global) of the alternatives and the weights of the criteria
for each DM; the NAI algorithm, which takes over from the UTASTAR method's results
and provides a very elegant, efficient and, above all, fast way of identifying a set of
alternatives that the DMs would consider negotiating upon. The NAI algorithm has the
potential of greatly reducing the set of alternatives upon which the agents representing the
DMs will negotiate, therefore considerably accelerating the negotiation process; indeed, the
n agents will now deliberate not on the n initial alternatives (the original set of alternatives
A), but on (n – n') instead (the preferable subset of alternatives). Finally, the argumentation-
based negotiation protocol, which enables the autonomous agents that represent the DMs to
interact with each other, present their positions, argue on them, justify them, change them,
so that eventually a common ground, a consensus, a compromise can be reached that will
satisfy the agents' most important goals – and all this in a manner that will be more easily
comprehensible by the DMs, i.e. the users of the system; the users are not necessarily
experts in the Decision Science and the developer of a DSS should never assume they are.
Furthermore, to break an intersection impasse (if it occurs), the algorithm incorporates
procedures 1 and 2 in order to ensure that the most preferable and the preferable subset of
alternatives are non-empty. Thus, the Argumentation Stage that follows is guaranteed to be
provided with alternatives for the agents to negotiate on.

The argumentation-based negotiation framework proposed by Amgoud, Belabbes and
Prade (2005) that is adapted in this thesis can use arguments expressed as functions of
numerical (quantitative or quantified qualitative) data acquired either ready from a database
that contains them or as results of the application of a multicriteria decision analysis
method. The basic idea of the formal decision framework used by the agents in the
Argumentation Stage is that an agent utters and accepts offers that are supported by strong
arguments. Similarly, agents can refuse or challenge offers against which there is at least
one strong argument. The protocol for the interaction among the agents is run at most as
many times as there are non-discussed offers; at each run only one offer is discussed. If all
the agents accept it, then an agreement has been found. If not, it is removed from the set of
offers and another one is proposed

The case presented in this thesis is the latter: the arguments are expressed as
functions of the alternatives' utilities and the weights of the criteria, which is a departure
from the original protocol's typical approach; Amgoud, Belabbes and Prade (2005) express
the arguments as functions of the alternatives' performances in the criteria; this greatly
reduces an argumentation protocol's ability to take into account the subjective preferences
of a DM, as it only takes into account the objective value of an alternative in a specific
criterion. For instance, if the alternatives were cars, the original protocol would only take
into account objective values in criteria such as price, fuel consumption, top speed, luggage
space, engine displacement, horsepower, torque etc; it would, therefore, only take into
account what is known as the specifications and features of these alternatives. It would not
cater for problems where the alternatives must be judged (and negotiated upon) based on
what they are worth for the DMs.

The capability of the argumentation-based negotiation framework to easily handle
numerical data and build its arguments as functions of numerical values makes it especially
suitable for solving such decision problems as the ones for which the methodology
presented in this thesis was developed: indeed, the results of the UTASTAR method can be
used immediately as input for this argumentation framework, without the need for any
significant adaptation. It also makes it especially suitable for implementing in languages

Σελ. 47

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

other than languages dedicated to Artificial Intelligence; like the rest of the protocols
presented by Amgoud et al., it lends itself very well to programming in Java, C, C++ and
other such languages.

However, the protocol is not without its weaknesses: it could be more flexible if it
stored the rejected offers in stratified sets, calculating levels of rejection (perhaps in the
same vein as the structural index of preferences of the NAI algorithm): in the same manner
as the NAI algorithm's least preferable subset, the last set of such a stratification would
gather the offers that are definitely rejected. Once all the offers were studied without
finding an acceptable one, the agents would negotiate again on the set gathering the less
rejected offers and proceed in the same way, having revised their bases and becoming less
demanding w.r.t their preferences. Such a development of the protocol, however, is similar
to what is achieved in this thesis through the application of the NAI heuristic; this is not to
say, however, that an investigation of how such an enhanced version of the argumentation
protocol, combined with the already implemented techniques in this methodology and its
accompanying software application, could improve upon the current system lacks merit.
Furthermore, more advanced principles for the comparison of arguments (for instance,
principles combining a Prevention focus and a Promotion Focus (Amgoud, Bonnefon and
Prade 2005) could be implemented in later revisions of the methodology proposed here.

In essence, the proposed methodology and software combines the advantages of the
NAI algorithm (speed, ease of coding, intuitive usage) with those of argumentation-based
negotiation (ability for a DM to explain, justify and, if necessary, change his/her position)
to enable a group of DMs to reach a consensus on a commonly accepted solution to a
choice problem, using the NAI algorithm as an accelerator for the Argumentation Stage,
avoiding, at the same time, the disadvantage of the initial argumentation protocol modeling
the decision problem based on the alternatives' performances in the various criteria instead
of their marginal utilities. The usage of the NAI heuristic algorithm for the determination of
an initial region in which a possible solution can be located is not unlike the use of
heuristics in antivirus software applications (such as Carey S. Nachenberg's patent no.
6357008 “Dynamic Heuristic Method for Detecting Computer Viruses Using Decryption
Exploration and Evaluation Phases”, applied on behalf of Symantec Corporation on
September 23, 1997).

The methodology set forth in this thesis seems like a combination of already existing
techniques. However, in this combination lie its main scientific contributions:

1. The usage of a heuristic algorithm as a method for accelerating the argumentation-
based negotiation taking place among the agents. The argumentation process is
accelerated by the heuristic algorithm through the narrowing down of the area in
which the agents will search for a solution. This narrowing down is achieved by
cutting off the alternatives that the agents consider undesirable and therefore
reducing the number of alternatives on which the agents will deliberate.

2. The argumentation protocol proposed by Amgoud, Belabbes and Prade (2005) was
improved by using the marginal utilities of the alternatives instead of their
performances in the various criteria. This change improves the protocol's ability to
take each agent's subjective stance towards the problem into account; as the cardinal
value used in the formulation of an argument now reflects exactly what an agent
thinks of an alternative (by using the marginal utility of the alternative, by

Σελ. 48

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

definition a subjective measure) instead of how well the alternative performs w.r.t. a
specific criterion (which is an objective value).

3. Another measure taken to ensure that the argumentation protocol would express the
DMs' individual subjective perception of the problem and their personal beliefs is
the use of each individual DM's weights for the criteria (goals).

At the time this methodology was being developed, applications based on the
methodologies and techniques that were used as its components were few and not always
easily available or even usable; teaching experience with the MINORA and MIIDAS
systems at the Technical Educational Institute of Larissa has uncovered compatibility issues
with recent versions of Windows (Vista and 7, especially 64-bit); their source code was not
available for study, update and modification and, even if it was, since the entire software
that was developed as part of this thesis was to be written in the Java programming
language, the effort to rewrite the code from one language to another would add unwanted
workload and possible delays. Furthermore, at the time there were practically no software
classes and libraries for UTASTAR in Java that such a system could be based on. The most
commonly software implementation of the UTASTAR method was one using MATLAB,
which unfortunately could not be considered as an option, since it would impose
dependency on an external – and expensive – piece of software, which could make the
software unattractive to cost-conscious standalone users, such as very small enterprises.
Indeed, if an implementation of UTASTAR dependent on MATLAB (or any other
proprietary/commercial scientific suite, such as Mathematica) was used, a potential user
would be forced to spend money on a piece of software that perhaps s/he does not have
reasons to use elsewhere. Furthermore, there are often interoperability issues between
different applications that can hamper the development effort for such a system; another
factor that weighed in against the use of this implementation was the ambition to further
develop this system for use in mobile devices in the future (netbooks, smartphones and,
nowadays, tablet PCs). Dependence on an application that is unavailable on widespread
mobile platforms was undesirable.

Likewise, there was no known software library implementing the NAI algorithm in
any programming language. Either it had been implemented only as part of a dedicated
spreadsheet file or whatever software routines might have been written were entirely
proprietary and closed source applications that might have been ad hoc and not reusable or
available for other researchers to use in their own works. However, this algorithm is fairly
straightforward to code.

Other than implementing UTASTAR in Java, the greatest challenge was to write an
argumentation-based negotiation protocol in a programming language other than a
language dedicated to Artificial Intelligence (such as Prolog). Despite the existence of the
JADE (Java Agent Development Engine) platform, which has recently also been
implemented as a plug-in for the Eclipse IDE, the decision was made for the development
of the argumentation framework and protocol without the use of JADE, as the IDE that was
chosen from the beginning of the development of this software was Oracle's Netbeans and
work had already progressed rather significantly. Thus, the switch to Eclipse and its JADE
plug-in named EJADE was not an attractive option at the time, as it would impose the cost
in time and effort of dealing with an extra learning curve, although it has already been
scheduled for future work.

Σελ. 49

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

III
THE PROPOSED SOFTWARE

In this chapter, the proposed software is
presented. The following issues are
detailed and documented: (a)
requirements that the software must

satisfy (b) the way it was implemented in
order to satisfy these requirements, (c)
documentation for its usage using two
example problems.

III.1 Requirements and brief for the software
As set forth in the goals and scope of this thesis, the aim of the proposed methodology and
software is to support a group of DMs in solving a choice problem under multiple criteria
and in a collaborative context; i.e. a group of DMs who want to cooperate in order to
choose one action (alternative) from a set of many. To solve this problem, the proposed
methodology combines the UTASTAR method (Siskos and Yannacopoulos 1985) in order
to estimate the individual preferences of the DMs that make up the group (the Ranking
Stage explained and detailed in Chapter II). That way, the software creates individual
ordinal rankings for all the DMs of the group. In the second stage (the Identification of
Negotiable Alternatives Stage presented in detail in Chapter II), the NAI algorithm is
applied to the ordinal rankings of the DMs in order to acquire a new, smaller set of
alternatives that the DMs would be willing to consider, even if they are not at the top of
their respective lists. Finally, in the third stage (the Argumentation Stage detailed in
Chapter II), arguments for (pro) and against (con) each alternative from the set created by
the NAI algorithm in the second stage are formulated and compared. This last stage is the
one that eventually leads to the choice of one solution. Other requirements for the proposed
software are:

1. Ease of use even for DMs unfamiliar with MCDA techniques.

2. Production of accurate results with as little computational error as possible.

3. Use of the Java programming language for portability to numerous different
platforms (Windows, GNU/Linux and UNIX-based systems, Mac OS X, iOS,
Google Android etc); i.e. the software needs to be platform-agnostic.

4. Complete independence from proprietary and potentially expensive software,
especially software this is not available on every platform that the system might be
further developed for; the software must be entirely self-contained.

5. Modular structure that will facilitate the improvement/refinement of existing
features and capabilities and the addition of new ones.

Σελ. 50

Chapter

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

6. It must form a core for later development and evolution of the system into a full-
featured distributed multi-agent, multi-user system that will also feature:

a. Asynchronous cooperation among the DMs, i.e. the DMs over the internet
or on a local network (a Wi-Fi network or a Local Area Network, for
instance).

b. A client-server architecture, in which the clients will act in the same
capacity as agents in a multi-agent system and the server will handle the
entire computational, coordination and central data storage load (with the
option of local data storage as well) or, alternatively,

c. A peer-to-peer architecture where each DM's client-agent will also handle
his/her individual UTASTAR calculations, while the calculations of the NAI
algorithm could be handled by the agent of the DM that initiates the session;
the argumentation will be handled by each DM's client-agent.

III.1.1 Implemented features

In the form that is presented here as part of this thesis, the software developed and supplied
here is implemented entirely in Java and provides an intuitive, easy-to-use Graphical User
Interface (GUI) that, in the same vein as wizard-style applications (much like the installers
that are now popular with many applications and operating systems), guides the user from
one step to the next; it also allows the user to go back to a previous step in order to correct
or modify data s/he has entered. Networking capabilities, which are crucial for the
software’s future stages of development, in which the system will evolve into a complete
multi-agent, distributed, asynchronous collaborative GDSS, where argumentation will be
handled by independent intelligent agents for each user/DM, have not yet been
implemented because the main focus was placed on implementing the UTASTAR method
in the Java programming language and its combination with the NAI heuristic algorithm
and an argumentation protocol, while ensuring the validity of the method and the results
produced by the system.

Like the ranking stage, the argumentation stage has been implemented in Java,
although languages specifically created for Artificial Intelligence and logic applications,
such as Prolog, could perhaps have been better suited for this particular task. However, it
was decided from the very beginning of this undertaking that the entire system would be
written in a single programming language, namely Java. Furthermore, the portability
enjoyed by Java applications, as well as the fact that it has become a popular programming
language with good community support added to its appeal.

As is the case with any Java application, the proposed software uses classes and
libraries and is inherently modular. This allows for easy debugging and improvements and
also for the addition of further features and capabilities in future versions.

Σελ. 51

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

III.1.2 Functions of the proposed software

As has been mentioned before, the proposed system combines the UTASTAR method with
the NAI algorithm and an argumentation framework. The UTASTAR method is applied in
order to:

o Calculate the individual marginal and global utility values for the entire group of
DMs, i.e. the marginal and global utilities of the alternatives for each individual
DM.

o Calculate the weights of the criteria for each individual DM.

o Calculate the individual DMs' rankings of the alternatives.

After this stage, the NAI algorithm is employed to identify alternatives that the DMs would
consider negotiating upon, even if they are not at the top of their list. The NAI algorithm is
a three-step process that provides three subsets of alternatives, common for all the DMs:
the most preferable subset of alternatives, the more preferable subset of alternatives and the
least preferable subset. The most important subset produced by the NAI algorithm is the
more preferable subset, as it is this subset that will provide the list of alternatives upon
which the agents representing the DMs will negotiate.

After the negotiable alternatives have been identified, the Argumentation Stage set
forth in Chapter II is applied so that one alternative will be eventually proposed to the
group of DMs. Although it is intuitive for one to argue that the most preferable alternative,
according to the ranking of the alternatives, would be the one that is finally chosen, there
are occasions where this does not apply. In group decision making contexts, the ways the
DMs think and their priorities may vary (and often do) widely. This variation is reflected in
the DMs' preferences, as expressed by the individual rankings of the alternatives. In such
cases, a compromise must be reached. This is where negotiations (either game-theoretic or
argumentation-based) are used. However, in problems where the number of DMs and/or the
number of alternatives is very large, the negotiation (regardless of whether it is game-
theoretic or argumentation-based) can take a long time to complete.

It is for this reason that the NAI heuristic is used; the NAI algorithm, by identifying
alternatives that the DMs view as interchangeable and worth considering instead of the
ones that are at the top of their lists, saves time from the negotiation process, as it reduces
(often significantly) the number of alternatives upon which the DMs (or, more suitably for
methodologies and software applications such as the one presented here), will deliberate in
order to reach a consensus.

The argumentation stage of the methodology and the software that implements it is
based on a general formal framework for dialogue among autonomous agents that seek a
common agreement about a collective choice. The setting has three main components: the
agents, their reasoning capabilities and a protocol. The agents are supposed to maintain
beliefs about the environment and the other agents, along with their own goals.

III.2 Structure of the proposed system

The proposed software, in keeping with the methodology it implements, consists of three
main parts:

Σελ. 52

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

1. A Ranking Stage (which is an implementation of the UTASTAR algorithm in Java).
In this stage, the program solves a UTASTAR problem for each DM, calculating
the global and marginal utilities of the alternatives for each DM. This is
implemented by the class com.gorbas.UTASTAR.

2. The NAI algorithm, in which the program determines a set of negotiable
alternatives, which can be different from the ones that each DM considers most
preferable and places at the top of his/her ranking. This is implemented in the class
com.gorbas.NAI. The NAI algorithm is run for each DM in the form of the class
com.gorbas.NAI.DecisionMakerContext, in which the expansion and contraction
operations are performed. The method NAI.run() runs the algorithm for all DMs
and, in case there is an intersection impasse, applies the necessary procedures to
break it.

3. The Argumentation Stage , in which the agents representing the DMs engage in an
argumentation-based negotiation dialogue aiming to reach a consensus on a
commonly acceptable choice.

To achieve its goals, the application creates a database in which it stores the data it needs in
the form of tables:

 1. The criteria of the decision problem
 2. The decision makers
 3. The alternatives and their performances in each criterion
 4. The individual rankings of the alternatives as determined by the UTASTAR method
 5. The structural indices of preferences, cut-off points and the subsets calculated by

the NAI algorithm

The argumentation-based negotiation protocol is formed in two parts. In the first part, its
elements are formed using specific classes for each:

 1. The Agents, which are the most complex entities of the protocol: they respond to the
impulses given to them by their environment in the manners described in Chapter 2;
they make, accept or refuse offers and provide arguments when it is demanded of
them.

 2. The Moves: there is a specific subclass for each type of move described in the
protocol, each with its appropriate properties. All the moves that can be challenged
belong in the Move.Challengable class.

 3. Act. This indicates the type of the Move, to avoid the need for constantly checking
it.

 4. Dialogue: Represents one round (run) of the protocol; it contains the moves made
and the outcome.

 5. Offer: This is an offer made by an agent that starts a run of the protocol in the
dialogue; in the case of this system, an offer is identified with an alternative from
the set of preferred alternatives provided by the NAI algorithm.

 6. Argument: The arguments in this implementation of the protocol are expressed as
functions of the utilities and criteria weights calculated by the UTASTAR method.

It must be noted that the Goals in this implementation of the protocol are practically
embedded in the notion of an argument. This is possible thanks to the following facts: (a)

Σελ. 53

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

the goals can easily be identified with the criteria of the UTASTAR method, (b) the
protocol itself refers to the goals only when the arguments are created and assessed.

The second part of the argumentation-based negotiation protocol, implemented by the
com.gorbas.negotiation.amgoud.impl.ProtoImpl class and its internal classes, specifies the
aforementioned elements by using the output of the UTASTAR method and the preferred
subset of alternatives provided by the NAI algorithm in the following manner:

• ProtoImpl.DmOffer: This class presents an alternative as an offer in the protocol.
• ProtocolImpl.DmArgument: An argument as a function of the marginal utility of an

alternative on a certain criterion (goal). In this class, the comparison of the
arguments also takes place.

• ProtoImpl.Agent: This class presents a DM (DecisionMaker) as an agent in the
protocol and creates arguments using the marginal utilities of each alternative on
each criterion as computed by the UTASTAR method.

Figure 3 (on page 54) presents the structure of the proposed system.

Σελ. 54

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

Figure 3. Structure of the proposed system.

III.3 Using the proposed system
First of all, it must be noted that the proposed software does not require any installation; the
user only needs to copy the folders with the necessary files to whatever directory s/he
chooses.

Σελ. 55

Definition of the decision
problem(Criteria, Decision

Makers, Alternatives)

START

Ranking Stage

Are the DMs satisfied
with the calculated

rankings?

NO

NAI Algorithm

YES

Argumentation Stage

END

Database

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

III.3.1 Starting the application

The complete filename for the application is PHD-jar-with-dependencies.jar. As mentioned
above, no installation is required; it is absolutely self-contained and the only requirement is
the existence of version 6 (or more recent) of Sun's Java Runtime. In the example shown in
Figure 4, one can see the icon of the application in the folder where it was placed (the case
depicted is a laptop running Ubuntu Linux 10.10 with the Gnome 2.32 desktop
environment and Nautilus as the file manager; further tests were made with the same
machine running Ubuntu Linux 12.04 with the Unity desktop environment). The db_u
subfolder in the file manager window is the folder where the application stores the files it
creates; these files contain the decision problems created by the user.

Figure 4. The application located in the folder where it was copied.

In the case of a UNIX or GNU/Linux-based system, the application can be run by right-
clicking on the icon (not left-clicking) and selecting “Run with OpenJDK Java 6 Runtime”
from the context menu (Figure 5, on the next page). On Windows-based machines, the
procedure is similar; the user needs only to specify which application (the Java 6 Runtime)
will be used to run the application. Mac OS X and iOS-based machines were not available
at the time the application was being developed, but starting the application on them should
not be considerably different. After all, the application uses a cross-platform language to
run and so whatever differences are entirely a matter of how each different operating
system handles applications that need an interpreter and have not been compiled as
executables.

Σελ. 56

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

Figure 5. Opening the application.

Upon opening the application, the user is presented with a window prompting him/her to
enter the name of the contest (i.e. the decision-making session/decision problem in which
the DMs will have to choose a certain action from a set of alternatives). Providing a name
for the contest is not necessary, but it helps if the DMs wish to recall the problem from the
application's database at a later date for future reference.

Figure 6. Naming the decision problem.

As explained before, the user may or may not choose to give a name to the decision
problem. For instance, if the user is planning to open an existing problem, s/he may click
on “OK” or “Cancel” without providing a name for the problem; whatever his/her action is
at this stage is irrelevant. In this chapter, both the case where the user opens an existing

Σελ. 57

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

problem and the case in which the user creates a decision problem from scratch will be
examined.

III.3.2 Creating a new decision problem

First, the case where a new problem is created from scratch is presented. It will be an
extension of the transport medium selection problem presented in [Siskos and
Yannacopoulos (1985)]. Here, the problem will have two DMs; each one will rank the
alternatives in a different manner compared to his/her counterpart. So, the problem will be
as follows:

Consider the case of two persons living in Paris, wishing to choose the most suitable
transport to go to their workplace; these two persons are colleagues, working for the same
business and they also happen to live in the same neighborhood; thus, using the same
transport for commuting to their work is convenient and sensible. They have the following
means of transport at their disposal: A = {RER, METRO-1, METRO-2, BUS, TAXI},
which will be assessed using the following three criteria: Price (quantitative criterion,
measured in Francs - Fr), duration of journey (quantitative, measured in minutes – min) and
comfort (chance of finding an empty seat – this is a qualitative criterion).

The qualitative criterion “Comfort” is quantified using the following scale:

0 No vacant seat

+ (or 1) Low probability of finding an empty seat

++ (or 2) High probability of finding an empty seat

+++ (or 3) Empty seat assured

Table 2. The quantification of the qualitative criterion “comfort”.

Now, the two DMs will have to express their preferences for each alternative on the criteria
used in this problem. Finally, they will have to express their overall preferences on the
alternatives, ranking them from the most preferred to the least preferred.

DM 1 (assume that his name is Antoine) has the following preferences:

RER ∼ (METRO-1 ≻ METRO-2) ≻ BUS ≻ TAXI

While DM 2 (assume that his name is Gregoire) expresses the following preferences:

RER ≻ METRO-1 ≻ METRO-2 ≻ BUS ≻ TAXI

This leads to the formation of the following multicriteria table (Table 3):

Σελ. 58

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

Transport
types

Price (Fr) Duration of
Journey (min)

Comfort Weak order
(DM 1)

Weak order
(DM2)

RER g1(RER) = 3 g2(RER) = 10 g3(RER) = + 1 1

METRO-1 g1(METRO-1) = 4 g2(METRO-1) =
20

g3(METRO-1) = +
+

2 2

METRO-2 g1(METRO-2) = 2 g2(METRO-2) =20 g3(METRO-1) = 0 2 3

BUS g1(BUS) = 6 g2(BUS) = 40 g3(BUS) = 0 3 4

TAXI g1(TAXI) = 30 g2(TAXI) = 30 g3(TAXI) = +++ 4 5

Table 3. Multicriteria table for the two-DM transport choice problem

The name given to the problem (“Contest” in the application) is “transport-2DMs”.

Figure 7. Naming the new decision problem

Then, the user simply has to click “OK”. Then, s/he is presented with the screen of Figure
8:

Figure 8: Criteria entry

Σελ. 59

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

On this screen, the user may enter the criteria of the decision problem s/he wishes to create.
On the title bar of the window, the name of the decision problem is visible. Underneath, the
“Contest” option allows the user to start a new problem or load an existing one. Below, a
table containing the criteria is created as the user enters the criteria used for the problem.

Each criterion has its own name; optionally, it may have a description as well,
although this is not needed. If the criterion is ascending, the user has to tick the relevant
option. Also, the user has to enter the number of discrete values for each criterion; these
discrete values are the ones used by the UTASTAR method. Then are the buttons “New”,
“Delete” (deactivated if no entries have been made), “Refresh” and “Save”. Most of these
buttons are self-explanatory; “New” creates a new criterion. “Delete” deletes a selected
criterion; “Save” stores the problem in its current state; finally, the “Refresh” button is used
to overcome a bug that sometimes does not allow the application to read the data and
perform the calculations as it should. Finally, there are the “Next” and “Previous” buttons
typical of all wizard-style applications.

To create a new criterion, the user must click on “New” and is then presented with
the following:

Figure 9: Entering a new criterion

By default, the application assigns an ID, an automatically-generated name and a generic
“This is a new criterion” description” to the new criterion. It also checks, by default, the
“ascending” option and considers the criterion to have two discrete values. Obviously,
these will all need to be edited. The table of the criteria should look like this:

Σελ. 60

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

Figure 10. The criteria, after having been edited

Then, the user will have to click on “Next” to proceed to the next stage, where the number
and names of DMs will be entered.

Figure 11. The DM entry window

Again, the procedure is similar. “New” allows the user to add a DM. “Delete” deletes a
DM; “Refresh” ensures that the data are properly stored in case something went wrong.

Σελ. 61

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

“Save” stores the current state of the problem in the database. It must be noted that it is
prudent to save after every change that is made to the data of the problem.

Figure 12. The DMs entered into the problem

Clicking “Next” takes the user to the Alternatives entry screen. Here, the user can enter the
alternatives and their performances in each criterion.

Figure 13. The Alternatives entry screen

Σελ. 62

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

Here, each alternative's description is its name. Also, the “value” in the window “Criteria
Values” is the performance of the alternative in the respective criterion. Clicking “New”
(for a new alternative) changes the window in the following manner:

Figure 14. Entering alternatives and their performances.

The blue-highlighted field under “Description is where the name of the alternative will be
entered, while the blue-highlighted field under “Value” is where the performance of the
alternative will be entered. Note that the application arranges the criteria alphabetically. In
the above screenshot, the performances of the alternative “RER” for the criteria of the
decision problem are shown.

NOTE: The GUI of the application has an idiosyncracy similar to one exhibited by the EL-
1S software that implements the ELECTRE I and ELECTRE IS methods: When the last
value is entered in the “Value” (i.e. alternative performance) field, the user must highlight
the adjacent cell in order for the value entered to register and remain also to register only
for the alternative currently being edited; otherwise, this value will be applied to that cell in
the next alternative as well.

After the user has entered the performances for all the alternatives of the problem,
s/he must save the data entered so far and click “Next”. If the application produces an error
message prompting him/her to check the data s/he entered, this is merely an issue regarding
the storage of the data in the databases and can be rectified by clicking “Previous” (thus
going back to the screen of Figure 12) and then “Next” again, saving and clicking on
“Refresh”. In the next stage (Figure 15), the user is prompted to enter the weak ordinal
rankings of the various DMs for the given alternatives. These are the Decision Makers'
Rankings (DRs) of the UTASTAR method.

Σελ. 63

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

Figure 15. DR entry screen.

As is easily visible in the screenshot of Figure 15, the DR for the DM named “Antoine” is
exactly the same as the one provided in the example of (Siskos and Yannacopoulos 1985).
This is used to verify the results produced by the UTASTAR method. Figure 15 shows
each alternative's marginal utility for each criterion for the DM named Antoine. Please note
that the results for each DM are shown in diffenent tabs. The results for the DM named
Gregoire are shown in Figure 17.

Figure 16. Marginal utility output screen – DM “Antoine”'s tab.

The numbers in brackets next to the names of the criteria, alternatives and DMs are the IDs
automatically generated by the application and of course have no bearing to the results.
Please note that the results are identical to the ones of the example presented by Siskos and
Yannacopoulos (1985); this verifies that the UTASTAR method works properly.

Σελ. 64

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

Figure 17. Marginal utility output screen – DM “Gregoire”'s tab.

Figure 18 shows the the global utilities for each alternative and for each DM, along with
the MRs (Model Rankings) and the DRs (DR: Decision Maker's Ranking). In case an
alternative's position in the MR is different from the DR, the difference is shown in red. If
any DM wishes to change his/her DR or if the problem needs to be reformulated, they can
move back to a previous step.

Figure 18. DR/MR output and global utility screen

To show the results in a larger size, the main table is shown in Figure 19.

Σελ. 65

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

Figure 19. The results from Figure 17 (close-up)

The next step is to proceed to the NAI algorithm, which will produce the subsets of most
preferred and preferred alternatives. It is noted again that the alternatives in the subset of
preferred alternatives are the ones on which the agents in the Argumentation Stage will
negotiate. The results are shown in Figure 20.

Σελ. 66

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

Figure 20. The results of the NAI algorithm

After the NAI algorithm comes the Argumentation Stage. In this stage, the protocol is run
as many times as there are alternatives in the subset of preferred alternatives. It is apparent,
however, that in certain problems (such as the one of this example), running the
argumentation protocol may be redundant; for instance, in this example both DMs have the
same alternative (RER) on top of their list, so they have basically agreed beforehand that
this is the best solution for their problem. This is further cemented by the NAI algorithm, as
the alternative RER is the only one in the subset of most preferred alternatives.

For this reason, in a future version of this application, a switch will be built into the
system; it will alert the user(s) that their client-agents already agree to one alternative,
therefore removing the need to proceed to the Argumentation Stage. So, when is the
argumentation protocol necessary?

It is useful in the occasions where there are two or more alternatives in the subset of
most preferred alternatives, as it will help the DMs' agents agree to one solution (after all,
this methodology and its accompanying software solves a choice problem) and it will
provide them with justification that is more easily comprehensible by human users. It is
regrettable that an automatic text generator for the arguments could not be incorporated in

Σελ. 67

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

this software implementation. This is a feature that will be added in a future, updated and
improved version.

The subset of preferred (therefore, negotiable) alternatives in this example consists of
four alternatives, as the two DMs have essentially excluded the alternative “TAXI”. The
current implementation of the argumentation protocol will run the protocol four times, one
for each alternative. The first of the four runs of the protocol is illustrated in Figure 21.
When clicking “Next” on the NAI algorithm results screen, the user is taken to a blank
screen, which has only the top menubar, the familiar “Previous” and “Next” buttons and
the “Next Run” button. Clicking on the “Next Run” button makes the application perform
the first run of the protocol.

Figure 21. The first run of the argumentation protocol.

The run is initiated by the agent representing DM Antoine. The agent offers (proposes)
RER. This alternative satisfies the goals of the agent representing DM Gregoire, so the
agent accepts it. It is easily seen that the two agents (representing DMs Antoine and
Gregoire) agree on this offer. In the next three runs, in which the agents take turns to make
an offer, due to the aforementioned fact that both have the same alternative at the top of
their respective lists, they make the same offer: RER.

III.4 Retrieving an existing problem from the database

Here, a problem that has already been saved in the software's database will be used. In this
problem, four DMs are trying to choose one laptop from a set of fifteen. They have set
seven criteria for their choice and the multicriteria table is as follows:

Σελ. 68

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

CPU
speed
(GHz)

RAM
(GB)

HD capacity
(GB)

Price (EUR) 3D performance 2D performance Weight (kg)

Laptop 1 2 4 500 450 6 7 1,8

Laptop 2 2,2 4 750 680 7 8 1,9

Laptop 3 2,2 8 750 890 8 9 3

Laptop 4 2,3 8 500 850 9 9 3

Laptop 5 1,8 8 750 400 4 6 1,7

Laptop 6 2 8 320 350 5 7 1,6

Laptop 7 1,8 2 320 300 3 5 1,6

Laptop 8 2,3 6 750 720 8 9 2,7

Laptop 9 2,3 8 1000 1180 10 10 4,6

Laptop 10 1,2 2 320 280 1 2 1,3

Laptop 11 2,3 8 750 800 9 10 2,9

Laptop 12 1,6 2 320 200 2 3 1,4

Laptop 13 1,2 2 250 220 1 1 1,1

Laptop 14 1,6 4 250 200 2 4 1,2

Laptop 15 2 8 320 500 8 8 2

Criteria
scales

+ + + - + + -

Discrete
values

3 4 3 3 10 10 3

Table 4. The multicriteria table of the laptop choice problem.

The initial individual rankings of the alternatives by the DMs are as follows:

Σελ. 69

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

DM1 DM2 DM3 DM4

Laptop 1 11 9 15 14

Laptop 2 9 11 1 13

Laptop 3 4 4 2 12

Laptop 4 8 8 6 10

Laptop 5 3 3 5 7

Laptop 6 15 15 7 6

Laptop 7 2 2 8 5

Laptop 8 1 1 11 1

Laptop 9 6 6 4 2

Laptop 10 5 5 3 15

Laptop 11 7 7 9 8

Laptop 12 14 14 14 11

Laptop 13 12 12 12 4

Laptop 14 10 10 13 3

Laptop 15 13 13 10 9

Table 5. The initial individual rankings of the alternatives by the DMs.

In the software that accompanies this thesis, a user can choose to retrieve (load) an already
existing problem at any moment, stopping any editing currently being done to the problem
that is open at that time. For illustrative purposes only however, it will be assumed that a
new session of the software is initiated specifically for the problem that will be restored
from the database.

So, the program is run as usual. This time, however, the user does not need to provide
a name for the contest, as an already existing problem will be loaded. So, on the starting
screen, s/he may click either on “OK” or on “Cancel”. This will take him to the next
screen, where the criteria for the problem can be entered. Please note that, if no name is
given to the problem, the program assigns a name-ID by itself. On the criteria entry screen,
the user clicks on “Contest” and then “Load”. The program asks whether s/he wants to stop
editing the current contest, to which the user's response is to click “Yes”.

Σελ. 70

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

Figure 22. Contest selection.

From the pull-down menu, the user can choose the contest s/he wants by its name. In the
case of this example, the name of the contest is “laptops”. Opening the contest presents the
criteria that have already been set (Figure 23).

Σελ. 71

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

Figure 23. The criteria of the laptop choice problem.

Then, the system presents the list of DMs (Figure 24) that has already been provided in a
previous session.

Figure 24. The list of DMs.

Σελ. 72

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

On the next screen (Figure 25), the list of alternatives is shown; in this particular
screenshot, the alternative “Laptop 1” is highlighted, displaying its performances in the
problem's criteria.

Figure 25. The list of alternatives.

As per the first example with the transport medium selection, what follows is the screen
where the DMs' initial rankings were entered (Figure 26):

Figure 26. The DMs' initial rankings of the alternatives.

After the problem has been set, the UTASTAR method is applied for every DM. It
calculates marginal and global utilities, as well as the weights of the criteria. It also points
out differences between the MR and the DR for each DM and gives the DMs the option to
either accept the changes it proposes for the rankings or to go back and reformulate the
problem or modify their preferences (Figure 27).

Σελ. 73

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

Figure 27. Global utilities and MRs as calculated by the UTASTAR method.

If the DMs accept these suggestions, the software applies the NAI algorithm to identify
negotiable alternatives. The application of the NAI algorithm creates a subset of preferred
alternatives that includes all the alternatives, but the subset of most preferred alternatives
consists only of the alternative named “Laptop 11”.

After this step, the argumentation procedure commences. For brevity's sake, only the
last run of the argumentation protocol is shown. As can be deduced from the results of the
NAI algorithm, the DMs will again agree on the single solution that makes up the subset of
most-preferred alternatives. It must also be noted that, since this particular problem has no
alternatives that the DMs as a group would reject outright, none of the runs of the
argumentation protocol ends with failure as a result of an agent's refusal to accept an offer.

Σελ. 74

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

Figure 28. The final run of the argumentation protocol.

A third example, aimed at illustrating the system's ability to reduce the number of
alternatives on which the agents will have to deliberate is defined in Table 6. It is a
decision problem with ten alternatives, seven decision makers and four criteria.

Criteria

Alternatives 1 2 3 4

A1 500 1 600 3

A2 300 2 1000 4

A3 400 1 700 2

A4 300 4 600 5

A5 200 3 800 1

A6 400 3 1000 3

A7 500 5 500 5

A8 100 2 900 4

A9 400 4 600 2

A10 200 1 700 2

Criterion scale + - + -

Number of
discrete values

5 5 5 5

Table 6. Multicriteria table.

Σελ. 75

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

DMs and their individual rankings of the alternatives
Alternatives DM1 DM2 DM3 DM4 DM5 DM6 DM7

A1 1 4 2 6 6 7 1

A2 3 2 3 1 7 1 4

A3 4 3 6 8 2 5 2

A4 8 9 5 9 9 9 9

A5 5 6 8 4 1 4 7

A6 2 1 9 2 5 2 6

A7 9 10 10 10 10 10 10

A8 10 7 4 3 8 3 5

A9 7 8 7 7 4 8 8

A10 6 5 1 5 3 6 3

Table 7. The individual rankings of the alternatives according to the DMs.

As shown in Figure 29, the NAI algorithm here creates a subset of preferred alternatives
consisting of seven alternatives instead of ten, while the subset of most-preferred
alternatives consists of two alternatives:

Σελ. 76

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

Figure 29. Application of the NAI algorithm in the aforementioned example.

In this example, the NAI algorithm creates a subset of negotiable alternatives that is
considerably smaller than the original set. It must also be noted that the subset of most-
preferred alternatives contains two alternatives, therefore even this subset, which in this
methodological framework is not the one upon which the agents negotiate, can offer a basis
for negotiation. Even so, it is clear that the system, after it runs the argumentation protocol,
will recommend one of the alternatives in the most-preferred alternatives subset. Indeed, it
finally recommends alternative A6, which is consistent with the placement of this
alternative in the most-preferred alternatives subset.

Σελ. 77

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

III.5 Scope for Future Development

In spite of all the work that went into the development of the methodological framework
and the accompanying software, the application cannot be considered complete. It is merely
an alpha, perhaps even pre-alpha stage of an ambitious GDSS project. What was achieved
with this application is that it was demonstrated that the use of a heuristic algorithm can,
depending on the expressed preferences of the DMs (which are represented by intelligent,
autonomous agents), accelerate the argumentation-based negotiation process by reducing
the number of alternatives upon which the agents will negotiate. The NAI heuristic
algorithm reduces the area in which the agents will search for a solution; from a large area
that contains alternatives which the agents will not want to consider, to a smaller area,
containing fewer alternatives that they will want to consider. The UTASTAR method is an
excellent match for the NAI algorithm, as it provides the NAI algorithm with a suitable set
of data (namely the global utilities, which express each DM's preference on an alternative,
considering all the criteria) and provides both an ordinal and a cardinal ranking.

The argumentation protocol that was chosen to be adapted for this thesis was chosen
because it provided the following benefits: (a) it can easily express its arguments in
mathematical/numerical terms and, therefore, lends itself well to being implemented in
programming languages that are not specifically made for Artificial Intelligence; it can be
implemented in Java, C, C++, C# or any other such language, without dictating the need for
a more specialized language like Prolog; (b) the fact that its arguments can be expressed in
numerical terms means that it is easy to achieve interoperability with MCDA methods like
those of the UTA family; (c) the fact that it is easy to implement in Java (in particular)
makes it suitable for further development of this software, which will incorporate a
distributed multi-agent system created with the current industry standard JADE/EJADE
platform.

As has been mentioned above, though, the software is still in early stages of
development and, although it produces the results predicted by the methodological
framework on which it is based, there are many capabilities and enhancements that will be
added in future versions, since its aim is to become a constantly evolving and useful GDSS
for businesses:

• Transition from Netbeans to Eclipse, which is a more stable IDE and also has the
advantage of the EJADE plug-in that aids the creation of multi-agent systems in
Java.

• Improvements to the GUI, mostly for ergonomic reasons and conformity to
universally accepted standards.

• Copy/paste capabilities will be added.
• Undo/Redo function will be added.
• Interoperability with spreadsheet applications (such as Microsoft's Excel,

OpenOffice.org/LibreOffice's Calc, Gnumeric etc) needs to be implemented – at the
very least, the software needs the ability to import and export data in .CSV format.

• Networking capabilities, along with session storage and retrieval, will be added in
order to enable the presented system to become a true distributed GDSS.

• A web-based server-client architecture will be implemented, using a web browser as
the interface for each user, with all the calculations taking place on the server side.

Σελ. 78

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

• For use in a corporate context, plug-ins will need to be developed such that it will
easily exchange data with any existing corporate information system (such as an
ERP system).

• Graph producing capabilities will be added.
• The argumentation stage will be enhanced with a text generator that will

automatically generate arguments in a physical language easily comprehensible by
human users.

• The system's engine itself will incorporate a number of useful enhancements that
will enable it to become a more powerful tool for the DMs, namely:
1. For qualitative criteria, the system will utilize different values in these criteria

for each DM (in addition to the DMs' different marginal utilities that are based
on common values in these criteria); that way, the fact that qualitative criteria
express a subjective assessment of each alternative by each DM in a feature or
characteristic that cannot be easily measured will be taken into account in a
more complete manner.

2. Different voting powers for each DM will be supported, thereby providing a
better representation of situations where all DMs are not equal.

3. More complex argument comparison principles will be implemented in order to
more realistically capture the way humans assess and compare arguments
provided to them by others during a negotiation.

4. Conflict resolution capabilities will be added to the argumentation stage.

These issues are known to the author and the project will continue to be developed and
improved over time until it reaches its full potential, with inclusion of at least another
MCDA ranking method (more specifically, the UTAII and, perhaps, the Stochastic UTA,
which is a version of the UTASTAR specially adapted to handle the probability of various
scenarios occurring).

Σελ. 79

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

IV Conclusions

This thesis aims to develop a new methodological framework that combines the benefits of
three techniques used in the (group) decision-making field: the UTASTAR multicriteria
decision analysis method, which is used to enable the DMs to rank the alternatives at hand
from best to worst, according to each one's preferential profile. The NAI heuristic
algorithm, which is typically used to enable a group of DMs with different preferences to
reach a compromise, a consensus on one commonly acceptable solution, but also enables
them to narrow the scope of their negotiation, by removing the alternatives they reject
outright and creating sets of negotiable alternatives that they would consider, even if they
are not at the top of their lists. Finally, an argumentation-based negotiation protocol was
adapted so that the final consensus would be reached and justification that is
comprehensible by human users is provided. There is a significant departure from the
typical approach of the protocol proposed by Amgoud, Belabbes and Prade (2005):
whereas that initial protoco expresses arguments as functions of the alternative's
performances in the criteria, this thesis expresses arguments as functions of the utilities,
enhancing and strengthening the argumentation protocol's ability to take into account the
subjective preferences of the DMs.

The methodological framework proposed in this thesis has been implemented in a
software application written entirely in the Java programming language, which has been
chosen for its cross-platform nature that will enable this system to be used on every current
important operating system: Windows, GNU/Linux, Mac OS X, Android, iOS. The system
presented here provides an intuitive, easy-to-use Graphical User Interface (GUI) that, in the
same vein as wizard-style applications, guides the user from one step to the next; it also
allows the user to go back to a previous step in order to correct or modify data s/he has
entered.

It has been demonstrated through examples in this thesis that the combination of
heuristics and argumentation can, under certain conditions, accelerate the group decision-
making process. This is not always the case, however: the overall performance of the
system depends on the complexity of the DMs' preferences.

IV.1 Future work

In the future, this system will be further developed, with refinements and improvements
that will be incorporated in its methodological framework (the theoretical side) and
enhancements that will be added to its functionality (the software side). On the theoretical

Σελ. 80

Chapter

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

side, reference set selection and extrapolation capabilities will be added to the UTASTAR
algorithm and at least a second MCDA method will become available to the user (the
UTAII and perhaps the Stochastic UTA), along with improved modeling of DMs'
subjective assessment of alternatives; to achieve this, a future version of the system
presented in this thesis will support different values for each DM in qualitative criteria, as
well as each DM's already supported marginal utilities for these criteria. Also, regarding
the argumentation stage, in addition to the implementation of more complex and advanced
argument comparison principles (which will more realistically capture the manner in which
human DMs assess arguments presented to them in a negotiation setting), the merit of a
stratification of the alternatives in the argumentation stage (in addition to their
stratification regarding their desirability by the NAI heuristic algorithm) will be explored
regarding its plausibility and usefulness. The argumentation stage will also be enhanced
with conflict resolution capabilities, part of which will be the aforementioned stratification
of the alternatives. Furthermore, the option of having the agents negotiate on the subset of
most-preferred alternatives rather than the subset of preferred alternatives will be explored.
This will mean that resorting to the argumentation stage might not always be necessary;
instead, the argumentation stage could become a step for the achievement of consensus in
the cases where the NAI algorithm fails (for instance, when there are more than one
alternatives in the subset of most-preferred alternatives).

On the software side, the accompanying application will be further developed so that
this system will become a mature, complete distributed multi-agent GDSS capable of being
used on a multitude of platforms (from Android to Windows and from Mac OS X to
GNU/Linux). Enhancements that will be added in the future will include:

• Transition from Netbeans to Eclipse, which is a more stable IDE and also has the
advantage of the EJADE plug-in that aids the creation of multi-agent systems in
Java.

• Improvements to the GUI, mostly for ergonomic reasons and conformity to
universally accepted standards.

• Copy/paste capabilities will be added.
• Undo/Redo function will be added.
• Interoperability with spreadsheet applications (such as Microsoft's Excel,

OpenOffice.org/LibreOffice's Calc, Gnumeric etc) needs to be implemented – at the
very least, the software needs the ability to import and export data in .CSV format.

• Networking capabilities, along with session storage and retrieval, will be added in
order to enable the presented system to become a true distributed GDSS.

• A web-based server-client architecture will be implemented, using a web browser as
the interface for each user, with all the calculations taking place on the server side.

• For use in a corporate context, plug-ins will need to be developed such that it will
easily exchange data with any existing corporate information system (such as an
ERP system).

• Graph producing capabilities will be added.
• The argumentation stage will be enhanced with a text generator that will

automatically generate arguments in a physical language easily comprehensible by
human users.

• The system's engine itself will incorporate a number of useful enhancements that
will enable it to become a more powerful tool for the DMs, namely:

Σελ. 81

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

1. For qualitative criteria, the system will utilize different values in these criteria
for each DM (in addition to the DMs' different marginal utilities that are based
on common values in these criteria); that way, the fact that qualitative criteria
express a subjective assessment of each alternative by each DM in a feature or
characteristic that cannot be easily measured will be taken into account in a
more complete manner.

2. Different voting powers for each DM will be supported, thereby providing a
better representation of situations where all DMs are not equal.

3. More complex argument comparison principles will be implemented in order to
more realistically capture the way humans assess and compare arguments
provided to them by others during a negotiation.

4. Conflict resolution capabilities will be added to the argumentation stage.

The work done on this thesis will also signify the beginning of a concerted effort to
develop a set of reusable, modular software libraries implementing MCDA methods,
consensus-seeking algorithms and argumentation protocols; all these libraries will be
written in Java and, if resources permit, in C and/or C++; this will enable future researchers
and developers to create new DSS and GDSS systems easier, faster and more effectively.

Σελ. 82

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

REFERENCES

[1] Amgoud, L., Bonnefon J-F., Prade, H. 2005, “An argumentation-based
approach to multiple criteria decision”. In Proceedings of the European
Conference on Symbolic and Quantitative Approaches to Reasoning with
Uncertainty (ECSQARU'05), pp. 269-280.

[2] Amgoud L., Prade H., Belabbes S. 2005, “Towards a formal framework for the
search of a consensus between autonomous agents”. In AAMAS'05

[3] Arús, C. et al. 2005, “On the design of a web-based decision support system for
brain tumour diagnosis using distributed agents”. In Int. Conf. on Intelligent
Agent Technology (Hong Kong, Dec. 2006), IEEE.

[4] Barzilai, J. and F. A. Lootsma. 1997, “Power Relations and Group Aggregation
in the Multiplicative AHP and SMART”, Journal of Multi-Criteria Decision
Analysis 6, pp. 155–165.

[5] Boella, G., Hulstijn, J. and van der Torre, L. 2006, “A Logic of Abstract
Argumentation”, in Postproceedings of ArgMAS 2005, LNAI 4049, pp.29-41,
Springer-Verlag Berlin Heidelberg.

[6] Bogetoft, P. and P. Pruzan. 1991, Planning with Multiple Criteria:
Investigation, Communication, Choice. Amsterdam, North Holland.

[7] Bonnefon, J. F., Glasspool, D., McCloy, R., and Yule, P. 2005, Qualitative
decision making: Competing methods for the aggregation of arguments.
Technical report, 2005.

[8] Bui, T. X. 1987, Co-oP: A Group Decision Support System for Cooperative
Multiple Criteria Group Decision Making, Berlin, Springer-Verlag.

[9] Bui, T. X. and M. Jarke. 1986, “Communications Design for Co-oP: A Group
Decision Support System”, ACM Transactions on Office Information Systems 4,
2.

[10] Bui, T. X. and Yen, J. 1995, “The Negotiable Alternatives Identifier (NAI) for
Negotiation Support – An Improved Algorithm”, Proceedings of the Third
International Conference on Decision Support Systems, Hong Kong, June 22-
23, 1995, Hong Kong University of Science and Technology, Hong Kong,
1995, pp. 149-159

[11] Carlsson, C., Ehrenberg, D., Eklund, P., Fedrizzi, M., Gustafsson, P., Lindholm,
P., Merkuryeva, G., Riisanen, T., and Ventre, A.G.S. 1992, “Consensus in
Distributed Soft Environments,” European Journal of Operational Research 61,
pp. 165–185.

Σελ. 83

http://www.comp.hkbu.edu.hk/iwi06/iat/
http://www.comp.hkbu.edu.hk/iwi06/iat/

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

[12] Choi, H.-A., Suh, E.-H. and Suh, C.-K. ,1994, “Analytic Hierarchy Process: It
Can Work for Group Decision Support Systems”, Computers and Industrial
Engineering 27(1–4), pp. 167–171.

[13] Colson, G. and Mareschal, B. 1994, “JUDGES: A Descriptive Group Decision
Support System for the Ranking of the Items”, Decision Support Systems 12, pp.
391–404.

[14] Csáki, P., Csiszár, L., Fölsz, F., Keller, K., Mészáros, Cs., Rapcsák, T. and
Turchányi, P. 1995a, “A Flexible Framework for Group Decision Support,
WINGDSS Version 3.0”, Annals of Operations Research 58, pp. 441–453.

[15] Csáki, P., Rapcsák, T., Turchányi, P., and Vermes, M. 1995b, “R and D for
Group Decision aid in Hungary by WINGDSS, A Microsoft Windows Based
Group Decision Support System”, Decision Support Systems 14, pp. 205–217.

[16] Dimopoulos, Y., Moraïtis, P., Tsoukiàs, A. 2003, “Argumentation based
modelling of decision aiding for autonomous agents”. In Proceedings of the
IEEE/WIC/ACM International Conference on Intelligent Agent Technology
(IAT’04).

[17] Dose, J. J. 2003, “Information Exchange in Personnel Selection Decisions”,
Applied Psychology: An International Review 52(2), 237–252.

[18] Dung, P.M. 1995, “On the acceptability of arguments and its fundamental role
in non-monotonic reasoning, logic programming and n-person games”.
Artificial Intelligence 77, pp. 321-357.

[19] Dyer, R. F. and Forman, E. H. 1992, “Group Decision Support with the
Analytic Hierarchy Process,” Decision Support Systems 8, pp. 99–124.

[20] Felsenthal, D. S. and Machover, M. 2004, “A Priori Voting Power: What Is It
All About?” Political Studies Review 2, pp. 1–23.

[21] Finlay, P.N. 1994, Introducing decision support systems. Oxford, UK
Cambridge, Mass., NCC Blackwell; Blackwell Publishers.

[22] Fox, J., Krause, P. and Ambler, S. 1992, “Arguments, contradictions and
practical reasoning”. In Proceedings of the 10th European Conference on
Artificial Intelligence (ECAI-92), Vienna, Austria, pp. 623-627.

[23] González-Vélez, H. et al. 2006, “Agent-based distributed decision support
system for brain tumour diagnosis and prognosis”. In Current Research in
Information Sciences and Technologies. Multidisciplinary approaches to global
information systems (Merida, Spain, Oct. 2006), University of Extremadura and
the Open Institute of Knowledge.

[24] Giordano, J. L., Jacquet-Lagrèze E., and Shakun, M. F. 1988, “A Decision
Support System for Design and Negotiation of New Products,” in Shakun, M. F.
(Ed.), Evolutionary Systems Design. Oakland, CA, Holden-Day.

[25] Guttman, R.H. and Maes, P. 1998, Agent-mediated integrative negotiation for
retail electronic commerce. In Proceedings of the Workshop on Agent Mediated
Electronic Trading (AMET'98), pp. 70-90.

[26] Hollingshead, A. B. 1996, “The Rank-Order Effect in Group Decision Making,”
Organizational Behavior and Human Decision Processes 68(3), 181–193.

[27] Hwang, C. L. and Ling M. J. 1987, Group Decision Making Under Multiple
Criteria. Lecture Notes in Economics and Mathematical Systems, Vol. 281.
Berlin, Springer-Verlag.

[28] Ito, T. and Toramatsu, S. 1997, “Persuasion among agents: an approach to
implementing a group decision support system based on multi-agent

Σελ. 84

http://www.instac.es/inscit2006/
http://www.instac.es/inscit2006/
http://www.instac.es/inscit2006/

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

negotiation”. In Proceedings of the 5th International Joint Conference on
Artificial Intelligence (IJCAI’97), pp. 592-597.

[29] Iz, P. and L. Krajewski. 1992, “Comparative evaluation of three interactive
multiobjective programming techniques as group decision support tools”,
INFOR. 30(4), pp. 349–363.

[30] Jacquet-Lagrèze, E. and Siskos, Y. 1982, “Assessing a Set of Additive Utility
Functions for Multicriteria Decision Making: The UTA Method”, European
Journal of Operational Research 10(2), pp. 151–164.

[31] Jacquet-Lagrèze, E. and Siskos, Y. 2001, “Preference Disaggregation: 20 Years
of MCDA Experience”, European Journal of Operational Research 130(2),
233–245.

[32] Jarke, M. 1986, “Knowledge Sharing and Negotiation Support in Multiperson
Decision Support Systems,” Decision Support Systems 2, 93–102.

[33] Jarke, M., M.T. Jelassi, and Shakun. M. F. 1987, “MEDIATOR:Toward
aNegotiation Support System,” European Journal of Operational Research
31(3), 314–334.

[34] Jelassi, M. T., Kersten, G., and Zionts, G. 1990, “An introduction to Group
Decision and Negotiation Support,” In Bana e Costa, C. A. (Ed.), Readings in
Multiple Criteria Decision Aid. Berlin, Springer-Verlag.

[35] Jennings, N.R. et al 2001, Automated negotiation: prospects, methods and
challenges. International Journal of Group Decision and Negotiation, 10(2), pp.
199-215.

[36] Jowett, B. 1875, The Dialogues of Plato, 2nd edition. Oxford University Press,
Oxford.

[37] Kakas, A. and Moraïtis, P. 2006, Adaptive agent negotiation via argumentation.
In Proc AAMAS’06.

[38] Kakas, A. and Moraïtis, P. 2003, Argumentation-basd decision making for
autonomous agents. In Proceedings of the 2nd International Joint Conference on
Autonomous Agents and multiagent systems, pages 883-890, Melbourne.

[39] M. Kalech and Pfeffer, A. 2010, “Decision making with dynamically arriving
information”. In Proc. AAMAS 2010, pp. 267-274.

[40] Karacapilidis, N. and Papadias, D. 1997, “A group decision and negotiation
support system for argumentation based reasoning”. In Gr. Antoniou & M.
Truzczynski (eds.) Learning and Reasoning with Complex Representations,
Lecture Notes in AI, Springer-Verlag, Berlin 1997.

[41] Karacapilidis, N. and Trousse, B. 1997, “Computer-supported argumentation for
cooperative design on the world-wide web”. In Proceedings of the 2 nd
International Workshop on CSCW in Design (CSCWD'97), pp. 96-103.

[42] Karacapilidis, N. and Papadias, D. 1998, “Hermes: supporting argumentative
discourse in multi-agent decision making”, In Proceedings of the American
Association for Artificial Intelligence, 1998.

[43] Karacapilidis, N. and Moraïtis, P. 2001, “Building an agent-mediated electronic
commerce system with decision analysis features”. In Decision Support Systems
32(2001), pp. 53-69.

[44] Keen, P.G.W. And Scott-Morton M. S. 1978, Decision support systems: an
organizational perspective. Reading, Mass., Addison-Wesley Pub. Co.

[45] Keeney, R. L. 1992, Value Focused Thinking. A Path to Creative Decision
Making. Cambridge, MA, Harvard University Press.

Σελ. 85

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

[46] Keeney, R. L. and Raiffa, H. 1976, Decisions with multiple objectives:
Preferences and value tradeoffs. New York, Wiley.

[47] Kersten, G. E. 1985, “NEGO-Group Decision Support System,” Information
and Management 8(5), pp. 237–246.

[48] Kersten, G. E. and Szapiro, T. 1985, “Generalized Approach to Modelling
Negotiations,” European Journal of Operational Research 26, pp. 124–142.

[49] Kersten, G. E. 1987, “On Two Roles Decision Support Systems Can Play in
Negotiations,” Information Processing and Management 23(6), pp. 605–614.

[50] Kirkwood, C. W. 1997, Strategic Decision Making: Multiobjective Decision
Analysis With Spreadsheets. Belmont, CA, Duxbury Press.

[51] Kraus, S., Sycara, K., and Evenchik A. 1998, “Reaching agreements through
argumentation: a logical model and implementation”. In Artificial Intelligence,
vol. 104, pp. 1-69.

[52] Laruelle, A. and Widgren, M. 2000, Voting Power in a Sequence of
Cooperative Games: The Case of EU Procedures, Homo Oeconomicus XVII,
67-84. Reprint in Holler M. J. and G. Owen (Eds.), 2001, Power Indices and
Coalition Formation, Kluwer Academic Publishers, pp. 253–271.

[53] Leech, D. 2002, Computation of Power Indices, Warwick Economic Research
Papers, No. 644.

[54] Lewandowski, A. 1989, “SCDAS-Decision Support System for Group Decision
Making: Decision Theoretic Framework,” Decision Support Systems 5.

[55] Lluch-Ariet M. et al. 2008, “HealthAgents: Agent-Based Distributed Decision
Support System for Brain Tumour Diagnosis and Prognosis”. In Agent
Technology and e-Health. Basel: Birkauser pp. 5-24.

[56] Lootsma, F. A. 1993, “Scale Sensitivity in the Multiplicative AHP and
SMART,” Journal of Multi-Criteria Decision Analysis 2, pp. 87–110.

[57] Maes, P., Guttman, R.H. and Moukas, A. 1999, “Agents that buy and sell”. In
Communications of the ACM, March 1999/vol.42, no.3, pp. 81-91.

[58] McBurney, P., van Eijk, R., Parsons, S., Amgoud, L. (2001) “A dialogue-game
protocol for agent purchase negotiations”. Journal of Autonomous Agents and
Multi-Agent Systems, 7 (3). pp. 235-273.

[59] Matsatsinis, N. F., and Siskos, Y. 1999, "MARKEX: An intelligent decision
support system for product development decisions," European Journal of
Operational Research, 113 (2), pp. 336-354.

[60] Matsatsinis, N. F., Moraitis, P., Psomatakis, V., Spanoudakis, N. 1999,
“Intelligent software agents for products penetration strategy selection”. In
proccedings of MAAMAW'99 (CD, Modelling Autonomous Agents in a Multi-
Agent World, Valencia 30/6 – 2/7, Spain, 1999).

[61] Matsatsinis, N. F. and Siskos, Y. 1999, “MARKEX: An Intelligent Decision
Support System for Product Development Decisions,” European Journal of
Operational Research 113(2), pp. 336–354.

[62] Matsatsinis, N. F. and Samaras, A. P., 2000, “Brand Choice Model Selection
Based on Consumers’ Multicriteria Preferences and Experts’ Knowledge”.
Computers and Operations Research 27(7/8), pp. 689–707.

[63] Matsatsinis, N. F. and Samaras, A. P. 2001, “MCDA and Preference
Disaggregation in Group Decision Support Systems,” European Journal of
Operational Research 130(2), pp. 414–429.

Σελ. 86

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

[64] Matsatsinis, N.F. and Siskos, Y. 2002, Intelligent support systems for marketing
decisions, Kluwer Academic Publishers.

[65] Matsatsinis, N.F., Moraϊtis, P., Psomatakis, V., Spanoudakis N. 2003, “An
Agent-Based System for Products Penetration Strategy Selection”, Applied
Artificial Intelligence: An International Journal, vol. 17, no. 10, pp. 901-925.

[66] Moraïtis, P. and Tsoukiàs, A. 2003, “Decision aiding and argumentation”. In
Proc. of the 1st European Workshop on Multi-Agent Systems.

[67] Nachenberg, C. S. 2002, Dynamic heuristic method for detecting computer
viruses using decryption exploration and evaluation phases [Online – US Patent
6,357,008 (application year: 1997)] Available:
http://service1.symantec.com/legal/publishedpatents.nsf/0/4b4a30633137923b8
8256df7005d6b5d/$FILE/United%20States%20Patent%206,357,008.htm
[Accessed 23 Mar. 2012].

[68] Noori, H. 1995, The Design of an Integrated Group Decision Support System
for Technology Assessment, R& D Management 25(3), pp. 309-322.

[69] Parsons, S. and Jennings, N.R. 1996, “Negotiation through argumentation – a
preliminary report”. In Proceedings of the 2nd International Conference on
Multi-Agent Systems (ICMAS-96), Kyoto, Japan, pp. 267-274.

[70] Parsons, S., Sierra, C. and Jennings, N.R. 1998, “Multi-context argumentative
agents”. In 4th Symposium on Logical Formalizations of Common Sense
Reasoning, pp. 298-349.

[71] Parsons, S., Sierra, C.A. and Jennings, N.R. 1998, “Agents that reason and
negotiate by arguing”. Journal of Logic and Computation, 8(3), pp. 261-292.

[72] Rahwan, I., McBurney, P. and Sonenberg L. 2003, “Towards a Theory of
Negotiation Strategy (A Preliminary Report)”. In Proceedings of the AAMAS
Workshop on Game Theoretic and Decision Theoretic Agents (GTDT), 14 July,
Australia.

[73] Rahwan. I., Sonenberg, L., Jennings, N. R. and McBurney, P. 2003,
“STRATUM: A Methodology for Designing Heuristic Agent Negotiation
Strategies”. In Applied Artificial Intelligence, vol. 21, no. 6, pp. 489-527.

[74] Rahwan, I. and Tohmé, I. (2010), “Collective Argument Evaluation as
Judgement Aggregation”, In Proc. of 9th Int. Conf. on Autonomous Agents and
Multiagent Systems (AAMAS 2010), van der Hoek, Kaminka, Lespérance, Luck
and Sen (eds.), May, 10–14, 2010, Toronto, Canada, pp. 417-424.

[75] Reed, C. and Long, D. 1997, “Ordering and focusing in an architecture for
persuasive discourse planning”. In Proceedings of the 6th European Workshop
on Natural Language Generation, Duisburg, Germany.

[76] Reed, C. 1998, “Dialogue frames in agent communication”. In Proceedings of
the 3rd International Conference on Multi-Agent Systems (ICMAS-98), Paris,
France, pp. 246-253.

[77] Rosenschein, S.J. and Zlotkin, G. 1994, Rules of Encounter: Designing
Conventions for Automated Negotiation among Computers. MIT Press,
Cambridge, CA.

[78] Roy, B. 1968, Classement et choix en présence de points de vue multiple (La
méthode ELECTRE), R.I.R.O. 8, pp. 57-75.

[79] Roy, B. 1985, Méthodologie Multicritère d’Aide à la Décision. Economica,
Paris.

Σελ. 87

http://service1.symantec.com/legal/publishedpatents.nsf/0/4b4a30633137923b88256df7005d6b5d/$FILE/United%20States%20Patent%206,357,008.htm
http://service1.symantec.com/legal/publishedpatents.nsf/0/4b4a30633137923b88256df7005d6b5d/$FILE/United%20States%20Patent%206,357,008.htm

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

[80] Roy, B. 1996, Multicriteria Methodology for Decision Aiding. Dordrecht,
Kluwer Academic.

[81] Saaty, T. 1980, The Analytic Hierarchy Process. New York, McGraw-Hill.
[82] Salo, A. A. 1995, “Interactive Decision Aiding for Group Decision Support”,

European Journal of Operational Research 84, pp. 134-149.
[83] Schroeder, Michael 1999, “An efficient argumentation framework for

negotiating autonomous agents”. In Proceedings of Modelling Autonomous
Agents in a Multi-Agent World MAAMAW99, LNAI1647, Springer-Verlag .

[84] Shakun, M. F. 1988, Evolutionary Systems Design. Oakland, CA, Holden-Day.
[85] Shakun, M. F. 1991, “Airline Buyout: Evolutionary Systems Design and

Problem Restructuring in Group Decision and Negotiation”, Management
Science 37(10), pp. 1291-1303.

[86] Sierra, C., Jennings, N.R., Noriega, P., Parsons, S. 1998, A framework for
argumentation-based negotiation. In Proc of ATAL, pp. 167-182 Springer-
Verlag 1997.

[87] Sillince, John A.A. 1993, “Multi-agent conflict resolution: a computational
framework for an intelligent argumentation program”. Knowledge-Based
Systems, Vol. 7, no. 2 June 1994. Butterworth-Heinemann Ltd.

[88] Siskos, J., Spyridakos, A. and Yannacopoulos, D. 1993, “MINORA: A
Multicriteria Decision Aiding System for Discrete Alternatives,” Journal of
Information Science and Technology 2(2), pp. 136-149.

[89] Siskos, Y. and Yannakopoulos, D. 1985, “UTASTAR, An Ordinal Regression
Method for Building Additive Value Functions,” Investigacao Operacional
5(1), pp. 39-53.

[90] Siskos, Y., Grigoroudis, E., Zopounidis, C. and Saurais, O. 1997, “Measuring
Customer Satisfaction Using a Collective Preference Disaggregation Model”,
Journal of Global Optimization 12, pp. 175-195.

[91] Sprague, R.H. and Carlson, E. D. 1982, Building effective decision support
systems. Englewood Cliffs, N.J., Prentice-Hall.

[92] Stanoulov, N. 1995, “A Parsimonious Outranking Method for Individual and
Group Decisionmaking and its Computerized Support,” IEEE Transactions on
Systems, Man, and Cybernetics 25(2), pp. 266-276.

[93] Stanoulov, N. 1994, “Expert Knowledge and Computer-aided Group Decision
Making: Some Pragmatic Reflections,” Annals of Operations Research 51, pp.
141-162.

[94] Sycara, K.P. 1989a, “Argumentation: planning other agents’ plans”. In
Proceedings of the 11th International Joint Conference on Artificial Intelligence
(IJCAI-89), Detroit, MI, pp. 517-523.

[95] Sycara, K.P. 1989b, “Multiagent compromise via negotiation”. In Distributed
Artificial Intelligence (eds. L. Gasser and M. Huhns), Vol. II, pp. 119-138.
Pitman, London and Morgan Kaufmann, San Mateo, CA.

[96] Turban, E. 1988, Decision Support Systems and Expert Systems: Managerial
Perspectives. NewYork, Macmillan.

[97] Turban, E. 1995, Decision Support and Expert Systems: Management Support
Systems. Englewood Cliffs, N.J., Prentice-Hall.

[98] Turnovec, F. 2002, “Decision Making Games in the European Union”. In
Proceedings of the 37th Annual Conference of the Operational Research
Society, New Zealand, University of Auckland, pp. 245-254.

Σελ. 88

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

[99] Uno, T. 2003, Efficient Computation of Power Indices for Weighted Majority
Games, NII Technical Report, National Institute of Informatics.

[100] Van Houtven, L. 2002, Governance of the IMF. Decision Making, Institutional
Oversight, Transparency, and Accountability, Pamphlet Series, No. 53,
International Monetary Fund.

[101] Verheij, B. 1996, Two approaches to dialectical argumentation: admissible sets
and argumentation stages. Department of Metajuridica, University of Limburg,
Maastricht.

[102] Vetchera, R. 1991, “Integrating Databases and Preference Evaluations in Group
Decision Support – A Feedback-Oriented Approach,” Decision Support Systems
7, pp. 67-77.

[103] Walton, D.N. and Krabbe, E.C.W. 1995, Commitment in Dialogue: Basic
Concepts of Interpersonal Reasoning. State University of New York Press,
Albany, NY.

[104] Wooldridge, M. and Jennings, N.R. 1995, Intelligent agents: theory and
practice. The Knowledge Engineering Review, 10(2), 115-152.

[105] Wooldridge, Michael 2002, An introduction to multiagent systems. John Wiley
& Sons Ltd.

[106] Wooldridge, M., McBurney, P. and Parsons, S. 2006, On the Meta-logic of
Arguments, in Postproceedings of ArgMAS 2005, LNAI 4049, Springer-Verlag
Berlin Heidelberg, pp. 42-56.

[107] European Personnel Selection Office (EPSO) – Selection Procedures:
http://europa.eu/epso/discover/selection_proced/selection/index_en.htm
(retrieved 10/4/2011)

Σελ. 89

http://europa.eu/epso/discover/selection_proced/selection/index_en.htm

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

Appendix

Source Code

UTASTAR Implementation (class com.gorbas.UTASTAR)

package com.gorbas.utastar;

import com.gorbas.common.Logging;
import com.gorbas.control.AbstractController;
import com.gorbas.model.AbstractEntity;
import com.gorbas.model.Alternative;
import com.gorbas.model.Characteristic;
import com.gorbas.model.Contest;
import com.gorbas.model.Criterion;
import com.gorbas.model.DecisionMaker;
import com.gorbas.model.DecisionMakerAlternativeRank;
import com.gorbas.model.DecisionMakerAlternativeUsage;
import com.gorbas.model.DmAlternativeCriterionUtilityValue;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import javax.persistence.NoResultException;
import org.apache.commons.math.linear.RealVector;
import org.apache.commons.math.optimization.GoalType;
import org.apache.commons.math.optimization.RealPointValuePair;
import org.apache.commons.math.optimization.linear.LinearConstraint;
import org.apache.commons.math.optimization.linear.LinearObjectiveFunction;
import org.apache.commons.math.optimization.linear.Relationship;
import org.apache.commons.math.optimization.linear.SimplexSolver;

/**
 *
 *
 */
public class UTASTAR {

 static int COLUMN_LENGTH = 10;
 static Logging LOGGER = Logging.get(UTASTAR.class);

 static void sysout(String str) {
 System.out.println(str);
 }

Σελ. 90

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

 static void sysout1(String str) {
 System.out.print(str);
 }
 private final Map<DecisionMaker, Map<Alternative, Integer>>
rankPerAlternativePerDecisionMaker = new HashMap<DecisionMaker, Map<Alternative,
Integer>>();

 public UTASTAR(Contest contest) {
 //Retrieve ranks and initiate rank map
 boolean newEntityManger = !AbstractController.inSession();
 if (newEntityManger) {
 AbstractController.startEntityManager();
 }
 try {
 boolean newTransaction = !AbstractController.inTransaction();
 if (newTransaction) {
 AbstractController.beginTransaction();
 }
 try {
 LOGGER.trace("Fill valuePerCriterionPerAlternative - BEGIN");
 /**
 *
 */
 Map<Alternative, Map<Criterion, Double>>
valuePerCriterionPerAlternative = new HashMap<Alternative, Map<Criterion,
Double>>();
 List<Characteristic> characteristics =
Characteristic.retrieveCharacteristics(contest);
 for (Characteristic characteristic : characteristics) {
 if (!
valuePerCriterionPerAlternative.containsKey(characteristic.getAlternative())) {

valuePerCriterionPerAlternative.put(characteristic.getAlternative(), new
HashMap<Criterion, Double>());
 }
 Map<Criterion, Double> weightPerCriterion =
get(valuePerCriterionPerAlternative, characteristic.getAlternative());
 LOGGER.info("weightPerCriterion=weightPerCriterion for
alternative=" + characteristic.getAlternative());
 weightPerCriterion.put(characteristic.getCriterion(),
characteristic.getValue());
 LOGGER.info("weightPerCriterion put (criterion=" +
characteristic.getCriterion() + " value=" + characteristic.getValue() + ")");
 }
 LOGGER.trace("Fill valuePerCriterionPerAlternative - END");

 LOGGER.trace("Keep ranking of alternatives for each decision
maker - BEGIN");
 /**
 * Keep ranking of alternatives for each decision maker
 */
 List<DecisionMakerAlternativeRank> decisionMakerAlternativeRanks
= DecisionMakerAlternativeRank.retrieveDecisionMakerAlternativeRank(contest);
 for (DecisionMakerAlternativeRank decisionMakerAlternativeRank :
decisionMakerAlternativeRanks) {
 if (get(
 rankPerAlternativePerDecisionMaker,
 decisionMakerAlternativeRank.getDecisionMaker()) ==
null) {//Εαν δεν υπάρχει ήδη Map για τα στοιχεια του τρέχοντος αποφασίζοντα
 rankPerAlternativePerDecisionMaker.put(
 decisionMakerAlternativeRank.getDecisionMaker(),
 new HashMap<Alternative, Integer>());//το
προσθέτουμε στο κεντρικο map
 }

Σελ. 91

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

 get(rankPerAlternativePerDecisionMaker,
decisionMakerAlternativeRank.getDecisionMaker()).
 put(
 decisionMakerAlternativeRank.getAlternative(),

decisionMakerAlternativeRank.getUsageValue());//προσθετουμε στο map του τρέχοντος
αποφασιζοντα, την επιδοση που έδωσε για την τρέχουσα εναλλακτική
 }
 LOGGER.trace("Keep ranking of alternatives for each decision
maker - END");

 LOGGER.trace("Retrieve criteria");
 List<Criterion> criteria = Criterion.retrieveCriteria(contest);
 LOGGER.trace("Retrieved criteria are " + criteria.size());

 LOGGER.trace("prodiataxi - BEGIN");
 prodiataxi(valuePerCriterionPerAlternative,
rankPerAlternativePerDecisionMaker, criteria);
 LOGGER.trace("prodiataxi - END");
 if (newTransaction) {
 AbstractController.commit();
 }
 } catch (Exception e) {
 if (newTransaction) {
 AbstractController.rollback();
 }
 throw new RuntimeException(e);
 }
 } finally {
 if (newEntityManger) {
 AbstractController.closeEntityManager();
 }
 }

 }

 private void prodiataxi(
 Map<Alternative, Map<Criterion, Double>>
valuePerCriterionPerAlternative,
 Map<DecisionMaker, Map<Alternative, Integer>>
rankPerAlternativePerDecisionMaker,
 List<Criterion> criteria) {
 for (Map.Entry<DecisionMaker, Map<Alternative, Integer>> entry :
rankPerAlternativePerDecisionMaker.entrySet()) {
 Map<Alternative, Integer> rankPerAlternative = entry.getValue();
 List<AlternativeWithRank> alternatives = new
ArrayList<AlternativeWithRank>();
 LOGGER.info("PRODIATAXI");
 for (Map.Entry<Alternative, Integer> _entry :
rankPerAlternative.entrySet()) {
 alternatives.add(new AlternativeWithRank(_entry.getKey(),
_entry.getValue()));
 LOGGER.info(_entry.getKey() + "->" + _entry.getValue());
 }
 AlternativeWithRank[] tmp = alternatives.toArray(new
AlternativeWithRank[0]);
 Arrays.sort(tmp);
 utastark200(entry.getKey(), tmp, valuePerCriterionPerAlternative,
criteria);
 }
 }

 private static void saveUtilityValuePerCriterionPerAlternative(DecisionMaker
dm, List<Criterion> criteria, Map<Alternative, Map<Criterion, double[]>> w,
double[] averageCriterionWeight) {

Σελ. 92

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

 LOGGER.trace("saveUtilityValuePerCriterionPerAlternative(dm=" + dm +
",criteria=" + criteria + ", w=" + w + ",averageCriterionWeight=" +
averageCriterionWeight + ") BEGIN");
 for (Map.Entry<Alternative, Map<Criterion, double[]>> entry :
w.entrySet()) {
 int index = 0;

double altUtility = 0.0;
 for (int a = 1; a <= criteria.size(); a++) {

Criterion cr = criteria.get(a - 1);
double[] wOfCr = entry.getValue().get(cr);

 double utilityValue = 0.0;
for (int d = 0; d < cr.getNumberOfDiscreteValues() -

1; d++, index++)
utilityValue += (averageCriterionWeight[index] *

wOfCr[d]);

altUtility += utilityValue;

DmAlternativeCriterionUtilityValue dmcuv = new
DmAlternativeCriterionUtilityValue();
 dmcuv.setAlternative(entry.getKey());
 dmcuv.setCriterion(cr);
 dmcuv.setDecisionMaker(dm);
 dmcuv.setUtilityValue(utilityValue);

 try {
 DmAlternativeCriterionUtilityValue _dmcuv =
DmAlternativeCriterionUtilityValue.retrieveByAlternativeDecisionMakerCriterion(dm
cuv.getAlternative(), dmcuv.getDecisionMaker(), dmcuv.getCriterion());
 if (_dmcuv != null) {
 _dmcuv.setUtilityValue(dmcuv.getUtilityValue());
 dmcuv = _dmcuv;
 }
 } catch (Exception e) {
 LOGGER.error("saveUtilityValuePerCriterionPerAlternative()\t"
+ e.getMessage(), e);
 }
 if (dmcuv.getId() == null) {
 AbstractController.persist(dmcuv);
 } else {
 AbstractController.merge(dmcuv);
 }
 }

// Save alternative utility (sum of all criteria utilities of
the alternative).

DecisionMakerAlternativeUsage dmau = null;
try { dmau = DecisionMakerAlternativeUsage.retrieve(dm,

entry.getKey()); }
catch (NoResultException ex) { }
if (null == dmau) {

dmau = new DecisionMakerAlternativeUsage();
dmau.setDecisionMaker(dm);
dmau.setAlternative(entry.getKey());

}
dmau.setUsageValue(altUtility);
if (null == dmau.getId()) AbstractController.persist(dmau);
else AbstractController.merge(dmau);

 }
 LOGGER.trace("saveUtilityValuePerCriterionPerAlternative() END");
 }
 private static final double DELTA = 0.05;

private static void printConstraint(LinearConstraint c) {
RealVector coeffs = c.getCoefficients();

Σελ. 93

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

int dim = coeffs.getDimension();
for (int i = 0; i < dim; i++)

System.out.printf("%8lf |", coeffs.getEntry(i));
String rel = "?";
switch(c.getRelationship()) {

case EQ: rel = "= "; break;
case GEQ: rel = ">="; break;
case LEQ: rel = "<="; break;

}
System.out.print(rel + " |");
System.out.printf("%8lf |", c.getValue());

}

private static void printObjFunction(LinearObjectiveFunction f) {
RealVector coeffs = f.getCoefficients();
int dim = coeffs.getDimension();
for (int i = 0; i < dim; i++)

System.out.printf("%8lf |", coeffs.getEntry(i));
System.out.printf("%8lf |", f.getConstantTerm());

}

 /**
 *
 * @param sortedAlternatives
 * @param valuePerCriterionPerAlternative
 * @param criteria
 */
 private static void utastark200(
 DecisionMaker dm,
 AlternativeWithRank[] sortedAlternatives,
 Map<Alternative, Map<Criterion, Double>>
valuePerCriterionPerAlternative,
 List<Criterion> criteria) {
 {
 StringBuilder sortedAlternativesAsStr = new StringBuilder();
 for (AlternativeWithRank awr : sortedAlternatives) {
 sortedAlternativesAsStr.append(awr.alternative).append("-
>").append(awr.rank).append(", ");
 }
 StringBuilder valuePerCriterionPerAlternativeStr = new
StringBuilder();
 for (Map.Entry<Alternative, Map<Criterion, Double>> e :
valuePerCriterionPerAlternative.entrySet()) {

valuePerCriterionPerAlternativeStr.append("Alternative[").append(e.getKey()).appe
nd("]{");
 for (Map.Entry<Criterion, Double> e1 : e.getValue().entrySet()) {

valuePerCriterionPerAlternativeStr.append(e1.getKey()).append("=").append(e1.getV
alue()).append(",");
 }
 valuePerCriterionPerAlternativeStr.append("}, ");
 }
 StringBuilder criteriaStr = new StringBuilder();
 for (Criterion c : criteria) {
 criteriaStr.append(c).append(",");
 }

 LOGGER.trace(
 "utastark200 for dm=" + dm + " sortedAlternatives=" +
sortedAlternativesAsStr + " valuePerCriterionPerAlternative=" +
valuePerCriterionPerAlternativeStr + " criteria=" + criteriaStr);
 }
 int numberOfAlternatives = sortedAlternatives.length;
 int numberOfW = 0;

Σελ. 94

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

 for (Criterion criterion : criteria) {
 numberOfW += criterion.getNumberOfDiscreteValues();
 }

 LOGGER.trace("retrieveStepsPerCriterion()");
 Map<Criterion, double[]> stepsPerCriterion =
retrieveStepsPerCriterion(valuePerCriterionPerAlternative, criteria);
 LOGGER.trace("calcualteU()");
 Map<Alternative, Map<Criterion, double[]>> u =
calcualteU(valuePerCriterionPerAlternative, stepsPerCriterion);
 LOGGER.trace("calculateW()");
 Map<Alternative, Map<Criterion, double[]>> w = calculateW(u,
stepsPerCriterion);
 LOGGER.trace("calculateA1P()");
 Map<Alternative, double[]> A1P = calculateA1P(w, sortedAlternatives,
criteria);
 LOGGER.trace("calculateA2P()");
 Map<Alternative, double[]> A2P = calculateA2P(sortedAlternatives,
criteria);
 LOGGER.trace("combineA1PandA2P() [keep it as At]");
 Map<Alternative, double[]> At = combineA1PandA2P(A1P, A2P);

 for (Map.Entry<Alternative, double[]> e : At.entrySet()) {
 sysout1("\n" + e.getKey().getDescription() + "\t|");
 for (Double a : e.getValue()) {
 sysout1("" + a + "\t|");
 }
 }
 Map<Alternative, double[]> AEQ = retrieveEqualWithNext(At,
sortedAlternatives);//Οι εναλλακτικές που έχουν ίδια προτεραιότητα με την επόμενη
εναλλακτική
 Map<Alternative, double[]> AA = retrieveNotEqualWithNext(At,
sortedAlternatives);//Οι εναλλακτικές που δεν έχουν ιδια προτεραιότητα με την
επόμενη εναλλακτική

 /**
 * Πίνακας που θα έχει για όλες τις εναλλακτικές με την σειρά που τις
έχει στο sortedAlternatives
 */
 double[][] AtAsArray = new double[sortedAlternatives.length]
[At.values().iterator().next().length];
 double[] b = new double[sortedAlternatives.length];
 for (int i = 0; i < sortedAlternatives.length; i++) {
 Alternative currentAlternative = sortedAlternatives[i].alternative;
 double[] valueArray = null;
 if (AEQ.containsKey(currentAlternative)) {
 valueArray = get(AEQ, currentAlternative);
 b[i] = 0.0;
 } else {
 valueArray = get(AA, currentAlternative);
 b[i] = DELTA;
 }

System.arraycopy(valueArray, 0, AtAsArray[i], 0,
valueArray.length);
 }

b[b.length - 1] = 1.0; // Σw_i = 1.0

 int numberOfVariables = AtAsArray[0].length;
 /**
 *
 * Το πλήθος των μεταβλητών w του προβλήματος είναι όσο είναι το άθροισμα
του πλήθους των διακριτών τιμών των κριτηρίων
 * Μείον το πλήθος των κριτηρίων, καθώς η μικρότερη τιμή της κλιμακας
ειναι γνωστό οτι έχει τιμή 0

Σελ. 95

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

 *
 * Οι μεταβλητές σίγμα είναι σε πλήθος τόσες όσες 2 φορές το πλήθος των
εναλλακτικών
 *
 * Για τις μεν μεταβλητές w αποδίδω τιμή μηδέν '0' στο διάνυσμα F, ενώ
για τα σίγμα τοποθετώ τιμή ένα '1'
 */
 int summaryOfDiscreteValues = 0;
 for (Criterion criterion : criteria) {
 summaryOfDiscreteValues += criterion.getNumberOfDiscreteValues() - 1;
 }
 double[] F = new double[numberOfVariables -
criteria.size()];//summaryOfDiscreteValues + 2 * sortedAlternatives.length];
 for (int i = summaryOfDiscreteValues; i < F.length; i++) {
 F[i] = 1.0;
 }

 sysout("Number of variables is " + numberOfVariables + " while the F has
length " + F.length);

 try {

/*
 * UTASTAR Step 3.
 */

// describe the optimization problem
LinearObjectiveFunction f = new LinearObjectiveFunction(F,

0.0);
ArrayList<LinearConstraint> constraints = new

ArrayList<LinearConstraint>();

sysout("Constraints:");
sysout(" ".substring(0,

COLUMN_LENGTH));
for (int i = 1; i <= criteria.size(); i++) {

for (int j = 1; j <= criteria.get(i -
1).getNumberOfDiscreteValues() - 1; j++) {

sysout1(("|" + criteria.get(i -
1).getDescription() + " ").substring(0, COLUMN_LENGTH));

}
}
sysout1("\n ".substring(0,

COLUMN_LENGTH));
for (int i = 1; i <= criteria.size(); i++) {

for (int j = 1; j <= criteria.get(i -
1).getNumberOfDiscreteValues() - 1; j++) {

sysout1(("|w" + i + j + "
").substring(0, COLUMN_LENGTH));

}
}
for (AlternativeWithRank a : sortedAlternatives) {

sysout1(("|c" + a.alternative.getDescription() + "-
").substring(0, COLUMN_LENGTH));

sysout1(("|c" + a.alternative.getDescription() + "+
").substring(0, COLUMN_LENGTH));

}

for (int indexInArray = 0; indexInArray <
sortedAlternatives.length; indexInArray++) {//Each alternative adds a constraint

AlternativeWithRank _entry =
sortedAlternatives[indexInArray];

Alternative entry = _entry.alternative;

Σελ. 96

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

sysout1(("\n" + _entry.rank + "->" +
entry.getDescription() + "(" + entry.getId() + ")" + " ").substring(0,
COLUMN_LENGTH));

double[] atValues = get(At, entry);
double[] criteriaValues = new double[atValues.length -

criteria.size()];
int indexInAt = 0;
int indexInCriteriaValues = 0;
for (int i = 1; i <= criteria.size(); i++) {

for (int j = 1; j <= criteria.get(i -
1).getNumberOfDiscreteValues() - 1; j++) {

criteriaValues[indexInCriteriaValues++] =
atValues[indexInAt];

sysout1(("|" +
criteriaValues[indexInCriteriaValues - 1] + " ").substring(0,
COLUMN_LENGTH));

indexInAt++;
}
indexInAt++;

}
for (; indexInAt < atValues.length; indexInAt++) {

criteriaValues[indexInCriteriaValues++] =
atValues[indexInAt];

sysout1(("" +
criteriaValues[indexInCriteriaValues - 1] + " ").substring(0,
COLUMN_LENGTH));

}

double value = b[indexInArray];
sysout1("" + (value == DELTA ? ">=" : "=") + value);

constraints.add(new LinearConstraint(criteriaValues,
value == DELTA ? Relationship.GEQ : Relationship.EQ, value));

}

sysout1(("\n ").substring(0, COLUMN_LENGTH));
for (double _f : F) {

sysout1("|--------------------------".substring(0,
COLUMN_LENGTH));

}
sysout1("\n ".substring(0,

COLUMN_LENGTH));
for (double _f : F) {

sysout1(("|" + _f + "
").substring(0, COLUMN_LENGTH));

}
sysout("\n\n\n");

// create and run the solver
SimplexSolver solver = new SimplexSolver();

// solver.setMaxIterations(10);
RealPointValuePair solution = solver.optimize(f, constraints,

GoalType.MINIMIZE, true);

Map<Criterion, double[]> stepValuePerCriterion =
retrieveStepsPerCriterion(valuePerCriterionPerAlternative, criteria);

// get the solution
sysout("Result's length=" + solution.getPointRef().length);
int index = 0;
for (int i = 1; i <= criteria.size(); i++) {

for (int j = 1; j <= criteria.get(i -
1).getNumberOfDiscreteValues(); j++) {

Σελ. 97

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

sysout("\t" + criteria.get(i - 1).getName() +
"#" + j + "[" + stepValuePerCriterion.get(criteria.get(i - 1))[j - 1] + "]" + "-
>" + solution.getPoint()[index]);

index++;
}

}
for (int i = 0; index < solution.getPointRef().length; i++) {

sysout("\tc" + i + "->" + solution.getPointRef()
[index]);

index++;
}

sysout("Min=" + solution.getValue());

/*
 * UTASTAR Step 4 (post-optimality analysis): Test for

multiple near-optimal solutions in step 3 and use the average of all of them.
 */

// If Σσ = 0 and every sigma value is also zero, then totally
remove the zeroes from the linear program and do not add a sigma constraint.

boolean noSigma = solution.getValue() == 0;
if (noSigma) {

double[] sol = solution.getPoint();
for (int i = numberOfW - criteria.size(); i <

sol.length; i++) {
if (sol[i] != 0.0) {

noSigma = false;
break;

}
}

}

if (noSigma) {
// Remove the sigma part from constraints.
for (int i = 0; i < constraints.size(); i++) {

LinearConstraint lc = constraints.get(i);
lc = new

LinearConstraint(lc.getCoefficients().getSubVector(0, numberOfW -
criteria.size()), lc.getRelationship(), lc.getValue());

constraints.set(i, lc);
}

}
else {

// Add the constraint Σσ <= z* + ε to the system.
double[] sigmaConstraint = new double[F.length];
System.arraycopy(solution.getPointRef(), numberOfW -

criteria.size(),
sigmaConstraint, numberOfW -

criteria.size(), sortedAlternatives.length * 2);
double sv = solution.getValue();
constraints.add(new LinearConstraint(sigmaConstraint,

Relationship.LEQ, sv < 5e-11 ? sv + 5e-11 : sv * 1.1 /*sv + ε*/));
}

// Now obtain the solutions by trying to maximize the
criteria utility functions (sum of value weights of each criterion).

RealPointValuePair[] nearOptimalSolutions = new
RealPointValuePair[criteria.size()];

int wIndex = 0;
int cIndex = 0;
for (Criterion c : criteria) {

Arrays.fill(F, 0.0);

Σελ. 98

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

int nrWeights = c.getNumberOfDiscreteValues() - 1;
for (int i = 0; i < nrWeights; i++, wIndex++)

F[wIndex] = 1.0;
nearOptimalSolutions[cIndex++] = solver.optimize(new

LinearObjectiveFunction(F, 0.0), constraints, GoalType.MAXIMIZE, true);
}

// Now calculate the mean value of the solutions (the
weights).

double[] avgSolution = new double[numberOfW -
criteria.size()];

for(int i = 0; i < nearOptimalSolutions.length; i++) {
double[] p = nearOptimalSolutions[i].getPointRef();
for (int j = 0; j < avgSolution.length; j++)

avgSolution[j] += p[j];
}
for (int i = 0; i < avgSolution.length; i++)

avgSolution[i] /= nearOptimalSolutions.length;

double[] discreteValueWeights = new double[numberOfW];
int dvi = 0;
int si = 0;
for (Criterion c : criteria) {

discreteValueWeights[dvi++] = 0;
for (int i = 1; i < c.getNumberOfDiscreteValues(); i+

+, dvi++, si++)
discreteValueWeights[dvi] =

discreteValueWeights[dvi - 1] + avgSolution[si];
}

 sysout("");
 saveUtilityValuePerCriterionPerAlternative(dm, criteria, w,
avgSolution);

 //εκτύπωση AverageUtilityValueForDecisionMakerCriterion
 sysout("\nAverageUtilityValueForDecisionMakerCriterion");
 for (Criterion c : criteria) {
 double utilityValue =
DmAlternativeCriterionUtilityValue.AverageUtilityValueForDecisionMakerCriterion(d
m, c);
 sysout(c.getName() + "->" + utilityValue);
 }

 sysout("\nDecisionMakerAlternativeUsage");
 for (Alternative a : At.keySet()) {
 DecisionMakerAlternativeUsage usage =
DecisionMakerAlternativeUsage.retrieve(dm, a);
 sysout(a.getDescription() + "->" + usage.getUsageValue());
 }

 } catch (Exception e) {
 e.printStackTrace();
 throw new RuntimeException(e);
 }
 }

 /**
 *
 * @param values
 * @return μέσο ορο των τιμών που βρισκονται στην συλλογη "values"
 */
 private static Double avg(java.util.Collection<Double> values) {
 if (values.isEmpty()) {
 return 0.0;

Σελ. 99

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

 }
 double avg = 0.0;
 for (double v : values) {
 avg += v;
 }
 return avg / values.size();
 }

 /**
 *
 * @param At
 * @param sortedAlternatives
 * @return Πίνακα για τις εναλλακτικές που δεν έχουν ιδια προτεραιότητα με
την επόμενη τους. Να σημειωθεί οτι η τελευταία δεν ανήκει σε αυτόν τον πίνακα
 */
 private static Map<Alternative, double[]>
retrieveNotEqualWithNext(Map<Alternative, double[]> At, AlternativeWithRank[]
sortedAlternatives) {
 Map<Alternative, double[]> AAp = new HashMap<Alternative, double[]>();
 for (int i = 0; i < sortedAlternatives.length - 1; i++) {
 AlternativeWithRank currentAlternativeWithRank =
sortedAlternatives[i];
 AlternativeWithRank nextAlternativeWithRank = sortedAlternatives[i +
1];
 if (currentAlternativeWithRank.rank != nextAlternativeWithRank.rank)
{
 AAp.put(currentAlternativeWithRank.alternative, get(At,
currentAlternativeWithRank.alternative));
 }

 }
 return AAp;
 }

 /**
 *
 * @param At
 * @param sortedAlternatives
 * @return Πίνακα για τις εναλλακτικές που έχουν ιδια προτεραιότητα με την
επόμενη τους. Να σημειωθεί ότι και η εναλλακτική που είναι τελευταία ανήκει σε
αυτή την ομάδα
 */
 private static Map<Alternative, double[]>
retrieveEqualWithNext(Map<Alternative, double[]> At, AlternativeWithRank[]
sortedAlternatives) {
 Map<Alternative, double[]> AEQ = new HashMap<Alternative, double[]>();
 for (int i = 0; i < sortedAlternatives.length - 1; i++) {
 AlternativeWithRank currentAlternativeWithRank =
sortedAlternatives[i];
 AlternativeWithRank nextAlternativeWithRank = sortedAlternatives[i +
1];
 if (currentAlternativeWithRank.rank == nextAlternativeWithRank.rank)
{
 AEQ.put(currentAlternativeWithRank.alternative, get(At,
currentAlternativeWithRank.alternative));
 }

 }
 Alternative lastAlternative =
sortedAlternatives[sortedAlternatives.length - 1].alternative;
 AEQ.put(lastAlternative, get(At, lastAlternative));
 return AEQ;
 }

Σελ. 100

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

 private static Map<Alternative, double[]> combineA1PandA2P(Map<Alternative,
double[]> A1P, Map<Alternative, double[]> A2P) {
 Map<Alternative, double[]> At = new HashMap<Alternative, double[]>();
 for (Alternative alternative : A1P.keySet()) {
 double[] A1Pv = get(A1P, alternative);
 double[] A2Pv = get(A2P, alternative);
 double[] values = new double[A1Pv.length + A2Pv.length];

System.arraycopy(A1Pv, 0, values, 0, A1Pv.length);
System.arraycopy(A2Pv, 0, values, A1Pv.length, A2Pv.length);

 At.put(alternative, values);
 }

 return At;
 }

 /**
 * Συντελεστές σ
 * @param w
 * @param sortedAlternativeWithRanks
 * @param criteria
 * @return
 */
 private static Map<Alternative, double[]> calculateA2P(AlternativeWithRank[]
sortedAlternativeWithRanks, List<Criterion> criteria) {
 Map<Alternative, double[]> A2P = new HashMap<Alternative, double[]>();
 for (int a = 0; a < sortedAlternativeWithRanks.length; a++) {
 Alternative alternative = sortedAlternativeWithRanks[a].alternative;

double[] sigmas = new
double[sortedAlternativeWithRanks.length * 2]; // Initialized to zero.
 A2P.put(alternative, sigmas);

 if (a < (sortedAlternativeWithRanks.length - 1)) {
 sigmas[a * 2] = 1.0;
 sigmas[a * 2 + 1] = -1.0;
 sigmas[a * 2 + 2] = -1.0;
 sigmas[a * 2 + 3] = 1.0;
 }

 }
 return A2P;
 }

 /**
 * Συντελεστής για την βαρύτητα κάθε διακριτής τιμής κάθε κριτηρίου για κάθε
εναλλακτική
 * @param w
 * @param sortedAlternativeWithRanks
 * @param criteria
 * @return
 */
 private static Map<Alternative, double[]> calculateA1P(Map<Alternative,
Map<Criterion, double[]>> w, AlternativeWithRank[] sortedAlternativeWithRanks,
List<Criterion> criteria) {
 Map<Alternative, double[]> A1P = new HashMap<Alternative, double[]>();
 int numberOfTotalDiscreteValues = 0;
 for (Criterion criterion : criteria) {
 numberOfTotalDiscreteValues += criterion.getNumberOfDiscreteValues();
 }
 for (int a = 0; a < sortedAlternativeWithRanks.length - 1; a++) {
 Alternative alternative = sortedAlternativeWithRanks[a].alternative;
 Alternative nextAlternative = sortedAlternativeWithRanks[a +
1].alternative;

Σελ. 101

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

double[] allWeights = new
double[numberOfTotalDiscreteValues]; // Initialized to 0.
 A1P.put(alternative, allWeights);

 int currentStep = 0;
 for (int c = 0; c < criteria.size(); c++) {
 Criterion criterion = criteria.get(c);

double[] weights = get(get(w, alternative), criterion);
double[] nextAltWeights = get(get(w, nextAlternative),

criterion);
 for (int step = 0; step < criterion.getNumberOfDiscreteValues();
step++, currentStep++) //TODO:Check§
 allWeights[currentStep] = weights[step] -
nextAltWeights[step];
 }
 }
 Alternative lastAlternative =
sortedAlternativeWithRanks[sortedAlternativeWithRanks.length - 1].alternative;
 A1P.put(lastAlternative, new double[numberOfTotalDiscreteValues]);
 for (int i = 0; i < get(A1P, lastAlternative).length; i++) {
 get(A1P, lastAlternative)[i] = 1.0;
 }

 return A1P;
 }

 private static Map<Alternative, Map<Criterion, double[]>>
calculateW(Map<Alternative, Map<Criterion, double[]>> u, Map<Criterion, double[]>
stepsPerCriterion) {
 Map<Alternative, Map<Criterion, double[]>> w = new HashMap<Alternative,
Map<Criterion, double[]>>();
 for (Map.Entry<Alternative, Map<Criterion, double[]>> entry0 :
u.entrySet()) {
 Alternative alternative = entry0.getKey();
 w.put(alternative, new HashMap<Criterion, double[]>());
 for (Map.Entry<Criterion, double[]> entry1 :
entry0.getValue().entrySet()) {
 Criterion criterion = entry1.getKey();
 double[] value = entry1.getValue();
 double[] zeros = new
double[criterion.getNumberOfDiscreteValues()];

 get(w, alternative).put(criterion, zeros);
 double[] steps = get(stepsPerCriterion, criterion);
 for (int stepIndex = 0; stepIndex < (steps.length - 1);
stepIndex++) {
 if (value[stepIndex] == 0) {
 get(get(w, alternative), criterion)[stepIndex] = 1.0;
 } else if (value[stepIndex] == 1) {
 break;
 } else {
 get(get(w, alternative), criterion)[stepIndex] =
get(get(u, alternative), criterion)[stepIndex + 1];
 break;

 }
 }
 }
 }
 return w;
 }

 /**
 *
 *

Σελ. 102

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

 * @param valuePerCriterionPerAlternative
 * @param stepsPerCriterion
 * @return
 */
 private static Map<Alternative, Map<Criterion, double[]>>
calcualteU(Map<Alternative, Map<Criterion, Double>>
valuePerCriterionPerAlternative, Map<Criterion, double[]> stepsPerCriterion) {
 Map<Alternative, Map<Criterion, double[]>> u = new HashMap<Alternative,
Map<Criterion, double[]>>();
 for (Map.Entry<Alternative, Map<Criterion, Double>> entry0 :
valuePerCriterionPerAlternative.entrySet()) {
 Alternative alternative = entry0.getKey();
 u.put(alternative, new HashMap<Criterion, double[]>());
 for (Map.Entry<Criterion, Double> entry1 :
entry0.getValue().entrySet()) {
 Criterion criterion = entry1.getKey();
 Double value = entry1.getValue();
 double[] steps = get(stepsPerCriterion, criterion);
 double[] zeros = new
double[criterion.getNumberOfDiscreteValues()];
 for (int i = 0; i < zeros.length; i++) {
 zeros[i] = 0.0;
 }

 get(u, alternative).put(criterion, zeros);
 if (criterion.getAsceding()) {
 for (int stepIndex = 0; stepIndex < (steps.length - 1);
stepIndex++) {
 if (value <= steps[stepIndex + 1]) {
 get(get(u, alternative), criterion)[stepIndex] = 1 -
((value - steps[stepIndex]) / (steps[stepIndex + 1] - steps[stepIndex]));
 get(get(u, alternative), criterion)[stepIndex + 1] =
((value - steps[stepIndex]) / (steps[stepIndex + 1] - steps[stepIndex]));
 break;

 }
 }
 } else {
 for (int stepIndex = 0; stepIndex < (steps.length - 1);
stepIndex++) {
 if (value >= steps[stepIndex + 1]) {
 get(get(u, alternative), criterion)[stepIndex] = 1 -
((value - steps[stepIndex]) / (steps[stepIndex + 1] - steps[stepIndex]));
 get(get(u, alternative), criterion)[stepIndex + 1] =
((value - steps[stepIndex]) / (steps[stepIndex + 1] - steps[stepIndex]));
 break;

 }
 }
 }
 }
 }
 return u;
 }

 private static Map<Criterion, double[]>
retrieveStepsPerCriterion(Map<Alternative, Map<Criterion, Double>>
valuePerCriterionPerAlternative, List<Criterion> criteria) {
 Map<Criterion, double[]> toReturn = new HashMap<Criterion, double[]>();
 for (Criterion criterion : criteria) {
 int g = 0;
 double gd;
 double gu;
 if (criterion.getAsceding()) {

Σελ. 103

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

 gd =
Collections.min(retrieveCriterionValues(valuePerCriterionPerAlternative,
criterion));
 gu =

Collections.max(retrieveCriterionValues(valuePerCriterionPerAlternative,
criterion));
 } else {
 gd =
Collections.max(retrieveCriterionValues(valuePerCriterionPerAlternative,
criterion));
 gu =

Collections.min(retrieveCriterionValues(valuePerCriterionPerAlternative,
criterion));
 }

 double[] steps = new double[criterion.getNumberOfDiscreteValues()];
 for (int i = 0; i < steps.length; i++) {
 steps[i] = gd + i * (gu - gd) / (steps.length - 1);
 }

 toReturn.put(criterion, steps);
 }

 return toReturn;
 }

 /**
 *
 * @param valuePerCriterionPerAlternative
 * @param criterion
 * @return
 */
 private static List<Double> retrieveCriterionValues(Map<Alternative,
Map<Criterion, Double>> valuePerCriterionPerAlternative, Criterion criterion) {
 LOGGER.trace("retrieveCriterionValues().. criterion=" + criterion + "\t"
+ valuePerCriterionPerAlternative);
 List<Double> values = new ArrayList<Double>();
 for (Map<Criterion, Double> valuePerCriterion :
valuePerCriterionPerAlternative.values()) {
 //Επειδή το κλειδι μπορει να ειναι διαφορετικο instance απο της
παραμετρο criterion κανουμε ένα loop μέχρι να βρουμε το πως συνδέονται
 for (Map.Entry<Criterion, Double> entry :
valuePerCriterion.entrySet()) {
 if (entry.getKey().getId().equals(criterion.getId())) {
 LOGGER.trace("retrieveCriterionValues().. add value=" +
entry.getValue());
 values.add(entry.getValue());
 break;
 }
 }
 }
 if (values.isEmpty()) {
 LOGGER.trace("retrieveCriterionValues().. no values!");
 }
 return values;

 }

 private static class AlternativeWithRank
 implements Comparable<AlternativeWithRank> {

 private Alternative alternative;

Σελ. 104

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

 private int rank;

 public AlternativeWithRank(Alternative alternative, int rank) {
 this.alternative = alternative;
 this.rank = rank;
 }

 public int compareTo(AlternativeWithRank o) {
 return o.rank == rank ?
(alternative.getId().compareTo(o.alternative.getId())) : rank - o.rank;
 }
 }

 private static <K extends AbstractEntity, V extends Object> V get(Map<K, V>
map, K key) {
 if (map == null) {
 return null;

 }
 for (Map.Entry<K, V> entry : map.entrySet()) {
 if (entry.getKey().getId().equals(key.getId())) {
 return entry.getValue();
 }
 }
 return null;
 }

 private static String toString(double[] values) {
 StringBuilder v = new StringBuilder();
 for (double vv : values) {
 v.append(vv).append(",");
 }
 return v.toString();
 }
}

Σελ. 105

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

NAI Algorithm Implementation (class com.gorbas.negotiation.NAI)

package com.gorbas.negotiation;

import com.gorbas.model.Alternative;
import com.gorbas.model.Contest;
import com.gorbas.model.DecisionMaker;
import com.gorbas.model.DecisionMakerAlternativeUsage;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.Set;

/**
 * Negotiable Alternatives Identifier for Negotiation Support (NAI)
implementation.
 * @author gorbas
 */
public class NAI {

static final int MIN = 0;
static final int MAX = 1;

/**
 * The classification of an alternative according to the preference set it

ended up into.
 */
public enum PrefClass {

MostPreferred,
Preferred,
LeastPreferred

}

static class Proc2Data {
public double[] t;
public int[] i;

}

/**
 * Groups metrics that refer to a specific alternative.
 */
public static class DmAltData {

public double structuralIndex;
public double preferenceRatio;
public int rank;
public DmAltData(double si, double pr, int r) {

this.structuralIndex = si;
this.preferenceRatio = pr;
this.rank = r;

}
}

/**
 * Encapsulates the information and code of the NAI algorithm for a single

decision maker.
 */
static class DecisionMakerContext {

private DecisionMaker dm;
private DecisionMakerAlternativeUsage[] usages;

Σελ. 106

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

private double[] rd; // Normalized preference values, may be smaller
than prefs, if running the algorithm on a subset of prefs.

private double[] rdPartialSums;
private double[] structuralIndices;
private Proc2Data proc2Si;
private double[] cd; // The preference ratios for all cut-off points

in the preferred subset.
private Proc2Data proc2Cd;
private int preferredCutOff = -1; // n*, the cut-off point

calculated by the expansion operation (separates the preferred from the least
preferred subset).

private int mostPreferredCutOff = -1; // i*, the cut-off point
calculated by the contraction operation (separates the most-preferred from the
preferred subset).

public DecisionMaker getDecisionMaker () { return dm; }

DecisionMakerContext(DecisionMaker decisionMaker, List<Alternative>
alternatives) {

assert(alternatives != null && decisionMaker != null);
this.dm = decisionMaker;

// Collect the utility values assigned by the decision maker
for all alternatives.

usages = new
DecisionMakerAlternativeUsage[alternatives.size()];

int i = 0;
for (Alternative a : alternatives) {

usages[i] =
DecisionMakerAlternativeUsage.retrieve(decisionMaker, a);

if (usages[i] == null) {
// Create a bogus usage value for any

alternative that has not been evaluated by the user.
DecisionMakerAlternativeUsage dmau = new

DecisionMakerAlternativeUsage(a, 0);
dmau.setDecisionMaker(decisionMaker);
usages[i] = dmau;

}
i++;

}

// Now sort the alternatives by descending usage value.
Arrays.sort(usages, new

Comparator<DecisionMakerAlternativeUsage>() {
@Override
public int compare(DecisionMakerAlternativeUsage o1,

DecisionMakerAlternativeUsage o2) {
double diff = o1.getUsageValue() -

o2.getUsageValue();
if (diff < 0) return 1;
else if (diff == 0) return 0;
else return -1;

}
});

// Validate the usage values: Make sure no negative values
exist and that the sum is not zero.

double sum = 0;
for (DecisionMakerAlternativeUsage dmau : usages) {

double u = dmau.getUsageValue();
if (u < 0)

throw new IllegalArgumentException("NAI:
usages[Alternative.Id=" + dmau.getAlternative().getId() + "] = " + u + ": utility
values must be non-negative.");

sum += u;

Σελ. 107

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

}
if (sum <= 0)

throw new IllegalArgumentException("NAI: sum of
utility values must be positive.");

}

/**
 * Runs the algorithm on the specified number of alternatives,
 * taken off the top (most preferred) of the sorted alternative

list.
 * @param nrAlternatives The number of alternatives to consider in

the algorithm.
 * These alternatives will be be the most preferred among

all.
 * Non-positive and out-of-bounds values mean "consider all

alternatives".
 */
public void run(int nrAlternatives) {

init(nrAlternatives);
// Do the expansion and contraction steps.
doExpansion();
doContraction();

}

public void init(int nrAlternatives) {
reset();

if (nrAlternatives <= 0 || nrAlternatives > usages.length)
nrAlternatives = usages.length;

// Initialize the normalized preference values.
if (null == this.rd || this.rd.length != nrAlternatives) {

double[] nu = new double[nrAlternatives];
for (int i = 0; i < nrAlternatives; i++) {

 DecisionMakerAlternativeUsage dmau =
usages[i];
 nu[i] = dmau.getUsageValue();
 }

normalize(nu);
this.rd = nu;

}
}

private void reset() {
this.rd = null;
this.rdPartialSums = null;
this.structuralIndices = null;
this.proc2Si = null;
this.cd = null;
this.proc2Cd = null;
this.preferredCutOff = -1;
this.mostPreferredCutOff = -1;

}

/**
 * Calculates and returns the partial sums of the i most preferred

alternatives, with i = 1..N, N the number of alternatives.
 * @return An array, Rd, with the sums. Rd[i] is the sum of the i+i

most-preferred alternatives, (rd[0] + ... + rd[i]).
 */
private double[] getRdPartialSums() {

if (null == rdPartialSums) {
rdPartialSums = new double[rd.length];
double sum = 0;
for (int i = 0; i < rd.length; i++)

Σελ. 108

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

rdPartialSums[i] = (sum += rd[i]);
}
return rdPartialSums;

}

/**
 * Calculates the Structural Indices of all most-preferred

alternative subsets with size of 2 or greater.
 * @return An array with the Structural Indices. Position i of the

array will contain the S.I. of the i+1 most-preferred alternatives.

 * The first position of the array will always contain 0

(S.I. is not defined for the subset that contains only the most preferred
alternative).

 */
private double[] getStructuralIndices() {

if (null == structuralIndices) {
double[] Rd = getRdPartialSums();
structuralIndices = new double[Rd.length];

for (int j = 1; j < structuralIndices.length; j++) {
double Mdkj_sum = 0;
for (int k = 0; k < j; k++) {

// Optimization: Do not sum anymore if
already reached infinity.

if (Mdkj_sum == Double.POSITIVE_INFINITY)
break;

double Mdkj = (Rd[k] / (k+1)) / ((Rd[j] -
Rd[k]) / (j - k)); // "+1" because k is zero-based index.

Mdkj_sum += Mdkj;
}
structuralIndices[j] = Mdkj_sum / (j * (j+1));

}
}
return structuralIndices;

}

/**
 * Performs the Expansion Operation of NAI and returns the cut-off

point (n*), which is the number of elements in the Preferred subset.
 * @return The number of elements in the Preferred subset.
 */
private int doExpansion() {

if (preferredCutOff < 0) {
// If we have only one alternative, make that

preferred (Expansion needs at least 2 alternatives).
if (rd.length <= 1)

preferredCutOff = rd.length;
else { // Perform Expansion.

double siMin = Double.POSITIVE_INFINITY;
int iMin = 0;
double[] sil = getStructuralIndices();
for (int i = 1; i < rd.length; i++) {

if (siMin > sil[i]) {
siMin = sil[i];
iMin = i;

}
}
preferredCutOff = iMin + 1;

}
}
return preferredCutOff;

}

/**

Σελ. 109

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

 * Calculates the preference ratios.

 * Assumes that Expansion has already run.
 * @return An array with the preference ratios (array[i] contains

Cd(i+1)).
 */
private double[] getPreferenceRatios() {

assert(preferredCutOff >= 0);
if (null == cd) {

cd = new double[preferredCutOff - 1];
double[] prefNorm = Arrays.copyOfRange(rd, 0,

preferredCutOff);
normalize(prefNorm);
// Calculate and store the ratios.
double sum = 0;
for (int i = prefNorm.length - 1, j = 1; i > 0; i--,

j++) { // j = count of items in the bottom (preferred) subset.
sum += prefNorm[i];
double cdv = (prefNorm[i-1] * j) / sum;
cd[i-1] = cdv;

}
}
return cd;

}

/**
 * Explicitly sets the preferred set cut-off point and makes sure

that contraction will use that point.
 * @param prefCutOff
 */
private void prepareContraction(int prefCutOff) {

preferredCutOff = prefCutOff;
this.cd = null;
mostPreferredCutOff = -1;

}

/**
 * Performs the Contraction Operation of NAI and returns the cut-off

point (i*).

 * Assumes that the Expansion Operation has already been run.
 * @return The number of elements in the Most Preferred subset.
 */
private int doContraction() {

assert(preferredCutOff >= 0);
if (mostPreferredCutOff < 0) {

// If we have only 1 alternative, make that the most
preferred one.

if (preferredCutOff <= 1)
mostPreferredCutOff = preferredCutOff;

else {
double[] pr = getPreferenceRatios();
// Find-out the maximum Preference Ratio that

determines the cut-off point for the most-preferred subset.
double max = Double.NEGATIVE_INFINITY;
int iMax = 0;
boolean indifferent = true;
for (int i = 0; i < pr.length; i++) {

if (pr[i] >= max) {
max = pr[i];
iMax = i;

}
if (indifferent && i > 0 && pr[i] !=

pr[i-1])
indifferent = false;

}

Σελ. 110

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

// If all preferences are indifferent, set the
cut-off point to the maximum.

mostPreferredCutOff = indifferent ?
preferredCutOff : iMax + 1;

}
}
return mostPreferredCutOff;

}

/**
 * @return The size of the most-preferred set of alternatives.
 */
public int getMostPreferred() {

doExpansion();
return doContraction();

}

/**
 * @return The size of the preferred set of alternatives (includes

the most-preferred set).
 */
public int getPreferred() {

return doExpansion();
}

public PrefClass getAlternativeClassification(Alternative a) {
int i = 0;
for (; i < usages.length; i++) {

if
(usages[i].getAlternative().getId().equals(a.getId())) {

break;
}

}
if (i >= preferredCutOff)

return PrefClass.LeastPreferred;
if (i >= mostPreferredCutOff)

return PrefClass.Preferred;
return PrefClass.MostPreferred;

}

/**
 * Returns the specified amount of most preferred alternatives.
 * @param count The number of alternatives to return.
 * @return A list with the alternatives.
 */
public List<Alternative> getTopAlternatives(int count) {

if (count < 0) count = 0;
if (count > usages.length) count = usages.length;
List<Alternative> top = new ArrayList<Alternative>(count);
for(int i = 0; i < count; i++)

top.add(usages[i].getAlternative());
return top;

}

/**
 * Exports the data calculated by the algorithm.
 * @return
 */
public Map<Alternative, DmAltData> export() {

HashMap<Alternative, DmAltData> m = new HashMap<Alternative,
DmAltData>();

for (int i = 0; i < usages.length; i++) {
DecisionMakerAlternativeUsage u = usages[i];
Alternative a = u.getAlternative();

Σελ. 111

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

DmAltData d = new DmAltData(Double.NaN, Double.NaN, i
+ 1);

if (null != structuralIndices && i <
structuralIndices.length)

d.structuralIndex = structuralIndices[i];
if (null != cd && i < cd.length)

d.preferenceRatio = cd[i];
m.put(a, d);

}
return m;

}

public void calculateProc2Step12Data() {
if (mostPreferredCutOff > 0) { // Contraction must have run

before this.
proc2Cd = new Proc2Data();
if (cd.length > mostPreferredCutOff) {

double[] bounds = getBounds(cd,
mostPreferredCutOff, cd.length);

double span = bounds[MAX] - bounds[MIN];
HashMap<Double, Integer> t2i = new

HashMap<Double, Integer>();
// Calculate all t that satisfy cd[i] = max -

t*(max - min).
for (int i = mostPreferredCutOff; i < cd.length;

i++) {
if (span > 0)

t2i.put((bounds[MAX] - cd[i]) /
span, i);

else
t2i.put(0.0, i);

}
// Now sort with ascending t.
proc2Cd.t = new double[t2i.size()];
proc2Cd.i = new int[t2i.size()];
int i = 0;
for (Double t : t2i.keySet())

proc2Cd.t[i++] = t;
Arrays.sort(proc2Cd.t);
// Construct the array of indices that

correspond to the threshold values.
for (i = 0; i < proc2Cd.t.length; i++)

proc2Cd.i[i] = t2i.get(proc2Cd.t[i]);
}
else {

proc2Cd.t = new double[0];
proc2Cd.i = new int[0];

}
}

}

public void calculateProc2Step34Data() {
if (preferredCutOff >= 0) { // Expansion must have run

before.
proc2Si = new Proc2Data();
if (structuralIndices.length > preferredCutOff) {

double[] bounds = getBounds(structuralIndices,
preferredCutOff, structuralIndices.length);

double span = bounds[MAX] - bounds[MIN];
HashMap<Double, Integer> t2i = new

HashMap<Double, Integer>();
// Calculate all t that satisfy SI[i] = min +

t*(max - min).
for (int i = preferredCutOff; i <

structuralIndices.length; i++) {

Σελ. 112

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

if (span > 0)
t2i.put((structuralIndices[i] -

bounds[MIN]) / span, i);
else

t2i.put(0.0, i);
}
// Now sort with ascending t.
proc2Si.t = new double[t2i.size()];
proc2Si.i = new int[t2i.size()];
int i = 0;
for (Double t : t2i.keySet())

proc2Si.t[i++] = t;
Arrays.sort(proc2Si.t);
// Construct the array of indices that

correspond to the threshold values.
for (i = 0; i < proc2Si.t.length; i++)

proc2Si.i[i] = t2i.get(proc2Si.t[i]);
}
else {

proc2Si.t = new double[0];
proc2Si.i = new int[0];

}
}

}
}

private Contest contest;
private List<Alternative> alternatives;
private HashMap<DecisionMaker, DecisionMakerContext> decisionMakers;
private List<DecisionMaker> dmList;

public NAI(Contest contest) { this(contest, null); }

/**
 * Creates a NAI instance.
 * @param contest
 * @param alternatives The list of alternatives to consider in this

algorithm.
 * By default, this will be the list of alternatives of the contest.
 */
public NAI(Contest contest, List<Alternative> alternatives) {

if (null == alternatives || alternatives.isEmpty())
alternatives = contest.getAlternativeList();

List<DecisionMaker> dml = contest.getDecisionMakerList();
HashMap<DecisionMaker, DecisionMakerContext> dmcl = new

HashMap<DecisionMaker, DecisionMakerContext>();
int i = 0;
for (DecisionMaker dm : dml)

dmcl.put(dm, new DecisionMakerContext(dm, alternatives));
this.decisionMakers = dmcl;
this.contest = contest;
this.alternatives = alternatives;
this.dmList = dml;

}

public Contest getContest() { return contest; }

public List<Alternative> getAlternatives() { return
Collections.unmodifiableList(alternatives); }

public List<DecisionMaker> getDecisionMakers() { return
Collections.unmodifiableList(dmList); }

/**

Σελ. 113

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

 * Returns the kind of the set into which an alternative has been
classified for the specified decision maker.

 * @param dm
 * @param a
 * @return
 */
public PrefClass getClassification(DecisionMaker dm, Alternative a) {

DecisionMakerContext ctx = decisionMakers.get(dm);
assert(null != ctx);
if (null == ctx) return PrefClass.LeastPreferred;
return ctx.getAlternativeClassification(a);

}

/**
 * Exports the algorithm state.
 * @return
 */
public Map<DecisionMaker, Map<Alternative, DmAltData>> export() {

Map<DecisionMaker, Map<Alternative, DmAltData>> m = new
HashMap<DecisionMaker, Map<Alternative, DmAltData>>();

for(Map.Entry<DecisionMaker, DecisionMakerContext> e :
decisionMakers.entrySet())

m.put(e.getKey(), e.getValue().export());
return m;

}

/**
 * Resets the algorithm state.
 */
private void reset() {

for (DecisionMakerContext ctx : decisionMakers.values())
ctx.reset();

}

/**
 * Runs the NAI algorithm.

 * If the intersection of the most-preferred sets is empty after the run,

"Procedure 1" is attempted.

 * If the intersection is still empty, then "Procedure 2" is applied.
 */
public void run() {

reset();
dmRun();

int altSize = alternatives.size();
if (altSize <= 1) return;

Set<Alternative> common = getCommonMostPreferred();
if (!common.isEmpty())

return;

// Apply procedure 1 until we either get a non-empty intersection or
we cannot apply it further.

while (common.isEmpty() && procedure1())
common = getCommonMostPreferred();

if (!common.isEmpty())
return;

// Apply procedure 2 to get a non-empty intersection.
reset();
dmRun();
procedure2();

}

/**

Σελ. 114

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

 * Runs the basic step of the algorithm on all decision makers.
 */
private void dmRun() {

for (DecisionMakerContext ctx : decisionMakers.values())
ctx.run(-1);

}

/**
 * Implements an iteration of "Procedure 1", which trims away the least-

preferred alternatives. This is done in hope that
 * the next run of NAI over the trimmed alternative sets will yield a non-

empty common most-preferred set.
 * @return False if there is no need to run another iteration (if there is

no more to trim from the alternative set).
 */
private boolean procedure1() {

boolean more = false;
for (DecisionMakerContext ctx : decisionMakers.values()) {

assert (ctx.preferredCutOff > -1);
int co = ctx.preferredCutOff;
ctx.run(ctx.preferredCutOff);
if (ctx.preferredCutOff != co)

more = true;
}
return more;

}

/**
 * Implements "Procedure 2".
 */
private void procedure2() {

// If the preferred sets of all decision makers have any common
items then we can apply steps 1 and 2,

// otherwise we need to apply steps 3 and 4 first.
Set<Alternative> comPref = getCommonPreferred();
double[] thresholds;
if (comPref.isEmpty()) { // Apply steps 3 and 4.

thresholds = null; // This will hold all the values of "t"
that are worth trying.

for(DecisionMakerContext dm : decisionMakers.values()) {
dm.calculateProc2Step34Data();
thresholds = merge(thresholds, dm.proc2Si.t);

}
// For each threshold value "t"...
for(double t : thresholds) {

// Try expanding the preferred set of each decision
maker until we get any item in their intersection.

for (DecisionMakerContext dm :
decisionMakers.values()) {

// The upper structural index for this decision
maker would be:

// siUpper = siMin + t * (siMax - siMin);
// We need to find the item with the maximum SI

below or at this limit, which is equivalent to locating the
// item with the "t" value that is nearest from

below to the current "t" value.
double[] tvals = dm.proc2Si.t;
int[] indices = dm.proc2Si.i;
int idx = 0;
for (int i = 0; i < tvals.length && t >=

tvals[i]; i++)
idx = indices[i];

// Now use the item index as the new preferred
set cut-off point.

dm.prepareContraction(idx);

Σελ. 115

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

dm.doContraction();
}
// Find the intersection
comPref = getCommonPreferred();
if (!comPref.isEmpty())

break; // We found the minimum t value that
allows at least one item in the intersection.

}
}

// Apply steps 1 and 2 (extend the most-preferred sets until we find
common items in their intersection).

comPref = getCommonMostPreferred();
if (comPref.isEmpty()) {

thresholds = null;
for (DecisionMakerContext dm : decisionMakers.values()) {

dm.calculateProc2Step12Data();
thresholds = merge(thresholds, dm.proc2Cd.t);

}
// For each threshold value "t"...
for (double t : thresholds) {

// Try expanding the most-preferred set of each
decision maker until we get any item in their intersection.

for (DecisionMakerContext dm :
decisionMakers.values()) {

// The lower preference ratio for this decision
maker would be:

// cdLower = cdMin - t * (cdMax - cdMin);
// We need to find the item with the minimum Cd

above or at this limit, which is equivalent to locating the
// item with the "t" value that is nearest from

below to the current "t" value.
double[] tvals = dm.proc2Cd.t;
int[] indices = dm.proc2Cd.i;
int idx = 0;
for (int i = 0; i < tvals.length && t >=

tvals[i]; i++)
idx = indices[i];

// Now use the item index as the new preferred
set cut-off point.

dm.mostPreferredCutOff = idx;
}
// Find the intersection
comPref = getCommonMostPreferred();
if (!comPref.isEmpty())

break; // We found the minimum t value that
allows at least one item in the intersection.

}
}

}

public List<Alternative> getMostPreferredOf(DecisionMaker dm) {
DecisionMakerContext ctx = decisionMakers.get(dm);
if (null != ctx)

return ctx.getTopAlternatives(ctx.getMostPreferred());
return Collections.emptyList();

}

public List<Alternative> getPreferredOf(DecisionMaker dm) {
DecisionMakerContext ctx = decisionMakers.get(dm);
if (null != ctx)

return ctx.getTopAlternatives(ctx.getPreferred());
return Collections.emptyList();

}

Σελ. 116

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

/**
 * Returns the intersection of the most-preferred sets of all decision

makers.
 * @return A set with the common alternatives.
 */
public Set<Alternative> getCommonMostPreferred() {

HashSet<Alternative> common = new HashSet<Alternative>();
boolean init = true;
for (DecisionMakerContext ctx : decisionMakers.values()) {

List<Alternative> prefs =
ctx.getTopAlternatives(ctx.getMostPreferred());

if (init) {
common.addAll(prefs);
init = false;

}
else common.retainAll(prefs);

}
return common;

}

/**
 * Returns the intersection of the preferred sets of all decision makers.
 * @return A Set with the common alternatives.
 */
public Set<Alternative> getCommonPreferred() {

HashSet<Alternative> common = new HashSet<Alternative>();
boolean init = true;
for (DecisionMakerContext ctx : decisionMakers.values()) {

List<Alternative> prefs =
ctx.getTopAlternatives(ctx.getPreferred());

if (init) {
common.addAll(prefs);
init = false;

}
else common.retainAll(prefs);

}
return common;

}

private static void normalize(double[] array) {
double sum = 0;
for (int i = 0; i < array.length; i++)

sum += array[i];
assert(sum > 0);

for (int i = 0; i < array.length; i++)
array[i] /= sum;

}

/**
 * Finds the minimum and maximum in an array of numbers.
 * @param array
 * @param start
 * @param end
 * @return An array, {minimum, maximum}.
 */
private static double[] getBounds(double[] array, int start, int end) {

double min, max;
if (start >= end) {

min = max = 0;
}
else {

min = Double.POSITIVE_INFINITY;
max = Double.NEGATIVE_INFINITY;

Σελ. 117

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

for (int i = start; i < end; i++) {
if (array[i] < min) min = array[i];
if (array[i] > max) max = array[i];

}
}
return new double[] {min, max};

}

private static double[] merge(double[] a1, double[] a2) {
if (a1 == null && a2 == null) return new double[0];
if (a1 == null) return a2;
if (a2 == null) return a1;

double[] m = new double[a1.length + a2.length];
int i = 0;
int j = 0;
int k = 0;
while (i < a1.length && j < a2.length) {

if (a1[i] < a2[j] || Double.isNaN(a1[i]))
m[k] = a1[i++];

else if (a1[i] == a2[j]) {
m[k] = a1[i++];
j++;

}
else {

m[k] = a2[j++];
}
k++;

}
while (i < a1.length)

m[k++] = a1[i++];
while (j < a2.length)

m[k++] = a2[j++];
if (k < m.length)

m = Arrays.copyOfRange(m, 0, k);
return m;

}
}

Σελ. 118

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

Argumentation Protocol (class com.gorbas.negotiation.amgoud.*)

act.java

package com.gorbas.negotiation.amgoud;

public enum Act {
Offer,
Challenge,
Argue,
Withdraw,
Accept,
Refuse,
SayNothing;

/**
 *
 * @param Returns the possible response acts for a received act.
 * @return The possible response acts, according to the protocol.
 */
public static Act[] getReplies(Act a) {

if (a == Offer) return new Act[] {Accept, Refuse, Challenge};
if (a == Challenge) return new Act[] {Argue};
if (a == Argue) return new Act[] {Accept, Challenge, Argue};
if (a == Accept || a == Refuse) return new Act[] {Accept, Challenge,

Argue, Withdraw};
// a == WithDraw
return new Act[0];

}
}

Σελ. 119

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

agent.java

package com.gorbas.negotiation.amgoud;

import java.util.*;

/**
 * Represents a negotiation partaker.
 * @author gorbas
 */
public abstract class Agent {

protected Protocol negProtocol;
private LinkedList<Move> inbox = new LinkedList<Move>(); // The incoming

moves that need replies.
private boolean initiator;

// Commitment store.

/**
 * The offers accepted or proposed by this agent.
 */
protected Set<Offer> acceptedOffers = new HashSet<Offer>();
protected Set<Offer> rejectedOffers = new HashSet<Offer>();

protected Set<Argument> usedArguments = new HashSet<Argument>();
protected Set<Move.Challengable> usedChallenges = new

HashSet<Move.Challengable>();
protected Set<Argument> acquiredBeliefs = new HashSet<Argument>(); // The

acceptable arguments we added to the agent's knowledge base.

/**
 * Creates an agent.
 * @param p The negotiation protocol.
 */
public Agent(Protocol p) {

this.negProtocol = p;
}

/**
 * Returns the accepted offers. We expect only one offer at most per round.
 * @return
 */
public Set<Offer> getAcceptedOffers() { return

Collections.unmodifiableSet(acceptedOffers); }

/**
 * Returns all arguments in favor of an offer.
 * @param a The agent whose goals are evaluated.
 * If it is this agent instance, arguments that satisfy goals in Gi will

be returned.
 * For other agents, GOi,j will be used. (i = this agent, j = the other

agents).
 * @param o The offer to argue about.
 * @param against False: Arguments in favor of offer will be returned.

 * True: Arguments against the offer will be returned.
 * @return The list of all arguments for the offer.
 */
protected abstract List<? extends Argument> getArgumentsForOffer(Agent a,

Offer o, boolean against);

/**
 * Tries to create an acceptable argument for a move.
 * @param challenger The agent that we would like to persuade about our

move.

Σελ. 120

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

 * @param m The move that was challenged.
 * @param against True if arguments against the move are required.
 * @return The argument or null if an acceptable argument cannot be found.
 */
protected abstract Argument findAcceptableArgument(Agent challenger,

Move.Challengable m, boolean against);

/**
 * Decides whether an argument is acceptable by this agent.
 * @param a
 * @return
 */
protected abstract boolean isAcceptable(Argument a);

/**
 * Detects strong (weakness = 0) CON arguments against an offer.
 * @param o
 * @return True if there is at least one strong argument against an offer.
 */
private boolean existsStrongArgumentAgainst(Offer o) {

for (Agent a : negProtocol.getAgents()) {
for (Argument arg : getArgumentsForOffer(a, o, true)) {

if (arg.getWeakness() == 0)
return true;

}
}
return false;

}

/**
 * Chooses the non-discussed offer with the strongest arguments with

respect to the goals of this agent,
 * and without strong arguments (weakness = 0)
 * against the offer with respect to the goals of the other agents.
 * @return The best offer or null, if none satisfies the criteria.
 */
private Offer pickGoodOffer() {

Argument a = null;
Offer mostPreferred = null;
for (Offer o : negProtocol.getOffers()) {

if (existsStrongArgumentAgainst(o))
continue;

// Choose the offer with the most preferred (most powerful)
PRO argument in favor of the offer.

if (null == mostPreferred || negProtocol.isAPreferredOverB(o,
mostPreferred, this, false))

mostPreferred = o;
}
return mostPreferred;

}

private boolean isAcceptable(Offer x) {
List<? extends Offer> offers = negProtocol.getOffers();
if (!offers.contains(x))

return false;
// Find the most preferred offer (has the strongest argument in

favor of it).
Offer mp = x;
Argument mpa = null;
for (Offer o : offers) {

if (negProtocol.isAPreferredOverB(o, mp, this, false))
mp = o;

}
return x.equals(mp);

}

Σελ. 121

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

/*
 * Notifications from the protocol manager.
 */

void clearCommitmentStore() {
acceptedOffers.clear();
rejectedOffers.clear();
usedArguments.clear();
usedChallenges.clear();

}

void dialogueEnded() {
inbox.clear();

}

void sendMove(Move incoming) {
this.inbox.add(incoming);
Agent speaker = incoming.getSpeaker();
switch (incoming.getAct()) {

case Argue: // Postcondition: Accept all acceptable
arguments.

{
Argument a =

((Move.Argue)incoming).getArgument();
if (!acquiredBeliefs.contains(a) &&

isAcceptable(a))
acquiredBeliefs.add(a);

}
break;

}
}

/**
 * @param offer
 * @return True if the offer has been rejected by this agent.
 */
public boolean hasRejected(Offer offer) {

return rejectedOffers.contains(offer);
}

/**
 * @param offer
 * @return True if the offer has been accepted by this agent.
 */
public boolean hasAccepted(Offer offer) {

return acceptedOffers.contains(offer);
}

/*
 * Agent actions.
 */

/**
 * Attempts to offer the most-preferred, non-discussed alternative.
 */
private void offer() {

Offer mp = pickGoodOffer();
if (null == mp) // No appropriate offer found, just withdraw.

negProtocol.withDraw(this);
else {

negProtocol.offer(this, mp);
acceptedOffers.add(mp);

}
}

Σελ. 122

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

/**
 * Argues against another agent's move.
 * Move m
 * @return True if there was an argument.
 */
private boolean tryArgue(Move m) {

Move.Challengable cm = null;
Agent hearer = m.getSpeaker(); // We respond to the agent that

challenges us.
Agent argumentSource; // The agent whose arguments we must consult.
boolean against = false;
Argument acceptable = null;
switch(m.getAct()) {

case Accept:
cm =

((Move.Accept)m).getAcceptedMoves().iterator().next();
if (this.equals(cm.getSpeaker()))

return false; // We do not argue against sb that
accepted our move.

against = true;
argumentSource = hearer;
break;

case Refuse:
cm = (Move.Refuse)m;
against = true; // Against the refusal, for our offer.
argumentSource = hearer;
break;

case Argue:
cm = ((Move.Argue)m).getChallenged();
Argument otherArg = ((Move.Argue)m).getArgument();
against = otherArg.isPro() ^ cm.getAct() ==

Act.Refuse; // We need arguments of the opposite kind of the opponent argument.
argumentSource = otherArg.getSubject();
break;

case Challenge:
cm =

((Move.Challenge)m).getChallenged().iterator().next();
if (!cm.getSpeaker().equals(this))

return false; // Do not answer challenges for
others.

against = false;
argumentSource = this; // We need to defend our move.
if (cm.getAct() == Act.Refuse) {

// When defending a refusal we should give one
of the arguments we based the refusal on.

List<? extends Argument> refArgs =
getArgumentsForOffer(this, ((Move.Refuse)cm).getOffer(), true);

acceptable =
Argument.findMostPreferred(refArgs);

}
break;

default: return false;
}
if (null == acceptable)

acceptable = findAcceptableArgument(argumentSource, cm,
against);

boolean argued = null != acceptable;
if (argued) {

negProtocol.argue(this, Collections.singletonList(hearer),
acceptable, cm);

usedArguments.add(acceptable);
}
return argued;

Σελ. 123

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

}

/**
 * Allows the Agent to initiate a dialog by making the first offer.
 */
public void becomeInitiator() {

initiator = true;
}

/**
 * Allows the Agent to perform its turn.
 */
public void doTurn() {

// The first movement of each round (dialogue) is to make an offer.
if (initiator) {

initiator = false;
offer();
return;

}

boolean saidSomething = false;
for (Move m : inbox) {

// Try arguing in response to challenges first, otherwise try
to accept/refuse and finally, challenge.

saidSomething |=
tryArgue(m) ||
tryAccept(m) ||
tryRefuse(m) ||
tryChallenge(m);

}
inbox.clear();

if (!saidSomething) {
// Did not respond. Say nothing.
negProtocol.sayNothing(this);

}
}

private void accept(Offer o) {
acceptedOffers.add(o);
rejectedOffers.remove(o);

}

private void reject(Offer o) {
acceptedOffers.remove(o);
rejectedOffers.add(o);

}

/**
 * Attempts to accept an offer or argument.
 * @param m The move to try accepting.
 * @return true if accepted.
 */
private boolean tryAccept(Move m) {

if (m instanceof Move.Challengable) { // Challengable moves are also
those that can be accepted.

switch(m.getAct()) {
case Offer: // Preconditions: The offer is the most

pessimistically preferred decision
{

Offer o = ((Move.OfferMove)m).getOffer();
if (isAcceptable(o)) {

if (acceptedOffers.contains(o))

negProtocol.sayNothing(this); // Already accepted.

Σελ. 124

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

else {
accept(o);
negProtocol.accept(this,

(Move.OfferMove)m);
}
return true;

}
}
break;

case Argue: // Preconditions: The argument is
acceptable.

{
List<Move.Argue> accArgs = new

ArrayList<Move.Argue>();
Argument a =

((Move.Argue)m).getArgument();
if (isAcceptable(a)) {

usedArguments.add(a);
accArgs.add((Move.Argue)m);
// Depending on the argument we

accept, implicitly accept or reject the offer.
if

(((Move.Argue)m).getArgument().isCon())

reject(((Move.Argue)m).getOffer());
else

accept(((Move.Argue)m).getOffer());
}
if (!accArgs.isEmpty()) {

negProtocol.accept(this, accArgs);
return true;

}
}
break;

}
}
return false;

}

/**
 * Attempts to refuse an offer.
 * @param m The offer move to refuse.
 * @return true if there was an offer and this agent refused.
 */
private boolean tryRefuse(Move m) {

if (m instanceof Move.OfferMove) {
Offer x = ((Move.OfferMove)m).getOffer();
// Precondition: There is at least one argument against the

offer.
List<? extends Argument> args = getArgumentsForOffer(this, x,

true);
if (args.isEmpty())

return false;
// Refuse the offer.
reject(x);
negProtocol.refuse(this, x, m.getSpeaker());
return true;

}
return false;

}

/**
 * Decides whether a move should be challenged.

Σελ. 125

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

 * @param challenged The list of challenged moves. The moves that should
be challenged

 * are added to this list.
 * @param m The move to check.
 */
private void checkChallenge(Set<Move.Challengable> challenged,

Move.Challengable m) {
if (usedChallenges.contains(m) || challenged.contains(m))

return; // Already challenged this one.
if (m.getSpeaker().equals(this))

return; // Do not challenge own moves.
switch (m.getAct()) {

case Offer:
{

Offer x = ((Move.OfferMove)m).getOffer();
// Precondition: There is another non-rejected

offer that is pessimistically
// preferred to this one.
for (Offer o : negProtocol.getOffers()) {

if (!o.equals(x) &&
negProtocol.isAPreferredOverB(o, x, this, false)) {

challenged.add((Move.OfferMove)m);
break;

}
}

}
break;

// Other moves are challengable without preconditions.
case Argue:

{
Move.Challengable mm =

((Move.Argue)m).getChallenged();
checkChallenge(challenged, mm);

}
break;

case Accept:
{

// See if there is any accepted move that
justifies challenging the accept.

Set<Move.Challengable> acm = new
HashSet<Move.Challengable>();

for (Move.Challengable mm :
((Move.Accept)m).getAcceptedMoves())

checkChallenge(acm, mm);
if (!acm.isEmpty()) // Should challenge the

accept.
challenged.add((Move.Accept)m);

}
break;

case Refuse:
{

// Challenge a refuse, but not if we have
already refused the same offer ourselves.

if (!hasRejected(((Move.Refuse)m).getOffer()))
challenged.add((Move.Challengable)m);

}
break;

}
}

/**
 * Attempts to challenge the challengable incoming moves.
 * @param m The move to challenge.
 * @return True if this agent placed a challenge.
 */

Σελ. 126

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

private boolean tryChallenge(Move m) {
Set<Move.Challengable> chMoves = new HashSet<Move.Challengable>();
if (m instanceof Move.Challengable)

checkChallenge(chMoves, (Move.Challengable)m);

if (!chMoves.isEmpty()) {
usedChallenges.addAll(chMoves);
negProtocol.challenge(this, chMoves);
return true;

}
return false;

}
}

Σελ. 127

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

argument.java

package com.gorbas.negotiation.amgoud;

import java.util.Collection;

/**
 * Represents a negotiation argument.
 * @author gorbas
 */
public abstract class Argument {

/**
 * Returns the agent to whom this argument refers.
 * @return
 */
public abstract Agent getSubject();
/**
 * @return True if this is an argument in favor of some decision (PRO

argument).
 */
public abstract boolean isPro();

/**
 * @return True if this is an argument against one decision (CON argument).
 */
public final boolean isCon() { return !isPro(); }

public abstract double getLevel();
public abstract double getWeight();
/**
 * Returns m(v), with m being the order-reversing map of the scale of

value v.

 * The default implementation is just m(v) = 1 - v, which satisfies the

conditions m(0) = 1, m(1) = 0 and v1 > v2 <=> m(v1) < m(v2).
 * @param v The value to reverse, assumed to be in [0,1].
 * @return The corresponding value to v in the reversed scale.
 */
protected double m(double v) { return 1.0 - v; }

/**
 * Gets the strength of the argument (used with PRO arguments).
 * @return The argument strength (PRO argument) or the reversed argument

weakness (CON argument),
 */
public final double getStrength() {

double l = getLevel(), w = getWeight();
boolean pro = isPro();
return pro ? Math.min(l, w) : m(Math.max(l, w));

}

/**
 * Gets the weakness of the argument (used with CON arguments).
 * @return The argument weakness (CON argument) or the reversed argument

strength (PRO argument),
 */
public final double getWeakness() {

double l = getLevel(), w = getWeight();
boolean pro = isPro();
return pro ? m(Math.min(l, w)) : Math.max(l, w);

}

/**
 * Decides whether this argument is preferred to an other argument.
 * @param other
 * @return True if this argument is the preferred one, false otherwise.

Σελ. 128

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

 */
public final boolean isPreferredTo(Argument other) {

boolean isPro = isPro();
if (isPro() != other.isPro())

return false; // Cannot compare PRO with CON arguments.

return isPro ? Math.min(getLevel(), getWeight()) >=
Math.min(other.getLevel(), other.getWeight())

: Math.max(getLevel(), getWeight()) >=
Math.max(other.getLevel(), other.getWeight());

}

/**
 * Finds the most preferred argument of a collection of arguments.
 * @param args The arguments.
 * @return The most-preferred argument or null if the collection was empty.
 */
public static Argument findMostPreferred(Collection<? extends Argument>

args) {
Argument mp = null;
// Successively compare all arguments to the current most preferred

and update it if needed.
for (Argument a : args) {

if (null == mp || a.isPreferredTo(mp))
mp = a;

}
return mp;

}
}

Σελ. 129

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

dialogue.java

package com.gorbas.negotiation.amgoud;

import java.util.Collections;
import java.util.List;
import java.util.ArrayList;

/**
 * A finite sequence of moves of the negotiation protocol.
 * @author gorbas
 */
public class Dialogue {

List<Move> moves = new ArrayList<Move>();
Offer result;

public Dialogue(List<Move> moves, Offer result) {
this.moves = moves;
this.result = result;

}

public List<Move> getMoves() { return Collections.unmodifiableList(moves);
}

/**
 * Returns the dialogue result.
 * @return The offer all agents agreed upon. Null if the negotiation

failed.
 */
public Offer getResult() {

return result;
}

/**
 * @return True if the the participants have reached agreement.
 */
public boolean isSuccessful() {

return result != null;
}

}

Σελ. 130

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

move.java

package com.gorbas.negotiation.amgoud;

import java.util.*;

/**
 * Represents a move, which is a negotiation act by a speaker that is addressed
to one or more hearers.

 * The speaker cannot be a hearer.
 * @author gorbas
 */
public abstract class Move {

protected Agent speaker;
protected List<Agent> hearers;
protected Act act;
protected int id;

public static Set<Agent> getSpeakers(Collection<? extends Move> ml) {
HashSet<Agent> agents = new HashSet<Agent>();
for (Move m : ml)

agents.add(m.getSpeaker());
return agents;

}

public Agent getSpeaker() {
return speaker;

}

public List<Agent> getHearers() {
return Collections.unmodifiableList(hearers);

}

public Act getAct() {
return act;

}

public int getId() { return id; }

@Override
public boolean equals(Object obj) {

return this == obj || (obj instanceof Move && ((Move)obj).id ==
this.id);

}

@Override
public int hashCode() {

return new Integer(id).hashCode();
}

protected Move(List<Agent> hearers, Agent speaker, Act act, int id) {
this.hearers = hearers;
this.speaker = speaker;
this.act = act;
this.id = id;

}

protected String strHeader() {
return "#" + id + " Agent " + speaker + " to {" +

strAgentList(hearers) + "}: ";
}

protected String strBody() {
return "Move " + id;

}

Σελ. 131

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

private static String strAgentList(Collection<? extends Agent> agents) {
if (agents == null || agents.isEmpty())

return "";
StringBuilder sb = new StringBuilder();
for (Agent a : agents)

sb.append(a).append(", ");
sb.delete(sb.length() - 2, sb.length());
return sb.toString();

}

private static String strList(Collection<? extends Move> moves) {
if (moves.size() > 1) {

StringBuilder sb = new StringBuilder();
sb.append("moves ");
for(Move m : moves)

sb.append(m.id).append(", ");
sb.delete(sb.length() - 2, sb.length());
return sb.toString();

}
else if (moves.size() == 1) {

Move m = moves.iterator().next();
return "#" + m.id + ":" + m.strBody();

}
return "";

}

@Override
public String toString() {

return strHeader() + strBody();
}

public static class Challengable extends Move {
protected Offer offer;
protected boolean isAgainst;

protected Challengable(List<Agent> hearers, Agent speaker, Act act,
Offer offer, int id) {

super(hearers, speaker, act, id);
this.offer = offer;

}

/**
 * Returns the offer discussed in this move.
 * @return
 */
public Offer getOffer() { return offer; }

public boolean isAgainstOffer() {
return isAgainst;

}
}

/**
 * Represents an offer.
 */
public static class OfferMove extends Challengable {

public OfferMove(List<Agent> hearers, Agent speaker, Offer offer,
int id) {

super(hearers, speaker, Act.Offer, offer, id);
}

@Override
public String strBody() {

return "Offer(" + offer + ")";

Σελ. 132

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

}

@Override
public int hashCode() {

return super.offer == null ? 0 : super.offer.hashCode();
}

@Override
public boolean equals(Object obj) {

if (this == obj) return true;
if (!(obj instanceof OfferMove)) return false;
OfferMove other = (OfferMove)obj;
if (other == null) return false;
if (offer != null && offer.equals(other.offer) || offer ==

other.offer)
return true;

return false;
}

}

/**
 * Represents an acceptance.
 */
public static class Accept extends Challengable {

List<Challengable> acceptedMoves;

public Accept(Agent hearer, Agent speaker, Challengable move, int
id) {

super(Collections.singletonList(hearer), speaker, Act.Accept,
move.getOffer(), id);

acceptedMoves = Collections.singletonList(move);
isAgainst = move.isAgainstOffer();

}

Accept(Set<Agent> hearers, Agent speaker, Collection<Argue> moves,
int id) {

super(new ArrayList<Agent>(hearers), speaker, Act.Accept,
null, id);

acceptedMoves = new ArrayList<Challengable>(moves);
}

public List<Challengable> getAcceptedMoves() { return
Collections.unmodifiableList(acceptedMoves); }

@Override
protected String strBody() {

return "Accept(" + Move.strList(acceptedMoves) + ")";
}

}

/**
 * Represents an offer refusal.
 */
public static class Refuse extends Challengable {

public Refuse(Agent hearer, Agent speaker, Offer offer, int id) {
super(Collections.singletonList(hearer), speaker, Act.Refuse,

offer, id);
isAgainst = true;

}

@Override
public String strBody() {

return "Refuse(" + offer + ")";
}

}

Σελ. 133

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

/**
 * Represents an argument move.
 */
public static class Argue extends Challengable {

private Argument argument;
private Challengable challenged;

public Argue(List<Agent> hearers, Agent speaker, Challengable m,
Argument arg, int id) {

super(hearers, speaker, Act.Argue, m.getOffer(), id);
this.argument = arg;
this.challenged = m;
this.isAgainst = argument.isCon();

}

public Challengable getChallenged() { return challenged; }

/**
 * Returns the argument of this move.
 */
public Argument getArgument() { return argument; }

@Override
public String strBody() {

return "Argue for move " + challenged.id + ": " + argument;
}

}

public static class Withdraw extends Move {
public Withdraw(List<Agent> hearers, Agent speaker, int id) {

super(hearers, speaker, Act.Withdraw, id);
}

@Override
public String strBody() {

return "Withdraw";
}

}

public static class Challenge extends Move {
private Set<Challengable> challenged;

public Challenge(Agent speaker, Set<Challengable> challenged, int
id) {

super(new ArrayList<Agent>(Move.getSpeakers(challenged)),
speaker, Act.Challenge, id);

this.challenged = new HashSet<Challengable>(challenged);
}

public Set<Challengable> getChallenged() { return
Collections.unmodifiableSet(challenged); }

@Override
public String strBody() {

return "Challenge(" + Move.strList(challenged) + ")";
}

}

public static class SayNothing extends Move {
public SayNothing(Agent speaker, int id) {

super(Collections.<Agent>emptyList(), speaker,
Act.SayNothing, id);

}

Σελ. 134

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

@Override
public String strBody() {

return "Say Nothing";
}

}
}

Σελ. 135

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

protoimpl.java

package com.gorbas.negotiation.amgoud.impl;

import com.gorbas.model.*;
import com.gorbas.negotiation.amgoud.Move.Challengable;
import com.gorbas.negotiation.amgoud.*;
import java.util.*;

/**
 * Negotiation protocol implementation adjusted to work with our UTASTAR-
generated model.
 * @author gorbas
 */
public class ProtoImpl extends Protocol {

/**
 * Initializes the Offers list with the given alternatives.
 * @param alternatives
 */
public void setAlternatives(Collection<Alternative> alternatives) {

offers = new ArrayList<DmOffer>(alternatives.size());
for (Alternative alt : alternatives)

offers.add(new DmOffer(alt));
}

/**
 * Decision Maker as Agent.
 */
static class DmAgent extends Agent {

DecisionMaker dm;
Contest contest;

public DmAgent(ProtoImpl p, DecisionMaker dm) {
super(p);
this.dm = dm;
contest = p.contest;

}

@Override
public boolean equals(Object obj) {

if (obj instanceof DmAgent)
return dm.equals(((DmAgent)obj).dm);

return false;
}

@Override
public int hashCode() {

return dm.hashCode();
}

@Override
public String toString() {

return dm.getName() + " (" + dm.getId() + ")";
}

public static List<DmAgent> fill(ProtoImpl p, List<DecisionMaker>
dml) {

List<DmAgent> l = new ArrayList<DmAgent>(dml.size());
for (DecisionMaker dm : dml)

l.add(new DmAgent(p, dm));
return l;

}

@Override

Σελ. 136

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

protected List<DmArgument> getArgumentsForOffer(Agent a, Offer o,
boolean against) {

List<DmArgument> args = new ArrayList<DmArgument>();
List<Criterion> goals = contest.getCriterionList();
for (Argument arg : acquiredBeliefs) {

if (arg.isCon() == against &&
arg.getSubject().equals(a))

args.add((DmArgument)arg);
}

Alternative alt = ((DmOffer)o).getAlternative();
ProtoImpl p = (ProtoImpl)negProtocol;

for (Criterion c : goals) {
DmArgument arg = p.new DmArgument(contest, (DmAgent)a,

alt, c);
if (arg.against == against && arg.getStrength() > 0)

args.add(arg);
}
return args;

}

/**
 * Finds an acceptable argument for/against all of the accepted

moves.
 * @param challenger The agent that needs to be persuaded.
 * @param acceptedMoves The accepted moves.
 * @param against True if arguments against the moves are required.
 * @return
 */
private Argument findAcceptableArgument(Agent challenger,

Collection<Challengable> acceptedMoves, boolean against) {
Argument a = null;
for (Challengable am : acceptedMoves) {

Argument ama = findAcceptableArgument(challenger, am,
against);

if (ama == null) continue;
if (a == null || ama.isPreferredTo(a))

a = ama;
}
return a;

}

@Override
protected Argument findAcceptableArgument(Agent challenger,

Challengable m, boolean against) {
// If we've been challenged for something we accepted

earlier, then present an argument in favor of that something.
if (m.getAct() == Act.Accept)

return findAcceptableArgument(challenger,
((Move.Accept)m).getAcceptedMoves(), against);

DmOffer offer = (DmOffer)m.getOffer();
if (m.getAct() == Act.Refuse)

against = !against;

List<DmArgument> args = getArgumentsForOffer(challenger,
offer, against);

List<DmArgument> oppArgs = getArgumentsForOffer(challenger,
offer, !against);

args.removeAll(usedArguments);

if (args.isEmpty()) // We are out of arguments.
return null;

Σελ. 137

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

List<DmArgument> acceptable = new
ArrayList<DmArgument>(args.size());

for (DmArgument arg : args) {
// We want acceptable arguments that do not already

exist in the set of used arguments.
if (arg.isAcceptable(oppArgs))

acceptable.add(arg);
}
// Return the most preferred among the acceptable arguments.
return acceptable.isEmpty() ? null :

Argument.findMostPreferred(args);
}

@Override
protected boolean isAcceptable(Argument a) {

List<DmArgument> oppositeArgs =
getArgumentsForOffer(a.getSubject(), new DmOffer(((DmArgument)a).alternative),
a.isPro());

return ((DmArgument)a).isAcceptable(oppositeArgs);
}

}

/**
 * Alternative as Offer.
 */
public static class DmOffer implements Offer {

private Alternative alternative;

public DmOffer(Alternative a) {
this.alternative = a;

}

public Alternative getAlternative() { return alternative; }

@Override
public boolean equals(Object obj) {

return (obj instanceof DmOffer &&
alternative.equals(((DmOffer)obj).alternative));

}

@Override
public int hashCode() {

return alternative.hashCode();
}

@Override
public String toString() {

return alternative.getDescription() + " (" +
alternative.getId() + ")";

}
}

/**
 * Negotiation arguments based on UTASTAR output.
 */
class DmArgument extends Argument {

Alternative alternative; // The alternative which this argument
refers to.

Criterion goal;
DecisionMaker decisionMaker;
DmAgent dmAgent;
double avgCriterionUtility; // Criterion utility average over all

alternatives.
double avgAlternativeUsage; // Average alternative usage over all

decision makers.

Σελ. 138

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

double critUtility; // Criterion utility for the alternative of the
argument.

double altUsage; // Alternative usage for the criterion (goal) of
the argument.

Double weight;
boolean against;

public DmArgument(Contest contest, DmAgent dm, Alternative alt,
Criterion goal) {

this.alternative = alt;
this.goal = goal;
this.dmAgent = dm;
this.decisionMaker = dm.dm;
this.avgCriterionUtility =

ProtoImpl.this.getAvgCriterionUtility(goal);
this.avgAlternativeUsage =

ProtoImpl.this.getAvgAlternativeUsage(alt);
DmAlternativeCriterionUtilityValue cuv =

DmAlternativeCriterionUtilityValue.retrieveByAlternativeDecisionMakerCriterion(al
t, decisionMaker, goal);

this.critUtility = cuv != null ? cuv.getUtilityValue() : 0.0;
DecisionMakerAlternativeUsage dmu =

DecisionMakerAlternativeUsage.retrieve(decisionMaker, alt);
this.altUsage = dmu != null ? dmu.getUsageValue() : 0.0;
this.against = critUtility < avgCriterionUtility; //altUsage

< avgAlternativeUsage;
}

/*
 * Methods needed for hashset inclusion tests.
 */

@Override
public boolean equals(Object obj) {

if (obj instanceof DmArgument) {
DmArgument o = (DmArgument)obj;
return against == o.against

&& alternative.equals(o.alternative)
&& goal.equals(o.goal)
&& decisionMaker.equals(o.decisionMaker);

}
return false;

}

@Override
public int hashCode() {

return (against ? 1 : 0) ^ alternative.hashCode() ^
goal.hashCode() ^ decisionMaker.hashCode();

}

@Override
public String toString() {

return "[weight=" + getWeight() + ", CU=" + critUtility + ",
avgCU=" + avgCriterionUtility + "] "

+ "According to " + decisionMaker.getName() + " (" +
decisionMaker.getId() + ")"

+ ", alternative " + alternative.getDescription() + "
(" + alternative.getId() + ")"

+ " is " + (isPro() ? "in favor of" : "against") + "
goal " + goal.getName() + " (" + goal.getId() + ")";

}

/**
 * Decides whether this argument is acceptable when compared to a

set of arguments of the opposite kind.

Σελ. 139

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

 * @param otherArguments
 * @return True if this argument overweights all other arguments.
 */
public boolean isAcceptable(Collection<? extends Argument>

otherArguments) {
double w = this.getWeight();
for (Argument oa : otherArguments)

if (w < oa.getWeight())
return false;

return true;
}

@Override
public Agent getSubject() {

return dmAgent;
}

@Override
public boolean isPro() {

return !against;
}

@Override
public double getLevel() {

return against ? 0.0 : 1.0; // We are certain about all
arguments.

}

@Override
public double getWeight() {

// If the argument is against a goal just reverse the weight.
if (null == weight) {

weight = against ? m(critUtility) : critUtility;
}
return weight;

}
}

private Contest contest;
private List<DmOffer> offers;
private Map<Alternative, Double> avgAltUsages = null;
private Map<Criterion, Double> avgCritUtils = null;
private Map<DecisionMaker, Map<Criterion, Double>> avgCritUtilsOverAlt =

null;
private Map<DecisionMaker, Map<Alternative, Double>> avgCritUtilsOverCrit

= null;

/**
 * Returns the average alternative usage over all decision makers.
 * @param alt
 * @return
 */
private double getAvgAlternativeUsage(Alternative alt) {

if (null == avgAltUsages) {
avgAltUsages = new HashMap<Alternative, Double>();
List<DecisionMakerAlternativeUsage> ul =

DecisionMakerAlternativeUsage.retrieveAverage(contest);
for (DecisionMakerAlternativeUsage u : ul)

avgAltUsages.put(u.getAlternative(),
u.getUsageValue());

}
Double usage = avgAltUsages.get(alt);
return null == usage ? 0.0 : usage;

}

Σελ. 140

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

private double getAvgCriterionUtility(Criterion goal) {
if (null == avgCritUtils)

avgCritUtils = new HashMap<Criterion, Double>();
Double u = avgCritUtils.get(goal);
if (null == u) {

u =
DmAlternativeCriterionUtilityValue.AverageUtilityValue(goal);

avgCritUtils.put(goal, u);
}
return u;

}

private double getAvgCriterionUtility(DecisionMaker dm, Alternative alt) {
if (null == avgCritUtilsOverCrit)

avgCritUtilsOverCrit = new HashMap<DecisionMaker,
Map<Alternative, Double>>();

Map<Alternative, Double> dmm = avgCritUtilsOverCrit.get(dm);
if (null == dmm) {

dmm = new HashMap<Alternative, Double>();
avgCritUtilsOverCrit.put(dm, dmm);

}

Double u = dmm.get(alt);
if (u == null) {

u =
DmAlternativeCriterionUtilityValue.AverageUtilityValueForDmAlt(dm, alt);

dmm.put(alt, u);
}

return u;
}

private double getAvgCriterionUtility(DecisionMaker dm, Criterion goal) {
if (null == avgCritUtilsOverAlt)

avgCritUtilsOverAlt = new HashMap<DecisionMaker,
Map<Criterion, Double>>();

Map<Criterion, Double> dmm = avgCritUtilsOverAlt.get(dm);
if (null == dmm) {

dmm = new HashMap<Criterion, Double>();
avgCritUtilsOverAlt.put(dm, dmm);

}

Double u = dmm.get(goal);
if (u == null) {

u =
DmAlternativeCriterionUtilityValue.AverageUtilityValueForDecisionMakerCriterion(d
m, goal);

dmm.put(goal, u);
}

return u;
}

private double getUtility(DecisionMaker dm, Alternative a) {
try {

DecisionMakerAlternativeUsage dmau =
DecisionMakerAlternativeUsage.retrieve(dm, a);

if (null != dmau)
return dmau.getUsageValue();

} catch (Exception ex) {}
return 0;

}

Σελ. 141

Konstantinos-Dimitrios Tzoannopoulos – Development of a multi-agent system for the support of group
decisions utilizing argumentation and multicriteria methods
Ανάπτυξη ενός συστήματος ευφυών πρακτόρων υποστήριξης της λήψης ομαδικών αποφάσεων και
διαπραγμάτευσης με επιχειρήματα, με χρήση πολυκριτήριων μεθόδων

public ProtoImpl(Contest c) {
this.contest = c;
this.agents = DmAgent.fill(this, c.getDecisionMakerList());

}

@Override
public List<DmOffer> getOffers() {

if (null == offers) {
List<Alternative> alts = Alternative.retrieve();
offers = new ArrayList<ProtoImpl.DmOffer>(alts.size());
for(Alternative a : alts)

offers.add(new DmOffer(a));
}
return offers;

}

@Override
protected void removeOffer(Offer x) {

getOffers().remove(x);
}

/**
 * Implements offer preference decision based on the total utility value

of the offers for the agent.
 * @param a
 * @param b
 * @param agent
 * @param optimistic Ignored.
 * @return True if alternative a has higher or equal utility value over b.
 */
@Override
public boolean isAPreferredOverB(Offer a, Offer b, Agent agent, boolean

optimistic) {
DecisionMaker dm = ((DmAgent)agent).dm;
return getUtility(dm, ((DmOffer)a).getAlternative()) >=

getUtility(dm, ((DmOffer)b).getAlternative());
}

}

Σελ. 142

	I INTRODUCTION
	I.1 Historical review
	I.2 Acknowledgements
	I.3 Literature Review
	I.3.1 Previous negotiation/argumentation systems and protocols
	I.3.2 Multicriteria protocols, applications and implementations
	I.3.3 Present and future research trends
	I.3.4 The scope of this thesis: Combining MCDA methods, heuristics and argumentation in Group Decision Support

	I.4 Definitions – Theoretical background
	I.4.1 Advantages of argumentation vs. negotiation

	II THE PROPOSED METHODOLOGY
	II.1 General methodological framework
	II.1.1 The Ranking stage
	II.1.1.1 Setup phase
	II.1.1.2 Assessment of the preferences of the group members
	II.1.1.3 Calculation of relative utility values for each alternative and DM
	II.1.1.4 Ranking of the alternatives

	II.1.2 Elaboration on the aforementioned phases
	II.1.2.1 Setup phase
	II.1.2.2 Assessing the preferences of the group members

	II.1.3 Identification of Negotiable Alternatives
	II.1.3.1 Consensus-Seeking: Problem definition and basic concepts
	II.1.3.1.1 Definition of the Problem
	II.1.3.1.2 Expansion/Contraction/Intersection Concept

	II.1.3.2 Heuristics for Consensus Seeking
	II.1.3.2.1 NAI Heuristic
	II.1.3.2.2 The Intersection Impasse and two procedures to overcome it

	II.1.4 The Argumentation Stage
	II.1.4.1 Mental States and their Dynamics
	II.1.4.2 Argued Decisions
	II.1.4.3 The Negotiation Protocol
	II.1.4.3.1 Formal setting

	II.1.4.4 Conditions on the negotiation acts
	II.1.4.5 Properties of the negotiation protocol

	II.1.5 Innovations, challenges and changes in the proposed methodology and software

	III THE PROPOSED SOFTWARE
	III.1 Requirements and brief for the software
	III.1.1 Implemented features
	III.1.2 Functions of the proposed software

	III.2 Structure of the proposed system
	III.3 Using the proposed system
	III.3.1 Starting the application
	III.3.2 Creating a new decision problem

	III.4 Retrieving an existing problem from the database
	III.5 Scope for Future Development

	IV Conclusions
	IV.1 Future work

	REFERENCES
	Appendix

