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CHAPTER 1: INTRODUCTION 
 

1.1:AIR TRAFFIC MANAGEMENT 
 
 
1.1.1:HISTORICAL PART  
 

In the earliest days of aviation, so few aircraft were in the skies 

that there was little need for ground-based control of aircraft. In 

Europe, though, aircraft often travelled in different countries, and it 

soon became apparent that some kind of standard rules were 

needed. In 1919, the International Commission for Air Navigation 

(ICAN) was created to develop ”General Rules for Air Traffic”. Its 

rules and procedures were applied in most countries where aircraft 

operated [1]. The United States did not sign the ICAN Convention, 

but later developed its own set of air traffic rules after passage of 

the Air Commerce Act of 1926. This legislation authorized the 

Department of Commerce to establish air traffic rules for the 

navigation, protection, and identification of aircraft, including rules 

as to safe altitudes of flight and rules for the prevention of 

collisions between vessels and aircraft. The first rules were brief 

and basic. 

For example, pilots were told not to begin their takeoff until ”there 

is no risk of collision with landing aircraft and until preceding 

aircraft are clear of the field.” As traffic increased, some airport 

operators realized that such general rules 

were not enough to prevent collisions. They began to provide a 

form of air traffic control (ATC) based on visual signals. The early 
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controllers stood on the field, waving flags to communicate with 

pilots. Archie League was one of the system’s first flagmen, 

beginning in the late 1920s at the airfield in St. Louis, Missouri. As 

more aircraft were fitted for radio communication, radio-equipped 

airport traffic control towersbegan to replace the flagmen. In 1930, 

the first radio-equipped control tower in the United States began 

operating at the Cleveland Municipal Airport. By 1932, almost all 

airline aircraft were being equipped for radio-telephone 

communication, and about 20 radio control towers were operating 

by 1935. 

Further increases in flights created a need for ATC that was not 

just confined to airport areas but also extended out along the 

airways. In 1935, the principal airlines using the Chicago, 

Cleveland, and Newark airports agreed to coordinate the handling 

of airline traffic between those cities. In December, the first Airway 

Traffic Control Center opened at Newark, New Jersey. Additional 

centers at Chicago and Cleveland followed in 1936. 

The early en route controllers tracked the position of planes using 

maps and blackboards and little boat-shaped weights that came to 

be called ”shrimp boats.” They had no direct radio link with aircraft 

but used telephones to stay in touch with airline dispatchers, 

airway radio operators, and airport traffic controllers. These 

individuals fed information to the en route controllers and also 

relayed their instructions to pilots. 

In July 1936, en route ATC became a federal responsibility, and 

the first appropriation of 175.000 dollars was made. The Federal 

Government provided ”airway”  traffic control service, but local 

government authorities where the towers were located continued 

to operate those facilities. 
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In August 1941, Congress appropriated funds for the Civil 

Aeronautics Administration (CAA) to construct and operate ATC 

towers, and soon the CAA began taking over operations at the first 

of these towers, with their number growing to 115 by 1944. In the 

postwar era, ATC at most airports was eventually to become a 

permanent federal responsibility. In response to wartime needs, 

the CAA also greatly expanded its en route air traffic control 

system.Women, too, for the first time were trained as controllers 

during the war, and, at their peak, represented well over 40 

percent of the controller workforce. 

The postwar years saw the beginning of a revolutionary 

development in ATC,the introduction of radar, a system that uses 

radio waves to detect distant objects. Originally developed by the 

British for military defense, this new technology allowed controllers 

to ”see” the position of aircraft tracked on video displays. In 1946, 

the CAA unveiled an experimental radar-equipped tower for control 

of civil flights. By 1952, the agency had begun its first routine use 

of radar for approach and departure control. Four years later, it 

placed a large order for long-range radars for use in en route ATC. 

Beginning in 1950, the CAA began consolidating some airport 

traffic control towers at smaller airports with airway communication 

stations, the forerunners of today’s flight service stations. By 1958, 

it ran 84 of these combined station-towers, the last of which closed 

in 1981. 

In 1960, the FAA [2] began successful testing of a system under 

which flights in certain ”positive control” areas were required to 

carry a radar beacon, called a transponder, that identified the 

aircraft and helped to improve radar performance. 
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Pilots in this airspace were also required to fly on instruments 

regardless of the weather and to remain in contact with controllers. 

Under these conditions, controllers were able to reduce the 

separation between aircraft by as much as half the standard 

distance. 

For many years, pilots had negotiated a complicated maze of 

airways. In September 1964, the FAA instituted two layers of 

airways, one from 1000 to 18.000 feet (305 to 5.486 meters) above 

ground and the second from 18.000 to 45.000 feet (13.716 

meters). It also standardized aircraft instrument settings 

and navigation checkpoints to reduce the controllers’ workload. 

Although experimental use of computers in ATC had begun as 

early as 1956, a determined drive to apply this technology began 

in the 1960s.To modernize the National Airspace System , the 

FAA developed complex computer systems that would replace the 

plastic markers for tracking aircraft. 

Instead, controllers viewed information sent by aircraft 

transponders to form alphanumeric symbols on a simulated three-

dimensional radar screen. By automating some routine tasks, the 

system allowed controllers to focus on providing separation. These 

capabilities were introduced into the ATC system during the ten 

years that began in 1965. 

The FAA established a Central Flow Control Facility in April 1970, 

to prevent clusters of congestion from disrupting the nationwide air 

traffic flow. This type of ATC became increasingly sophisticated 

and important, and in 1994, the FAA opened a new Air Traffic 

Control System Command Center with advanced equipment. 

 In January 1982, the FAA unveiled the National Airspace System 

(NAS) Plan.The plan called for modernized flight service stations, 

Hadjitheocharous Michael  8



Chapter 1                                                                                     INTRODUCTION  

 
more advanced systems for ATC, and improvements in ground-to-

air surveillance and communication. Better computers and 

software were developed, air route traffic control centers were 

consolidated, and the number of flight service stations reduced. 

New Doppler radars and better transponders complemented 

automatic, radiobroadcasts of surface and flight conditions. 

The FAA recognized the need for further modernization of air 

traffic control,and in July 1988, selected IBM to develop the new 

multi-billion-dollar Advanced Automation System (AAS) for the 

Nation’s en route ATC centers. AAS would include controller 

workstations, called ”sector suites,” that would incorporate new 

display, communications and processing capabilities. The system 

would also include new computer hardware and software to bring 

the air traffic control system to higher levels of automation. 

In December 1993, the FAA reviewed its order for the planned 

AAS. IBM was far behind schedule and had major cost overruns. 

In 1994 the FAA simplified its needs and picked new contractors. 

The revised modernization program continued under various 

project names. Some elements met further delays.                        

In  1999, controllers began their first use of an early version of the 

Standard Terminal Automation Replacement System, which 

included new displays and capabilities for approach control 

facilities. During the following year, FAA completed deployment of 

the Display System Replacement, providing more efficient 

workstations for en route controllers. 

In 1994, the concept of Free Flight was introduced. It might 

eventually allow pilots to use onboard instruments and electronics 

to maintain a safe distance between planes and to reduce their 

reliance on ground controllers. Full implementation of this concept 
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would involve technology that made use of the Global Positioning 

System  to help track the position of aircraft. 

In 1998, the FAA and industry began applying some of the early 

capabilities developed by the Free Flight program. 

 

1.1.2:DEFINITION 
 

There is a simple definition of security in ATC systems: two aircraft 

can never be closer than one standard separation. A standard 

separation is a distance  usually given in nautic miles. It depends 

on the equipment available to control aircraft. It is usually 8 or 5 

Nautic Miles (NM) in the horizontal plane and  

1000 or 2000 feet in the vertical plane. Two aircraft are in conflict 

when both standard separation are violated.  

It is useful to try to understand how an Air Traffic Control and an 

Air Traffic Management system are built. They can be represented 

by an assembly of filters, or shells. A classical view of the shells in 

an ATC system could be:  

Airspace design (airways, control sectors, ...): when joining two 

airports, an aircraft must follow routes and beacons; these 

beacons are necessary for pilots to know their position during 

navigation and help controllers to visualize the traffic. As there are 

many aircraft simultaneously present in the sky, a single controller 

is not able to manage all of them. So, airspace  

is partitioned into different sectors, each of them being assigned to 

a controller. This task aims at designing the air network and the 

associated  sectoring. 
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Air Traffic Flow Management (ATFM) (strategic planning, a few 

hours ahead):  

 with the increasing traffic, many pilots choose the same routes, 

generating many conflicts on the beacons inducing overloaded 

sectors. Traffic assignment aims at changing aircraft routes to 

reduce sector congestion, conflicts and coordinations. It also aims 

at computing arrival times for aircraft at airports. Airport capacity is 

often the bottleneck of the system, especially in the USA, and an 

efficient sequencing is one key of Airspace capacity.  

Coordination planning (a few minutes ahead): this task guarantees 

that new aircraft entering sectors do not overload the sector.  

Classical control in ATC centers (up to 20 mn ahead) at this level, 

controllers solve conflicts between aircraft. 

Collision avoidance systems (a few minutes ahead): this level is 

activated only when the previous one has failed. This level is 

supposed to be activated only in emergency situations.            

Each level has to limit and organize the traffic it passes to  

the next level, so that this one will never be overloaded.  

Then why is it so difficult to have aircraft separated? Answers are 

different regarding the country you live in. In the USA, airport 

capacity is the main problem, while in Europe, and mainly in 

France, En Route capacity is the critical point.  

In the USA, the problem is mainly an airport capacity problem. This 

problem exists also in Europe on the biggest airport. For example, 

on a given airport, you can not have more than six aircraft landing 

or departing each 10 minutes.  

 If you have ever taken off at JFK or Chicago International Airport, 

you have already noticed that there is a serious queue before 

departing. The same is true for aircraft landing. They are usually 
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waiting inside stacks, close to the airport landing airway.       The 

problem is then to allocate slots for landing  to aircraft;   

as the system is not fully predictable, you can not give to a   

aircraft a precise slot for landing when it takes off thousand miles 

away.  

 Many things can shorten its flight time (good winds), or delay the 

aircraft (storms for example). So, when it arrives, the aircraft as 

usually to wait a few minutes before landing.  

En Route capacity is a problem mainly in Europe. As stated above, 

airspace is divided in control sectors, each sector being managed 

by, usually, two Air Traffic controllers. however, the capacity of a 

sector is limited.  

A controller can not handle more than a certain number of aircraft 

in its sector. This is called sector capacity. However, it is not 

possible to divide a sector in two just to increase capacity of the 

general ATC system, and it is easy to understand why. 

On the one hand, the sector has to be large enough to enable the 

controller to perform conflict resolution inside the sector. But there 

is also a problem linked with controller workload. How is controller 

workload computed? There are three factors to consider:  

Monitoring workload: it is simply the monitoring of the aircraft in the 

controller's sector. It depends mainly on the number of planes.  

Resolution workload: the resolution induced by the resolution of 

conflicts  

Coordination workload: coordination is a task that each controller 

must perform when a aircraft enters (or leaves) its sector. 

Basically, it is a negociation with the controller which had the 

aircraft in charge (or that will take the aircraft in charge) regarding, 

for example, the level the aircraft will enter or leave the sector. The 
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number of coordinations will increase when the size of the sector 

becomes smaller, and coordination workload could soon become 

the main factor of stress. 

As Air Traffic keeps increasing, the Air Traffic Control overload is 

now a serious concern. For the last twenty years, different 

approaches have been tried, and different solutions have been 

proposed. To be short, all theses solutions fall in the range 

delimited by the two following extreme positions:  

On the one hand, it could be possible to imagine an ATC system 

where every trajectory would be planned and where each aircraft 

would follow its trajectory with a perfect accuracy. With such a 

system, no reactive system would be needed, as no conflict 

between aircraft would ever occur. This solution is close to the 

ARC-2000 hypothesis, which has been investigated by  

the Eurocontrol Experimental Center.  

On the other hand, it could also be possible to imagine an ATC 

system where no trajectories are planned. Each aircraft would fly 

its own way, and all collisions would have to be avoided by 

reactive systems. Each aircraft would be in charge of its own 

security. This could be called a completely free flight system. The 

free flight hypothesis is currently seriously considered for all 

aircraft flying ``high enough'' in a quite near future.Of course, no 

ATC system will ever totally rely on only one of these two 

hypothesis. It is quite easy to understand why. A completely 

planned ATC is impossible, as no one can guarantee that each 

and every trajectory would be perfectly followed; there are too 

many parameters that can not be perfectly controlled: 

meteorological conditions (storms, winds, etc.), but also 

breakdowns in aircraft (motor, flaps, etc) or other problems 

Hadjitheocharous Michael  13



Chapter 1                                                                                     INTRODUCTION  

 
(closing of landing runaway on airports, etc.). On the other hand, a 

completely reactive system looks difficult  

to handle; it would only perform local optimizations for trajectories. 

Moreover, in the vicinity of departing and landing areas, the 

density of aircraft is so high that trajectories generated by this 

system could soon look like Brownian movements. 
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1.2: FREE FLIGHT 
 
 ”A safe and efficient flight operating capability under 
instrument flight rules (IFR) in which the operators have the 
freedom to select their path and speed in real time. Air traffic 
restrictions are only imposed to ensure separation, to  
preclude exceeding airport capacity, to prevent unauthorized 
flight through special use airspace, and to ensure safety of 
flight. Restrictions are limited in extent and  
duration to correct the identified problem. Any activity which 
removes restrictions represents a move toward free flight.” 
  

These are the words by a working committee on free flight 

sponsored by RTCA . 

Today’s ATC concept as described in the previous chapter is often 

not the most optimal way of flying from an airline point of view. 

Many companies have become frustrated by what they view as 

inefficiencies in the national airspace. Such inefficiencies are 

viewed to result, in part, from three factors: 

 

I. Standard linear airways that rarely allow the most direct flight   

between two points (e.g., a great circle route), 

II. Strict adherence to air traffic control procedures for route  

changes, which sometimes imposes delays, inefficiencies, or 

denial of requests that in fact might be entirely safe 

III.    Dependence on radar for separation standards, which are 

therefore constrained by the resolution of radar in estimating 

position. 
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This situation translates into flight delays, occasionally missed 

connections, passenger complaints, excess fuel consumption, 

excess crew time, and, ultimately,loss of revenue, for companies 

that already have a very thin profit margin. Airlines would prefer a 

more optimal way of flying with respect to fuel and time within the 

safety margins if possible. Assuming the aircrew is able to perform 

the conflict resolution task, they might be able to fly more optimal 

routes[3]. Self-optimization therefore could provide a more 

efficient, while still safe, and apparently more complex traffic 

pattern. This idea of self-optimization forms the basis of Free Flight 

in order to avoid the rigid structure which puts strict constraints on 

aircraft trajectories , which could otherwise follow wind-optimal or 

user preferred routes. Also, while a data link between aircraft and 

ground is being investigated as a replacement for the current voice 

communication over radio channels between pilot and controller , 

there is a limit to the amount of information processing that a 

controller can perform with this data.  

Two new technologies for air traffic control will be certified for use 

in the cockpit in the very near future: a positioning system based 

on GPS, and a data communication network linking aircraft to each 

other and to the ground control system, called ADS (Automatic 

Dependent Surveillance), or ADS-B (Broadcast). Both of these 

technologies will have the effect of moving today’s ground-based 

navigation and communication  equipment into the air. These 

technologies are expected toprovide short term improvements; 

they will not provide a long term solution to the air traffic problem. 

The result is a perceived need in the air traffic, airline, and 

avionics communities for a new architecture, which integrates 
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new technologies for data storage, processing, communications, 

and display, into a safe and efficient air traffic management 

system. The airlines are proponents of a decentralized architecture 

featuring free flight, meaning that each aircraft plans and tracks its 

own dynamic trajectory with minimal interference  from ATC [4]. 

Many view this as a radical solution, but a recent study funded by 

NASA suggests that distributing some of the control authority to 

each aircraft would help improve the efficiency of the system as a 

whole. While the degree of decentralization and level of 

automation in a new air traffic management system are still under 

debate (since it is very difficult to estimate the increase in 

efficiency from distributing the control authority), the integrity of 

any automated functionality in a new air traffic management 

system depends on a provably-safe design, and high confidence 

that the control actions will not fail. 
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CHAPTER 2 : Linear And Non-Linear 
Programming 
 
 
Before we examine the areas of mixed-integer and non-linear 

programming, we will present very briefly the basic ideas of linear 

progr 

amming, so that the basis for the more advanced concepts will be 

understood. 

 

 

2.1:Linear Programming 
 

Linear programming uses a mathematical model to describe the 

problem of concern. The adjective linear means that all the 

mathematical functions in this  model are required to be linear 

functions. The word programming does not refer here to computer 

programming; rather, it is essentially a synonym for planning. 

Thus linear programming involves the planning of activities to obtain 

an optimal result, i.e., a result that reaches the specified goal best 

(according to the mathematical model) among all feasible 

alternatives.The mathematical model of a linear programming 

problem is the system of equations and related mathematical 

expressions that describe the essence of the problem. Thus, if there 

are n related quantifiable decisions to be made, they are 

represented as decision variables (i.e. x1, x2,……. xn) whose 

respective values are to be determined. The appropriate measure of 
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performance (i.e. profit) is then expressed as a mathematical function 

of these decision variables (for example, P = 3 x1 + 2 x2 + ::: + 5 xn). 

This function is called the objective function.Any restrictions on the 

values that can be assigned to these decision variables are also 

expressed mathematically, typically by means of inequalities or 

equations (for example x1 + 3 x1 x2 + 2 x2 10). Such mathematical 

expressions for the restrictions are often called constraints. The 

constants (namely, the coefficients and right-hand sides) in the 

constraints and the objective function are called the parameters of 

the model. The mathematical model might then say that the 

problem is to choose the values of the decision variables so as to 

maximize the objective function, subject to the specified constraints. 

 

2.1.1:Comprehensive Examples 
 
2.1.1.1:Example1 : Pollution control 
In the simplest pollution control problem there are emission sources i 
=1…. m and receptor points j =1…n [5].For every source i , a finite 
set K(i)  of treatment technologies is available. Each technology k(i) 

K(i) has cost ciki and is associated with an emission level eiki.. The 
emissions are transferred to receptors to produce depositions     

                                
where tij(θ) are some random transfer coefficients. Finally there are 
some target levels (ambient norms) of deposition qj for the receptors 
j=1…n They are used to formulate a penalty cost φj(yj) associated 
with each deposition e.g., 
                                               φj(yj)=max(0 , yj-gj) 
 
The problem is to find the technologies k1,…, km so as to minimize the 
penalty function 
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subject to the budget constraint 
 

                                                  
 
2.1.1.2:Example2 : Facility location 
 
 
A set N={1,2…n} of potential facility locations and a set of clients 
I={1,2…m} 
are given. A facility placed at location j costs cj and has capacity uj _ 
Clients have random demands di(θ), i=1,…,m  and the unit cost to 
satisfy the demand of client i from 
facility j is qij .There is also a shortage cost qi0 for each unit of client’s i 
demand, which 
is not satisfied by any of the facilities. The problem is to choose 
locations of facilities that 
minimize the total expected cost. 
                              Defining binary variables 
 

                                                           
                                                    
one can formalize the problem as follows 
 

                                            
 
                                                      
 
where φ(x,θ) is defined as the minimum cost of satisfying the 
demand. It is the optimalvalue of the transportation problem 
 

                                     

Chadjitheocharous Michael           16



Chapter  2                                                                           Linear And Non-Linear Programming  
                                                                                                                  

 

                                                 
                                                     

                                                  
 
where yij is the demand of client I  served by facility J. 
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2.1.2:Formulation of the Linear Programming Model 
 
 
 The previous examples are intended to illustrate a typical linear 

programming problem (in a small scale). However, linear 

programming is too versatile to be completely characterized by some 

examples. Here we will briefly discuss the general characteristics of 

linear programming problems, including the various legitimateforms of 

the mathematical model for linear programming. 

In any application of linear programming, all the activities may be 

of one general kind (such as any one of these three examples), and 

then theindividual activities would be particular alternatives within this 

general category. 

The most common type of application of linear programming involves 

allocating resources to activities. The amount available of each 

resource is limited, so a careful allocation of resources to activities 

must be made. Determining this allocation involves choosing the 

levels of the activities that achieve the best 

possible value of the overall measure of performance. 

Certain symbols are commonly used to denote the various 

components of  a linear programming model. These symbols are 

listed below, along with their interpretation for the general problem of 

allocating resources to activities[7]. 

Z=value of overall measure of performance.  

xj=level of activity j (for j = 1, 2,…., n).          

cj=increase in Z that would result from each unit increase in 
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level of activity j.     

bi=amount of resource i that is available for allocation to activities   

(for i = 1, 2,…,m).    

aij=amount of resource i consumed by each unit of activity j. 

 

 
2.1.3:Assumptions of Linear Programming 
 
 
All of the assumptions of linear programming actually are implicit in 

the model  formulation given earlier. However, it is good to highlight 

theses assumptions so that it can be more easily evaluated how well 

linear programming applies to any given problem[8]. 

 

Proportionality 
 
Proportionality is an assumption about both the objective function and 

the functional constraints, as summarized below: 

The contribution of each activity to the value of the objective function 

Z is proportional to the level of the activity xj , as represented by the 

cjxj term in the objective function. Similarly, the contribution of each 

activity to the left-hand side of each functional constraint is 

proportional to the level of the activity xj , 
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Table 2. 1:Data needed for Linear Programming Model Involving the 
allocation of Resources to Activities. 

 

 

as represented by the aijxj term in the constraint. Consequently, this 

assumption rules out any exponent other than 1 for any variable in 

any term of any function (whether the objective function or the 

function on the left-hand side of a functional constraint) in a linear 

programming model. 
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Additivity 
 
Although the proportionality assumption rules out exponents other 

than one, it does not prohibit cross-product terms (terms involving the 

product of two or more variables). The additivity assumption does rule 

out this latter possibility, as summarized below: 

Every function in a linear programming model (whether the objective 

function or the function on the left-hand side of a functional 

constraint) is the sum of the individual contributions of the respective 

activities. 

 

Divisibility 
 
Our next assumption concerns the values allowed for the decision 

variables: 

Decision variables in a linear programming model are allowed to have 

any values, including non-integer values, that satisfy the functional 

and non-negativity constraints. Thus, these variables are not 

restricted to just integer values. Since each division variable 

represents the level of some activity, it is being assumed that the 

activities can be run at fractional levels. 

 

Certainty 
 
Our last assumption concerns the parameters of the model, namely, 

the coefficients in the objective function cj , the coefficients in the 

functional constraints aij , and the right-hand sides of the functional 
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constraints bi. The value assigned to each parameter of a linear 

programming model is assumed to be a known constant. 

 

2.1.4:The Assumptions in Perspective 
 
A mathematical model is intended to be only an idealized 

representation of the real problem. Approximations and simplifying 

assumptions generally are required in order for the model to be 

tractable. Adding too much detail and precision can make the model 

too unwieldy for useful analysis of the problem. All that is really 

needed is that there be a reasonably high correlation between the 

prediction of the model and what would actually happen in the real 

problem. 

This advice is certainly applicable to linear programming. It is very 

common in real applications of linear programming that almost none 

of the four assumptions hold completely. Except perhaps for the 

divisibility assumption, minor disparities are to be expected. This is 

especially true for the certainty assumption, so sensitivity analysis 

normally is a must to compensate for the violation of this 

assumption. It is important, however, to examine the four 

assumptions for the problem under study and to analyze just how 

large the disparities are. 

 If any of the assumptions are violated in a major way , then a number 

of useful alternative models are available (integer programming (IP), 

mixed-integer programming (MIP), non-linear programming (NLP))[9]. 

A disadvantage of these other models is that the algorithms available 

for solving them are not nearly as powerful as those for linear 
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programming, but this gap has been closing in some cases. For some 

applications, the powerful linear programming approach is used for 

the initial analysis , and then a more complicated model is used to 

refine this analysis. 

 
2.2:Integer Programming 

 
There have been numerous applications of integer programming that 

involve a direct extension of linear programming where the divisibility 

assumption must be dropped. However, another area of application 

may be of even greater importance, namely, problems involving a 

number of interrelated ”yes-or-no decisions”. 

In such decisions, the only two possible choices are yes and no. For 

example, should we undertake a particular fixed project? Should we 

make a particular fixed investment? Should we locate a facility in a 

particular site? 

With just two choices, we can represent such decisions by decision 

variables that are restricted to just two values, say 0 and 1. Thus the 

jth yes-or-no decision would be represented by, say xj , such that xj=1 

if decision j is yes and xj=0 if decision j is no. Such variables are 

called binary variables (or 0-1 variables). Consequently, IP problems 

that contain only binary variables sometimes are called binary integer 

programming (BIP) problems (or 0-1 integer programming problems). 

In the next subsection we will examine the usage of binary variables 

in the reformulation of IP problems. 
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2.2.1:Formulation Possibilities with Binary Variables 
 
Binary variables sometimes enable us to take a problem whose 

natural formulation is intractable and reformulate it as a pure or mixed 

IP problem. This kind of situation arises when the original formulation 

of the problem fits either an IP or a linear programming format except 

for minor disparities involving combinatorial relationships in the 

model. By expressing these combinatorial relationships in terms of 

questions that must be answered yes or no, auxiliary binary variables 

can be introduced to the model to represent these yes-or-no 

decisions. 

Introducing these variables reduces the problem to an MIP problem 

(or a pure IP problem if all the original variables are also required to 

have integer values. Some cases that can be handled by this 

approach are discussed next, where the xj denote the original 

variables of the problem (they may be either continuous or integer 

variables) and the yi denote the auxiliary binary variables that are 

introduced for the reformulation. 
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2.2.2:Either-Or Constraints 
 
Consider the important case where a choice can be made between 

two constraints, so that only one must hold (whereas the other one 

can hold but is not required to do so)[10]. For example, there may be 

a choice as to which of two resources to use for a certain purpose, so 

that it is necessary for only one of the two resource availability 

constraints to hold mathematically. To illustrate the approach to such 

situations, suppose that one of the requirements in the overall 

problem is that 

 

                 Either 3x1 + 2x2 18 

                        or 

                              x1 + 4x2 16 

 

i.e., at least one of these two inequalities must hold but not 

necessarily both. 

This requirement must be reformulated to fit it into the linear 

programming format where all specified constraints must hold. Let M 

be a very large positive number. Then this requirement can be 

rewritten as 
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                                 3x1 + 2x2 18 

Either 

                                x1 + 4x2 16 +M 

                                3x1 + 2x2 18 +M 

or 

                                x1 + 4x2 16 

 

The key is that adding M to the right-hand side of such constraints 

has the effect of eliminating them, because they would be satisfied 

automatically by any solutions that satisfy the other constraints of the 

problem. (This formulation assumes that the set of feasible solutions 

for the overall problem is a bounded set and that M is large enough 

that it will not eliminate any feasible solutions. 

This formulation is equivalent to the set of constraints: 

                                              3x1 + 2x2 18 +My 

                                              x1 + 4x2 16 +M(1 - y) 

Because the auxiliary variable y must be either 0 or 1, this formulation 

guarantees that one of the original constraints must hold while the 

other is, in effect, eliminated. This new set of constraints would then 

be appended to the other constraints in the overall model to give a 

pure or mixed IP problem (depending upon whether the xj are integer 

or continuous variables). 

This approach is related directly to our earlier discussion about 

expressing combinatorial relationships in terms of questions that must 

be answered yes or no. The combinatorial relationship involved 

concerns the combination of the other constraints of the model with 
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the first of the two alternative constraints and then with the second. 

Which of these combinations of constraints is better 

(in terms of the value of the objective function that then can be 

achieved)? To  rephrase the question in yes-or-no terms, we ask two 

complementary questions: 

 

                        1. Should x1 + 4x2 16 be selected as the constraint 

that must hold? 

                        2. Should 3x1 + 2x2 18 be selected as the constraint 

that must hold? 

 

Because exactly one of these questions is to be answered 

affirmatively, we let the binary terms y and 1 - y, respectively, 

represent these yes-or-no decisions. 

Thus, y = 1 if the answer is yes to the first question (and no to the 

second),  whereas 1-y = 1 (that is y = 0) if the answer is yes to the 

second question (and no to the first). Since y + 1 - y = 1 (one yes) 

automatically, there is no need to add another constraint to force 

these two decisions to be mutually exclusive. 

(If separate binary variables y1 and y2 had been used instead to 

represent these yes-or-no decisions, then an additional constraint  

y1 + y2 = 1 would have been needed to make them mutually 

exclusive). 

A formal presentation of this approach is given next for a more 

general case. 
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2.2.3:K out of N constraints must hold 
 
Consider the case where the overall model includes a set of N 

possible constraints such that only some K of these constraints must 

hold. (Assume that K < N). 

Part of the optimization process is to choose the combination of K 

constraints that permits the objective function to reach its best 

possible value. The N –K constraints not chosen are, in effect, 

eliminated from the problem, although feasible solutions might 

coincidentally still satisfy some of them. 

This case is a direct generalization of the preceding case, which had 

K = 1 and N = 2. Denote the possible constraints by: 

f1(x1, x2,…., xn) d1

f2(x1, x2,…. , xn) d2

. 

. 

. 

fn(x1, x2,…. , xn) dn

 

Then, applying the same logic as for the preceding case, we find that 

anequivalent formulation of the requirement that some K of these 

constraintsmust hold is: 

 

 

f1(x1, x2,…., xn) d1+My1

f2(x1, x2,…. , xn) d2+My2
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. 

. 

. 

fn(x1, x2,…. , xn) dn +Myn

 
and 

           yi is binary, for i = 1, 2,…,N, 

where M is an extremely large positive number. For each binary 

variable yi (i = 1, 2, …,N), note that yi = 0 makes M yi = 0, which 

reduces the newconstraint i to the original constraint i. On the other 

hand, y1 = 1 makes (di + Myi) so large that (again assuming a 

bounded feasible region) the new constraint i is automatically 

satisfied by any solution that satisfies the other new constraints, 

which has the effect of eliminating the original constraint i. Therefore, 

because the constraints on the yi guarantee that K of these variables 

will equal 0 and those remaining will equal 1, K of the original 

constraints will be unchanged and the other (N -K) original constraints 

will, in effect, be eliminated. 

The choice of which K constraints should be retained is made by 

applying the appropriate algorithm to the overall problem so it finds 

an optimal solution for all the variables simultaneously. 
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2.2.4:Functions with N possible values 
 
Consider a situation where a given function is required to take on any 

one of N 

given values. Denote this requirement by 

                                           f(x1, x2, …, xn) = d1  or  d2,...,  or  dn. 

 

One special case is where this function is 

                                       
as on the left-hand side of a linear programming constraint. Another 

special case is where f(x1, x2, …, xn) = xj for a given value of j, so the 

requirement becomes that xj must take on any one of N given values. 

The equivalent IP formulation of this requirement is the following: 

                       and 

                                               yi is binary, for i = 1, 2, …,N, 

so this new set of constraints would replace this requirement in the 

statement of the overall problem. This set of constraints provides an 

equivalent formulation because exactly one yi must equal 1 and the 

others must equal 0, so exactly one di is being chosen as the value of 

the function. In this case, there are N yes-or-no questions being 
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asked, namely, should di be the value chosen (i = 1, 2,…,N)? 

Because the yi respectively represent these yes-or-no decisions, the 

second constraint makes them mutually exclusive alternatives. 

 

 
2.2.5:The Fixed-Charge Problem 
 
It is quite common to incur a fixed charge or setup cost when one is 

undertaking an activity. For example, such a charge occurs when a 

production run to produce a batch of a particular product is 

undertaken and the required production facilities must be set up to 

initiate the run. In such cases, the total cost of the activity 

is the sum of a variable cost related to the level of the activity and the 

setup cost required to initiate the activity. Frequently the variable cost 

will be at least roughly proportional to the level of the activity. If this is 

the case, the total cost of the activity (say, activity j) can be 

represented by a function of the form: 

 

                                                   fj(xij) = kj + cj xj             ,      xj > 0                             

                               or                                         

                                                   fj(xij) = 0                       ,      xj = 0 

 

where xj denotes the level of activity j (xj >= 0), kj denotes the setup 

cost and cj denotes the cost for each incremental unit. Were it not for 

the setup cost kj , this cost structure would suggest the possibility of a 

linear programming formulation to determine the optimal levels of the 
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competing activities. Fortunately, even with the kj , MIP can still be 

used. 

To formulate the overall model, suppose that there are n activities, 

each with the preceding cost structure (with kj >= 0 in every case and 

kj > 0 for some  j = 1, 2, … , n), and that the problem is to 

                       Minimize Z = f1(x1) + f2(x2) + ... + fn(xn), 

              subject to 

                               given linear programming constraints 

To convert this problem to an MIP format, we begin by posing n 

questions that must be answered yes or no; namely, for each j = 1, 

2,…, n, should activity j be undertaken (xj > 0)? Each of these yes-or-

no decisions is then represented by an auxiliary binary variable yj , so 

that 

                                                         
                             where 

                                                          yj = 1 if xj > 0  

                                      or                 yj = 0 if xj = 0 

 

Let M be an extremely large positive number that exceeds the 

maximum feasible value of any xj (j = 1, 2,…, n). Then the constraints 

 

                                    xj Myj  for j = 1,2,…,  n 

 

will ensure that yj = 1 rather than 0 whenever xj = 0. The one difficulty 

remaining is that these constraints leave yj free to be either 0 or 1 

when xj = 0. Fortunately, this difficulty is automatically resolved 
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because of the nature of the objective function. The case where kj = 0 

can be ignored because yj can then be deleted from the formulation. 

So we consider the only other case, namely, where kj > 0. When xj = 

0, so that the constraints permit a choice between yj = 0 

and yj = 1, yj = 0 must yield a smaller value of Z than yj = 1. 

Therefore, because the objective is to minimize Z, an algorithm 

yielding an optimal solution would always choose yj = 0 when xj = 0. 

To summarize, the MIP formulation of the fixed-charge problem is: 

                                             
subject to 

                                            the original constraints, plus 

                                                             
 

and 

 

                                        yj is binary, for j = 1, 2,…,n. 

If the xj also had been restricted to be integer, then this would be a 

pure IP problem. 

 
2.2.6:Binary Representation of General Integer Values 
 
Suppose that you have a pure IP problem where most of the 

variables are binary variables, but the presence of a few general 

integer variables prevents you from solving the problem by one of the 

very efficient BIP algorithms now available.A nice way to circumvent 

this difficulty is to use the binary representation for each of these 
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general integer variables. Specifically, if the bounds on an integer 

variable x are 

                                         0 x u 

and if N is defined as the integer such that 

                                   
 

then the binary representation of x is 

                                       
where the yi variables are (auxiliary) binary variables. Substituting this 

binary representation for each of the general integer variables (with a 

different set of auxiliary binary variables for each) thereby reduces 

the entire problem to a BIP model. 

For example, suppose that an IP problem has just two general integer 

variables x1 and x2 along with many binary variables. Also suppose 

that the problem has non-negativity constraints for both x1 and x2 and 

that the functional constraints include 

                                                              x1 5 

                                                        2x1 + 3x2 30 

 

These constraints imply that u = 5 for x1 and u = 10 for x2, so the 

above definition of N gives N = 2 for x1 (since 22  5 < 23) and N = 3 

for x2 (since 23  10 < 24). Therefore, the binary representations of 

these variables are 

                                         x1 = y0 + 2y1 + 4y2

                                         x2 = y3 + 2y4 + 4y5 + 8y6
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After we substitute these expressions for the respective variables 

throughout all the functional constraints and the objective function, 

the two functional constraints noted above become 

 

                                             y0 + 2y1 + 4y2  5 

                          2y0 + 4y1 + 8y2 + 3y3 + 6y4 + 12y5 + 24y6 30 

 

Observe that each feasible value of x1 corresponds to one of the 

feasible values of the vector (y0, y1,y2), and similarly for x2 and (y3, y4, 

y5, y6). For 

example, x1 = 3 corresponds to (y0, y1, y2)=(1, 1, 0), and x2 = 5 

corresponds to 

                                 (y3,y4, y5, y6)=(1, 0, 1, 0). 

For an IP problem where all the variables are (bounded) general 

integer variables, it is possible to use this same technique to reduce 

this problem to a BIP model. However, this is not advisable for most 

cases because the explosion in the number of variables involved. 

Applying a good IP algorithm to the original IP model generally should 

be more efficient than applying a good BIP algorithm to the much 

larger BIP model. 

In general terms, for all the formulation possibilities with auxiliary 

binary variables discussed here, we need to strike the same note of 

caution. This approach sometimes requires adding a relatively large 

number of such variables, which can make the model computationally 

infeasible. 
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2.3:Non Linear Programming  

 
 
A constrained non-linear programming problem deals with the search 
for a maximum (or minimum) of a function f (x) of n variables x =(x1, 
x2, …, xn) subject  to a set of inequality constraints gj (x) . 0, (gj (x) =0, 
j =1, 2, …, p), and is denoted as  
 
                                       Maximize f (x)  
                                           subject to  
                              gj(x) < bj   , j =1, 2, …, m  
 
If any of the functions f (x), h(x), g(x) is non-linear, then the above 
formulation is called a constrained non-linear programming problem. 
The functions f(x), h(x), g(x) can take any form of non-linearity, and it 
is assumed that they satisfy continuity and differentiability 
requirements. No algorithm that will solve every specific problem 
fitting this format is available. However, substantial progress has 
been made for some important special cases of this problem by 
making various assumptions about these functions, and research is 
continuing very actively. Closely related to the idea of non-linear 
programming are the notions of convex sets as well as convex and 
concave functions. We will briefly define these notions below:  
Convex set definition  
A set S²<n is said to be convex if the closed line segment joining any 
two points x1 and x2 of the set S, that is, (1 -λ) x1 +λ x2, belongs to the 
set S for each λ such that 0  λ 1.  
 
Convex function definition 
  
Let S be a convex subset of Rn, and f (x) be a real valued function 
defined on S. The function f (x) is said to be convex if for any x1, 
x2 S, and 0  λ  1, we have  
 
                     f [(1-λ)x1+λx2]  (1-λ)f (x1)+λf (x2).  
This inequality is called Jensen’s inequality after the Danish 
mathematician who first introduced it. 
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Concave function definition 
  
Let S be a convex subset of Rn, and f (x)be a real valued function 
defined on S. The function f (x)is said to be concave if for  
any x1, x2 S, and 0  λ  1, we have  
                               f [(1-λ)x1+λx2]  (1-λ)f (x1)+λf (x2). 
In simpler terms, a convex function is always ”curving upward” (or not 
at all) and a concave function is always ”curving downward” (or not at 
all).  
If a non-linear programming problem has no constraints, the objective 
function being concave guarantees that a local maximum is a global 
maximum. (Similarly, the objective function being convex ensures 
that a local minimum is a global minimum. If there are constraints, 
then one more condition will provide this guarantee, namely, that the 
feasible region is a convex set. In essence, a convex set  is simply a 
set of points such that, for each pair of points in the collection, the  
entire line segment joining these two points is also in the collection.  
In general, the feasible region for a non-linear programming problem 
is a convex set whenever all the gj (x) [for the constraints gj (x)  bj ] 
are convex.  
The subject of non-linear programming is a very large one and is 
constantly updated and reviewed.  
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2.4:Mixed Integer NonLinear Programming 
 

Recently, the area of Mixed Integer Nonlinear Programming 
(MINLP) has experienced tremendous growth and a flourish of 
research activity. We will give a brief overview of past developments 
in the MINLP arena and discuss some of the future work that can 
aid the development of MINLP. 

 
 
 
 
 

 
2.4.1:Introduction 

 
   

Mixed Integer Nonlinear Programming (MINLP) refers to 
mathematical programming with continuous and discrete variables 
and nonlinearities in the objective function and constraints[12]. The 
use of MINLP is a natural approach of formulating problems where it 
is necessary to simultaneously optimize the system structure 
(discrete) and parameters (continuous). 
 MINLPs have been used in various applications, including the 
process industry and the financial, engineering, management science 
and operations research sectors. It includes problems in process flow 
sheets, portfolio selection, batch processing in chemical engineering 
(consisting of mixing, reaction, and centrifuge separation), and 
optimal design of gas or water transmission networks. Other areas of 
interest include the automobile, aircraft, and VLSI manufacturing 
areas. The needs in such diverse areas have motivated research and 
development in MINLP solver technology, particularly in algorithms 
for handling large-scale, highly combinatorial and highly nonlinear 
problems. 
     The general form of a MINLP is: 
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(2.4.1) 
 
 
The function f(x,y) is a nonlinear objective function and g(x,y) a 
nonlinear constraint function. The variables x, y are the decision 
variables, where y is required to be integer valued. X and Y are 
bounding-box-type restrictions on the variables.  

 
 
 

 

     2.4.2:Algorithms 
 

MINLP problems are precisely so difficult to solve, because they 
combine all the difficulties of both of their subclasses: the 
combinatorial nature of mixed integer programs (MIP) and the 
difficulty in solving nonconvex (and even convex) nonlinear programs 
(NLP). Because subclasses MIP and NLP are among the class of 
theoretically difficult problems (NP-complete), so it is not surprising 
that solving MINLP can be a challenging and daring venture. 
Fortunately, the component structure of MIP and NLP within MINLP 
provides a collection of natural algorithmic approaches, exploiting the 
structure of each of the subcomponents.                    
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CHAPTER 3 
 

3.1:Flight Conditions 
 

 

We consider two aircrafts sharing a confined airspace. Each aircraft 

is an autonomous vehicle that flies on a horizontal plane. 

Furthermore, each aircraft has an initial and a final, desired 

configuration (position, heading angle) and the same goal is to reach 

the final configuration in minimum time while avoiding conflicts with 

other aircraft. A conflict between two aircrafts occurs if the aircraft are 

closer than a given distance d (current enroute air traffic control rules 

often consider this distance to be 5 nautical miles). 

Aircrafts are identified by points in the plane (position) and angles 

(heading angle, direction) and thus by a point (x, y, θ) Є RxRxS¹. Let 

(x1(t),y1(t),θ1(t)) be the configuration of aircraft 1 at time t, and 

(x2(t),y2(t),θ2(t)) the configuration of aircraft 2 at the same time t. A 

conflict occurs among these aircrafts when the distance between 

them is less than d i.e. a conflict between aircraft i and j occurs if for 

some value of t, 

 

                                   (3.1) 
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In both cases each aircraft is allowed to make maneuver, at time t = 

0, to avoid all possible conflicts with other aircraft. We assume that no 

conflict occurs at time t = 0. Considering the aircraft as disks of radius 

d/2 , the condition of non-conflict between aircraft is equivalent to the 

condition of non intersection of the discs. In the following we refer to 

those as the safety disc of the aircraft.  

    

A1 A2
A3

B1

B2

B3

R
p2

p1

u1+q1

u2+q2

p'1

p'2

p'2-p2

p'1-p1

u1+q1+q'1

u2+q2+q'2

A'2

B'2

 
 

 

Figure 3.1 A comprehensive example figure about the aircraft’s 

behavior before and after conflict resolution. 
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As mentioned previously, to avoid possible conflicts we consider two 

different cases: 

 

a. we allow aircraft to change the velocity of flight but the direction of 

motion remains fixed. We will refer to this case as the Velocity 

Change Problem (VC problem). 

b. aircraft fly at the same velocity u and are only allowed to change 

instantaneously the direction of flight. We will refer to this case as the 

Heading Angle Problem (HAC problem). 

 

 

 
3.1.1:VELOCITY CHANGE 
 

We will now examine the velocity change problem in order to find 

applicable values  of the velocity of both aircrafts.  

The VC problem consists of aircraft that fly along a given fixed 

direction and can maneuver only once with a velocity variation. We 

consider two aircrafts denoted 1 and 2 respectively. The i-th (i = 1,2) 

aircraft changes its velocity of a quantity qi that can be positive 

(acceleration), negative (deceleration), or null (no velocity change). 

Each aircraft has upper and lower bounds on the velocity ui :  

 

                                                                   3.4)                                 

 

Hadjitheocharous Michael           46



CHAPTER 3                                                         Generalized Benders Decomposition 

Let (xi, yi , θi), i = 1,2, be the aircraft position and direction of motion 

and ui be the initial velocity. Referring to Figure 3.1, we consider the 

two velocity vectors: 

 

                                                                      
(3.5) 

 

and 

                                                                    
(3.6) 

 

 

       

 and the difference vector: 

 

     (3.7) 

 

 

The two lines parallel to û1-û2 that are tangent to aircraft 2, localize 

the segment on the direction on motion of aircraft 1 (refer to Figure 

3.1). We will refer to this segment as the shadow of aircraft 2 along 

the direction of 1. A conflict occurs if the aircraft 1 with his safe disc 

Hadjitheocharous Michael           47



CHAPTER 3                                                         Generalized Benders Decomposition 

intersects the shadow generated by aircraft 2, or vice-versa since û1-

û2 and û2-û1 are parallel. 

                      
 

Figure 3.2 Projection of the motion for conflict avoidance of 

two aircrafts constraints in the case of intersecting 

trajectories for the VC problem. In the case aircraft 1 do not 

intersect the shadow generated by aircraft 2 then no conflict 

will occur between the two aircraft. 

 

 

 

Consider now the two non-parallel straight lines that are tangent to 

the discs of both aircraft (see figure 3.2). Let  l12, r12  be the angles 

between these two straight lines and the horizontal axis. We have l12 

= ω12 + α and r12 = ω12 – α with α = arcsin(d / A12) where A12 is the 
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distance between the two aircraft and ω12 is the angle between the 

line that joins the aircraft and the x-axis. 

 

 

 

 

 

 

 

                                
 

 

 

Figure 3.3: The two non parallel straight lines tangent to the safety 

discs of radius d/2 for two aircrafts at distance A12 / 2. 
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From the above conditions we can say that no conflict occurs if: 

 

 

                                 (3.8) 

or 

 

                                 (3.9) 

 

 

We now distinguish two possible cases: 

 

1) (u1+q1)cos(θ1)- (u2+q2)cos(θ2)< 0   

 

                                                  and    

      

 2) (u1+q1)cos(θ1)- (u2+q2)cos(θ2)> 0   

 

 

If we let 

hi=tan(lij)cos(θi)-sin(θi),  

hj=tan(lij)cos(θj)-sin(θj), 
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ki=tan(rij)cos(θi)-sin(θi)  

and kj=tan(rij)cos(θj)-sin(θj),  

 

we obtain the following groups of constraints: 

 

 

 

 

 

Case 1) (ui+qi) cos(θi)- (uj+qj)cos(θj)< 0  
                

 

                qi cos (θi)- qj cos (θj)  - ui cos (θi)+uj cos (θj) 

                     -hi qi + hj qj  ui hi - uj hj 

 

or

     

             qi cos (θi)- qj cos (θj)  - ui cos (θi)+uj cos (θj) 

                 ki qi - kj qj  -ui ki +uj kj 

 

 

Case 2) (ui+qi) cos(θi)- (uj+qj) cos(θj)> 0  
 
 

               -qi cos (θi)+ qj cos (θj)   ui cos (θi)-uj cos (θj) 

                hi qi - hj qj  -ui hi + uj hj 
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or

     

            -qi cos (θi)+ qj cos (θj)  ui cos (θi)-uj cos (θj) 

              -ki qi + kj qj  ui ki - uj kj 

 

 

 

Now we have the or-constrains for the VC problem. We also notice 

that the above constrains are linear in the velocity variation qi, i = 1,2 

and so are the constrains for the upper and lower bounds in (3.4). 

 

 

 

 

3.1.2: HEADING ANGLE CHANGE 
 
We will now examine the heading angle deviation problem in order to 

find applicable values of the heading angles of both aircrafts.  

Consider two aircraft denoted 1 and 2, respectively, let ((xi, yi ,θi + pi), 

i= 1,2 be the 

aircraft's states after the maneuver of amplitude pi. In this section we 

show that it is possible to predict the existence of conflicts between 

the two aircraft based on those aircraft's initial configurations. 

Each aircraft can maneuver only once with an instantaneous heading 

angle deviation and then we suppose that the i-th aircraft changes its 
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heading angle of a quantity pi that can be positive (left turn), negative 

(right turn) or null (no deviation). 

The problem then is to find an admissible value of pi for each aircraft 

such that all conflicts are avoided, the new heading angle and 

direction of flight is then θi + pi. 

In this section we formulate, through geometrical construction, conflict 

avoidance constraints that are linear in the unknowns Pi,  = l,...,n. 

 

    

                     
 

 

       

Figure3.4: Case of two aircraft, if the heading angle of Aircraft 2 does 

not lie in the outlined sector of amplitude 6 then the trajectories do not 

intersect and no conflict will occur. 
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3.2.1: Non-intersecting directions of motion 
 
 Consider the case when the geometric half-lines representing the 

extrapolated trajectories of the two aircraft do not intersect. Consider 

for example Figure 1: Aircraft 1 has heading angle θ1 + p1. Assume 

the second aircraft is on the straight line forming an angle ω12 with 

the x-axis. If the heading angle (θ2 + p2) of the second aircraft doesn't 

lie in the outlined sector of amplitude δ then the half lines obtained by 

projecting forward the motion of both aircraft do not intersect. The 

condition upon such a case occurs may be expressed easily via 

some inequality constraints. Let ω12 be the angle between the line 

that joins the aircraft and the horizontal axis, we have to consider all 

the possible cases of relative position and then we need to 

distinguish the case 1(0 < ω12 < π) from the  

case 2 (-π < ω12 < 0). 

Furthermore building the constraints we obtain the quantity g1= θ1 + 

p1- ω12 and then we consider all the possible cases for g1: If g1  π or 

g1  - π we have to shift the value g1of a quantity - π or π 

respectively, so that the values that we consider lie in [-π, π], no shift 

for the case -π  g1 π is needed. Due to those possible cases we 

obtain three groups of constraints for each one of the two cases of 

ω1,2. Then the following conflict avoidance constraints, linear in p1and 

p2, have been obtained by geometric construction: 
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Just one of the two groups of constraints will be included in the model 

as or-constraint depending on the sign of ω12. In the general case of 

n aircraft, we have one of those group of or-constraints for each pair 

of aircraft (i, j), for i < j . 

 

 

 

 

 
3.2.2: Intersecting directions of motion 
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For the other cases not included in the previous section we can refer 

to figure 2, and consider two aircraft x1, y1) and (x2,y2) with heading 

angles θ1 and θ2 respectively, we consider for simplicity p1= p2 = 0, 

the general equation will be expressed in the next section. We 

compute the amplitude (θ1- θ2) of the angle formed by the intersection 

of the aircraft flight directions and the amplitude( (θ1+ θ2)/2 )  of the 

angle of his bisector (straight line b) with the x-axis . The bisector b is 

then a straight line that forms an angle ( (θ1+ θ2)/2 )  with the x-axis, 

while the orthogonal to the bisector forms an angle of  

m12 = (θ1+ θ2+ π)/2 with the x-axis. The family of straight lines of 

slope tan(m), orthogonal to the bisector represents also the projection 

of one aircraft along the direction of motion of the other i.e. the two 

straight lines in this family that are tangent to the aircraft 1 localize a 

segment on the direction on motion of 2 (refer to Figure 3.3). We 

will refer to this segment as the shadow of aircraft 1 along the 

direction of 2. A conflict occurs if the aircraft 2 with his safe disc 

intersects the shadow generated by aircraft 1 or vice-versa since the 

angle m12 is symmetric in θ1and θ2  . 

The condition of non intersection of the shadows is equivalent to the 

following two conditions: 

                                                 m12   r12 

                                                               or 

                                                 m12 l12 

with  m12 = (θ1+ θ2+ π)/2 . 
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Figure 3.5: Geometric construction for conflict avoidance 
constrains in the case of intersecting trajectories for the HAC 
problem. In this case aircraft 1intersect the shadowof aircraft 
2, then a future conflict has been detected.2  
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3.3: OVERALL APPROACH 
 
Having shown the constraints that come from the velocity 

change problem (VC) and the heading angle problem (HAC) 

we proceed by combining the results of these two methods 

in an overall approach. So, we replace in these equations 

the heading angle θi which is constant in the velocity change 

problem, with the heading angle plus the heading angle 

deviation, thus θi + pi where pi is the angle deviation of the i-

th i=1,2 aircraft from his originally scheduled flight plan. The 

final set of constrains for the two aircrafts we have discussed 

is used for simulation methods and is: 

 

 

                   

(u + q )sin(θ + p ) - (u + q )sin(θ + p )1 1 1 1 2 2 2 2

(u + q )cos(θ + p ) - (u + q )cos(θ + p )1 1 1 1 2 2 2 2
tan(l  )12

 
or  

 

                   

(u + q )sin(θ + p ) - (u + q )sin(θ + p )1 1 1 1 2 2 2 2

(u + q )cos(θ + p ) - (u + q )cos(θ + p )1 1 1 1 2 2 2 2
tan(r  )12

 
 

Further analysis of the above inequalities leads us to considering two 

cases: 
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1) (u1+q1)cos(θ1+p1)- (u2+q2) cos(θ2+p2)<0 

2) (u1+q1)cos(θ1+p1)- (u2+q2) cos(θ2+p2)>0 

 

where : u1=velocity of aircraft 1  

            u2 =velocity of aircraft 2 

            q1=velocity deviation of aircraft 1 

            q2=velocity deviation of aircraft 2 

            θ1=heading angle of aircraft 1    

            θ2=heading angle of aircraft 2       

            p1=heading angle deviation of aircraft 1 

            p2=heading angle deviation of aircraft 2 

 

We also have to set the following equalities in order to express in a 

more obvious way the final set of constraints. 

 

                                  h1=tan(l12) cos(θ1+p1)- sin(θ1+p1) 

                                  h2=tan(l12) cos(θ2+p2)- sin(θ2+p2) 

                                  κ1=tan(r12) cos(θ1+p1)- sin(θ1+p1)  

                                  κ2=tan(r12) cos(θ2+p2)- sin(θ2+p2) 

 

We are now ready to write the two cases constraints for the overall 

approach 

 

 
3.3.1 :    (u1+q1)cos(θ1+p1)- (u2+q2) cos(θ2+p2)<0  
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               cos(θ1+p1) q1- cos(θ2+p2) q2 - u1 cos(θ1+p1) + u2 cos(θ2+p2) 

                                -h1q1+h2q2 u1h1-u2h2 

 

or

     

               cos(θ1+p1) q1- cos(θ2+p2) q2 - u1 cos(θ1+p1) + u2 cos(θ2+p2) 

                                k1q1 – k2 q2  -u1 k1 +u2 k2 

 

 

3.3.2:  (u1+q1)cos(θ1+p1)- (u2+q2) cos(θ2+p2)>0 
 
 

            -cos(θ1+p1) q1+ cos(θ2+p2) q2  u1 cos(θ1+p1) - u2 cos(θ2+p2) 

                                h1q1-h2q2 -u1h1+u2h2 

 

or

     

               -cos(θ1+p1) q1+ cos(θ2+p2) q2  u1 cos(θ1+p1) - u2 cos(θ2+p2) 

                               - k1q1 +k2 q2  u1 k1 -u2 k2 
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Let us examine now the first sub case, which is the following two 

inequalities : 

         cos(θ1+p1) q1- cos(θ2+p2) q2 - u1 cos(θ1+p1) + u2 cos(θ2+p2)  (1) 

                                -h1q1+h2q2 u1h1-u2h2   (2)

 

we are aware of  

                                  h1=tan(l12) cos(θ1+p1) - sin(θ1+ p1) 

                                  h2=tan(l12) cos(θ2+ p2)- sin(θ2+ p2) 

we replace the two equations at (2) inequality 

 

(2) => - [tan(l12) cos(θ1+p1)- sin(θ1+p1)] q1 + [tan(l12) cos(θ2+ p2)- 

sin(θ2+ p2) ] q2  

             [tan(l12) cos(θ1+p1)- sin(θ1+p1)] u1  -  [tan(l12) cos(θ2+ p2)- 

sin(θ2+ p2) ] u2  

 

=> - q1 tan(l12) cos(θ1+p1) + q1 sin(θ1+p1) + q2 tan(l12) cos(θ2+ p2) - 

q2 sin(θ2+ p2)  

      u1 tan(l12) cos(θ1+p1) - u1 sin(θ1+p1) - u2 tan(l12) cos(θ2+ p2) + u2 

sin(θ2+ p2) 

 

 q1 sin(θ1+p1) + u1 sin(θ1+p1) - q2 sin(θ2+ p2) - u2 sin(θ2+ p2)  

      u1 tan(l12) cos(θ1+p1) + q1 tan(l12) cos(θ1+p1) - u2 tan(l12) 

cos(θ2+ p2) - q2 tan(l12) cos(θ2+ p2) 

 

 

 (u1 + q1) sin(θ1+p1) -(u2 + q2) sin(θ2+p2)  

      tan(l12) [(u1 + q1) cos(θ1+p1) -(u2 + q2) cos(θ2+ p2)] 
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It is obvious that we conclude again at the first inequality we used 

for the overall approach. Similarly we work for the other three pairs 

of inequalities to end up at the same assumption as before. In this 

way we actually managed to define the constraints we will use for 

our cost function, the metric we are going to optimize, which is 

going to be presented at the consecution. Gazing through the ATC 

literature[2-10], we considered that one suitable function would be 

that of the sum of the absolute prices of both aircraft’s velocity and 

heading angle deviations. More specifically this function would be 

of the form:     
                        f(x)=|x1| +| x2|+| x3|+| x4| 
With this property, we are giving our optimization software 

a further assistance towards optimization. 

In conclusion, we note that our problem as it has been transformed 

is now a non-linear problem, soon to be transformed in a mixed-

integer non-linear problem in the later section. As a logical result 

we will have to expect larger executional times and slower 

performance than before, which may have an impact in real time 

situations, but we have to consider that our approach is much 

more realistic than before since we allow both velocity and heading 

angle deviations. 

 

 

3.4: Mixed integer non-linear optimization 
 

3.4.1: Overview of MINLP Algorithms 

Hadjitheocharous Michael           62



CHAPTER 3                                                         Generalized Benders Decomposition 

 
 
1. Generalized Benders Decomposition 

 
In the pioneering work of Geoffrion on the Generalized Benders 

Decomposition GBD two sequences of updated upper 

(nonincreasing) and lower (nondecreasing) bounds are created that 

converge in a finite number of iterations. The upper  bounds 

correspond to solving subproblems in the x variables by fixing the y 

variables, while the lower bounds are based on duality theory. 

 

2.   Branch and Bound 

 

The Branch and Bound BB approaches start by solving the 

continuous relaxation of  the MINLP and subsequently perform an 

implicit enumeration where a subset of the 0-1 variables is fixed at 

each node. 

 

3.   Outer Approximation 
 
The Outer Approximation OA addresses problems with nonlinear 

inequalities and creates sequences of upper and lower bounds as the 

GBD , but it has the distinct feature of using primal information. 

 

4. Feasibility Approach 
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The feasibility approach FA rounds the relaxed NLP solution to an 

integer solution with the least local degradation by successively 

forcing the superbasic variables to become nonbasic . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 3.4.2: Problem formulation 
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We are now faced with a non-linear optimization problem awaiting to 

be solved with efficiency and a relative speed in computational time. 

Every optimization package requires that the constraints used must 

be of the form of and-constraints which means that they have to be 

satisfied simultaneously.  

 

 

3.4.3: Writing or-constraints as mixed-integer programming   
constraints 
 

 

Consider now an example of or-groups of constraints similar to the 

conflict avoidance constraints described earlier : 

 

 

                                   C1   0  

                                   and 

                                   C2  0 

 

or 

                                     C3  0 

                                      and 

                                     C4  0

or 

                                     C5  0 

                                      and 
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                                     C6  0 

or 

                                     C7  0 

                                      and 

                                     C8  0 

 

where the terms Ci, i = 1,...,7 are non-linear expressions in the 

decision variables (heading angle and velocity change deviations). 

The way to transform these or-constraint into more convenient and-

constraint is to introduce Boolean variables. Let yk with k = 1,2,3, be a 

binary number that takes value 1 when one of the or-constraint is 

active and zero otherwise. For example 

y1 = 1 if constraints C1and C2 are active y1= 0 otherwise. Let M be a 

large arbitrary number, then the previous set of constraint is 

equivalent to 

 

                                                 C1-M y1  0 

                                                 C2-M y1  0 

                                                 C3-M y2  0 

                                                 C4-M y2  0 

                                                 C5-M y3  0 

                                                 C6-M y3  0 

                                                 C7-M y4  0 

                                                 C8-M y4  0 

                                                 y1+ y2+ y3+ y4  2 
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The last constraint indicates that at least one of the four groups of 

and-constraints must be verified. 

 

So the final inequality constraints for our problem have the following 

form( function g(x,y) ) 

g1(x,y)=(u1+x1) cos(θ1+x2) - (u2+x3) cos(θ2+x4) –My1  

g2(x,y)=-h1(x1+u1) + h2 (u2+x3) –My1 

g3(x,y)=(u1+x1) cos(θ1+x2) - (u2+x3) cos(θ2+x4) –My2

g4(x,y)=k1(x1+u1) –k2 (u2+x3) –My2

g5(x,y)=-(u1+x1) cos(θ1+x2) +(u2+x3) cos(θ2+x4) –My3

g6(x,y)= h1(x1+u1) - h2 (u2+x3) –My3

g7(x,y)=-(u1+x1) cos(θ1+x2) +(u2+x3) cos(θ2+x4) –My4

g8(x,y)=-k1(x1+u1) +k2 (u2+x3) –My4 

g9(x,y)=y1+y2+y3+y4 2
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Mathematical Description  

 

The general MINLP formulation for our problem can be stated as 

 

                                         Min  f(x,y) 

                                          x, y    

                                                                      h(x,y)=0 

                                             g(x,y) 0 

                                                      x X Rn 

                                                                    y Y={0,1}q 

 

 

 In our case we must notice that we have no equality constraints 

so the case of constraints  h(x,y)=0 does not exist. 

Our cost function as we mentioned before is the following one: 

                              

                               f(x)=|x1| +| x2|+| x3|+| x4| 
 
where                       x1= q1=velocity deviation of aircraft 1 

                                 x2= p1=heading angle deviation of aircraft 1 

                                 x3= q2=velocity deviation of aircraft 2 

                                 x4= p2=heading angle deviation of aircraft 2 

and  

                                 x R+
0 x{ [0,2π]} x R+

0 x{ [0,2π]} 
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We must also define the values of n and q for x set and y set which 

are n=4 and q=4 as it is obvious from the binary usage of y. 

We are now ready to fulfill the three conditions of Generalized 

Bender’s Decomposition in order to be able to use this method for 

obtaining the desired goal. 

 

Condition 1 

From the observation of set X we used ( x R+
0 x{ [0,2π]} x R+

0 x{ 

[0,2π]} ) it is obvious that the specific set of values x for our cost 

function is non empty and also its is  convex(Appendix)  

In order to prove the convexity of our cost function we will use directly 

the definition for a convex function. 

 

Definition (convex function)  Let S be a convex subset or Rn and f(x) be a 

real valued function defined on S. The function f(x) is said to be convex if for any 

x1
 , x2

  S and 0 λ 1 we have  

                              f[(1-λ) x1+λ x2] (1-λ)f(x1)+λ f(x2) 

This inequality is called Jensen’s Inequality. 

 

 

Our cost function have the following form 

                                    f(x)=|x1| +| x2|+| x3|+| x4|    
We need to prove that 

                            f[(1-λ) x1+λ x2] (1-λ)f(x1)+λ f(x2)     (1) 
 
f[(1-λ) x1+λ x2]=|(1-λ)x11+λx12|+|(1-λ)x21+λx22|+|(1-λ)x31+λx32|+ 

|(1-λ)x41+λx42|                                                              (2) 
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We are going now to analyze the second part of   (1) inequality  

 

                           f(x1)=|x11|+|x21|+|x31|+|x41| 

and                     f(x2)=|x12|+|x22|+|x32|+|x42| 

 

So if we use the equalities we just deployed to the second part of   (1) 
inequality we have the following results 

 

(1-λ)f(x1)+λ f(x2)=(1-λ)[|x11|+|x21|+|x31|+|x41| ] + λ [|x12|+|x22|+|x32|+|x42| ] 

= (1-λ) |x11| + λ [|x12|+ (1-λ) |x21| + λ |x22|+ (1-λ) |x31| + λ |x32| +          

(1-λ) |x41| + λ |x42| 

We separately examine now the above equation using each one of 

the four underlined parts. 

It is of common knowledge that |x+y|  |x| + |y| 

So we come to the following conclusions 

 

|(1-λ)x11+λx12|  (1-λ)[|x11|+λ|x12|                             and  

 

|(1-λ)x21+λx22| (1-λ)[|x21|+λ|x22|                              and 

 

|(1-λ)x31+λx32| (1-λ)[|x31|+λ|x32|                              and 

 

|(1-λ)x41+λx42|  (1-λ)[|x41|+λ|x42|   
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Summarizing the previous four inequalities we reach at the following 

inequality 

 

|(1-λ)x11+λx12|+|(1-λ)x21+λx22|+|(1-λ)x31+λx32|+ |(1-λ)x41+λx42|     

(1-λ) |x11| + λ |x12|+ (1-λ) |x21| + λ |x22|+ (1-λ) |x31| + λ |x32| +   (1-λ) |x41| 

+ λ |x42|                  

 f[(1-λ) x1+λ x2] (1-λ)f(x1)+λ f(x2)  

So , our cost function qualifies Jensen’s Inequality which means that 

f(x,y) is convex function. 

In our case we do not have equality constraints [ h(x,y)] so we will 

automatically examine the inequality constraints . 

 

g(x,y) has the following form g:R4XR4 ->R9

 

 

                                 
We must notice here that because of the form of g(x,y) it was quite 

difficult to find the proof for the convexity of the specific function.We 

tride to use Jensen’s Inequality but we could not make it work for this 
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kind of a function. The second effort was with Hessian matrices but 

the result was the same as before, inadequate results. 

So we come to a more “simple” method. We analyzed each part of 

g(x,y) separately. We noticed that g1(x,y) , g3(x,y)  , g5(x,y)  , g7(x,y) 

are graphically presented in the 2-dimension level with cosines while   

 g2(x,y) , g4(x,y)  , g6(x,y)  , g8(x,y)  are presented with tangents. We 

analyzed more the tangents so we obviously concluded to combine 

the graphs of cosine and sine in order to find the convexity of g(x,y) 

and as its is shown in the graphs below, which shows that g(x,y) is 

convex when x [π,3/2 π] 
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We now check all possible angles , starting from [0, 3π/2] , and 

continuing with [π,2π] .These are the angles aircraft enter the alert 

sphere.We observe that at the closed interval [0, π/2] the cosine and 

the sine are of concave form. This prevents us from using the 

Bender’s Decomposition method in order to achieve a local or even a 

global minimum for our cost function f(x, y). The linear combination of 

a cosine function and a sine function at the closed interval [0, π/2] 

has approximately the following form : 

                                                                                                                                       

                                   
The plotting of our cost function in the graph above, is shown below 

 

                                                

Due to the fact that g(x) 0 we may find an global minimum for our 

cost function in the shaded interval shown below: 
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This graph is made for one of the four independent of the cost 

function . Considering x [0,π/2] and using all four variables we get a 

4-D cone ,open from above and it’s boundaries around zero are 

included in it , since it is closed. 

                            
Because of the closedness property the minimum for the cost 

function is attendable. 
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The same assumptions hold for the other two intervals [ π/2,π] and       

[ 3π/2, 2π] .We also observe that there is no convexity on the 

inequality constraints, but it is easily shown that the existence of 

closed sets and the form of our cost function (cone) guarantees 

minimum attainability. 

Before starting with the proof of the second condition we add that all 

the convexity conditions were taken under the assumption that y Y= 

{0,1}4 and the values of the boolean variable y are fixed . 
 

 

                         

 

 

 

 

 

 

 

    Condition 2 
 
The set Zy={z R4:g(x,y) z for some x X } is closed for each 

fixed y Y. In other words we must prove that there is a set Zy 

such that its values are actually the upper bounds of convex 

function g(x,y) for some x X when we take consideration of fixed 

y Y. We must notice here that the second condition for the 

Generalized Bender’s Decomposition is not stringent. It can be 

satisfied also if we satisfy the two following conditions: 

Hadjitheocharous Michael           75



CHAPTER 3                                                         Generalized Benders Decomposition 

i. x is bounded and closed which is shown before in order to 

prove the convexity of g(x,y), we had to choose a bounded 

and closed set of values for x 

ii. g(x,y) is continuous on x for each fixed y Y which is also a 

fact if we consider that we already have proved that g(x,y) is 

convex and from the same diagram is obvious that it is also 

continuous 

 

 

 
 
 
 
 
 
 
 
Condition  3 
 

For eached fixed y Y  V where  

                        V={y:g(x,y) 0 for some x X} 

one of the two following conditions hold: 

i. our problem has a finite solution and has an optimal 

multiplier vector for the equalities and inequalities  

ii. our problem is unbounded that is , its objective function 

value goes to –00 

 

Hadjitheocharous Michael           76



CHAPTER 3                                                         Generalized Benders Decomposition 

We must notice here that the specific condition is satisfied if a first-

order constraint qualification holds for our problem after fixing  

y Y  V. 

We choose to satisfy the Slater first-order Constraint.  

 

Slater Constraint Qualification 

The constraints gj( ) for j J are pseudo-convex at .The constraints hi( ) 

for i=1,2,... , m are quasi-convex and quasi-concave. The gradients  hi( ) 

for i=1,2,... , m are linearly independent . 

 

In order to satisfy this constraint we actually have to prove that gj(x) 

for j J is pseudo-convex cause we have no equality constraints in 

our problem. The proof is easy cause we have shown in condition 1 
that g(x) is already convex so its is commonly known that it is 

pseudo-convex. 
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3.5:PROCEDURE OF MINIMIZATION  
 

 
3.5.1: Basic Idea 
 
 The basic idea in Generalized Benders Decomposition GBD is the 

generation, at each iteration, of an upper bound and a lower bound 

on the sought solution of the MINLP model. The upper bound results 

from the primal problem, while the lower bound results from the 

master problem. The primal problem corresponds to initial problem 

with fixed  

y-variables (i.e., it is in the x-space only), and its solution provides 

information about the upper bound and the Lagrange multipliers 

associated with the equality and the inequality constraints. The 

master problem is derived via nonlinear duality theory, makes use of 

the Lagrange multipliers obtained in the primal problem, and its 

solution provides information about the lower bound, as well as the 

next set of fixed y-variables to be used subsequently in the primal 

problem. As the iterations proceed, it is shown that the sequence of 

updated upper bounds is nonincreasing, the sequence of lower 

bounds is nondecreasing and that the sequences converge in a finite 

number of iterations. 
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3.5.2:Theoretical Development 
 

This section presents the theoretical development of the Generalized 

Benders Decomposition GBD. The primal problem is analyzed first 

for the feasible and infeasible cases. Subsequently, the theoretical 

analysis for the derivation of the master problem is presented. 

 

3.5.2.1:The Primal Problem 
 

The primal problem results from fixing the y-variables to a particular 

0-1 combination, which we denote as yk  where k stands for the 

iteration counter. The formulation of the primal problem P(yk ), at 

iteration k is  

 

                                        Min  f(x,yk)   
x                                                                                    

                                                                           s.t   h(x,yk )=0 

                                                       g(x,yk ) 0  

                                                          x X Rn

 

      

Remark 1   Note that due to conditions C1 and C3(i), the solution of 

the primal problem P(yk) is its global solution. 

 

We will distinguish the two cases of (i) feasible primal, and (ii) 

infeasible primal, and describe the analysis for each case separately. 
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Case (i): Feasible Primal 
 
If the primal problem at iteration k is feasible, then its solution 

provides information on xk , f(xk, yk), which is the upper bound, and the 

optimal multiplier vectors λk , µk for the equality and the inequality 

constraints. Subsequently, using this information we can formulate 

the Lagrange function as 

 

                  L(x,y, λk, µk)=f(x,y) +λkT h(x,y)+ µkT g(x,y)     

 

In our case we do have any equality constraints so the Lagrange 

function is  

 

                                    L(x,y, λk, µk)=f(x,y) + µkT g(x,y)     

 

 

Case (ii): Infeasible Primal 
 

If the primal is detected by the NLP solver to be infeasible, then we 

consider its constraints 

 

                                            g(x,yk ) 0  

                                             x X Rn 

 

where the set X, for instance, consists of lower and upper bounds on 

the x variables. 
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To identify a feasible point we can minimize an L1  or L  sum of 

constraint violations. 

 

L1-minimization  
 
L1-minimization can be formulated as  

 

                             Min    Σ p
 ai 

                                                                    
i=1               

                                                                    s.t       g(x,yk )  ai  ,  i=1,2,…p 

                                                            ai 0   , i=1,2,…p 

 

Note that if  Σ p
 i=1     ai =0, then a feasible point has been determined. 

 

Also note that by defining as   

 

                                              a+  =max(0,a)  and 

                                              g+
i ( x,yk)=max[0, gi ( x,yk)] 

 

the L1-minimization problem is stated as  

 

                                                  Min    Σ p
 g+

I 

                                                                                           
i=1         

 

 

Similarly   we have the    L -minimization problem 
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                                            Min    max  g+
i ( x,yk) 

                                            x  X   1,2,..p       

                                                               

                                            

 
3.5.2.2:The Master Problem 
 
The derivation of the master problem in the GBD makes use of 

nonlinear duality theory and is characterized by the following three 

key ideas: 

 

i. Projection of problem(2.4.1)onto the y-space; 

ii. Dual representation of V; 

iii. Dual representation of the projection of problem (2.4.1)on the 

y-space; 

 

In the sequel, the theoretical analysis involved in these three key 

ideas is presented. 

 

i. Projection onto the y-space 
 
Problem (2.4.1)can be written as  

 

                             miny  infx  f(x,y) 

                                                  

                                      s.t g(x,y ) 0  

                                              x  X    
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                                              y  Y={0,1}4 

 

where the min operator has been written separately for x and y. Note 

that it is infimum with respect to x since for given y the inner problem 

may be unbounded.Let us define u(y) as 

                                              

                                                    u(y)=infx  f(x,y) 

                                                             s.t g(x,y ) 0  

                                                                     x  X    

We need also to define the set V as 

                                                        

                                                V={y:g(x,y) 0 for some  x  X   }  

 

     

 

ii.  Dual Representation of  V 
 
 
The dual representation of V will be invoked in terms of the 

intersection of a collection of regions that contain it , and its is 

described in the following theorem of Geoffrion. 

Assuming conditions C1 AND C2    a point     y  Y belongs also to the 

set V if and only if it satisfies the system:  

 

                                      Inf L’(x,y,λ’,µ’)  ,  λ’,µ’ Λ 

 

                                       Λ={λ’ Rm ,  µ’  Rp : µ’ 0  , Σp µ’=1    }  
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                                                                                          i=1   

 

 

iii. Dual Representation of  u(y) 

 

 

The dual representation of u(y) will be in terms of the point wise 

infimum of a collection of functions that support it and it is described 

in the following theorem. 

 

u(y)= infx  f(x,y) 

                 s.t g(x,y ) 0  =[ sup       inf  L(x,y,λ,µ)] ,  y  Y  V 

                      x  X             λ,µ 0    x X 

 

 

where L(x,y,λ,µ)=f(x,y)+µT g(x,y) 

 

Remark : Note that the master problem is equivalent to (2.4.1).It 

involves however , an infinite number of constraints , and hence we 

will need to consider a relaxation of the master (e.g., by dropping a 

number of constraints) which will represent a lower bound on the 

original problem. Note also that the master problem features an outer 

optimization problem with respect to y  Y and inner optimization 

problems with respect to x which are in fact parametric in y.It is this 

outer-inner nature that makes the solution of even a relaxed master 

problem difficult. 
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3.6:Code Development using GAMS 
 
 
Following the above steps we give an example of the procedure 

using given initial parameters .The form of pseudocode we will use is 

given below: 

 

The Benders’ Decomposition algorithm can be stated as: 

{initialization} 

y := initial feasible integer solution 

LB := -   UB :=  

while UB - LB >  do 

{solve subproblem} 

 minu{fT y’ + (b – By’)T u|AT u  c, u 0} 

 if Unbounded then 

Get unbounded ray u 

Add cut (b - By)T u _ 0 to master problem 

else 

Get extreme point u 

Add cut z _ fT y + (b - By)T u to master problem 

UB := min{UB, fT y + (b - By)T u} end if 

{solve master problem} miny{z|cuts, y 2 Y } LB := z 

end while 

 

The subproblem is a dual LP problem, and the master problem is a 
pure IP problem (no continuous variables are involved). Benders’ 
Decomposition for MIP is of special interest when the Benders’ 
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subproblem and the relaxed master problem are easy to solve, while 
the original problem is not. 
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3.7:Simulation and Results 
 
The methodology that we use in our code is the one as it is given 

before, we actually use a lower and an upper bound for each one of 

the four variables    x1= q1=velocity deviation of aircraft 1 

                                x2= p1=heading angle deviation of aircraft 1 

                                x3= q2=velocity deviation of aircraft 2 

                                x4= p2=heading angle deviation of aircraft 2 

and we calcutate in how many iterations our method GBD can 

approximate the desired value. We must notice that the desired 

values are already known from previous researches on the subject of 

air traffic management and are taken as granted. 
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x1= q1=velocity deviation of aircraft 1 
 
The desired value is granted and it is  x1= q1= 0.210 

 

Table 3. 6:Velocity deviation of aircraft 1. 

Lower bound Upper bound Iterations 

0.190 0.230 1 

0.192 0.230 2 

0.193 0.228 3 

0.195 0.225 4 

0.196 0.224 5 

0.199 0.219 6 

0.204 0.218 7 

0.204 0.215 8 

0.207 0.211 9 

0.209 0.210 10 

0.209 0.210 11 

 
 

We notice that we reach the desired goal in eleven iterations. 
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 x2= p1=heading angle deviation of aircraft 1 
 

The desired value is granted and it is  x2= p1= 0.071 

 

Table 3. 7:Heading angle deviation of aircraft 1. 

Lower bound Upper bound Iterations 

0.060 0.080 1 

0.060 0.080 2 

0.062 0.079 3 

0.063 0.077 4 

0.065 0.76 5 

0.067 0.073 6 

0.069 0.071 7 

0.070 0.071 8 

0.071 0.071 9 
 

 

We notice that we reach the desired goal in nine iterations. 
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x3= q2=velocity deviation of aircraft 2 
 
The desired value is granted and it is  x3= q2= 0.126 

Table 3. 8:Velocity deviation of aircraft 2. 

Lower bound Upper bound Iterations 

0.110 0.140 1 

0.113 0.139 2 

0.114 0.136 3 

0.115 0.134 4 

0.115 0.133 5 

0.117 0.131 6 

0.117 0.130 7 

0.118 0.129 8 

0.121 0.128 9 

0.122 0.127 10 

0.124 0.126 11 

0.125 0.126 12 

 
 
We notice that we reach the desired goal in twelve iterations. 
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x4= p2=heading angle deviation of aircraft 2 
 
The desired value is granted and it is  x4= p2= 0.096 

Table 3. 9:Heading angle deviation of aircraft 2. 

Lower bound Upper bound Iterations 

0.080 0.110 1 

0.081 0.108 2 

0.083 0.106 3 

0.083 0.103 4 

0.084 0.101 5 

0.087 0.100 6 

0.090 0.099 7 

0.094 0.097 8 

0.095 0.096 9 

0.096 0.096 10 
 

 
We notice that we reach the desired goal in ten iterations. 
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3.7.1:Conclusion 
 
We conclude the previous results of the four variables we use in our 

cost function  

 

Table 3. 10: Results of the four variables. 

variables iterations goal 
x1= q1=velocity deviation 

of aircraft 1 

 

11 Achieved (nearly)

X2= p1=heading angle 

deviation of aircraft 1 

 

9 Achieved 

X3= q2=velocity deviation 

of aircraft 2 
12 Achieved (nearly)

x4= p2=heading angle 

deviation of aircraft 2 

 

10 Achieved 

 
As we can notice the iterations required for achieving the desired goal 

are ranged between 9-12 which is a standard range for calculations 

of optimization using methods such as Generalized Bender’s 

Decomposition but also Outer Approximation which is the most 

common method that is used for solving optimization problems. The  
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calculation time was for x1 586 secs at a Pentium 333 Mhz which is 

an important amount of time considering the amount of data the 

processor had to deal with.  

Fortunately the convexity of the inequalities (constraints ) provided us 

with excellent quality for the lower bounds .Also it gave us the 

capability of fastening the pase at the first part of Bender’s 

Decomposition (primal problem) in order to achieve the bounds we 

have set. 
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Appendix A  
 

Program description and software codes 
 
As noted earlier, the algorithm has been implemented in the GAMS 
software package which is a very useful tool for solving large 
mathematical programming problems, especially in the areas of 
function optimizing and compact representation of large and complex 
models. For our case, the software codes are presented for each 
case and explanatory comments follow to help the reader 
comprehend their structure. We will comment only on the first code 
(x1= q1=velocity deviation of aircraft 1) since the rest of the codes use 
a very similar approach and only the shines of cosines and sines  and 
some other minor details are different. 
 
Gams  Code for velocity deviation of aircraft 1 
 
Set i ”aircraft” /1* 2/; 
alias (i,j); 
Parameters pi,msd,M,omega(i,j),alpha(i,j),l(i,j),r(i,j); 
Parameters radius, distance; 
*Radius of the control volume distance of the final configuration point 
from 
the cross-symmetric point of entry 
radius=108; distance=108; pi=3.14159; 
Parameters count(i) / 1 1 2 2 /; 
*X-coordinates in Km 
Parameters x(i) / 1 108 2 54 /; 
*Y-coordinates in Km 
Parameters y(i) / 1 0 2 93.531 3 -9/; 
*Initial heading angles in rads 
Parameters theta(i) / 1 3.141 2 -1.047 3 1.047 /; 
*Initial velocities in Km/min 
Parameters u(i) / 1 15 2 15 /; 
*minimum safe distance in Km 
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msd=5.4; 
*Big M 
M=50; 
*Consider only pairs (i,j) where i6=j. This avoids including the same 
pair 
twice, i.e. we include pair (1,2) but not (2,1) 
omega(i,j) $ (count(i)<count(j) and x(i)=x(j))=pi/2; 
omega(i,j) $ (count(i)<count(j) and x(i)6=x(j) )=arctan((y(i)-y(j))/(x(i)-
x(j))); 
alpha(i,j) $ (count(i)<count(j)) = sqrt((x(i)-x(j))*(x(i)-x(j))+(y(i)-y(j))*(y(i)- 
y(j))); 
l(i,j) $ (count(i)<count(j)) = omega(i,j)+ 
abs(arctan((msd/alpha(i,j))/(sqrt(1- 
(msd/alpha(i,j))**2)))); 
r(i,j) $ (count(i)<count(j)) = omega(i,j)- 
abs(arctan((msd/alpha(i,j))/(sqrt(1- 
(msd/alpha(i,j))**2)))) ; 
Variable t,q(i),qdot(i),p(i),phi(i),d(i ), u(i); 
Binary variable B1(i),B2(i),B3(i); 
Lb = - 00 

Up= + 00 

while UB - LB > 0.520 do 

*solve subproblem 

minimize ( cos (qi)alpha(i,j)-cos (qj) alpha(i,j)) 

u(i)=0 ; 

minimize ( cos (qi)alpha(i,j)-cos (qj) alpha(i,j)/sin (qi)alpha(i,j)- sin (qj) 

alpha(i,j)); 

u(i)<0;  

Equations 
auxiliary(i),delay(i),time,velocity1(i),velocity2(i),velocity3(i),angle1(i), 
angle2(i), A1(i,j),A2(i,j),A3(i,j),A4(i,j),A5(i,j),A6(i,j); 
p.l(i)=0.01; phi.l(i)=0.01; 
time.. t=e=sum(i,d(i)); 
auxiliary(i).. phi(i)=e=arctan( (radius*sin(2*p(i))) / (distance+2*radius* 
(sin(p(i)))*(sin(p(i)))) ); 
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delay(i).. d(i)=e=abs( (2*radius+distance)/u(i) - 
(2*radius*abs(cos(p(i))))/ 
(u(i)+q(i)) - ((radius*abs(sin(2*p(i)))) / abs(sin(phi(i)))) / 
(u(i)+q(i)+qdot(i)) 
); 
velocity1(i).. q(i)=l=15.66-u(i); 
velocity2(i).. -q(i)=l=u(i)-14.4; 
A1(i,j).. ((u(i)+q(i))*cos(theta(i)+p(i))-(u(j)+q(j))*cos(theta(j)+p(j))-
M*B1(i)) 
$ (count(i)<count(j))=l=0; 
A2(i,j).. ((u(i)+q(i))*sin(theta(i)+p(i))-(u(i)+q(i))*cos(theta(i)+p(i))* 
sin(l(i,j))/cos(l(i,j))-(u(j)+q(j))*sin(theta(j)+p(j)) 
+(u(j)+q(j))*cos(theta(j)+p(j))* 
sin(l(i,j))/cos(l(i,j))-M*B2(i)-M*B1(i)) $ (count(i)<count(j))=l=0; 
then 
Ub= (min,*); 

min (((u(i)+q(i))*cos(theta(i)+p(i))(u(j)+q(j))*cos(theta(j)+p(j))-
M*B1(i))+ ((u(i)+q(i))*sin(theta(i)+p(i))-(u(i)+q(i))*cos(theta(i)+p(i))* 
sin(l(i,j))/cos(l(i,j))-(u(j)+q(j))*sin(theta(j)+p(j)) 
+(u(j)+q(j))*cos(theta(j)+p(j))) 
else 
z(i,j)..z(i,j)=tang(15.66-u(i))-tang(u(i)-14.4); 
Lb=z(i,i)-z(j,j); 
Model nlc /all/ ; option domlim=10; 
option nlp=conopt2; 
option mip=cplex; 
option rminlp=conopt2; 
option minlp=dicopt; 
solve nlc using rminlp minimizing t; 
solve nlc using minlp minimizing t; display omega,l,alpha,r; 
 
 

 
 
 
Though there are some helpful comments contained in the software 
code, we will now briefly analyze it and see how it behaves. First of 
all, we define the number of aircraft (in our case, 2) with the 
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command set and we also define an alias for this set which is 
generally useful in models that are concerned with the 
interactions of elements within the same set. 
Next, we proceed to define the various parameters: the maximum 
safe distance for collision avoidance (msd), the big M for the MINLP 
problem formulation as well as the other parameters used in the VC 
and HAC model, exactly as described in the corresponding sections. 
We also define the constantparameters of circle radius and distance 
of final configuration point from exit point. 
Next we define the value of the upper bound of our cost function and 
we solve the subproblem.  
After some values are set for the initial configuration of the aircraft (x-
y coordinates, heading angles and velocities), we calculate the 
necessary variables, namely, the !ij ;Aij ; lij and rij for each pair of 
aircraft (i; j). Note the $ operator which is a conditional operator in 
GAMS. The term $(condition) can be read as ”such that condition is 
valid” where condition is a logical condition.  
We valuate the lower bound in case the cut of the upper bound is not 
feasible for the first part of the code. 
Finally, we define and formulate the necessary MINLP constraints 
and inequalities (which GAMS refers to with the general term 
equations). Analytically, time refers to the total summing of the delays 
for each aircraft, delay calculates the delay itself velocity1-velocity3 
and angle1-angle2 impose some bounds on the velocities and 
heading angles, while A1-A6 are the main constraints. The program 
concludes with thecommands that select the various solvers for the 
model. In our case, we firstly solve a relaxed version of the MINLP 
problem, in which the integer restrictions for variables B1-B3 do not 
apply. This allows the program to converge quickly around a small set 
of feasible solutions and then, after imposing the integer condition, to 
find more easily the desired values. 
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