
UTML: UNIFIED TRANSACTION MODELING LANGUAGE

by

Nektarios Gioldasis

A thesis submitted in fulfillment of the
requirements for the degree of

Master of Computer Engineering

TECHNICAL UNIVERSITY OF CRETE
DEPARTMENT OF ELECTRONICS AND COMPUTER

ENGINEERING

LABORATORY OF DISTRIBUTED MULTIMEDIA

INFORMATION SYSTEMS AND APPLICATIONS

MUSIC

Chania 2002

DEDICATION

To Christos and Andreas

AUTHOR’S DECLARATION

I hereby declare that I am the sole author of this thesis.

I authorize the Technical University of Crete to lend this thesis to others
institutions of individuals for the purpose of scholarly research.

I further authorize the Technical University of Crete to reproduce this thesis by
photocopying of by other means, in total or part, at the request of other
institutions or individuals for the purpose of scholarly research.

ABSTRACT

This thesis proposes UTML (Unified Transaction Modeling Language) as a high

level, formal and extensible modeling language for complex transaction models

for transactional web applications. Web applications impose several new

characteristics that alter the notion of transaction. Such new characteristics are

the hierarchical structure of transactions, the dependencies imposed between

transactions of the same structure, the distributed nature of resources in the web,

the use of other transactional world-wide distributed web services, and the

integration (re-use) of diverse resources like legacy systems that already exist in

organizations for many years.

This thesis does not propose any new specific transaction model or any new

transaction management system. Rather it proposes a design language for

transactional web applications that can be used by application designers to

analyze, model and document the complex transactions of the web applications

and services, as well as to communicate the transactional semantics of an

application to any interested party (designers and implementers –current or future

ones-, customers or other applications). Many web applications are nowadays

delivered to different end users, through different channels and different devices.

This “ubiquity” of web applications introduces the need for multiple

implementations (or transformations) of essentially the same logic for different

devices and channels. We refer to those applications as “families of applications”

with several members. Very often, those members are needed and developed at

different times during the life time of the family. Thus, proper and formal

documentation of the precise semantics that an application family has with a tool

like UTML is of high importance.

The language that we developed is based on a rich and extensible transaction

meta-model and it proposes a notation system that is used to export the meta-

model’s functionality in a concrete and formal interface. The meta-model defines

the main concepts used in transaction modeling and it regulates their relations

and their behavior by introducing a rich set of constraints and rules.

The notation system serves as a graphical tool that makes the use of the meta-

model handy and easily understood by any one. The notation system is a

compatible extension of the UML (Unified Modeling Language) using its

extensibility features, and complements the transaction meta-model by providing

modeling of the execution flow of transactions. The use of UML has several

advantages such as easy and high level modeling of transactions eliminating the

meta-model’s complexity, modeling of application’s data, logic, and flow of

execution with the same language, etc.

The final design of transactions can be exported in XML (eXtensible Markup

Language) based on an XML schema that has been properly defined to describe

the transactions provided by applications. An XML description of the

application’s transactions has several uses. One possible is for documentation of

the application’s functionality and transactional semantics, which can be queried

using standard XML query languages. Another is the communication of those

semantics between co-operating applications or companies that plan to cooperate

for producing an integrated service (for example using ebXML). Finally, by

having the application’s functionality described in XML format, one can easily

transform it to WSDL (Web Services Description Language) documents in case

that he wants to make an application (or part of it) available to the outside world

as a web service.

The thesis shows that the transaction meta-model is rich enough to describe most

of the existing Extended Transaction Models and it presents a complex

ubiquitous transactional web application example which can be modeled using

UTML. Much more detailed examples of complex web applications and their

modeling with UTML can be found in [22].

The implementation of UTML and XML transformation tool have been

successfully integrated to a Ubiquitous Web Application design tool, which has

been designed and implemented as an extension of UML for facilitating the

design of web applications within the European IST project UWA (Ubiquitous

Web Applications / IST-2000-25131).

ACKNOWLEDGMENTS

I would like to express my gratitude to my supervisor Prof. Stavros

Christodoulakis for his supervision and his continuous guidance throughout my

research, as well as for the important experiences he offered me during my stay at

the Laboratory of Distributed Multimedia Information Systems and Applications

(MUSIC). First of all I would like to thank him for the positive influence he had

on me in broadening my horizons.

I would also like to express my gratitude to the readers of this master Mr. Manolis

Koubarakis and Mr. Peter Triantafillou for the time they devoted and their critical

evaluation and helpful comments on my thesis.

My appreciation goes to Mr. Petros Kapoulas, Nektarios Moumoutzis, Andreas

Economides and George Anestis for the endless discussions we had regarding

this research.

It is my pleasure to acknowledge Mrs. Maria Koziri, who during her diploma

thesis in the lab, she implemented a tool to support the language described in this

thesis.

Finally, I would like to thank all my colleagues in Lab so much for our excellent

cooperation, as for the pleasant environment in the Laboratory.

PUBLICATIONS

Part of the work that is included in this thesis has been published in the following
Conference Proceedings:

• Nektarios Gioldasis, Stavros Christodoulakis and the UWA Consortium,
“The UWA Approach to Modeling Ubiquitous Web Applications”, a paper
in the Proceedings of the European Conference on Mobile IST and Wireless
Telecommunications, Thessaloniki, June 2002

• Nektarios Gioldasis, Stavros Christodoulakis. “Transaction Modeling for
Web Applications and Services”, in the proceedings of the 1st Hellenic Data
Management Symposium (HDMS 02), Athens, July 2002

• Nektarios Gioldasis, “UTML: Unified Transaction Modeling Language”,
a Doctoral poster in the Proceedings of 28th International Conference on Very
Large DataBases – (VLDB) 2002, Hong Kong - China, August 2002

• Nektarios Gioldasis, Stavros Christodoulakis and the UWA Consortium,
“Ubiquitous Web Applications”, In the proceedings of the 12th European
Conference on e-Business and e-Work (EBΕW), Prague, October 2002

• Nektarios Gioldasis, Stavros Christodoulakis, “UTML: Unified Transaction
Modeling Language”, In the proceedings of the 3rd International Conference
on Web Information Systems Engineering (WISE), Singapore, December 2002

TABLE OF CONTENTS

1. INTRODUCTION 1

1.1. WHAT MAKES A PROGRAM A TRANSACTION? 1
1.2. ADVANCED TRANSACTION MODELS 5
1.3. THE MOTIVATION FOR UTML 6
1.3.1. COMPLEX USER INTERFACE INTERACTION 6
1.3.2. DISTRIBUTED AND DIVERSE RESOURCES 7
1.3.3. DISTRIBUTED SERVICES AND LEGACY SYSTEMS 9
1.3.4. UBIQUITY 11
1.4. THE SCOPE OF THE THESIS 12
1.5. AIM, OBJECTIVES, AND CONTRIBUTION OF THE THESIS 13
1.6. THE TOURIST SUPPORT SYSTEM 15
1.7. THESIS’ STRUCTURE 17

2. RELATED WORK 19

2.1. EXTENDED TRANSACTION MODELS 20
2.1.1. SAGAS 20
2.1.2. NESTED TRANSACTIONS 22
2.1.3. OPEN NESTED TRANSACTIONS 24
2.1.4. THE CONTRACT TRANSACTION MODEL 25
2.1.5. THE SPLIT TRANSACTION MODEL 27
2.1.6. ACTA TRANSACTION FRAMEWORK 28
2.1.7. LIMITATIONS OF ETMS 30
2.2. THE UNIFIED MODELING LANGUAGE 33
2.2.1. WHAT IS THE UNIFIED MODELING LANGUAGE? 33
2.2.2. DIAGRAMS IN THE UML 34
2.2.3. EXTENSIBILITY MECHANISMS 37
2.3. SUMMARY 38

3. THE TRANSACTION META-MODEL OF UTML 39

3.1. OPERATIONS 40
3.2. ACTIVITIES 44
3.3. EXECUTION CONTRACTS 63
3.4. COMPENSATIONS 69
3.5. ALL TOGETHER 72
3.6. DESCRIBING COMPLEX MODELS 73
3.6.1. WELL-FORMEDNESS RULES 74

 ii

3.6.2. WELL-BEHAVING RULES 75
3.7. CHOOSING APPROPRIATE COMPENSATION TYPES 75
3.8. THE EXTENSIBILITY MECHANISM 77
3.8.1. AN EXAMPLE OF THE META-MODEL’S EXTENSIBILITY 78
3.9. SUMMARY 80

4. THE NOTATION SYSTEM 82

4.1. SOME ADVANCED UML CONCEPTS 83
4.2. THE UTML PROFILE 85
4.3. ORGANIZATION MODEL ELEMENTS 86
4.4. EXECUTION MODEL 100
4.5. SUMMARY 106

5. IMPLEMENTATION IN ROSE AND XML TRANSFORMATION 108

6. APPLICATIONS OF UTML 113

6.1. DESCRIBING NESTED TRANSACTIONS WITH UTML 114
6.1.1. ORGANIZATION MODELING OF NESTED TRANSACTIONS 115
6.1.2. EXECUTION MODELING OF NESTED TRANSACTIONS 116
6.2. DESCRIBING SAGAS WITH UTML 117
6.2.1. ORGANIZATION MODELING OF SAGAS 118
6.2.2. EXECUTION MODELING OF SAGAS 120
6.3. A CUSTOM TRANSACTION FOR THE TSS 120
6.3.1. USER AUTHORIZATION. 121
6.3.2. FLIGHT RESERVATION 121
6.3.3. HOTEL RESERVATION 122
6.3.4. EVENT TICKET RESERVATION 122
6.3.5. THE ORGANIZATION MODEL OF THE TSS SYSTEM 123
6.3.6. THE EXECUTION MODEL OF THE TSS SYSTEM 130
6.3.7. SUMMARY 132

7. CONCLUSIONS AND FUTURE WORK 133

7.1. SUMMARY AND CONTRIBUTIONS 133
7.2. FUTURE WORK 136

LIST OF FIGURES

Figure Page Number
FIGURE 1: A DISTRIBUTED TRANSACTION ... 8

FIGURE 2: A WEB APPLICATION UTILIZING WEB SERVICES... 11

FIGURE 4: STRUCTURE OF NESTED TRANSACTION.. 22

FIGURE 5: A CONTRACT EXAMPLE ... 27

FIGURE 6: DEPENDENCIES CAPTURED BY ACTA FRAMEWORK.. 28

FIGURE 7: THE CONCEPT OF OPERATION. CLASIFICATION AND RELATIONSHIPS......................... 44

FIGURE 8: STATUS CHANGE MODEL.. 47

FIGURE 9: THE POSSIBLE STATUS CHANGES OF AN ACTIVITY.. 48

FIGURE 10: THE ACTIVITY CONCEPT AND ITS RELATIONSHIP WITH OPERATIONS 58

FIGURE 11: APPLICATIONS AND APPLICATION VIEWS .. 63

FIGURE 12: EXECUTION CONTRACT SUB-TYPING ... 68

FIGURE 13: SUB-TYPING OF EXECUTION CONTRACTS FOR COMPENSATIONS 71

FIGURE 14: THE ENTIRE UTML META-MODEL.. 72

FIGURE 15: UTML NOTATION STRUCTURE .. 86

FIGURE 16: XML SCHEMA: ROOT LEVEL ... 110

FIGURE 17: XML SCHEMA: THE PACKAGE SUB-TREE ... 110

FIGURE 18: XML SCHEMA: THE ACTIVITY SUB-TREE.. 111

FIGURE 19: XML SCHEMA: THE COMPENSATION SUB-TREE.. 112

FIGURE 20: STRUCTURING OF NESTED TRANSACTION.. 115

FIGURE 21: EXECUTION FLOW MODELING FOR NESTED TRANSACTIONS................................. 117

FIGURE 22: STRUCTURING OF A SAGA TRANSACTION .. 118

 ii

FIGURE 23: THE EXECUTION MODEL OF A SAGA .. 120

FIGURE 24: THE ORGANIZATION MODEL OF THE PLANTRIP ACTIVITY.................................... 123

FIGURE 25: THE ORGANIZATION OF THE USERAUTHORIZATION ACTIVITY............................. 124

FIGURE 26: THE ORGANIZATION OF THE HOTELRESERVATION ACTIVITY 124

FIGURE 27: THE ORGANIZATION OF THE FILIGHTRESERVATION ACTIVITY 125

FIGURE 28: THE ORGANIZATION OF THE EVENTTICKETRESERVATION ACTIVITY 125

FIGURE 29: THE EXECUTION OF THE PLANTRIP ACTIVITY ... 130

FIGURE 30: THE EXECUTION OF THE USERAUTHORIZATION ACTIVITY.................................... 130

FIGURE 31: THE EXECUTION OF THE HOTELRESERVATION ACTIVITY 131

FIGURE 32: THE EXECUTION OF THE FLIGHRESERVATION ACTIVITY....................................... 131

FIGURE 33: THE EXECUTION OF THE EVENTTICKETRESERVATION ACTIVITY 132

LIST OF TABLES

Table Page Number

TABLE 1: CORRESPONDENCE OF COMPENSATION AND ACTIVITIES 77

TABLE 2: TAG VALUE DEFINITIONS 88

TABLE 3: ORGANIZATIONMODEL STEREOTYPE DEFINITION 89

TABLE 4: ORGANIZATIONPACKAGE STEREOTYPE DEFINITION 89

TABLE 5: ACTIVITY STEREOTYPE DEFINITION 90

TABLE 8: D_ACTIVITY STEREOTYPE DEFINITION 92

TABLE 9: AI_ACTIVITY STEREOTYPE DEFINITION 92

TABLE 10: AD_STEREOTYPE DEFINITION 92

TABLE 11: DI_ACTIVITY STEREOTYPE DEFINITION 93

TABLE 12: AID_ACTIVITY STEREOTYPE DEFINITION 93

TABLE 13: ACD_ACTIVITY STEREOTYPE DEFINITION 94

TABLE 14: ACID_ACTIVITY STEREOTYPE DEFINITION 95

TABLE 15: COMPENSATION STEREOTYPE DEFINITION 95

TABLE 16: AD_COMPENSATION STEREOTYPE DEFINITION 96

TABLE 17: AI_COMPENSATION STEREOTYPE DEFINITION 96

TABLE 18: AID_COMPENSATION STEREOTYPE DEFINITION 97

 ii

TABLE 21: COMPENSATES STEREOTYPED DEFINITION 98

TABLE 22: INVISIBLE STEREOTYPE DEFINITION 99

TABLE 23: VITAL_INVISIBLE STEREOTYPE DEFINITION 99

TABLE 24: VISIBLE STEREOTYPE DEFINITION 100

TABLE 25: VISIBLE STEREOTYPE DEFINITION 100

TABLE 26: EXECUTIONMODEL STEREOTYPE DEFINITION 101

TABLE 27: EXECUTIONPACKAGE STEREOTYPE DEFINITION 102

TABLE 28: EXPLICITSTART STEREOTYPE DEFINITION 103

TABLE 29: ROLLBACK STEREOTYPE DEFINITION 104

TABLE 30: ROLLBACK STEREOTYPE DEFINITION 106

TABLE 31: ACTIVITY SPECIFICATIONS FOR A NESTED TRANSACTION 116

TABLE 32: ACTIVITY SPECIFICATION FOR SAGAS 119

TABLE 33: ACTIVITY SPECIFICATION FOR THE PLANTRIP TRANSACTION 129

CHAPTER 1. INTRODUCTION

 1

1. Introduction

The concept of transactional computation is not new. Decades ago people begun

thinking of requirements and constraints that should be enforced by applications’

logic and computers’ infrastructure, in order to prevent wrong processing or

handling of critical data. The field of applicability was initially identified to be in

banking applications. The requirements identified for those applications led to the

characterization of some programs as transactions. That is, a transaction is a

program. Fortunately, the transaction concept has been defined to be

independent to the banking applications and thus, its use proved valuable in

many application domains beyond this area. So, in this thesis transactions are

considered and presented as general programs that are enhanced with additional

semantics.

1.1. What makes a program a transaction?

In many applications databases are used to model the state of some real-world

enterprise. In such applications, transaction is a program that interacts with the

database so as to maintain the correspondence between the state of the enterprise

and the state of the database. In particular, a transaction may update the database

such as to reflect the occurrence of some real-world event that affects the state of

the enterprise. An example is a reservation of a seat at particular flight of an

airline. The event is that a customer reserves a ticket for a particular flight with

this airline. The transaction updates the airline’s database to reflect the reservation

of this particular seat.

Transactions however, are not ordinary programs. Requirements analysis for

transactions has shown that they should obey specific constraints which

distinguish them from other non-transactional programs. The general idea behind

the transaction concept is that a transaction is a contract. In making a contract,

two or more parties negotiate for a while and then make a deal. This deal imposes

CHAPTER 1. INTRODUCTION

 2

some constraints that should be obeyed by all involved parties. These constraints

often are:

Atomicity: A transaction either happens or it does not; either all defined work is bound by the

contract or nothing (as it had never been started). In other words, transactions either

complete successfully or any partial result of them is undone and the database is

not affected at al. In general, the status of a transaction after its termination can

be either committed (all work completed successfully) or aborted (no actions

were executed and no partial effects have survived in the system). This constraint

(or property that must be supported by transactions) is also known as failure

atomicity. That is, in case of a failure, all active transactions should abort and all

so far updates that they have performed to the database should be undone (rolled

back) so that the database obtains the state that it had before the aborted

transactions had been started. The process of restoring the database in the state it

had before an aborted transaction started is part of the database recovery and it

is executed by the database recovery manager.

Consistency: Transactions should transfer the database from one consistent state to another

consistent state. A transaction must access and update the database in such a way

that it preserves all database integrity constraints. Every real-world enterprise is

organized in accordance with certain business rules that restrict the possible states

of the enterprise. For example the airline business rules define that the number of

reserved tickets for a flight must be less than the number of the total seats for this

flight. As it has been mentioned, databases are used to model real-world

enterprises and thus, when such business rules exist, they have a finite number of

states.

In database terms, these rules are stated as integrity constraints. The integrity

constraint corresponding to the above business rule asserts that the value of the

database item that stores the reserved seats for a flight cannot exceed the value of

CHAPTER 1. INTRODUCTION

 3

the database item which stores the number of the total seats for this flight. Thus,

when a transaction on this database terminates, the system must ensure that all

database integrity constraints are satisfied. Otherwise, the transaction is

considered to break the contract and is not allowed to commit (to terminate

successfully); it should abort by rolling back (undoing) all its partial results.

Transaction consistency is checked at the termination of a transaction. This holds

due to the fact that a transaction performs database operations (reads and writes)

sequentially as a normal program. Thus, during the transaction processing,

inconsistencies in the database are possible. However, the definition of

consistency imposed that transactions should see a consistent state of the

database. Thus, these inconsistencies should not be visible by other transactions

on the same data. This means that transactions should not interfere.

Isolation: Even though transactions are executed concurrently, the overall effect of the schedule

must be the same as if the transactions had executed serially in some order. We say that a set

of transactions are executed sequentially, or serially, if one transaction of this set

is completed before another transactions is started. In this case, if all transactions

are consistent and the database was initially in a consistent state, then after the

execution of all transactions the database is still consistent. However, serial

execution of transactions is impossible for applications that have strict

performance requirements. For those applications, concurrent execution of

transactions is the only way to meet the performance requirements. Concurrent

execution is appropriate for systems that serve many users and at any given time,

and in those systems it is possible that many partially completed transactions will

be active in the same time.

In concurrent execution, the database operations of different transactions are

effectively interleaved. Operations are sent by a transaction to the database

management system (DBMS) forming a sequence of requests. Such a sequence is

CHAPTER 1. INTRODUCTION

 4

known as a transaction schedule. When transactions are executed concurrently,

the overall database schedule is simply a merge of the schedules of all active

transactions. If the DBMS serves these requests with the sequence that they

arrive, then it is possible that transactions will see partial results of other

transactions (that may or may not abort in the future) and based on these results

may perform database operations that violate the database consistency. An

unacceptable situation! Thus, appropriate constraints must regulate the

concurrent execution of transactions. In particular, constraints that prohibit

transactions interference must be provided and the transaction processing system

must enforce those constraints.

One oversimplified approach is to have transactions to be executed serially.

However, this approach is inapplicable in multi-user systems where performance

requirements are strict. On the other hand, it would be a waste of resources (and

time) if we had an active transaction blocking another transaction that would like

to perform operations on different database objects. Thus, transactions should be

able to execute concurrently with other transactions if they do not interfere.

Transaction schedules that satisfy this constraint are called serializable.

Isolation is usually achieved by requiring transactions to obtain locks on the

database items on which they want to perform operations. When a transaction T1

asks for a lock on a database item that is held by another transaction T2, then T1

has to wait until T2 releases the lock on that item. The strategy that will be used to

enforce isolation is known as the concurrency control and the DBMS module

that is responsible for that, is called concurrency manager. There have been

developed several concurrency controls that are implemented by DBMSs.

As with Atomicity, and Consistency, ordinary programs do not necessarily have

to obey the constraint of isolation. For example, if common programs that

update a particular file are executed concurrently, updates may be interleaved and

CHAPTER 1. INTRODUCTION

 5

the overall output (the file content) may be quite different from that obtained if

they had been executed sequentially.

Durability: Once the results of a transaction have been committed, they cannot be aborted by

the same transaction. This requirement imposes that once the transaction commits,

the system must ensure that its effects remain in the database even if the

computer, or the medium, on which the database is stored, crashes. Consider for

example that you are a client that you want to reserve a seat in a flight. Once you

have reserved your seat, you require that at the boarding time you will still have

the seat reserved for you, independently of any failure in the airline’s information

system.

On the other hand, real world deals can be canceled. Thus, committed

transactions should be still able to be canceled. This is of course possible, but a

committed transaction can be only canceled by another transaction; not the same.

Durability against physical failures can be achieved by several ways. Backups,

replication at mirror sites, etc. This has to do with the degree of data availability

that we desire, and the cost of ensuring durability varies with the desired degree

of availability.

1.2. Advanced Transaction Models

In section 1.1 we described transactions to be executed on a single computer and

access a single database. Transactions of this kind are known as database

transactions and are defined to be short in duration, flat –without internal

structure- and access a single database. Their analysis and modeling has been

done in this context and most DBMSs support effective processing of them.

Although powerful, the transaction model adopted in traditional database systems

is found lacking in functionality and performance when used for applications that

CHAPTER 1. INTRODUCTION

 6

involve re-active (endless), open-ended (long-lived) and collaborative (interactive)

activities. Hence, various extensions to the traditional transaction model have

been proposed and are known as Extended Transaction Models (ETM). ETMs try to

relax some of the ACID properties that the traditional transaction model

enforces by successively decomposing a complex transaction into sub-

transactions in a top-down fashion. Each ETM defines a specific transactional

behavior, and all nodes (transactions) of a complex transactional graph have to

follow this behavior.

1.3. The Motivation for UTML

In the fist years of the internet and the world-wide-web (www), enterprises were

provided with the ability to promote themselves by presenting information to

their potential customers. Nowadays, the internet’s evolution is so high, that

applications have the ability to deliver their functionality to a wide range of users

and even other applications through the web. The term e-business has become a

buzzword and refers to the new way with which enterprises make business. The

internet-provided interconnectivity between applications led to the

reconsideration of the traditional notion of enterprises and consequently the

notion of enterprise information systems. From a transactional point of view,

web-based information systems or web applications are very complex and

impose several issues coming from different sources.

1.3.1. Complex User Interface Interaction

A significant difference between centralized applications and web applications is

the user behavioral model which is assumed by the application designer and is

supported by the application development tools and the underline infrastructure.

Centralized applications usually target a (probably trained) user who knows what

he wants and proceeds to complete a focused task, whereas web applications

CHAPTER 1. INTRODUCTION

 7

have as model user, one who browses around with great flexibility and with a

tendency to look around initiating possibly various tasks in parallel, without

paying much attention to the overheads incurred by open transactions, and

without paying much attention to close those transactions. Web browsers

encourage such flexibility in the user behavior with the browsing flexibility that

they provide.

While it is possible to place several restrictions in the user navigational patterns

(including restrictions on the use of the web browser capabilities), such

restrictions should be as limited as possible in order to avoid user confusion and

to make the application “user-unfriendly”. After all, other competing web

applications are just one click away. Therefore, web applications and

consequently web transaction models should provide the users with a great

flexibility, allowing the simultaneous opening and closing of several sub-

transactions without violating the necessary transaction semantics, and

supporting transactions with long life.

1.3.2. Distributed and Diverse Resources

Transactional web applications may be composed of several hierarchically

structured activities that may access distributed resources. If such activities are

defined to have transactional semantics, then new requirements appear that have

to be taken into account by both the application designer and developer.

Think of a web application that, among others, offers the functionality of

performing cross-bank money transfers. Suppose that this process is

implemented with a distributed transaction T. This transaction initiates two other

sub-transactions T1 and T2, one at each bank site. The global transaction must

ensure that either both T1 and T2 commit, or none commits. An illustration of

this example is depicted on figure 1.

CHAPTER 1. INTRODUCTION

 8

Figure 1: A distributed Transaction

In this example, except that each (local) sub-transaction must be atomic,

consistent, isolated and durable, the whole distributed transaction T should be

globally atomic and consistent. That is, either both T1 and T2 commit, or none of

them commits. The problem derives from the distributed nature that the

application has. If both accounts were held in the same database, then the

business process would be modeled by one traditional transaction and the

problem wouldn’t exist.

To overcome this problem, proper commit protocols had to be defined. The

Two Phase Commit (2PC) does it by defining a standard interface which has to

be supported by both DBMSs in order to communicate and co-ordinate the

commitment of distributed transaction.

To make things worse, suppose that one distributed DBMSs does not support

the 2PC protocol. How is it now ensured that either all distributed transactions

commit, or none commits? As another example of transactions that accesses

CHAPTER 1. INTRODUCTION

 9

diverse resources consider one that updates both a database (enforced integrity

constraints, isolation, etc.) and a file handled by an ordinary file system.

Thus a web transaction model should be flexible enough to accommodate

diverse resources into the scope of the same structured transaction, taking

into account different resource interfaces and semantics.

1.3.3. Distributed services and legacy systems

The internet enabled traditional information systems to deliver their functionality

through the www to end users and other applications. Web based information

systems may be built from scratch or may exploit functionality that already

existed, and the enterprises have tested for years and they trust them. On the

other hand, a web based information system may be a combination of both

existing functionality and new that complements the existed one.

Much of the pre-existing functionality has been built many years ego, when

technology was no so advanced, and its poor documentation and high complexity

makes its modification extremely difficult and dangerous. The term legacy

system refers to those systems that have the aforementioned characteristics.

From a transactional point of view, when trying to integrate legacy systems into

web applications there are two main problems:

• Simplified data manipulation: Many legacy systems process their data

without the ACID transaction model in mind. Their correct use may

require a good training on their functionality and a deep knowledge of

their limitations. In developing new web-based applications, this is an

important factor. Recall that users of web applications may be completely

inexperienced.

CHAPTER 1. INTRODUCTION

 10

• Poor documentation: Legacy systems have been developed without

integration in mind and the help of their implementers may not be

available at the time of integration to web applications. Moreover, most

of times there is no documentation available to the designers and

implementers of the new integrating web application.

Web transactions that are defined to utilize functionality of legacy systems should

be designed in a bottom-up fashion, taking into account all limitations that come

from this integration. Existing transaction models do not properly support

bottom-up design and thus, their use in modeling web transactions proves to be

difficult or even inapplicable. A new –web oriented- transaction model is

needed that will be able to support transaction design in both a top-down

and bottom-up fashion.

Another example of pre-existing functionality exploitation by web applications

concerns the integration of web services. The emergence of XML (eXtensible

Markup Language) has fired an entirely new area of e-business. Interoperability

between applications became possible through XML messages. This ability

enabled the technology of web services, through which the functionality of a web

application or an information system (possible a legacy one) can be available for

other applications as a (web based) service.

CHAPTER 1. INTRODUCTION

 11

Figure 2: A Web Application Utilizing Web Services

In a web application, remote web services may be used as activities or sub-

activities that specify a specific user goal or sub-goal. Figure 1 depicts such a web

application. In case that the application logic implies dependencies between these

services and other newly developed transactional activities of the application, no

one of the existing transaction models can be used to exactly describe these

dependencies. Thus, a web transaction model should provide proper

integration of web services into a web application, taking into account the

transactional logic of these services and offering added value services to

the end user.

1.3.4. Ubiquity

Web applications may be presented to the users in diverse devices (mobiles,

palmtops, etc.) having deviations in the interface and the flow of logic, thus

forming families of applications that utilize the same application logic with rather

small deviations.

Consider for example a web application that offers the functionality of reserving

flight tickets. If this application is to be delivered through a mobile phone, then

CHAPTER 1. INTRODUCTION

 12

the implementation of the new «application view» will use the already existing

transactional logic of the application. In such a case, the transactional logic and

the precise semantics of such applications should be well modeled in order to be

reusable. Moreover, not all «application views» are known and taken into account

during the application design and implementation. So, there is a need for

proper documentation of the application’s logic and the precise

transactional semantics, in order for the new application views to be easily

derived.

The above requirements for web applications show that web transactions can be

very complex for well designed applications, and that flexible transaction models

and tools which support the web transaction design process, the documentation

and the maintenance of transactions are valuable, more valuable than in

centralized applications.

Whereas high level modeling methodologies and tools for software and

application-logic design have been widely accepted and standardized[26], there

are no such mechanisms to facilitate the modeling and design of application

logic that exhibits complex transactional behavior.

1.4. The Scope of the Thesis

This thesis brings together high level modeling mechanisms and transactional

aspects of application logic. It proposes UTML (Unified Transaction Modeling

Language) as a high level transaction modeling language to facilitate the complex

transaction design process of web applications. UTML is based on a very flexible

and extensible transaction meta-model, capable to accommodate structured

transactions containing sub-transactions with diverse semantics, and can be used

in both top-down and bottom-up design processes. It allows great flexibility for

the web user navigational patterns, and also accommodates long-lived

CHAPTER 1. INTRODUCTION

 13

transactions. UTML is an extension of the Unified Modeling Language [26] (the

most widely accepted and used industrial modeling standard) and supports the

modeling, documenting and maintaining of large scale transactional web

information systems.

1.5. Aim, Objectives, and Contribution of the thesis

The aim of this thesis is to provide a high level modeling language for web

applications that exhibit complex transactional behavior. The produced models of

such a language could also be used to document the application’s logic and

semantics. Note that documentation of the precise transactional semantics of

static and dynamic behavior of the application is very important not only to

maintain the application, but also to derive many different application views of

the same application family (like an application re-implemented or transformed

several times for different terminal devices).

The Unified Modeling Language (UML) has been chosen as the modeling

platform on which the proposed language (UTML) has been built. UML is a

world-wide industry standard for modeling, and UTML has been built on top of

it using its extensibility mechanisms and consequently is completely compatible

with it.

UTML should not simply extend UML by defining some new stereotyped model

elements. Rather, it should bring together a flexible, rich, and extensible

transaction meta-model with the high level modeling mechanisms provided by

UML, forming a powerful high level transaction modeling language capable to

support the design of complex web transactions.

The detailed objectives that have been set for UTML derive from the limitation

that existing transaction models have and can be summarized into the following:

CHAPTER 1. INTRODUCTION

 14

• Give to the designer the ability to analyze, design, and describe both

the static structure of transactions and their dynamic behavior. In

web applications, it is very important to model not only the structural

dependencies of transactions, but also their dynamic behavior and their

real time execution dependencies (for example, the flow of their

execution, sequential or parallel). This way, transaction execution is

smoothly integrated to the entire application and a primitive user

navigation model is defined.

• Provide appropriate tools for designing transactions compatible to

most of the known transaction models. The existing transaction

models should be always a choice of design. Thus UTML must provide

mechanisms to design transactions that conform to these models.

• Provide extensibility for describing new transaction models that may

be required according to the application’s requirements. No specific

model can capture the requirements of any web applications. Thus, it is

important for UTML to be extensible, giving the ability to dynamically

synthesize new transaction models as web applications require.

• Provide the ability for describing different decomposition semantics

and behavior into the same structured transaction. This flexibility is

very important for applications that access resources (databases, legacy

systems, file systems, etc.) with different interfaces, behavior and

semantics. With this modeling ability the same transaction can access

different resources and utilize existing (legacy) systems or services

allowing more flexibility in the transaction execution without violating the

transactional semantics.

CHAPTER 1. INTRODUCTION

 15

• Support the design of transactions that allow typical user behavior in

the web, where users can navigate in and out of transactional activities

and they are not necessarily bound to one service provider (other

providers are only a click away and over-restricting the user interface may

result into loosing customers).

UTML has been developed to meet the aforementioned objectives and provides

a formal mechanism for designing complex web transactions. To my knowledge,

UTML is the first transaction modeling language in the literature and is

compatible to the Unified Modeling Language. Beyond the achievement of the

objectives that were previously described, it provides a complete set of rules that

are used to formalize the arbitrary structuring of transactions in complex

transactional graphs. Alike other models, it can be used to describe “weak

transactions”, i.e. activities that do not have to respect the entire set of the ACID

properties, providing this way a mechanism for modeling typical web processes

(that are not strict transactions) and integrating pre-existing functionality of legacy

systems that do not ensure all the ACID properties in transaction processing.

In [22] a design tool has been developed in order to support transaction design

with UTML. This tool enforces the application of all well-formedness rules that

the language proposes and provides the ability of describing the transaction

design in XML format. This capability enables the communication of

transactional semantics between interacting applications and provides easy

description of well-designed applications as transactional web services.

1.6. The Tourist Support System

To enhance reader’s understanding of the technical material presented here, a

case study of a transactional web application is being used through the chapters

of this thesis. This case study is a Tourist Support System (TSS). This application

CHAPTER 1. INTRODUCTION

 16

provides a complete functionality to tourists (end users) in organizing their

vacations. Users can register to the system and use its full functionality by making

flight reservations, hotel reservations and reservations of tickets for some social

events. In this system there are several tasks that can be executed by the users.

However, three of them will be used, when needed, to enhance the reader’s

understanding. A brief description of these tasks is needed to familiarize the

reader with the TSS, which will be mentioned many times in this thesis.

• User Authorization. In order for the users to access the functionality of

TSS they have to register to the system. Once registered, each time that

they want to use the system’s functionality they have to authorize

themselves. User authorization is a way for the system to identify the

user. Even in cases that the use of an application’s functionality is free,

web applications do still require users to authorize themselves (in order to

provide personalized functionality, content, etc.). In such a task usually

some private user data are required, and a validation of those data against

all stored user profiles is done.

• Flight Reservation. With this task users can reserve tickets in any flight

and pay the cost of the ticket. A particular flight reservation requires

several actions as to find a desired flight, to check availability, to reserve

ticket and to pay the ticket’s cost.

• Hotel Reservation. Users execute this task to make hotel reservations

according to their requirements. Hotel reservation may depend on the

output of the flight reservation task or vice versa. That is, a user may

want to make a hotel reservation in Rome if he manages to make a flight

reservation for going to Rome. In case that he can find a flight he may

wish to cancel the hotel reservation since there is no way to go there. In

CHAPTER 1. INTRODUCTION

 17

order for a user to make a hotel reservation he should find a hotel, find a

room, reserve the room and pay the reservation cost.

• Event ticket reservation. Users may or may not want to reserve tickets

for some social events that may take place during his residence in Rome.

If yes, he has to find interesting events, to check availability of tickets and

reserve the tickets he desires. Finally he must pay the cost of the tickets

that he reserved.

The tasks that were described above can be executed independently of each

other, or under the scope of a large, long-lived, complex task of planning a trip.

More details about those tasks will be presented through the chapters of this

thesis.

1.7. Thesis’ structure

Into the next chapter we briefly present the work which is related to this research.

In particular we present the most known Extended Transaction Models in the

literature and we identify their limitations in relation to complex transactional web

applications. Also, we give a brief presentation on the Unified Modeling

Language.

In chapter 3 we present the transaction meta-model on which UTML has built

on. The meta-model sets up the formal concepts used in designing complex

transactions and defines the modeling elements used in UTML. The concepts of

operations, activities, activity execution contracts, compensations, well-

formedness rules, and well-behaving rules are presented in detail, as well as, the

extensibility mechanism of the transaction meta-model.

Chapter 4 describes the notation system of UTML. The notation system is an

extension of the UML which has been done by using its extensibility mechanism.

CHAPTER 1. INTRODUCTION

 18

It consists of two parts: the Organization Model and the Execution Model. The

former is used to specify the structure of complex transactions and their

decomposition semantics, while the letter one is used to define the flow of

execution between them.

In chapter 5 we present the transformation of transaction design from UTML to

XML. This transformation is part of a design tool, implemented outside the

scope of this thesis, which supports transaction design with UTML. In particular,

we present the XML schema, which has been developed in the scope of the

thesis and is used to produce XML documentation of the transaction design.

In chapter 6 we demonstrate the use of UTML in designing complex

transactions. We firstly use UTML to describe known transaction models (Nested

and Sagas), and then we provide an extended example on designing custom

transaction models with this language. The example used in that chapter is the

Tourist Support System, and it demonstrates the flexibility of the language in

describing complex transactions for web applications.

Finally, in chapter 7 we conclude the work presented in this thesis, and we

summarize its main contributions. We also present some ideas for future

extensions of UTML to directions of dataflow modeling between transactions,

modeling of persistent transactions, and description of asynchronous transaction

execution.

CHAPTER 2. RELATED WORK

 19

2. RELATED WORK

In this chapter, we present the work that is directly or indirectly related to UTML.

One research area that UTML is directly related to, concerns the Extended

Transaction Models and distributed transaction management standards and

protocols. The other area concerns the Unified Modeling Language research

efforts.

In section 2.1 we present the most known Extended Transaction Models and we

identify their limitations in relation to complex web transactions. The Extended

Transaction Models will be presented are:

• The Nested Transactions Model

• The Open Nested Transactions Model

• The Sagas Transaction Model

• The ConTract Transaction Model

• The Split Transaction Model

• The ACTA Transaction Framework

Then, in section 2.2 we give a brief presentation on UML, in order to familiarize

the user with the concepts that will be used in the following chapters of this

thesis. UML is a world-wide accepted industry standard, which is used for

analyzing, modeling, and documenting software systems.

CHAPTER 2. RELATED WORK

 20

2.1. Extended Transaction Models

The insufficient expressiveness of the traditional transaction model led to the

development of many new, so called extended transaction models. These models try to

overcome the limitations of the traditional model by, for example, introducing

the internal structure of a transaction, or by relaxing some of the ACID

properties. Relaxed atomicity for example, allows a transaction to succeed

(commit) even if some of its operations or sub-transactions fail, and thus

provides finer granularity of recovery control. Relaxed isolation allows a

transaction to reveal its partial results to a concurrent transaction, and thus

increases possible level of concurrency and cooperation among the transactions.

In the next sections, the most influential extended transaction models are

described. After that, we discuss their limitations when used to describe

transactional behavior of modern web applications.

2.1.1. Sagas

Sagas have been proposed by Garcia-Molina and Salem [11], as a model for long-

lived transactions. A saga is a set of relatively independent sub-transactions

denoted T1… Tn. The component sub-transactions have all the ACID

properties of traditional transactions, and can interleave in any way with

component sub-transactions of other sagas. When a component transaction

terminates, it commits and makes its results visible to other sagas. However, sub-

transactions of a saga have to be executed in a predefined order.

For each sub-transaction Tk (1 ≤ k ≥ n), a compensating sub-transaction CTk is

defined. A compensating transaction CTk semantically “undoes” the effects of

CHAPTER 2. RELATED WORK

 21

transaction Tk. The state of the database after executing the sequence Tk, CTk

should be the same as if neither Tk nor CTk were executed.

Figure 3: An Example of a SAGA

To complete a saga, either the whole sequence is successfully executed (figure 3 -

successful execution of a saga) or the effects of already committed sub-

transactions are undone by a sequence of compensating sub-transactions (figure 3

- unsuccessful execution of a saga). As illustrated in figure 3, compensating sub-

transactions are executed in reverse order of the component sub-transactions.

Note that there is no compensation sub-transaction associated with the last sub-

transaction Tn. When Tn commits, no other sub-transaction may be executed (saga

commits). Therefore compensating actions for Tn are not required.

The main property of sagas is that their isolation is limited to the level of sub-

transactions. Each sub-transaction commits and releases resources. Therefore,

sagas can use partial results of other sagas. Clearly, the execution of sagas does

not use serializability as a correctness criterion. This happens, due to the fact that

sagas may read data that have been updated by other sagas and which may be

compensated later on.

Execution of sagas is characterized by an increased degree of parallelism. The

resources held by a sub-transaction, and its results are released immediately after

CHAPTER 2. RELATED WORK

 22

its commitment, without waiting for the completion of other components of the

saga.

2.1.2. Nested Transactions

To overcome the limitations of the traditional, flat transaction model, where a

transaction is an atomic unit without any interval structure, nested transactions were

proposed by Moss in [21]. A transaction in this model consists of several sub-

transactions, which in turn may contain any number of sub-transactions, forming

a hierarchy called a transaction tree. A sub-transaction which has its own sub-

transactions is called a parent, and its sub-transactions are called children.

Figure 4: Structure of Nested Transaction

The sub-transactions of a nested transaction may commit or abort independently,

subject to the following constraints. A child sub-transaction must start after its

parent starts. A parent must terminate only after all its children terminate. If a

parent is aborted, all its children must be aborted. However, when a child

transaction fails, the parent may choose its own way of recovery. For example,

the parent may:

CHAPTER 2. RELATED WORK

 23

• Ignore the failure and proceed with other tasks. In this case the failed

child is considered to be non-vital

• Retry the failed sub-transaction,

• Execute another sub-transaction that performs an alternative action (a

contingency sub-transaction)

• Abort.

All the traditional ACID properties are preserved in this model. Nested

transactions are isolated from each other and in case of failure they are rolled

back without effects upon other transactions or the database system. However,

the sub-transactions of a nested transaction, though atomic and isolated from

each other, are not durable. Even if a sub-transaction commits, its effects will be

undone when its parent aborts. The updates made by a sub-transaction become

permanent only after the root of the transaction tree commits. Similarly, the

results of a committed sub-transaction may be used by other sub-transactions

before their parent commits, but they are externalized only after commitment of

the whole transaction.

The main advantages of this model are:

• Increased modularity. The transaction tree provides a convenient

framework for hierarchical decomposition of a transaction.

• Better failure handling. Sub-transactions allow the users to define

recovery units much smaller than the whole transaction. In case of a

failure, only a small portion of the performed activity (a sub-transaction)

has to be rolled back. In contrast, in the traditional transaction model the

CHAPTER 2. RELATED WORK

 24

whole transaction must be undone. Such flexibility may be used in

developing more efficient recovery mechanisms.

• Higher degree of parallelism. Since sub-transactions reveal their results

to each other, they may be executed concurrently. Therefore, nested

transactions allow a higher degree of intra-transaction parallelism.

The hierarchical approach of nested transactions, as well as the notions of

contingency and non-vital components was incorporated into most of the

subsequent transaction models.

2.1.3. Open Nested Transactions

Open Nested Transactions [10] relax the isolation requirement of the regular nested

transaction model by making the results of committed sub-transactions visible to

other concurrently executing nested transactions. This way, a higher degree of

concurrency is achieved. To avoid inconsistency use of the results of committed

sub-transactions, only those sub-transactions that commute with the committed

ones are allowed to use their results. We say that two transactions (or, in general,

two operations) commute if their effects, i.e., their output and the final state of

the database, are the same regardless of the order in which they were executed. In

conventional systems, only read operations commute. Based on their semantics,

however, one can define also update operations as commutative (for example

increment operations of a counter).

This transaction model uses compensation to provide correctness of transactions. A

sub-transaction can commit and release the resources before the parent

transaction successfully completes and commits. If the parent transaction later

aborts, its failure atomicity may require that the effects of already committed sub-

transactions be undone by executing compensating sub-transactions. A compensating

CHAPTER 2. RELATED WORK

 25

sub-transaction T semantically undoes effects of a committed sub-transaction T,

so that the state of the database before and after executing the sequence T T is

the same. However, an inconsistency may occur if other transaction S observes

the effects of sub-transactions that will be compensated later [11] [14]. The open

nested transaction model uses the commutativity to solve the problem. Since only

sub-transactions that commute with committed ones are allowed to access the

results, the execution sequence T S T is equivalent to S T T and, according to

the definition of compensation, to S, and therefore is consistent.

In addition to the modularity, fine granularity of failure handling, and increased

level of intra-transaction parallelism, the open nested transaction model provide

the user with relaxed isolation and possibly a higher level of cooperation for his

applications.

2.1.4. The ConTract Transaction Model

The basic idea of the ConTract transaction model [15] is to build large

applications form short ACID transactions. Its exact definition is:

A ConTract is a consistent and fault tolerant execution of an arbitrary sequence

of predefined actions (called steps) according to an explicitly specified flow of

control (called script).

Each step of a ConTract is implemented by embedding it into a traditional ACID

transaction. Thus, steps have all ACID properties, but the ConTract as a whole

does not. The relation of a ConTract, as a unit of work, with the ACID

properties has the following deviations:

• Atomicity. The fundamental deviation from classical transactions is that

ConTracts give up atomicity at the script level since they are used to

CHAPTER 2. RELATED WORK

 26

model long duration units of work. In case of failure they roll forward,

maybe along a different path than the one taken before.

• Consistency. ConTracts maintain system integrity by providing

appropriate semantic dependencies between steps.

• Isolation. A ConTract is not isolated since it is used to describe a long-

lived process.

• Durability. Each step of a ConTract is durable when terminates and in

order to by undone, a new step must run.

Figure 5 shows a typical ConTract example. In this example the script of a

business trip planning activity is described using short ACID transactions. Note

that dependencies between steps can be defined by requiring that either they both

commit or none commits. However, it is not described how this atomic

commitment of both transactions is managed.

CHAPTER 2. RELATED WORK

 27

Figure 5: A ConTract Example

2.1.5. The Split Transaction Model

In the split transaction model [5], a transaction Ta can split into transactions Ta

and Tb. At the time of split, operations invoked by Ta up to the split can be

divided between Ta and Tb making each responsible for committing and aborting

those operations assigned to them. In order to facilitate further data sharing

between Ta and Tb, operations which remain into the responsibility of Ta may be

designated as not conflicting with operations invoked by Tb after the split, and

hence, Tb can see the effects of these operations.

CHAPTER 2. RELATED WORK

 28

Depending on whether or not such operations have been designated, a split may

be serial, or may be independent. In the former case, Ta must commit in order fro

Tb to commit, whereas in the latter case, Ta and Tb can commit independently.

After the split, Ta can split again creating another split transaction Tc. Split

transactions can further split creating new split transactions. A sequence of serial

splits leads to a different type of hierarchically structured transactions from those

of nested transactions.

2.1.6. ACTA Transaction Framework

ACTA was proposed by Chrysanthis and Ramamritham [29][30] as a framework

for specifying the structure and behavior of complex applications and for

reasoning about their transactional properties. ACTA is not a transaction model

itself, rather it is a framework, intended to unify existing models and facilitate their

analysis. In the ACTA framework, it is possible to characterize the whole

spectrum of interactions between transactions, as well as effects of transactions

on accessed objects. A taxonomy of the interactions that can be expressed in

ACTA is presented in Figure 6.

Figure 6: Dependencies Captured by ACTA
framework

CHAPTER 2. RELATED WORK

 29

In ACTA a transaction has two possible outcomes, namely commitment and

abortion. A transaction may develop two dependencies on any other transaction:

• Commit-dependency: if a transaction A has a commit-dependency on

transaction B, then transaction A cannot commit until transaction B

either commits or aborts. It does not imply that the two transactions

should commit or abort together.

• Abort-dependency: if a transaction A has an abort-dependency on

transaction B, and if transaction B aborts, than transaction A should also

abort. It neither implies that if transaction A aborts, B should abort, nor

that if B commits, A should also commit.

An object accessed by a transaction can be characterized by its state and its status.

The state of an object is simply its contents. The state is changed when an

operation invoked by a transaction modifies the contents of the object. The status

of an object is represented by a synchronization information (e.g., concurrency

control information) associated with the object. A timestamp of the last write

operation may be an example of the status information. The status of an object

changes when a transaction performs an operation on that object.

The effects of transactions on objects are captured in the ACTA model by the

concept of delegation and by introduction of two sets, the ViewSet and the AccessSet.

The ViewSet of a transaction is a set of objects potentially accessible to the

transaction. An object from the ViewSet of the transaction can be accessed by this

transaction only if the concurrency control status permits it. Objects already

accessed by the transaction are contained in its AccessSet.

A transaction can delegate the responsibility of finalizing its effects on some of the

objects in its AccessSet to another transaction. That is, the delegation represents

CHAPTER 2. RELATED WORK

 30

the ability of a transaction to resign from some of its objects which are taken over

by another transaction. Delegation is useful in revealing partial results (delegation

of state) and coordination information (delegation of concurrency status) to other

transactions. The notion of delegation allows for modeling and reasoning about

dynamic transaction models such as, for example, split and join transactions.

The ACTA framework may be useful in better understanding the nature of

interactions between transactions and the effects of transactions and improve

their concurrency and recovery properties. It makes easier the development and

analysis of new extended transaction models suited for a particular environment.

However, not all properties of transaction models can be captured and expressed

in ACTA, and when an attempt is made to define a transaction with a particular

set of properties, the ACTA framework proves very difficult to use.

2.1.7. Limitations of ETMs

The Extended Transaction Models that were previously described are the most

known ones in the literature. In this section we discuss their limitations that make

them inappropriate to be used in the transaction design process of web

applications.

Each ETM, except ACTA (ACTA is a transaction framework), approaches the

problem of transaction modeling from a specific point of view. Others try to

provide internal structure inside a transaction (Nested) in order to localize failure,

while others try to provide isolation relaxation by releasing resources prior to the

termination of the entire long lived transaction (SAGAS, Open Nested,

ConTract).

It is obvious that the complexity imposed by web applications and the interface

diversity of resources cannot be captured by one single model from the above.

The main limitation of those models comes from the fact that all members of a

CHAPTER 2. RELATED WORK

 31

transaction structure (sub-transactions and top-level transactions) have the same

behavior and semantics. That is, they define once the behavior of the entire

structure, and this behavior has to be followed by all the transactions and sub-

transactions of the graph. In transactional web applications we need models that

are able to accommodate different behavioral patterns into the same structured

transaction. For example, a structured transaction that has some of its children to

be visible and some others to be invisible.

In addition, in web applications not all activities are strict ACID transactions.

Thus we need to model those activities as «weak transactions»; transactions that

do not have to satisfy the entire set of ACID constraints. All proposed ETMs

provide relaxation of those properties by decomposing a complex transaction

into smaller ACID transactions. These models do not give the ability to define

for a single flat activity a subset of those properties without decomposition of

that activity. Many times in web applications this is a requirement. Consider for

example an activity that, as part of a complex transaction, authorizes the user in

the system. This authorization activity has to be atomic in order to ensure that all

required operations have been successfully executed, but it doesn’t need to be

durable, or isolated.

The ability of defining «weak transactions» provides a great flexibility in the

following circumstances:

• Accommodation of different behavioral patterns into the same

structured transaction. We can precisely describe parts of an ACID

transaction that are weaker and do not violate the properties of the entire

transaction. Very common in web applications.

• Bottom-up transaction design. When integrating legacy systems and

diverse resources into the same transaction, it is required to take into

CHAPTER 2. RELATED WORK

 32

account their limitations and built a correct transaction model that

respects their behavior and sets proper dependencies between them.

The ACTA framework can be used to analyze and describe transaction models by

defining appropriate axioms and using first order logic. We can say that ACTA is

closer to describing web transactions, since it can define new models that may be

used in an application. However, it has two main limitations:

• It’s too low level for design. ACTA describes transaction models using

first order logic and mathematically expressed axioms to reason about the

behaviour of a new model. Although that such a mechanism provides

powerful formalism, it is too low level and inappropriate for designing

applications. The design process requires high level languages that will be

handy and easily understood by implementers, other designers,

customers, etc.

• It cannot describe transactions in a bottom-up fashion. As with all

models that were previously presented, ACTA defines once the

behaviour of a complex transaction model and that behaviour has to be

respected by all transactions and sub-transactions of the model. It cannot

accommodate different behaviours into the same structured transaction.

The above discussion makes clear that there is a need for a high level transaction

modelling mechanism for web applications. Such a mechanism should be very

flexible in order to allow transaction design in both top-down and bottom-up

fashion. It should be also able to describe «weak transactions», and more over, it

should provide description of transactions conforming to all presented ETMs

when such behavior is needed.

CHAPTER 2. RELATED WORK

 33

2.2. The Unified Modeling Language

In this section we briefly introduce the Unified Modeling Language [26] in order

to familiarize the reader with this language and to enhance his understanding of

the UTML.

2.2.1. What is the Unified Modeling Language?

The Unified Modeling Language is a language that unifies the industry’s best

engineering practices for analyzing and designing software systems. The UML:

• Is a language. It is not simply a notation for drawing diagrams, but a

complete language for capturing knowledge (semantics) about a subject

and expressing knowledge (syntax) regarding the subject for the purpose

of communication.

• Applies to modeling and systems. Modeling involves a focus on

understanding (knowing) a subject (system) and capturing and being able

to communicate this knowledge.

• Is the result of unifying the information systems and technology

industry’s best engineering practices (principles, techniques, methods,

and tools).

• Is used for specifying, visualizing, constructing, and documenting

systems.

• Is used for expressing the artifacts of a system-intensive process.

• Is based on the object-oriented paradigm.

CHAPTER 2. RELATED WORK

 34

• Is an evolutionary general-purpose, broadly applicable, tool-

supported, industry-standardized modeling language.

• Applies to a multitude of different types of systems, domains, and

methods or processes.

• Enables the capturing, communicating, and leveraging of strategic,

tactical, and operational knowledge to facilitate increasing value by

increasing quality, reducing costs, and reducing time-to-market

while managing risks and being proactive with respect to ever-increasing

change and complexity.

2.2.2. Diagrams in the UML

A diagram is the graphical presentation of a set of elements most often rendered

as a connected graph of vertices (things) and arcs (relationships). The designer

draws diagrams to visualize a system from different perspectives, so a diagram is a

projection into a system. For all but the most trivial systems, a diagram represents

an elided view of the elements that make up a system. The same element may

appear in all diagrams, only a few diagrams (the most common case), or in no

diagrams at all (a very rare case). In theory, a diagram may contain any

combination of things and relationships. In practice, however, a small number of

common combinations arise, which are consistent with the five most useful views

that comprise the architecture of a software-intensive system. For this reason, the

UML includes nine such diagrams:

• Class Diagram. A class diagram shows a set of classes, interfaces,

collaborations and their relationships. These diagrams are the most

common diagrams found in modeling object-oriented systems. Class

CHAPTER 2. RELATED WORK

 35

diagrams address the static design view of a system. Class diagrams that

include active classes address the static process view of a system.

• Object Diagram. An object diagram shows a set of objects and their

relationships. Object diagrams represent static snapshots of instances of

the things found in class diagrams. These diagrams address the static

design view or static process view of a system as do class diagrams, but

from the perspective of real or prototypical cases.

• Use Case Diagram. A use case diagram shows a set of use cases and actors

(a special kind of class) and their relationships. Use case diagrams address

the static use case view of a system. These diagrams are especially

important in organizing and modeling the behaviors of a system.

• Sequence and Collaboration Diagrams. Both sequence diagrams and

collaboration diagrams are kinds of interaction diagrams. An interaction diagram

shows an interaction, consisting of a set of objects and their relationships,

including the messages that may be dispatched among them. Interaction

diagrams address the dynamic view of a system. A sequence diagram is an

interaction diagram that emphasizes the time-ordering of messages; a

collaboration diagram is an interaction diagram that emphasizes the

structural organization of the objects that send and receive messages.

Sequence diagrams and collaboration diagrams are isomorphic, meaning

that you can take one and transform it into the other.

• State-chart Diagram. A state-chart diagram shows a state machine,

consisting of states, transitions, events and activities. State-chart diagrams

address the dynamic view of a system. They are especially important in

modeling the behavior of an interface, class, or collaboration and

CHAPTER 2. RELATED WORK

 36

emphasize the event-ordered behavior of an object, which is especially

useful in modeling reactive systems.

• Activity diagram. An activity diagram is a special kind of a state-chart

diagram that shows the flow from activity to activity within a system.

Activity diagrams address the dynamic view of a system. They are

especially important in modeling the function of a system and emphasize

the flow of control among objects. However, UML specification defines

that activity diagrams do not provide additional semantics to state-charts.

They are used to show the flow of control when system’s activities

complete.

• Component diagram. A component diagram shows the organizations and

dependencies among a set of components. Component diagrams address

the static implementation view of a system. They are related to class

diagrams in that a component typically maps to one or more classes,

interfaces, or collaborations.

• Deployment diagram. A deployment diagram shows the configuration of

run-time processing nodes and the components that live on them.

Deployment diagrams address the static deployment view of architecture.

They are related to component diagrams in that a node typically encloses

one or more components.

This is not a closed list of diagrams. Tools may use the UML to provide other

kinds of diagrams, although these nine are by far the most common you will

encounter in practice.

CHAPTER 2. RELATED WORK

 37

2.2.3. Extensibility Mechanisms

The UML provides a standard language for writing software blueprints, but it is

not possible for one closed language to ever be sufficient to express all possible

nuances of all models across all domains across all time. For this reason, the

UML is opened-ended, making it possible for you to extend the language in

controlled ways. The UML’s extensibility mechanisms include:

• Stereotypes. A stereotype extends the vocabulary of the UML, allowing

you to create new kinds of building blocks that are derived from existing

ones but that are specific to your problem. For example, if you are

working in a programming language, such as Java or C++, you will often

want to model exceptions. In these languages, exceptions are just classes,

although they are treated in very special ways. Typically, you only want to

allow them to be thrown and caught, nothing else. You can make

exceptions first class citizens in your models-meaning that they are

treated like basic building blocks-by marking them with an appropriate

stereotype.

• Tagged Values. A tagged value extends the properties of a UML building

block, allowing you to create new information in that element’s

specification. For example, if you are working on a shrink-wrapped

product that undergoes many releases over time, you often want to track

the version and author of certain critical abstractions. Version and author

are not primitive UML concepts. They can be added to any building

block, such as a class, by introducing new tagged values to that building

block.

• Constraints. A constraint extends the semantics of a UML building block,

allowing you to add new rules or modify existing ones.

CHAPTER 2. RELATED WORK

 38

These three extensibility mechanisms allow you to shape and grow the UML to

your project’s needs. These mechanisms also let the UML adapt to new software

technology, such as the likely emergence of more powerful distributed

programming languages. You can add new building blocks, modify the

specification of existing ones, and even change their semantics. Naturally, it’s

important that you do so in controlled ways so that through these extensions, you

remain true to the UML’s purpose-the communication of information.

2.3. Summary

In this chapter we presented the most known Extended Transaction Models. The

limitations of these models to be used in complex transactional web applications

come mainly from their inflexibility to incorporate different behavioral patterns

into the same structured transaction and to accommodate services and resources

with diverse transactional semantics and interfaces. Also, they are too low level,

(typically first order logic) and thus inappropriate to be used in the design process

of web applications.

We also presented the Unified Modeling Language, its main concepts and tools as

well as its extensibility mechanism, in order to set up the context into which the

UTML notation has been developed.

CHAPTER 3. THE TRANSACTION META-MODEL OF UTML

3. THE TRANSACTION META-MODEL OF UTML

UTML consists of two main parts: the transaction meta-model and the notation

system. In this chapter we present the basic concepts of the transaction meta-

model, as well as their structure, correlations and dependencies.

A meta-model is a mechanism for describing models. In effect, a transaction

meta-model is a mechanism for describing transaction models. The choice of

meta-modeling is a necessity originating from the complexity of web transactions.

As demonstrated, no specific transaction model can meet the mass of

requirements that modern transactional web applications impose. To this end, a

transaction meta-model should be both flexible enough to describe the real world

and adequately formal to regulate the use of transactional concepts.

Moreover, recall that UTML is a transaction modeling mechanism, and thus it

should be able to support all modeling alternatives. In general, designers

(regardless what are they designing –application logic, software, system

architecture, etc.) desire a rich toolkit (modeling elements and rules) to apply the

most appropriate design for each case.

In section 3.1 we present the notion of operation as it is considered in the

transaction meta-model. An operation is the minimum slot of work that can be

considered in UTML and we distinguish between different types of operations

that can be encountered in a transactional web application.

In section 3.2 we present the concept of activity. An activity is a set of operations

that are grouped together in order to satisfy a specific user goal. Activities may

have to obey specific (formal) execution contracts, and its specification to this

direction includes several related concepts.

CHAPTER 3. THE TRANSACTION META-MODEL OF UTML

 40

The different execution contracts that have been defined in the meta-model are

formalized by appropriate well-formedness rules and they are presented in section

3.3.

In section 3.4 we define the concept of compensation. A compensation is a

special type of activity and is used to semantically undo an executed activity.

Operations, activities and compensations are all combined in section 3.5 defining

the transaction meta-model that constitutes the basis on which UTML has been

built.

Into the following sections of this chapter we present the extensibility mechanism

of the meta-model, the well-formedness and well-behaving rules, as well as some

guidelines how to define complex transaction closures with UTML.

3.1. Operations

Web applications give the ability to interactive users to invoke certain operations.

An operation is the basic functional element that can be encountered in an

application. Operations are atomic; either carried out completely or not at all.

They can be thought as the minimum slot of functionality that can be provided

by an application and thus they cannot be decomposed into sub-operations

Definition 1. An operation P is a non-suspendable, atomic
unit of work that can be executed in the context of an
application and it is not further decomposed in the
modeling process.

According to the above definition, the concept of operation, as it is concerned in

the meta-model, has two main characteristics:

• Non-suspendable. Operations cannot be suspended and continue their

execution later on. Neither the user nor the system can initiate an

operation that will cross more than one execution sessions.

CHAPTER 3. THE TRANSACTION META-MODEL OF UTML

 41

• Atomic. Either execute to their completion or not at all. Atomicity of

operations has the same meaning with the atomicity of transaction. If an

operation cannot complete successfully, then the system (application state

or data state) should remain unaffected; as if the operation had never

been started.

• Indivisible. Operations cannot be synthesized by other operations. An

operation is the smallest piece of work that can be executed in the scope

of an application. Of course their logic is not the same for all operations.

Indivisibility of operations means that in the modeling process the

designer is not interested in the internal structure of an operation or the

specific implementation of its logic.

The simplest type of operation that is encountered in any web application is the

operation of following hyperlinks. Even simple static web sites give the end users

the ability to follow hyperlinks and to navigate through the site. A more complex

type of operation concerns the searching functionality that many sites provide.

Such operations are triggered by the end user, they access some database (or

databases) and they give back to the user a result.

Operations that are invoked by end users are called user-triggered operations.

User-triggered operations are interfaces of the application’s functionality to the

interactive user. However, user-triggered operations are not the only ones in an

application. In this meta-model the following types of operations are identified:

• Context-triggered operations. The context of an application is the part

of its environment (in which the application operates) that it is interested

in. Location aware applications for example are interested for the location

of the user. Such a parameter refers to the context of the application. A

change in some context parameter may trigger the execution of a certain

CHAPTER 3. THE TRANSACTION META-MODEL OF UTML

 42

operation or group of operations. As another example, a disconnection

could trigger a “suspend” operation in order to suspend the current

executing process or processes that the user had initiated in the

application. Regardless of what suspension means.

• Business logic triggered operations. The term “business logic” refers

to the logic that an application implements in order to enforce the

enterprise’s business rules. To this end, operations may be defined to

implicitly start after some other operations (or as a result of some event)

in some order.

Operations have an operation type, and when they are executed, they return

results of a specific result type to both the application and the interactive user.

The results of a user-triggered operation are in practice a data cache of a specific

type for the application. For example the results of search operation can be of

type “SearchResults”. All types of results should be explicitly defined in the

design process of a specific application. Subsequent operations (possibly data type

specific) may be performed on these results. It is obvious that such operations do

not change the state of the system and its resources (databases, etc.).

Also, we distinguish between application’s public data (or shared data) and user-

private data that are stored to the user’s workspace and can be accessed only by

him. In web applications this is a common practice, since many times end users

of the application have their private workspace (i.e. shopping cart). However, it is

possible other (properly authorized) users to access data stored in the user’s

private workspace (e.g. sales manager can view the shopping cart of end users).

The purpose of this concept is to distinguish between data, on which there is a

high competition, and data on which the competition is not low. Thus, in the rest

of this document public data refers to application’s core data (shared data

between many users), while the term private data refers to data that are stored in

CHAPTER 3. THE TRANSACTION META-MODEL OF UTML

 43

the private workspace of a specific user (which may be held in the same database

with public data, but is dedicated to one user). Data cache should not be

confused with private data, since it contains data that are not to be reflected back

to the application’s resources, whereas private data are held in these resources and

can be updated when the user (owner) decides.

Operations on system resources’ data may change the state of the application by

modifying some of its data. Operations (on cache or resources’ data) may or may

not change the state of some activities. Typically, operations that are executed in a

web client are operations on results that have been generated by other operations

in the server and have been transferred to the client, since it is a common practise

for some applications to make available part of their functionality on the client’s

machine.

User-triggered operations and business logic-triggered operations may be

synchronous or asynchronous. An operation is asynchronous when its

evaluation does not start immediately and can be done at any given time in the

future. Asynchronous operations do not block the user or the system from

executing other operations before their evaluation terminates. However, a part of

the application’s functionality may be disabled due to the fact that an

asynchronous operation has not yet been evaluated. We say that asynchronous

operations are initially submitted for execution and after some time they are

really evaluated and executed by the system.

 Operations are always executed in a scope. In the simplest case this scope is the

application’s scope. In more structured environments operations are executed in

the scope of activities or sub-activities. Thus their scope is the containing activity.

The operation concept, as it has been defined in this meta-model is depicted on

Figure 7.

CHAPTER 3. THE TRANSACTION META-MODEL OF UTML

 44

ResultType

User-Triggered
Operation

Context-Triggered
Operation

Business Logic-Triggered
Operation

ResultOperation 11 11

Scope

1

1..*

1

1..*

Application

Activity

Figure 7: The concept of operation. Clasification
and relationships

3.2. Activities

User-triggered operations export the application’s functionality to the end user.

Usually, such operations are grouped together in order to accomplish complex

tasks or to support the achievement of a specific user goal. They may also be

combined in many different ways and supplemented with many other operations

to satisfy device, environmental and user profile variations. Thus, actually the

same application logic results in different application views. For example, the

functionality that an application offers to the user through a mobile phone may

be (or seems to be) different from the functionality that the same application

offers to users that execute the application through their PC (e.g. through your

mobile phone you cannot download a file, while through your PC this operation

is available). Also, in highly personalised applications a user can choose to access

a sub-part of the offered application functionality. The application logic itself

imposes several constraints on the order with which operations can be invoked

and the design of the application has to take into account those constraints. We

CHAPTER 3. THE TRANSACTION META-MODEL OF UTML

 45

use the concept of activity to describe a set of operations that implement logical

parts of the application’s functionality which may impose constraints on the

possible operation invocations.

Definition 2. Activity is a set of operations and
possibly other activities with an optional flow of
execution defined for them.

Activities, like operations, have constraints on when they can start, and status,

which can change when certain signalsets appear. The status of an activity can

have the following values:

• Enabled. All preconditions (e.g. constraints on the execution flow) of

the activity are satisfied and it can be started. In the TSS for example, the

activity «hotel reservation» is initially disabled. However, after the

execution of the activity «user authorization» it gets enabled.

• Disabled. Some preconditions of the activity are not satisfied and it

cannot be started. In the TSS for example, activities «flight reservation»,

«hotel reservation» and «event ticket reservation» are disabled until the

user gets authorized.

• Executing. The activity has been initiated and is currently executing its

logic.

• Executed. The activity has completed its execution. Completed activities

can be enabled again and they can be re-invoked. Executed activities are

distinguished into:

o Succeeded. The executed activity has terminated successfully.

CHAPTER 3. THE TRANSACTION META-MODEL OF UTML

 46

o Failed. The executed activity has failed and thus it didn’t

complete successfully. In the TSS for example, if the activity

“flight reservation”, didn’t manage to reserve a ticket, then it is

said to have failed.

o Compensated. The executed activity had succeeded but the

system or the user has compensated it (cancel it). This is done by

executing another activity. It is possible that not all the effects of

the activity have been negated.

• Suspended. The activity has been started, executed for a while, and now

is not active. It is expected that suspended activities will resume later on

and continue their execution. After their resuming, activities become

executing. Again in the TSS example, the activity hotel reservation can be

suspended before the user pays the reservation cost.

An activity can register to a specific signalset for one or more events that it is

interested in. A signalset is a set of signals (flags possibly represented by some

data) that represent the occurrence of some specific events. Such an event could

for example be the termination of an activity, which could be used to enable

other activities or to start other activities. When a signal appears in a signalset, a

specific action may be taken to change the status of activities that have registered

to this Signalset.

Consider for example the case where a user has started and suspended the activity

«hotel reservation» in the TSS and left the system. When a signal, denoting a new

entrance of the user to the system (the successful termination of the activity «user

authorization») appears, an action could be taken to change the status of the

activity “hotel reservation” from suspended to executing. In other words, SignalSets

contain signals that can fire specific transitions or trigger special actions, which

CHAPTER 3. THE TRANSACTION META-MODEL OF UTML

 47

can change the status of registered activities. Another example of signal is the

change in some context parameters. Suppose that an activity is suspended due to

a disconnection. The event of re-establishing the connection (change in the value

of the context parameter bandwidth) produces a specific signal. This signal can be

directed to the suspended activity (through its registration) and trigger its resume

operation.

Activity SiglalSet

0..*0..*

Operation

2..*

1

Siglal

1..*

1..*

11

Status

11
0..*

1..*

1 1
1

2..*

1 1

<<creates>>
1..*

1..*

1..*

<<registers>>

0..* 0..*

<<changes>>

0..*

Figure 8: Status Change Model

On Figure 9 the possible status change of an activity is depicted. Each transition

is fired when specific signals appear.

CHAPTER 3. THE TRANSACTION META-MODEL OF UTML

 48

Disabled Enabled Executing Suspended

Executed

Failed Succeeded

Compensated

Failed Succeeded

Compensated

Figure 9: The possible status changes of an activity

An activity may be a simple (composed of a set of operations), or a composite

activity, which may be composed of other activities and operations. Not all

operations within an activity have to be necessarily executed by the user or the

system. The same holds for the sub-activities of a composite one. There is a

distinction between vital (obligatory) and non-vital (optional) operations and

sub-activities. Vital operations and sub-activities have to be invoked (by the user

or the system) and executed successfully before the activity terminates, although

not in a specific order. This does not hold for non-vital ones.

For re-usability reasons, whether a sub-activity is obligatory or optional, it is not a

property of the activity itself; rather it is defined by the decomposition semantics

attached to the association between parent and sub-activity (the same must hold

for activities and operations belonging to their FunctionalSet).

Definition 3. The Decomposition Association between an
activity A and a sub-activity B, DA(A,B), is the semantic

CHAPTER 3. THE TRANSACTION META-MODEL OF UTML

 49

relationship between the parent and sub activity and is
defined on the basis of vitality and visibility of the
sub-activity.

The decomposition association between a parent and sub-activity describes the

decomposition semantics. The term decomposition semantics refers to the

specific behaviour that parent and sub-activity have during their execution. In

particular, this behaviour primarily refers to the termination process of sub-

activity. To be clear what exactly definition 3 implies, the precise semantics of

visibility and vitality must be provided.

• Visibility. It refers to whether a sub-activity makes its results visible to

any other activity currently being executed in the system. When a sub-

activity is defined to be visible, then when it terminates, its results become

visible to any other activity, regardless whether it belongs to the same

structure or not. On the other hand, when an activity is defined to be

invisible, then if it terminates prior to its parent termination (e.g. sub-

transactions in the Nested Transaction model), the only activity that can

see its results, is its parent. However, the children (named siblings) of a

composite activity are allowed to access objects that have previously been

accessed by their parent. Thus, when an invisible activity terminates, its

results actually become visible to its parent and siblings.

• Vitality. It refers to whether a sub-activity is obligatory or optional when

used as a sub-activity of a composite activity. The successful execution of

all vital sub-activities is required in order the parent activity to terminate

successfully. On the other hand, when a sub-activity is defined as non-

vital, then its initiation and execution is up to the user’s desire. However,

if the user explicitly wants to execute it, then its failure must be reported

to him in order to take any possible action and to have a clear picture of

what exactly happened. If a non-vital sub-activity is triggered by the

CHAPTER 3. THE TRANSACTION META-MODEL OF UTML

 50

system and not the user, then regardless whether it fails or succeeds, the

parent activity can terminate successfully.

The question here is why are activities decomposed? There are several reasons to

decompose an activity into sub-activities. Some of them are:

• Failure locality. By decomposing activities into sub-activities you can

localize failures. That is, if an activity fails, it can be re-attempted for

“many” times until it succeeds. The number that a sub-activity can be re-

attempted is configurable and can be set appropriately by the application

designer. Also, some sub-activities may be not so vital for the successful

execution of the parent activity. Thus, they can fail (even after they have

been re-attempted) without causing the failure of the parent activity.

• Isolation relaxation. Many times web transactions take too much time

to be completed. In such a case, it’s a tragedy for the system’s

performance to hold recourses locked until the entire, long-lived,

transaction terminates. Thus, it is appropriate to release resources as soon

as possible. By decomposing a long-lived activity into sub-activities, this

can be done as soon as each sub-activity terminates. Such sub-activities

are defined to be visible in the sense that they can make their results

visible to any other activity currently running in the system and thus,

releasing resources prior to the termination of the entire (parent) activity.

• Resource diversity. As it has been mentioned, web applications many

times access resources that are distributed and have diverse semantics and

interfaces. Such resources cannot be accessed with the same approach in

managing critical database updates. Thus, many times different

transaction processing techniques may be needed. To deal with such

situations, the application designer may have to decompose a complex

CHAPTER 3. THE TRANSACTION META-MODEL OF UTML

 51

activity (in whose scope diverse resources will be accessed) into smaller

sub-activities with appropriate transaction management functionality for

each resource.

• Functionality Integration. Web applications may be composed of new

as well as pre-existing logic, i.e. legacy systems. Consider for example a

web application that utilizes the legacy information system of the

enterprise and a web service offered by another organization. The

transactional properties and semantics of the legacy system and the web

service will not, in most cases, be the same. A way to deal with these

functionality variations is to decompose a complex activity into smaller

activities, each one appropriate to integrate the functionality offered by

existing systems or services.

To better handle the operations and sub-activities of an activity, appropriate

modeling concepts should be defined. Such concepts are the OperationSet and

ActivitySet correspondingly.

Definition 4. Each activity A has an OperationSet, OS(A),
containing all operations that can be invoked in the
scope of this activity.

As mentioned, an operation is considered to be obligatory (vital) if a successful

execution of at least one instance of it is required for the successful termination

of the containing activity. Otherwise, it is considered to be optional (non-vital).

As with activities, operations are reusable model elements whenever they are

needed during the modelling process of a specific application. Thus, an operation

could be defined to be optional when it is used in the scope of a specific activity

and obligatory when used in the scope of another activity. The same holds for

activities that are used as sub-activities of other complex activities.

CHAPTER 3. THE TRANSACTION META-MODEL OF UTML

 52

Some of an activity’s operations implement its logic. An example would be an

operation that searches for available seats in a particular flight in the execution of

the activity «flight reservation» of the TSS. These operations are called functional

operations and are used to implement the part of application’s functionality that

is provided through an activity.

Definition 5. The operations that belong to the
OperationSet of an activity A and are used to implement
its logic, constitute the FunctionalSet, FS(A), of this
activity.

Some operations of the Activity’s OperationSet are used to start, terminate and

generally manage the activity’s execution or completion, while some others are

used to implement the logic of the activity. So, it is useful to distinguish between

these types of operations.

Definition 6. Operations that belong to OperationSet of
an Activity A and are used to manage the Activity,
compose the ManagementSet, MS(A), of this activity.

)()()(AFSAMSAOS U= [Formula 1]

Initially, the meta-model defines that the management set of an activity in UTML

can be a subset of the set {«begin», «begin_inv_sub», «begin_vis_sub»,

«begin_inv_vital_sub», «begin_vis_vital_sub», «end», «commit», «abort»,

«delegate», «suspend», «resume»}. However, this set is open and can be extended

for future use in order to support new models and activity structures.

Management operations can be explicitly or implicitly invoked by the user. For

example, the user may have the ability to explicitly abort an ongoing activity by

pressing an available cancel button. On the other hand, the abort operation can

be implicitly invoked when a system failure occurs or some constraints on the

activity execution are not guaranteed.

CHAPTER 3. THE TRANSACTION META-MODEL OF UTML

 53

Although the meaning of some of the aforementioned operations is obvious, it

would be useful to specify what the precise semantics of each operation are, and

what each operation exactly does.

• begin. It is used to start a top-level activity. Top-level are the activities

that are directly executed in the scope of the application. That is, they are

not sub-activities of other activities, called parents.

• begin_inv_sub. This operation is used to start an activity, which will be

sub-activity of another activity. The decomposition semantics between

these activities (parent and sub) define that the child activity cannot

commit its operations, but it must delegate the responsibility for that to

its parent. This will be done through the delegate operation.

• begin_inv_vital_sub. This operation is a special case of the previous

operation and used to start a sub-activity, which is vital in the context that

it is used in. That is, its successful execution is required for the successful

termination of its parent. If this sub-activity fails then its parent must also

fail.

• begin_vis_sub. This operation initiates a sub-activity, which since it

terminates successfully it can commit the operations for which it is

responsible and make its results visible to other activities of any level.

• begin_vis_vital_sub. This operation is a specialization of the

begin_vis_sub operation and it is used to start a sub-activity that its

successful termination is required in the context that it is used. Also, this

vital sub-activity can commit the operations for which it is responsible

prior to the termination of its parent.

CHAPTER 3. THE TRANSACTION META-MODEL OF UTML

 54

• end. This operation is used to terminate activities that their completion

does not have to satisfy any constraint (except constraints on the

execution flow of internal operations). It just changes the status of such

an activity from «executing» to «executed».

• Commit. It is used to terminate activities that are at least atomic and

guarantees that either all constraints that apply on this activity are satisfied

and the activity will terminate successfully, or in case that at least one

constraint is not satisfied, the activity will abort. In the first case the

activity’s status changes from «executing» to «succeeded», whereas in the

second case the activity’s status changes from «executing» to «failed».

• Abort. It is used to terminate activities that are at least atomic and it

ensures that no partial result of the activity will survive to the system. The

status of an activity that terminates with this operation changes from

«executing» to «failed». It should be noted that not all the operations of an

activity can be cancelled; only operations that make data modifications

can be undone. To make it clear, consider that an executed operation

reads some data items from a database. What could the rolling back of

this operation do? On the other hand, consider an operation that

modified the value of a variable, cancelling of this operation means

recovery of the initial variable’s value.

• delegate. The operation Delegate(OH(b),a) is used to terminate activities

that are at least atomic. It means that the activity b gives to activity a the

responsibility to commit the operations belonging to its OperationHistory

(definition 10). It takes the place of the operation Commit but it checks if

all the properties of the activity are guaranteed as the operation commit

does. In other words, the commitment or abortion of b’s modifications

CHAPTER 3. THE TRANSACTION META-MODEL OF UTML

 55

(schedule) is now responsibility of the activity a. After its execution, the

status of the activity changes from «executing» to «executed». However, it

cannot be considered as «succeeded» or «failed», since there is no

guarantee whether the actual results of the activity will be committed or

aborted. Delegation is important in the case of invisible sub-activities.

The term invisible sub-activity is used to describe sub-activities that,

when they terminate, make their results available only to their parent and,

through it, to their siblings. However, they cannot commit their

operations, since their commitment makes the data modifications

permanent and visible to all others. Thus, they delegate the responsibility

for committing their operations to their parents. On the other hand, the

term visible sub-activity is used to describe sub-activities that when they

terminate make their results available to any other activity by committing.

Related to operation delegate is the operation responsible(OH(a)) that

identifies (returns) the responsible activity for the termination of the

OperationHistory (executed operations) of the activity a. The invocation

of the operation delegate has some constraints that can be summarised as

follows:

o An activity A must be the responsible activity of an operation P in

order to delegate the responsibility for committing this operation to

another activity.

o The operation delegate cannot be invoked after the operation

history of an activity has already committed or aborted.

The management set of an activity, as it has been defined, is quite general. The

management of an activity concerns its initialization, its termination and in

general other operations that handle the execution of the activity regardless its

CHAPTER 3. THE TRANSACTION META-MODEL OF UTML

 56

logic or implementation. Each operation of those has its own special semantics

and it is used to define a specific behaviour for the activity. Each transaction

model is based on special operations, with which transactions can start or

terminate, and precise decomposition semantics. Thus, it is important to

distinguish between operations that are used to initialize and terminate activities.

Definition 7. The InitializationSet of an activity A,
IS(A), contains the operations that belong to the
ManagementSet of the activity and are used to manage its
initialization.

Such operations are: begin, begin_inv_sub, begin_vis_sub, begin_inv_vital_sub,

begin_vis_vital_sub, split, etc. This set is open and can be extended for future use

in order to support new transaction models. Initialization operations can be

explicitly invoked by the user (through an appropriate interface), or implicitly

when a functional operation of the activity is requested. For example, the user

can explicitly start the activity «BuyBooks» by choosing the appropriate user

interface option or the activity can implicitly start when the user executes the

operation «AddToCart» for a book that he is interested in. In general, there are

no strict requirements for explicit or implicit use of management operations. It is

implementation specific and up to the designer’s choice.

In the TSS for example, the activity «flight reservation» could be implicitly started

after the user has been authorized and without any other explicit request by him.

However, in other implementations the user could have the ability to choose

which one of the three activities wishes to execute. In complex activity structures,

the initialization operation of a sub-activity can be invoked by the user or its

parent activity. In any case, it is considered to belong to the schedule of the

activity that it initializes.

CHAPTER 3. THE TRANSACTION META-MODEL OF UTML

 57

Definition 8. The TerminationSet of an activity A, TS(A),
contains the operations that belong to the ManagementSet
of the activity and are used to manage its termination.

Such operations are: commit, abort, end, delegate, join etc. This set is open and

can be extended for future use in order to support new transaction models. Each

newly defined termination operation must be completely specified along with its

semantics and documentation. In general, when defining new management

operations one has to explicitly define their documentation, semantics, effects on

activity’s status, etc.

Definition 9. The ActivitySet of a composite activity A,
AS(A), contains all A’s sub-activities. Activities
belonging to the same ActivitySet are called Siblings.

A composite activity’s ActivitySet is the mechanism which facilitates to specify its

children when decomposing it. It should be stressed that the decomposition

semantics between an activity and its sub-activities are not attached to the

ActivitySet. This approach is followed by all known ETMs and this is what makes

them inappropriate to incorporate different decomposition semantics into the

same structured transaction. In this meta-model the decomposition semantics

between the parent and each one of its sub-activities is explicitly defined in the

decomposition association between them. Thus, we can define different

decompositions semantics for different sub-activities in the same structure. This

modeling capability is very important, since it provides for accommodating

diverse resources and functionality interfaces into the same structured

transaction.

The presented concepts and their relationships can be better understood by

viewing the diagram in Figure 10. The UML class diagram depicted illustrates the

activity concept and its relationship to operations.

CHAPTER 3. THE TRANSACTION META-MODEL OF UTML

 58

To give higher flexibility in the meta-model, activities can be suspended.

«Suspend» is a management operation that may be directly or indirectly invoked

by the user (for example operations that lead the user outside the activity) or

triggered by the context (disconnections). The activity remains suspended until

the user returns to continue its execution, or it may be timed out, in which case it

is aborted and considered to have failed. Suspending an activity allows the user to

navigate and execute other activities (if they are enabled). This is very attractive

for the user, who is used to a free navigational environment in the web, but in

some cases may create significant system overheads if the designer is not careful.

Thus, may appear a need of restricting the set of operations available to the user

based on the status of activities in which he participates. This is for the designer

to decide, and it is, in general, a trade-off of quality of service (flexibility for the

user) versus system performance (overhead incurred).

ActivitySet Activity
1 1

0..*1

Decomposition
Semantics

OperationSet
11 11

Operation
2..*

11

2..*

FunctionalSet

1

1

1

1

Functional
Operation

0..*11 0..*

ManagemetSet
1

1

1

1

Management
Operation

2..*11 2..*

InitializationSet

1

1

1

1

Initialization
Operation

1..*

11

1..*

TerminationSet

1

1

1

1

Termination
Operation

1..*

11

1..*

11

1 0..*

Figure 10: The Activity Concept and its Relationship with Operations

CHAPTER 3. THE TRANSACTION META-MODEL OF UTML

 59

The execution of suspended activities must continue by executing the

management operation «resume». «Suspend» and «Resume» operations are

management operations that do not belong to InitializationSet or TerminationSet

of an Activity. As a consequence, the ManagementSet of an activity A, as it is

defined in the meta-model, can be:

}Re,{)()()(sumeSuspendATSAISAMS UU= [Formula 2]

In complex structures of activities and operations it is needed to keep track of any

executed operation and activity. Of course, a designing mechanism cannot

directly model real time behavior based on executed instances of activities.

However, it can formalize their behavior by setting appropriate constraints that

the application should enforce at run time. To express such constraints some real

time concepts concerning the activity execution need to be defined.

For the rest of this thesis we will write Pi→Pj to denote the operation Pi precedes

operation Pj ordered by their time of execution completion. We will also write

{X◦Y◦Z} to denote an ordered set of elements.

Definition 10. Each activity A has an OperationHistory
set, OH(A), that contains all the executed so far
operations of A. The OperationHistory of an Activity
contains executed operations ordered by their time of
execution completion.

() 1+→⇒∈∀ nPnPAOHnP

 [Formula 3]

The operation history is created when the initialization operation of an activity is

executed and implicitly contains this operation. According to the activity’s

properties, the OH of an activity can be committed or aborted. The commitment

or abortion of the operation history of an activity A, OH(A), implies the

commitment or abortion correspondingly of all so far executed operation

instances of this activity). For example, an activity which requires that either all its

CHAPTER 3. THE TRANSACTION META-MODEL OF UTML

 60

operations are executed successfully or no one is executed, must commit its

operation history in order the executed operations to have any effect on the

modified data. The operation history of an activity is an ordered set of operations

that belong of the operation set of this activity.

An operation history is considered to be complete, when all obligatory operations

of the activity have been executed. A complete operation history must be

bounded by an initialization and a termination operation instance. As mentioned,

any flow of execution defined for the operation set of an activity can be modeled

using an FSM (Finite State Machine) represented by a state graph. Thus, the OH

of the activity is a set of visited nodes, during a traversal of this graph.

However, it is possible that some nodes of the state graph are not included in a

complete operation history of a successfully executed activity. The missing nodes

represent optional operations of this activity. Also, some operations may appear

more than one time in the operation history of an activity. This will occur when

an operation is executed more than one times during the activity execution.

Definition 11. Each composite Activity A has an
ActivityHistory set, AH(A) that contains all the so far
executed sub-activities of this Activity. The
ActivityHistory of an Activity contains the executed sub-
activities ordered by the time of their Termination
operation execution.

() 1+→⇒∈∀ nXnXAAHnX [Formula 4]

As with operation history, an activity history is considered to be complete if all

vital sub-activities of a composite activity have been executed. A complete activity

history may not mean that the operation history of the composite activity is also

complete. It is easily deducted that the execution of the initialization operation of

a composite activity precedes the execution of each activity appearing in the

activity history of this composite activity. Accordingly, the execution time of the

CHAPTER 3. THE TRANSACTION META-MODEL OF UTML

 61

termination operation of the composite activity follows the execution of any

activity appearing in its operation history.

It should be stressed that, while the activity history of a composite activity is

ordered and for each contained activity its operation history is also ordered, the

merged operation history (all executed operations) may be not ordered. In other

words, operations of different activities can be intermixed. This happens due to

the fact that the order between executed activities is defined by the time of

execution completions those activities.

yPPYOHPXOHPYXAAHYX xyx →∈∈∀≠>→∧∈ :)(),()(, [Formula 5]

As in case of the operation set of an activity, any possible flow of execution

defined for the activity set of a composite activity could be modeled using an

FSM and state graphs, which have as nodes sub-activities that belong to the

activity set of this composite activity. The activity history of a composite activity

is a set of activity instances and represents the visited nodes during a traversal of

its state graph. Thus, some nodes (representing non-vital sub-activities) may not

be included in the activity history, while others may appear more than once.

Activities and operations may be synchronous or asynchronous. In the

asynchronous case, an operation or activity is submitted to the system for

execution after a user’s request. The system executes it asynchronously and makes

the possible results available to the user a later time. The user may join the

activity to see its results. Operations and activities may also run in disconnected

mode. In disconnected mode the client does not communicate with the server

and the operations executed in the client are necessarily asynchronous. However,

the client may also have copies of some application data. Due to the

disconnection, the values of these data in the client machine may differ from the

values in the server. In addition, the user may invoke operations that change the

CHAPTER 3. THE TRANSACTION META-MODEL OF UTML

 62

values of the copied data that reside in the client. These changes are not visible to

the server. When the connection is established again, the client data have to be

synchronized with the server data. During this process some of the changes made

in the client may not be accepted in the server due to the transactional semantics

of execution.

Web Applications are actually activities simply composed of operations or

structured in a complex way of other activities (of many types) and

compensations (special activities that are used to semantically undo other

executed activities). This meta-model ties together the user interface aspects of

free navigation style web applications with structured transactional models that

are necessary to accommodate e-business web applications and web services. As

any activity, a web application has all the properties and semantics that activities

have. A web application has a set of web application views that share most of

the application’s logic and are used to export this logic to diverse devices,

contexts and user profiles. Note that the activity specification model presented,

allows the user to start the execution in one application view and continue it in

another. This can be done by suspending an execution activity and continue its

execution later on, using the same or other device. The «Plan Trip» activity for

example in the TSS can be started using a desktop PC, suspended and then

resumed and terminated using a mobile phone.

It should be noted that not all application views are foreseen during the design of

an application. Consider for example that initially the TSS was aimed to serve

standard PC users. After some years the enterprise owning this application

decides to make it available through palmtop devices for mobile users. What the

enterprise actually wants is to deliver the same business logic through a different

device. A well designed application should be able to re-arrange and re-group its

operations into different sets (appropriate for palmtops) and deliver them to the

CHAPTER 3. THE TRANSACTION META-MODEL OF UTML

 63

end user. Thus, the same user perceives a different application view when

executes the application through his PC and different when it executes it through

his palmtop.

Activity

Application

1..*

1

Application View
1..*1 1..*11

1..*

Figure 11: Applications and Application Views

3.3. Execution contracts

Activities may have to obey specific execution contracts. Such a contract defines

the constraints that the activity’s execution has to satisfy, and actually are used to

enforce the business rules of a real world enterprise. In database transactions for

example, the execution contract is defined by the ACID properties that a

transaction must provide. However, in web applications not all activities have the

strict requirements of database transactions. Thus, an activity may have to obey a

weaker execution contract than that database transactions have to. An activity’s

execution contract is defined by using a set of properties that the activity’s

execution must support. This set is a sub-set of {Atomicity, Consistency,

Isolation, Durability}. For example, when the execution contract of the activity

CHAPTER 3. THE TRANSACTION META-MODEL OF UTML

 64

includes all these properties, then we have an activity behaving like a traditional

ACID database transaction.

Definition 12. The PropertySet of an Activity A, PS(A),
is the set of properties that the execution of each
instance of this activity supports. Such properties are
Atomicity, Consistency, Isolation and Durability.

The meta-model described in this thesis assumes that activities may or may not

have to obey an execution contract. If they do, this contract may vary from very

strict to very weak. However, the process of defining weaker execution contracts

is formalized by appropriate well-formedness rules. Such rules define formal

constraints that must apply on the process of designing web application. The

rules that apply on the process of defining execution contracts for activities are

described below.

Rule 1.Activities that support the property «Consistency»
must also support the property «Durability».

)("")("" APSDurabilityAPSyConsistenc ∈=′∃⇒∈=∃ rPPr [Formula 6]

The idea behind rule 1 is that the consistency property implies that any

permanent data modification, that an activity makes, must be consistent. It is

obvious that an activity must support durability in order to make permanent

modification that should be consistent. It is a paradox to say that an activity does

not modify any permanent data, and at the same time to say that this activity

makes consistent modifications on permanent data.

Rule 2.Activities that support the property «Consistency»
must also support the property «Atomicity».

)("")("" APSAtomicityAPSyConsistenci ∈=′∃⇒∈=∃ rPPr [Formula 7]

CHAPTER 3. THE TRANSACTION META-MODEL OF UTML

 65

Rule 2 says that since consistency is checked at the termination time of the

activity, inconsistent instances of an activity that support consistency, when

detected, must be rolled back. This constraint is enforced by defining an activity

to be atomic (recall that atomicity requires that no partial effects of an activity

survive to the database after its abortion).

Having in mind the rules 1 and 2 (which are actually existence constraints) it is

easily proved that the number of the possible different execution contracts that

can be defined for an activity, is:

N = 2k - 2k-2 – 2(k-2)-1 [Formula 8]

where k, the number of available properties for an execution contract.

Thus, the legal execution contracts defined in this meta-model are:

N=24 - 22 - 21 => N = 10

The execution contract of an activity A is formed using the initials of each

property belonging to its property set and the word «Activity». The execution

possible execution contracts for an activity are:

• No execution contract (empty PropertySet) 







0
4

o Activity. Activities that have no execution contract to obey. They

do not define any additional semantics on their operation or sub-

activities. The only constraint that may be defined for them

concerns their execution flow. Any activity can define execution

flow constraints for its operations and sub-activities regardless

whether it has to obey an execution contract or not.

CHAPTER 3. THE TRANSACTION META-MODEL OF UTML

 66

• Execution Contracts with one property 







1
4

o A_Activity (Atomic Activity). Activities that have to obey this

contract must ensure that either all obligatory operations will be

successfully executed, or no one and any successfully executed

operation (obligatory or optional) will be undone.

o I_Activity (Isolated Activity). This contract requires that an

activity must keep its execution isolated from any other

concurrently executed activity. This means that the data that this

activity has accessed cannot be accessed by any other activity at

the same time.

o D_Activity (Durable Activity). This execution contract defines

an activity that some of its operations make data modifications

and these modifications have to be durable. Durable means that

these modifications survive to the system in any case and cannot

be undone by the same activity.

• Execution Contracts with two properties 







2
4

o AI_Activity (Atomic, Isolated Activity). An execution contract

that includes the all-or-nothing constraint (atomicity) and also

supports isolation. That is, activities that have this execution

contract must be isolated from any other concurrently executed

activity.

CHAPTER 3. THE TRANSACTION META-MODEL OF UTML

 67

o AD_Activity (Atomic, Durable Activity). This contract

requires that an activity, beyond to all-or-nothing constraint,

supports durability for its results.

o DI_Activity (Durable, Isolated Activity). It’s a contract that

forces activities that have to obey it, to make their modifications

durable and have its execution isolated form any other

concurrently executed activity.

• Execution Contracts with three properties 







3
4

o ADI_Activity (Atomic, Durable, Isolated Activity). An

execution contract according which, activities must be atomic (all

or nothing), durable (permanent modifications) and isolated.

o ACD_Activity (Atomic, Consistent, Durable Activity). This

contract implies that an activity must be atomic, durable, and

must leave the modified data in a consistent state. If, at the

termination of the activity, data consistency constraints are not

satisfied, then the activity with be rolled back.

• Execution Contracts with four properties 







4
4

o ACID_Activity (Atomic, Consistent, Isolated, Durable

Activity). It is the more strict execution contract and the

activities that have to obey it, behave like traditional ACID

transactions.

CHAPTER 3. THE TRANSACTION META-MODEL OF UTML

 68

The excluded execution contracts due to rules 1 and 2, are the C_Activity,

IC_Activity, AC_Activity, and AIC_Activity, CD_Activity and CID_Activity.

The sub-typing of these execution contracts (different execution contracts) is

depicted on Figure 12.

Activity

A_Activity D_Activity I_Activity

AD_Activity ID_Activity AI_Activity

AID_ActivityACD_Activity

Figure 12: Execution Contract Sub-typing

Using the meta-model described in this thesis the only legal execution contracts

that can be defined for activities are those that were previously described.

However, in complex activity structures their use depends on the contract of the

whole structure and appropriate rules should be defined to formalize their

correctness. Such rules are described in section 4.6.1.

CHAPTER 3. THE TRANSACTION META-MODEL OF UTML

 69

3.4. Compensations

An activity may associates with a compensating activity, named compensation.

The compensation may be invoked if the user or the system wants to convert an

activity that terminated successfully to an aborted activity. However, it should be

noted that changing the status of an activity from succeeded to failed may have

different semantics than changing its status form executing to failed. A

succeeded activity has committed its results and has made them visible to any

other activity. Thus, its cancellation cannot simply restore the values that the

modified data had before the activity was started. Moreover, sometimes business

rules define that activities which have succeeded and are compensated cannot

negate all their effects if a certain period of time has elapsed.

Consider for example that in TSS the user has executed successfully the activity

«flight reservation» and just three hours before the boarding time decides to

cancel his reservation. The airline policy may be to charge the user with a penalty

for reserving the ticket for so long. This is a real world example of transaction

that is cancelled after having committed. In this case the application has to

compensate the activity «flight reservation» by executing the compensation

«cancel flight reservation» but it does not credit the user’s account with the whole

amount that he had paid for the reservation.

Rule 3.Execution contracts obeyed by compensations must
always include atomicity since it should be ensured that
all the compensation’s defined logic is executed
successfully and the results of the compensated activity
are successfully rolled back according to the logic
defined by the compensation policy.

}","",","{")("" DurabilityIsolationyConsistencAtomicityCPSAtomicity ⊆⊆ [Formula 9]

CHAPTER 3. THE TRANSACTION META-MODEL OF UTML

 70

Definition 13. Compensation is a special type of atomic
activity that is used to semantically undo a successfully
terminated activity

Applying rule 3, the following execution contracts have been defined as legal to

be obeyed by compensations:

• A_Compensation. It is an atomic activity that is used to semantically

undo another activity that has been successfully terminated.

• AI_Compensation. It is an atomic compensating activity, whose

execution is isolated from any other concurrently executed activity on the

same data.

• AD_Compensation. It is a compensating activity, whose results are to

be permanent after its termination.

• AID_Compensation. It is an atomic, isolated compensating activity

whose results are stored in permanent storage.

• ACD_Compensation. It is a special case of AD_Compensation, which

after its execution leaves the database in a consistent state.

• ACID_Compensation. It’s the more strict execution contract defined

for compensating activities and behaves like a traditional database

transaction.

The sub-typing of the execution contracts obeyed by compensations is described

with a UML class diagram in Figure 13:

CHAPTER 3. THE TRANSACTION META-MODEL OF UTML

 71

A_Compensation

AI_CompensationAD_Compensation

ACD_Copensation AID_Compensation

ACID_Compensation

Figure 13: Sub-typing of execution contracts for compensations

As stated, a compensation may not negate all the results of a successfully

executed activity. In this case we say that the activity is partially compensated. In

this meta-model, partial compensation is supported in two ways. One is that not

all activities are associated with compensations. Thus, activities that are not to be

compensated in case of failure are not associated with compensations. The other

is that compensations can be defined to get input parameters at the point of their

initialization. These parameters can influence their behavior. For example, a

common parameter to a compensation could be the time elapsed from the

termination of the activity that compensates. As described above, this is a

common policy for tourism applications when the user changes his mind too

late…

CHAPTER 3. THE TRANSACTION META-MODEL OF UTML

 72

3.5. All Together

In this section the entire UTML meta-model is presented. The combination of

the aforementioned concepts yields the meta-model depicted on figure 14 as a

UML class diagram. In this diagram, operation instances and activity instances are

used to represent executed operations and activities correspondingly.

Figure 14: The Entire UTML Meta-Model

CHAPTER 3. THE TRANSACTION META-MODEL OF UTML

 73

3.6. Describing Complex Models

As mentioned, activities can be either simple, or composite. By specifying

composite activities, complex structures and hierarchies can be defined in order

to satisfy user’s, application’s or business’ logic requirements. Such a structuring

can be of any depth. However, during this phase the designer has to be very

careful in order to synthesize a correct model. If not, it is possible to assign

properties into some activities that conflict with the properties of other activities

in different levels of nesting.

In this section formal well-formedness rules are presented, that can be helpful in

using the aforementioned concepts to specify a complex activity model. It is clear

that by using appropriate execution contracts and decomposition semantics we

can design activity models that are similar to (or more advanced from) well

known transaction models, such as Nested Transactions, Open-Nested

Transactions, etc. However, the flexibility that this meta-model provides is not

boundless.

Also, in order to describe the real time management of activities, appropriate

well-behaving rules are defined. These rules are defined on the basis of real time

activity concepts (operation and activity histories) provided by the meta-model.

Each rule (well-formedness or well-behaving) has two parts: The first one

describes the rule using an informal natural language (e.g. English), whereas the

second describes the rule’s semantics in formal mathematical expression.

CHAPTER 3. THE TRANSACTION META-MODEL OF UTML

 74

3.6.1. Well-formedness Rules

Rule 4. A composite activity A that supports the
Isolation property cannot have a sub-activity B, which
does not support the Isolation property. That is,
Isolation is downwards transitive.

"")(
)()(""

,;,

IsolationPBPSPthatsuch
PAASBAPSIsolationP

activitiesBApropertiesPP

=′∧∈′
′∃∈∀⇒∈=∃

′
 [Formula 10]

Rule 5. A composite activity A that has in its
ActivitySet at least one sub-activity that supports the
property Durability, must also support durability. That
is, Durability is upwards transitive.

)("")("")(
,;,

APSDurabilityPBPSDurabilityPAASB
activitiesBApropertiesPP

∈=′∃⇒∈=∧∈∃

′ [Formula 11]

Rule 6. If a composite activity A is consistent, then all
its visible sub-activities must be also consistent. That
is, Consistency is downwards transitive to visible sub-
activities.

)(""
).,(|)()(""

,;,

BPSyConsistencP
truevisibilityBADAAASBAPSyConsistencP

activitiesBApropertiesPP

∈=′∃
=∈∀⇒∈=∃

′
 [Formula 12]

Rule 7. An invisible sub-activity B cannot be further
decomposed into visible sub-activities.

falsevisibilityIBDABASIfalsevisibilityBADA
activitiesIBA

=∈∀⇒=).,()().,(
,,

[Formula 13]

Rule 8. Composite activities without any functional
operation or at least one durable sub-activity cannot be
durable.

)("")(
)()(""

,;,

BPSDurabilityPthatsuchAASBor
AFSOAPSDurabilityP
propertiesPPoperationOactivitiesBA

∈=′∃∈∃
∈∃⇒∈=∃

′
 [Formula 14]

CHAPTER 3. THE TRANSACTION META-MODEL OF UTML

 75

3.6.2. Well-behaving Rules

Rule 9. Sub-activities that are defined as invisible must
terminate using the operations “Delegate”.

)("").,()(
:;:,

BTSDelegateOfalsevisibleBADAAASB
operationOactivitiesBA

∈=∃⇒=∧∈∀
 [Formula 15]

Rule 10. A resume operation must follow a suspend
operation in the OperationHistory of an Activity.

)|(
)("Re")(""

:,,;:

PPPPPP
AOHsumePAOHSuspendP

OperationsPPPActivityA

′→′′→′′∃¬∧′→
⇒∈=′∧∈=∃

′′′

 [Formula 16]

Rule 11. Activities that are atomic must terminate with
one of the operations commit, abort, and delegate.

{ }delegateabortcommitATSAPSAtomicity
activityAoperty

,,)()(""
:;Pr:Pr

=⇒∈=∃Pr
 [Formula 17]

3.7. Choosing Appropriate Compensation Types

When activities are associated with compensations it is not clear what execution

contract of compensation is needed for a specific contract of activity. In this

section we discuss how the designer can be guided in choosing the appropriate

compensation type when he associates activities and compensations.

The execution contract of the successfully terminated activity indicates, in some

way, the contract of the compensation that is needed to convert this activity to an

aborted one. Rule 3 says that execution contracts that have to be obeyed by

compensations must always include the property «atomicity». The following

CHAPTER 3. THE TRANSACTION META-MODEL OF UTML

 76

discussion on the other properties that an execution contract may include, will

show whether a property included in the activity’s execution contract, is required

in the execution contract of its associated compensation.

Each property, except “Atomicity”, belonging to the PropertySet of an activity is

meaningful only in the case that some data are accessed and modified. In

particular:

• Consistency means that the activity modifies some permanent data and

this modification must leave data in a consistent state. In other words, we

care about data consistency.

• Isolation means that the execution of the activity must be isolated from

any other concurrently executed activity. This implies that some of the

data that the activity may access are also accessed by other activities and

interference may produce inconsistency.

• Durability means that at the termination of the activity some of its data

modification become permanent and survive future system failures. From

a data point of view, durability means that modifications on these data

must be reflected in permanent storage.

From the above is clear that the execution contract of an activity is mainly chosen

by the quality of data, which are to be modified by this activity. Thus, the

compensation for this activity (which operates on the same data) must respect the

data quality in the same way as the activity did.

Rule 12. If an activity A has an associated compensation
C(A), then C(A) must contain all properties supported by
A plus the Atomicity property.

CHAPTER 3. THE TRANSACTION META-MODEL OF UTML

 77

}{)())((AtomicityAPSACPS
activityA

∪=
 [Formula 18]

Table 1 shows the appropriate compensation for each execution contract obeyed

by an activity.

Activity Type Compensation Type
Activity A_Compensation
A_Activity A_Compensation
I_Activity AI_Compensation
D_Activity AD_Compensation
AI_Activity AI_Compensation
AD_Activity AD_Compensation
DI_Activity ADI_Compensation
AID_Activity ADI_Compensation
ACD_Activity ADC_Compensation
ACID_Activity ACID_Compensation

Table 1: Correspondence of compensation and activities

3.8. The Extensibility Mechanism

The meta-model presented in the previous sections can be extended to support

new activity models for specific application domains and requirements. The

extensibility mechanism of the meta-model has two parts. The fist part includes

extension of the management set of activities. Recall that the management set

contains operations that are used to manage the activity execution. The meta-

model comes with the following predefined management operations: {begin,

begin_vis_sub, begin_inv_sub, begin_inv_sub, begin_inv_vital_sub, commit,

abort, end, delegate, resume, suspend}. However, the designer can provide

specification of new management operations that will be used by the model that

he wants to describe. In order to define a new management operation, the

designer has to provide its name and to specify its precise semantics.

CHAPTER 3. THE TRANSACTION META-MODEL OF UTML

 78

The second part of the extensibility mechanism is the well-formedness and well

behaving rules. Well-formedness rules provide the basis on which the activity

structuring will be done, according to the newly defined model, whereas the well-

behaving rules formalize the behaviour of the newly defined model.

3.8.1. An Example of the Meta-model’s Extensibility

As an example of the meta-model’s extensibility, in this section we extend it to

describe a multi-database transaction model. This model is followed by

applications that span multiple, remote and heterogeneous database systems. A

multi-database transaction (a global transaction) is a collection of sub-transactions

executed at local database systems. In addition to the specification of sub-

transactions, the designer can specify execution dependencies between them. The

sub-transactions of a global transaction are submitted for execution to local

database systems. At the time of commitment the global transaction asks its

children to prepare for commitment. If every one of its children replies ok, then it

asks them again to commit their operations. Thus, we have a bottom-up process

of commitment for the global transaction. In case that at least one of the children

answers that it cannot commit successfully, the global transaction asks each one

of his children to abort. For such an activity model we have the following

formalism:

Let GA be a global activity, CA be a child activity.

()

}_,_,,{)()()()6

},{)()5

}___,__{)()4

}_,,{)()()()3

},{)()2

}{)1

abortreplycommitreplyresumesuspendCATSCAISCAMS

commitabortCATS

subvitalinvbeginsubinvbeginCAIS

prepareaskresumesuspendGATSGAISGAMS

commitabortGATS

beginGAIS

UU

UU

=

=

=

=

=

=

CHAPTER 3. THE TRANSACTION META-MODEL OF UTML

 79

Semantic specification of new management operations:

• ask_prepare: This operation is used from a global activity to ask its

children for commit preparation. According to the answers received this

activity can abort or commit. In particular, if every child answers that it

can commit, then the global activity asks its children to commit.

Otherwise it asks them to abort and it aborts all its operations.

• prepare: This operation is executed by child activities to examine

whether they can commit. If so, they reply accordingly to their parent,

without committing. Otherwise, the abort (using the abort operation) and

answer accordingly to their parent.

• reply_commit: This operation is used by child activities (sub-activities)

to send an answer to their parent which says that all are ok and they can

commit. If the parent activity (global activity) receives reply_commit from

every child activity then it can commit. After the execution of this

operation the child activity guarantees that if it will be asked to commit it

will do that in any case.

• reply_abort: This operation is used by child activities to send an answer

to their parent which says that they have aborted during the prepare

phase (the execution of prepare operation).

Well-Behaving Rules:

Rule 13. A Global activity A can commit if all the
activities belonging to its ActivitySet answer
“reply_commit”.

CHAPTER 3. THE TRANSACTION META-MODEL OF UTML

 80

}{)()("_")(
:,

abortATSAOHabortreplyPAASA
ActivitiesAA

=⇒′∈=∃∨∈′∃

′
 [Formula 19]

Rule 14. If an activity A has executed its prepare
operation, then it cannot execute any other functional
operation.

)(|)()("" AFSPthenPPAOHPAOHprepareP ∉′′→∈′∀⇒∈=∃ [Formula 20]

Rule 15. If an activity A executes a reply_commit
operation, then its next operation that will be
successfully executed must indispensably be the commit
operation.

)(:")("_" AOHinPPcommitPAOHcommitreplyP ′→=′∃⇒∈=∃ [Formula 21]

Well-Behaving Rules:

Rule 16. All children of a global activity must be
invisible.

falsevisibleCAGADAGAASCA
ActivitiesCAGA

=⇒∈).,()(
:,

 [Formula 22]

3.9. Summary

In this chapter we presented the transaction meta-model that we propose for

modeling complex web transactions. The meta-model proposes the use of

operations, activities and execution contracts in order to define units of work that

have transactional semantics.

It provides advanced transaction modeling by defining the decomposition

semantics for each sub-transaction and gives the ability of defining transactions

that accommodate different behavioral patterns into the same structure. It also

models «weak transactions» either self-contained or as part of more complex

CHAPTER 3. THE TRANSACTION META-MODEL OF UTML

 81

structures. The meta-model provides a rich set of well-formedness and well-

behaving rules that are used to formalize the transaction design process and they

constitute a correctness criterion to evaluate the produced transaction models.

Moreover, the meta-model itself is extensible and can be extended to meet

requirements of specific applications. The extensibility mechanism has two parts.

The first one is the management operations used by the meta-model, while the

second concerns the well-formedness and well-behaving rules. Such rules can be

defined by the designer in order to describe specific behavior which may not be

currently captured by the meta-model.

CHAPTER 4. THE NOTATION SYSTEM

 82

4. THE NOTATION SYSTEM

In this chapter we present the notation system of UTML. The notation system,

the well-formedness and well-behaving rules constitute the toolbox of UTML. A

notation system for a design language must satisfy specific goals. The goals for

the notation system of UTML are:

• Simplicity. The notation that a designer would like to use in designing

applications must be as simple as possible. That is, a notation system

should not impose additional complexity to the application of the theory

behind a design language and if possible to reduce it. This is a goal that

should be met by the notation system of UTML.

• Familiarity. Although that a novel notation system is many times

impressive (due to its innovation), its acceptance and utilization by

designers rarely gets wide. Thus, another goal that UTML’s notation

system should meet is to be as much familiar as possible.

To this end, UML has been chosen as the basis on which UTML is built. UML is

a widely accepted and used industrial modeling standard that is extensible. Thus,

UTML extends it in order to provide the meta-model’s functionality through a

concrete, handy, and simple modeling tool. Application designers will use this

(UML compatible) notation to describe the application’s logic and transactional

semantics.

We firstly present some advanced UML concepts n section 4.1 that are not so

known and they are used in the definition of the UTML notation system. Then,

we present the UTML profile structure in section 4.2, as well as the organization

and execution model elements in sections 4.3 and 4.4 correspondingly.

CHAPTER 4. THE NOTATION SYSTEM

 83

4.1. Some Advanced UML Concepts

The following UML terms are not widely known, and thus we discuss them

before presenting the notation system for convenience of the reader.

• UML profile: A UML profile is a stereotyped package that contains

model elements which have been customized for a specific domain or

purpose, by extending the UML meta-model using appropriate

stereotypes, tagged definitions, and constraints. A profile may specify the

model libraries on which it depends and the meta-model subset that it

extends.

• Tag Definition: Tag definitions specify new kinds of properties that may

be attached to newly defined model elements. In tag definitions you

specify the semantics of the new tags, the stereotype in which they are

attached, the multiplicity and their type.

• Model: A model captures a view of a physical system. Hence, it is an

abstraction of the physical system with a certain purpose; for example, to

describe behavioral aspects of the physical system to a certain category of

stakeholders. A model contains all the model elements needed to

completely represent a physical system, according to the purpose of this

particular model. The model elements in a model are organized into a

package/subsystem hierarchy, where the top-most package/subsystem

represents the boundary of the physical system. Different models of the

same physical system show different aspects of the system. The pre-

defined stereotype «SystemModel» can be applied to a model containing

the entire set of models for a physical system.

CHAPTER 4. THE NOTATION SYSTEM

 84

• Composite State: A composite state is a state that contains other state

vertices (states, pseudo-states, etc.). The association between the

composite and the contained vertices is a composition association.

Hence, a state vertex can be a part of at most one composite state. Any

state enclosed within a composite state is called a sub-state it. It is called a

direct sub-state when it is not contained by any other state; otherwise, it is

referred to as a transitively nested sub-state. In UML, composite state is a

subtype of state. Attributes:

o isConcurrent: a Boolean value that specifies the decomposition

semantics between a composite state and its sub-states. If this

attribute is true, then the composite state is decomposed directly

into two or more orthogonal conjunctive components called

regions (usually associated with concurrent execution). If this

attribute is false, then there are no direct orthogonal components

in the composite.

o isRegion: a derived Boolean value that indicates whether a

composite state is a sub-state of a concurrent state. If it is true,

then this composite state is a direct sub-state of a concurrent

state.

o DeepHistory: is used as a shorthand notation that represents the

most recent active configuration of the composite state that

directly contains this pseudo-state; that is, the state configuration

that was active when the composite state was last exited. A

composite state can have at most one deep history vertex. A

transition may originate from the history connector to the default

deep history state. This transition is taken in case the composite

state had never been active before.

CHAPTER 4. THE NOTATION SYSTEM

 85

o ShallowHistory: is a shorthand notation that represents the

most recent active sub-state of its containing state (but not the

sub-states of that sub-state). A composite state can have at most

one shallow history vertex. A transition coming into the shallow

history vertex is equivalent to a transition coming into the most

recent active sub-state of a state. A transition may originate from

the history connector to the initial shallow history state. This

transition is taken in case the composite state had never been

active before.

4.2. The UTML Profile

The UML profile that has been defined to provide the UTML notation consists

of two main parts:

• The Organization Model. It describes the application under design

from a static point of view. That is, it conceptually represents the

organization of the activities that implement the application, their

management, their decomposition semantics, and their dependencies. To

do so, it utilizes UML class diagrams produced by stereotyped classes and

associations. In designing the static structure of the activities that an

application utilizes, all well-formedness and well-behaving rules are

applied to formalize the modeling process.

• The Execution Model. It complements the transaction meta-model that

was described in chapter 4 by providing modeling of the execution flow

for the application and its activities. Execution model uses state machines

and state charts to describe possible execution flow of activities, setting

this way real time dependencies between them. Also, by providing

execution flow of activities, the application designer can describe a

CHAPTER 4. THE NOTATION SYSTEM

 86

primitive user navigation model. Such a navigation model, sets

appropriate constraints on the navigational abilities that the user may

have when executing an application. It should be noted that the execution

model (state machines) is defined for an abstract state named

«application». This is needed due to the fact that UML defines that state

machines and state charts can be defined for classes or use cases. This

class represents the application under design and the state charts defined

in the execution model are actually modeling the application’s state (flow

of control).

The UTML profile has the structure that is depicted on figure X.

UTML Profile

Organization Model Execution Model

Stereotyped
Classes

Class
Diagrams

Stereotyped
Associations

Simple
States

Composite
States

Pseudo
States

State
Machines

State Charts
Well-Behaving Rules

Well-Formedness
Rules

Figure 15: UTML Notation Structure

4.3. Organization Model Elements

In this section the model elements (stereotypes) that have been defined for the

organization model are presented. Table 2 shows the definition of all tag values

CHAPTER 4. THE NOTATION SYSTEM

 87

that are used by the stereotypes the following tables shows the definition of the

organization model stereotypes.

C
H

A
P

T
E

R
 4

. T
H

E
 N

O
T

A
T

IO
N

 S
Y

ST
E

M

 8
8

Ta
g

St
er

eo
ty

pe

Ty
pe

M

ul
t/

ty

D
es

cr
ip

tio
n

N
am

e
«A

ct
iv

ity
»

U
M

L:
:D

at
at

yp
es

::S
tri

ng

1
It

is
th

e
na

m
e

of
 th

e
A

ct
iv

ity
.

Tr
ig

ge
re

dB
y

«A
ct

iv
ity

»
Tr

an
sa

ct
io

nP
ro

fil
e::

Tr
ig

ge
rE

nu
m

(A

n
en

um
er

at
io

n:

{U
se

r,A
pp

.L
og

ic,
Co

nt
ex

t}
)

1
In

di
ca

te
s,

w
ho

 tr
ig

ge
rs

 th
e

ac
tiv

ity
.

Is
Si

m
pl

e
«A

ct
iv

ity
»

U
M

L:
:D

at
at

yp
es

::B
oo

lea
n

1
In

di
ca

te
s

w
he

th
er

 t
he

 a
ct

iv
ity

 h
as

 s
ub

-
ac

tiv
iti

es
 o

r n
ot

Is

St
ric

t
«A

ct
iv

ity
»

U
M

L:
:D

at
at

yp
es

::B
oo

lea
n

1
In

di
ca

te
s

w
he

th
er

 d
ur

in
g

th
e

ex
ec

ut
io

n
of

th

is
ac

tiv
ity

th

e
us

er

ha
s

fre
e

na
vi

ga
tio

n
ca

pa
bi

lit
ies

in

th

e
us

er

in
te

rfa
ce

. S
et

 to
 tr

ue
 is

 m
ea

ni
ng

fu
l o

nl
y

if
th

e
ac

tiv
ity

in

co
rp

or
at

es

us
er

in

te
rv

en
tio

n.

Is
Sy

nc
hr

on
ou

s
«A

ct
iv

ity
»

U
M

L:
:D

at
at

yp
es

::B
oo

lea
n

1
In

di
ca

te
s

w
he

th
er

th

e
ac

tiv
ity

is

ex
ec

ut
ed

 as
yn

ch
ro

no
us

ly
or

 n
ot

.
Ti

m
eO

ut

«A
ct

iv
ity

»
U

M
L:

:D
at

at
yp

es
::U

nl
im

ite
dI

nt
eg

er

1
In

di
ca

te
s

th
e

m
ax

im
um

 p
er

io
d

of
 t

im
e

(in
 s

ec
on

ds
)

th
at

 a
n

ac
tiv

ity
 c

an
 b

e
ac

tiv
e.

Th
is

pa
ra

m
et

er
 is

 m
ea

ni
ng

fu
l f

or

ac
tiv

iti
es

 th
at

 in
vo

lv
e

us
er

 in
te

rv
en

tio
n.

D

oc
um

en
ta

tio
n

«A
ct

iv
ity

»
U

M
L:

:D
at

at
yp

es
::S

tri
ng

1

D
es

cr
ib

es
 th

e
ac

tiv
ity

.
m

Se
t

«A
ct

iv
ity

»
Tr

an
sa

ct
io

nP
ro

fil
e::

M
an

ag
em

en
tE

nu
m

(A

n
en

um
er

at
io

n:

{s
us

pe
nd

,
re

su
m

e,
as

k_
pr

ep
ar

e,
re

pl
y_

co
m

m
it,

re

pl
y_

ab
or

t}
)

1
In

di
ca

te
s

th
e

M
an

ag
em

en
tS

et

of

th
e

ac
tiv

ity
.

M
an

ag
em

en
tS

et

co
nt

ain
s

m
an

ag
em

en
t

op
er

at
io

ns

th
at

be

lo
ng

ne

ith
er

 t
o

ac
tiv

ity
’s

IS
 n

or
 t

o
ac

tiv
ity

’s
TS

iS

et

«A
ct

iv
ity

»
Tr

an
sa

ct
io

nP
ro

fil
e::

In
iti

ali
za

tio
nE

nu
m

(A

n
en

um
er

at
io

n:

{b
eg

in
,b

eg
in

_v
is_

su
b,

be

gi
n_

in
v_

su
b,

be

gi
n_

vi
s_

vi
ta

l_
su

b,
 b

eg
in

_i
nv

_v
ita

l_
su

b}
)

In

di
ca

te
s

th
e

In
iti

ali
za

tio
nS

et

of

th
e

ac
tiv

ity
.

In
iti

ali
za

tio
nS

et

co
nt

ain
s

m
an

ag
em

en
t o

pe
ra

tio
ns

 th
at

 a
re

 u
se

d
to

in

iti
ali

ze
 an

 ac
tiv

ity
.

tS
et

«A

ct
iv

ity
»

Tr
an

sa
ct

io
nP

ro
fil

e::
Te

rm
in

at
io

nE
nu

m

(A
n

en
um

er
at

io
n:

{e

nd
,co

m
m

it,
ab

or
t,d

ele
ga

te
}

In

di
ca

te
s

th
e

Te
rm

in
at

io
nS

et

of

th
e

ac
tiv

ity
.

Te
rm

in
at

io
nS

et

co
nt

ain
s

m
an

ag
em

en
t o

pe
ra

tio
ns

 th
at

 a
re

 u
se

d
to

te

rm
in

at
e

th
e

ac
tiv

ity
.

Ta
bl

e
2:

 T
ag

 V
alu

e
D

ef
in

iti
on

s

CHAPTER 4. THE NOTATION SYSTEM

 89

Stereotype Organization Model «OrganizationModel»
Base Class Model
Parent Not Available
Description An organization model is a UML model that describes the

organization of the application’s activities and their

semantic relationships. It describes the application from a

static point of view, showing only the organization of

transactions without any possible execution sequence. To

do that, it uses activities, compensations (of any execution

contract) and decomposition associations forming class

diagrams.

Constraints None
Notation

<<OrganizationModel>>

Table 3: OrganizationModel Stereotype Definition

Stereotype OrganizationPackage «OrganizationPackage»
Base Class Package
Parent Not Available
Description An organization package is a package that contains

stereotyped classes and associations used in the

Organization model. Packages group model elements that

are used to describe a specific part of the application.

Constraints None
Notation

<<OrganizationPackage>>

Table 4: OrganizationPackage Stereotype Definition

CHAPTER 4. THE NOTATION SYSTEM

 90

Stereotype Activity «Activity»
Base Class Class
Parent Not Available
Description An «Activity» is a class that conceptually represents a unit

of work. This work must be done by the system or the user,

or both. An Activity is a logical part of application’s

functionality. The web application that is modeled using

this profile is performing an activity at any time.

Conceptually, when the application is active, then it must

be in the scope of some action.

Tag Values Name
TriggeredBy
IsSimple
IsStrict
IsSynchronous
TimeOut
mSet
iSet
tSet
Documentation

Constraints None
Notation

Activity

Table 5: Activity Stereotype Definition

Stereotype Atomic Activity «A_Activity»
Base Class Class
Parent «Activity»
Description An Atomic Activity is a specialization of Activity, which has

atomicity semantics. That is, it requires that either all its

vital operations/sub-activities will be successfully executed,

CHAPTER 4. THE NOTATION SYSTEM

 91

or no one will be, and any partial result is rolled back.

Tag Values Inherited by its parent
Constraints None
Notation

A_Activity

Table 6: A_Activity Stereotype Definition

Stereotype Isolated Activity «I_Activity»
Base Class Class
Parent «Activity»
Description An Isolated Activity represents a unit of work that its

execution does not interfere with any other concurrently

executed activity.

Tag Values Inherited by its parent
Constraints None
Notation

A_Activity

Table 7: I_Activity Stereotype Definition

Stereotype Durable Activity «D_Activity»
Base Class Class
Parent «Activity»
Description A Durable Activity makes data modifications that are to be

permanent after its termination.

Tag Values Inherited by its parent
Constraints None

CHAPTER 4. THE NOTATION SYSTEM

 92

Notation
D_Activity

Table 8: D_Activity Stereotype Definition

Stereotype Atomic Isolated Activity «AI_Activity»
Base Class Class
Parent «A_Activity», «I_Activity»
Description An AI Activity is isolated while being executing and

supports the all or nothing property.

Tag Values Inherited by its parent
Constraints None
Notation

AI_Activity

Table 9: AI_Activity Stereotype Definition

Stereotype Atomic Durable Activity «AD_Activity»
Base Class Class
Parent «A_Activity», «D_Activity»
Description An AD Activity is a specialization of Atomic Activity and

its results survive to the system after its termination.

Tag Values Inherited by its parent
Constraints None
Notation

AD_Activity

Table 10: AD_Stereotype Definition

CHAPTER 4. THE NOTATION SYSTEM

 93

Stereotype Durable Isolated Activity «DI_Activity»
Base Class Class
Parent «I_Activity», «D_Activity»
Description A DI Activity is a specialization of Isolated Activity and

Durable Activity. Such an activity makes data modification

in isolation and these modifications will survive to the

system after the activity’s termination.

Tag Values Inherited by its parent
Constraints None
Notation

DI_Activity

Table 11: DI_Activity Stereotype Definition

Stereotype Atomic Isolated Durable Activity «AID_Activity»
Base Class Class
Parent «AI_Activity», «AD_Activity»
Description An AID Activity is a specialization of AD_Activity and

AI_Activity, composing a new activity type, which has

permanent results, is isolated and supports the all or

nothing property in its execution.

Tag Values Inherited by its parent
Constraints None
Notation

AID_Activity

Table 12: AID_Activity Stereotype Definition

Stereotype Atomic Consistent Durable Activity «ACD_Activity»
Base Class Class

CHAPTER 4. THE NOTATION SYSTEM

 94

Parent «AD_Activity»
Description ACD activities either execute to completion or not at all.

Some of their data modifications survive to the system and

at the termination of the activity, all integrity constraints are

satisfied.

Tag Values Inherited by its parent
Constraints None
Notation

ACD_Activity

Table 13: ACD_Activity Stereotype Definition

Stereotype Atomic Consistent Isolated Durable Activity
«ACID_Activity»

Base Class Class
Parent «AID_Activity», «ACD_Activity»
Description An ACID Activity is a derived activity type, which inherits

form ACD_Activity and AID_Activity, forming the most

strict activity type. Its execution is isolated from any other

concurrently executed activity on the same data and it

leaves data in consistent state. It also requires that all its

operations will be executed successfully and their

modification will be permanent even in case of system

failure. Such Activities behave like traditional database

transactions.

Tag Values Inherited by its parent
Constraints None

CHAPTER 4. THE NOTATION SYSTEM

 95

Notation
ACID_Activity

Table 14: ACID_Activity Stereotype Definition

Stereotype Compensation «Compensation»
Base Class Class
Parent «A_Activity»
Description Compensation is a group of operations that semantically

undo the results of a successfully terminated activity.

Compensations may be simple or composite containing

other sub-compensations. Compensations are also atomic.

That is, either all its operations/sub-compensations are

successfully executed or not at all. They have no optional

operations and are used to convert a committed activity to

an aborted one.

Tag Values Name
DriggeredBy
IsSimple
IsSynchronous
MSet
iSet
tSet
Documentation

Constraints Atomicity must be included in its PropertySet
Notation

Compensation

Table 15: Compensation Stereotype Definition

CHAPTER 4. THE NOTATION SYSTEM

 96

Stereotype Atomic Durable Compensation «AD_Compensation»
Base Class Class
Parent «Compensation»
Description Similar to AD_Activity

Tag Values Inherited by its parent
Constraints None
Notation

AD_Compensation

Table 16: AD_Compensation Stereotype Definition

Stereotype Atomic Isolated Compensation «AI_Compensation»
Base Class Class
Parent «Compensation»
Description Similar to AI_Activity

Tag Values Inherited by its parent
Constraints None
Notation

AI_Compensation

Table 17: AI_Compensation Stereotype Definition

Stereotype Atomic Isolated Durable Compensation
«AID_Compensation»

Base Class Class
Parent «AI_Compensation», «AD_Compensation»
Description Similar to AID_Activity

Tag Values Inherited by its parent
Constraints None

CHAPTER 4. THE NOTATION SYSTEM

 97

Notation
AID_Compensation

Table 18: AID_Compensation Stereotype Definition

Stereotype Atomic Consistent Durable Compensation
«ACD_Compensation»

Base Class Class
Parent «AD_Compensation»
Description Similar to ACD_Activity

Tag Values Inherited by its parent
Constraints None
Notation

ACD_Compensation

Table 19: ACD_Compensation Stereotype Definition

Stereotype Atomic Consistent Isolated Durable Compensation
«ACID_Compensation»

Base Class Class
Parent «ACD_Compensation», «AID_Compensation»
Description Similar to ACID_Activity

Tag Values Inherited by its parent
Constraints None

CHAPTER 4. THE NOTATION SYSTEM

 98

Notation
ACID_Compensation

Table 20: ACID_Compensation Stereotype Definition

Stereotype Compensates «compensates»
Base Class Association
Parent Not Available
Description Associates an activity (or any specialization) with a

compensation (or any specialization). It shows which

compensation will be used to compensate an activity

instance if it is needed. Rule 12 applies on associations

between activities and compensations in order to guarantee

that the resulting structure is correct.

Tag Values None
Constraints None
Notation An association line stereotyped as «compensates»

Table 21: Compensates Stereotyped Definition

Stereotype Invisible Sub-activity «invisible»
Base Class Association
Parent Not Available
Description This association connects two activities with parent – sub-

activity semantics. It also means that the sub-activity is not

vital. That is, if the sub-activity aborts the parent activity

can continue its execution and terminate successfully.

Moreover, the parent activity follows the Nested

Transaction Model, which means that the commitment of

the sub-activity depends on the commitment of the top-

CHAPTER 4. THE NOTATION SYSTEM

 99

level activity (containing activity) and modifications of sub-

activity are made visible to others if and only if the parent

activity commits.

Tag Values None
Constraints None
Notation An association line stereotyped as «invisible»

Table 22: Invisible Stereotype Definition

Stereotype Vital Invisible Sub-activity «vital_invisible»
Base Class Association
Parent «invisible»
Description This association is a special case of the invisible sub-activity

association. The difference is that the sub-activity is a vital

one. That is, if the sub-activity aborts then, the parent

activity must also abort.

Tag Values None
Constraints None
Notation An association line stereotyped as «vital_invisible»

Table 23: Vital_Invisible Stereotype Definition

Stereotype Visible Sub Activity « visible»
Base Class Association
Parent Not Available
Description This is a decomposition association between a parent and a

sub activity, according to which the sub-activity makes its

results visible to others before the parent activity commits.

That is, the commitment of the sub-activity is independent

from the commitment of the containing activity. If later the

parent activity aborts, the execution of an appropriate

compensation is needed to semantically undo the results of

committed sub-activities. It is clear that the transaction

CHAPTER 4. THE NOTATION SYSTEM

 100

model between containing activities and sub-activities that

are associated with a «visible» association is the Open

Nested Transaction Model.

Tag Values None
Constraints None
Notation An association line stereotyped as «vital_invisible»

Table 24: Visible Stereotype Definition

Stereotype Vital Visible Sub Activity «vital_visible»
Base Class Association
Parent Not Available
Description This association is a special case of the «visible» association.

The difference is that the sub-activity is a vital one. That is,

if the sub-activity aborts then, the containing activity must

also abort.

Tag Values None
Constraints None
Notation An association line stereotyped as «vital_visible»

Table 25: Visible Stereotype Definition

4.4. Execution Model

The execution model utilizes UML state machines and state charts to provide

modeling of possible execution flows for an application’s activities. While the

organization modeling of an application is mandatory, the execution modeling is

not required and the designer may or may not provide it.

In execution modeling, all UML model elements that concern the state modeling

are available. However, some new model elements have been defined in order to

properly support transaction design with UTML.

CHAPTER 4. THE NOTATION SYSTEM

 101

Stereotype Execution Model «ExecutionModel»
Base Class Model
Parent Not Available
Description An execution model is a UML model that describes the

possible sequences of execution for the application’s

transactions. It describes the dynamic behaviour of the

application, showing the possible transitions from an

activity to other activities. To do that, it utilizes states,

composite states, complex states, transitions, pseudo-states,

forks, joins, junctions, etc. forming state charts that

represent the execution flow of the application.

An execution model describes:

• The activities’ structure along with execution
dependencies between them.

• The application’s flow of control.

• Primitive user navigational patterns

Tag Values None
Constraints None
Notation The notation used for an Execution Model is a model

symbol stereotyped as «ExecutionModel»

Table 26: ExecutionModel Stereotype Definition

Stereotype Execution Package «ExecutionPackage»
Base Class Package
Parent Not Available
Description An execution package is a UML package that contains

CHAPTER 4. THE NOTATION SYSTEM

 102

states, transitions and other model elements to describe the

dynamic behavior of activity models.

Tag Values None
Constraints None
Notation The notation used for an Execution Package is a package

symbol stereotyped as «ExecutionPackage».

Table 27: ExecutionPackage Stereotype Definition

Stereotype Explicit Start «ExplicitStart»
Base Class Pseudo-state-kind
Parent Not Available
Description An Explicit Start pseudo-state is used in composite states

that include states which represent non-vital, user-triggered

activities. It actually provides the user with two operations:

one to explicitly start the execution of the optional activity,

and one to explicitly bypass the activity.

ExplicitStart has at most one incoming transition emanating

form an initial state or a history (shallow or deep) pseudo-

state vertex, and exactly two outgoing transitions: one

leading to the default sub-state and one leading to the final

state of the composite state. The first transition is fired

when the user explicitly starts the execution of the optional

activity, while the second when the user explicitly bypasses

the optional activity.

This pseudo-state is used to make clear that, non-vital

(user-triggered) activities that are modeled as regions inside

CHAPTER 4. THE NOTATION SYSTEM

 103

concurrent composite states must be explicitly executed by

a user call. In other words, in a concurrent composite state,

a non-vital sub-state will be entered, but it is user-

dependent if the represented activity will be actually

executed.

Tag Values None
Constraints None
Notation A state symbol stereotyped as «EXPLICITSTART»

Table 28: ExplicitStart Stereotype Definition

Stereotype Rollback «ROLLBACK»
Base Class Pseudo-state-kind
Parent Not Available
Description A Rollback pseudo-state is used inside composite states that

represent activities defined as atomic. When used, it

represents an activity, during which any partial execution of

the enclosing activity is rolled back. The logic of this

activity cannot be statically modelled, since it depends on

run-time information about what was previously executed.

Each vital sub-activity of the enclosing activity has a

transition leading to this vertex. This transition is fired

when the activity (represented by the source state) fails.

What actually happens during this state can be described

with the following algorithm:

1 Undo all operations belonging to the OH
of the activity represented by the
enclosing state.

2 Force each suspended sub-activity of
the same level to resume and
immediately rollback.

CHAPTER 4. THE NOTATION SYSTEM

 104

3 Create an appropriate Compensation
(using rule 12), named RB, with empty
functional set. Select the
corresponding compensation (if exists)
for each activity belonging to the AH
(except those that have terminated
using the delegate operation) of the
activity represented by the enclosing
state and insert it to the AS of RB.
Execute RB.

4 If the enclosing state is a region and
the represented activity is vital,
then:
4.1 Force each same level region, that

its ExplicitStart is active, to reach
its own rollback pseudo-state
immediately.

4.2 Force each same level region, that
its ExplicitStart is inactive, to
fire the transition leading to its
final state

5 Fire the outgoing transition to the
final state of the enclosing state with
a signal of fail.

6 End
When a composite state is decomposed into two or more

concurrent sub-states (regions), a rollback pseudo-state for

the enclosing composite state is implied to be a direct sub-

state of it.

Tag Values None
Constraints None
Notation A state symbol stereotyped as «ROLLBACK»

Table 29: RollBack Stereotype Definition

Stereotype Commit «COMMIT»
Base Class Pseudo-state-kind
Parent Not Available
Description A Commit pseudo-state is used inside states that represent

activities defined as atomic. It represents a state during

which all executed operations and invisible sub-activities of

CHAPTER 4. THE NOTATION SYSTEM

 105

the activity (represented by the enclosing state) take effect.

What exactly “take effect” means, depends on the

execution contract that this activity has. For example if the

enclosing activity is defined as durable, then some of its

data modifications will be permanent.

A commit state is used just before the final state of the

enclosing activity. This is done due to the fact that the

committing of an activity is a termination operation. Recall

that in this meta-model we are not interested about the

internal decomposition of operations. This is what we

define Commit as a pseudo-state.

The logic of this operation can be described with the

following algorithm.

1. Ask all activities belonging to

the AH of the activity

represented by the enclosing

state and have in its TS the

operation prepare, to prepare.

2. If all activities answer

“reply_commit”, then ask them to

commit. Else fire transition

leading to the ROLLBACK pseudo-

state.

3. Commit all operations belonging

to the OH of the activity

CHAPTER 4. THE NOTATION SYSTEM

 106

represented by the enclosing

state. If commitment was not

successful fire the transition to

the ROLLBACK pseudo-state. Else

end.

If an atomic activity, represented by a composite state, is

decomposed in two concurrent composite states (regions)

then the commit pseudo-state is implied to be a direct sub-

state of the enclosing state and have a transition to the

rollback pseudo-state.

Tag Values None
Constraints None
Notation A state symbol stereotyped as «COMMIT»

Table 30: RollBack Stereotype Definition

4.5. Summary

In this chapter we presented the notation system of UTML. The notation system

is not only the graphical interface of the meta-model, but it also complements its

functionality by providing execution flow for transactions. It uses two types of

models:

• The Organization Model uses the UML class diagrams and provides all

the appropriate modeling elements for specifying the precise transactional

semantics of the activities and it models their decomposition into other

sub-activities.

CHAPTER 4. THE NOTATION SYSTEM

 107

• The Execution Model uses the UML’s state machines and state-charts

in order to specify the flow of execution between activities.

All modeling elements have been defined using the standard extensibility

mechanisms of the UML and are completely documented.

CHAPTER 5. XML DESCRIPTION OF TRANSACTION DESIGN

 108

5. IMPLEMENTATION IN ROSE AND XML

TRANSFORMATION

To support web transaction design with UTML, a proper design application was

built [22]. The tool has been implemented in the scope of the European IST

project UWA (Ubiquitous Web Applications | IST-2000-25131), and it has been

integrated with other tools that support:

• Requirements Elicitation. What the requirements of a Ubiquitous Web

Application are and how they influence its behaviour, appearance, and

customization.

• Hypermedia Design. How the information that a Ubiquitous Web

Application communicates to the user is organized, with what semantics,

and how such applications are navigated.

• Customization Design. How a Ubiquitous Web Application adapts to

different user profiles, devices, locations and delivery channels in order to

offer the same transactional functionality to the end user.

Although that this tool has not been implemented in the scope of this thesis, it

provides the ability to transform UTML models into XML format and vice versa,

which is part of the latter. Describing the application’s functionality in XML has

several advantages:

• Documentation of Design. Exporting UTML models into XML format

is a way to document the application’s design for future use by designers

or other design tools. In an integrated design environment for example,

transaction design information can be interchanged between tools that

design the same application from a different point of view. For example,

CHAPTER 5. XML DESCRIPTION OF TRANSACTION DESIGN

 109

tools that design the user interface, the hypermedia structures, use cases,

etc.

• Communication of transactional semantics. Whenever transactions

of a specific web application are re-used by other systems, XML

description of the precise transactional semantics can be used to facilitate

their integration to these systems. Consider for example that «fligh

reservation» activity of the TSS is reused by another remote application.

The communication of its precise transactional semantics will make its

integration and management in the new context feasible and easy.

• Web Service Description. Having the application’s transactional

functionality described in XML, it’s quite easy to transform it into WSDL

files. Recall that UTML describes the transactional functionality of the

application and the flow of execution. This is quite similar to what web

services-related languages do (WSDL, WSCL, etc.). Thus, XML

description of the application’s functionality enables easy derivation of

web services.

• Information Interchange between Design Tools. Using XML format,

the transaction design can be accessed by the other tools that support

design for different aspects of the same application (requirements,

hypermedia and customization). For example, the transactional logic of

the application can be used and customized for delivering it into different

terminal devices (e.g. mobile phones).

XML description of UTML models is based on an appropriate XML schema that

has been defined in the scope of this thesis. This schema is presented below:

CHAPTER 5. XML DESCRIPTION OF TRANSACTION DESIGN

 110

Figure 16: XML Schema: Root Level

Figure 17: XML Schema: The Package Sub-Tree

CHAPTER 5. XML DESCRIPTION OF TRANSACTION DESIGN

 111

Figure 18: XML Schema: The Activity Sub-tree

CHAPTER 5. XML DESCRIPTION OF TRANSACTION DESIGN

 112

Figure 19: XML Schema: The Compensation Sub-tree

CHAPTER 6. APPLICATIONS OF UTML

 113

6. APPLICATIONS OF UTML

In this chapter we present examples on how UTML can be used to model

complex transactions. As mentioned, UTML provides description of transactions

conforming to most Extended Transaction Models, as well as modeling of

custom transactions for specific application requirements.

In Section 6.1 we present the description of an Extended Transaction that

conforms to the Nested Transaction Model. This model provides internal

structure in a transaction but keeps this structure invisible to the outside world.

In Section 6.2 we present the description of a transaction that follows the Sagas

transaction model. A Saga is set of ACID transactions that execute in a pre-

defined sequence and they are semantically atomic, by executing compensating

transactions in case of failure.

Finally, in section 6.3, we present a custom complex transaction that is needed

for the Tourist Support System. The example, which we present in this section,

accommodates different behaviors (visible and invisible sub-transactions) into the

same structured transaction, incorporates «weak transactions» as part of a

complex one, and it defines a complex execution flow for its activities.

CHAPTER 6. APPLICATIONS OF UTML

 114

6.1. Describing Nested Transactions with UTML

Nested Transactions provide internal structure in a transaction but they keep this

structure invisible to the outside world. A transaction in this model consists of

several sub-transactions, which in turn may contain any number of sub-

transactions, forming a hierarchy of transactions.

The sub-transactions of a nested transaction may commit or abort independently,

subject to the following constraints. A child sub-transaction must start after its

parent starts. A parent must terminate only after all its children terminate. If a

parent is aborted, all its children must be aborted. However, when a child

transaction fails, the parent may choose its own way of recovery.

To describe transaction of this model in UTML we have to provide the

organization modeling of all transactions of the hierarchy, the well behaving rules

(to define their behavior), and optionally a flow of execution which will define

whether (some of) the sub-transactions will be concurrently executed or

sequentially.

CHAPTER 6. APPLICATIONS OF UTML

 115

6.1.1. Organization Modeling of Nested Transactions

ACID_Activity

Sub_2

ACID_Activity

Root

<<Vital_Invisible>>

ACID_Activity

Sub_3

<<Vital_Invisible>>

ACID_Activity

Sub_1.1

ACID_Activity

Sub_1

<<Vital_Invisible>>

<<Invisible>>

ACID_Activity

Sub_1.2

<<Vital_Invisible>>

Figure 20: Structuring of Nested Transaction

The complete specification in the organization model includes the well-behaving

rules that will regulate the behavior of each activity.

Activity: Root
Property Value
isSimple: False
isStrict True
isSynchronous True
mSet: {}
iSet {begin}
tSet {abort, commit}

Activity: Sub_1
isSimple: False
isStrict True
isSynchronous True

CHAPTER 6. APPLICATIONS OF UTML

 116

mSet: {}
iSet {begin_inv_vital_sub}
tSet {abort, delegate}

Activity: Sub_2
isSimple: True
isStrict True
isSynchronous True
mSet: {}
iSet { begin_inv_vital_sub }
tSet {abort, delegate}

Activity: Sub_3
isSimple: True
isStrict True
isSynchronous True
mSet: {}
iSet { begin_inv_vital_sub }
tSet {abort, delegate}

Activity: Sub_1.1
isSimple: True
isStrict True
isSynchronous True
mSet: {}
iSet {begin_inv_sub}
tSet {abort, delegate}

Activity: Sub_1.2
isSimple: True
isStrict True
isSynchronous True
mSet: {}
iSet { begin_inv_vital_sub }
tSet {abort, delegate}

Table 31: Activity Specifications for a Nested Transaction

6.1.2. Execution Modeling of Nested Transactions

The Execution Model in UTML provides the execution flow between activities.

For the example presented above the execution flow is depicted on figure X.

Note that non-vital activities may or may not be executed. UTML can describe

CHAPTER 6. APPLICATIONS OF UTML

 117

such behavior by defining that non-vital sub-transaction are explicitly initialized

by the user.

Root

Sub_1

Sub_1.1 Sub_1.2<<ExplicitStart>>

Sub_2

Sub_3

Sub_1

Sub_1.1 Sub_1.2<<ExplicitStart>>

Sub_2

Sub_3

Sub_1.1 Sub_1.2<<ExplicitStart>>

Figure 21: Execution Flow Modeling for Nested Transactions

6.2. Describing Sagas with UTML

The Sagas transaction model defines a group of ACID transactions that are

executed in a predefined order. Each transaction makes its results visible to any

other Saga when terminates by committing its results and releasing the resources

it accessed. In case of failure, a Saga continues with the execution of the

compensating transactions that must be defined for every sub-transaction. In this

respect, one aspect of atomicity is achieved.

CHAPTER 6. APPLICATIONS OF UTML

 118

6.2.1. Organization Modeling of Sagas

The organization of a transaction conforming to the Saga transaction model is

depicted on Figure 22.

Activity

RootSaga

ACID_Compensation

~Tran_1

ACID_Activity

Tran_1

<<Vital_Visible>>

<<Compensates>>

ACID_Compensation

~Tran_2

ACID_Activity

Tran_2

<<Vital_Visible>>

<<Compensates>>

Activity

Tran_3

<<Vital_Visible>>

Figure 22: Structuring of a Saga Transaction

The specification of the activities involved in the above Saga transaction is shown

in to table X.

Activity: RootSaga
Property Value
isSimple: False
isStrict True
isSynchronous True

CHAPTER 6. APPLICATIONS OF UTML

 119

mSet: {}
iSet {begin}
tSet {end}

Activity: Tran_1
isSimple: True
isStrict True
isSynchronous True
mSet: {}
iSet {begin_vital_visible_sub}
tSet {abort, commit}

Activity: Tran_2
isSimple: True
isStrict True
isSynchronous True
mSet: {}
iSet { begin_vital_visible_sub }
tSet {abort, commit}

Activity: Tran_3
isSimple: True
isStrict True
isSynchronous True
mSet: {}
iSet { begin_vital_visible_sub }
tSet {abort, commit}

Activity: ~Tran_1
isSimple: True
isStrict True
isSynchronous True
mSet: {}
iSet {begin }
tSet {abort, commit}

Activity: ~Tran_2
isSimple: True
isStrict True
isSynchronous True
mSet: {}
iSet { begin }
tSet {abort, commit}

Table 32: Activity Specification for Sagas

CHAPTER 6. APPLICATIONS OF UTML

 120

6.2.2. Execution Modeling of Sagas

As mentioned, the sub-transactions of a Saga execute in a predefined sequence.

The execution flow of a Saga can be modeled in UTML as shown in figure X.

RootSaga

Tran_1 Tran_2 Tran_3

~Tran_1 ~Tran_2

Tran_1 Tran_2 Tran_3

~Tran_1 ~Tran_2 [Failed] [Succeeded]

[Succeeded]

[Failed]

[Failed]

[Succeeded]

[Failed]

Figure 23: The Execution Model of a Saga

6.3. A Custom Transaction for the TSS

In this section we design the transactions needed in the Tourist Support System.

The complexity of this example will be better understood if we discuss in detail

the semantics of each task supported by this system. In this example we take the

case that the user wants to plan a whole trip through the TSS.

CHAPTER 6. APPLICATIONS OF UTML

 121

6.3.1. User Authorization.

In order for the users to access the functionality of TSS they have to register to

the system. Once registered, each time that they want to use the system’s

functionality they have to authorize themselves. The activity “User

Authorization” is responsible to carry out this task. During this task, the users

must give some information in order the system to recognize and authorize them.

After that, the system has to validate this information and, if it is correct, to

authorize the users.

6.3.2. Flight Reservation

The PlanTrip task includes a vital task for reserving airline tickets (vital means

that this task has to be successfully executed in order for the PlanTrip to

complete successfully). This task is described by the activity Flight Reservation.

Because this is a quite complicated task, consisting of many discrete steps, Flight

Reservation has sub-activities, each one of which is responsible for a step. To be

more specific, Flight Reservation has the following sub-activities: FindFlight,

SelectTicket, SupplyBillingInfo, and DebitAccount.

The activity FindFlight is responsible to find the appropriate flights. After the

flight is found the system can go on with the selection of ticket. This is done by

the activity SelectTicket. The first thing this activity has to do is to find out if

there is an available ticket for the specific flight. If so, the activity reserves it, so as

no one else can take it after the user has selected it. The final steps needed for the

Flight Reservation to commit successfully have to do with the payment of the

reserved ticket. During the activity SupplyBillingInfo the user is asked to to

supply the system with the appropriate billing info (for example the account

which will be debited). The final step is to debit the user’s account with the

specific amount.

CHAPTER 6. APPLICATIONS OF UTML

 122

6.3.3. Hotel Reservation

Another vital task supported by TSS is the reservation of room in a hotel. This

task is described by the activity HotelReservation. As with the reservation of an

airline ticket, the task of reserving a hotel room is a quite complicated one,

consisting of many discrete steps. To be more specific, HotelReservation has the

following sub-activities: FindHotel, SelectRoom, SupplyBillingInfo, and

DebitAccount.

Comparing the names of the sub-activities mentioned above with the ones of

FlightReservation we can see that are very similar. The reason this happens is

because these activities perform similar tasks. Whereas FindFlight was

responsible for finding appropriate flight, the activity FindHotel is responsible for

finding appropriate hotels. No need to say that these acivities have the same

semantics and perform nearly the same operations. The same goes on for the rest

activities.

6.3.4. Event Ticket Reservation

A task which TSS supports is that of reserving tickets for some social events that

may take place during user’s vocation. This task is optional, which means the user

may or may not execute it. The activity, through which this task is carried out, is

the EventTicketReservation. This is another complicated activity with the

following sub-activities: FindInterestingEvents, CriticServise, SelectTicket,

SupplyBillingInfo and DebitAccount.

What is new in EventTicketReservation is the sud-activity CriticServise. This sub-

activity allows the user to get some critic for social events by using a WebServise.

It should be stressed that this service is a pay-per-use one. That is, event the user

does not reserve any ticket for social events, he still has to pay for the critic he

got. The rest sub-activities are similar with the ones mentioned above. In other

CHAPTER 6. APPLICATIONS OF UTML

 123

words we have an activity which searches the wed and retrieves information

about social events, another one which is responsible of booking tickets for such

events and finally two more activities, one for supplying billing info and an other

for debiting the user’s account.

6.3.5. The Organization Model of the TSS system

The organization modeling of the entire activity structure of the TSS system, is

presented into the following figures.

Compensation

~HotelReservation

Compensation

~FlighReservation

Compensation

~EventTicketReservation

A_Activity

UserAuthorization

AD_Activity

HotelReservation

<<Compensates>>

AD_Activity

FlightReservation

<<Compensates>>

AD_Activity

PlanTrip

<<Vital_Visible>> <<Vital_Visible>> <<Vital_Visible>>

AD_Activity

EventTicketReservation

<<Compensates>>

<<Visible>>

Figure 24: The Organization Model of the PlanTrip Activity

CHAPTER 6. APPLICATIONS OF UTML

 124

AI_Activity

SupplyUserInfo

A_Activity

UserAuthorization

<<Vital_Invisible>>

A_Activity

AuthorizeUser

<<Vital_Visible>>

Figure 25: The Organization of The UserAuthorization Activity

Activity

FindRoom

AD_Activity

HotelReservation

<<Vital_Visible>>

Activity

FindHotel

<<Vital_Visible>>

ACID_Compensation

DeselectRoom

ACID_Activity

SelectRoom

<<Vital_Visible>>

<<Compensates>>

ACID_Compensation

CreditAccount

ACID_Activity

DebitAccount

<<Vital_Visible>>

<<Compensates>>

ACID_Compensation

RemoveBillingInfo

ACID_Activity

SupplyBillingInfo

<<Vital_Invisible>>

<<Compensates>>

Figure 26: The Organization of the HotelReservation Activity

CHAPTER 6. APPLICATIONS OF UTML

 125

Activity

FindFlight

AD_Activity

FlightReservation

<<Vital_Visible>>

ACID_Activity

DebitAccount

<<Vital_Visible>>

ACID_Compensation

CreditAccount

<<Compensates>>

ACID_Compensation

DeselectTicket

ACID_Activity

SelectTicket

<<Vital_Visible>>

<<Compensates>>

ACID_Activity

SupplyBillingInfo

<<Vital_Invisible>>

ACID_Compensation

RemoveBillingInfo

<<Compensates>>

Figure 27: The Organization of the FilightReservation Activity

Activity

FindSocialEvents

ACID_Activity

SupplyBillingInfo

ACID_Activity

DebitAccount

ACID_Compensation

CreditAccount

<<Compensates>>

ACID_Activity

SelectTicket

ACID_Compensation

DeselectTicket

<<Compensates>>

AD_Activity

EventTicketReservation

<<Vital_Visible>> <<Vital_Visible>> <<Vital_Invisible>> <<Vital_Visible>>

ACD_Activity

CriticService

<<Visible>>

Figure 28: The Organization of the EventTicketReservation Activity

CHAPTER 6. APPLICATIONS OF UTML

 126

The complete specification of the activities used in the TSS is presented below:

Activity: PlanTrip
Property Value
isSimple: False
isStrict False
isSynchronous True
mSet: {suspend, resume}
iSet {begin}
tSet {end}

Activity: UserAuthorization
isSimple: False
isStrict True
isSynchronous True
mSet: {}
iSet {begin_vital_visible_sub}
tSet {abort, commit}

Activity: HotelReservation
isSimple: False
isStrict False
isSynchronous True
mSet: {suspend, resume}
iSet { begin_vital_visible_sub }
tSet {abort, commit}

Activity: FlightReservation
isSimple: False
isStrict False
isSynchronous True
mSet: {}
iSet { begin_visible_sub }
tSet {abort, commit}

Activity: EventTicketReservation
isSimple: False
isStrict False
isSynchronous True
mSet: {suspend, resume}
iSet {begin }
tSet {abort, commit}

Compensation: ~HotelReservation
isSimple: False
isStrict True

CHAPTER 6. APPLICATIONS OF UTML

 127

isSynchronous True
mSet: {}
iSet {begin}
tSet {abort, commit}

Compensation: ~FlightReservation
isSimple: False
isStrict True
isSynchronous True
mSet: {}
iSet {begin}
tSet {abort, commit}

Compensation: ~EventTicketReservation
isSimple: False
isStrict True
isSynchronous True
mSet: {}
iSet {begin}
tSet {abort, commit}

Activity: SupplyUserInfo
isSimple: True
isStrict True
isSynchronous True
mSet: {}
iSet {begin_vital_invisible_sub}
tSet {abort, delegate}

Activity: AuthorizeUser
isSimple: True
isStrict True
isSynchronous True
mSet: {}
iSet {begin_vital_visible_sub}
tSet {abort, commit}

Activity: FindHotel
isSimple: True
isStrict False
isSynchronous True
mSet: {suspend, resume}
iSet {begin_vital_visible_sub}
tSet {end}

Activity: FindRoom
isSimple: True

CHAPTER 6. APPLICATIONS OF UTML

 128

isStrict False
isSynchronous True
mSet: {suspend, resume}
iSet { begin_vital_visible_sub }
tSet {end}

Activity: SelectRoom
isSimple: True
isStrict True
isSynchronous True
mSet: {}
iSet {begin_vital_visible_sub}
tSet {commit, abort}

Activity: SupplyBillingInfo
isSimple: True
isStrict True
isSynchronous True
mSet: {}
iSet {begin_vital_invisible_sub}
tSet {abort, delegate}

Activity: DebitAccount
isSimple: True
isStrict True
isSynchronous False
mSet: {}
iSet {begin_vital_visible_sub}
tSet {commit, abort}

Compensation: DeselectRoom
isSimple: True
isStrict True
isSynchronous False
mSet: {}
iSet {begin_vital_invisible_sub}
tSet {commit, delegate}

Compensation: RemoveBillingInfo
isSimple: True
isStrict True
isSynchronous False
mSet: {}
iSet {begin_vital_invisible_sub}
tSet {commit, delegate}

Compensation: CreditAccount

CHAPTER 6. APPLICATIONS OF UTML

 129

isSimple: True
isStrict True
isSynchronous False
mSet: {}
iSet {begin_vital_invisible_sub}
tSet {commit, delegate}

Activity: FindFlight
isSimple: True
isStrict False
isSynchronous True
mSet: {suspend, resume}
iSet {begin_vital_visible_sub}
tSet {end}

Activity: SelectTicket
isSimple: True
isStrict True
isSynchronous True
mSet: {}
iSet {begin_vital_visible_sub}
tSet {commit, abort}

Compensation: DeselectTicket
isSimple: True
isStrict True
isSynchronous True
mSet: {}
iSet {begin_vital_invisible_sub}
tSet {abort, delegate}

Activity: FindSocialEvents
isSimple: True
isStrict False
isSynchronous True
mSet: {suspend, resume}
iSet {begin_vital_visible_sub}
tSet {end}

Activity: CriticService
isSimple: True
isStrict True
isSynchronous True
mSet: { }
iSet {begin_visible_sub}
tSet {commit, abort}

Table 33: Activity Specification for the PlanTrip Transaction

CHAPTER 6. APPLICATIONS OF UTML

 130

6.3.6. The Execution Model of the TSS system

The execution model defined for the TSS example is described into the following

figures.

UserAuthorization

HotelReservation FlightReservation <<ExplicitStart>>

EventTicketReservation

[UserCall=Yes]

[UserCall=No]

Figure 29: The Execution of the PlanTrip Activity

SupplyUserInfo ValidateUser

[Failed]

Figure 30: The Execution of the UserAuthorization Activity

CHAPTER 6. APPLICATIONS OF UTML

 131

FindHotel FindRoom SelectRoom SupplyBillingInfo

DebitAccount

Commit

<<Rollback>>

[Failed]

[UserCall=Cancel]

[Succeeded]

[Failed]

[Failed]

[UserCall=Cancel]

[UserCall=Cancel]

[Failed]

[UserCall=Cancel]

Figure 31: The Execution of the HotelReservation Activity

FindFlight SelectTicket

SupplyBillingInfo

DebitAccount

<<Commit>>

<<RollBack>> [UserCall=Cancel]

[Failed]

[UserCall=Cancel]

[Failed]

[Failed]

Figure 32: The Execution of the FlighReservation Activity

CHAPTER 6. APPLICATIONS OF UTML

 132

FindSocialEvents CriticService

SelectTicket SupplyBilingInfo DebitAccount

Commit<<RollBack>>

[UserCall=CriticService]UserCall

[UserCall=Finish]

[Succeeded]

[Failed]

Cancel

[UserCall=CriticService]

Cancel

Cancel

UserCall

Figure 33: The Execution of the EventTicketReservation Activity

6.3.7. Summary

In this chapter we presented the flexibility of UTML in describing complex

transactions. We used it to describe known transaction models, such nested

transactions and Sagas, as well as to define new, custom ones appropriate for

complex transactional web applications. We also demonstrated the ability of the

language to define the execution of transactions and their real time dependencies.

The example of the TSS demonstrates the great flexibility of the language to

accommodate different behaviors into the same structured transaction and to

incorporate distributed services as part of a complex transaction. In this example

we also used UTML to describe «weak transactions» that do not support the

entire set of the ACID properties, which is very common to web applications.

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

 133

7. CONCLUSIONS AND FUTURE WORK

7.1. Summary and Contributions

This thesis proposes UTML as a high level transaction modeling language for

complex web transactions. To my knowledge, UTML is the first high level

transaction modeling language in the literature and is completely compatible to

Unified Modeling Language (UML) standard of the industry.

Web transactions may be hierarchically structured, consisting of several sub-

transactions, each one accessing different distributed and diverse resources or

utilizing pre-existing logic or services. The divergence of resource interfaces and

pre-existing functionality’s semantics impose several requirements that the used

transaction model should meet.

Although several extended transaction models have been proposed in the

literature, no one can provide the great flexibility that web transactions require.

Their limitation comes mainly from their inflexibility to accommodate different

behavioral patterns in the same structured transaction. Each transaction model

defines a specific behavior that all transactions of a complex hierarchy have to

follow. This «monotony» of complex transaction structures makes difficult the

integration of diverse resources into the same structure, or the access of resources

that do not satisfy the requirements that this behavior sets. Thus, UTML has

opted for the use of meta-model for modeling transactions for web applications.

UTML consists of two main parts. A transaction meta-model that provides the

basic modeling concepts, their relationship and their specification, and a notation

system that makes its meta-model easily applicable and handy in the design

process of complex web applications. Moreover, the notation system

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

 134

complements the transaction meta-model by providing execution flow modeling

of transactions, defining at the same time a primitive user navigation model.

The main advantages of UTML can be summarized into the following:

• High level transaction modeling. It makes the complex modeling

concepts of a rich transaction meta-model applicable through a high level

notation system that it is compatible to UML.

• Modeling of both the static structure and dynamic behavior of

transactions. In web applications, it is important to model the flow of

execution that has to be respected by both the user and the system in

order to avoid the user confusion and violation of the transaction

properties.

• Description of «weak transactions». In web applications, not all

activities need to support the entire set of the ACID properties. Also,

most of the legacy databases and the file systems that are used as back

storage (resources) do not support them. UTML provides the ability to

arbitrary define which of these properties will be supported by an activity

and moreover, it provides mechanisms to check the correctness of this

assignment.

• Accommodation of diverse semantics and behaviors into the same

transaction model. This is provided by explicitly defining the

management of each activity and the decomposition semantics between a

parent activity and each of its children.

• Description of new transaction models, by using its extensibility

mechanism. New transaction models can be defined by extending the

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

 135

management operations that the language provides and defining

appropriate well-formedness and well-behaving rules that precisely

describe the newly defined model’s behavior.

• Transaction design in both top-down and bottom-up fashion. In a top-

down design fashion the designer successively decomposes complex

activities into smaller and simpler ones, while in a bottom-up fashion it

takes into account limitations and divergence of resources to synthesize

complex activities that properly accommodate the different semantics and

interfaces of diverse resources or pre-existing functionality.

• Description of transactions conforming to the most of the well-known

transaction models. The utilization of transaction models that have

already been proposed in the literature is many times needed in web

applications and UTML provides modeling of transactions that conform

to the most of these transactions

• Documentation of the precise transactional semantics that a web

application has. UTML can be used to document web applications which

exhibit complex transactional behavior. Documentation of the precise

semantics of the application’s logic enables easy derivation of new

application view that will be used to deliver the application’s functionality

through different devices, channels, etc.

• Description of transaction design in XML format. The description of

application’s logic and transactional behavior into XML format makes

possible the communication of the application’s semantics into other co-

operating applications. Also, having the application’s transactional logic

described in XML format, the export of the application into the outside

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

 136

world as one or more web services becomes possible and easy (using for

example an XSLT to transform XML to WSDL).

7.2. Future Work

In this section ideas for future extensions of UTML are presented along with a

brief description of each one. It should be noted that each one of these

extensions could provide the basis for new research activities.

• Modeling of Dataflow Dependencies between transactions that belong

to the same structured transaction. Defining these dependencies between

transactions may lead to additional functionality of UTML concerning:

o Flexible Compensation Strategies. The definition of flexible

compensation strategies for transactions may prevent the

compensation of an entire composite transaction that is to be re-

executed. The abortion and re-execution of a transaction does not

imply that all executed sub-transactions have to be abrogated.

The modeling of dataflow dependencies between sub-

transactions of a complex structure may prevent unnecessary loss

of work, by identifying which of the successfully executed sub-

transactions have to be compensated.

o Advanced Concurrency Algorithms. By identifying the

dataflow dependencies between transactions the cooperative ones

can be identified and this identification may lead to advanced

concurrency algorithms for specific transaction models.

• Description of Asynchronous Transaction Execution. Web

transactions, and especially those that are to be executed on mobile

devices, may be executed asynchronously. The asynchronous execution

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

 137

may imply data replication, allotment or even virtual execution of some

transactions at disconnected mode. When those transactions are to be

reflected back to the central web application, a synchronization process is

usually needed. An appropriate extension of UTML could precisely

describe such transactions in detail and provide new models for managing

their execution and behaviour could be defined.

• Modeling of Persistent Transactions. The execution of long-lived

transactions is typically unsheltered to failures. Also, in mobile execution

environments the frequent failures and the poor user typing capabilities

make the re-execution of transactions a redundant task that should be

avoided. To avoid this situation, persistent transactions should be

properly defined with the sense that the transaction itself is recoverable

(after a failure, it recovers to the state it had before this failure). Of course

this is not always feasible. However, it could be of high interest to

thoroughly investigate this possibility.

BIBLIOGRAPHY

 138

BIBLIOGRAPHY

[1] A. Biliris, S. Dar, N. Gehani, H. V. Jagadish, “ASSET A System for
Supporting Extended Transactions” Proceedings of the ACM SIGMOD
International Conference on Management of Data, 1994

[2] A. Cichocki, A. Helal, M. Rusinkiewicz and D. Woelk “Wrorkflow and
Process Automation: Concepts and Technology”, Kluwer Academic
Publishers, 1998

[3] A. Cockburn: “Writing Effective Use Cases”, ISBN: 0201702258,
Addison-Wesley, 2000

[4] BPMI: “Business Process Modeling Language”, www.bpmi, 2002

[5] C. Pu, G.E. Kaiser and N. Hutchinson, “Split-Transactions for Open-
Ended Activities”, In the Proceedings of the 14th Conf. on VLDB,
Morgan Kaufman pubs, 1998

[6] D. Barbará and H. Garcia-Molina, “The Demarcation Protocol: A
Technique for Maintaining Constraints in Distributed Database Systems”,
VLDB J., Vol 2, No 3, 1994

[7] F. Casati, M. Sayal, M. Shan: “ Developing E-services for Composing E-
Services”, In the Proceeding of the 13 th International Conference on
Advanced Information Systems Engineering, CAiSE, 2001

[8] G. Alonso: “Processes + Transactions = Distributed Applications”. In:
Proceedings of High Performance Transaction Processing Systems
Workshop 1997. (Also in MiddlewareSpectra, vol.11, no.4), Asilomar,
California, USA, September 1997

[9] G. Booch: “The Unified Modeling Language User Guide”, ISBN:
0201571684, Addison Wesley, 1998

[10] G. Weikum, H. -J. Schek: “Concepts and Applications of Multilevel
Transactions and Open Nested Transactions”, in Database Transaction

BIBLIOGRAPHY

 139

Models for Advanced Applications by A. K. Elmagarmid, Morgan-
Kaufmann, 1992.

[11] H. Garcia-Molina and Kenneth Salem: “SAGAS” In proc. Of the ACM
SIGMOD Int’l Conf. On Management of Data, May 1987

[12] H. Hasse, H. -J. Schek: “Unified Theory for Classical and Advanced
Transaction Models”. In: Dagstuhl-Seminar "Object-Orientation with
Parallelism and Persistance", 1996

[13] H. Korth, E. Levy, and A. Silberschatz: “Compensating Transactions: A
New Recovery Paradigm” In proc. Of the 16th Int’l conf. On VLDB
1990

[14] [H. F. Korth, E. Levy, and A. Silberschatz. A formal approach to
recovery by compensating transactions. In Proceedings of the 16 th International
Conference of VLDB, 1990].

[15] H. Wächter and A. Reuter: “The ConTract Model” Transaction Models
for Advanced Applications. Morgan Kaufmann Publishers,1992

[16] IBM: “Web Services Flow Language - WSFL 1.0”, www.ibm.com

[17] I. Jacobson, Grady Booch and James Rumbaugh: “The Unified Software
Development Process”, 1998

[18] J. Conallen: “UML Extension for Web Applications 0.91”
http://www.conallen.com, 1999

[19] K. Schwarz, C. Turker, G. Saake: “Transitive Dependencies in
Transaction Closures”, in the Proceedings of the International Database
Engineering and Applications Symposium, 1998.

[20] M. Fowler & K. Scott: “UML Distilled: Applying the standard Object
Modeling Language”, 1999

[21] Moss J. E. B.: “Nested Transactions: An approach to reliable distributed
computing” PhD thesis, MIT, 1981

BIBLIOGRAPHY

 140

[22] M. Kozyri: “Implementation of a Tool to Support Design of Web
Transactions with UTML”, Technical University of Crete, 2002

[23] O. Bukhres, A. Elmagarmid, and E. Kuhn: “Implementation of the Flex
Transaction Model”, Bulletin of the IEEE Technical Committee on Data
Engineering, 1993

[24] Object Management Group, “Activity Service Specification”,
www.omg.org, 2001

[25] Object Management Group, “Object Transaction Service Specification”,
www.omg.org, 2001

[26] Object Management Group, “Unified Modeling Language Specification
1.4”, www.omg.org, 2001

[27] Open Group, “Distributed Transaction Processing: XA Specification”,
X/Open document c193, ISBN 1-85912-057-1

[28] P. Bernstein A. Hadzilacos and Goodman N. “Concurrency Control and
Recovery in Database Systems”. Addison-Wesley, Reading, M.A. 1987

[29] P. Chrysanthis and K. Ramamritham: “ACTA: A framework about
Specifying and Reasoning about Transaction Structure and Behavior”. In
proceed. Of the ACM SIGMOD Int. Conf. on Management of Data,
pages 194 – 203, Atlantic City, NJ, 1990

[30] P. Chrysanthis and K. Ramamritham: “Synthesis of Extended
Transaction Models using ACTA” ACM TODS, 1994

[31] P. Lewis, A. Bernstein and M. Kifer: “Databases and Transaction
Processing. An application –Oriented Approach” ISBN 0201708728,
Addison Wesley, 2002

[32] Q. Chen, U. Dayal, M. Hsu: “Conceptual Modeling for Collaborative E-
business Processes. In the Proceedings of the 20th International
Conference on Conceptual Modeling, 2001

BIBLIOGRAPHY

 141

[33] R. Barga, D. Lommet, S. Agrawal and T. Baby, “Persistent Client-Server
Database Sessions”, In the Proceedings of EDBT, 2000

[34] S. Si Albir: “UML In A Nutshell”, O’Reilly & Associates, ISBN:
1565924487, 1998

[35] U. Dayal, M. Hsu, R. Ladin: “Business Process Coordination: State of the
Art, Trends, and Open Issues, In the Proceedings of the 27th conference
on VLDB, 2001

[36] W3C: “Web Services Conversation Language”, W3C Note, www.w3c.org,
March 2002

[37] W3C: “Web Services Description Language”, W3C working draft 9.
www.w3c.org, July 2002

