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1 INTRODUCTION 

1.1 The problem of energy conservation and occupant 
comfort in buildings 

During the 1960s and 1970s people became sensitive to the issue of 
energy conservation. The last 40 years many studies have investigated the 
energy efficiency of buildings and new regulations have been proposed and 
enforced. The importance of building’s energy performance has become 
even more significant due to the global warming effect and the fact that 
many countries have signed treaties to reduce their CO2 emissions. 

The early views idealized a building as a closed environment with an 
indoor climate fully controlled by the most modern HVAC systems. Any 
type of exchange with the outdoor environment is kept to a minimum to 
reduce energy loss. Unfortunately this approach led to the emergence of the 
sick building syndrome. These buildings were sealed against the outdoor 
environment and therefore the introduction of fresh air was very low. As a 
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result the concentration of pollutants in the air rose and indoor air quality 
deteriorated severely. 

An increasing attention is now given to the comfort of the building 
occupants. A building should not just shelter people from the sun and the 
rain but also provide a comfortable and pleasant working environment. The 
sealed buildings failed in that. Modern bioclimatic architecture dictates a 
maximum exploitation of the local climatic and geographic characteristics 
to minimize energy consumption and provide a comfortable environment. 
This implies taking advantage of the sun for heating and lighting, natural 
ventilation for cooling and trees for shading among other things. 
Mechanical means are only used as supplementary and when no other 
alternatives are feasible. 

Nevertheless bioclimatic architecture is not always an option. There are 
millions of buildings already constructed and in use. Also, urban 
construction often poses many restrictions, thus limiting the bioclimatic 
techniques that can be applied. In either case a need for sophisticated 
control systems is apparent. The main characteristic of such systems should 
be the ability to control the indoor environment with whatever means are 
available, in order to simultaneously achieve two different goals – energy 
efficiency and occupant comfort. 

1.2 Use of controls in modern buildings  
1.2.1 Building Energy Management Systems (BEMS) 

BEMS is a generic term used to describe computer-based control systems 
for building services such as air-conditioning, lighting, ventilation, security 
etc. [1]. The usual layout of a BEMS includes a central station (usually a 
computer), which provides the BEMS operator with information on the 
conditions inside the building and the status of the equipment. The operator 
can remotely respond to problems, program controllers and review the 
performance of individual equipment or the whole building. 

Originally BEMS consisted of a computer hardwired to a number of 
actuators and sensors. Due to the limited capabilities of computer 
equipment, BEMS were used solely to provide a central point for system 
monitoring and basic remote On/Off switching of equipment. With the 
advancements of technology modern BEMS have also been enhanced. Now 
the outstations include autonomous intelligent controllers that can be 
connected to the central stations using a number of communication 
protocols, even wireless ones. The central station provides, through 
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graphical, user-friendly interfaces, easy monitoring of equipment and 
remote programming of controllers. 

BEMS provide improved plant performance by achieving the desired 
operating conditions, by automatic response to failures and by reducing 
energy consumption through controller fine-tuning. Of course BEMS are 
associated with a certain design and installation cost as well as a 
subsequent operating and maintenance cost.  

1.2.2 State of the art in building control techniques 
There are three main areas of activity in building controller development. 

Research has been carried out in the use of neural networks, fuzzy systems, 
predictive control and their combinations [Clarke, et al., 2]. Many of the 
proposed controllers incorporate provisions for occupant thermal comfort 
and almost all seek to maximize the building’s energy efficiency, either 
directly or indirectly. Brief reviews of some of the most recent publications 
on building controllers follow. 

The majority of modern controllers use fuzzy logic. [Hamdi and 
Lachiver, 3] proposed a controller based on human thermal comfort. The 
controller consists of two fuzzy systems. The first part determines the 
comfort zone based on current conditions and a user dependent model, 
while the second one provides the control. An energy conservation of 
20%was observed when compared to conventional On/Off control. 

[Salgado, et al., 4] tested the performance for heating and cooling of an 
environmental chamber by fuzzy On/Off and fuzzy PID adaptive 
controllers. These controllers were able to achieve better trajectory tracking 
and smaller overshoots when compared to conventional On/Off and PID 
controllers. 

A fuzzy controller was also chosen by [Dounis and Manolakis, 5] for 
thermal comfort regulation. The controller uses the PMV index and the 
ambient temperature in order to control heating, cooling and natural 
ventilation (by means of a window). 

[Kolokotsa, et al., 6] developed and tested a family of fuzzy controllers, 
namely a fuzzy PID, a fuzzy PD and an adaptive fuzzy PD. The controllers 
were used to regulate thermal and visual comfort as well as air quality 
inside a building. The inputs used, were the PMV index, the CO2 
concentration and the illuminance level. 
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On the other hand [Ben-Nakhi and Mahmoud, 7] developed and 
evaluated a family of six neural networks. They were used to determine the 
time of the end of thermostat setback in an office building so that by the 
arrival of the employees the conditions inside were back to normal.  

The neurobat project developed by [Morel, et al., 8] uses neural networks 
for predictive control. The concept behind neurobat is to use neural 
networks for predicting outdoor temperature and solar radiation. The 
predicted values are then used by another neural network to forecast 
building behavior. The resulting, predicted indoor air temperature and a 
fuzzy estimate of the comfort zone are fed to the controller which operates 
the heating valves. The neurobat controller was able to reduce energy 
consumption by 35% in comparison to a standard commercial controller and 
11% in comparison to a “performant” commercial controller. At the same 
time the controller was able to improve thermal comfort. 

Neural-fuzzy systems have also been studied. [Egilegor, et al., 9] tested a 
fuzzy-PI controller with and without neural adaptation. The system was 
used to control heating and cooling within the PMV comfort zone. In 
comparison to the On/Off controller, the fuzzy-PI yielded substantially 
smaller deviations from the optimum. On the other hand neural adaptation 
did not offer significant improvement. 

[Yamada, et al., 10] developed a controller that uses neural networks, 
fuzzy systems and predictive control. This controller is used to improve 
energy saving in air conditioning systems. Specifically it predicts outdoor 
conditions (air temperature and solar radiation) as well as the number of 
occupants. These predictions are subsequently used to estimate building 
performance (air temperature, wall temperature and heat load) in order to 
determine the heat sources, optimal start/stop times, optimal night purge 
time during summer and minimum outdoor air intake. In addition to that the 
controller aims at maintaining indoor conditions within a comfort zone, 
which is determined by the PMV index. 

It is noteworthy that even when the controllers aimed solely at achieving 
thermal comfort, the results also showed reduced energy consumption. 
Almost all the controllers used the PMV index as thermal comfort measure. 
Although PMV is very common its applicability in all types of climates and 
buildings has been questioned. It will be shown in the following chapter 
that using the newer adaptive comfort standard (where applicable), it is 
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possible to achieve higher energy conservation, without compromising 
occupant comfort. 

1.3 Thesis goal 
This thesis aims at the design of a controller using the advancements in 

artificial intelligence and machine learning. This controller should be 
capable of being incorporated into any building with minimum required 
modifications and fine-tuning. As such the controller should be able to 
learn from its environment and be able to adapt itself if the environment 
changes. 

1.4 Thesis organization 
The following items provide an overview of each chapter of the thesis. 

 Chapter 2 refers to the comfort of building occupants. Comfort is 
influenced by four main factors: thermal conditions, indoor air quality, 
lighting and noise. Regarding thermal comfort the Fanger model along 
with the PMV and PPD indexes are presented. Then the validity of these 
indexes is investigated and the new adaptive comfort standard is 
introduced. 

 Chapter 3 is an introduction to reinforcement learning. After a 
description of the main terms used in reinforcement learning, a brief 
account on dynamic programming, Monte Carlo methods and temporal 
difference methods is given. Then we focus on the temporal difference 
methods and several learning algorithms are analyzed. Finally the topic 
of reinforcement learning with function approximation is addressed. 

 Chapter 4 describes the application itself. At first the specifics on the 
design of the two developed controllers (the reinforcement learning 
fuzzy controller and the reinforcement learning linear controller) are 
given. A discussion on the possible ways of selecting a reinforcement 
signal follows. Afterwards the design of the occupant simulator is 
reviewed; this simulator will be used to get a direct estimate of the 
occupant thermal comfort. 

 Chapter 5 presents the results of the simulator and the controllers for a 
variety of testing configurations. The controllers are compared to each 
other and to a fuzzy-PD controller and an On/Off controller. 

 A discussion on possible problems and future enhancements is the topic 
of chapter 6. 
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2 COMFORT 

2.1 Introduction 
When we refer to the building occupant’s comfort, we usually consider 

several factors such as thermal comfort, indoor air quality, light and noise 
level. When a person is in discomfort due to any of the aforementioned 
factors, then a performance drop is expected. It is therefore desirable to 
regulate the environmental conditions inside the building, in order to 
achieve comfort and thus increased performance of the occupants. 

The need to achieve comfort has been exacerbated by the emergence of 
the sick building syndrome or SBS. This syndrome is more common in fully 
air-conditioned buildings and it is usually identified by complaints about 
stuffy air and discomfort, loss of concentration, weariness and headaches 
from the building’s occupants. High temperatures, low humidity, noise, 
insufficient illumination and inadequate ventilation have been identified as 
reasons for the occurrence of SBS. In short in all studied cases of SBS the 
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building’s occupants where in discomfort, dissatisfied by the conditions 
inside the building. 

In order to help engineers deal with the issue of comfort in modern 
buildings, several standards have been published while others are still in 
development. Thermal comfort is addressed in the ISO 7730:1994 standard 
as well as in ASHRAE 55. Both standards are based in the work of Fanger 
and the PMV index that will be discussed later. Relative to the ISO 7730 
are the ISO 8996:1990 and ISO 9920:1995 that discuss the issues of 
metabolic heat production and clothing insulation properties respectively. 
These two parameters are essential for the evaluation of the PMV index. 

The ISO 8995:1989 describes the lighting demands of indoor work 
environments, while the ISO 1996-3:1987 and the ISO 1999:1990 describe 
noise limits and the impact of noise to human hearing. Currently there is no 
ISO standard describing indoor air quality requirements for reasons that 
will be investigated in a later section. 

2.2 Thermal Comfort 
2.2.1 Introduction 

Thermal comfort plays a key role in assessing comfort. Thermal comfort 
is defined in the ISO 7730 standard as being "That condition of mind which 
expresses satisfaction with the thermal environment". This definition, 
although straightforward, does not provide the means to measure thermal 
comfort in a specified thermal environment. It is evident that the conditions 
under which the human body is comfortable with the environment should be 
investigated. 

Although the exact mechanisms that assess and regulate body 
temperature are quite complex and not fully understood we can use a simple 
model to illustrate the main processes involved. When the body becomes to 
warm, it tries to increase heat loss by blood vessel dilation and sweat. 
Equivalently when it gets to cold the blood vessels constrict and shivering 
occurs, thus increasing heat production and reducing heat loss. The 
reactions are triggered when the skin temperature drops below 34ºC or the 
body temperature rises above 37ºC. As the temperature moves away from 
these limits the reactions are getting stronger. Therefore a condition for a 
person to feel thermally comfortable is that the combination of body and 
skin temperature is between the prespecified limits. 
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The human body also reacts to the changes of body and skin temperature, 
especially if they are abrupt and large. Therefore a second condition for 
achieving thermal comfort is to ensure thermal equilibrium, that is the heat 
produced in the body should be equal to its heat loss, resulting in the 
following comfort equation. 

 c res resM W H E C E− = + + +  (2.1) 

c

res

res

M : Metabolic Rate
W : Effective mechanical power (External work)
H : Dry heat loss
E : Evaporative heat exchange at the skin during thermal neutrality
C : Convective respiratory heat exchange
E : Evaporative respiratory heat exchange

 

Although equation (2.1) can be quite difficult to solve, it readily shows 
the parameters on which thermal comfort depends and therefore the 
physical quantities that need to be measured in order for estimates of 
comfort to be made. 

Metabolic rate refers to the amount of energy released by body 
metabolism and is a function of current activity. It is logical that people 
sleeping or involved in undemanding activities produce far less energy than 
people involved for example in sports. Metabolic rate is usually expressed 
in Met ( 2

w
m of bodysurface1Met 58.15= ) and there are tables that provide the 

metabolic rates of various activities. A table of the met values of various 
representative activities is provided in the appendix. 

External work refers to energy transferred to the human body from the 
environment and is usually considered to be zero. 

In order to determine the dry heat loss, the heat loss due to evaporation 
at the skin and the heat loss due to respiration we need to know the air 
temperature, the mean radiant temperature, the air velocity, the humidity as 
well as the kind of clothing used. 

Clothing is significant because it acts as insulation, thus reducing heat 
loss. The unit normally used for measuring the insulation effect of clothing 
is the Clo unit ( 2m C

W1Clo 0.155= ). Just like the metabolic rate there are 
tables that provide the Clo value of individual garments. Adding the Clo 
values together we can obtain the total Clo value with adequate accuracy. 
Notice should be taken to include also the Clo values of seats or beds where 
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applicable since they also contribute in reducing heat loss. The clo values 
of several garments are provided in a table in the appendix. 

The mean radiant temperature is defined as the temperature of an 
imaginary black enclosure which would result in the same heat loss by 
radiation from the person as in the actual enclosure. Since the measurement 
of the mean radiant temperature is difficult and time consuming we usually 
resort to the use of one of the operative, equivalent or effective 
temperatures.  

Operative temperature is the temperature of an imaginary room where the 
air velocity and humidity is the same as in the real room but its ambient 
temperature is the same as its mean radiant temperature. Equivalent and 
effective temperatures are defined the same way as the operative but the air 
velocity in the imaginary room is zero for the equivalent temperature and 
the humidity is 50% for the effective temperature. It must me noted that the 
equivalent and effective temperatures depend on the person’s clothing and 
activities, while the operative is normally independent of these parameters 
[11]. 

Thermal comfort can be redefined now as the condition where a person is 
thermally neutral, where thermal neutrality is achieved at a temperature  
equal to the equivalent temperature, which can be calculated from equation 
(2.1). Although thermal comfort also depends on humidity it is uncommon 
to attempt the calculation of a comfortable humidity level since when a 
person is close to a state of thermal comfort the influence of humidity is 
small. 

In real conditions the building user’s clothing, activities and preferences 
differ from each other and there are also localized phenomena to be 
considered (like draught), thus making the task of achieving thermal 
comfort for all occupants virtually impossible [Olesen and Parsons, 12]. 
Fortunately people are able to regulate their thermal comfort by adjusting 
their clothing to suit the conditions. So the problem of achieving thermal 
comfort becomes the problem of minimizing the number of dissatisfied 
people. 

2.2.2 The PMV and PPD indexes 
The PMV (Predicted Mean Vote) index is a number that “predicts” the 

mean thermal vote of large volume of people. This vote is given in a seven 
grade thermal sensation scale ranging from +3 (hot) to -3 (cold) while zero 
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represents thermal neutrality. The PMV is calculated using the comfort 
equation described earlier. 

It should be noted that ISO 7730 describes specific ranges of conditions 
were the use of the PMV index is valid. These ranges are shown in Table 
2-1. Also care should be taken when using the PMV because it is based on 
North American and European, healthy adults in sedentary activity and 
applying it to different groups may produce deviations. 

Table 2-1: The validity ranges of the ISO 7730 PMV index 
 Min Max 
Air temperature 10ºC 30ºC 
Mean radiant temperature 10ºC 40ºC 
Air velocity 0m/s 1m/s 
Metabolic rate 0.8 Met 4 Met 
Clothing 0 Clo 2 Clo 

 

The PPD (Predicted Percentage of Dissatisfied) represents the percentage 
of people that could be dissatisfied in the given environmental conditions 
which was defined as the people voting +3, +2, -2 or -3. The relation 
between the PMV and PPD values is given by equation (2.2) [Memarzadeh 
and Manning, 13]. 

 
4 20.03353PMV 0.2179PMVPPD 100 95e− −= −  (2.2) 

Figure 2-1 shows the relationship between PMV and PPD graphically. It 
is evident that the PPD never drops below 5% meaning that there will 
always be a percentage of dissatisfied. It is also noteworthy that we have a 
region of PMV values close to zero where the percentage of dissatisfied 
people is quite low. 

In several building simulation, comfort estimation and HVAC control 
studies the need arises for a long-term thermal comfort measure. For this 
purpose [Olesen and Parsons, 12] proposed the following index: 

 

PPD of actual PMVwarm period:
PPD of upper limit PMV

PPD of actual PMVcold period:
PPD of lower limit PMV

∑

∑
 (2.3) 
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Figure 2-1: Relationship between the PPD and PMV indexes 

 

2.2.3 The validity of the PMV and PPD indexes 
Even as back as the 1970s, questions were raised on whether the PMV 

can accurately predict the AMV (actual mean vote). Although laboratory 
studies usually supported its validity, field studies often found 
discrepancies between PMV and AMV. These discrepancies have been 
attributed from researchers to various reasons. 

The Fanger model that is used to derive the formula for the calculation of 
the PMV is not accurate enough. This model describes the human body as a 
one dimensional system in steady state. Although more accurate models 
have been proposed and used in other applications, the Fanger model 
remains the base of PMV calculations because it is simple enough to be 
used for thermal comfort assessment of real buildings [Jones, 14]. 

The use of the metabolic rate and clothing parameters have also been 
investigated as possible reasons for errors in PMV calculations. Both the 
metabolic rate and clothing are difficult to measure in field studies and it 
has been argued that people from different geographical regions may have 
different metabolic rates for the same kind of activity. On the other hand 
clothing is determined by using a uniform Clo number that is considered to 
be equivalent to the effect of the individual garments. Although this may 
yield reasonable results in several situations, there are considerations as to 
whether this practice is valid. It must also be noted that the insulation 
properties of the different garments have been calculated under low air 
velocity and are thus inaccurate in different conditions. 
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Psychological reasons have also been suggested. It is plausible that 
people’s expectations may influence their comfort sensation. It has also 
been demonstrated that when people had a degree of control of their 
environment, e.g. by operable windows or fans, the comfort range was 
increased [Dear and Brager, 15]. This may account to the fact that the PMV 
is quite accurate in buildings with centralized HVAC, but inaccurate in 
naturally ventilated (NV) buildings [Olesen and Parsons, 12]. These 
findings led to the development of the Adaptive Comfort Standard (ACS) 
which will be described in the following section. 

Statistical analysis of a large number of data coming from different 
building across four continents was conducted by [Humphreys and Nicol, 
16]. The researchers found that using the data as a whole the PMV showed 
negligible bias, specifically it was higher than the AMV by 0.11 0.01±  scale 
units. The individual parameters on the other hand showed significant bias 
in their extremes. It was demonstrated that the PMV overestimated the 
discomfort of people at temperatures over 27ºC, underestimated the cooling 
effect of air velocities above 0.2m/s, overestimated discomfort at relative 
humidity over 60%. They also found out serious bias when the activity is 
over 1.5 met and when the clothing is outside the 0.3-1.2 clo range. 
Measurement error was eliminated as a significant factor, since the addition 
of noise in the measurements had little effect on the biases demonstrated 
above. 

To eliminate the possibility that the individual biases may be neutralized 
when combined, the researchers conducted tests for each individual 
building. These tests showed that although the PMV was accurate in 
moderate environments, it overestimated the discomfort of people in warm 
and cool environments. This bias became increasingly important when 
moving to more extreme conditions, regardless of the building type. 

2.2.4 Adaptive Comfort Standard (ACS) 
The ISO 7730 and ASHRAE 55 standards both acknowledge the fact that 

people have the ability to adjust their comfort sensation by adjusting their 
clothing or the local air velocity. Nevertheless both standards failed to take 
into account the psychological adaptability people exhibit. People living in 
fully air-conditioned spaces become accustomed to small variations of 
indoor conditions and may respond negative even in small changes of their 
environment. On the other hand people living in naturally ventilated 
buildings are used to large diversity due to daily and seasonal outdoor 
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climatic conditions [Dear and Brager, 15]. Therefore the latter should 
exhibit different preferences and wider tolerances. 

This psychological adaptation was found to be supported by experimental 
data of the ASHRAE RP-884 database. In addition to that it was also found 
that PMV was very accurate at predicting the comfort sensation of people in 
HVAC buildings, but was very inaccurate in its predictions for naturally 
ventilated buildings. 

In 1978 Humphreys suggested that the optimum internal temperature – 
the comfort temperature – should be a function of the monthly mean 
outdoor temperature. Based on the afforementioned inaccuracies of the 
ASHRAE standard and the suggestion of Humphreys [Dear and Brager, 15] 
proposed a revision of the ASHRAE 55 standard that accommodates the 
inaccuracy of the standard for naturally ventilated buildings. 

The proposed revision makes use of the adaptive thermal comfort 
approach to estimate the comfort temperature inside a building. The 
adaptive thermal comfort model is based on the outdoor air temperature to 
estimate the indoor comfort temperature. Several researchers have 
questioned the relevance of these two variables, but it is becoming common 
agreement that outdoor temperature can influence the behavioral adaptation 
of people, since the choice of their clothing depends to a certain degree on 
current environmental conditions. Additionally the weather can influence 
the expectations of people. 

Specifically [Dear and Brager, 15] proposed that the thermal comfort 
temperature in NV buildings is a function of the outdoor air temperature 
exclusively. Using the data from the RP-844 database, the following 
estimation of the comfort temperature was produced. 

 C air,outT 0.31 T 17.8= ⋅ +  (2.4) 

The comfort zones for 90% and 80% acceptability were also determined 
to be two bands of 5ºC and 7ºC width respectively. 

In a similar study by [Nicol and Humphreys, 17] it was determined that 
the following comfort equation is a very close approximation to the real one 
for free-running buildings. 

 c month meanT 0.54 T 13.5= ⋅ +  (2.5) 

Regarding the comfort zones, it is argued that their width depends on the 
availability of control for the building occupants. 
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In 1997 the EU funded a program, whose objective was to provide a 
method of reducing energy consumption in buildings, by utilizing the ACS. 
The program lasted 3 years with participants from UK, France, Greece, 
Sweden and Portugal. During the project thermal comfort studies were 
carried out in various buildings in all the participating countries. The data 
gathered were used to determine a comfortable temperature as a function of 
outdoor temperature [McCartney and Nicol, 18]. Instead of the monthly 
mean, a running mean temperature was preferred. The running mean was 
calculated by: 

 
RM,n RM,n 1 DM,n 1

RM,n

DM,n

T cT (1 c)T
T  is the running mean of day n
T  is the daily mean of day n

− −= + −

 (2.6) 

The c constant was chosen to be 0.80 after testing. Using regression 
analysis [McCartney and Nicol, 18] obtained the following thermal comfort 
estimate: 

 C RM RM

C RM

T 0.302 T 19.39, T 10 C

T 22.88, T 10 C

= ⋅ + >

= ≤
 (2.7) 

The comfort equations as calculated for each country are presented in 
Table 2-2. 

Table 2-2: ACS comfortable temperatures for 5 EU countries 

Country RMT 10 C≤  RMT 10 C>  
France C RMT 0.049 T 22.58= ⋅ +  C RMT 0.206 T 21.42= ⋅ +  

Greece N/A C RMT 0.205 T 21.69= ⋅ +  

Portugal N/A C RMT 0.381 T 18.12= ⋅ +  

Sweden C RMT 0.051 T 22.83= ⋅ +  N/A 

UK C RMT 0.104 T 22.58= ⋅ +  C RMT 0.168 T 21.63= ⋅ +  
 

Although the comfortable temperatures differ from study to study the 
ACS is very important. The correlation between the results given by the 
ACS and the AMV is better than that between PMV and AMV in NV 
buildings. Also it is noteworthy, that in several applications of the ACS in 
real buildings significant energy conservation was observed, without 
adverse effects on the occupant’s thermal comfort. 
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2.3 Indoor Air Quality (IAQ) 
2.3.1 Introduction 

Although air pollution has been a topic of research and development for 
almost a century now, the issue of IAQ is quite recent. Indoor spaces, up 
until recently, were considered safe and free of pollutants. It is 
characteristic of this misconception that during the 1970s people were 
encouraged to build well insulated buildings to conserve energy and to keep 
the harmful, polluted air outside. 

Today we know that indoor air concentrations of various irritating, 
carcinogenic and mutagenic compounds are larger than their corresponding 
outdoor concentrations even in industrial areas.  

Since people spent 70% to 90% of their life indoors, indoor air quality 
poses a significant threat to health. Several organizations including the 
European Union, the U.S. Environmental Protection Agency and the World 
Health Organization have conducted studies to catalog the pollutants and 
their effects.  

Indoor air pollutants may originate from the outdoor environment, 
building materials, an indoor activity like painting or smoking, even the 
earth. The problem is that these pollutants disperse in a relatively small 
space, from which it is difficult to escape, thus they maintain high 
concentrations. These concentrations may increase with the increased 
temperature and humidity, often encountered in indoor spaces. In addition 
to this the presence of a large number of different compounds, possibly 
interacting, in indoor atmosphere can have unpredictable effect on human 
health. 

2.3.2 Common indoor pollutants 
The variety of indoor air pollutants is large and their presence depends 

on the geographical region where the building is situated, the building 
materials, on the type of activities practiced and the environmental systems 
(air conditioners, air purifiers, window types etc.) used. Most common 
pollutants are radon, cigarette smoke, volatile organic compounds and 
biological products. 

Radon is a carcinogenic compound that usually originates from the earth 
or the building materials. It is a very important factor contributing to lung 
cancer, second only to smoking. Although special means to overcome the 
problem, like insulating materials, are available, the cost can only be 
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justified in the case of known high concentrations. In most cases good 
ventilation is the only available solution. 

Cigarette smoke is a very common indoor air pollutant. It contains 4000 
chemical compounds, more than 40 of which are known carcinogens. 
Cigarette smoke can be divided into two streams, the first inhaled by the 
smoker and the second that is dispersed in the environment. Exposure to 
this second stream is known as passive smoking. Its composition depends 
on the number of people smoking and the kind of cigarettes they smoke. 
Passive smoking is proven to be more harmful than smoking since the 
passive smoker inhales 1 to 50 times the quantity of various carcinogens 
compared to the smoker. It is noteworthy that CO concentrations may reach 
50ppm in a room with many smokers, while the normal outdoor 
concentration in the centre of Athens is 5ppm. 

A very common class of indoor pollutants is that of biological origin, 
from plants, animals or even humans. They are very common and usually 
emerge wherever the humidity is high. Several diseases, some of which 
possibly lethal like legionnaire’s disease, are related to these kinds of 
pollutants. A good practice to keep these pollutants under control is to keep 
indoor humidity between 40% and 60%. Rooms with high humidity like 
bathrooms and kitchens should be ventilated often and all surfaces should 
be kept as dry as possible. 

Combustion products like CO2, CO, SOx and NOx are also found in 
indoor air especially when badly regulated devices (stoves, fireplaces etc.) 
are in operation. High concentrations of any of these pollutants is 
dangerous so all fuel burning devices should be carefully maintained to 
eliminate their indoor emissions. Fortunately the number of such devices is 
very small and they are usually found only in residential areas. 

Several products of daily use, like detergents, disinfectants, paints, 
cosmetics, etc. contain volatile organic compounds (VOC), which during 
use or storage are introduced into the indoor air. More than 300 such 
compounds have been catalogued, several of which are known carcinogens, 
neurotoxins or respiratory irritants. The problem can be alleviated with 
good ventilation especially during activities such as painting, where the 
concentrations of these compounds may reach dangerous levels. 

Ozone is another dangerous pollutant of indoor air found usually in 
office spaces where copying machines or air cleaners are in use. Fortunately 
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ozone concentrations rarely reach higher values than that of outdoor urban 
air. 

Several other pollutants may also be found in indoor air like asbestos, 
formaldehyde and lead. Some of these are found only in special 
circumstances (e.g. asbestos is found in old buildings with asbestos 
insulation) while others are quite common. 

2.3.3 Controlling indoor air quality 
It has already been mentioned that a large number of possibly interacting 

pollutants are found in indoor air. Although for several of them studies 
have been carried out as to their effects and safe concentration limits, these 
studies usually apply to industrial areas and are difficult to incorporate 
them into building regulations and standards concerning the commercial 
and residential sector. 

It is unfeasible to install measuring devices that can keep track of the 
concentrations of all these compounds and even when these devices are 
available it is very difficult to keep their levels under control. The means 
that are available to improve air quality are the use of air cleaners and 
ventilation. The former is of limited use, since air cleaners cannot handle 
all types of pollutants and are quite costly. The latter has been proven to be 
a better solution and many regulations and standards resort to defining 
minimum ventilation rates in order to maintain IAQ. Of course ventilation 
is also associated with a certain cost since fresh air is usually in a different 
temperature than the one desired. 

In order to assess IAQ the CO2 concentration is often used. Although 
CO2 does not account for the sum of all the indoor air pollutants, its 
concentration can be used as a measure of ventilation efficiency. For 
example if the CO2 concentration rises above the 800ppm threshold, a IAQ-
sensitive controller would be instructed to increase ventilation or to 
increase the fresh air intake ratio in a central HVAC system. 

2.4 Light requirements 
2.4.1 Introduction 

Light plays a significant role on the overall human comfort and on their 
performance. In order to achieve light requirements inside a building, 
besides artificial light, also the natural light from outside is used. The use 
of natural light, known as daylighting, has been a topic of architectural 
design since man first built dwellings. Daylighting has received greater 
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attention the last 40 years because, besides the aesthetic advantages it 
provides, it is also a good way to conserve energy. Some control over 
daylighting is available, for example by operable shading devices, but it is 
more common to control only artificial light. 

2.4.2 Terms 
In lighting four units are in use: 

 Luminus flux (Φ). Refers to the amount of light per unit of time. 
Measured in lumen (lm). 

 Luminus intensity (I). Measures flux in a given direction. The unit 
used is the candela (cd). 

 Luminance (L). Indicates the amount of lightness of an emitting 
surface and is measured in cd/m2. 

 Illuminance (E). Refers to the flux reaching a given surface and is 
measured in lux (lx). 

2.4.3 Visual comfort 
There are three factors that affect visual comfort, illuminance, glare and 

light color as analyzed in [Serra, 19]. Illuminance refers to the adequacy of 
light to perceive the objects of out interest. Glare is an unpleasant effect 
that occurs when points of excessively different luminance are present in 
our visual field. This may result in the generation of optical artifacts (e.g. 
rays or coronas around very bright objects in dark backgrounds), inability 
to distinguish some objects whose luminance is very different from the 
mean, even inability to see (incapacitating glare) when a beam of light 
strikes the center of the eye. The color of the light is also an important 
factor of comfort. Color is measured by a temperature. This temperature 
corresponds to the temperature of black body that emits the same light. 
Temperatures below 5000K are reddish and considered warm while those 
above 5000K are blue and considered cool. The temperature of natural light 
is 6000-6500K and is considered very good from the optical comfort 
standpoint. Nevertheless natural light can also cause discomfort in the case 
of low light levels since it is too cool [Serra, 19]. 

The regions of comfort for each of these parameters depend on the 
activity types of the individuals. It is natural that the light requirements are 
different when an activity requires precision and concentration and when a 
person is just moving around a room. In the appendix, tables are provided 
that give indicatory ranges for some types of activities.  
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Light requirements are usually assessed during the design of a building 
so that the artificial lighting system provides adequate light of the 
appropriate temperature for the proposed use of the building. Control 
systems are usually employed to adjust artificial lighting as required and in 
some cases to regulate shading devices (e.g. curtains) in order to avoid 
glare. 

2.5 Noise 
Noise is also an issue when studying comfort since it is known that 

people in noisy environments have concentration problems and increased 
stress. It is also a fact that people exposed in noisy environments for long 
periods of time will experience hearing loss in the future. 

Achieving sound level requirements is an issue of building design rather 
than a control problem and therefore only a brief description of the noise 
requirements is presented in this thesis. 

Both ISO and ASHRAE have developed standards describing the 
permissible noise exposure. For example Table 2-3 shows the permissible 
noise exposures as described in the Occupational Safety and Health 
Standard 1910.95 of the US Department of Labor. 

Table 2-3: Permissable noise exposures (Occupational Safety and 
Health Standard 1910.95 – US Department of Labor) 

Duration (hours per day) Sound level (dBA) 
8 90 
6 92 
4 95 
3 97 
2 100 
1.5 102 
1 105 
0.5 110 
0.25 or less 115 

 

Of course the standards refer mostly to industrial workspaces and 
workspaces with high noise levels. In office and residential buildings the 
noise is usually much lower. Sound levels inside buildings are usually 
measured in terms of Noise Criteria (NC) values. The higher the NC 
number, the higher the sound level. ASHRAE suggests a NC 35 – 40 level 
for offices [Carrier, 20].  
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In some situations it is even desirable to have noise. For example many 
open offices have background sound masking, where a “white noise” is 
introduced to mask conversations between cubicles, so that the employees 
are not distracted by each other. These systems are often set to an NC value 
of 41 – 43.  
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3 REINFORCEMENT LEARNING 

3.1 Introduction 
Reinforcement learning refers to a variety of learning algorithms that are 

suitable to solve the problem of learning by evaluating the response of the 
environment to the actions taken by the learning agent. In contrast with the 
supervised learning problem where the learning agent is told what the best 
action was for any given situation, in the reinforcement learning problem 
the agent is only given a numerical reward showing how “good” or “bad” 
its actions were. Learning occurs only using past experience. The agent 
must try different actions in order to determine which are good – which 
maximize its reward. In reinforcement learning problems it is also possible 
that an action may influence not only immediate rewards but also one or 
more of the subsequent rewards. For example in a board game a “bad” move 
during the first stages of the game may severely decrease the chances for 
winning. 
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Reinforcement learning is based on the works on artificial intelligence 
going back to the beginning of the 20th century. These early works, that 
involved psychology and animal learning, introduced such ideas as trial-
and-error and the tendency to selecting actions based on which produced 
greater satisfaction in the past. During the mid of the 20th century work on 
reinforcement learning was sparse as the majority of the research involved 
supervised learning problems. Reinforcement learning became a distinct 
active research field only during the 1980s mainly by the efforts of Richard 
Sutton and Andrew Barto which were followed and/or complimented by 
Tesauro, Bertsekas, Tsitsiklis, Werbos, Watkins and many others. One of 
the most complete introductory texts on reinforcement learning is [Sutton 
and Barto, 21]. 

3.2 Reinforcement learning basics 
3.2.1 Terms 

At first the main terms used in reinforcement learning will be discussed; 
these terms are actions, states, policy, reward function, value function, 
return, discounting, episodic and continual tasks, backup and the Markov 
property. 

Actions refer to the decision that the agent will be called to make and 
can be as low-level as the voltage applied to a motor unit or as high-level as 
where the agent should focus its attention on. State on the other hand refers 
to the available information that is pertinent to the agent’s decision making. 
State can be comprised of any kind of information ranging from sensor 
signals to symbolic characteristics of the environment. 

Policy defines the way a reinforcement learning agent behaves. It 
provides a mapping between the situations the agent can find itself in 
(states) and the action it should take. Policies can be deterministic by 
specifying which action should be taken under each state or stochastic when 
for example instead of a specific action, probabilities of choosing several 
actions are given. Judging from the above, the reinforcement learning 
problem becomes the problem of determining the optimal policy, the policy 
that will collect the maximum reward in the long run. 

The reward function describes the expected reward of being in a certain 
state or choosing a certain action while being in a specific state. The reward 
function can be said to be “short-sighted” as it looks only one step ahead. In 
contrast to the reward function, the value function defines the total amount 
of reward that the agent should expect to receive in the long-term by being 
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in a specific state or by choosing an action while being in a specific state. 
Value functions are very important in determining the optimal policy. 
Specifically when an exact model of the environment is available the agent 
can determine which action will result in the best successor state. The best 
successor state is defined as that with the largest value. Alternatively in 
problems were a precise model of the environment is not available, the 
state-action value is used instead since it provides the means to selecting 
the actions. 

A return is the actual reward received by an agent while following a 
certain policy. The return may refer to the total reward received or to the 
reward received after a small amount of time. The return can be used to 
update the value function because it is in fact an estimate of the value 
function taken from interaction with the environment.  

In many situations the reinforcement learning problem may continue 
indefinitely and the return may reach infinity. In order to overcome this 
problem and ensure the boundedness of the return, discounting is used. 
Discounting assigns greater weight to immediate rewards and less to very 
distant ones. The discounted return can be written as: 

 k
t t t 1 t kR r r ... r ...λ γ γ+ += + + + +  (3.1) 

The γ parameter is known as the discount factor and takes values in the 
[0 1] interval. The smaller the value the less we care about long term 
rewards. 

All reinforcement learning problems can be divided into two categories: 
episodic and continual. Episodic problems are problems that have one or 
more terminal states. When the agent reaches one of these states the episode 
finishes and the state is reset to its initial setting. An example of an 
episodic problem is a game of chess, where each episode refers to a single 
game and the terminal states refer to board positions where either player 
has won or the game is tied. Continual problems, on the contrary, never 
terminate but continue indefinitely. An example of a continual problem is a 
process control problem. 

Backups refer to the way value function updating occurs. Specifically it 
refers to which values are used for updating the current value function. For 
example when using a one-step backup, the agent looks only one step 
ahead, that is it uses the value function of only the next state (or state-
action) to update the value of the current state (or state-action) 
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The Markov property is an important property regarding the state signal, 
since the applicability and performance of many reinforcement learning 
algorithms depends on it. In order for a state signal to have the Markov 
property, the environment dynamics must depend only on the current state 
and chosen action, thus enabling us to predict the next state and its 
expected reward only using currently available information and not the 
entire history up to the current situation. Even when a state signal does not 
have the Markov property, it is desirable that it represents a good 
approximation of a Markov signal, because in a different case the 
reinforcement learning system’s performance will be poor. 

A reinforcement learning task that satisfies the Markov property is called 
a Markov Decision Process (MDP). For finite MDPs the probability of the 
occurrence of a possible successor state s΄ given a state s and an action a is 
given by: 

 { }a
ss t 1 t tP Pr s s | s s,a a′ + ′= = = =  (3.2) 

and the expected reward by: 

 { }a
ss t 1 t t t 1R E r | s s,a a,s s′ + + ′= = = =  (3.3) 

3.2.2 Balancing exploration and exploitation 
One of the main characteristics of reinforcement learning is the tradeoff 

between exploration and exploitation. At any given time the agent must 
decide whether to choose the best action based on its knowledge or to try 
something else in order to make better selections in the long-term. In any 
case the agent has to try all actions several times in order to evaluate their 
performance in producing large rewards. 

In order to balance exploration and exploitation the ε-greedy algorithm is 
frequently used. Although there are several variations, ε-greedy action 
selection can be described as always selecting the best action, except in a 
small fraction ε of the time where other (suboptimal) actions are tried. The 
variations of ε-greedy algorithms include cases where the ε is not constant 
but changes with time or where the suboptimal action selection is not 
random but may depend on the expected reward of an action (e.g. by 
assigning greater probabilities to better actions) or on the certainty of the 
estimate by choosing actions that have not been adequately explored. 
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3.3 Reinforcement learning methods 
There are three major categories of reinforcement learning methods, each 

with its application scope, advantages and disadvantages. There are 
Dynamic Programming (DP) methods, Monte Carlo (MC) methods and 
Temporal Difference (TD) methods.  

3.3.1 Dynamic Programming 
Dynamic programming is a family of algorithms that aim to determine 

optimal policies given a perfect model of the environment as a MDP. In the 
majority of DP applications, it is assumed that the state and action spaces 
are discrete or that they have been quantized. 

The main concept behind DP is the search for the optimal policy using 
estimates of the value functions. It has already been mentioned that an 
optimal value function can be directly used to determine an optimal policy. 
In order to find the optimal value function DP uses the Bellman optimality 
equations as an update rule. 

 a a
a ss sss

V(s) max P R V(s )γ′ ′′
′ ← + ∑  (3.4) 

The problem behind DP is the need for an exact model of the 
environment, since each update requires a full backup, that is an evaluation 
of all possible successor states regardless of which will actually appear. DP 
methods are also considered impractical for problems with large state 
spaces since in such a situation a single backup will have large 
computational requirements. 

3.3.2 Monte Carlo 
In contrast to DP, MC methods do not require a model of the 

environment. Instead learning occurs by taking advantage of sample 
sequences of state, actions and rewards from real or simulated interaction of 
the agent with its environment. 

MC methods in reinforcement learning operate by averaging the returns 
of a policy in order to estimate the value functions. Depending on which 
returns are averaged, MC methods are divided into two categories. First-
visit MC averages the returns that followed the agent’s first visit to state s, 
in order to determine its value function V(s). On the other hand every-visit 
MC averages the returns that followed after every visit to s. The same 
applies if we use state-action values instead of state values. Given the new 
value function estimates the agent can improve its policy.  
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The value updating rule is of the form: 

 
[ ]t t t t

2
t t 1 t 2 t 3

V(s ) V(s ) R V(s )

R r r r ...

α

γ γ+ + +

← + −

= + + +
 (3.5) 

An important advantage of MC methods is that the value estimates for 
each state are independent and therefore the computational demands of a 
acquiring a value estimate of a single state is small. 

MC methods suffer from two major drawbacks. The first is that MC 
methods can only be applied to episodic tasks since learning takes place 
only after the end of an episode and not incrementally. The second is that 
when a deterministic policy is in use (e.g. greedy), there is a good chance 
that several actions will not be tried and therefore their corresponding value 
estimates will not be improved. It is therefore necessary to ensure sufficient 
exploration. 

3.3.3 Temporal Difference 
Temporal Difference learning methods combine the advantages of MC 

and DP methods. They do not require a model of the environment and they 
are able to learn from interaction with the environment on a step by step 
basis. 

In order to make an update of the state value function, TD methods only 
require the observed reward and an estimate of the value of the next state. 
The update rules used in TD learning are of the following form: 

 [ ]t t t 1 t 1 tV(s ) V(s ) r V(s ) V(s )α γ+ +← + + −  (3.6) 

Using an estimate ( )t 1V(s )+  to improve another estimate ( )tV(s )  is called 

bootstrapping and is a major characteristic of both TD and DP methods. 
Bootstrapping gives TD methods the capability of online implementation, 
by taking advantage of whatever knowledge is available as soon as it is 
available. 

TD methods, under certain assumptions, have been proven to converge to 
an optimal policy and it is also true that in several applications they have 
been found to converge faster than MC methods [Sutton and Barto, 21]. 

To sum up, we have already seen that both MC and TD methods use 
value update rules of the form: 

 new _ value old _ value αδ= +  (3.7) 
where δ is the value error. The MC error is defined as the difference 
between the current value estimate and a full return, while the TD error is 
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the difference between the current value estimate and a discounted return 
after observing the next state. 

3.4 Temporal credit assignment in TD 
In the previous section we discussed that TD methods learn on a step by 

step basis using a one-step backup. On the other hand MC methods use a 
multi-step backup up to the terminal state. It is possible to use TD 
algorithms that perform multi-step backup. This is expected to increase the 
speed of the algorithm since from a single experience several states, visited 
in the past, will be updated. In order to achieve multi-step backups online, 
eligibility traces are used. 

Eligibility traces can be seen from two viewpoints, the forward and the 
backward [Sutton and Barto, 21]. The forward view is more theoretically 
oriented and it states that eligibility traces represent how far ahead and 
which states should we look in order to determine the current best action. 
The backward view is oriented towards implementation and it states that 
eligibility traces represent a memory of which state (or state-action) values 
are “eligible” for updating due to the currently received reward. 

3.4.1 n-step TD 
There are various ways to implement eligibility traces. Perhaps the most 

simple is the n-step TD. An n-step backup is based on the first n rewards 
and the estimate state value n-steps ahead. For example a 3-step TD update 
rule would be of the following form: 

 2 3
t t t 1 t 2 t 3 t 3 tV(s ) V(s ) r r r V(s ) V(s )α γ γ γ+ + + + ← + + + + −   (3.8) 

Examining equation (3.8) we can determine that the term 
2 3

t 1 t 2 t 3 t 3r r r V(s )γ γ γ+ + + ++ + +  is in fact an approximation of the full reward 

used by the MC methods. Actually the larger the n value, the closer we get 
to accurately approximating the full backup of MC methods. 

Despite their simplicity, n-step TD are seldom used due to their 
implementation problems especially for large n values, where the agent 
must wait a long time before an update is made. 

3.4.2 Complex backups 
Complex backups refer to backups that average in any way two or more 

n-step backups. For example a backup can be done towards the average of a 
two step return and a four step return. In order to facilitate implementation 
of these complex backups the TD(λ) algorithm was developed. The λ 
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constant is a parameter that defines the weighting of each backup. The 
return used is defined by: 

 n 1 n
t t

n 1
R (1 ) Rλ λ λ

∞
−

=

= − ∑  (3.9) 

From equation (3.9) we determine that TD(0) is the simple TD method 
we discussed in the previous section and TD(1) refers to a variant of the 
MC algorithm. 

3.4.3 Implementing TD(λ) 
In order to implement the TD(λ) algorithm we need to keep track of the 

eligibility trace of each state e(s), in addition to its value. The update rule 
of TD(λ) is just like that of TD(0) but for the dependence on the eligibility 
trace. It should also be noted that now we update all states and the 
eligibility trace takes care of not updating irrelevant state values. 

 [ ]t t t 1 t 1 t tV(s ) V(s ) r V(s ) V(s ) e(s )α γ+ +← + + −  (3.10) 

Initially the eligibility traces of all states are zero. Every time step the 
eligibility traces are updated according to the following rule: 

 t 1 t
t

t 1 t

e (s) s s
e (s)

e (s) 1 s s
γλ

γλ
−

−

≠
=  + =

 (3.11) 

The former update rule is known as the update rule for “accumulating 
eligibility traces”. Also of use are the “replacing eligibility traces” whose 
update rule is: 

 t 1 t
t

t

e (s) s s
e (s)

1 s s
γλ − ≠

=  =
 (3.12) 

The difference between accumulating and replacing traces is that in the 
former repeated visits to a state will increase its eligibility trace thus 
producing a great change. Although this may seem prudent, in practice it 
has shown to result in poor performance and in some situations it may cause 
serious error [Reynolds, 22]. For example in a case where an agent makes 
repeatedly wrong actions and at some point takes the correct action and 
ends up in a terminal state with large reward, the wrong actions’ values will 
be corrected towards the reward more than the correct action. 

It can be shown that when we apply the TD(1) algorithm, the use of 
accumulating traces gives the every-visit MC while replacing traces gives 
the first-visit MC [Reynolds, 22]. 
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3.5 TD Learning algorithms 
In the former sections we discussed various methods of reinforcement 

learning, we will now focus on some learning algorithms based on TD since 
it is more suitable for the aims of this thesis. Although up until now we 
used the state value function V(s) from now forth we will use the state-
action value function Q(s,a). This value function is more suitable for 
control applications were no model of the environment is available. 
Fortunately all update rules apply to Q(s,a) with no change.  

Care should be taken though to the way the eligibility traces are updated, 
because now the actions should also be taken into account. One possibility 
is to use the following schema: 

 
t 1 t

t t 1 t t

t t

e (s) s s
e (s) e (s) 1 s s a a

0 s s a a

γλ
γλ

−

−

≠
= + = =
 = ≠

 (3.13) 

3.5.1 Short-sighted 
The short-sighted algorithm is not really used since it refers to an 

algorithm that does not seek to maximize long-term rewards but only the 
next expected reward. The value function estimate is therefore updated by 
using just the reward received by taking an action: 

 [ ]t t t t t 1 t tQ(s ,a ) Q(s ,a ) r Q(s ,a )α +← + −  (3.14) 

3.5.2 Sarsa 
One-step Sarsa operates by choosing an action a by applying a policy 

like ε-greedy to the state-action value. The outcome of that action is then 
used to update the state-action value estimate according to the following 
update rule: 

 [ ]t t t t t 1 t 1 t 1 t tQ(s ,a ) Q(s ,a ) r Q(s ,a ) Q(s ,a )α γ+ + +← + + −  (3.15) 

Sarsa with eligibility traces – Sarsa(λ) –  uses the same update rule, only 
now the update also depends on the eligibility of the state-action value. 

 [ ]t t t t t 1 t 1 t 1 t tQ(s ,a ) Q(s ,a ) r Q(s ,a ) Q(s ,a ) e(t)α γ+ + +← + + −  (3.16) 

It is evident from the update rule that the value updates of Sarsa depend 
on the policy being followed since the value depends on the next action 
taken. 
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3.5.3 Q learning 
One-step Q learning operates in much the some way with Sarsa only now 

the update of the value estimate does not depend on the policy being 
followed but on the greedy policy. The update rule for one-step Q learning 
is: 

 
t 1t t t t t 1 a t 1 t 1 t tQ(s ,a ) Q(s ,a ) r max Q(s ,a ) Q(s ,a )α γ
++ + + ← + + −   (3.17) 

Q learning with eligibility traces is more difficult to implement because 
when an agent is not following the greedy policy with respect to Q(s,a) then 
the 

t 1a t 1 t 1max Q(s ,a )
+ + +  values will not be available. There are two variants of 

the Q learning with eligibility traces Watkin’s Q(λ) and Peng’s Q(λ). 
Watkin’s Q(λ) works the same way as Sarsa(λ) but sets the eligibility traces 
of all states to zero when an exploratory action is taken. The update rule is: 

 
t 1t t t t t 1 a t 1 t 1 t tQ(s ,a ) Q(s ,a ) r max Q(s ,a ) Q(s ,a ) e(t)α γ
++ + + ← + + −   (3.18) 

Peng’s Q(λ) aims to remedy the problem of losing the eligibility traces 
when an exploratory action is taken and it is a mixture of Sarsa(λ) and Q 
learning. In effect all the rewards are updated according to the Sarsa(λ) 
rule, with the exception of the last which is updated according to the Q 
learning rule. Peng’s algorithm is more difficult to implement but studies 
have shown that it performs better than Watkin’s algorithm. 

3.6 Reinforcement learning and function approximation 
The reinforcement learning techniques reviewed so far worked by 

keeping a record of the value estimates of states (or state-actions). 
Although straightforward, this approach will lead to large memory 
requirements when the state and/or action spaces are large, in other words 
these techniques suffer from the curse of dimensionality. Besides that there 
is no direct way of applying them in continuous space, which is the 
common case in real applications. 

In order to overcome the formerly mentioned limitations, a reinforcement 
learning agent should be able to generalize, that is to assign similar value to 
similar situations, even when it has never experienced them exactly. This 
can be achieved using a variety of approximation techniques. 

By reviewing the update rules of the various algorithms it is obvious 
that, during each update the value estimates where moved towards a 
discounted return like t t 1 t 1R r V(s )+ += + γ . This update can be interpreted as 

an example of the desired input-output behavior of the agent. This means 



Chapter 3 – Reinforcement learning 

31 

that the reinforcement learning problem becomes a supervised learning 
problem. If we consider that the state value function is a parameterized 

function with parameter vectorθ , by adjusting the parameter vector, it is 
possible to find the one, which best approximates the state value function. 

Unfortunately not all function approximators are suitable for application 
in reinforcement learning problems. An essential characteristic of such an 
approximator would be the ability for online incremental learning, since in 
the majority of the reinforcement learning problems the training data 
originate from the agent-environment interaction. In several applications it 
is also desirable that the agent can function in non stationary environments. 
Besides that approximators that may work very well in one problem, may 
fail to converge in other or even in the same task given different 
parameters. 

A general gradient-descent method for the state value prediction problem 
is given by equation (3.19): 

 ( )1 ( ) ( )
tt t t t t t ta R V s V sθθ θ+ = + − ∇  (3.19) 

The above equation, given enough training samples, will minimize the 
mean square error (MSE) of the ( )t t tR V s−  term. Although it can be argued 

that the MSE may not be an appropriate measure since what we really seek 
is to find the best policy, there are no other readily available, better 
alternatives for use [Sutton and Barto, 21]. Given that tR  is an unbiased 

estimate of the state value function, as is true in the case of the MC return, 
then the gradient descent method described above converges to a local 
optimal. 

3.6.1 TD learning with function approximation 
Equation (3.19) can be used for TD learning where the tR  is the 

bootstrapped estimate of the value function. Unfortunately since the 
bootstrapped estimate is not an unbiased estimate there is no guarantied 
convergence. The update rule of the gradient descent TD(λ) is given by the 
following equation: 
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t 1 t t t

t t 1 t 1 t

t t 1 t t

e
r V(s ) V(s )

e e V (s )θ

θ θ αδ
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γλ
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+ +

−

= +

= + −
= +∇

 (3.20) 
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3.6.2 Linear function approximation 
One of the most popular category of approximators is the linear one. 

Linear approximators offer the advantages of simplicity, well understood 
training algorithms and convergence to the global optimum if convergence 
to a local optimum can be guarantied.  

A linear approximator of the state value V(s) can be described by the 
equation (3.21): 

 
n

s t s t s
i 1

V (s) (i) (i)θ φ θ φ
=

= =∑  (3.21) 

where sφ  is a vector of features that depends on the state. Consequently the 

gradient of the value function in equation (3.20) is sφ . 

Therefore in order for linear TD(λ) to be employed, there is only the 
need of determining a method of feature construction. There are several 
such methods that convert the input to binary or real valued features like 
coarse coding, tile coding, radial basis functions and others. 

The linear approximator described above can also be used directly for 
control problems if instead of the value function we use the action-value. 
Special care should be taken though, so that the feature vector contains 
such vectors that not only depend on the actions but can also capture the 
relationship between states and actions [Sutton and Barto, 21]. 
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4 APPLICATION 

4.1 Introduction 
The objective of this application is to design an adaptive controller that 

will take into account user preferences, in order to achieve energy 
conservation and user comfort. User comfort entails three distinct goals, 
thermal comfort, indoor air quality and adequate illuminance. In order to 
simplify controller design the latter goal will be separated from the other 
two.  

In order to put as few restrictions to the application of the controller as 
possible, we will assume that an accurate model of the environment is not 
available. The only information that is available to the controllers is simple 
sensor measurements like indoor temperature, humidity and others in 
addition to a user response to the current environmental conditions inside 
the building. 

In order to assess user comfort the controller should be capable of using 
any of the comfort measures described in an earlier chapter, like the PMV 
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index or the ACS. In addition to that the controller developed will also be 
able to use direct feedback from the user. Building users are unlikely to 
frequently report their comfort status. In addition to that we can not expect 
them to report feeling comfortable, even if they are given the power to do 
so. Therefore user response should be modeled by an irregular discomfort 
signal. 

4.2 The Reinforcement Learning Fuzzy Controller (RLFC) 
The use of conventional fuzzy controllers although simple and 

computationally undemanding presents a serious problem regarding the 
fuzzy rule base generation. Usually the rule base is designed using expert 
knowledge and trial-and-error techniques which are time consuming and do 
not provide an update scheme when the environment changes. 
Reinforcement learning controllers on the other hand choose actions based 
on a reward function or look-up table. This reward is based on the 
controller’s previous experience. 

The design concept of the RLFC is quite simple. Instead of using a fuzzy 
rule base, a reinforcement learning algorithm is used to associate inputs or 
states to proper outputs or actions by means of a reward table. The 
difference between the RLFC and the conventional reinforcement learning 
paradigm is that the current conditions are not described by a single state, 
but by several “active” states with varying “activity levels”. Choosing an 
action is then the task of finding the best actions for each active state and 
aggregating them based on the corresponding activity levels. This 
methodology allows experience to be passed to several state-action pairs. 

4.2.1 Controller operation 
The FRLC was developed for Simulink using the Matlab C language and 

operates in several steps as depicted by the flowchart in the appendix. 
During initialization the controller reads a binary controller file that 
contains the fuzzy structure and the rewards.  

The controller operates in a different frequency than the rest of the 
simulation namely every 10 (or possibly more) minutes. Since conditions 
inside a building are usually slow changing, a 10 minute delay between 
reevaluating the controller response will not result in inefficiency but on 
the contrary will help avoid frequent switching on and off of the equipment.  

Each time step the controller goes through four separable phases: state-
action search, ε-greedy action selection, defuzzification and value updating. 
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The input to the controller consists of the current state vector, the learning 
rate, the penalty and an ε parameter that controls the ε-greedy algorithm. 
Finally after the termination of the simulation the binary controller file is 
updated using the new rewards. 

4.2.2 State-action search 
In order to determine which states are active the controller iterates over 

all possible states. For each state component a membership value is 
determined and the minimum over all state components is used as the 
state’s activity level. If this activity level is greater than a threshold, then 
the state is considered to be active. The use of a threshold greater than zero 
is dictated by the use of gaussian bells as membership functions, that have 
always non zero value.  

When an active state is found the controller iteratively searches all 
possible actions to find the one with the highest value – expected reward. 
The state-action combination, along with its activity level is appended in a 
list. This list is used to update the eligibility trace matrix using 
accumulating traces: 

 e(s,a) e(s,a) m(s)← +  (4.1) 
The eligibility trace update differs from the classic accumulating traces 

update used in reinforcement learning in that it increases the eligibility 
traces of all active states by their activity level instead of a single state by 
one. 

4.2.3 ε-greedy action selection 
Since the controller’s environment may change (e.g. a new AC unit is 

installed or the occupants change) it is desirable that the controller will 
continue to try suboptimal actions in order to be able to respond correctly in 
the event of a change in the environment. This is achieved using ε-greedy 
action selection. 

There are two possibilities for the implementation of the ε-greedy 
algorithm. The first is to apply it after the defuzzification, on the final 
selected action. Special care must be taken though, so that the new action’s 
expected reward is high enough and inappropriate actions, like turning on 
cooling during a cold winter day, are not chosen. 

The second possibility, and the one actually used, is to apply the ε-
greedy algorithm to the best action for each active state. Every item in the 
active state-action list is considered for alteration with a probability ε. For 
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each eligible for alteration state-action pair a randomly chosen action 
component is changed to a new also random value. Since the final action 
will always be influenced towards the optimal by other active states with 
unchanged actions, there is no need to keep a watch for inappropriate 
actions.  

4.2.4 Defuzzification 
The controller was implemented with the ability to perform two kinds of 

defuzzification, namely center of area (COA) and mean of max (MOM). 
Although COA is probably the most popular method, the most suitable for 
the current application is MOM. This is because usually the control 
variables cannot take real values but only one from a collection of settings. 
MOM defuzzification operates by, in effect, evaluating the state-action list 
and choosing the setting that is most voted for, the vote being weighted by 
the activity level of each state. 

4.2.5 Value update 
During this phase the controller updates the value matrix if each state-

action combination. The value update rule is analogous to the TD rules 
discussed in the previous chapter: 

 

new _ value old _ value e
α : Learning rate
δ : TD error (Depends on the learning algorithm)
e : Eligibility trace (In RLFC the eligibility trace also

depends on the activity level of each state visited)

= +α ⋅δ ⋅

 (4.2) 

Specifically the TD error is calculated using the following equations: 
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 (4.3) 

where m(s) is the membership – activity level of the state s. 

After the value matrix is updated the corresponding eligibility trace 
matrix is also updated using the following equation: 

 e(s,a) e(s,a)γλ←  (4.4) 
The update rule is the classic update rule used frequently in 

reinforcement learning applications with only one difference. The update 
depends on the activity level of the current state-action, thus the value 
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change depends also on the influence of each state-action on the final action 
selection.  

4.3 Controller design 
Since the value matrix contains all possible combinations of states and 

actions, a large number of inputs and outputs and/or a fine partitioning of 
the input space will result in a very large value matrix. For example using 
the structure of a simple fuzzy controller that functioned efficiently in this 
problem, resulted in a value matrix of more than 83 10⋅  values. A matrix of 
that size is difficult to handle and very slow to learn. On the other hand if 
the partitioning of the input space is very coarse the controller will be 
unable to identify different conditions, thus behaving inadequately. 
Therefore special care should be given during the controller design phase so 
that redundant partitioning is avoided. 

4.3.1 Controller input 
The controller is designed to use any number of inputs, with any number 

of membership functions. During testing two environments were provided, 
one that uses the indoor and outdoor air temperatures as well as the relative 
humidity and CO2 concentrations as inputs and another that does not use 
relative humidity.  

These input variables were chosen since they are usually readily 
available (with a possible exception of the CO2 concentration) and do 
provide the controller with sufficient information about its environment. 

4.3.2 Controller output 
The control variables are three. The first refers to the operating status of 

the heat pump and has seven possible settings, off and high, medium and 
low for heating and cooling respectively. The second is the air ventilation 
subsystem that can operate in three different modes, off, low and high. 
Finally the third is window control that can take one of the four following 
states: closed, slightly open, open, wide open. The resulting 84 possible 
actions are generated by the combinations of the above variables. The 
membership functions used for each of the output values are presented in 
the appendix. 

The use of a heat pump model for both heating and cooling was preferred 
because of several advantages it offers without restricting the controller’s 
applicability. Even if a building has separate heating and cooling systems 
they can be adequately simulated by the heat pump model since the 
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simultaneous operation of both systems would be inefficient and therefore 
avoided by the controller anyway. The use of one variable for both AC and 
heating leads to fewer possible actions (84 instead of 192 for the controller 
in question) that the RLFC needs to try and learn. 

Further reduction of the possible actions can be achieved by restricting 
window usage during the operation of the AC system. This reduction could 
lead to as few as 30 actions at the expense of further complicating the 
controller design. Nevertheless, in the long term, the controller should learn 
what the best course of action is without the need of designer imposed 
restrictions. 

The use of conventional heating bodies instead of a heat pump can be 
treated similarly although some modifications are essential. The control 
variable will have only five states: off, heating, cool low, cool medium and 
cool high. Although the reward assignment spreads over a number of time 
steps, the response delay of such a heating system can be quite large 
resulting in poor behavior. To overcome this problem we can add one more 
state referring to the current state of the heating bodies (cool, warm or hot). 
This added state will allow the controller to “forecast” the effect of turning 
on or off the heating. 

4.4 The reinforcement learning linear controller (RLLC) 
A second controller was also developed using linear function 

approximation of the state-action value function. The feature vector is 
constructed using radial basis functions (RBFs). RBFs were preferred to 
other ways of feature coding, because they provide continuous valued 
features using a simple and intuitive functional form. For example it is easy 
to determine the parameters of any number of RBFs that will evenly cover a 
given range. Besides that, there exist algorithms that can adjust the RBF 
parameters using supervised training. This feature can lead to better 
approximation but it was not used in this thesis because the resulting 
nonlinearities could lead to convergence problems. In some cases it has 
been found that RBFs with adaptive centers may leave parts of the space 
under-represented. 

The RLLC approximates the state-action value function as the product of 
a weight vector and a feature vector. The exact construction of the feature 
vector will be discussed in a later section. The controller decides on the 
appropriate action by constructing the feature vector for every possible 
action under the current state. Then it multiplies all these vectors with the 
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weight vector and chooses the action with the largest expected value. It is 
therefore obvious that the controller performance depends on the accuracy 
of the weight vector. The weight vector is constructed at first randomly and 
consequently it is updated every time a new reward is received. 

Using the TD(λ) algorithm we get the following update rule: 

 t 1 t t t t 1 tV (s ) V (s ) e (s )αδ+ += +  (4.5) 

 ( )T T
t 1 t t t 1 t t t t 1W W r (x )W (x )W eα γφ φ+ + += + + −  (4.6) 

where t 1 te e (x)γλ φ+ = + . 

The least squares problem as presented in equation (4.6) has the 
following objective function. 
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Getting the least squares estimate of W requires a computation that 
involves the whole sequence of states, actions and rewards and has both 
computational and memory demands. In several applications of control 
adaptive filtering and system identification the recursive least squares 
algorithm (RLS) is used instead. The RLS algorithm updates the weight 
vector every time a training sample is available. The weight update rule as 
adapted for TD(λ) reinforcement learning by [Xu, et al., 23] is given by the 
following equations. 
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 ( )( )T T
t 1 t t 1 t t t 1 tW W K r (x ) (x ) Wφ γφ+ + += + − −  (4.9) 
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(4.10) 

where 0P Iδ= . 

There are four tunable parameters in the RLS algorithm – δ, µ, γ and λ 
for the eligibility trace update. The δ parameter is used for the initialization 
of the P matrix and it has been shown that it can influence the convergence 
speed of the algorithm. The µ parameter is known from adaptive filtering as 
the forgetting factor and for the standard RLS-TD(λ) should be equal to 
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one. The γ and λ parameters are the same as those used in the TD(λ). It 
should be noted that no learning rate parameter is essential. 

The RLLC action space is discrete and consists of the same actions 
available to RLFC. 

4.5 Reinforcement signal design 
In order for reinforcement learning to take place, a proper reinforcement 

signal is necessary. For the problem at hand the reinforcement signal should 
be a function of the energy consumption and the user satisfaction level. 
User satisfaction is further divided into thermal comfort and satisfaction 
with the indoor air quality.  

The reinforcement signal is modeled as a variable that can take any value 
in the interval [-1 0]. This variable is in effect a penalty that is higher 
(closer to -1) during high energy consumption and/or user discomfort.  

An estimate of current energy consumption can be obtained from the 
operational characteristics of the heating and cooling devices and their 
current operating settings. Estimating user satisfaction on the other hand is 
quite difficult using available measurements. Although we have a user 
response signal, this signal may not be used directly since it is irregular and 
therefore does not convey information regarding user satisfaction levels at 
every time step. 

To overcome this problem an adaptive occupant satisfaction simulator 
(AOSS) was developed. The AOSS associates current environmental 
conditions inside and outside the building with user satisfaction level, so 
that for any given set of conditions AOSS’ output will be 1 for user 
dissatisfaction and 0 for user satisfaction. Every time a signal from the user 
simulator is available, the AOSS is updated to incorporate the new 
information. In real building applications this information could be stored 
in an electronic card, so that when the user enters his or her office the 
environmental control will be suited to his or her preferences. 

For the modeling of the indoor air quality a sigmoid of the CO2 
concentration is used that gives close to 0 values when the CO2 
concentration is less than 780 ppm and values close to 1 when the CO2 rises 
above 950ppm. 
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The final reinforcement signal is given by the following equation: 

 1 2

3

r.s. w (thermal comfort penalty) w (energy penalty)
w (indoor air quality penalty)

= − ⋅ −
−

 (4.11) 
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 (4.12) 

The iw  variables are constants that represent the importance of each 

element, namely user satisfaction and energy conservation. Each constitute 
of the penalty is averaged over the time period between controller 
reevaluation so that the final reinforcement signal will be representative of 
the whole period. 

In equation (4.12) the AOSS signal was used as measure of user 
dissatisfaction. The AOSS signal, as it has already been described, 
originates from the direct feedback of the building occupants. Of course 
using the AOSS is not always possible, especially when a large number of 
people share the same space. In such situations the use of the Fanger or the 
ACS model are preferable. 

In order for the Fanger model to be used, the AOSS signal needs to be 
replaced with a value depicting discomfort, namely the PPD. Since the PPD 
takes values in the interval [0 1] and 0 corresponds to all user feeling 
comfortable and 1 all users being in discomfort, it is more suitable for 
direct use than the PMV index. Equivalently if the ACS model is in use the 
AOSS signal should be replaced by a measure of the distance of current 
indoor temperature to the comfortable one or by a binary feature showing if 
current indoor temperature is inside the comfort zone or not. 

In a real building application, if the reinforcement signal is generated 
outside the controller, it is possible to change it. For example it is possible 
to use the PPD index and then replace it by an ACS index or a more 
accurate PPD. Since both controllers continually change their behavior 
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according to the received reward, it can be expected that the controllers will 
adapt to the new discomfort index. 

From equation (4.12) it is obvious that the reinforcement signal will 
always be negative. Since we will set the initial rewards of the RLFC to 
zero the controller will search all possible actions at least once. This is 
because it will always find actions with higher penalty than it expects. If 
the controller is to implemented directly into a real building it would be 
advisable that the initial weights would reflect our expert knowledge so that 
the expected initial poor behavior is avoided. 

4.6 Adaptive occupant satisfaction simulator (AOSS) 
The AOSS was designed with the following things in mind. It should be 

a simple architecture, able to learn online, fast and without forgetting. 
Since simple feedforward neural networks are unsuitable for online training 
a reinforcement learning classifier was implemented.  

This classifier uses reinforcement learning to classify current conditions 
as offending or non offending. The operation of the AOSS is the same to 
that of the RLFC, but for some minor differences. The action selection is 
greedy and the reward updating occurs according to the “short-sighted” 
algorithm. This means that eligibility traces are not used and that the values 
are updated towards the received reward and not towards a discounted 
return. The action selection was chosen to be greedy since we aim that 
eventually the AOSS will learn the user preferences and feedback from the 
user will no longer be required. 

Since initially we have no information on the user preferences, the 
rewards for each action are chosen to be zero. The AOSS is trained using a 
generic user model. This model corresponds to a user that feels comfortable 
in the [-1.5 +1.5] PMV interval. This initial training is necessary to make 
the RLF-AOSS relatively accurate from the beginning so that the classifier 
will only need to learn the details of the real user’s preferences. 

4.7 Fis2con 
A utility application was developed in Matlab C to aid controller design. 

This application creates the initial instance of the binary controller file that 
contains the fuzzy structure information and the initial rewards matrix. It 
uses as input a FIS structure that can be created using the user-friendly 
interface of the FIS Editor of the Fuzzy Toolbox for Matlab. The only 
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restriction posed is that the only membership functions it can process are 
triangular, trapezoid and gaussian. 

The utility converts the membership functions described in the FIS 
structure to the three-parameter gaussian bells used by the controller. The 
three parameters are the mean, standard deviation and height of the bell. 
This is done to overcome the need of a controller that needs to parse 
different types of membership functions. Nevertheless the approximation 
error is in most cases small and it’s influence on controller performance is 
negligible. 

To convert the triangular membership functions, the bell of same mean 
and area is determined, while keeping the height unitary. The use of the 
height parameter is a trick so that the trapezoidal membership functions 
may be approximated. The intersecting sides of the trapezoid are extended 
until a triangle is formed. Using the aforementioned technique the triangle 
is approximated by a gaussian bell that has the same height as the triangle. 
Since the controller limits the output of all membership functions to the [0, 
1] range, the associated approximation error will be small. The gaussian 
membership functions are left as they are with the height parameter unitary. 

 

 
Figure 4-1: Conversion of trapezoidal membership functions 
to gaussian bells. First the trapezoid is converted to triangle 
and then to gaussian. The controller uses the limited 
gaussian on the right. 

 

After all membership functions are processed the initial rewards matrix 
is appended to the file.  
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5 RESULTS AND CONCLUSIONS 

5.1 Evaluation of the AOSS performance 
In order to evaluate the AOSS performance a benchmark was developed 

in Simulink. This benchmark generates uniform random conditions in the 
entire range of environmental conditions. These conditions are then used to 
evaluate the PMV index according to ISO 7730 standard. Using the PMV 
index, user comfort is evaluated and a proper reinforcement signal is 
generated. Finally the controller given the random conditions and the 
reinforcement signal decides whether the user should be in comfort or 
discomfort and its decision is compared to the “real” one. 

The input of the classifiers was chosen to be the relative humidity as well 
as the indoor and outdoor temperature. The user is considered to be in 
comfort when the PMV is in the [-1 +1] region. 
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The AOSS was tested several times using various degrees of input 
quantization. It was found that an increased amount of quantization 
provided a lower long-term error as expected. Of course after a certain limit 
the effect of the increased quantization was negligible and therefore could 
not justify the increased execution time. Figure 5-1 shows the error 
evolution for varying degrees of input quantization. All the classifiers were 
capable of reaching small errors in the long term even the one with only 
five membership functions per input.  

The classifier was also tested using just two inputs, the indoor and 
outdoor temperature. The final error was between 4% and 8% when using 
14 membership functions per input. 

0 10000 20000 30000 40000 50000
0

1

2

3

4

5

6

7

8

9

10

Time

A
ve

ra
ge

 c
la

ss
ifi

er
 e

rro
r (

%
)

5
10
15
20
25

 
Figure 5-1: Classifier error as a function of time for various degrees of input 
quantization. The results are the average of five runs. 
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Figure 5-2: The dependence of long-term classifier error on the number of membership 
functions per input. The long-term error was calculated as the average classifier error 
during the last 20,000 of 50,000 steps. The results are the average of five runs. 

 

A very important feature of the online classifier is its training speed. The 
training speed of the AOSS can be seen in Figure 5-3 where the first 3000 
steps of an error curve are shown. Initially the error is close to 30% but just 
under 250 steps the error drops below 10%. 400 steps later the error begins 
to become steady around 5%. The learning curve did not vary significantly 
with increased quantization and in all cases the long-term error was reached 
in less than 1000 steps.  

It should be noted that it took only 250 training samples to reach an error 
of 10% and less than 1000 to reach 5%. These samples unlike supervised 
offline training are introduced only once. 
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Figure 5-3: This figure depicts the classifier error for the first 2,000 steps for a RLF-
AOSS with 10 membership functions per input. The results are averaged from five runs. 

 

From Figure 5-4 we can 
determine the adverse 
effect of the number of 
membership functions per 
input to the speed of the 
AOSS. Specifically the 
average step execution 
speed remained unchanged 
for 5 to 8 membership 
functions but after that it 
increased dramatically. It 
is noteworthy that for 15 
membership function 
execution time increased 
208% and for 25 the 
increase was 440%. 
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Figure 5-4: Execution time as a function of the number 
membership function per input. The times are averaged 
from 250,000 steps. 
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5.2 Controller Testing 
In order to evaluate the performance of the controllers a suitable testing 

environment is required. This environment should incorporate a model of 
the building and one of the user responses. The building was simulated 
using the SIBIL application. SIBIL was developed by the Building 
Environmental Studies Group at the University of Athens and provides a 
parameterized Simulink model of a building.  

Since user input is essential for the operation and evaluation of the 
controllers an add-in, called herein user simulator, was developed. This 
user simulator models user response based on current PMV conditions 
inside the building and the following tunable parameters: 

Preference – Depending on climatic conditions and cultural background a 
user may prefer colder or warmer conditions, namely higher or lower PMV 
values. 

Sensitivity – This parameter describes how far the PMV index can drift 
from the optimal value before the user senses discomfort. 

Interest – This takes into account that each user will report his 
discomfort to the controller with different frequency. 

There is also a facility to save user preferences along with current 
controller knowledge. If there is a need, the controller can be reset in order 
to start learning from scratch. 

User response is modeled as a two state signal. One state denotes that the 
user feels discomfort, while the other provides no real information since it 
may denote that the current conditions are satisfactory or that although the 
opposite is valid the user did not report it. 

Two buildings were modeled in the Sibil application. Building A has an 
area of 15m2, one window (1m2) and the walls are made from 21cm of 
concrete and a 2,5cm insulating layer of foamed polystyrene. Building B 
has an area of 14m2 and one window (2m2) facing in a different direction. 
The walls are made of 21cm of concrete but without insulation. 

For comparison purposes all controllers are based on the PMV model and 
the average PPD index is used as a measure of thermal comfort. 
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5.3 Reference controllers 
Two reference controllers were used. The first is an On/Off controller 

that uses the PMV index. This controller only operates the heating and 
cooling. Specifically it turns on the appropriate device when the PMV index 
moves outside the [-0.8 0.8] region and turns it off when the PMV moves 
inside the [-0.5 0.5] region. The ventilator unit is always on in the low 
setting to prevent large increase in CO2 concentration levels. The response 
of this controller for a typical winter and summer 24 hour interval is shown 
in Figure 5-5. Since this controller operates based on the real PMV value it 
is expected that it will achieve low average PPD. In a real building 
application we should expect that the PMV index is only estimated or even 
that the controller will operate based on temperature. In any case it is 
doubtful that we can expect less energy consumption or smaller average 
PPD. 

The second controller is a fuzzy-PD controller that is described in detail 
in [Kolokotsa, et al., 6]. This controller operates besides heating and 
cooling, the window and the ventilator. The response of this controller for a 
typical winter and summer day is shown in Figure 5-6. 

The annual energy consumption of the On/Off controller in building A is 
about 4.77MWh and for building B is 8.65MWh. The corresponding 
consumptions for the fuzzy-PD controller are 3.28MWh and 5.83MWh 
respectively. During this year the On/Off controller achieved an annual 
average PPD of 13.4% and 16.7% for the second building while the fuzzy 
controller had 16.5% and 24.5% respectively. The maximum, minimum and 
mean CO2 concentrations are summarized in Table 5-1.  

Table 5-1: CO2 concentration statistics for the On/Off and fuzzy-PD controllers. 
 On/Off Fuzzy-PD 
 Building A, B Building A Building B 
Minimum 485 489 400 
Mean 823 787 658 
Maximum 1099 1098 935 
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Figure 5-5: PMV and indoor temperature response of the On/Off controller for a typical 
winter and summer day. 
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Figure 5-6: PMV and indoor temperature response of the fuzzy-PD controller for a 
typical winter and summer day. 
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5.4 RLFC Testing 
5.4.1 Test configurations 

The RLFC is tested using four different controller configurations: 

A. Four inputs (Tin, Tout, RH, [CO2])  

B. Four inputs (Tin, Tout, Time, [CO2]). 

C. Three inputs (Tin, Tout, [CO2]). 

The controller was tested for varying periods of time and parameter 
values (ε and learning rate). 

5.4.2 RLFC performance 
Although during repeated simulations the controller exhibited some 

improvement in its performance, none of the controllers tested ever reached 
a satisfactory policy up until this thesis was prepared. Specifically the 
controllers exhibit frequent policy changes due to value updating. In order 
to compensate to these frequent changes adaptive learning rates where 
attempted of the form kt

0eα α −=  but with no success.  

5.5 RLLC Testing 
5.5.1 Test configurations 

The RLLC is tested using three different controller configurations: 

A. Four inputs (Tin, Tout, RH, [CO2]). 

B. Four inputs (Tin, Tout, Time, [CO2]). 

C. Three inputs (Tin, Tout, [CO2]). 

For each of these configurations two different feature vectors were 
tested. The first feature vector consists of the values of all the state vectors, 
augmented by the action vector. The components of the action vector 
represent heating, cooling, ventilation and window opening as values in the 
[0, 1] range. The second feature vector comes from multiplying the first 
vector with the action vector. The smaller feature vector used was of size 
34 and the largest of size 232.  

The controller was tested for varying periods of time, RBFs and 
parameter values (ε, γ, λ). After testing the eligibility trace decay parameter 
was chosen to be 0.5. This value is consistent with what we expected, that 
is the actions taken up to 30 or 40 minutes ago should influence the current 
reward. The discount factors used are between 0.8 and 0.95 since higher 
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values are not recommended from the bibliography and smaller values (0.3 
to 0.6) exhibited inefficient behavior. The inadequate behavior for low 
discount factors can be attributed to the fact that the controller probably 
found ways to increase immediate rewards, while simultaneously losing 
access to better long term rewards. It is possible that even by using small 
discount factors the controller will eventually converge to a good policy. 
The forget factor was chosen to be one at all cases since even a small 
change (0.99) caused bad behavior by the controller. 

In general large feature vectors exhibited better performance as it was 
expected.  Using feature vectors that combined states and actions resulted 
in increased performance since these feature vectors where able to capture 
some of the nonlinear relationships between states and/or actions. 

5.5.2 RLLC performance 
The RLLC controller exhibits adequate training speeds. It is noteworthy 

that even during the first year the controller is able to quickly develop a 
policy that although is far from optimal, it contains only few clearly wrong 
actions.  

Applying an RLLC of the C configuration in building B we took the 
response depicted in Figure 5-7. This figure shows the controller’s heat 
pump response with the exploratory actions eliminated. It is apparent that 
the controller quickly found that a good action during winter is to turn on 
heating and cooling during summer. It should be noted that the ε parameter 
was only 2% and that the exploratory actions where not completely random 
but chosen as one setting higher or lower than the calculated optimal. The 
annual energy consumption was 6.95MWh and the average PPD 31.5%. The 
high PPD is due to the fact that the controller begins with no knowledge of 
its environment and therefore makes a lot of mistakes especially in the 
beginning. This is evident from the fact that the average PPD of the last six 
months is only 25.5% while the average PPD of the first three months is 
more than 60%. The rest of the training parameters are summarized in Table 
5-2. 

Table 5-2: Training parameters of an 
one-year RLLC simulation 

1w  0.80 λ 0.5 

2w  0.05 γ 0.9 

3w  0.25 µ 1 
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The evolution of training is described in the following paragraph where 
the results from four single-year simulations are discussed. The controller 
tested corresponds to configuration B and was simulated using the building 
A definition. The parameters used during these simulations are cited in 
Table 5-3. The results are summarized in Table 5-4. 

 

Table 5-3: Reinforcement learning parameters used for training 
a RLLC over a period of four years. 

 1st year 2nd year 3rd year 4th year 
1w  0.80 0.80 0.80 0.80 

2w  0.01 0.01 0.01 0.01 

3w  0.20 0.20 0.20 0.27 

λ 0.50 0.50 0.50 0.5 

γ 0.95 0.95 0.95 0.90 

µ 1.00 1.00 1.00 1.00 

ε 0.075 0.025 0.000 0.000 
 

Table 5-4: Results of simulating the RLLC for four years. 

 1st year 2nd year 3rd year 4th year 
Average PPD 12.1% 12.4% 12.8% 12.0% 
Annual energy consumption 9.39MWh 7.13MWh 5.83MWh 4.85MWh
Minimum CO2 
concentration 

385ppm 385ppm 389ppm 394ppm 

Mean CO2 concentration 464ppm 462ppm 450ppm 539ppm 
Maximum CO2 
concentration 

1658ppm 860ppm 860ppm 1697ppm 

 

The results show that the annual average PPD does not change 
significantly with time but the energy consumption is reduced significantly 
from year to year by about 25% each time. At the same time the CO2 
concentrations vary within acceptable ranges after the first year, despite the 
fact that the CO2 weight on the reinforcement signal is very small. It is 
noteworthy that even during the second year the CO2 concentration is above 
800ppm for less than an hour in a whole year. During the fourth and last 
year we increased the energy weight on the reinforcement signal and 
decreased the discounting factor. This had as an effect a decrease in the 
annual energy consumption and an increase of the CO2 concentrations. The 
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latter can be attributed to the fact that the CO2 concentrations are reversely 
analogous to the energy consumption. In order to conserve energy, the 
agent needs to reduce heat losses, closes the window and as a result the CO2 
concentrations increase. 

Figure 5-8 shows the controller heat pump response for the first year and 
the corresponding PMV. Although a pattern is visible, there is a large 
number of random actions where the controller continuously switches from 
heating to cooling regardless of the season. This is due to the fact that the 
controller has no experience yet and because the ε value is 7.5% which 
means that the controller takes random actions quite frequently. Figure 5-9 
shows the response of the controller during the second year of simulation. 
Now the ε value is smaller (2.5%) and the controller choices are based 
mostly on experience. Correspondingly the variations of the PMV index are 
smaller. Figure 5-10 corresponds to the third year simulated. This time the 
controller uses the greedy algorithm. It is obvious that it has learned not to 
use cooling during the winter months and although it occasionally chooses 
to turn heating during summer the performance is greatly improved.  

The three figures described above provide only a very rough view of the 
controller’s response. In order to better visualize the controller’s true 
response, Figure 5-11 shows the variations of indoor and outdoor 
temperature and the PMV for a period of three days in winter and Figure 
5-12 for a corresponding period during summer. The data used are from the 
third year of simulation. During the winter three day period the controller 
kept the indoor temperature at a mean value of 23.1ºC. The width of 
variation for the same period was 1.5ºC for the indoor temperature and 
6.1ºC for the outdoor. The worst PMV value is -0.47 and the average is -
0.31. Equivalently for the summer period the controller kept the 
temperature 26.5ºC with a variation width of 1.6ºC, while the outdoor 
temperature had a variation width of 9.1ºC. The worst PMV value is 0.91 
with a mean of 0.73. The variations in indoor temperature during noontime 
occur due to the fact that the controller switches the cooling between low, 
medium and high in order to keep the temperature from rising while at the 
same time maintaining low energy consumption. 

It should be noted that despite the fact that during the last year the 
greedy algorithm is used, the controller still learns and improves its 
performance by updating its value function.  
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Figure 5-7: Heat pump response of the RLLC during its first year of simulated training. 
The response is averaged over an one hour period. This controller utilizes only three 
inputs (Tin, Tout and [CO2]) and is applied in a building with no insulation. 
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Figure 5-8: First year of RLLC simulated training. This controller utilizes four inputs 
(Tin, Tout, month and [CO2]) and is applied in an insulated building. The heat pump 
response is averaged over a period of two hours. 
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Figure 5-9: Second year of RLLC simulated training. This controller utilizes four inputs 
(Tin, Tout, month and [CO2]) and is applied in an insulated building. The heat pump 
response is averaged over a period of two hours. 
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Figure 5-10: Third year of RLLC simulated training. This controller utilizes four inputs 
(Tin, Tout, month and [CO2]) and is applied in an insulated building. The heat pump 
response is averaged over a period of two hours. 



Chapter 5 – Results and conclusions 

60 

0 12 24 36 48 60 72
10

12

14

16

18

20

Time (hour)

T ou
t

0 12 24 36 48 60 72
20

21

22

23

24

25

Time (hour)

T in

0 12 24 36 48 60 72
-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

Time (hour)

P
M

V

 
Figure 5-11: Temperature and PMV variations for a three-day winter period of a trained 
RLLC. 
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Figure 5-12: Temperature and PMV variations for a three-day summer period of a 
trained RLLC. 
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5.6 Conclusions 
After training a RLLC for a simulated period of four years, we achieved 

the results summarized in Table 5-5 which also provides the corresponding 
results of the On/Off and Fuzzy-PD controllers. It is evident from this table 
that the RLLC has achieved a performance close to that of the other two 
controllers. 

Table 5-5: Comparison of RLLC, On/Off and fuzzy-PD controllers 

 RLLC On/Off Fuzzy-PD 
Energy consumption 4.85MWh 4.77MWh 3.28MWh 
Average PPD 12.0% 13.4% 16.5% 

 

It is significant that the RLLC has achieved this performance while still 
making errors. Even during the fourth year the agent may turn heating in 
summer or cooling during winter. Further training should eliminate these 
wrong decisions and result in even better energy conservation. Significant 
improvement may also be achieved by using different feature vectors or by 
providing the controller with more information about its environment. 

The main problem about the RLFC is that the initial choice of the state-
action value matrix has a great influence on the convergence of the learning 
algorithm. This problem is more significant if we use greedy action 
selection or when non greedy actions are rare. The value matrixes used by 
the controllers tested had from 10,000 to 100,000 elements. A large 
percentage of these values are not actually used since they refer to states 
not actually encountered (40-90% depending on the inputs). 

An expert choice of the initial value matrix is theoretically possible for 
the problem at hand but the large number of values makes it very difficult. 
Instead of choosing specific values for each state-action value, all values 
can be initialized as zero. A zero initial value has the effect of forcing the 
controller to try at least once each available action, because the resulting 
returns are always negative. On the other hand this can delay convergence 
because the controller may need to test each action several times before the 
estimate of its value can be accurate. 

The learning rate parameter plays a significant role in the RLFC’s 
training speed. When using the RLFC a proper learning rate must be 
determined usually as a function of time. If the learning rate does not 
become smaller with time it is possible that we will have frequent policy 
changes due to the value updating. On the other hand if the learning rate 
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drops too fast, the values may never reach the real ones and as a 
consequence the policy will be suboptimal. 

The controllers are also compared according to their execution speed. It 
has been found that the RLFC is on average about 10% faster than the 
RLLC mostly because of the more complicated update step of the RLLC 
which requires matrix multiplication. The exact execution speed depends on 
the design characteristics of each controller. Of course for the application 
in study this time is negligible because the environment dynamics are very 
slow and the intervals between action reevaluation are large.  

An issue that involves the application of reinforcement learning 
controllers in BEMS is that of sufficient exploration. It is true that taking 
random actions even during a small fraction of the time is unacceptable in a 
real building. Even when the choice is between near-optimal actions we 
should expect temporary increases in user dissatisfaction and an increase in 
the total energy consumption (2-3% for ε=0.02). 
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6 CONTRIBUTION – FUTURE ISSUES 

6.1 Contribution 
The main contribution of this thesis is that it has demonstrated the 

possibility to use reinforcement learning for building controller design. 
Reinforcement learning makes it possible to create controllers that can 
operate sufficiently with limited information, limited action possibilities 
and in changing environments. It is noteworthy that the controllers designed 
were able to function adequately using only indoor and outdoor temperature 
which are usually already available to the thermostatic controllers installed 
in a large number of dwellings and office spaces. 

Besides that an innovative online classifier was developed that is also 
based on reinforcement learning. This classifier performed adequately in 
classifying the nonlinear relationship between environmental conditions and 
thermal comfort based only on relative humidity, indoor and outdoor 
temperature. The feature of online, fast training makes this classifier a 
candidate for several other applications. 
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6.2 Issues and future proposals 
This thesis has shown that reinforcement learning controllers are feasible 

for BEMS. What has to be done now is to optimize these controllers so that 
they are able to adapt quickly and accurately. Convergence to an optimal 
policy is generally difficult to prove for reinforcement learning controllers. 
In the case of the controllers designed it is impossible since the state signal 
does not possess the Markov property. There follow some proposals for the 
improvement of the controllers. 

6.2.1 Enhancing training speed 
One of the most important problems encountered is that of the slow 

training speed. We have seen that the agent constantly improves its 
performance, but it is very important to achieve a near-optimal error-free 
policy as soon as possible. 

A substantial increase in the controllers’ training speed can be achieved 
by using state value functions instead of state-action value functions. 
Unfortunately in order to do that we need a way to determine the one step 
dynamics of the environment either deterministically or as transition 
probabilities. This means that we need a method to determine what the 
resulting state s΄ will be from being in state s and choosing action a. The 
one-step dynamics can be obtained by a model of the environment, or by a 
second agent that estimates the dynamics of the environment based on past 
experience. Since a model of the environment cannot be assumed to be 
available the second solution is more appropriate.  

To increase the controllers’ training speed it is also possible to make a 
better usage of the available information. This can be achieved by updating 
the reward matrix or the weight vector more frequently. For example 
controller response can be evaluated every 15 or 20 minutes, which is 
usually sufficient, while the updating may occur every 5 or 3 minutes.  

6.2.2 Using predictive control 
Building control systems are known to benefit from the use of predictive 

control. Predicting the change in indoor environment in advance will 
provide additional information to assist action selection. Depending on the 
season and current environmental conditions, it is possible to predict the 
heat gains of a building and decide in advance how to act.  

For example a decision of turning on heating can be the correct one 
during cold months and the opposite during hot months, although the 
conditions under which the action is taken can be the same. The 
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reinforcement learning controllers can learn to anticipate the changes in 
indoor environment by using additional input, for example the current 
month or the anticipated temperature from a weather forecast. 
Unfortunately the larger the dimensionality of the input, the slower the 
training speed of the controller. 

6.2.3 Providing for artificial lighting 
According to our design, the controller does not take into account the 

lighting requirements of the building and has no control over the artificial 
lighting and/or shading devices that might be available. This was chosen, so 
that the controller would not be burdened with additional inputs and action 
possibilities and the problems associated with the size of the resulting 
reward matrix or feature vector for RLFC and RLLC respectively. 

In order to achieve the lighting requirements inside the building an 
independent controller is proposed. The controller used throughout the 
simulations was a simple fuzzy controller that is based on an earlier work 
by [Kolokotsa, et al., 6]. 

The use of shading may influence the thermal gains of the building 
especially in the summer period; this may result in poor behavior from the 
controller which would not be able to forecast the effect of its actions 
accurately. In order to alleviate this problem it is possible to select one of 
the controllers as the dominating or master controller and use its output to 
the other or slave controller. 

A possible choice is to select the lighting controller as the master, so that 
shading will be controlled by it and the RLFC controller will have an 
additional input regarding the state of the shading device. For the initial 
testing of the controller it was decided that the influence of shading is 
minimal and therefore no connection between the two controllers was 
implemented. 

6.2.4 Operation under faults 
It has been discussed that reinforcement learning enables the controller 

to learn continuously even in changing conditions. This controller feature 
may result in problems in the case of faulty equipment. After the 
occurrence of a problem the controller will behave poorly and the 
conditions inside the building will probably drift from the optimal. If the 
fault persists then the controller will begin to adapt. For example if the 
window opening actuator breaks down the controller will begin to learn that 



Chapter 6 – Contribution & Future Issues 

67 

the window has no effect. This may result in unpredictable behavior during 
a period after the problem is fixed. 

One way to prevent this from happening is the use of fault detection 
algorithms. If the algorithm is fast enough it can prevent the value updating 
of the controller during faults. Unfortunately this solution does not address 
the issue of poor controller behavior during the existence of the fault. 

6.2.5 Night setback 
Night setback refers to switching off the HVAC system during the time 

the building is unoccupied. This technique has been used frequently in the 
past to lower the energy consumption mainly in office buildings. Usually 
the system is turned back on some time before the occupants arrive, so that 
upon their arrival the indoor climate will be at the desired setpoints. 

This effect can be implemented using the reinforcement learning 
controller. In order to do that the controller needs only to know the time. 
During the period that the building is empty the controller will not receive a 
thermal comfort or indoor air quality penalty. This way it will learn not to 
use the HVAC system during that period. Of course, upon occupant arrival 
the controller will receive a large penalty, if the conditions inside the 
building have drifted a lot away from optimum, therefore it will also learn 
to reestablish optimal conditions well in advance. 

6.2.6 Giving control opportunities 
As we discussed in chapter 2, when the building users have some control 

over their environment they tend to have wider comfort zones thus allowing 
for more energy conservation. It is possible to pass control of the operable 
windows from the controller to the occupants. In order to do that the 
controller only needs to know what the current status of the window is (e.g. 
open, half-open, closed). Using this information it will operate the rest of 
the available devices towards its goals. 
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7 APPENDIX 

7.1 Metabolic rate (Met) values for various activities 

Activity Met 
Reclining 0.8 
Seated relaxed 1.0 
Clock and watch repairer 1.1 
Standing relaxed 1.2 
Sedentary activity (office, dwelling, school, laboratory) 1.2 
Car driving 1.4 
Graphic profession - Book Binder 1.5 
Standing, light activity (shopping, laboratory, light industry) 1.6 
Teacher 1.6 
Domestic work - shaving, washing and dressing 1.7 
Walking on the level, 2 km/h 1.9 
Standing, medium activity (shop assistant, domestic work) 2.0 
Building industry -Brick laying (Block of 15.3 kg) 2.2 
Washing dishes standing 2.5 
Domestic work - raking leaves on the lawn 2.9 
Domestic work - washing by hand and ironing (120-220 W/m2) 2.9 
Iron and steel - ramming the mould with a pneumatic hammer 3.0 
Building industry -forming the mould 3.1 
Walking on the level, 5 km/h 3.4 
Forestry - cutting across the grain with a one-man power saw 3.5 
Agriculture - Ploughing with a team of horses 4.0 
Building industry - loading a wheelbarrow with stones and mortar 4.7 
Sports - Ice skating 6.2 
Agriculture - digging with a spade (24 lifts/min.) 6.5 
Sports - Skiing on level, good snow, 9 km/h 7.0 
Forestry - working with an axe (weight 2 kg. 33 blows/min.) 8.6 
Sports - Running, 15 km/h 9.5 
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7.2 Clo values for various garments 
To estimate the total insulation effect of a person’s clothing, sum the clo 

values of each garment. Also notice should be taken on the insulation effect 
of furniture like chairs or beds. 

Garment description Clo 
Pantyhose 0.02 
Panties 0.03 
Briefs 0.04 
Pants 1/2 long legs, wool 0.06 

Underwear, pants 

Pants long legs 0.1 
Bra 0.01 
Shirt sleeveless 0.06 
T-shirt 0.09 
Shirt with long sleeves 0.12 

Underwear, shirts 

Half-slip, nylon 0.14 
Tube top 0.06 
Short sleeve 0.09 
Light weight blouse, long sleeves 0.15 
Light weight, long sleeves 0.20 
Normal, long sleeves 0.25 
Flannel shirt, long sleeves 0.3 

Shirts 

Long sleeves, turtleneck blouse 0.34 
Shorts 0.06 
Walking shorts 0.11 
Light-weight trousers 0.20 
Normal trousers 0.25 
Flannel trousers 0.28 

Trousers 

Overalls 0.28 
Daily wear, belted 0.49 Coveralls 
Work 0.50 
Sleeveless vest 0.12 
Thin sweater 0.2 
Long sleeves, turtleneck (thin) 0.26 
Sweater 0.28 0.043 Thick sweater 0.35 

Sweaters 

Long sleeves, turtleneck (thick) 0.37 
Vest 0.13 
Light summer jacket 0.25 
Jacket 0.35 

Jacket 

Smock 0.3 
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Garment description Clo 
Coat 0.6 
Down jacket 0.55 
Parka 0.7 

Coats and overjackets 
and overtrousers 

Overalls multi-component 0.52 
Multi-component, filling 1.03 Highly-insulating 

coveralls Fibre-pelt 1.13 
Socks 0.02 
Thick, ankle socks 0.05 
Thick, long socks 0.1 
Slippers, quilted fleece 0.03 
Shoes (thin soled) 0.02 
Shoes (thick soled) 0.04 

Sundries 

Boots 0.1 0.016 Gloves 0.05 
Light skirt, 15 cm. above knee 0.10 
Light skirt, 15 cm. below knee 0.18 
Heavy skirt, knee-length 0.25 
Light dress, sleeveless 0.25 

Skirts, dresses 

Winter dress, long sleeves 0.4 
Long sleeve, long gown 0.3 
Thin strap, short gown 0.15 
Hospital gown 0.31 
Long sleeve, long pyjamas 0.50 
Body sleep with feet 0.72 

Sleepwear 

Undershorts 0.1 
Long sleeve, wrap, long 0.53 Robes 
Long sleeve, wrap, short 0.41 
Wooden or metal 0.00 
Fabric-covered, cushioned, swivel 0.10 

Chairs 

Armchair 0.20 
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7.3 Illuminance requirements 
The following table shows general illuminance requirements depending 

on the activity. Modifying factors for the general requirements are also 
shown for specific situations. 

Activity Required 
illuminance

High eye strain activities: precision drawing, jewelry etc. 1000 lux 
Short duration activities with high eye strain: reading, 
drawing etc. 

750 lux 

Short duration activities with medium eye strain: work in 
general, meetings etc. 

500 lux 

Short duration activities with low eye strain: storage, 
movement etc.

250 lux 

0.8×  Age < 35years / Activity unimportant / Low difficulty 
1.2×  Age > 55 years / Activity crucial or unusual / High difficulty 

7.4 Glare requirements 

Condition Glare 
index 

Highly critical conditions with difficult work, dangerous 
situations etc. 

<13 

Conditions with long-duration work of normal difficulty, with 
rest periods etc. 

13-16 

Conditions with short-duration work or light work, with long 
breaks etc. 

16-19 

Conditions below critical, with short work periods, movement 
etc. 

19-22 

Conditions without visual requirements, in which glare is not a 
problem 

>22 

7.5 Light color 

Type of space Condition T (K) 
Work 4500-6000Spaces where color is very important 
Rest 2500-4000
Work > 4000 Spaces where color is important but not critical 
Rest < 4000 
Work > 4500 Spaces where chromatic recognition is 

unimportant Rest < 4500 
Space without chromatic vision  Indifferent
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7.6 Reinforcement Learning Fuzzy Controller flowchart 
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7.7 Action membership functions 

 

Each action is chosen in the range of 0-100 thus referring to the 
percentage of the intensity of each action. In the heating and air 
conditioning membership functions positive numbers refer to heating and 
negative numbers refer to cooling. 
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9 INDEX OF ABBREVIATIONS 

ACS Adaptive comfort standard 
AMV Actual mean vote 
AOSS Adaptive Occupant Satisfaction Simulator 
ASHRAE American Society of Heating, Refrigerating and Air-

Conditioning Engineers 
BEMS Building Energy Management Systems 
COA Center of area defuzzification method 
DP Dynamic Programming 
HVAC Heating, Ventilation, Air-Conditioning 
IAQ Indoor Air Quality 
ISO International Standards Organization 
MC Monte Carlo 
MDP Markov Decision Process 
MOM Mean of max defuzzification method 
MSE Mean Squared Error 
NC Noise criteria 
PMV Predicted mean vote 
PPD Percent of people dissatisfied 
RBF Radial Basis Functions 
RLFC Reinforcement Learning Fuzzy Controller 
RLLC Reinforcement Learning Linear Controller 
RLS Recursive Least Squares 
SBS Sick Building Syndrome 
TD Temporal Difference 
VOC Volatile Organic Compounds 
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10 NOMENCLATURE 

a Action 
e Eligibility trace 
E Illuminance 
I Luminous intensity 
J Cost function 
L Luminance 
m(s) Membership – Activity level of state s 
M Metabolic rate 
Q State-Action value 
R Return 
s State 
TC Comfort temperature 
Tin Indoor air temperature 
Tout Outdoor air temperature 
TRM Running mean temperature 
V State value 

1w  Weight of thermal comfort penalty in reinforcement 
signal 

2w  Weight of energy penalty in reinforcement signal 

3w  Weight of indoor air quality penalty in reinforcement 
signal 

W Weight vector 
α Learning rate 
γ Discount parameter 
δ TD error 
θ Parameter vector 
λ Eligibility trace decay parameter 
µ Forgetting factor 
σ Standard deviation 
Φ Luminous flux 
φ  Feature vector 
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Εφαρµογή ενισχυµένης µάθησης για άνεση και εξοικονόµηση ενέργειας σε κτίρια.  

Η εργασία αυτή αναφέρεται στο πρόβληµα της επίτευξης άνεσης σε κτίρια µε την 
ελάχιστη δυνατή κατανάλωση σε ενέργεια. Αν και θέµα έρευνας εδώ και δεκαετίες η 
θερµική άνεση παραµένει ανοιχτή υπόθεση. Τα διεθνή πρότυπα αναπροσαρµόζονται 
έτσι ώστε να συµπεριλάβουν το νέο πρότυπο της προσαρµοστικής άνεσης, ενώ ο 
µέχρι πρότινος καθιερωµένος δείκτης προβλεπόµενης µέσης ψήφου τίθεται υπό 
αµφισβήτηση όσον αφορά τη δυνατότητα εφαρµογής του σε κτίρια φυσικής ροής. 
Παράλληλα, η προσπάθεια για εξοικονόµηση ενέργειας που ξεκίνησε την δεκαετία 
του 1970, σε συνδυασµό µε την απαίτηση για µείωση των εκποµπών διοξειδίου του 
άνθρακα, καθιστούν επιτακτική τη χρήση συστηµάτων ενεργειακού ελέγχου των 
κτιρίων. Τις τελευταίες δεκαετίες οι εφαρµογές αυτοµάτου ελέγχου έχουν ωφεληθεί 
πολύ από την χρήση της τεχνητής νοηµοσύνης – νευρωνικά δίκτυα, ασαφής έλεγχος, 
ενισχυµένη µάθηση. Από τις πιο πρόσφατες, η τεχνική της ενισχυµένης µάθησης 
παρουσιάζει ιδιαίτερο ενδιαφέρον. Η ενισχυµένη µάθηση αναφέρεται στη µάθηση 
µέσω της αλληλεπίδρασης µε το περιβάλλον. Ο ελεγκτής δεν γνωρίζει εκ των 
προτέρων ποιες είναι οι σωστές απαντήσεις. Σε αντίθεση µε άλλες τεχνικές 
προσαρµοστικού ελέγχου, µετά από κάθε απόφαση που παίρνει δεν του δίνεται ποια 
ήταν η σωστή απάντηση, αλλά µόνο µία ένδειξη για το πόσο καλή ή κακή ήταν. Έτσι 
ο ελεγκτής προσπαθεί να παίρνει τέτοιες αποφάσεις ώστε να µεγιστοποιεί τις καλές 
αποκρίσεις. Στην εργασία αυτή αναπτύσσονται δύο ελεγκτές που βασίζονται στην 
ενισχυµένη µάθηση. Ο πρώτος κάνει χρήση ασαφούς λογικής για να διακριτοποιήσει 
την είσοδό του, ενώ η λειτουργία του δεύτερου βασίζεται σε γραµµική προσαρµογή 
µε την επαναληπτική µέθοδο των ελαχίστων τετραγώνων και χρήση χαρακτηριστικού 
διανύσµατος που δηµιουργείται µε radial basis functions. Το σήµα µάθησης που 
παίρνουν οι ελεγκτές είναι µια συνάρτηση της θερµικής άνεσης των χρηστών του 
κτιρίου, της ποιότητας της ατµόσφαιρας εντός του κτιρίου και της ενεργειακής 
κατανάλωσης. Και οι δύο ελεγκτές αναπτύχθηκαν και προσοµοιώθηκαν στο 
περιβάλλον Matlab/Simulink, έτσι ώστε να υπολογιστεί η απόδοσή τους. 

Reinforcement learning for energy conservation and comfort in buildings.  

This thesis deals with the issue of achieving comfort in buildings with minimal 
energy consumption. Although the issue of comfort has been investigated for 
decades, thermal comfort remains an open issue. The international standards are 
reevaluated to include the new adaptive comfort standard, while the applicability of 
the PMV index in naturally ventilated buildings is under scrutiny. At the same time 
the effort for energy conservation that begun in the 1970s, along with the CO2 
emission reduction requirements, render the use of energy management systems in 
buildings imperative. During the last decades the applications of automatic control 
have profited from the use of artificial intelligence – neural networks, fuzzy logic 
and reinforcement learning. The technique of reinforcement learning is of particular 
interest. In contrast to other techniques of adaptive control, a reinforcement learning 
agent does not know what the correct answer is, instead it receives only an indication 
of the “correctness” of its response. For this thesis two reinforcement learning 
controllers have been developed. The first one makes use of fuzzy logic to quantize 
its input space, while the other one applies linear approximation using the recursive 
least squares method. The feature vector required for the latter is created using radial 
basis functions. The learning signal used for both controllers is a function of the 
thermal comfort of the building occupants, the indoor air quality and the energy 
consumption. Both controllers were developed and simulated in the Matlab/Simulink 
environment in order to assess their performance. 


