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TECHNICAL UNIVERSITY OF CRETE

Abstract

School of Electronic and Computer Engineering

Moving windows value iteration for effective solar tracking.

by Giorgis-Orfeas Romaidis

Solar trackers have recently become an important asset in energy production industry.

The most efficient type is dual axis trackers that follow sun’s movement in horizontal

and vertical level based on an astronomical equation. In this thesis we present several

variants of a dynamic programming method to calculate the optimal solar tracking

strategy of a given tracker. To this end, we first make sure that we appropriately

incorporate the physical characteristics of a commercially available PV system in our

model. Then we choose a combination of specific dates and weather data, both historic

and artificial, to use as datasets for experimentation over typical weather patterns.

Our proposed algorithm addresses the problem of systems positioning as a sequential

decision making problem for optimal control. We use a Markov Decision Process (MDP)

representation and apply value iteration (VI) with a k-step look ahead functionality over

reduced state-space windows, to approximate an optimal solution. The results show that

the performance of our approach clearly outperforms that of a typical dual axis tracker.
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Chapter 1

Introduction

New energy production technologies rapidly emerged over the last decades. The tradi-

tional fossil-based sources are critically reviewed for two main reasons, environmental

pollution in various forms and supply limitations, even though not immediate. As a

result, the solutions developed are using nature’s renewable sources, like solar radia-

tion, winds and sea waves, and are generally called Weather-Driven and non-scheduled

Energy Resources-WDERs-. Gradually these systems were incorporated into the tradi-

tional power grid arising certain issues. Since the fundamental operation principle of

these systems relies on weather conditions it is obvious that the produced amount of

energy is remittent in contrast with fossil fuel power plants. Hence, improved efficiency

and energy output prediction tools would assist in addressing this issue.

This thesis focuses on photovoltaic systems and presents a method for enhancing energy

output and estimating the total energy gain, by approximating the optimal solar tracking

strategy for each day. The main contribution is that the real world problem is modeled

in detail, for a software simulation environment of our design, and then is treated as an

optimal control problem with artificial intelligence methods. Also, in contrast to other

approaches, here we account for the consumption of the solar tracking system. Moreover

we take into account forecasted weather conditions in order to produce the best possible

daily solar tracking strategies. In particular, an MDP framework was used and value

iteration(VI) applied for approximating nearly optimal solutions corresponding to pho-

tovoltaic systems(PVS) orientation through the day; thus, in contrast to others, we aim

to produce tracking schedules on a daily rather than on a long-term basis. In order to

improve results further a k-step look ahead functionality was added. This combination

has never been proposed and tested before because the necessary reward model was

missing, but in this thesis we make use of the RENES1 estimator for this task. RENES

1http://www.intelligence.tuc.gr/renes/

1
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was developed in the Intelligence Lab of the School of Electronic and Computer Engi-

neering in TUC as part of the diploma thesis of Aris Athanasios Panagopoulos. RENES

exploits free-to-use online weather forecasts in order to estimate PVS energy production

output. For this reason, is used here in order to feed our methods with the necessary

rewards that correspond to estimated production output. This unique approach opens

a new research area available for further experimentation and optimization.

In Chapter 2 the necessary theoretical background and related literature are presented.

Subsequently the methodology followed is discussed in Chapter 3. The representation

of the real world model is built. Physical aspects of the system are described, space and

time entities are handled and then all of these are integrated into the selected mathe-

matical framework. In order to evaluate this work specific datasets are produced based

on various dates and weather conditions combinations. Finally the proposed algorithm

with its components is described. The experimental results are presented and discussed

in Chapter 4. In Chapter 5 we present a web user interface we developed in order to

compare the efficiency of dynamic programming methods for solar tracking(our own and

others) against typical dual axis systems. Finally conclusions and future work proposals

are made in Chapter 6.



Chapter 2

Background and Related work

2.1 Motivation

2.1.1 Towards a Smart Grid

The existing electricity Grid, in most regions, is a product of various processes con-

nected to economical, political, geographical and other aspects, rather than of mature

scientific planning. Even if it had, originally, been a product of scientific planning,

the unexpected changes in the production, transmission, conservation and consumption

technologies would necessitate a modern shift. The evolution to a Smarter Grid is nowa-

days imminent, and concerns one of the greatest engineering challenges of our time. In

general terms, the move to a Smarter Grid is considered as the move from a central-

ized, producer-controlled network to a less centralized and more consumer interactive

one [1]. The main reasons that call for a radical reengineering of the Grid infrastructure

and functionality include the growing demand caused by the electrification of trans-

port and heating and the growing penetration of inherently intermittent and potentially

distributed WDERs into the Grid. In the context of power system operation, one of

the greatest challenges is running a reliable supply-on-demand system. Historically this

challenge led to an electricity Grid based on highly controllable supply in order to match

a largely uncontrolled demand [2]. That said, the growing penetration of WDERs into

the Grid will impact the systems reliability [3, 4]. Therefore, one of the major challenges

of the Smart Grid vision is the reliable integration of WDERs into the Grid while meet-

ing the constantly growing demand.

Predictive technology could reinforce the reliable integration of WDERs into the elec-

tricity Grid as ”forecasts of future requirements are essential to be able to prepare the

controllable and exible systems, such as those based on fossil fuels, to behave in the

appropriate manner” [2, 4, 5].

3
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More recently, Artificial Intelligence (AI) and Multiagent Systems (MAS) research has

been increasingly involved with building intelligent systems for the Smart Grid [6]. In

the process, the efficient incorporation of WDERs into the Smart Grid has emerged as

a major challenge [2, 7]. The term Virtual Power Plants (VPPs) corresponds to the no-

tion of a large number of heterogeneous Distributed Energy Resources (DERs), usually

WDERs, joining forces and offering electricity to the Grid - while providing the guaran-

tees of a single conventional power plant. VPPs create the necessary synergies among

DERs, so that the effective and efficient delivery of energy is assured, while still being

able to utilize (the inherently intermittent and thus untrustworthy) WDERs [6, 8, 9].

In such an evolving environment, WDER power production enhancement and depend-

able power output predictive technology can be considered as a priori requirements.

2.1.2 RENES: A WDERs power output prediction tool

The algorithmic framework for a photovoltaic (PV) system and wind generator power

output estimator is presented in [10] along with an interactive web-based tool, RENES 1.

A generic method to produce PV power output estimates is described based on a solar

irradiance approximation model that takes cloud coverage into account, incorporates

free-to-use and readily available meteorological data, and satisfies specific performance

guarantees for a wide region of interest. This solar irradiance model is built with com-

ponents chosen after being carefully evaluated against each other in a broad geographic

region-the Mediterranean belt (Med-Belt). The components in question are non-linear

approximation methods for turning cloud-coverage into radiation forecasts, such as an

MLP neural network with one hidden layer. Moreover, the specific method makes use

of online data that can be downloaded for free from weather forecasting websites, and

do not rely on complex and expensive weather models and data. Hence the presented

method can be used as a generic but low-cost power output estimation tool which is

applicable within a wide geographical region. Also it is demonstrated there how stan-

dard machine learning methods, like least-squares fitting and neural networks, can be

effectively applied to predict the power output of solar plants in a wide region. It is im-

portant to mention that the use of ”intermediate steps”, such as using a solar irradiance

model, allows this method to be applicable outside narrow regionsas would be the case

if the neural network was trained just over specific plants’ production output data.

1http://www.intelligence.tuc.gr/renes/

http://www.intelligence.tuc.gr/renes/
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2.2 Photovoltaic and solar tracking technology

2.2.1 Solar radiation model

In general, the total incident irradiance GT falling on an arbitrarily oriented surface,

consists of the beam GB, sky-diffuse GD and ground-reflected GR components [11]:

GT = GB +GD +GR (2.1)

Usually, the cosine effect is used to model the variations of the GB component:

GB = GmaxB cos θs (2.2)

where

θs, is the angle between the normal to the surface and the direction to the sun,

GmaxB , is the incident beam irradiance when the surface is oriented normally to the

incoming radiation. GmaxB is the maximum beam irradiance that the PV module

can orient to.

Next, the GD component formula varies and is based on the assumption that every point

of the celestial sphere emits light with equal radiance [12]:

GD = GmaxD

1 + cosβ

2
(2.3)

where

β, is the inclination angle of the surface,

GmaxD , is the incident diffuse irradiance on a horizontally oriented surface. GmaxD is the

maximum diffuse irradiance that the PV module can orient to.

Finally, the GR component is formed assuming that the ground is horizontal, of infinite

extent, and reflects uniformly to all directions [11]:

GR = GmaxR (1− cosβ) (2.4)

where

GmaxR , stands for the reflected incident irradiance for a 90◦ surface slope angle. GmaxR is

the maximum reflected irradiance that the PV module can orient to.
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2.2.2 Photovoltaic operational principles

PVS have become increasingly popular during the past years because of their renewable

nature and the low-to-zero carbon dioxide emissions that they produce during operation.

PVS depend on solar panels, formed basically from solar cells put together. The working

principle of all today solar cells is essentially the same. It is based on the photovoltaic

effect. In general, the photovoltaic effect means the generation of a potential difference

at the junction of two different materials in response to visible or other radiation. The

basic processes behind the photovoltaic effect are [13]:

• generation of the charge carriers due to the absorption of photons in the materials

that form a junction,

• subsequent separation of the photo-generated charge carriers in the junction

• collection of the photo-generated charge carriers at the terminals of the junction.

2.2.3 PVS tracking solutions

PVS is a functional arrangement of many different components designed to supply elec-

tric power using the solar power the way described above. The components of these

systems usually are:

• The solar panels, solar cells assembled together in a rectangular metal frame with

a plastic or glass surface, forming a weatherproof construction. A linkwired col-

lection of solar panels is named solar array.

• The mounting system, the construction that supports the whole system based on

the site’s specificity(ground,building roof). A set of intersected metal bars acts as

a platform for the solar panels to be mounted onto. In cases of moving(tracking)

systems a strong, underground foundation is used to provide the desired stability

against the inertial forces produced by the rotating parts.

• The solar tracker, which is the mechanism that rotates the solar panels during

the daylight period. Different types of trackers exist depending on the tracking

algorithm(astronomical, sensor-based feedback) and the number of axes involved

in movement(single axis, dual axis).

• The inverters, electrical systems designed to convert the DC power produced from

the solar panels to AC power for public power grid usage.
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For the general purposes of this thesis is essential to focus more on the solar tracking

implementations. Two main categories can be found regarding the tracking principle:

• Passive trackers, as seen in 2.1, are based on thermal expansion of a matter (usu-

ally Freon) or on shape memory alloys. Usually this kind of tracker is composed of

couple of actuators working against each other which are, by equal illumination,

balanced. By differential illumination of actuators, unbalanced forces are used for

orientation of the apparatus in such direction where equal illumination of actua-

tors and balance of forces is restored. Passive solar trackers, compared to active

trackers, are less complex but work in low efficiency and at low temperatures they

stop working. Also they present a higher positioning delay and for these reasons

they have not yet been widely accepted by consumers.

• Active trackers can be categorized as microprocessor and electro-optical sensor

based, PC controlled date and time based, auxiliary bifacial solar cell based and

a combination of these three systems.

In this work we use active trackers model because of our intention to supply the PVS

with positioning strategies calculated in PCs. Active trackers can be divided in two

main categories regarding the number of moving axis.

Figure 2.1: Passive Tracker

Single axis tracking In this case the system is moving across the north-south(2.2) or

the east-west direction(2.3) following the sun’s vertical or horizontal movement respec-

tively. When moving across the E-W direction the system remains in fixed position in the
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north-south direction. Optimal tilt(N-S orientation) angle, Sopt, is a topic under research

over the last years with site specific properties, like latitude ϕ, being taken under con-

sideration. Although research community lacks a definite answer, few suggestions have

been made like Lunde [14] Sopt = ϕ±15o, Duffie and Beckman [15] Sopt = (ϕ+15o)±15o,

Chang [16] Sopt = 0.9∗ϕ for latitudes below 65o and Sopt = 56+0.4∗ (ϕ−65) otherwise,

and Lewis [17] Sopt = ϕ± 8o.

Figure 2.2: North-South Figure 2.3: East-West

Dual axis tracking This is the most advanced configuration in terms of track-

ing the sun because it allows the vertical movement of the panels in addition to the

horizontal one. The Azimuth-altitude dual axis tracker (AADAT) is named after the

azimuthal(east-west) and the altitude(north-south) movement of the tracker. Although

the additional complexicity of the azimuth orientation driving mechanism must be taken

into account in terms of system’s positioning accuracy, it is reported that even by a 100

misalignment, the power output of the panel is still 98.5% of that of perfect position

[18].

Figure 2.4: Dual axis tracker
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2.3 Markov Decision Process-MDP

Real-world decision making situations often have one or more of the following charac-

teristics:

• there are multiple and conflicting objectives to be considered,

• decisions are to be made in an environment of uncertainty and risk,

• thought needs to be given to a decision in terms of its impact on the future decision

making environment.

Problem solving situations, or portions of them, frequently exist which can be adequately

described quantitatively, i.e., the dynamics of the system subject to control, and the cri-

terion, may be expressed mathematically. Sequential decision problems can be formally

expressed as MDPs.

Markov Decision Process(MDP) is a 4-tuple (S,A,R, T )[19] which contains:

• a set of states s ∈ S

• a set of actions α ∈ A

• a reward function R(s, α) is the reward received, following action α in state s.

• a transition model T : Pα(s, s′) = Pr(st+1 = s′ | αt = α, st = s) is the probability

that action α in state s at time t will lead to state s′ at time t+ 1

Markov decision processes may be classified according to some characteristics: the time

horizon in which the decisions are made and the timing of the decisions[20].

With regard to time horizon, finite- and infinite-horizon MDPs are formed. Finite-

horizon and infinite-horizon MDPs have different analytical properties and solution al-

gorithms. Because the optimal solution of a finite-horizon MDP with stationary rewards

and transition probabilities converges to that of an equivalent infinite- horizon MDP as

the planning horizon increases and infinite-horizon MDPs are easier to solve and to cal-

ibrate than finite-horizon MDPs, infinite-horizon models are typically preferred when

the transition probabilities and reward functions are stationary. However, in many sit-

uations, the stationary assumption is not reasonable.

Markov decision processes can be also classified with respect to the timing of the de-

cisions. In a discrete-time MDP, decisions can be made only at discrete-time intervals,

whereas in a continuous-time MDP, the decisions can occur anytime. Continuous-time

MDPs generalize discrete-time MDPs by allowing the decision maker to choose actions
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whenever the system state changes and/or by allowing the time spent in a particular

state to follow an arbitrary probability distribution.

In MDPs, we assume that the state the system occupies at each decision epoch is com-

pletely observable. However, in some real-world problems, the actual system state is not

entirely known by the decision maker, rendering the states only partially observable.

Such MDPs are known as POMDPs, which have different mathematical properties than

completely observable MDPs and are beyond the scope of this thesis.

The core problem of solving an MDP is to find the policy π : S × A → [0, 1], which is

a function that specifies the action a to be taken when in state s in order to maximize

some long-run cumulative function of reward[21]

V π(s) = E{rt+1 + γrt+2 + γ2rt+3 + . . . |st = s, π} (2.5)

= E{rt+1 + γV π(st+1)|st = s, π}

=
∑
a∈A

π(s, a)

[
R(s, a) + γ

∑
s′

Pa(s, s
′)V π(s′)

]
, (2.6)

where π(s, a) is the probability with which the policy π chooses action a ∈ A in state

s, and γ ∈ [0, 1] is a discount factor. This quantity, V π(s), is called the value of state s

under policy π, and V π is called the state-value function for π. The optimal state-value

function gives the value of each state under an optimal policy:

V ∗(s) = max
π

V π(s) (2.7)

= max
a∈A

E{rt+1 + γV ∗(st+1)|st = s, at = a}

= max
a∈A

[
R(s, a) + γ

∑
s′

Pa(s, s
′)V ∗(s′)

]
. (2.8)

Any policy that achieves the maximum in (2.7) is by definition an optimal policy. Thus,

given V ∗ an optimal policy is easily formed by choosing in each state s any action that

achieves the maximum in (2.8). Particularly useful to compute value functions and

thereby to optimize or improve policies are Bellman equations, such as (2.5),(2.6) which

recursively relate value functions to themselves. If the values V ∗ or V π, are treated as

unknowns, then a set of Bellman equations, for all s ∈ S, forms a system of equations

whose unique solution is in fact V π or V ∗ as given by (2.5) or (2.7) respectively. Given

that, V ∗ forms a non-linear set of equations, due to the max operator, excluding this

way linear programming approaches as infeasible. In order to estimate an optimal solu-

tion for Bellman equations dynamic programming techniques are used.

MDPs are widely used in several fields such as inventory management, communication
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models and systems networking, behavior ecology and even in gambling! As an appli-

cation example we can see the inventory management and the goal of optimal reorder

points and reorder levels. The time that decision is made is every week and the state

space is product inventory level at the time of the decision. The actions available are

the amount of stock to order and the transition probability is how much stock ordered

and the random demand for that week. A decision rule specifies the quantity to be

ordered as a function of the stock on hand at the time of decision. A policy consists of

a sequence of such restocking functions.

For our problem presented in this work the state space will be relevant to orientation

positions of the PVS and the reward model will describe the estimated energy produced

in a certain position minus the energy consumed from the system in order to reach this

position.

Dynamic programming is an optimization approach that transforms a complex

problem into a sequence of simpler problems, the subproblems, and relates their solu-

tions. Dynamic programming provides a general framework for analyzing many problem

types. Within this framework a variety of optimization techniques can be employed to

solve particular aspects of a more general formulation. Sometimes insight is required

in order to recognize that a particular problem can be handled effectively as a dynamic

program or to restructure the problem’s formulation so that it can be solved effectively.

Problems of this family present some common characteristics[22], which can be described

as the stages and the states of the problem allong with a recursive optimization proce-

dure.

Stages can be seen as the structural units of optimization problems, which are solved

sequentially one stage at a time. Although each one-stage problem is solved as an or-

dinary optimization problem, its solution helps to define the characteristics of the next

one-stage problem in the sequence. Sometimes the stages represent different timesteps

in the problem’s time horizon and other times they do not have time implications.

The states of the process are associated with each stage of the optimization problem.

The states reflect the information required to determine the consequences of a current

decision upon future actions. The specification of the system’s states is perhaps a crucial

design parameter of the dynamic programming model. No standard rules exist for this

construction but some generic properties are adopted. The first is that enough infor-

mation should be propagated through states to make future decisions and the second is

that the number of state variables should be small enough, since the computational cost

would be prohibitively large otherwise.

The last general characteristic of the dynamic programming approach is the develop-

ment of a recursive optimization procedure, which builds a solution for the multi-stage
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problem by first solving a one-stage problem and sequentially using this result to solve

the next one-stage problems until the overall optimum has been found. This procedure

is usually based on a backward or forward induction process, where the first stage to be

analyzed is the final stage of the problem and problems are solved moving back one stage

at a time or the first stage to be solved is the initial stage of the problem and problems

are solved moving forward one stage at a time until all stages are included. The basis

of the recursive optimization procedure is the principle of optimality, which states that

an optimal policy has the property that, whatever the current state and decision, the

remaining decisions must constitute an optimal policy with respect to the state resulting

from the current decision.

In our case acting optimally at each timestep, which is the decision epoch of our problem,

will result in acting optimally through the whole day, until all timesteps have finished.

Based on the above there are 2 fundamental dynamic programming algorithms for solving

MDPs: value iteration and policy iteration methods.

Value iteration[23] starts with an arbitrary value for each state and, at each iteration,

solves equation (2.8) using the value from the previous iteration until the difference

between successive values becomes sufficiently small(stopping criterion ε). The value

corresponding to the decision maximizing equation (2.8) is guaranteed to be within a

desired distance from the optimal solution. Comparing this algorithm with dynamic

programming guidelines certain relations are recognised. States are used and the iter-

ations correspond to time stages. Finally, by solving recursively the Bellman equation

for each state, corresponding to the subproblem mentioned above, an overall optimal

approximation is derived.

Algorithm 1 Value Iteration

procedure ValueIteration
for all s ∈ S do

V0(s) = 0 . arbitrary initial value
end for
while ∀s ∈ S, |Vk−1(s)− Vk(s)| > ε do . ε :stopping criterion

for all s ∈ S do
for all a ∈ A do

Vk(s)← R(s, a) + γmaxa
∑

s′ Pa(s, s
′)Vk−1(s′)

end for
π∗k(s)← arg maxa Vk(s)

end for
end while
return π∗k(s), Vk(s)

end procedure
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Policy iteration[24] starts with an arbitrary decision rule and finds its value; if an im-

provement in the current decision rule is possible, using the current value function es-

timate, then the algorithm will find it; otherwise, the algorithm will stop, yielding the

optimal decision rule.

Algorithm 2 Policy Iteration

procedure PolicyIteration
k ← 0
π0 ← arbitrary initial policy
repeat

k ← k + 1
solve V πk−1(s) = R(s, πk−1(s)) + γ

∑
s′ P

πk−1(s)(s, s′)V πk−1(s′) . Policy
Evalua-
tion

for all s ∈ S do
πk(s)← arg maxaR(s, a) + γ

∑
s′ P

a(s, s′)V πk−1(s′) . Policy Improvement
end for

until πk = πk−1

return πk
end procedure

As for the dynamic features of the algorithm policy iteration finds the value of a policy

in a recursive manner by applying the backward induction algorithm while ensuring that

the value functions for any 2 subsequent stages are identical. Finally the policy produced

is optimized until policies of the same state for successive steps have converged.

2.4 Related Work

As stated in the beginning of this thesis dynamic programming approaches in sun track-

ing have never been tried before for certain reasons. Thus it was chosen to present,

as related literature, attempts of purely heuristic nature but with the same goal; PVS

efficiency improvement.

In [25] it is presented a control application of a sun tracker that is able to follow the

sun with high accuracy without the necessity of either a precise procedure of installation

or recalibration. A hybrid tracking system that consists of a combination of open loop

tracking strategies based on solar movement models and closed loop strategies using a

dynamic sensor feedback controller. Energy saving factors are taken into account, which

implies that, the sun is not constantly tracked with the same accuracy, to prevent energy

overconsumption by the motors. The system utilizes a hybrid method of tracking the

sun, a combination of normal tracking mode and a search mode. Specifically in normal
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tracking mode, system adopts open loop tracking strategies based on solar movement

models (feedforward control) and closed loop control strategies using a feedback con-

troller. The feedback controller is designed to correct the tracking errors made by the

feedforward controller in the open loop mode. For energy consumption reasons, the

tracker does not move as long as the tracking error (assuming that the sun is where it

is supposed to be) is less than a certain threshold. When this error is greater than this

threshold, the controller orders the driver to move to a point at which the sun will arrive

in a certain amount of time. While the sun tracking error is small enough and the solar

radiation great enough for the system to produce electric energy, the previous strategy

is followed. Otherwise the search mode is initialized, the movement of the PVS follows

a square spiral in the azimuthelevation plane in order to detect the position of the sun.

As the movement takes place, a check is made as to whether the system is generating

electric power. As soon as electric power is produced, this mode is abandoned, and the

controller enters the normal tracking mode.

A similar technique, making use of sensor feedback and open loop methods, was devel-

oped in [26]. When the system starts, the tracker is set to the home position and then

takes GPS information to calculate the sun set and rise times. The present solar time

is compared with the sunrise and sunset times to determine whether tracking should

start or stop. At night time, it waits next sample time. Sample time period is defined

according to technical constraints, concernig GPS hot start time that is 1 second and

the energy consumed by motors during one tracking step. When present solar time be-

longs between sunrise and sunset times, control system acquires pyranometer readings

to check if there is enough solar radiation to generate power. Otherwise, sun tracker

stays at home position until solar radiation rise to higher limits. After solar radiation

reaches the desired value, algorithm reads anemometer value to define whether the sun

tracker can move safely. If not, sun tracker stays at home position at least during one

sample time. Otherwise, it starts tracking the sun.

An approach employing a sliding mode control method of self-optimization is presented

in [27]. The PVS rotates its dual axes by modifying the azimuth angle and the elevation

angle accordingly until the panel’s power output value reaches maximum. By relating

the power output to the azimuth and elevation angles, the system steadily rotates its

motors until the power produced by the solar panel converges towards the expected

optimum, stated by the manufacturer. Afterwards oscillates within a neighborhood of

the optimum point until some error threshold is approached. As a result this methodol-

ogy manages for the system to operate in maximum power output and avoid the use of

complex astronomical equations to find the sun angles.

The main objective of [28] is to determine the orientation angles values which maximize

the received direct radiation on an azimuthally tracked PV panel and minimize the to-

tal energy consumption of the motors involved, for a given steps number n = 0, ..., 4.
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For energy saving reasons, the angular displacement of the tracked PV panel is made

discontinuously (stepwise). In order to achieve this objective, firstly, an analysis of the

existing angular systems in which the suns path can be described, is made, presenting

the corresponding correlations. Using the previous correlations the unit vectors of the

sun-ray and of the normal to the panel are calculated. These unit vectors are needed

for the calculus of the incidence angle between the PV panel normal and the sun-ray;

on the basis of the incidence angle, the received direct solar radiation is established.

Another solar tracking system is proposed based on the intensity of solar radiation which

is the most basic input parameter[29]. Establishing a suitable model of solar radiation

is essential for the design of the solar tracking system. The sun elevation angle marked

as a is, therefore, calculated. The solar radiation received by the solar cell array mainly

depends on the solar incidence angle θ, while solar incidence angle marked as θ is a

function of sun equatorial latitude angle δ , local dimension φ , solar cell array tilt angle

β , solar cell array azimuth angle γ and solar hour angle ω. Their specific relationship

is also calculated and according to this, specific solar incidence angle θ of the solar cell

array in any location, season, time and geometric position is available. Also a hardware

implementation based on the above is presented at the end.

Furthermore in another approach, the trajectories of the sun tracking system are deter-

mined in an optimization procedure[30]. The optimization goal is maximization of an

electric energy production in the photovoltaic system considering the tracking system

consumption. Determination of the tilt angle and azimuth angle trajectories is described

as a nonlinear and bounded optimization problem, where the objective function is not

available in the explicit form. A stochastic search algorithm called Differential Evolution

is used as an optimization tool. In the optimization procedure, the objective function

is evaluated by using the models of available solar radiation, tracking system consump-

tion, and the efficiency of solar cells with the appropriate dc/dc converters. The problem

bounds are given in the form of lower and upper bounds for both angles and time and

angle quantization.

The idea of designing and optimizing a tracking mechanism, which changes the position

of the PV panel in order to maximize the solar radiation degree of use is met in[31]. The

tracking system is approached in mechatronic concept, by integrating the electronic con-

trol system in the mechanical structure of the solar tracker. In order to accomplish this

goal, it is used an optimization strategy which intends to optimize the motion/control

law, in fact to obtain as much as possible energy gained through tracking the sun path

with minimum energy consumption for driving the system. The key idea for optimizing

the motion law of the panel is to maximize the energy gained through orientation with

minimum energy consumption for driving the system. The photovoltaic panel can be

rotated without brakes during the day-light, or can be discontinuously driven (step-by-

step motion), usually by rotating the panel with equal steps at every hour. It is stated



Chapter 2. Background and Related work 16

that the maximum incoming radiation is obtained for the continuous orientation of the

panel/system, facing east in the morning and west in the afternoon, in the entire an-

gular field, β∗ ∈ [−90o,+90o], but in this case the operating time of the motor, and

consequently the energy consumption, is high (β∗ is the daily angle of the panel). The

tracking cases were formulated using optimal algorithms based on the angular field of the

daily motion. These algorithms were developed considering the correlation between the

maximum amplitude of the motion and the operating time of the motor, aiming to the

minimization of the energy consumption for tracking the sun. In fact, the optimization

is made by reducing the angular field of the revolute axis without significantly affecting

the incoming energy.

Another interesting approach for optimal sun tracking was developed as part of the

diploma thesis of Giannis Kantaris [32] of the School of Electronic and Computer Engi-

neering in TUC. The main idea of this work is that the system tracks the solar irradiance

rather than the sun’s movement. In more detail, the PVS absorbs a certain quantity of

solar irradiance. Based on this quantity an output current is produced and its value is

proportional to the irradiance. The system uses the current value in order to calculate

the voltage value through a current sensor. Subsequently a micro-controller reads the

voltage value and based on this it decides the system’s movement direction by supply-

ing the stepper motors, which rotate the system, with appropriate electric pulses. This

procedure repeats until the system absorbs maximum solar irradiance judging from the

output voltage values.

Special mention should be made in another work [33] because of its AI-based approach,

which was developed in parallel with this thesis. That work proposes a problem-specific

policy iteration method (along with two specialized variants), which is able to calcu-

late near-optimal trajectories for efficient day-ahead solar tracking, based on weather

forecasts coming from online providers for free. To account for the energy needs of the

tracking system, the technique employs a novel and generic consumption model that

was put forward and is used by this thesis also. The simulation results show that the

proposed methods can increase the power output of a PVS considerably, when compared

to standard tracking techniques.

In more detail, the problem is modeled as a a fully observable, finite horizon MDP with

discrete space and time sets. In order to approximate the optimal solar tracking policy

corresponding to the optimal value function V ∗ as described from Bellman in eq. 2.8,

page 10, a few methods are proposed based on policy iteration for dual and single axis

systems. The first procedure, named as Solar Treacking Policy Iteration, considers an ar-

bitrary input policy for the MDP described above, e.g., a myopic one and then attempts

to improve that policy but assuming a fixed azimuthal positions sequence. Given this

fixed azimuthal sequence, it computes the respective optimal slope-positioning policy.
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The output policy is then used to fix a slope positions sequence and based on this an-

other PI algorithm estimates an optimal azimuth positioning policy. This turn-by-turn

intermittent optimization process repeats until convergence, or until some computational

or time limit is reached. In this way, by combining the derived sequence of positions

corresponding to the policies computed for each axis, a policy specifying a sequence of

tracker positioning actions is derived.

The same PI algorithm is employed also for single axis tracking, with the action selec-

tion process for the static axis(the slope one, in this case) considering only a set of fixed

possible orientations for the whole motion.

Next, a Myopic method is introduced as the policy that greedily maximizes power gen-

eration only without taking into account the system’s consumption. As stated power

output of a PVS is monotonically correlated with the incident irradiance, hence eq. 2.1

in page 5 should be maximized. As seen in eqs. 2.3 and 2.4 GD and GR components vary

from their maximum based only on the slope angle of the PV module while, as eq.2.2

suggests, the GB component varies from its maximum based on the incident angle, which

for any given sun position depends on the slope and azimuth angle of the PV module.

This means that the beam component reaches maximum when the module is ideally

aligned with the sun. Thus by fixing the azimuth angle to follow the sun azimuth, is

ensured that the maximum GT is tracked in all cases. Then the only thing left to be

optimized is the PVS slope angle at every time step, so that the GT components are

properly balanced and get the maximum GT possible.

For singe axis tracking, the problem is further simplified into following the sun over the

azimuth (and just defining the best next-day fixed slope orientation).

At last, serving as a baseline, a next-day-optimal fixed PVS orientation method is pro-

posed by simply searching the whole space of possible orientations, given the weather

prediction for the next day.



Chapter 3

Methodology

In this chapter it is presented the methodology that was followed in order to express

the problem in a formal way, to describe the datasets and the corresponding days of the

year and finally outline the main aspects of the algorithm used.

3.1 Real world problem representation

It is very well known that the transfer of a real world problem in a finite simulated

environment is a difficult task especially when computational tractability is required.

This goal was achieved by modeling the PVS physical aspects, discretizing the contin-

uous space-time of the problem and updating our aforementioned mathematical tools

accordingly.

3.1.1 Physical aspects of the system

A fundamental piece of this work is to model a typical, large scale(∼ 10kW ), commer-

cially available PVS with dual axis tracking capability. The model’s accuracy is vital

because physical measures will affect energy production along with energy consumption

of the examined system. Furthermore good precision will justify simulation results to

be used in real applications. After reviewing some commercial solutions [34? , 35] the

following numbers were produced:

• length: 12m

• width: 6m

• depth: 0.2m

18
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• mass: 2500kg.

3.1.2 Discretization of continuous space-time

Space

A key characteristic in PVS is the motion range achieved by the motors across both

the horizontal and vertical axis. It is fairly common the movement allowed in tracking

systems to be constrained within a certain range in both the azimuthal and elevation

axis. The same approach was followed, by reviewing typical, available solutions[34, 36–

40], and the resulting numbers are:

• azimuth range, raz = 270◦

• elevation range rel = 63◦.

Also stepping motors were chosen to represent the rotating mechanisms. Stepping mo-

tors are widely used in such applications, both in research[41–43] and in industry[44].

Some reasons are that they are easily connected with advanced driving controllers, pro-

duce high amount of torque required by inertial forces and they consume less energy

than a constantly rotating motor. Typical step resolution, θstep, of such motors are 0.9◦

and 1.8◦, although the first is avoided due to the complicated electrical circuits that

requires. Thus θstep = 1.8◦ was picked for our model. Based on this choice, motion

ranges can be re-expressed as sets of discrete points:

• azimuth set |K| = raz
θstep

+ 1 =
270◦

1.8◦
+ 1 = 151

K = [1, 2, . . . , 151]

• elevation set |Λ| = rel
θstep

+ 1 =
63◦

1.8◦
+ 1 = 36

Λ = [1, 2, . . . , 36].

Time

Assuming step by step movement control, an interval ∆intrv = 5min was established

between consecutive control activations. Because of the varying duration of daylight,

denoted by Dday, throughout the year, the number of timesteps, τ , included from sunrise

to sunset should be expressed in lower-upper limits form. For our site of interest, Chania,

the length of daylight for summer solstice(21 June) and winter solstice(21 December),

biggest and smallest day respectively, was retrieved1. At first a set I of timesteps τ is

1http://www.sunearthtools.com/dp/tools/pos_sun.php?lang=en

http://www.sunearthtools.com/dp/tools/pos_sun.php?lang=en
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introduced as follows

|I| =
Dday

∆intrv
+ 1 (3.1)

1. 21 June= 14:33 hours of daylight

|I| ≤ 14 ∗ 60min

∆intrv
+

33min

∆intrv
+ 1⇐⇒

|I| ≤ 175 (3.2)

2. 21 December= 9:45 hours of daylight

|I| ≥ 9 ∗ 60min

∆intrv
+

45min

∆intrv
+ 1⇐⇒

|I| ≥ 118 (3.3)

Combining 3.2,3.3 results in:

118 ≤ |I| ≤ 175 (3.4)

All of the above results gathered in a tabular form

length width depth mass

12m 6m 0.2m 2500kg

Table 3.1: Physical dimensions

azimuth range elevation range time

continuous 270◦ 63◦ 9 : 45 ∼ 14 : 33(h)
discrete(θstep = 1.8◦,∆intrv = 5min) 151 36 118≤ |I| ≤ 175

Table 3.2: Space-time characteristics

3.1.3 MDP representation

Based on the results from previous subsections 3.1.1 ,3.1.2 an update of our MDP math-

ematical framework and its proposed solving method is made. As described in 2.3 MDP

is an (S,A,R, T ) tuple and its components should be updated respectively.

State space ≡ S

S is a finite set of states, consisting of all possible azimuth orientation positions in the

set K, all possible elevation orientation positions in the set Λ and all possible controller

interaction timesteps,τ , in the set I combined together. So every state s ∈ S is a
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(κs, λs, τs) tuple, with κs ∈ [1, |K|], λs ∈ [1, |Λ|], τs ∈ [1, |I|]. As a result

|S| = |K × Λ× I| (3.5)

Action space ≡ A

A is a finite set of actions, with each action α ∈ A positioning the system in a specific

azimuth-elevation orientation. So α is a (κs, λs) tuple, with κs ∈ [1, |K|], λs ∈ [1, |Λ|]
and A resulting in

|A| = |K × Λ| (3.6)

Reward function ≡ R(s, α, s′)

Reward model R(s, α, s′) is a function that calculates reward values for transitions from

state s to state s′ following action α. In the current work, rewards correspond to

energy produced from the PVS between two consecutive timesteps. Also the energy

consumption of the PVS, as described in [33] , during the same period was taken into

account. Hence

R(s, a, s′|τs, τs′) = Prod(s, s′)− Cons(s, s′) (3.7)

The Prod(s, s′) function calculates the estimated energy produced as the PVS follows

the orientation pattern every ∆intrv.

Prod(s, s′) = ∆intrv ∗
Pwrest(s) + Pwrest(s

′)

2
(3.8)

where Pwrest(•) represents the estimated power output of the PVS at each state s.

These values are calculated from RENES backend. The given input is the dataset file

as described in section 3.2.3 page 33 and the output are values in a tabular form as

presented in table 3.2.

The Cons(s, s′) function calculates the power needed by the PVS for the transition from

s to s′, taking as inputs numerous variables regarding the weather conditions and the

physical measurements of the modeled system.

Transition model ≡ T = Pα(s, s′)

The transition function Pα(s, s′) determines the possibility that taking action α in state

s will lead in state s′. Because in this case the PVS rotating motors can be electronically

controlled, movements are considered deterministic. Thus

Pα(s, s′) = Pr(st+1 = s′ | αt = α, st = s) = 1 (3.9)
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updated MDP(S,A,R,T)

• state space S : |S| = |K × Λ× I|

• action space A : |A| = |K × Λ|

• reward model R(s, a, s′|τs, τs′) = Prod(s, s′)− Cons(s, s′)

• transition model T : Pα(s, s′) = Pr(st+1 = s′ | αt = α, st = s) = 1

• Bellman equation as in 2.8 page 10

V ∗(s) = max
a∈A

[
R(s, a) +

∑
s′

Pa(s, s
′)V ∗(s′)

]
= Prod(s, s′)− Cons(s, s′) + max

a∈A

∑
s′

V ∗(s′) (3.10)

3.2 Datasets

In this section the reasons for selecting specific days of the year are explained, also some

astronomical aspects of these days are calculated and finally the way these selected days

were transformed into datasets based on observed weather data acquired online.

3.2.1 Reasoning of selected dates

As seen in 3.2 the two solstices are the extremes, regarding the daylight length, inside the

year’s cycle. Also these days represent different seasons(winter-summer) and weather

conditions that occur during each season. Hence winter solstice of 21stDecember and

summer solstice of 21stJune constitute the first two study cases for the experimental

evaluation to come. During the transition from one solstice to the other, another two

important days are met; spring and fall equinox. Like solstices, considered as extremes,

the two equinox can be seen as the average, because day time and night time are al-

most equal. Furthermore they belong to the remaining two seasons, spring equinox

20thMarch and fall equinox 22ndSeptember, including theirs weather characteristics.

Thus, the days of interest are:

• 21December, winter solstice
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• 21June, summer solstice

• 20March, spring equinox

• 22September, fall equinox.

In order to provide some insight about the cloud coverage of the selected days, historical

data, from the past 5 years for each day, were retrieved form online free sources2 and are

presented below. Only cloud coverage conditions for the aforementioned days was chosen

to be presented because of the major effect cloudiness has on solar radiation[45, 46].

The following table summarizes the various observable sky conditions along with their

corresponding quantitative expression as found in [47].

Reported Contraction Meaning Summation Amount of Layer

CLR Clear 0
FEW Few 1/8− 2/8
SCT Scattered 3/8− 4/8
BKN Broken 5/8− 7/8
OVC Overcast 8/8

Table 3.3: Sky cover

For a more compact and comprehensive presentation the data are grouped in 3-hour

intervals from sun rise to sun set.

21 December

Year/Time 6− 9 9− 12 12− 15 15− 18 18− 21

2012 BKN BKN SCT BKN BKN
2011 BKN BKN BKN BKN SCT
2010 SCT BKN BKN BKN BKN
2009 SCT SCT SCT FEW SCT
2008 OVC BKN BKN BKN OVC

Table 3.4: 5-year sky cover history for 21 December

Note:During 18-21 pm sky conditions are of none usefulness, other than the archival,

because the sun has already set but they are presented for uniformity reasons.

21 June

2http://www.wunderground.com/

http://www.wunderground.com/
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Year/Time 6− 9 9− 12 12− 15 15− 18 18− 21

2012 CLR CLR CLR CLR CLR
2011 CLR CLR CLR CLR CLR
2010 CLR CLR CLR FEW FEW
2009 FEW CLR CLR FEW FEW
2008 CLR CLR CLR CLR CLR

Table 3.5: 5-year sky cover history for 21 June

22 September

Year/Time 6− 9 9− 12 12− 15 15− 18 18− 21

2012 SCT FEW FEW FEW CLR
2011 SCT SCT BKN BKN BKN
2010 BKN BKN BKN BKN BKN
2009 SCT SCT SCT SCT FEW
2008 OVC BKN BKN SCT SCT

Table 3.6: 5-year sky cover history for 22 September

20 March

Year/Time 6− 9 9− 12 12− 15 15− 18 18− 21

2012 CLR FEW FEW FEW FEW
2011 SCT SCT BKN OVC BKN
2010 FEW FEW FEW CLR CLR
2009 CLR CLR FEW FEW FEW
2008 BKN BKN BKN OVC OVC

Table 3.7: 5-year sky cover history for 20 March

Based on the data above some quality characteristics can be extracted, regarding the

sky conditions appearing at each case.

• During summer solstice mostly clear sky occurs over time and only a few cloud

cover appears in a sole year.

• In the winter solstice heavy cloud cover is observed through the years, varying

from scattered and mainly broken clouds even to complete overcast, in contrast

with summer solstice.

• In the case of fall equinox cloud cover is always present with transitional patterns

being developed in some of the examined years.

• Similar characteristics can be found in spring equinox also with the sky altering

from clear to mildly cloudy along with transitions from heavy to complete cloud

cover.
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• As for the two equinoxes the presence of all conditions justifies the given attribute

”average case”.

• Moreover, the transitions in cloud cover during equinoxes describe the general

weather conditions’ mutability of the corresponding seasons.

• In contrast, winter and summer show specific weather and cloud cover patterns.

3.2.2 Astronomical aspects of the selected dates

For the selected days, we perform a methodical approach, exploiting astronomical infor-

mation in order to calculate sun’s movement and speed in both PVS axes at the location

of interest, Chania. The results will be used later in order to define size parameters in

our moving windows. During the solstices sun’s celestial path reaches its maximum and

minimum in both axes of movement whereas during equinoxes average values are ob-

served.

21 December

Figure 3.1: Cartesian-like sun route for 21 December
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• Rise: {trise = 7.30⇒ θ(tazrise) = 118.6◦, θ(telrise) = 0◦}

• Set: {trise = 17 : 15⇒ θ(tazset) = 241.4◦, θ(telset) = 0◦}

• Maximum elevation, θmaxel = 31.1◦, θ(taz) = 180◦} at v 12 : 20

• Daylight duration ,Dday = 9.45h

• Azimuth range, raz = 122.8◦

• Elevation range, rel = 2 ∗ θmaxel = 62.2◦

Average speed of azimuth displacement, denoted as ῡaz, and elevation, ῡel , are calcu-

lated.

ῡaz =
raz
Dday

=
122.8◦

585min
= 0.21◦/min (3.11)

and

ῡel =
rel
Dday

=
31.1◦ ∗ 2

585min
= 0.11◦/min (3.12)

Sun’s speed is not constant during time as seen in 3.1, therefore worst cases(maximum

speed) should be also considered for both axes. From 3.1 is observed that azimuthal worst

case appears around noon while reaching maximum elevation and elevation worst case is

at sunrise and sunset. Also a reasonable and representing interval, ∆t = t2−t1 = 20min

was selected, where t1, t2 are time points that meet our worst cases observations.

azimuth

taz1 = 12 : 10⇒ θ(taz1 ) = 176.7◦

taz2 = 12 : 30⇒ θ(taz2 ) = 182.1◦

,where θ(taz) is the specific azimuth position at time taz.

So azimuth max speed,υmaxaz , equals:

υmaxaz =
θ(taz2 )− θ(taz1 )

taz2 − taz1

=
5.4◦

20min
= 0.27◦/min (3.13)

elevation

The same applies in elevation also with one addition; because maximum elevation speed

occurs both in sunrise and sunset their average angular displacement, avg(∆θ(tel),∆θ(t′el)),
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is used as nominator.

rise

tel1 = 7 : 35⇒ θ(tel1 ) = 0◦

tel2 = 7 : 55⇒ θ(tel2 ) = 3.6◦
set

t′el1 = 16 : 50⇒ θ(t′el1 ) = 3.6◦

t′el2 = 17 : 10⇒ θ(t′el2 ) = 0◦︸ ︷︷ ︸
(3.14)

avg(∆θ(tel),∆θ(t′el)) =
(θ(tel2 )− θ(tel1 )) + (θ(t′el1 )− θ(t′el2 ))

2
= 3.6◦ (3.15)

Hence, elevation max speed, υmaxel , equals:

υmaxel =
avg(∆θ(tel),∆θ(t′el))

∆tel
=

3.6◦

20min
= 0.18◦/min (3.16)

21 June

Figure 3.2: Cartesian-like sun route for 21 June

• Rise: {trise = 6 : 10⇒ θ(tazrise) = 60◦, θ(telrise) = 0◦}
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• Set: {trise = 20 : 43⇒ θ(tazset) = 300◦, θ(telset) = 0◦}

• Maximum elevation, θmaxel = 77.9◦, θ(taz) = 180◦} at v 13 : 20

• Daylight duration ,Dday = 14.33h

• Azimuth range, raz = 240◦

• Elevation range, rel = 2 ∗ θmaxel = 155.8◦

Average speed of azimuth displacement, ῡaz, and elevation, ῡel , are calculated.

ῡaz =
raz
Dday

=
240◦

873min
= 0.27◦/min (3.17)

and

ῡel =
rel
Dday

=
77.9◦ ∗ 2

873min
= 0.18◦/min (3.18)

Sun’s speed is not constant during time as seen in 3.2, therefore worst cases(maximum

speed) should be also considered for both axes. From 3.2 is observed that azimuthal worst

case appears around noon while reaching maximum elevation and elevation worst case is

at sunrise and sunset. Also a reasonable and representing interval, ∆t = t2−t1 = 20min

was selected, where t1, t2 are time points that meet our worst cases observations.

azimuth

taz1 = 13 : 10⇒ θ(taz1 ) = 163.1◦

taz2 = 13 : 30⇒ θ(taz2 ) = 184.6◦

,where θ(taz) is the specific azimuth position at time taz.

So azimuth max speed,υmaxaz , equals:

υmaxaz =
θ(taz2 )− θ(taz1 )

taz2 − taz1

=
21.5◦

20min
= 1.08◦/min (3.19)

elevation

The same applies in elevation also with one addition; because maximum elevation speed

occurs both in sunrise and sunset their average angular displacement, avg(∆θ(tel),∆θ(t′el)),

is used as nominator.

rise

tel1 = 6 : 14⇒ θ(tel1 ) = 0◦

tel2 = 6 : 34⇒ θ(tel2 ) = 3.6◦
set

t′el1 = 20 : 18⇒ θ(t′el1 ) = 3.6◦

t′el2 = 20 : 38⇒ θ(t′el2 ) = 0◦︸ ︷︷ ︸
(3.20)



Chapter 3. Methodology 29

avg(∆θ(tel),∆θ(t′el)) =
(θ(tel2 )− θ(tel1 )) + (θ(t′el1 )− θ(t′el2 ))

2
= 3.6◦ (3.21)

Hence, elevation max speed, υmaxel , equals:

υmaxel =
avg(∆θ(tel),∆θ(t′el))

∆tel
=

3.6◦

20min
= 0.18◦/min (3.22)

Note: at 21 June υmaxel = ῡel

20 March

Figure 3.3: Cartesian-like sun route for 20 March

• Rise: {trise = 6 : 28⇒ θ(tazrise) = 89.5◦, θ(telrise) = 0◦}

• Set: {trise = 18 : 36⇒ θ(tazset) = 270.7◦, θ(telset) = 0◦}

• Maximum elevation, θmaxel = 54.5◦, θ(taz) = 180◦} at v 12 : 30

• Daylight duration ,Dday = 12.08h

• Azimuth range, raz = 181.2◦
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• Elevation range, rel = 2 ∗ θmaxel = 109◦

Average speed of azimuth displacement, ῡaz, and elevation, ῡel , are calculated.

ῡaz =
raz
Dday

=
181.2◦

728min
= 0.25◦/min (3.23)

and

ῡel =
rel
Dday

=
109◦ ∗ 2

728min
= 0.15◦/min (3.24)

Sun’s speed is not constant during time as seen in 3.3, therefore worst cases(maximum

speed) should be also considered for both axes. From 3.3 is observed that azimuthal worst

case appears around noon while reaching maximum elevation and elevation worst case is

at sunrise and sunset. Also a reasonable and representing interval, ∆t = t2−t1 = 20min

was selected, where t1, t2 are time points that meet our worst cases observations.

azimuth

taz1 = 12 : 20⇒ θ(taz1 ) = 175.1◦

taz2 = 12 : 40⇒ θ(taz2 ) = 183.7◦

,where θ(taz) is the specific azimuth position at time taz.

So azimuth max speed,υmaxaz , equals:

υmaxaz =
θ(taz2 )− θ(taz1 )

taz2 − taz1

=
8.6◦

20min
= 0.43◦/min (3.25)

elevation

The same applies in elevation also with one addition; because maximum elevation speed

occurs both in sunrise and sunset their average angular displacement, avg(∆θ(tel),∆θ(t′el)),

is used as nominator.

rise

tel1 = 6 : 32⇒ θ(tel1 ) = 0◦

tel2 = 6 : 52⇒ θ(tel2 ) = 4◦
set

t′el1 = 18 : 12⇒ θ(t′el1 ) = 4◦

t′el2 = 18 : 32⇒ θ(t′el2 ) = 0◦︸ ︷︷ ︸
(3.26)

avg(∆θ(tel),∆θ(t′el)) =
(θ(tel2 )− θ(tel1 )) + (θ(t′el1 )− θ(t′el2 ))

2
= 4◦ (3.27)
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Hence, elevation max speed, υmaxel , equals:

υmaxel =
avg(∆θ(tel),∆θ(t′el))

∆tel
=

4◦

20min
= 0.2◦/min (3.28)

22 September

Figure 3.4: Cartesian-like sun route for 22 September

• Rise: {trise = 7 : 12⇒ θ(tazrise) = 89.1◦, θ(telrise) = 0◦}

• Set: {trise = 19 : 21⇒ θ(tazset) = 270.7◦, θ(telset) = 0◦}

• Maximum elevation, θmaxel = 54.7◦, θ(taz) = 180◦} at v 13 : 15

• Daylight duration ,Dday = 12.09h

• Azimuth range, raz = 181.6◦

• Elevation range, rel = 2 ∗ θmaxel = 109.4◦
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Average speed of azimuth displacement, ῡaz, and elevation, ῡel , are calculated.

ῡaz =
raz
Dday

=
181.6◦

729min
= 0.25◦/min (3.29)

and

ῡel =
rel
Dday

=
109.4◦ ∗ 2

729min
= 0.15◦/min (3.30)

Sun’s speed is not constant during time as seen in 3.4, therefore worst cases(maximum

speed) should be also considered for both axes. From 3.4 is observed that azimuthal worst

case appears around noon while reaching maximum elevation and elevation worst case is

at sunrise and sunset. Also a reasonable and representing interval, ∆t = t2−t1 = 20min

was selected, where t1, t2 are time points that meet our worst cases observations.

azimuth

taz1 = 13 : 05⇒ θ(taz1 ) = 175◦

taz2 = 13 : 25⇒ θ(taz2 ) = 183.6◦

,where θ(taz) is the specific azimuth position at time taz.

So azimuth max speed,υmaxaz , equals:

υmaxaz =
θ(taz2 )− θ(taz1 )

taz2 − taz1

=
8.6◦

20min
= 0.43◦/min (3.31)

elevation

The same applies in elevation also with one addition; because maximum elevation speed

occurs both in sunrise and sunset their average angular displacement, avg(∆θ(tel),∆θ(t′el)),

is used as nominator.

rise

tel1 = 7 : 16⇒ θ(tel1 ) = 0◦

tel2 = 7 : 36⇒ θ(tel2 ) = 4.1◦
set

t′el1 = 18 : 56⇒ θ(t′el1 ) = 4.1◦

t′el2 = 19 : 16⇒ θ(t′el2 ) = 0◦︸ ︷︷ ︸
(3.32)

avg(∆θ(tel),∆θ(t′el)) =
(θ(tel2 )− θ(tel1 )) + (θ(t′el1 )− θ(t′el2 ))

2
= 4.1◦ (3.33)

Hence, elevation max speed, υmaxel , equals:

υmaxel =
avg(∆θ(tel),∆θ(t′el))

∆tel
=

4.1◦

20min
= 0.21◦/min (3.34)
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3.2.3 Dataset construction

Based on the observations from Tables 3.4, 3.5, 3.7, 3.6 we suggest that the following

dates sufficiently cover representative weather scenarios for Chania and are chosen to be

the basic datasets:

1. 21 December 2008

2. 21 June 2012

3. 22 September 2012

4. 20 March 2011

subsequently weather conditions history was retrieved, from a free online source 3, and

appropriately formatted. This particular weather database provides users with an API4

making information retrieval easier and more efficient. API requests are made over

HTTP in this form: http://api.wunderground.com/api/some key/condition/q/location.json

and data features return JSON5 or XML6 files. In this case JSON was used and an ex-

ample of this file style can be seen in fig 3.1.

1 {"menu": {
2 "id": "file",

3 "value": "File",

4 "popup": {
5 "menuitem": [

6 {"value": "New", "onclick": "CreateNewDoc ()"},
7 {"value": "Open", "onclick": "OpenDoc ()"},
8 {"value": "Close", "onclick": "CloseDoc ()"}
9 ]

10 }
11 }}

Listing 3.1: JSON example

3www.wunderground.com
4http://www.wunderground.com/weather/api/
5http://www.json.org/
6http://www.w3.org/XML/

www.wunderground.com
http://www.wunderground.com/weather/api/
http://www.json.org/
http://www.w3.org/XML/
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The historical weather data acquired for Chania were recorded from a weather station

located in Souda, Chania,GR7.

At first the returned file was stripped down to the minimum necessary information. This

step was taken because large amount of irrelevant data, as to this work, was retrieved.

The data fields of interest are:

1. UTC UNIX timestamp8

2. Temperature(C◦)

3. Relative humidity(%)

4. Sky condition (fig 3.3)

5. Wind speed(km/h)

6. Wind direction(◦).

Then ”fill in the blanks” methodology was applied. The retrieved data were recorded

with 30 minutes intervals and when compared to ∆intrv = 5min a shortage is found.

For this work 12 data samples are needed each hour instead of 2 that were actually

recorded. In order to overcome this issue linear interpolation was applied to substitute

the missing data. Weather conditions do not dramatically change every half an hour so

this workaround is legit and also accurate. In detail for linear interpolation if two points

x0 → f(x0) = y0, x1 → f(x1) = y1 are known then for ∀x, x ∈ [x0, x1] : f(x) = y is given

from the equation

y − y0

x− x0
=
y1 − y0

x1 − x0
⇐⇒ (3.35)

y = y0 + (y1 − y0)
x− x0

x1 − x0
(3.36)

The previous eq 3.36 was adjusted to calculate the desired data fields, where

- x0, x1 are the timestamps of consecutive recorded data

- y0, y1 are the values for x0, x1 respectively

- x ∈ [x0 + ∆intrv, x0 + 2∆intrv, . . . , x1 −∆intrv].

After constructing the initial datasets for evaluation further experimental setups were

produced. Another 4 identical to the previous ones but with constant wind speed of

7http://www.wunderground.com/weather-forecast/GR/Souda.html
8http://en.wikipedia.org/wiki/Unix_time

http://www.wunderground.com/weather-forecast/GR/Souda.html
http://en.wikipedia.org/wiki/Unix_time
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60 km/h which is a typical maximum at which PVS remains operational [48] This was

done to include extreme consumption conditions. Moreover the following datasets were

constructed based on artificial scenarios of our design:

1. transition from clear sky(CLR) to overcast(OVC), based on 20 March 2011 data

2. transition from overcast(OVC) to clear sky, based on 22 September 2012 data

3. complete overcast(OVC) during the whole day, based on 21 December 2008 data

4. transition from few clouds(FEW) to broken(BKN) again to few(FEW) and back

to broken(BKN) at last for two cases:

(a) spring day, basen on 20 March 2011 data

(b) winter day, based on 21 December 2008 data

5. transition from broken(BKN) clouds to few(FEW) again to broken(BKN) and back

to few(FEW) at last for two cases:

(a) spring day, basen on 20 March 2011 data

(b) winter day, based on 21 December 2008 data

The final collection of datasets aims to be a wide variety of representing weather condi-

tions for Chania in order the results of this work to be generalizable.

All the previous work regarding datasets construction was done with a Python9 script

written for the occasion.

3.3 Moving windows method

3.3.1 Design and properties

As seen in eq 3.5 in page 21 and using contents from Table 3.2 in page 20 our problem’s

state space is

151× 36× 118 ≤|S| ≤ 151× 36× 175 (3.37)

641.448 ≤|S| ≤ 951.300 (3.38)

9https://www.python.org/

https://www.python.org/
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and the action space from eq 3.6 in page 21, with permitted actions corresponding to

the transitions for all orientation positions

|A| = 151× 36 (3.39)

|A| = 5.436 (3.40)

This problem space,|S×A|, is rather large and any solution method would be intractable

to achieve optimal policy. In order to resize the problem scale we introduce an approach,

mentioned from now on as WindowVI, that reduces significantly the action space A.

Specifically, from current state sc ∈ S, in timestep τ , the accessible states, under a set

of actions Asc , are included in a rectangular frame around current state sc with both

dimensions corresponding to azimuth, κsc , and elevation, λsc positions. This can be

considered as a surrounding window of the current state, inside of which all states are

accessible following the corresponding action. As a result ∀s ∈ Ssc , αsc : (κsc , λsc), where

- κsc ∈ [1, |Ksc |] with |Ksc | < |K|

- λsc ∈ [1, |Λsc |] with |Λsc | < |Λ|.

For determining |Ksc |, |Λsc | further analysis is required. This analysis is based on the

astronomical results produced in subsection 3.2.2 in page 25 because the proposed con-

figurations must be able to orient the system according to sun’s movement, at least, for

both axes. The minimum dimensions for this to happen are

• azimuth movement

sun’s maximum azimuth speed is observed in 21 June, eq 3.19 page 28, thus

υmaxaz ∗∆intrv = 1.08◦/min ∗ 5min = 5.4◦ (3.41)

• elevation movement

sun’s maximum elevation speed is observed in 22 September, eq 3.34 page 32, thus

υmaxel ∗∆intrv = 0.21◦/min ∗ 5min = 1.05◦ (3.42)
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From the equation 3.41 and the system’s angular displacement, θstep, |Ksc | can be ap-

proached as

|Ksc | ≥
⌈

5.4◦

θstep

⌉
+ 1 (3.43)

|Ksc | ≥
⌈

5.4◦

1.8◦

⌉
+ 1 (3.44)

|Ksc | ≥ 4 (3.45)

one added position is needed for sc current position. Similarly, for |Λsc |

|Λsc | ≥ 2

⌈
1.05◦

θstep

⌉
+ 1 (3.46)

|Λsc | ≥ 2

⌈
1.05◦

1.8◦

⌉
+ 1 (3.47)

|Λsc | ≥ 3 (3.48)

double plus one positions are needed for up/down movement.

The resulted dimensions are sufficient to positioning continuously the system direct to

sun’s route. As stated in [49–51] sky conditions and solar radiation components are

strongly correlated, meaning that the source of solar radiation varies in the sky dome,

therefore bigger dimensions were adopted to improve efficiency of the method. The

following configurations are proposed

• |Asc | = |Ksc × Λsc | =80 positions

– |Ksc | = 4, |Λsc | = 20

– |Ksc | = 5, |Λsc | = 16

• |Asc | = |Ksc × Λsc | =60 positions

– |Ksc | = 3, |Λsc | = 20

– |Ksc | = 4, |Λsc | = 15

– |Ksc | = 5, |Λsc | = 12

– |Ksc | = 6, |Λsc | = 10

• |Asc | = |Ksc × Λsc | =45 positions

– |Ksc | = 3, |Λsc | = 15

• |Asc | = |Ksc × Λsc | =40 positions

– |Ksc | = 4, |Λsc | = 10
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• |Asc | = |Ksc × Λsc | =20 positions

– |Ksc | = 4, |Λsc | = 5

For each case, for current state sc : (κsc , λsc , τsc), κsc = 1, except when |Ksc | = 5, then

κsc = 2. In addition, for every case λsc =
⌊
|Λsc |

2 + 1
⌋
. λsc is positioned in the middle of

vertical dimension for ascending and descending operations of the system.

Special cases for κsc , λsc As seen in Table 3.2 page 20 |K| = 151 and |Λ| = 36,

hence functions were developed for when limits are met in azimuth and elevation axis.

The target is to keep the selected action space size by repositioning it appropriately. As

sc is relevant to surrounding frame of positions and s is absolutely positioned inside the

complete space of positions, let current state sc : (κsc , λsc , τsc) be in reference within the

|Asc | = |Ksc×Λsc | frame and state s : (κs, λs, τs) be in reference within |As| = |Ks×Λs|,
with sc , s.

Azimuth cases

- If current state sc is close enough to first position in azimuth dimension then action

space is shifted by κsc − κs positions. If κsc > κs, then κ′sc = κs.

- current state sc is close enough to last position in azimuth dimension then action

space is shifted by κs − κsc positions. If κs − κsc + |Ksc | > |Ks|, then κ′sc =

κs + |Ksc | − |Ks|

Elevation cases

- When current state sc is close enough to first position in elevation dimension then

action space is shifted by λsc − λs positions. If λsc > λs, then λ′sc = λs.

- When current state sc is close enough to last position in elevation dimension then

action space is shifted by λs − λsc positions. If λs − λsc + |Λsc | > |Λs|, then

λ′sc = λs + |Λsc | − |Λs|

3.3.2 k-step look ahead

Furthermore a look ahead functionality was implemented in order to provide some insight

for the energy production of accessible positions in future timesteps. The intention is

future information regarding energy gain per reachable state to be back propagated into
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Figure 3.5: Available states from sc
at t

Figure 3.6: Available states from s′1
at t+ 1

Figure 3.7: Available states from s′′2 at t+ k

current timestep. This way control decisions made in every timestep would have taken

into account potential situations. In more detail, let sc : (κsc , λsc , τsc) be the current

state in timestep t and Ssc be the set of accessible states from sc under action set Asc

within |Ksc × Λsc | positions, as denoted by the red window surrounding sc in figure

3.5. For each state inside this frame we calculate its corresponding value. This value

consists of the energy gain in this state plus the maximum value of accessible states in

future timesteps. In figure 3.6 we describe the available states from state s′1 in timestep

t+ 1 and subsequently the accessible states from s′′2, in timestep t+ k generally, with a

dashed frame in figure 3.7. In this example the value of state s1 in timestep t depends
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on the maximum value of the states available in t + 1 an so on until timestep t + k is

reached. This procedure is iteratively continued for all states accessible in timestep t,

figure 3.5, in order to construct their values. When value iteration is finished the state

with maximum value is chosen to be the next current state of the system, sc.

Because VI complexity grows as lookahead steps increase, the following configuration

was chosen for the moving windows in order the algorithm to be feasible.

• k = 1

– |Asc | = |Ksc × Λsc | =60 positions

∗ |Ksc | = 3, |Λsc | = 20

∗ |Ksc | = 4, |Λsc | = 15

∗ |Ksc | = 5, |Λsc | = 12

∗ |Ksc | = 6, |Λsc | = 10

– |Asc | = |Ksc × Λsc | =45 positions

∗ |Ksc | = 3, |Λsc | = 15

– |Asc | = |Ksc × Λsc | =40 positions

∗ |Ksc | = 4, |Λsc | = 10

– |Asc | = |Ksc × Λsc | =20 positions

∗ |Ksc | = 4, |Λsc | = 5

• k = 2

– |Ksc | = 4, |Λsc | = 5

• k = 3

– |Ksc | = 3, |Λsc | = 3

The main algorithm at first chooses greedily the initial current state by simply searching

for the max reward at τs = 0. Then it constructs Ssc , the surrounding window, given the

sc. For all states accessible from sc state values are calculated through the lookahead

process, as described above. When the value iteration is finished, the value functions

for these states have been calculated. The state with maximum value is then picked as

the current state for timestep τs + 1. This procedure is repeated until the last timestep

is reached. The set of all the states that were picked through this process, for all

timesteps, is stored in a vector and represents the PVS orientation positions for the day.

An algorithmic scheme is presented in algorithm 3.
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Algorithm 3 WindowVI

procedure WindowVI

-choose initial sc . first current state

for all τs ∈ I do

- calculate Ssc based on sc . Ssc : set of available states

for all s ∈ Ssc do

for i = 0 to k, i++ do . k: horizon steps

Vi(s)← R(s, α) + maxa
∑

s′ Pα(s, s′)Vi−1(s′)

π(s, i)← arg maxα Vi(s)

end for

end for

sc ← arg maxs V (s) . choose maximum value state as next state

route[τs]← sc . store all chosen states in a vector

end for

end procedure
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Simulation results

In this chapter simulation results are presented. All configurations analysed in section

3.3 in page 35 for every dataset built, as presented in section 3.2.3 in page 33, are

compared against a typical 2-axis sun tracker which follows an astronomical function

calculating the sun’s position at any given moment.

In every table value(s) in bold correspond to maximum for each case.

- 20 March 2011

Sky conditions historical data for this day include scattered clouds from sunrise

until noon. Then cloud cover increases to broken clouds and complete overcast

after that, to end up in broken clouds again before sunset, as seen in Table 3.7 in

page 24.

Table 4.1: Results for 20 March 2011

k-step look ahead |Asc | |Ksc × Λsc | Net production(kWh)

solar tracker 32.021

0-step

80

4× 20 33.018

5× 16 33.028

60

3× 20 33.018

4× 15 33.028

5× 12 33.030

6× 10 33.031

45

42
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k-step look ahead |Asc | |Ksc × Λsc | Net production(kWh)

3× 15 33.028

40

4× 10 33.031

20

4× 5 33.008

1-step

60

3× 20 33.034

4× 15 33.033

5× 12 33.027

6× 10 33.034

45

3× 15 33.034

40

4× 10 33.034

20

4× 5 33.022

2-step

20

4× 5 33.022

3-step

9

3× 3 32.938

For 20 March 2011, |Ksc×Λsc | = i.) 3×20, ii.) 3×15, iii.) 4×10 and iv.) 6×10, with

1-step look ahead option, exhibit better performance than the other configurations.

Also the rest window size configurations perform better with 1-step lookahead

functionality except for 5×12 case which shows a slight drop. The best performing

configurations, interestingly, are consisting of 3 azimuth positions or 10 elevation

positions. Clearly every setup outperforms the typical 2-axis tracker.

- 22 September 2012

During this day archival data include mild cloud cover conditions. Scattered clouds

at sunrise are followed from few clouds for the rest of the day just before sunset

when the sky is totally clear as seen in Table 3.6 in page 24.
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Table 4.2: Results for 22 September 2012

k-step look ahead |Asc | |Ksc × Λsc | Net production(kWh)

solar tracker 51.624

0-step

80

4× 20 52.304

5× 16 52.305

60

3× 20 52.305

4× 15 52.305

5× 12 52.312

6× 10 52.312

45

3× 15 52.306

40

4× 10 52.312

20

4× 5 52.305

1-step

60

3× 20 52.290

4× 15 52.305

5× 12 52.310

6× 10 52.320

45

3× 15 52.306

40

4× 10 52.321

20

4× 5 52.316

2-step

20

4× 5 52.316

3-step

9

3× 3 52.228
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For 22 September 2012, |Ksc × Λsc | = 4 × 10, with 1-step look ahead option,

yields marginally better results than the second best configuration, |Ksc × Λsc | =
6 × 10, with 1-step look ahead option. Setup with maximum available elevation

positions, 3×20, along with setup 5×12, with 1-step lookahead for both, present a

performance drop whereas setups with less elevation positions(6×10, 4×10, 4×5)

increase their performance. Two setups of identical elevation positions(4 × 15,

3 × 15) remain in same levels for both 0-step and 1-step lookahead functionality.

Also, every setup outperforms the typical 2-axis tracker.

- 21 June 2012

For a summer day in Greece the sky conditions are the ones anticipated. Clear

sky is observed through the whole day as seen in Table 3.5 in page 24.

Table 4.3: Results for 21 June 2012

k-step look ahead |Asc | |Ksc × Λsc | Net production(kWh)

solar tracker 73.434

0-step

80

4× 20 73.981

5× 16 73.990

60

3× 20 73.956

4× 15 73.983

5× 12 73.988

6× 10 73.994

45

3× 15 73.959

40

4× 10 73.994

20

4× 5 73.995

1-step

60

3× 20 73.960

4× 15 73.991

5× 12 73.987

6× 10 73.997

45
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k-step look ahead |Asc | |Ksc × Λsc | Net production(kWh)

3× 15 73.966

40

4× 10 73.997

20

4× 5 73.995

2-step

20

4× 5 73.995

3-step

9

3× 3 73.922

For 21 June 2012, |Ksc × Λsc | = i.) 4 × 10 and ii.) 6 × 10, with 1-step lookahead

option, are the top performing configurations closely to the next ones. Setups with

minimum available azimuth positions, such 3×3, 3×15 and 3×20, and regardless

lookahead step functionality present reduced performance compared to the rest

ones. This is something expected though. During a clear sunny summer day, the

nearly optimal strategy is generally similar to the typical sun tracker’s, meaning

to stay aligned with sun’s movement, in order to absorb the beam component

of total solar radiation, as described in section 2.2.1 in page 5. Sun’s azimuth

movement speed is 1.08◦/min, from eq. 3.19, and angular displacement after

∆intrv = 5min is 5.4◦. With two available positions for azimuth movement(one

is already occupied as the current position) only 3.6◦ of angular displacement

can be achieved, resulting in a hysteresis between system-sun alignment. Every

configuration shows an improvement with 1-step lookahead over 0-step lookahead

apart from 5× 12 setup. Interestingly every setup outperforms the typical 2-axis

tracker even though the sky conditions are completely clear, probably because of

the improved performance during sunrise and sunset, when the main amount of

solar radiation is not included in the beam component.

- 21 December 2008

On this winter day the sky is heavily covered with clouds. At sunrise an overcast

is observed followed by broken clouds for the rest of the day, as seen in Table 3.4

in page 23.

Table 4.4: Results for 21 December 2008

k-step look ahead |Asc | |Ksc × Λsc | Net production(kWh)
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k-step look ahead |Asc | |Ksc × Λsc | Net production(kWh)

solar tracker 11.465

0-step

80

4× 20 11.763

5× 16 11.769

60

3× 20 11.762

4× 15 11.770

5× 12 11.778

6× 10 11.771

45

3× 15 11.770

40

4× 10 11.771

20

4× 5 11.767

1-step

60

3× 20 11.751

4× 15 11.764

5× 12 11.776

6× 10 11.780

45

3× 15 11.764

40

4× 10 11.779

20

4× 5 11.782

2-step

20

4× 5 11.782

3-step

9

3× 3 11.760

For 21 December 2008, |Ksc × Λsc | = 4 × 5 configuration, with 1-step and 2-step

lookahead option respectively, outperform the other ones. This setup shows a
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significant improvement over 0-step lookahead. The only setups that present a

performance increase with 1-step lookahead option are the 4 × 10, 6 × 10 ones,

with both having ten elevation positions. Additionally every setup is better than

the typical 2-axis tracker.

- 20 March 2011 with transition from clear sky(CLR) to overcast(OVC).

In this scenario sky conditions begin from clear and gradually convert to overcast

passing from all intermediate cloud cover levels. This transition happens over

equally distributed time intervals from sunrise until sunset.

Table 4.5: Results for 20 March 2011, scenario [CLR-OVC]

k-step look ahead |Asc | |Ksc × Λsc | Net production(kWh)

solar tracker 42.589

0-step

80

4× 20 43.295

5× 16 43.300

60

3× 20 43.295

4× 15 43.301

5× 12 43.305

6× 10 43.309

45

3× 15 43.301

40

4× 10 43.309

20

4× 5 43.301

1-step

60

3× 20 43.297

4× 15 43.305

5× 12 43.305

6× 10 43.311

45

3× 15 43.304

40

4× 10 43.311
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k-step look ahead |Asc | |Ksc × Λsc | Net production(kWh)

20

4× 5 43.306

2-step

20

4× 5 43.306

3-step

9

3× 3 43.258

For 20 March 2011 with transition from clear sky(CLR) to overcast(OVC), |Ksc ×
Λsc | = i.) 4 × 10 and ii.) 6 × 10, with 1-step lookahead option, present the top

results among the tested setups. Similar to 20 March 2011 results, Table 4.1, all

configurations exhibit better performance, with 1-step lookahead in this case, even

5 × 12 setup that presented a marginal decrease in the first now remains at the

same levels of performance for 0 and 1-step lookahead respectively. Moreover every

configuration is better than the typical 2-axis tracker.

- 22 September 2012 with transition from overcast(OVC) to clear sky(CLR).

In this artificial scenario sky conditions begin from complete overcast and gradually

end up in clear passing from all intermediate cloud cover levels. This transition

happens over equally distributed time intervals from sunrise until sunset.

Table 4.6: Results for 22 September 2012, scenario [OVC-CLR]

k-step look ahead |Asc | |Ksc × Λsc | Net production(kWh)

solar tracker 43.890

0-step

80

4× 20 44.746

5× 16 44.746

60

3× 20 44.746

4× 15 44.747

5× 12 44.750

6× 10 44.759

45

3× 15 44.747

40
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k-step look ahead |Asc | |Ksc × Λsc | Net production(kWh)

4× 10 44.759

20

4× 5 44.778

1-step

60

3× 20 44.748

4× 15 44.756

5× 12 44.764

6× 10 44.770

45

3× 15 44.760

40

4× 10 44.778

20

4× 5 44.776

2-step

20

4× 5 44.776

3-step

9

3× 3 44.692

For 22 September 2012 with transition from overcast(OVC) to clear sky(CLR),

|Ksc × Λsc | = i.) 4 × 5 and ii.) 4 × 10, with 0-step lookahead functionality and

1-step lookahead respectively, present the best results. This is the first time that a

top result comes from a configuration without lookahead functionality. These two

setups have smaller set of available positions than the rest. Almost every other

setup increases performance with 1-step lookahead compared to 0-step lookahead.

The only setup with reduced results, even marginally, is 4 × 5 configuration with

1-step and 2-step lookahead options. Obviously every configuration is better than

the typical 2-axis tracker.

- 20 March 2011 with transition from few clouds(FEW) to broken(BKN)

to few(FEW) again and broken at last(BKN).

In this case sky conditions are successively altered from light cloud cover to heavy,

two times during the day passing through intermediate cloud cover conditions.
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Table 4.7: Results for 20 March 2011, scenario [FEW-BKN-FEW-BKN]

k-step look ahead |Asc | |Ksc × Λsc | Net production(kWh)

solar tracker 39.810

0-step

80

4× 20 40.607

5× 16 40.615

60

3× 20 40.607

4× 15 40.615

5× 12 40.619

6× 10 40.620

45

3× 15 40.615

40

4× 10 40.620

20

4× 5 40.601

1-step

60

3× 20 40.603

4× 15 40.610

5× 12 40.612

6× 10 40.621

45

3× 15 40.610

40

4× 10 40.621

20

4× 5 40.611

2-step

20

4× 5 40.611

3-step

9

3× 3 40.513
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For 20 March 2011 with transition from few clouds(FEW) to broken(BKN) to

few(FEW) again and broken at last(BKN), |Ksc ×Λsc | = i.) 6× 10 and ii.) 4× 10

setups, with 1-step lookahead functionality, present the best results. These two

configurations outperform the rest for both 0 and 1-step lookahead functionality.

Every other setup with 1-step lookahead performs worse than 0-step except 4× 5

setup which shows a slight improvement. As seen every configuration is better

than the typical 2-axis tracker.

- 21 December 2008 with transition from few clouds(FEW) to broken(BKN)

to few(FEW) again and broken at last(BKN).

This day is the winter equivalent, in terms of sky conditions, with the previous

case.

Table 4.8: Results for 21 December 2008, scenario [FEW-BKN-FEW-BKN]

k-step look ahead |Asc | |Ksc × Λsc | Net production(kWh)

solar tracker 16.485

0-step

80

4× 20 16.887

5× 16 16.887

60

3× 20 16.888

4× 15 16.887

5× 12 16.892

6× 10 16.896

45

3× 15 16.888

40

4× 10 16.896

20

4× 5 16.893

1-step

60

3× 20 16.878

4× 15 16.888

5× 12 16.893

6× 10 16.899

45



Chapter 4. Simulation results 53

k-step look ahead |Asc | |Ksc × Λsc | Net production(kWh)

3× 15 16.888

40

4× 10 16.898

20

4× 5 16.904

2-step

20

4× 5 16.904

3-step

9

3× 3 16.883

For 21 December 2008 with transition from few clouds(FEW) to broken(BKN)

to few(FEW) again and broken at last(BKN), |Ksc × Λsc | = 4 × 5 configuration,

with 1-step and 2-step look ahead option respectively, outperform the rest ones.

The only setup that performs better without lookahead functionality is 3 × 20 in

contrast with the rest that improve slightly their results. Furthermore every setup

is better than the typical 2-axis tracker.

- 20 March 2011 with transition from broken clouds(BKN) to few(FEW)

to broken(BKN) again and few(FEW) at last.

In this case sky conditions are successively altered from broken clouds to few, two

times during the day passing through intermediate cloud cover conditions.

Table 4.9: Results for 20 March 2011, scenario [BKN-FEW-BKN-FEW]

k-step look ahead |Asc | |Ksc × Λsc | Net production(kWh)

solar tracker 39.846

0-step

80

4× 20 40.825

5× 16 40.826

60

3× 20 40.825

4× 15 40.826

5× 12 40.827

6× 10 40.827

45
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k-step look ahead |Asc | |Ksc × Λsc | Net production(kWh)

3× 15 40.826

40

4× 10 40.827

20

4× 5 40.806

1-step

60

3× 20 40.832

4× 15 40.823

5× 12 40.827

6× 10 40.832

45

3× 15 40.823

40

4× 10 40.832

20

4× 5 40.827

2-step

20

4× 5 40.827

3-step

9

3× 3 40.741

For 20 March 2011 with transition from broken clouds(BKN) to few(FEW) to

broken(BKN) again and few(FEW) at last, |Ksc×Λsc | = i.) 3×20, ii.) 4×10 and

iii.) 6 × 10, with 1-step look ahead option, exhibit better results than the other

configurations. Most of the setups perform better with 1-step lookahead except

two cases, 3×15 and 4×15. Both have 15 elevation positions and mutually exhibit

equal performance for 0 and 1-step lookahead. Also every setup outperforms the

typical 2-axis tracker.

- 21 December 2008 with transition from broken clouds(BKN) to few(FEW)

to broken(BKN) again and few(FEW) at last.

This day is the winter equivalent, in terms of sky conditions, with the previous

case.
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Table 4.10: Results for 21 December 2008, scenario [BKN-FEW-BKN-FEW]

k-step look ahead |Asc | |Ksc × Λsc | Net production(kWh)

solar tracker 16.407

0-step

80

4× 20 16.845

5× 16 16.844

60

3× 20 16.845

4× 15 16.844

5× 12 16.847

6× 10 16.848

45

3× 15 16.844

40

4× 10 16.848

20

4× 5 16.837

1-step

60

3× 20 16.838

4× 15 16.844

5× 12 16.844

6× 10 16.856

45

3× 15 16.844

40

4× 10 16.855

20

4× 5 16.858

2-step

20

4× 5 16.858

3-step

9

3× 3 16.833
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For 21 December 2008 with transition from broken clouds(BKN) to few(FEW) to

broken(BKN) again and few(FEW) at last, |Ksc ×Λsc | = 4×5 configuration, with

1-step and 2-step look ahead option respectively, marginally outperform the rest

of the best. The k-step look ahead functionality boosts performance sufficiently in

this case. Also most of the setups present same or better performance with 1-step

lookahead and only 3× 20 and 5× 12 configurations have decreased performance

with 1-step lookahead option. In addition, every setup is better than the typical

2-axis tracker.

- 21 December 2008 with complete overcast(OVC).

This case is self explanatory, overcast is consistent throughout the day.

Table 4.11: Results for 21 December 2008, scenario [OVC]

k-step look ahead |Asc | |Ksc × Λsc | Net production(kWh)

solar tracker 6.414

0-step

80

4× 20 6.569

5× 16 6.577

60

3× 20 6.568

4× 15 6.579

5× 12 6.594

6× 10 6.581

45

3× 15 6.579

40

4× 10 6.581

20

4× 5 6.576

1-step

60

3× 20 6.556

4× 15 6.577

5× 12 6.586

6× 10 6.591

45

3× 15 6.579
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k-step look ahead |Asc | |Ksc × Λsc | Net production(kWh)

40

4× 10 6.593

20

4× 5 6.591

2-step

20

4× 5 6.591

3-step

9

3× 3 6.564

For 21 December 2008 with complete overcast(OVC), |Ksc × Λsc | = 5 × 12 con-

figuration, without any look ahead option, is slightly better than the rest of the

best. This is only the second case that the best performance is achieved without

lookahead functionality. The effect of step lookahead in performance is rather di-

vided here with three setups presenting a loss, one remaining at the same levels

and three increasing. In addition, every setup is better than the typical 2-axis

tracker.

Subsequently the results derived from the datasets with enhanced wind conditions, are

demonstrated. The following datasets are based on the four main datasets presented in

section 3.2.3 in page 33. Sky conditions in the following cases are the same with these

datasets.

- 20 March 2011 with wind speed 60km/h

Table 4.12: Results for 20 March 2011 with wind speed 60km/h

k-step look ahead |Asc | |Ksc × Λsc | Net production(kWh)

solar tracker 31.899

0-step

80

4× 20 32.859

5× 16 32.876

60

3× 20 32.859

4× 15 32.877

5× 12 32.882
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k-step look ahead |Asc | |Ksc × Λsc | Net production(kWh)

6× 10 32.884

45

3× 15 32.877

40

4× 10 32.884

20

4× 5 32.859

1-step

60

3× 20 32.931

4× 15 32.916

5× 12 32.885

6× 10 32.896

45

3× 15 32.921

40

4× 10 32.896

20

4× 5 32.874

2-step

20

4× 5 32.874

3-step

9

3× 3 32.792

For 20 March 2011 with wind speed 60km/h, |Ksc × Λsc | = 3× 20 configuration,

with 1-step lookahead option, is the best performing one. This specific setup is also

among the best for the dataset 20 March 2011 with historical weather data. The

next setup regarding performance has also 3 positions in azimuth direction(3×15).

As seen all setups improve their performance with 1-step lookahead. In addition,

every setup is better than the typical 2-axis tracker.

- 22 September 2012 with wind speed 60km/h

Table 4.13: Results for 22 September 2012 with wind speed 60km/h

k-step look ahead |Asc | |Ksc × Λsc | Net production(kWh)
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k-step look ahead |Asc | |Ksc × Λsc | Net production(kWh)

solar tracker 51.515

0-step

80

4× 20 52.096

5× 16 52.095

60

3× 20 52.098

4× 15 52.099

5× 12 52.132

6× 10 52.131

45

3× 15 52.101

40

4× 10 52.132

20

4× 5 52.154

1-step

60

3× 20 52.016

4× 15 52.116

5× 12 52.136

6× 10 52.159

45

3× 15 52.095

40

4× 10 52.164

20

4× 5 52.166

2-step

20

4× 5 52.166

3-step

9

3× 3 52.097

For 22 September 2012 with wind speed 60km/h, |Ksc×Λsc | = 4×5 configuration,

with 1-step and 2-step lookahead option respectively, marginally outperform the
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second best, |Ksc × Λsc | = 4 × 10 with 1-step look ahead. The top performing

configuration is better than the rest at each 0-step and 1-step lookahead case

respectively. Only two setups with equal azimuth positions, 3 × 15 and 3 × 20,

present a drop in their performance from 0 to 1-step lookahead. Clearly every

setup is better than the typical 2-axis tracker.

- 21 June 2012 with wind speed 60km/h

Table 4.14: Results for 21 June 2012 with wind speed 60km/h

k-step look ahead |Asc | |Ksc × Λsc | Net production(kWh)

solar tracker 73.264

0-step

80

4× 20 73.782

5× 16 73.796

60

3× 20 73.757

4× 15 73.784

5× 12 73.804

6× 10 73.822

45

3× 15 73.760

40

4× 10 73.822

20

4× 5 73.841

1-step

60

3× 20 73.745

4× 15 73.793

5× 12 73.800

6× 10 73.823

45

3× 15 73.767

40

4× 10 73.825

20

4× 5 73.840
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k-step look ahead |Asc | |Ksc × Λsc | Net production(kWh)

2-step

20

4× 5 73.840

3-step

9

3× 3 73.775

For 21 June 2012 with wind speed 60km/h, |Ksc × Λsc | = 4 × 5 configuration,

with 0-step lookahead option, performs better than the other tested cases. The

second best configuration is with same window dimensions and added lookahead

steps. The observations made for Table 4.3 apply here as well. Configurations

with limited azimuth positions, 3 × 15 and 3 × 20, exhibit a noticeably reduced

performance compared to the rest regardless lookahead functionality. Moreover it

can be seen that every setup is better than the typical 2-axis tracker.

- 21 December 2008 with wind speed 60km/h

Table 4.15: Results for 21 December 2008 with wind speed 60km/h.

k-step look ahead |Asc | |Ksc × Λsc | Net production(kWh)

solar tracker 11.411

0-step

80

4× 20 11.663

5× 16 11.690

60

3× 20 11.661

4× 15 11.694

5× 12 11.706

6× 10 11.695

45

3× 15 11.694

40

4× 10 11.696

20

4× 5 11.712

1-step

60
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k-step look ahead |Asc | |Ksc × Λsc | Net production(kWh)

3× 20 11.646

4× 15 11.693

5× 12 11.698

6× 10 11.710

45

3× 15 11.692

40

4× 10 11.710

20

4× 5 11.726

2-step

20

4× 5 11.726

3-step

9

3× 3 11.699

For 21 December 2008 with wind speed 60km/h, |Ksc × Λsc | = 4 × 5 configura-

tion, with 1-step and 2-step lookahead option respectively, present the best results

among the other tested cases. Finally every setup is better than the typical 2-axis

tracker.

Results Comparison

It is obvious that during enhanced wind conditions the best configuration is |Ksc×Λsc | =
4× 5 with 1-step and 2-step lookahead options. The small size dimensions of the previ-

ous setups works as an advantage, due to the proportional correlation between energy

consumption and available actions set, Asc , under specific wind conditions; the bigger

the positioning displacement is, the more energy is needed for.

In contrast with the above, where certain configurations are clearly outperforming the

rest, an inconclusive picture is derived from the results tables, regarding the perfor-

mance hierarchy of the selected setups for the remaining datasets. For this reason, the

cumulative production gain from each dataset is summed up for each setup.

∑
d

[Prodj ] (4.1)

where

d each case from all datasets
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Prodj is the energy production for each one of the |Ksc × Λsc |, k-step combinations

Table 4.16: Accumulated energy production results.

k-step look ahead |Asc | |Ksc × Λsc | Net production sum(kWh)

solar tracker 373.986

0-step

80

4× 20 380.839

5× 16 380.886

60

3× 20 380.816

4× 15 380.885

5× 12 380.943

6× 10 380.947

45

3× 15 380.862

40

4× 10 380.948

20

4× 5 380.868

1-step

60

3× 20 380.787

4× 15 380.896

5× 12 380.931

6× 10 381.012

45

3× 15 380.879

40

4× 10 381.019

20

4× 5 380.988

2-step

20

4× 5 380.988

3-step

9
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k-step look ahead |Asc | |Ksc × Λsc | Net production sum(kWh)

3× 3 380.331

From the above, two configurations are distinctively better than the rest. For |Ksc ×
Λsc | = i.) 4 × 10 and ii.) 6 × 10, with 1-step look ahead functionality the accumulated

energy production exceeds 381kWh whereas all the other setups do not. An interesting

fact is that for both of them |Λsc | = 10. Also every setup presents better results than

the typical 2-axis solar tracker.

k-step lookahead behaviour

Some configurations perform better with 0-step lookahead and others with 1-step. In

order to have a qualitative look over this observation, a plot with the accumulated

production against each window configuration was created.

Figure 4.1: k-step lookahead comparison

Generally 1-step lookahead functionality boosts performance, as seen. Five out of seven

different window sizes perform better with lookahead. Configurations with 15 elevation

positions, 3 × 15 and 4 × 15, present the smallest improvement whereas the smallest

window setup, 4 × 5, exhibit the biggest one. Moreover the two top performing win-

dow configurations, 6 × 10 and 4 × 10, maintain leading results for both 0-step and

1-step lookahead options. In contrast there are two setups, 3 × 15 and 3 × 20, that

perform worse than the others for both 0-step and 1-step lookahead. Both of them have
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3 azimuth positions which is a disadvantage in certain cases, as noted in Tables 4.3, 4.14.

Dynamic Programming methods comparison As mentioned in section 2.4 in page

13 another approach based on dynamic programming[33] was developed and tested under

the same experimental configuration presented in this thesis. In the following table our

results, in column WindowVI, and the ones of the aforementioned work are presented

together.

Table 4.17: Results for different dynamic programming approaches. Values are in
KWh and correspond to net energy gain.

Dataset Single Axis Dual Axis

Day Typical Myopic SolarTrackingPI WindowVI Typical Myopic SolarTrackingPI WindowVI

H
is

to
ri

ca
l 1 32.533 32.791 32.794 32.761 32.021 33.033 33.070 33.034

2 52.036 52.042 52.046 52.017 51.624 52.326 52.360 52.321
3 71.037 72.977 72.985 72.962 73.434 74.003 74.027 73.997
4 11.623 11.738 11.754 11.730 11.465 11.788 11.822 11.782

F
ic

ti
on

al 1 32.530 32.784 32.790 32.670 31.899 32.730 32.972 32.931
2 52.034 52.040 52.045 51.961 51.515 52.034 52.247 52.166
3 71.018 72.961 72.977 72.893 73.264 73.706 73.862 73.841
4 11.615 11.729 11.751 11.706 11.411 11.567 11.747 11.726

Single axis case tracks the sun only in horizontal/azimuth direction while the other axis

remains fixed throughout the day. The slope orientation is a set of different positions,

one per day of study. These fixed orientations are calculated by searching the space of

all available positions, taking into account the weather forecast for the next day. The

columns correspond to the methods developed for the optimal sun tracking problem.

Typical column refers to the commercially available sun tracking solutions that follow

the sun based on an astronomical function as described in the beginning of this chapter.

Also this column acts as a baseline for the rest of the results. The column WindowVI

represent the results of our proposed algorithm. For each study case the best result from

our experiments is presented. The WindowVI in single axis mode is a slight variation

of our main algorithm. Slope positions are fixed throughout every experiment, hence

|Λsc | = 1 position in vertical direction. For azimuth dimension |Ksc | = 151, meaning

that all possible positions, as described in Table 3.2 in page 20, in horizontal direction

are available in this case. It can de described as an extreme case of a single row window,

|Ksc × Λsc | = |151× 1|.
The remaining two columns are the dynamic programming methods presented in [33]

and are described in Related work section 2.4 page 13. The datasets from the above

table are:

Historical

- 1 → 20 March 2011



Chapter 4. Simulation results 66

- 2 → 22 September 2012

- 3 → 21 June 2012

- 4 → 21 December 2008

Fictional

- 1 → 20 March 2011 with wind speed 60km/h

- 2 → 22 September 2012 with wind speed 60km/h

- 3 → 21 June 2012 with wind speed 60km/h

- 4 → 21 December 2008 with wind speed 60km/h

The above datasets are more extensively described in section 3.2.3 in page 33. For single

axis results our method outperforms the typical sun tracker in all cases. In contrast,

the other two dynamic programming methods perform better than ours. This can be

explained due to the optimization process that is applied in fixed slope position selection

for each method. Furthermore WindowVI was designed mainly for dual axis applica-

tion. In this case the lack of freedom in vertical dimension acts as a disadvantage for

our method.

In dual axis tracking our approach keeps performing better than the typical sun tracker.

Compared against the remaining two methods, we see a marginal improvement over

myopic in one out of four historical cases while a slight reduction is present in the rest

three. In the case of fictional datasets, WindowVI stands between myopic and Solar-

TrackingPI in terms of performance. It is consistently better than myopic for each one

of the four days. An explanation might rely on myopic’s lack of system’s consumption

consideration, a critical aspect for these four cases because of the enhanced wind speed

presence. We could sum up our conclusions by stating that generally SolarTrackingPI

present the top results, whereas our method, shares the next place with myopic in dual

axis and follows it in single axis mode. Moreover, our method appears to be better

than a typical sun tracker. It should be considered that the typical sun tracker(dual or

single axis) technology is the dominant one in world market. Our results suggest that

improvements can be made in the current trend.

Orientation examples

Apart from tabular results it is interesting to visualize the selected moves of the PVS

through the day that produced these results. To this end we provide some graphical

representations of our simulations. The best performing configuration is demonstrated

for each case.
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- 21 December [OVC]

Figure 4.2: Graphical results for 21 December with complete overcast.

In Figure 4.2 we can see that the system’s positioning is in parallel with the

horizontal plane during most of the day. Only around noon it approaches sun’s

orientation.

- 21 June 2012

The sky is completely clear during this summer day, hence our system’s positioning

strategy in Figure 4.3, which is similar to the typical dual axis tracker, comes as

no surprise.

- 22 September 2012

During this day scattered and mostly few clouds exist. Our system’s orientation

is similar to the typical tracker’s one but in lower elevation degrees as seen in

Figure 4.4.

-Note: The starting/ending point for all simulations is: azimuth=180o (South), elevation=90o

(zenith)
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Figure 4.3: Graphical results for 21 June 2012 based on historical data.

Figure 4.4: Graphical results for 22 September 2012 based on historical data.



Chapter 5

Renop- a Web User Interface

The approach presented in this thesis was also incorporated in a web based graphical

tool, Renop. In order to visualize the results of the optimal sun tracking method that

was proposed in this work, tabular results are exhibited against a typical dual axis sun

tracker. Moreover the dynamic programming methods from [33], specifically Next day

optimal, Myopic and SolarTrackingPI, were added as possible options for the user. All

methods are available for testing over the datasets we created in section 3.2.3 in page 33.

The page provides user input for WindowVI variables, such as k-step lookahead option

and window |Ksc × Λsc | configurations as described in section 3.3 in page 35. For k =

[1, 2, 3] cases where computation time is rather large for user-interactive functionality,

an email form is available for user input. When calculations are finished the results are

sent automatically in the provided email address. A sample screenshot can be seen in

figure 5.1.

Figure 5.1: Renop - WindowVI option.
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For the remaining three methods selection is pretty straightforward because none of

them require user input as code variables. In the case of policy iteration algorithm, due

to the intensive computation process, an email dialog box is provided with the same

functionality as described above, in WindowVI case. A sample screenshot can be seen

in figure 5.2.

Figure 5.2: Renop - policy iteration method.

After user input is submitted and appropriately parsed as arguments, our basic simu-

lation code computes the system’s optimal trajectory and net energy gain estimations.

Subsequently a PHP1 script handles the produced results and parses them in a Python

script which updates the user interface accordingly. The final resutls of selected method

are displayed against a typical sun tracker for comparison, as seen in figure 5.3. The

Figure 5.3: Renop results page.

information displayed is the estimated net energy production in Wh while the tables

1http://www.php.net/

http://www.php.net/


Chapter 5. Web based tool 71

include the timestep of the specific orientation, corresponding datetime and azimuth

elevation angles in degrees (◦). In detail,

- timestep are the discrete 5-minute timesteps as described in Table 3.2, page 20

- time, local time of Chania, timezone(’Greece/Athens’)

- azimuth angle in degrees (◦), with North:0◦ and South:180◦

- elevation angle in degrees (◦), with zenith2:90◦.

Finally it should be mentioned that a cahe-like functionality was created and added

in site’s algorithm. For every user given input the code is executed once; if the same

configuration is requested later from another user a stored copy will be immediately

available for viewing, thus speeding up the provided service.

2The zenith is an imaginary point directly ”above” a particular location, on the imaginary celestial
sphere. ”Above” means in the vertical direction opposite to the apparent gravitational force at that
location.



Chapter 6

Conclusions and future work

A new approach to solar tracking techniques was presented through this work. In order to

improve the energy production simultaneously with system’s consumption, the problem

was modeled as an optimal control situation with sequential decision making. For this

reason MDP framework was used and VI applied for approximating nearly optimal

solutions corresponding to PVS orientation through the day. Similar approaches have

never been developed before because the necessary reward model was non existant, but

in this thesis we propose RENES estimator for this work. Furthermore a k-step look

ahead functionality was added to the traditional VI scheme in order to improve results.

The datasets evaluated cover a wide variety of weather patterns for different times of

the year and the derived results show a clear improvement over the traditional solar

tracking method. The configurations tested present different performance behaviour

under different weather conditions as described in datasets. As presented in the previous

Chapter 4 two of the tested configurations seem to outperform the rest ones.

As stated, the combination of solar tracking with optimal control strategies driven by AI

methodologies has never been tried before so a wide area for future work has emerged.

This could include different approaches for MDP solving with problem specific variations.

Also an operational real world downscaled prototype could be build in order to correlate

the simulated estimations with real measurements. Also computational cost reduction

is of great significance. Algorithmic modifications and code optimization techniques,

such as parallel computing, might be employed when applicable(e.g power production

estimations from RENES backend). Finally, further improvements can be made in Renop

web tool. In terms of user experience, server-side modifications could speed up execution

times resulting faster response or better throughput if more algorithms are added in the

future.
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