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Abstract

In this study the development of a methodology for the numerical solution of steady-state compressible
fluid flow and radiative heat transfer problems is reported. For the discretization of the computational
domains, three-dimensional unstructured hybrid grids with tetrahedral, prismatic and pyramidical
elements are employed along with a node-centered finite-volume scheme. Flow modelling is achieved via
the Reynolds-Averaged Navier-Stokes (RANS) equations, along with appropriate two-equation
turbulence models, namely, k-¢ (in three versions), k-w and SST. For the computation of the inviscid
fluxes an upwind method, applying Roe's approximate Riemann solver, is implemented, together with a
higher-order accurate spatial scheme, while for the viscous ones the required gradients are evaluated with
an element-based (edge-dual volume) or a nodal-averaging approach. The time advancement of the
aforementioned equations is achieved with either an explicit scheme, applying a second-order temporal
accurate four-stage Runge-Kutta (RK(4)) method, or an implicit one, implementing the Jacobi or the
Gauss-Seidel algorithm. For the modelling of radiative heat transfer in general enclosures through
absorbing, emitting, and either isotropically or anisotropically scattering gray media, the time-dependent
or steady (non time-dependent) Radiative Transfer Equation (RTE) is employed. Similarly to fluid flow, a
second-order accurate spatial scheme along with appropriate slope limiters is applied to increase accuracy
of the solution, especially at the boundary regions, while time integration is obtained with simple iterative
approximations or the same to flow model explicit scheme. In order to increase the efficiency of the
proposed methodology additional acceleration techniques are used, namely, an edge-based data structure,
a parallelization strategy based on the domain decomposition approach and MPI library functions, and an
agglomeration multigrid method employed in isotropic or directional formulation for the flow solver and
in spatial, angular or nested spatial/angular one for radiative heat transfer algorithm. Finally, the h-
refinement technique is incorporated to increase accuracy at pre-selected regions of the examined grid, by
enriching them with more nodes during the solution procedure; as a result, the generation of dense meshes
from the very beginning is avoided. Based on the aforementioned methods, an academic CFD code,
named Galatea, was developed; it has been validated against three- and quasi-three-dimensional
benchmark test cases presented in the open literature, while its results have been compared with wind
tunnel experimental data as well as results obtained by reference numerical solutions, confirming its
capability to effectively perform such simulations in terms of accuracy, geometric flexibility and
computational efficiency.

Keywords: Compressible flow, RANS equations, turbulence modelling, radiative heat transfer, three-
dimensional unstructured hybrid grids, node-centered finite-volume scheme, parallel processing,
agglomeration multigrid method, FAS, FMG, h-refinement.



Iepiinyn
(Extended Abstract in Greek)

YKomog TG mapovoag Awdaktopikig AwaTping ntav n avantuén pebodoroyiag yio v aptOuntiky
eMiAVOT TPOPANUATOV LOVIUNG POTG CVUTIEGTOD PEVGTOV KOl HETAO00NG DEpUOTNTOC LEGH aKTIVOPoAiag.
H vrdyn pébodog dvvartal va ypnoipomombei e éva eupd PAGHO EPAPUOYDOV TOCO GE OKOIUATKO OGO
Kal o€ Bropnyoviko eninedo, m.y., 6€ BoAdpovg Kavong, Propumyovikods poHpvove, ECMTEPIKN 1 EEMTEPIKN
0.EPOOVVAIKT POT|, KIVTAPES TOTTOV ramjet, K.AT.

Mo ovykekpéva, ovamtdyOnke pebodoroyio TOTOVL YPOVOTPOEAUONG YO TNV TPOGOUOIMON
atpifoldc KOl GUVEKTIKNAG OTPOTG N TupPddovg uoéviung ovumieomc pong. H dwokpiromoinon twv
eflomoemv Navier-Stokes emi Tp1od1AGTATOV TETPOEIPIKAOV T} VPPOIKAOV UN-O0UNUEVOV VTOAOYICTIKOV
TAEYUATOV emTLYYdveTal pe TNV kevipokouPikn péBodo memepaocuévaov dykwv (FVM/Finite Volume
Method). T v povtedomoinon tupPmdovg pong epapuoloviar ot kotd Reynolds oloxinpopéveg
eflomoelg Navier-Stokes (RANS/Reynolds-Averaged Navier-Stokes), ypnowomoidvtog v vmoddeon
Boussinesq kot emakdiovBa tov 0po G TVpPDIOVE GUVEKTIKOTNTAG, YO TOV LVTOAOYIGUO TNG omoiag
ocuopmepNeOnKay Tpia dapopetikd povtéra TopPng, To k-¢, To k- kou to SST (Shear Stress Transport).
Mo Vv eKTipnon 1oV pn-cuVEKTIK®Y OOVLUGUATOV POoNG EPOPUOlETOL O TPOCEYYIGTIKOG EMAVTNG TOV
Roe, Oswpdvtag éva tomikd povodidotato mpoPAnue Riemann otn S1€maQn TOV YEITOVIKOV OYK®V
eréyyov. AvEnom g akpifelog Tov TPoavaPepHBEVTOG VTOAOYIGHOD EMTVYXAVETOL UE TNV EQAPLOYN
oYNUATOC deVTEPNG TAENG YWPIKNG axpifelag, Paciopuévouv oty teyviky MUSCL (Monotonic Upwind
Scheme for Conservation Laws). To ev A0y® oyfuo cuvovaletat ue KATAAANAT GUVAPTNON TEPLOPICHOD
(Van Albada-Van Leer, Min-mod 7 Barth-Jespersen) mpoxeiévoo va diac@aiiotel n povotovia peta&d
TOV TIHOV TOV PETUPANTOV TOV YEITOVIKOV OYK®V gAéyyov. H extiunom tov cuvekTik®v dtavuoudtomv
PONG TPOVTTOOETEL TOV TPMTVTEPO VTOAOYIGUO TMOV TOPAYDY®Y TOV CLUVIGTOGHOV TNG TOYXVTNTAG KAl TNG
Bepurokpaciog o1 SlETAPN TOV OYK®V EAEYXOV, 1 OTOl0, GUUMINTEL (e TO PEGO TNG OKUNAG TOV GLVOEEL
TOVG OVTIGTOLYOVG VTOAOYIOTIKOVS KOpfPovc. ' Tov vodyn vroloyioud gonydncav dVo TEXVIKES GTNV
mapovoa pebodoroyia, ek Twv onmoiwv N TpodTn Paciletar otn dNUovpYid VEOV SVIKOV OYK®OV EAEYXOV
Yopw amd v vro e&étaon axun (edge-dual volume method), evd coppwva pe ™ devtepn puébodo ot
eMBLUNTEG TOPAYDYOL TPOKVTTOLV OO TIG AVTIGTOLYES TV akpaimv KOUPwV TG akung (nodal-averaging
method). O VTOAOYIGUOG TOGO TOV UN-GUVEKTIKAOV OGO KOl TOV GUVEKTIK®OV SOVUCUAT®V pONG EKTEAEITOL
UE GAPMOOT TOV AKUDV TOV TAEYUOATOS, XPNOLOTOIOVTAG KATAAANAES dopéc dedopévav (edge-based data
structures), TPOKEWEVOL va, LELWBEL 660 TO dVVATOV O OTOUTOVUEVOS VTOAOYIGTIKOC XpoOvos. H ypovikn
0AOKANP®OT KOl TEAKN KATAGTOOTN TNG Pong mpoceyyiletol EMOVOANTTIKG, €ite pe pntd GYNUa,
epappolovrag v pébodo Runge-Kutta tecodpov Pnudteov (RK(4)) xor dedtepng taENG ypovikng
axpifelag, eite ue onuelakd TemAéypevo oynuo, epapuolovrag tov aiyopibuo Jacobi 1 tov aiydpiBuo
Gauss-Seidel. ['a v enttdyvvon g exiloong epappoleTol EMmPOGHETO N TEXVIKN TOV TOTIKOV WYEVOO-
ypovikov Pruatoc (local time-stepping technique). Téhog, onuewdvetar Ot yuu TG €£lIGAOCES TOV
UOVTEL®DV TOPPNG akoAlovbeital mapopolo pe Tig eEICMGELG PONG SLAOIKOGIN, YPOVIKAG OAOKANp®GNG Kol
VTOAOYIGUOV T®V SOVUCUATOV PONG, €KTOG TOL TPOCEYYIOTIKOD €mADTN Tov Roe kol tov oyfuatog
deuTepng TAENG Yopkne akpifelag, kabBmg 1 KOPLo GUVEIGPOPA GTO €V AOY® HOVTELD TTPOEPYETAL OO
TOVG GLVEKTIKOVG OPOVC.
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Mo v povtedomoinomn g petddoong Oepudmrag pécowm aktivoforiag oe ykpl uEGo pe duvatdTnTa
amoppOPNONG, EKTOUTNG Kot okédaong epapuoletor 1 eéicmon petapopdg axtivoforiog (RTE/Radiative
Transfer Equation) pe mapovoio (time-dependent) 11 un (non time-dependent) ypovikod 6pov. Kabmg 1
vroyn e&icwon Ba mpémel va emivbel yio kabe memepacpévo oyko EAEYXOL Kol Yio kGOE mETEPUGUEVT|
oteped yovia eléyyov, Swukprromoleitol yopikd kot ypovikd. H ev Adyo yopikn dSwkpiromoinon
EMTVYYAVETOL PE TN KeEVTpoKOUPkN HEB0d0 memepaCUEVOY OYK®VY, OUOImG TV EEI0MCEMY PONG, EVD M
YOVIOKT TOPOUOLILETOL UE TO YWOPICUO TNG EMPAVEWS «oPaipacy (TEPUETPOV «KOHKAOL» GTIC 600
OlOTACELS) O LKPATEPEG AVTIOTOLYEG TV EMOBVUNTAOV CTEPEDY YOVIOV €AEYYOL. T'lol TOV VTOAOYIOUO
TOV dvuoudTev Beppoppone ot SETOEN TOV OYK®V EAEYYXOL papuroleTol amhd avovieg oynua (step
scheme), cOpe®va pe to onoio M €vraomn g axtvoBoiiag ot demagr| Tibetan ion pe avt) ToL KOUPOoL
ota avavtn g Oepuoppons. ['a mv avénon g akpifelag g ADong ¥pNOILOTOIEITAL GYN UL OEVTEPTC
TENg YPIKNG akpifelag, ovIioToyo oVTOD Yo TO HUN-GLVEKTIKG OlvOoUATO PONg TOV €E1GMOCEMV
Navier-Stokes. To vrdym oynpa cvvdvdleton e tn ovvaptnon meplopicpod Van Albada-Van Leer 1
Min-mod, mpokelpévon vo, dtuo@oilotel n povotovio PeTa&d TOV TV TNE EVTOONG TG aKTIVOBoAiNG
TOV YETOVIKOV KOpPov, Wduitepa KOvid otig oplokés emipdvelec. To mpoPAnpa emkdaivyng oyKov
EAEYYOVL KOl OTEPEDV YOVIDV €AEYXOV, GTO OTOi0 OvOTOPEVKTO odnyeitar M ev Ady® HEBod0g AOY®
GUVOLOCUOV UN-SOUNUEVOV TAEYUATOV Kol YOVIOKNG O10KPLTOTOINGNG, AVTILETOTILETOL e TNV EQAPHOYN
¢ Bold Approximation v tn¢ Pixelation Technique. Av kai xotd T cvviOn TOKTIKA Ol OPLOKEG
ouvOnkeg emiPaiiovtal pntd o€ tétolovg €idovg pebodoroyieg, oV TOpOLGH gpyacio vioBeTHONKE 1
TEMAEYUEVT EMPOAY TOVS, EMTPEMOVTAG TN YPNON OPUOTEPOV TAEYUAT®V GTNV TEPLOYN TOV OPLOKDV
EMPAVELDV, KOO KOl TNV avamTtuén Kol €Qaproyn oploKdv cuvOnkdv tomov cvupetpiag. Télog, 1
TPOGEYYIoN TNG TEMKN Avomng ¢ e&iowong emtuyydvetan gite pe emovaAnnrikny d10pbmon tov TGV
(non time-dependent RTE) eite pe ypovikn olokAfpwon kot egpappoyn e pebddov Runge-Kutta
tecclpov Pnudtov (RK(4)) kot dedtepng taéng ypovikng axpifelag (time-dependent RTE).

Me o10%0 TNV €mMTAYLVOY TNG UPOUNTIKNG EMIAVONG TOGO TV TPOPANUATOV PONg OGO KOl TOV
mpoPAnudatov petadoons Bepuotntag pécw axtivoforiog (emmAéov g SiipHpwong twv dedopuévav Katd
TIG OKUEG TOL LTOAOYIOTIKOV TAEYHOTOG KO TNG EPOPUOYNS TNG TEXVIKNG TOL TOMKOD YEVSO-YPOVIKOD
Bruatog), ypnowomomdnke pebodoroyion mapdAAning emeepyociog kot moAvmAéypatoc. H pébodog
maporlinAionoinong Paciletal otnv TEYVIKN SWUEPIONG TOV VTOAOYIGTIKOD TAEYLOTOC GE UIKPOTEPQ
vroywpio (domain decomposition approach), ®cote va Kotaotel dvvat 1 TowtdOYpPOV EmMiAvon TOV
e€iocnoemv o€ avtd. H 0An dadicacio Eekivael otov KOpLo eneepyacTn| LUE TNV EQOPLOYT TOV AOYIGULKOD
METIS, 1o omoio dwoywpilel Tovg KOPPOLG TOV APYIKOV TAEYUOTOG GE UIKPOTEPO GUVOAN KOUPmV (core
nodes). Qo1660, e AVTOV TOV TPOTO TO GTOLYEIN TOL TAEYUATOG OTO Oplol TV LTO-GLVOAWV (LTTO-
TAEYUATOV) TOPAUEVOVY AVOLOKANp@TA, KAODC dev mepEyoviol OAoL ot KOUPOL TOVG OTO AVTIGTO(O
ovvola. T v oAokApwon tovg mpootiBevtar ot eAleimovteg kOpPot (ghost nodes) ot avtictolya
VIO-TAEYUOTO, ONUIOVPYDVTOG TOVTOYXPOVO Uit TEPLOYN CAANAOKAALYNG AVALESH TOVS, EVM GTI| GUVEYELN,
SlovépovTol To, amopaitnTo 6edopEVe Kol 6TovG voAoutovg enelepyaotéc. H avtodlayn minpogopiog
HETOED TOV YETOVIKOV VRO-TAEYUAT®V, TOV AQOPAE OTIS TIUEG TOV UETAPANTOV KOODG KOl TV
TOPUAYDYOV QUTAOV, ETITUYYOVETOL LECH TOV KOUP®V OTIG TEPLOYEG AAANAOKAADYNG KOL TIG EVIOAEC TOV
TpoTOKoALoL emkowvmviag MPI (Message Passing Interface). Ov mpoavapepBeiceg Tipnéc twv ghost
KOUPwv dev vroroyilovtalr amd TiC €ElodoEl peTaPOopds, aAAd Aapfdvovior amevBeiag amd Tovg
avTioTO(0VG core KOUPOVS TV YEITOVIKMY VITO-TAEYLLATOV.

H pébodoc morvmAéyparog (multigrid method) otnv mapovoa Adaktopikn Awatpipn epapudletot o
XOPIKN HOPPN YO TNV TEPINTTOOT TPOPANUATOV pong Kot petddoong Oepudtnrog pécm axtivoPforiag,
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KaODC KOl GE YOVIOKT Kol GUVOLOCUEVT] YOPIKN-YOVIOKT LOPPN HOVO Yo tpofAnuata aktivoPfoiiag. H
xopikn pébodog Paciletoar otn dnuovpyia piog oelpds apaldtepOv TOL OPYLKOD TAEYHATOV Kol GTNV
EMIALON TPOGEYYIOTIK®Y EEIGDCEWMV GE AVTA, LE OKOTO TNV TOYVTEPN GVYKAION 6Ty TeEMKN Adon. [
dnuovpyia. aVTOV TOV TASYUATOV £papuUOleTal 1 TEXVIKN oLuoomudToong (agglomeration approach),
GUUPMVO, [LE TNV OTO10 01 OYKOL EAEYYOV TMV YEITOVIKMV KOUPB®OV EVOVOVTAL dNUIOVPYDVTOS £V VEO VTEP-
kOpPo Tov apatdtepov vo-tAéypatoc. H vadyn cuccmpdtwon, n omoia dbvotol va gival gite 160TpOTN
(isotropic) eite katevBuvouevn (directional), Tpaypoatonolgitor pe Tpdmo TETOWO MGTE Vo doTnpel TV
OPYIKN TOTOAOYiO, €VE EEKIVAEL OO TIG OPLOKES EMPAVEIEC KOl EKTEIVETOL TPOG TO EGMTEPIKO TOV
TAEYUOTOG TPOGOUOLALOVTOS TNV TEYVIKN TOL mpogAavvovtog petodmov (advancing front technique).
Qo1600, 1 &v AOY® éveon LIOKELTOL GE TPOKABOPIGUEVOVG TEPLOPIGUOVGS, TOV APOPOVY KLPIG GTOVG
KOUPOVG TOV ECOTEPIKOV KOl EEDTEPIKDOYV OPIMV TMV VIO-TAEYUATOV, T.X., EVOC 0plokOg KOUPog dvvatat
va evabel povo pe évav dAlo oplakd tov idtov gidovg, evd ot "ghost" koppot de Aappdvovtol vToOYN KaTd
™V KOpto 61001Kacion OAAG EVOVOVTOL COUPOVO LLE T CUCCOUATOOCT TOL £YOVV VTOGTEL Ol AVTIGTOLYOl
Tovg core KOUPOl GTO YEITOVIKG VTO-TAEYHOTA. AGUPAVOVTOG DTOYN TO OVOTEP®, 1| OAN dSladikocio
Eexvdiel o€ KABe vIO-TAEYLO LE TNV VOO TOV OYKOV EAEYYOV TOV 0plLoK®OV KOUPOV OTEPEAG EMUPAVELLS
HE OVTOVG TMV YEITOVIKMV TOVG, EMIONG 0PLOK®Y KOUPMV, EVD 6T GLVEXELN KOTAPTILETOL MOTO e TOVG
kOpPovg mov €yovv €pbel oe emapn pe to "péTomo" TG cvocopdtwong (seed nodes). H évoon tov
KOUP®V Kot 1 dnpovpyia viep-kOUP®V cuveyileTal e T GLOCCOUATOOTN TOV OYKWOV eAEyyoL TV "seed"
KOUPOV e 0vTOVG TOV YEITOVIK®OV Tovg. Katomv kataptiletor pia véa Alota "seed" kopuPov pe tov 1810
TPOTO KoL 1] OAN dradikocio emavarapPavetor Emg 6Tov e&etactohy OAoL ot KOUPOL TOL VITOAOYIGTIKOD
TAEYHOTOC. TNV TEPImTmon ¢ KoTevbuvopevng cvescoudtmong, n omoia epoppdletor o TAEyHaTO
VPpOKoL TOMOL Kol duvartor va eivon eite pepwkn (semi-directional) eite olwn (full-directional), m
Sdikacio Eexvagl amd Tovg 0ploKoDS KOUPOLG TV TPIGUATIKOV oTotyeiov Kot cuveyiletor oTovg
KOUPOVG TV EXOUEVOV TPICUATIKDY GTPMOUATOV, SOTNPOVTIS TO LOTIPO0 GUGCOUATOONG TOV TPDTMV.
Aoy ohokAnpwbeil  évoorn tov TPIoUATIKOV KOUPmv, N ddikacio cuveyileTol 1GOTPOTA Y10 TOVG
VEOAOUTOVE KOUPOVE, EKKIVAOVTOG OO TOVS YEITOVIKOVS TOV OVAOTEPMY TPICHATIKOV oTpopdtomv. Onmg
avaeépinke mapandvo, ot "ghost" kopPor de Aapupdvovior vwoOYN KATA TV KOPL JadKaGio, OAAY
EVAOVOVTOL COUPMOVO LLE TN CLGCMUATMOON OV £YOLV LIOGTEL Ol avticToryol Tovg "core" kouPolr ota
YEWOVIKA LTO-TAEYHOTO. Me Tov Tpdmo avutd dnpovpyovvror "ghost" yevdo-vrep-kopupor, kabmg o
mepKAEOEVOC aplBpdc kKOpPov tovg mbavov va Slapépel amd aVTOV GTOVS OVTIGTOL(OVG Core LTIEP-
kopPovg. Epdcov amatteitor axoun apatdtepo mAEyua, 1 0An dwdikacio exovoropupaveror. H exilvon
TV e£l0MCEDV OTN €V AMOY® GEPA TAEYHATOV TTparypatonoteitol pe to oynua FAS (Full Approximation
Scheme) oe kOklo oynuotoc V, cOUE®OVO HE TO ONOI0 OTO OPULOTEPU TAEYHOTO EMAVETOL o
TPOCEYYIGTIKNY Hopen Tov eélo®oewmv petaeopac. H petapopd mAnpogopicag ce évov vrep-koupo amnd
TOoVG TEPIKAEIONEVOLG KOUPOVG Tov (restriction) a@opd oTlg oTOOUIOUEVES KT OYKO GUVTNPNTIKES
petafintég toug kol 6to GOpoicpa TV SlvueUAT®V pong Tovc. Avtifeta, amd Tov VIEP-KOUPO
UETAPEPOVTOL GTOVG TEPIKAEIOUEVOVS KOWPBOLE Tov (prolongation) ot dtopOmaoelc TV peTafAnTodv gite pe
OTTAT PETAPOPE OTNV TEPITT®OT aTPtPovg pong eite pe PeTO@opd oTaBUIoUEVT LE TV ATOGTACT] LETUED
TOVLG OTNV TEPIMTMOT| GLUVEKTIKNG ponc. ['ia v enitevén axodun pHeyoAdtepng EMTAYLVONG KATH TO TPADTO
ot1adw Tov oynuatog FAS, epappoletor to oynpuo FMG (Full Multigrid).

H yovioxn pébodog morlvmAéypatog epoppdletol pe ovaloyo Tng YOPIKNG TPOTO OTN YOVIOKY
dwkprronoinon tov mpoPAnudteov petadoorng OBepuodtnrog pécwm axtvoPorioc. H ocvocopdtmon
oLVVIoTOTOL OTNV £VMCT] TV YELTOVIKMOV GTEPEDV YOVIDV EAEYYOV, LEWOVOVTAG TEC OTO £va TETAPTO TOV
apyIKOV Kabe @opd. Xe avtibeon pe T YOPIKN, N YOVIOKT CLGCOUATMOGYN LAOKELTOL GE EVOV [OVO
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TEPLOPIOUO TOV ATAYOPEVEL TNV EVAOGCT] GTEPEDV YOVIDV TOV OVAKOLV GE OLOPOPETIKA TETAPTNUOPLY. Me
aVTOV TOV TPOTO SLoPOAILETAL 1] CLVEXEWD KATA TN LETAPOPA TNG TANPOPOPIG OO TNV TLUKVOTEPT OTNV
apotdtepn Olaxkpironoinon kai avtiotpogo. H emilvon mg RTE oto dwwdoyikd apardtepo yoviokd
"mAéypata" mpaypatoroteital pe to oyxnua FAS opoimg tng yopikng peboddov moAvmAEyYUaTOG, EVAD M
oTaOHon TOV PETAPANTOV KOTA TN LETAPOPA TOVG OO TO TLUKVOTEPO GTO OPOLOTEPO LAOTOLEITAL KOTH
yovia (0t kat' 6yko). Téhoc, otnv mapovoa epyocio avamtiYONKe KOl GUVILAGUEVT] Y OPIKN-YDVIOKT|
pebodoroyia yio TNV emtdyvvon TpofAnudTev petddoons BeppotnTog LEG® axTvoPorag. ZOUP®VO [E
TV, o€ KaBe eminedo Tov YWPIKOD GYNLATOG TOAVTAEYHOTOG ekteAeitol Evag mAnpne FAS V-kdkhog
TOV YOVIOKOD GYNUOTOG, EVA 1) LETAPOPA TNG EVTAOTS TNE OKTIVOPBOAMOC, TOV SLOVUGUATOV PONG KOl TMV
dopHdoemVv EKTEAOVVTOAL OLOIMG TTPOG TIG AMAECY LeBOOOVG.

Emmpdcbeta, pe okomd v mepartépm avénon tng akpifelog g mopovcsog pedddov kot Tépav g
EPAPUOYNG TV TPoavoeeEPHEVTOV oyNUATOV LYNAOTEPNG TAENG YOPIKNG axkpifelag, avamTdyTnKe
puebodoroyio CVTOUATNG TOTIKNAG TOKVMGTG TOL TAEYHOTOC. Me avtdv ToV TpOTo dVuvavTol vo, avEnbovv ot
Babuoi glevbepiag tov Vo e&étoon TAEYUATOC, ATOPELYOVTOG TOVTOYPOVO TNV OTOAUTNON KOTOGKEVNG
evog véou efopync. H vmodym teyvikn avadewvietor 1dtaitepa TOAVTIUN GE TEPUITOCELS EUQAVIONG
TOMKAOV  QUIVOUEVOV, T.Y. TEPLOYES KUUATOV KPOOOoNS, OamoKOAANONG pong, KAM., KoBhg Kol o€
TPOPANLOTA TOV AVTILETOTILOVTOL Y10 TPAOTN POPE, LE CUVETELD VO UMV EIVOL EK TOV TPOTEPOV YVMOOTO
TO OTOUTOVUEVO EMIMEDO TUKVMONG GTIC SLAPOPES MEPLOYES TOL TAEYHaToc. H 0An dradikacio dvvotor vo
dwpebel oe téocepa Paocikd Ppata: o) Eviomioudg tov meploymv mpog nHKVOOT Kol onueioon Tov
avtioTor®v akudV Pdacel evog mpokabopiopévou kpunpiov, m.y. akpég mov mepthappdvouv koppovg e
TN 1oV aptdpod Mach vynAdtepn g povadag. B) Adyvon g TANPoPopiag oNUEIMONG OTIC YEITOVIKEG
aKUES, MoTe va kataotel Suvarh 1 Saipeom Twv avtioToymv ototyeiwv Tov TAEYpaToS. ¥) Aaipeor Twv
ONUEIOUEVOV OKUOV KOL EI0AYWOYN VEOV KOUP®V 6TO HEGO TOVG. §) Alaipeon TMV avTioTO®V TAELP®V
Kot oToyEimv Tov TAEYHOTOG, Pacel TpokaboploUéveY Kavovay dlaipeong, T.x., EVO TPIGUOTIKO GToLyElo
duvaron va dtanpedel og 500 N TEocEPN VEN TPIGUOTIKA GTOLYELQ.

Epappolovtag i avotépm teyvikég avamtiydnie o akadnpaikoc kddwog Galatea (I"'oddtein) ota
mhaiolo g mopovoog Adaktopkng Awtpiprg. o v a&oddynon tov ev Ady®m Aoyiopikov Kot kat'
EMEKTOON TV TPoovopepBelc®v LeBOdmV €EeTAGTNKOV dLAQOpE TPOPANUOTO OVOUQOPAES, VO T
OTOTELEC AT TOV GLYKPIONKOV TO0TIKA KOl TOcOoTIKA pe dtabéotpa Tepapaticd oedopuéva, Kabmg Kot
pe apfunTiKd omoTeAéopATO AvTIoTOY(®OV aAyopiBumv avapopds. AT Tig vIOYN GLYKPIGELG dtopaiveTal
N dLVVOTOTNTA TNG €V AOY® pebodoroyiog yio TE€T010V €I00VG TPOCOUOIDGELS TOGO A TNV TAELPA TNG
axpifelag 660 ka1 omd TNV mALLPE NG amodoTikoTnToG. Ev Koataxdeidt, Aaupdvoviag vmoyn Tig
avtiotolyeg Owbéoiueg ot oebvny PipMoypapion pEAETEG, M GLVEICEOPA NG TOPOVCUS EPYOUCIOG
cuvoyiletol oto KATmO:

o Ty avamrtvén g YoViakng nefddov ToAVTAEYLOTOG.

o TV avamrtuén Tng CLVOVAGUEVTG YMPIKNG-Y®VIOKTG LeBOS0V TOAVTAEYUATOG.

e XNV EQUPHOYN CYAUATOG OEVTEPNG TAENG XWOPIKNG aKPIPELNG LUE GUVAPTNGELS TEPLOPIGHOD Y10, TNV
TPOGOLOIMOT TNG HETAdOONC BepOTNTAG LEGH aKTIVOBOALNG.

o XV avdamtuén g memAeYHEVNG EMPOANG TV OPLOKAOV cLVONKOV o€ TPOPARUATE LETASOONG
Oeppomtog pécw axtvoPoliog.

e XNV TOMKY| TPOGAPUOYN TOV WAEYUOTOG Yo TNV TPOCOUOImoT TNng HeTadoong Oepudtnrag pHécw
aKtvoPBoiag.

IX



> ypnon VPPOIKOV TAEYUATOV 0E GLVOLOUCUO HE TNV KEVIpOoKOUPkN LEB0SO mEMEPACUEVOV
OYK®V o€ TpoPAnpata peTddoong Oepudtnrag écm aktivoforiag.

¥t yopikn pébodo morvmAéypatog (dnpovpyia ghost yevdo-vmep-kouPmv, petapopd dopbdcewny
O7tO TO OPALOTEPO OTO TLKVATEPO TAEYL PACEL OTOGTAONG TOV KOUP®V, K.AT.).



Acknowledgments

It is a pleasant duty to express my sincere gratitude to all those who have contributed to the
accomplishment of this "mission".

First and foremost, I would like to thank my supervisor Associate Professor loannis K. Nikolos for
giving me the opportunity to complete this PhD and for introducing me to the world of research,
especially to the fascinating field of CFD. His guidance and his support through stimulating discussions
was endless during these years, while sometimes it was extended beyond the scientific issues. I am deeply
grateful for his encouragement, kindness and ethics.

I would like also to thank Associate Professor Anargyros 1. Delis and Assistant Professor Dimitrios
V. Rovas for their valuable suggestions and efforts as co-advisors. Moreover, I would like to thank all the
members of the examination committee, honouring me by participating to it, and for their valuable
comments and suggestions, which greately improved the quality of the final document.

Many thanks to Mr. Sotirios S. Sarakinos, for all the work we did together and especially for
providing the methodology of parallel processing.

The financial support by the ELXIS Engineering Consultants S.A. and the EUROSTARS Project
(E!5292) "Structural and aerodynamic design of TUNnels under Fire Emergency Conditions" for a part of
this work is gratefully acknowledged.

Last but certainly not least, my gratitude goes to my lovely wife Vili for her patience and support
during all these years, and to our children Nick and Nadia. This thesis is dedicated to them.

XI



"Intentionally left blank"

XII



Contents

Abstract

Acknowledgements

Contents

Nomenclature

1. Introduction

1.1. Objectives

1.2. Literature review

1.2.1. Fluid flow modelling

1.2.2. Radiative heat transfer modelling

1.2.3. Parallel computation

1.2.4. Multigrid methodology

1.2.5. Grid adaptation

1.3. Present study

1.3.1 Overview

1.3.2 Contributions

1.3.3 Outline

1.4. List of publications

2. Fluid flow

2.1. Governing equations

2.1.1. The Navier-Stokes equations

2.1.2. The Reynolds Averaged Navier-Stokes (RANS) equations
2.1.3. Turbulence models

2.1.3.1. Turbulence model k-¢

2.1.3.2. Turbulence model k-

2.1.3.3. Turbulence model SST

2.2. Spatial discretization

2.3. Numerical fluxes

2.3.1. Inviscid fluxes

2.3.2. Higher-order accurate schemes and slope limiters

2.3.3. Viscous fluxes

2.3.4. Turbulence models' fluxes

2.3.5. Boundary conditions

2.3.6. Source terms

2.4. Time integration

2.4.1. Point-implicit scheme

2.4.2. Explicit scheme

3. Radiative heat transfer

3.1. Governing equation

3.2. Spatial and angular discretization

3.3. Mathematical analysis

3.3.1. Formulation of discrete equations

3.3.2. Boundary conditions

3.3.3. High-order accurate spatial scheme

3.3.4. Iterative solution

XIII

XI
XIII
XVII
1-1
1-1
1-1
1-1

1-7
1-8
1-9
1-10
1-10
1-11
1-12
1-12
2-1
2-1
2-1

2-7
2-7
2-11
2-11
2-13
2-16
2-16
2-17
2-20
2-21
2-21
2-24
2-24
2-25
2-29
3-1
3-1
3-2
3-3
3-3
3-10
3-11
3-13



4. Parallel computation strategy

4.1.
4.2.

Domain decomposition

Data exchange

5. Agglomeration multigrid method

5.1

5.2.

5.3.

Spatial agglomeration multigrid scheme

5.1.1. Spatial agglomeration strategy

5.1.1.1. Isotropic agglomeration

5.1.1.2. Directional agglomeration

5.1.2. Flux computation and numerical solution

Angular agglomeration multigrid scheme

5.2.1. Angular agglomeration strategy

5.2.2. Flux computation and numerical solution

Combined spatial/angular agglomeration multigrid scheme

6. Grid adaptation

6.1. H-refinement

6.2. Subdivision method

6.3. Procedure description

7. Fluid flow numerical results

7.1.
7.2.
7.3.
7.4.
7.5.
7.6.
7.7.

7.8.

Definitions

Inviscid flow over a rectangular wing with a NACA0012 airfoil
Laminar flow over a rectangular wing with a NACAO0012 airfoil
Turbulent flow over a rectangular wing with a RAE2822 airfoil
Turbulent flow over a rectangular wing with a NACAO0012 airfoil
Turbulent flow over the ONERA M6 wing

Turbulent flow over the DLR-F6 aircraft

7.7.1. DLR-F6 wing-body (WB) aircraft configuration

7.7.2. DLR-F6 wing-body-nacelles-pylons (WBNP) aircraft configuration

Turbulent flow over the common research model (CRM)

7.8.1. CRM wing-body (WB) aircraft configuration

7.8.2. CRM wing-body-horizontal tail (WBHT) aircraft configuration

8. Radiative heat transfer numerical results

8.1.
8.2.
8.3.
8.4.
8.5.
8.6.
8.7.
8.8.
8.9.

Definitions

A hexahedral enclosure with quadratic bases

A cubic enclosure

A prismatic enclosure

A cylindrical enclosure

A hemi-cylindrical enclosure

An L-shaped enclosure

A J-shaped enclosure

A hexahedral enclosure with trapezoidal bases

8.10. A cubic enclosure with three baffles
8.11. An annular sector
8.12. A tetrahedral enclosure

X1V

4-1
4-1
4-2
5-1
5-1
5-1

5-6
5-9
5-13
5-13
5-15
5-17

6-1
6-4
6-5
7-1
7-1
7-2
7-4
7-10
7-12
7-13
7-17
7-18
7-26
7-29
7-30

7-39

8-1

8-1

8-5

8-18
8-26
8-33
8-36
8-37
8-39
8-45
8-50
8-54



9. Conclusions

9.1. Summary

9.2. Contributions

9.3. Ongoing work

9.4. Future developments

10. References

Appendix A: Jacobian matrix decomposition

Appendix B: Newton linearization of the viscous fluxes

B.1. Flow model

B.1.1. Linearization based on the edge-dual volume method
B.1.2. Linearization based on the nodal-averaging scheme
B.2. Turbulence models

B.2.1. Linearization based on the edge-dual volume method
B.2.2. Linearization based on the nodal-averaging scheme
Appendix C: Newton linearization of the free-slip convective fluxes

XV

9-1
9-3
9-6
9-6
10-1
A-1
B-1
B-1
B-2
B-4
B-6
B-7
B-7
C-1



"Intentionally left blank"

XVI



Nomenclature

Jacobian matrices
spatial forcing function
angular forcing function

propagation speed of radiation in
the medium

sound speed of node P
Legendre polynomials' coefficients
constant pressure specific heat

constant volume specific heat

Courant-Friedrichs-Lewy number

directional weight of solid angle mn
energy per unit mass

unit vectors in x, y and z directions

total energy per unit mass
(reference energy in radiative heat
transfer problems)

Navier-Stokes and turbulence
models PDE's vectors
dimensionless average radiative
heat flux

specific total enthalpy
unit matrix

radiative intensity, W/m’ sr
turbulent kinetic energy
absorption coefficient, m™”’
Mach number

number of nodes (finest grid)
number of polar and azimuthal
angles (finest resolution)
pressure

Legendre polynomials of order j
turbulent energy production term
laminar Prandtl number (Pr=0.72)
turbulent Prandtl number (Pr,=0.9)

qi

Aan

€
gW
0

K

thermal tensor
incident radiative heat flux, W/m’
flux balance vector

Reynolds number

gas constant (R,=287.04 m’sec’K™)
source term

strain rate

unit vector in s direction of a solid
angle

time

turbulence intensity

temperature (K only for radiative
heat transfer problems)

components of the velocity

averaged Roe value of a primitive
variable

friction velocity

volume of control volume of a node
P

conservative variables' vector
cartesian coordinates

dimensionless distance

pixelation coefficient

extinction coefficient, f=k,+o;
ideal gas constant (y=1.4)
Kronecker's delta

part i of surface area of control
volume

discrete control angle

dissipation rate
wall emissivity

polar angle

Von Karman constant (x=0.41)

XVII




Superscripts
ny
mn

MN
Vis

laminar viscosity
turbulent viscosity

density

Stefan-Boltzmann constant (o=
5,67 10° wim’K?)

scattering coefficient, m™

stress tensor
friction stress tensor
azimuthal angle

scattering phase function
average scattering phase function

specific dissipation rate (scattering
albedo w=0y/p in radiative heat
transfer problems)

inviscid

first non-agglomerated angular
resolution

agglomerated angular resolution
viscous

normalized variable

Subscripts
b

h
H

in
k¢ w

out

PQ
Pp

0 q

rad

ref

blackbody

first non-agglomerated grid
agglomerated grid

inlet

equations of turbulence models
medium

outgoing

edge connecting P and O nodes
present control volume

adjacent control volume

reflected
radiative
turbulent

reference
wall

XVIII




Introduction

1. Introduction

1.1. Objectives

As the title of this thesis suggests, its main objective is the development of methodologies capable of
solving numerically steady-state compressible fluid flow and radiative heat transfer problems. Such a
methodology has many academic and industrial engineering applications, e.g., in aircrafts, engine inlets,
industrial furnaces, combustion chambers, ramjet engines, etc. Considering the aforementioned goal, the
following objectives were accomplished, while main attention was directed toward the improvement of
the obtained solutions' accuracy as well as of the efficiency of the simulations:

e A node-centered finite-volume algorithm for the prediction of inviscid and viscous (laminar and
turbulent) compressible fluid flows on unstructured tetrahedral or hybrid three-dimensional grids.

e A corresponding methodology simulating radiative heat transfer.

e Improvement of solutions' accuracy, employing:
a) Higher-order accurate schemes along with appropriate limiting functions, especially in case
of radiative heat transfer.
b) A grid adaptation technique (h-refinement).

e Improvement of methods efficiency, implementing:
a) A parallelization strategy.
b) A spatial agglomeration multigrid scheme.
¢) An angular and a combined (nested) spatial/angular agglomeration multigrid methodology for
radiative heat transfer simulations.

e Validation of the developed method against benchmark test cases, via the qualitative and
quantitative comparison of the obtained results with experimental data as well as with the results of
acclaimed corresponding solvers.

This Chapter is continued with a literature review, concerning the main features of this type of
algorithms, i.e., fluid flow and radiative heat transfer modelling, parallel computation, multigrid
methodology and grid adaptation, while in its final section an overview of the proposed methodology
along with its original contributions is summarized.

1.2. Literature review

1.2.1. Fluid flow modelling

The attempt of English mathematician L.F. Richardson around 1920 to predict weather by solving
Partial Differential Equations (PDE's) is assumed to be the beginning of Computational Fluid Dynamics
or CFD for short, as it included the main four features of CFD: a practical problem, PDE's to model
mathematically this problem, a numerical scheme and computers (the original sense of word computers is
utilized here - people, and not machines, doing calculations) [Tor97]. Nevertheless, many years passed for
CFD history to actually start, mainly due to the limited computing capabilities; its beginning is dated
about the early 1970's [Bla0O1]. Since then, CFD has denoted the combination of physics, numerical
analysis and computer science, employed to simulate fluid flows, while it has routinely been applied to
the scientific fields of aeronautics, marine engineering, turbomachinery, meteorology, oceanography,
astrophysics, oil recovery and architecture [Tor97, BlaO1].

A significant effort has been exerted during the past decades in the field of aerodynamics for the
development of industrial, commercial and academic CFD algorithms, mainly due to their capability for
analyzing the aerodynamic behaviour of complete aircraft configurations in a relatively short period of
time; one of the first such codes was developed by Jameson et al. [Jam86]. Nowadays, the aerodynamics
designers rely strongly on the CFD algorithms' results, as in that way they may avoid (initially at least) a
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large fraction of the extremely time and money consuming experiments in wind tunnels. The decreased
effort, obtained by the employment of CFD codes, especially those based on the Reynolds Averaged
Navier-Stokes (RANS) equations, produces finally a reduced design cycle time. Nevertheless, the results
obtained even by the most acclaimed methodologies appear not to always match with the corresponding
wind tunnel experimental results. As the accuracy of the numerically derived flow affects significantly the
lift, drag and general aerodynamic payload of an aircraft, which subsequently influences its final design, a
continuous need arises for more accurate and more efficient methods, making CFD an evolving scientific
field. Therefore, although various academic and commercial compressible flow solvers have been
developed in the past years, many issues concerning the methods of grid generation, discretization, flux
computation, turbulence modelling, etc., are still subjects of continuous research.

Considering the previous state, the first issue to be defined for a CFD algorithm is the type of the
grid used to represent the physical domain under examination. For the first solvers, structured grids were
employed, constructed either by algebraic methods or by using PDE's; in test cases requiring meshes with
increased complexity overlapping grids were also utilized, derived by the Chimera technique [Bla0O1]. As
excessive time was demanded for their construction (even weeks in case of a military aircraft), the
researchers started to focus on the development of unstructured grid generators [And94, BlaOl].
Unstructured grids, usually consisted of tetrahedral elements (triangular faces in two dimensions), offer
the largest possible flexibility in the treatment of complex geometries along with reduced time and
minimum user intervention for their generation/adaptation (compared to structured ones). In case of a
viscous flow simulation a hybrid mesh should be selected instead, including prismatic or hexahedral
elements at boundary layer region to resolve effectively the severe anisotropy of the flow at this area
which demands a priori smaller spacing besides excessive geometric flexibility; tetrahedra are used for
the rest of the field, while pyramids fill the transition region (from prismatic to tetrahedral elements)
[Kim03, Kal05a]. In that way, not only the accuracy of the final solution is improved, but the number of
required elements, faces and edges is decreased, compared to a tetrahedral grid with appropriate spacing,
resulting in reduced computational effort and memory requirements [Bla0O1]. Considering the
aforementioned advantages of unstructured grids, they appear to be preferable compared to structured
ones for problems concerning external aerodynamic flow over a complex geometry, in which the mesh
size is adapted to local geometrical and flow features, e.g., in case of an aircraft. Despite their arbitrary
nodal distribution, which typically results to approximately twice the number of edges of a corresponding
structured hexahedral mesh and consequently to double computational and memory cost when an edge-
based technique is employed, they remain the preferred choice for such simulations [Bar92, Kal96, Bla01,
Sor03, Kal05a]. In addition, the unstructured meshes have another important feature as analyzed at a next
paragraph, the easy adaptation; it can be performed during the solution procedure to capture more
efficiently localized phenomena such as shocks [Loh92, Kal96, Bla01, Kal05a].

For the discretization of the computational field and subsequently the numerical approximation of
the governing equations an appropriate modelling strategy is required, such as the finite-volume method,
probably being the most widely applied in three-dimensional flow simulations [Jam81, Bar92, Kal96,
Lan98, Bla01, Lyr02, Kim03, Kou03, Kal05a, Delll]. According to this scheme the computational
domain is discretized into a certain number of arbitrary finite control volumes, at each of which the
magnitude of variables is assumed to be constant (for first order schemes) [KimO1]. This method can be
implemented to both structured and unstructured grids, while it can be categorized in two main types, the
cell-centered and the node-centered (also named vertex-centered), depending on the location of the
computational nodes surrounded by the corresponding control volumes [Dell1]. In the first case, the mesh
elements represent the aforementioned control volumes, while the wvariables are stored at their
barycenters. For the node-centered approach, the control volumes are constructed around the nodes of the
grid; several methodologies have been developed for their construction, e.g., by connecting lines defined
by edge midpoints, barycenters of faces and barycenters of elements, sharing a node [Kim03, KalO5a].
Although one should expect the wider implementation of the cell-centered scheme, considering that for
the same computational grid it includes many more Degrees of Freedom (DoF's) compared to the node-
centered one, both options are almost equally used nowadays [Bla01]. Moreover, there exist studies
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indicating the equal or even superior potential of the node-centered method in terms of accuracy,
compared to the cell-centered one for the same number of Degrees of Freedom [Del11].

Another important issue in CFD methodologies concerns the scheme implemented for the
computation of the numerical fluxes. The upwind method, considering a one-dimensional Riemann
problem in the direction of the normal vector of each face of a finite control volume (interface between
adjacent control cells), appears to be strongly established as the most appropriate model for the evaluation
of the inviscid fluxes [Bar89, Dec92, Bla0O1]. For the solution of this problem approximate Riemann
solvers have been developed (Roe, Osher-Engquist, HLLC, etc.), as the exact solution would require
excessive computational effort [Roe81, Osh84, Bar89, Bar92, Dec92, Lan98, Bla01, Sor03].
Unfortunately, the discretization of the continuous computational field into finite control volumes results
in significant values of numerical diffusion; a remedy to this drawback is the implementation of higher-
order spatial schemes, such as the Monotonic Upstream Scheme for Conservation Laws (MUSCL), that
reconstructs the variables' values at computational nodes using Taylor series expansion [VanAS2,
VanL85, Bar89, Bar92, And94, Kal96, Lan98, Bla01, Kal05a]. Moreover, to control the total variation of
the reconstructed field and assure monotonicity between the adjacent control volumes, appropriate slope
limiters accompany the aforementioned scheme, such as the Van Albada-Van Leer, Min-mod, Barth-
Jespersen, Superbee, etc., [VanA82, Swe84, Bar89, Bar92, Bla01]. For the viscous fluxes, the
temperature and velocity components’ gradients have to be evaluated at the control volumes' interfaces;
usually a nodal-averaging or an element-based method (approximate Galerkin finite-element approach,
face-centered control volume approach, etc.,) are applied [Bra96, Kal96, Bla01, Kal05a]. Although the
first approach, especially when considering a simple arithmetic nodal-averaging, is susceptive to odd/even
oscillations, it is frequently selected due to the relatively increased computational effort required by the
element-based approach [Bra96].

For the simulation of turbulent flows the Direct Numerical Simulation (DNS) and the Large Eddy
Simulation (LES) models appear to be the methods producing the most accurate numerical results;
nevertheless, their computing requirements for excessively decreased spatial and temporal discretization
cannot yet be afforded widely [BlaO1]. As such, the RANS equations with an appropriate statistical
turbulence model, such as k-¢, k~w, SST (Shear Stress Transport) or Spalart-Allmaras, is still the most
widely employed methodology in engineering applications [Lau74, Saf74, Men03a, Du05, Kal05a]. The
aforementioned one- or two-equation models are typical examples of PDE's with source terms, based on
the Boussinesq assumption, according to which the turbulent shear stress is associated with the mean rate
strain with a linear relationship [Bla01, Kou03, Du05]. One of the most popular turbulence models is
revealed to the k-¢ [Lau74, Lar91, Kun92, And94, Ste94, Mav94, Jon97, Yo0d99, Koo00, Kou03, Du05],
being a well established method for the prediction of unsteady mean characteristics of a class of low-
speed vortex dominated flows [Koo0O]. It has been developed in various formulations, depending mainly
on the boundary wall treatment; for example it can be applied at the solid wall boundary region via wall
functions [Koo0O] or with a one-equation model employed at the same area [Jon97]. Although strong
non-linearities of the model may interact with numerical errors in such a way that positivity of the
variables k and ¢ is lost, appropriate treatment can overcome these difficulties quite easily [Lar91, Du05].
Another also widely applied turbulence model is the k- of Wilcox [Saf74, Lar91, Men94, Chi96, Liu96,
Pen99, Bre02, Kim03, Men03a], which unlikely the k-¢ does not usually consider wall functions at the
solid wall region but allows simple Dirichlet boundary conditions to be specified (low Reynolds number
approach). Despite its high level accuracy at this area, it appears to be relatively sensitive to the value of
free-stream dissipation rate [Men94, Men03a, Men03b]. This was one of the main motivations for the
development of the SST scheme [Men94], which is actually a combination of the aforementioned models.
It utilizes the k-w at the inner region of the boundary layer and switches via an appropriate blending
function to the standard k-¢ at the outer region and at the free shear flow- As such, it has a similar
performance to the k-w model, but avoids at the same time its strong free-stream sensitivity [Men94,
Men03a, Men03b]. Significant efforts have been made for the efficient treatment of source term of the
pre-described models, in order to alleviate its rapid increase during the iterative solution of corresponding
equations (especially in case of an explicit iterative scheme), a phenomenon usually arising at stagnation
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points [Lar91, Mav94, Dur96, Du05]. As a result, various methods have been developed, such as the
explicit limiting of the obtained corrections of model's variables [Mav94], use of different time step for
the flow and turbulence model PDE's [Mav94], implicit treatment of the source term in case of an explicit
iterative scheme [Bla01], utilization of only negative contributions of the source term for the construction
of the corresponding Jacobian matrix [Lar91, Koo0O0], etc. All these models were originally applied in
aeronautical applications, but since then have made their way into most industrial, commercial and many
research codes. Although they give satisfactory results in a computationally acceptable time, they are still
statistical models, so they do not derive turbulent variables' distributions in total agreement with DNS
data [Men94].

As CFD concerns numerical methods, the last main issue, which has to be defined is the iterative
approximation scheme employed for the solution of flow and turbulence model's equations (in a strongly
or loosely coupled manner) [Bla01]. The simplest means of solving iteratively a system of PDE's is the
implementation of an explicit scheme [Jam81, And94, Mav94, Ven95, Kal96, Kim03, Sor03, Kal05a],
e.g., a multi-stage Runge-Kutta method [Lal88a]. According to this scheme the temporal derivative of
conservative variables is discretized using a finite-difference formulation at each time step, after
evaluating the flux sum at the same step [Ven95]; in that way the explicit methods call for only simple
updates, resulting in easy parallelization and reduced memory requirements. Nevertheless, for large-scale
flow simulations, such as flows over aircrafts necessitating millions or tens of millions of computational
nodes, the rate of convergence slows down dramatically, resulting in relatively inefficient solution
schemes. Implicit schemes appear under certain circumstances more appropriate for fine grids, as they
allow for the use of larger CFL (Courant-Friedrichs-Lewy) numbers and consequently for larger time
steps, accelerating the solution process [Ven91, Ven95, Gri98, Joh04, Pet07]. Nevertheless, they aren't so
simple to implement, compared to the explicit ones, especially in a parallel computational environment,
while they call for increased memory storage. The point-implicit schemes (a category of implicit iterative
methods), usually implemented with the Jacobi or the Gauss-Seidel iterative algorithms, preserve
relatively the simple implementation of explicit schemes, even in parallelized simulations, along with the
utilization of large time steps [Kou03].

In order to increase the convergence rate and consequently accelerate the solution procedure
independently of the iterative scheme (explicit or implicit), especially in large-scale flow problems,
various techniques have been developed during the past years. Considering the use of unstructured grids
and the increase of computational effort and memory requirements which entail (especially the hybrid
ones), a more sophisticated data structure with indirect addressing, such as an edge-based one, can be
utilized [Bar92, Eva92, Bla01, Sor03]. According to this approach, the solver gets information from the
examined mesh as sets of nodes connected by an edge; in that way the nature of the hybrid mesh is
concealed from the main calculation loops, enhancing the solver with the capability of handling grids
composed of complex elements [Eva92]. Besides the main solver, h-refinement methodologies, analyzed
at a next paragraph, take advantage from the edge-based data storage, considering that the new nodes,
enriching the mesh, are introduced at the middle of the existing edges [Eva92, Loh92]. Another widely
applied acceleration method is the local time-stepping technique, defining for each computational node
the maximum allowable time step, which consequently results to the improvement of convergence of the
simulation [Bla0O1]. In case of an explicit iterative scheme usually entailing a relatively low convergence
rate, an implicit residual smoothing technique may be employed, which enhances the procedure with
implicit features and allows for the utilization of larger CFL numbers [Kim03]. Last but certainly not least
methods reducing the required wall-clock simulation time are the parallel computation [Ven95, Lan96,
Smi96, Kar99] and the multigrid method [Mav94, Mav96, Mav97, Mav98, Car00, Bla01, Sor03, Nis10,
Nisl1, Nis13], analyzed in detail in the following sections.

1.2.2. Radiative heat transfer modelling

Radiative heat transfer has to be considered and therefore be modelled in the simulation of any
engineering problem including combustion, e.g., fire in the internal area of a building or a tunnel,
combustion chambers, etc. Therefore, various methodologies were developed during the past decades,
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mainly divided in two categories, those using exchange view factors (zonal type approaches) and those
utilizing flux models (CFD type approaches) [Bor13].

The first model employing the Radiative Transfer Equation (RTE), which describes mathematically
radiative heat transfer in a general enclosure, was the Hottel's zone method [Hot67, Loc81]. Although it
has been widely applied, it appears to be relatively inefficient, due to its requirement for pre-computation
of the necessary exchange view factors. For complex geometries with a large number of discrete surfaces
the time for these evaluations increases excessively; therefore its implementation is limited to enclosures
including few discrete surfaces [Loc81]. This shortcoming was alleviated partially by the Monte Carlo
method, which considers the automatic computation of exchange view factors, tracking in a random
manner selected energy releases [Ste71, Loc81]. Based on the feature of geometric flexibility, the Monte
Carlo method became quite popular, though it didn't also achieve satisfactory convergence rates [Loc81].
Nevertheless, for both aforementioned methods belonging to the first category, which depend on the
utilization of exchange view factors, adequate accuracy is achieved only in the expense of a relatively
high computational cost [Sas95].

The second category of methods, employed for the prediction of radiative heat transfer, is based on
flux models (also named differential approximations), which, similarly to CFD, depend on the exchange
and balance of fluxes at control cells in which a computational domain is discretized. They have been
widely implemented in engineering applications, as they appear to be relatively more computationally
efficient, compared to the pre-mentioned zonal type approaches. In a similar manner to CFD solvers,
extra accuracy is gained with the increase of DoF's, e.g., by applying a grid adaptation technique, in
expense however of an also increased simulation time. Various algorithms involving flux models have
been developed and tested during the past decades, such as the six-flux model [Loc81, Hof88, Sas95,
Ker00], the Finite-Element Method (FEM) [Raz83, Fiv94, Fum04, Liu04, Liu05, Liu06], the Discrete
Ordinates Method (DOM) [Car68, Fiv84, Fiv87, Fiv88, Jam92, Kim98, Rai99, Gri08, Hunl1, Coel4] and
the Finite-Volume Method (FVM) [Rai90, Chu92, Chu93a, Chu93b, Mur98a, Mur98b, Mur98c, Mat99,
Rai99, Kim01, Kim08, Kim10, Cap10, Coel4].

The six-flux model [Hof88] was one of the first CFD type approaches, which became quite popular,
mainly due to its capability to retain the important effects of hot enclosure cases along with computational
economy by solving directly on the flow domain spatial grid and without needing any special description
of the geometry [Ker00]. Hybrid versions of this model have been also developed, such as the hybrid six-
flux/zone model. The Discrete Transfer Model (DTM) [Loc81, Sas95], which combines also
characteristics of zonal type methodologies [Loc81], was widely applied, due to its potential of preserving
the physics of the problem with relatively simple mathematics and controlling its accuracy by increasing
the number of rays projected from each physical surface and the number of zones that the domain is
divided into; this increase of DoF's results of course to a corresponding increase of required
computational resources [Ker0O]. Therefore, an accurate surface model, being necessary for the examined
geometry to be described, along with accurately shaped control volumes and positioning of the rays are
prerequisites in order also accurate solutions to be obtained by this method [Ker00].

Other broadly employed flux models for radiative heat transfer simulations are the Finite-Element
Method (FEM) [Raz83, Fiv94, FumO04, Liu04, Liu05, Liu06] and the Discrete Ordinates Method (DOM)
[Rai90, Chu92, Chu93a, Chu93b, Mur98a, Mur98b, Mur98c, Mat99, Rai99, Kim01, Kim08, Kim10,
Capl10, Coel4]. The popularity of the first model derives mainly from its feature that the radiative
intensity in a computational cell can differentiate across this domain and that this variation can be traced
to increase degrees of approximation [Liu06]. Despite DOM's inflexibility in anisotropic scattering
modelling and angular discretization [Rai99], especially in cylindrically configured enclosures under
axisymmetric or non-axisymmetric radiative heat transfer [Car68, Jam92, Gri08, Hunl1], it has been
applied in various multidimensional problems, providing accurate and computationally efficient solutions
[Fiv84, Fiv87, Fiv88, Kim98, Coel4]. For axisymmetric radiative heat transfer in cylindrical enclosures
the Modified Discrete Ordinates Method (MDOM) has been also proposed, according to which any set of
arbitrary control angles can be selected, while the simplicity of the conventional DOM is retained
[Bae98a].
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The Finite-Volume Method (FVM), proposed initially by Raithby and Chui [Rai90], is revealed as
one of the most viable and robust tools for analyzing radiative heat transfer, mainly due to its simplicity
and its applicability to complex geometries. Considering these characteristics, many researchers have
focused on this methodology, studying its potential for effective radiative heat transfer prediction in
various shapes of enclosures, represented by structured or unstructured tetrahedral (triangular for 2D),
hybrid or polygonal grids and Cartesian or cylindrical coordinates. For example, Chui et al. [Chu92,
Chu93a, Chu93b] as well as Grissa et al. [Gri08] employed this method on cylindrical enclosures, Kim
and Baek treated unstructured meshes, including complex geometries and obstacles [Bae97, Kim01],
Murthy and Mathur [Mur98a, Mur98b, Mur98c, Mat99] implemented it on structured, unstructured and
hybrid grids, extending it to account also for periodic boundaries, while Kim et al. applied it in
unstructured polygonal meshes [Kim08, Kim10], etc. Modifications of this method were also developed,
as its coupling with the Mie theory for anisotropically scattering media by Trivic et al. [Tri04a, Tri08], its
combination with the lattice Boltzmann method in conjunction with genetic algorithms for transient
conduction-radiation heat transfer problems by Das et al. [Das08], the corresponding to MDOM Modified
Finite-Volume Method (MFVM) for axisymmetric radiative heat transfer in cylindrical enclosures by
Kim and Baek [Kim05b], etc. Other researchers worked on the improvement of its efficiency, such as
Kim et al. proposing a parallelized version of it [KimO5a], or on the increase of its accuracy, such as
Guedri et al. implementing a higher-order spatial differencing scheme [Gue09] and Hassanzadeh and
Raithby employing a second-order radiative transfer equation [Has08].

According to the finite-volume scheme, the RTE is discretized and solved in a discrete number of
control cells (similarly to CFD) as well as for a discrete number of finite solid control angles; it is
integrated for each direction over the control volume under examination. Conservation of energy, spatial
discretization, application of boundary conditions, and, formulation and solution of discrete equations are
common procedures for fluid flow and radiation [Rai99, Kim05a]. It is this the main feature making this
method attractive for CFD scientists, as it allows radiative heat transfer to be treated in a way familiar to
them, compared for example with Monte-Carlo method, which requires additional knowledge and
experience considering the employed exchange view factors [Rai99, Ste07]. Consequently, via the finite-
volume modelling of radiative heat transfer, the assets of well established in CFD techniques can be
utilized, e.g., the employment of hybrid unstructured grids with highly stretched elements at boundary
surfaces, resulting in increased accuracy at the same regions, or the incorporation of acceleration
techniques, such as parallel computation [Ven95, Lan96, Smi96, Kar99, Kim05a] and multigrid scheme
[Mav94, Mav96, Mav97, Mav98, Car00, Bla01, Sor03, Nis10, Nis11, Nis13]. Despite the aforementioned
similarities, an important difference exists between them; heat transfer via radiation occurs
simultaneously in all directions [Rai99]. Nevertheless, considering its main features it appears to be the
first choice for performing radiative heat transfer simulations by scientists familiar with CFD [Rai99,
Kim05a], and for enhancing existing finite-volume CFD solvers with additional radiative heat transfer
computation capability [Kim96, Ko08].

Based on the test cases solved with the finite-volume scheme during the past years, two main
shortcomings have been identified, causing reduction of the method's accuracy: the ray effect and the
false scattering [Cha93, Coe02, Capl0]. The first drawback derives from the discretization of the
continuous angular field in finite solid control angles, and can be alleviated with a denser angular
resolution [Cha93]. It doesn't depend at all on the selected spatial resolution; therefore, it can be observed
even to a very fine mesh. On the other hand, the false scattering is associated only to the spatial
discretization, resembling false or numerical diffusion in CFD scientific field [Coe02], while its effects
can be subdued by the utilization of finer grids (globally or locally employing grid adaptation) or more
accurate spatial schemes [Cap10]. Significant efforts have been exerted during the last years to moderate
the consequences of this drawback and improve the accuracy of the finite-volume method, such as the
development of the second-order RTE [Has08] or of higher-order accurate spatial schemes [Capl0,
Gue09].

As mentioned in the previous section a higher-order accurate spatial scheme, based on the MUSCL
methodology, considers the reconstruction of variables' values (radiative intensity in case of RTE)

1-6



Introduction

employing the Taylor series expansions [VanA82, VanL85, Bar89, Bar92, And94, Kal96, Lan98, Kal05a,
Bla01]; in that way more mesh nodes are taken into account for the computation of radiative intensity
numerical fluxes, avoiding significant amounts of false scattering. Limiting by appropriate functions, such
as those of Van Albada-Van Leer [VanA82] and Min-mod [Swe84], is required mainly for boundary
surfaces, where strong discontinuities arise similarly to shock waves in compressible flow. Unfortunately,
higher-order schemes may lead sometimes to negative - unphysical - values of radiative intensity; a fix-up
procedure, reverting them to zero or to their previous values [Cap10], can be employed to subdue this
problem. Despite this temporary remedy, such values along with the common practice of solving RTE
with simple iterative approximations, a procedure being susceptible to oscillations, may lead the
simulation even to failure. Although the time-dependent RTE is applied usually to transient-unsteady
simulations [Das08, Hunl1, Tan02, Cha03], it can be employed along with more sophisticated iterative
schemes to mitigate the aforementioned problem. Such a scheme is the multi-stage Runge-Kutta method
[Lal88a], formulated suitably to provide a second-order temporal discretization [Bla0O1], considering that
a higher-order spatial scheme shall be accompanied by an also higher-order temporal one.

1.2.3. Parallel computation

Large-scale test cases involving grids with millions or tens of millions DoF's, e.g., in flows over
aircrafts, result in very time-consuming simulations; thus, considerable efforts were exerted during the
past decades for the development of appropriate strategies to enhance the existing numerical solvers with
the capability of solution of such problems in a parallel computation environment. These efforts were
significantly augmented by the rapid increase of computing capabilities during the same decades, as well
as by the widespread availability of multi-processor computer systems. According to the so called Flynn's
taxonomy [PARCOMP], proposed by the American Professor Michael J. Flynn in 1966, the following
classifications of multi-processor computer architecture, based on the two independent dimensions of
Instruction Stream and Data Stream, can be distinguished [Fly98, PARCOMP]:

e SISD (Single Instruction-Single Data Stream),

e SIMD (Single Instruction-Multiple Data Stream),

e MISD (Multiple Instruction-Single Data Stream),

e MIMD (Multiple Instruction-Multiple Data Stream).

From the aforementioned categorization, the first group does not actually correspond to parallel
computing (a single processor/process is assigned), while the SIMD or the slightly different SPMD
(Single Program-Multiple Data Stream, corresponding to the same program but not necessarily to the
same instruction) appears to be the most widely applied one in CFD numerical methods, based on the
domain decomposition methods [Loh92, Ven95, Lan96, Smi96, Gri98, Sor03, Kim05a]. Considering the
aforementioned governing PDE's, the domain decomposition approach entails the process of distributing
and exchanging data among the processors/processes in a distributed memory computational system. In
this context, domain decomposition indicates the methodologies developed for decomposing a data
structure; thus, data decomposition is perhaps a more appropriate term [Smi96].

In CFD simulations the domain decomposition approach is implemented via the division of the
examined grid among the available processors/processes (almost always one process corresponds to one
processor); a mesh partitioning application, such as METIS, can be used for this division. Special care is
required in order decomposition to be performed in a judicious manner, since it has a significant impact
on the parallel performance of the solver via the work balance and the communication load among the
processors [Tai03, KalO5a]. Since initial partitioning of computational field is accomplished, two main
strategies can be employed in order the communication among the adjacent sub-domains to be
established; the first is based on overlapping of interface cells, whose nodes are assigned to multiple
partitions, as well as the exchange of values of the variables and nodal gradients, while the second
considers straightforward the exchange of numerical fluxes at interfacing faces with no overlapping areas
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[Tai03, KalO5a]. Although the first strategy might seem more memory consuming, it appears to be quite
efficient, as for an explicit especially iterative scheme it is not the memory usage that should concern, but
the communication cost between the adjacent sub-grids [KalO5a]. Finally, an appropriate interface
protocol, such as the Message Passing Interface (MPI), is required in order internal boundary data of each
sub-domain to be exchanged and the iterative communication to be achieved [Loh92, Ven95, Sor03,
Tai03, Kal05a].

1.2.4. Multigrid methodology

Although unstructured mesh solvers offer the largest possible flexibility in the treatment of complex
geometries, they appear to be relatively inferior in terms of efficiency compared to structured ones
[Mav99, Car00]. A remedy to this significant shortcoming is the multigrid methodology; a scheme
originally introduced to increase the convergence rate of the numerical solution of elliptic problems
[Bra84, Mav97, Fer02], but since then it has made its way into most types of numerical simulations in
CFD. Its main idea derives from an observation identified to most of the well-established iterative
methods; they converge more slowly on finer resolutions as information is carried out to only one node
per iteration (one-dimensional problem) [Fer02]. As a result information has to go back and forth on the
computational domain several times during an iterative solution, generating both high and low frequency
errors, whose damping defines actually the convergence rate of the simulation [Fer02]. The commonly
implemented iterative schemes succeed in efficient relaxation of the first errors, but they seem to be
relatively inefficient against the low frequency ones [Fer02]. The multigrid method, which is based on the
solution of governing PDE's on successively coarser grids, actually transforms these low frequency errors
in high frequency ones on the coarser resolutions, allowing for their efficient damping [Fer02]. The
solutions, obtained by the coarser meshes in a relatively negligible computation time, are prolongated to
these of the finer grids up to the initial finest one, requiring as such an associating relation between two
successive grids. More specifically, appropriate operators, namely restriction and prolongation operators,
have to be defined; the first one considers a method for transferring smoothed values of flux balances
and/or conservative variables from the finer to the coarser grid (restriction procedure), while the second
operator includes a scheme for interpolating conservative variables' corrections from the coarser to the
finer grid (prolongation) [Fer02]. Many researchers have focused on the multigrid methodology during
the past years, developing various types; their differences are mainly identified on the generation of the
coarser resolutions as well as on their associating relation [Mav94, Bra96, Liu96, Mav96, Mav97, Mav98,
Car00, Dar06, Bla01, Fer02, Han02, Sor03, Tai03, Liu06, Kat09, Vak09, Nis10, Nis11, Nis13].

Considering the way the coarser resolutions are generated, the multigrid method can be divided in
two main types, the geometrical and the agglomeration approach [Bla0Ol]. According to the first
classification, the sequence of the coarser grids is obtained either by the construction from scratch of
completely independent grids with a corresponding application (non-nested grids approach) or by the
generation of associated grids (nested) [BlaOl]. If the second (topological) method is selected, the
successive grids can be obtained either by starting from the coarsest one enriching it with more mesh
nodes via a grid adaptation technique, such as h-refinement, or by starting from the finest one removing
nodes and implementing re-triangulation [Bla01]. In a similar way to the previous topological approach,
the second (agglomeration) multigrid type, initially proposed by M.H. Lallemand [Lal88b], begins from
the initial finest grid generating the sequence of required successive coarser grids via merging the
adjacent control volumes; in this way coarser meshes of irregular polyhedral elements are constructed.
Despite the satisfactory performance of this scheme for inviscid flow problems along with tetrahedral
grids, some studies indicate the reduced gained acceleration in case of its implementation for viscous flow
simulations accompanied by hybrid meshes with highly stretched elements at the boundary layer region
[Mav97, Mav98, Lam04, Nisl0, Nisll, Nisl3]. A semi-coarsening or directional-coarsening
agglomeration technique was proposed by D.J. Mavriplis [Mav97, Mav98] to alleviate the effects of the
aforementioned shortcoming. According to this method, the control volumes of nodes belonging to
stretched elements (prisms or hexahedrons) are fused together only if they are located in the normal to the
boundary surface direction, while for the rest nodes of tetrahedral elements the isotropic procedure is
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employed; thus, the grid anisotropy is moderated as the generated coarser meshes appear to be less
stretched than the initial finest one [LamO04]. Alternatively, full coarsening directional agglomeration can
be implemented, which considers the fusion of control cells on a topology-preserving framework,
resembling the advancing front technique [Han02, Nis10, Nis11, Nis13]. In accordance with this method,
the procedure begins by merging the solid wall boundary control cells, while next a line-agglomeration
step is performed fusing control volumes along implicit lines starting directly above the boundary
volumes [Nisl1]; compared to semi-coarsening technique, this agglomeration type seems to result to
more efficient solutions, as it allows for greater reduction of DoF's between two successive grids. Finally,
an alternative to the aforementioned types of multigrid scheme (geometrical and agglomeration) is the
Algebraic Multigrid (AMG), which considers the construction of a coarsening matrix rather than the
generation of any grid topology [Vak09].

The second feature distinguishing types of multigrid method, concerns the associating relation and
consequently the way in which data are transferred between two successive grids. The initially introduced
multigrid schemes were based on the Full Multigrid (FMG) method [Bra84], according to which after
fully or partially relaxing the governing PDE's on the coarsest grid the obtained solution is interpolated to
the finer one and utilized as an initial guess. The procedure is repeated up to the finest resolution,
achieving in that way a better and simultaneously cheaper initial guess/solution, considering that most
simulations begin from a uniform unphysical state [Fer02]. Alternatively, the Full Approximation Scheme
(FAS) can be implemented, in which at each multigrid cycle the governing PDE's are solved only for the
finest resolution, while for the coarser ones approximate versions of the same equations are relaxed
[Fer02, Sor03, Lam04, Nisl10, Nisl1, Nis13]; the solutions obtained by the coarser grids correspond
actually to smoothed versions of the finest mesh solution [Fer02]. More specifically, since a solver's
external iteration is complete on the finest grid, the values of conservative variables and flux balances are
restricted to the coarser level; this process of solution and restriction is repeated up to the coarsest mesh
[Fer02]. At next, the conservative variables' corrections are transferred via prolongation from each coarser
level to its finer one, up to the initial finest mesh. In this way a V-cycle process is accomplished, being
probably the most commonly applied strategy; otherwise a W-cycle strategy can be followed [Bla0O1]. In
addition, a nested combination of the pre-mentioned methods has been proposed in the open literature
aiming to improve even more the gained acceleration; it considers the incorporation of FAS approach in
the FMG scheme and the division of the solution procedure in two main stages, namely the preliminary
and the main one [LamO04]. At the first stage the governing PDE's are relaxed, beginning from the coarsest
grid and, as the number of iterative cycles increases, the solution extends successively to the finer meshes
up to the initial finest one, at which point the main stage begins. In that way a better initial guess is
obtained for each finer FAS level, resulting subsequently to an even faster convergence of the simulation
to the final steady-state [Fer(02].

1.2.5. Grid adaptation

As already mentioned, in order for the effects of numerical diffusion (or false scattering for radiative
heat transfer problems) to be subdued, finer grids can be employed, which however increase the memory
and computing requirements [Capl0]. Alternatively, a grid adaptation technique can be implemented to
improve the accuracy at the region of interest, without increasing significantly the computational
requirements. The same methodology can be followed in test cases including sufficiently localized
phenomena, such as shocks in compressible fluid flows, or in problems encountered for the first time, for
which no previous knowledge exists about the necessary spatial resolution [Loh92]. The main idea is to
refine the mesh in regions with large solution gradients and maintain or even coarsen it in areas where the
solution doesn't vary considerably [Kal05b]. Considering additionally the easiness of its application along
with solvers utilizing unstructured grids and an edge-based data structure [Eva92, Loh92], it can be
employed during the solution procedure to increase the accuracy at user- or automatically-defined areas,
achieving significant computational savings, as it avoids the generation of a new mesh from scratch.
Many studies have been performed for grid adaptation, resulting in methods, classified mainly in two
types, redistribution and refinement [Kal96, Kha00].
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The first classification considers the reposition of the mesh nodes in order a more effective resolution
in a selected region to be obtained; it targets test cases involving grids, constituted by a sufficient total
number of nodes to capture the whole phenomenon, but with insufficient point distribution in a specific
area of the field for satisfactory accuracy [KhaOO]. For example, redistribution of prismatic nodes based
on their dimensionless distance (y") values has been implemented in the study of Kallinderis and Baron
[Kal92] to resolve more accurately the viscous stresses at this region [Kal05b]. Moreover, in [Fel03],
[11i99] and [PaiO1] edge and face swapping strategies are followed in order to align the mesh under study
with flow behaviour [Kal05b]. In general, two main redistribution approaches have prevailed, the Spring
Systems, handling computational meshes as systems of springs, and the Moving Finite-Element method,
according to which the positions of mesh nodes are assumed unknown in order to be computed as well
[Loh92]. Despite this method appears to be relatively simple, it encounters difficulties in cases of
complex geometries, requiring more DoF's.

The second category (refinement), considers the enrichment of the mesh under examination with
more DoF's, following specific rules; it is basically divided in two types, namely p-refinement and h-
refinement. According to the first one, extra DoF's are added following hierarchical shape functions
[Loh92], while it even allows for different orders of spatial approximation throughout the computational
domain [Kal05b]. The h-refinement technique effects the enrichment of the examined grid by splitting the
existing elements into new ones [Kal05a]; it begins with the detection of desired areas for adaptation and
the division of the corresponding mesh edges along with the embedding of new nodes as midpoints of
them. The division is extended then to the faces and the elements of the targeted regions following pre-
defined rules [Loh92]. Special treatment is required for hybrid grids (including hexahedral, prismatic,
tetrahedral and pyramidical elements), due to the variety of element types and division ways of them
[KalO5a]. Despite it is assumed a relatively efficient process, in some studies such as this of Kavouklis
and Kallinderis [Kav10] its parallel implementation has been proposed in order the required wall-clock
time to be further decreased. Moreover, the aforementioned methodology can be coupled with p-
refinement or de-refinement approach [Kal05b]; the latter is employed in an analogous to h-refinement
manner at regions where the solution doesn't vary significantly [Kal05b].

1.3. Present study

1.3.1 Overview

According to the main objective of this thesis, methodologies to support the numerical simulation of
compressible fluid flow and radiative heat transfer were developed. For the representation of the
examined computational domains, three-dimensional unstructured tetrahedral grids are employed.
However, if a viscous flow is simulated, prisms and pyramids are also included (hybrid grids) to resolve
effectively the severe anisotropy of the flow at the boundary layer region; for radiative heat transfer
problems, highly stretched elements are utilized at the areas of boundary surfaces in case increased
accuracy is required [Lygl2b, Lygl4a, Lygl5]. The discretization and the corresponding reformulation of
governing PDE's (RANS, turbulence model equations and RTE) is implemented with a node-centered
finite-volume scheme [Lygl3c, Lygl4a, Lygl5].

For the computation of the RANS PDE's inviscid fluxes, an upwind scheme is employed, assuming a
one-dimensional Riemann problem at each face of a finite control-volume, while its solution is succeeded
using the Roe's approximate Riemann solver. The pre-mentioned scheme is enhanced by a higher-order
accurate spatial reconstruction method, based on the MUSCL technique, along with appropriate slope
limiters, namely Van Albada-Van Leer, Barth-Jespersen and Min-mod. These limiting functions are
required to control the variation of reconstructed values and maintain monotonicity between the states at
the interface of each two adjacent control volumes. For viscous fluxes, the same discretization is utilized,
while the necessary velocity and temperature gradients are calculated implementing either an element-
based method, which considers the construction of edge-dual volumes, or a nodal-averaging one. For
turbulent flows, three two-equation turbulence models, namely k-¢ (in three versions), k-w and SST, have
been incorporated; no additional model is included to allow for transition modelling [Lygl1]. For time
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integration and iterative approximation of the flow and turbulence equations, either an explicit scheme,
applying a second-order temporal accurate four-stage Runge-Kutta (RK(4)) method, or an implicit one,
employing the Jacobi or the Gauss-Seidel algorithm, is implemented [Lyg11].

In a similar way, a node-centered finite-volume discretized, time- or non-time-dependent RTE is
employed to allow for the prediction of radiative heat transfer in general enclosures through absorbing,
emitting, and either isotropically or anisotropically scattering gray media; the considered forward
scattering ratio (F2) is based on the Legendre polynomial expansions [Lygl2a, Lygl2b]. The effects of
overhang problem, caused by the combination of unstructured grids and the division of angular domain in
finite solid angles, are alleviated with either the bold approximation or the pixelation method. The
methodology is enhanced with a second-order accurate spatial scheme, based on the MUSCL
reconstruction of the radiative intensity values, while Van Albada-Van Leer or Min-mod slope limiter is
used to bound the reconstructed values, especially at the boundary surfaces' regions [Lygl3b, Lygl3c].
The final steady-state solution is achieved by either iterative approximations (steady RTE, non time-
dependent) [Lygl2a, Lygl2b] or a second-order temporal accurate four-stage Runge-Kutta (RK(4))
method (time-dependent RTE) [Lyg13b, Lygl3c].

In order to increase accuracy and efficiency of the proposed methodology, additional enhancing
schemes have been incorporated to both fluid flow and radiative heat transfer solvers. An edge-based data
structure along with the local-time stepping technique, suitably defined for each solver, is used for the
computation of numerical fluxes, resulting in reduced memory requirements and computational effort
[Lygl3c, Lygl4a, Lygl5]. To alleviate increased computational requirements especially in large-scale
simulations a parallelization strategy was developed, based on the domain decomposition approach and
the MPI library [Lygl2b, Lygl4a, Lygl5]. In addition, a spatial agglomeration multigrid methodology is
incorporated, resulting in more acceleration of the solution procedure; it considers the implementation of
FAS (included in FMG) on successively coarser spatial resolutions, derived from the initial finest grid
through the fusion of adjacent control volumes in a way similar to advancing front technique [Lygl4b,
Lygldc, Lygl4d, Lygl4f]. In case of radiative heat transfer simulations, the aforementioned method is
extended to an angular version, which considers coarsening of the angular resolution by the fusion of
neighbouring solid control angles, along with the FAS employment in a corresponding to spatial scheme
way. Furthermore, a combined (nested) spatial/angular agglomeration multigrid method is introduced,
according to which a complete angular FAS cycle is accomplished at each level of the spatial multigrid
scheme [Lygl4b, Lygl4f, Lygldg]. Finally, the h-refinement technique is incorporated to enrich the
desired regions (either automatically selected or user defined) of unstructured, tetrahedral or hybrid grids
and consequently increase accuracy of the final steady-state solution at the same areas; it can be
performed during the solution procedure, avoiding the generation of a new mesh from scratch [Lygl3b,
Lygl3c].

Based on the aforementioned methods an academic CFD code, named Galatea (one of the fifty
goddess-nymphs of the sea, the Nereides), was developed; it has been validated against three- and quasi-
three-dimensional benchmark test cases, while its results have been compared qualitatively and
quantitatively with wind tunnel experimental data as well as with those obtained by acclaimed
corresponding solvers. The solutions results confirm that the proposed methodology/code is capable at
effectively simulating compressible fluid flows and radiative heat transfer in terms of accuracy, geometric
flexibility and computational efficiency [Lygl1, Lygl2b, Lygl3c, Lygl4a, Lygl4e, Lygl4g, Lygl5].

1.3.2 Contributions
Considering similar studies available in the open literature, the following original contributions have
been introduced in this thesis:

e A combination of a parallel node-centered finite-volume method with three-dimensional
unstructured hybrid grids for radiative heat transfer prediction [Lyg12b].
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e A second-order accurate spatial scheme jointed or not with the slope limiter of Van Albada-Van
Leer or Min-mod, improving accuracy of radiative heat transfer finite-volume solutions, especially
at boundary surfaces' regions with large radiative intensity gradients [Lyg13c].

e Implicit treatment of diffusively and specularly (mirroring) reflecting surfaces' boundary conditions
[Lygl3c].

e A grid adaptation method, employing h-refinement technique to improve the accuracy of radiative
heat transfer solution at specific regions of the examined mesh [Lyg13c].

e A parallel spatial agglomeration multigrid method enhancing both flow and radiative heat transfer
algorithms with improved computational performance [Lygl4b, Lygldc, Lygldd, Lygl4f,

Lygl4g].

e A parallel angular agglomeration multigrid scheme for radiative heat transfer simulations [Lyg14b,
Lygl4f, Lygl4g].

e An extension of previous methods in a combined (nested) spatial/angular agglomeration multigrid
scheme for radiation problems [Lyg14b, Lygl4f, Lygl4g].

The aforementioned contributions have been published in sixteen Journal and Conferences' papers, listed
below.

1.3.3 Outline

The structure of this thesis is as follows: Chapter 2 describes the fluid flow model, including
governing equations, discretization method, computation of numerical fluxes and iterative solution, while
in Chapter 3 the corresponding topics are analyzed for the radiative heat transfer model. In Chapter 4 the
implemented parallelization strategy is summarized, while Chapter 5 includes the spatial, the angular and
the combined (nested) spatial/angular agglomeration multigrid scheme, developed to improve the
computational performance of the proposed (flow and radiative heat transfer) methodology. Chapter 6
contains the employed automatic mesh enrichment method (h-refinement), enhancing the algorithm with
the capability of increasing solution's accuracy at specific locations, defined either automatically
depending on selected criteria, or by the user. Finally, in Chapters 7 and 8 the validation of the proposed
method against benchmark test cases is analyzed, including qualitative and quantitative comparisons of
the obtained results with the available experimental data as well as other solvers, while Chapter 9 contains
some conclusions and information on ongoing and future work.
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Fluid flow

2. Fluid flow

2.1. Governing equations

2.1.1. The Navier-Stokes equations

A compressible viscous flow is described by the Navier-Stokes equations (named of the French
mathematician Claude Louis Marie Henri Navier and the English engineer Sir George Gabriel Stokes),
which are derived by the conservation laws of mass, momentum and energy [Bla01]. In three dimensions,
arranged into convective (inviscid), diffusive (viscous) and source terms, they can be written in
differential form as:

@4_ a_'[nv . aéinv .\ ajinv ~ aﬁvvis ~ aévix ~ ajv[s
ot ox ay oz O ay o

=S 2.1)

. . o T .. oL
The conservative variables’ vector W = ( 0, pu, pv, pw, pE ) , the inviscid flux vectors F™ G™, Jj™,
the viscous flux vectors 7, G*,j* and the vector of the source term S are expressed in terms of the
primitive variables (p,u,v,w, p). The source term is set to zero in this work, while the inviscid and

viscous vectors are defined as [Koo00, Lygl4e]:

pu oV pW
pu’+p PV PWi
F™ = puw |, G™=| pV+p |, J"= LPWY (2.2)
puw YW PW +p
(PE+p)u (PE+p)v (PE+p)w
0 0 0
Ty I T
F"™ = T, , G = 7, ,J = T, (2.3)
xz yz 7.
UT, + VT, + W +q, UT, + VT, +WT_ +q, UT, + VT +WT +q.

inv

For an inviscid flow only the corresponding flux vectors F",G",J" are considered, leading in the

so-called Euler equations (named of the Swiss mathematician and physicist Leonhard Euler). On the other

Vis

hand, for a viscous flow the diffusive flux vectors F'*,G",J"™ have to be taken into account, based on
the components of the stress tensor (Tmr ,C_V,TXZ,TW,TW,TZZ) , which are defined for Newtonian fluids

(shear stresses proportional to the velocity gradients) as [Hir90]

ou. 8uj 2 N
= —+—L|-=(V V)6, 2.4
’ ﬂ[(ax/ axz} 3( ) U] =y

where y is the dynamic viscosity coefficient, which for a perfect gas depends strongly on the temperature
but only weakly on the pressure [Bla0O1]. Considering this state, it can be computed from the local
temperature of the fluid (in K) via the Sutherland formula as [Luo05]
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= (2.5)

where the coefficients ¢; and ¢; are equal to 1.458E-6 kg m™ sec”’ K7 and 110.4 K respectively, e.g., the
obtained dynamic viscosity for air at 300 K equals to 1.846E-5 kg m™ sec”’. Using another formulation of
the same equation, which is based on the reference dynamic viscosity u,.r and the reference temperature
T,es (usually the ones in the far field) it can be computed as [Luo05]:

T 3/2
ref +c

7:‘ef T+ CZ

The three-dimensional Navier-Stokes equations are expressed by a set of five equations with five
conservative unknown variables (p, pu, pv, pw, pE) ; nevertheless, they contain seven unknown flow field

variables, namely (p,u,v,w,E,p,T) , necessitating two more equations. Considering that in pure

aerodynamics, the fluid can quite reasonably be assumed to behave like a perfect gas, the perfect gas state
equation is included in the equation set [Lan98]

p=pR,T (2.7)

where the gas constant R, equals to 287.04 m’sec”’K” and it is associated with the constant pressure and
volume specific heat coefficients with the following equations

R,=c,-c, 7y=c,lc, (2.8)
while these coefficients are defined as follows
h=cT, e=cT (2.9)

where / and e are the enthalpy and internal energy of the gas per unit mass. The specific heat coefficients
are assumed constants, although for different gases they take different values; for air the constant pressure
specific heat coefficient ¢, equals to 1004.64 m’sec’K, the constant volume specific heat coefficient c,
equals to 717.6 mzsec'zK'f and the dimensionless coefficient y equals to /.4 [Lan98]. The last expression
completing the equation set, associates the pressure p with the total energy per unit volume pE [Bla01]

,0Ez,oe+%,o(u2 +v +wz):pch+%p(u2 +v +w2):

» 1 | (2.10)
R—gcv+5p(u2 +v’ +w2)=(y_1)+5p(u2+v2+w2)

where pe is the internal energy per unit volume The corresponding specific total enthalpy /4, then is
associated with the pressure p and the total energy per unit volume pE as:

pPEXD __¥D

1 2 2 2
+—\u " +v +w 2.11
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The heat flux vector (qx,q},,qz) in the energy equation is defined accordingly to the stress tensor as
[BlaO1]

Pr

g, =xVT, x= (2.12)

where the conductivity coefficient y depends on the dimensionless Prandtl number Pr (named in honor of
the German professor Ludwig Prandtl), and is commonly considered constant in the entire flow field and
equal to 0.72 for perfect gases.

Following the common strategy in CFD as well as in experimental fluid mechanics, the governing
equations are expressed in dimensionless form; the normalization of the variables is performed utilizing a
characteristic length L, the free-stream velocity V., the free-stream density p,.s; the free-stream dynamic
viscosity u,.rand the constant volume specific heat coefficient c, as:

s h=—, R, =—=y-1 (2.13)

Considering the previous normalizations, the rest of the variables, included in the equations (2.1)-
(2.3) and (2.10)-(2.11), are expressed as

- PRI TR 2 (2.14)
10 ref I/ief p ref I/ief I/ref I/ref / Cv ch{f' / I/lef

while taking into account the dimensionless Reynolds number (named of the British engineer Osborne
Reynolds), defined as [Mun98]

PV L
/’l ref

Re (2.15)

the dynamic viscosity x in the equations for the stress tensor and heat flux vector, is substituted by the
term j/Re:

y 7. o . =
= [ S S0 2 (v 7 ), (2.16)
" Rellox, ox ) 3 ‘
- By o
= VT 2.17
4 = Repr (2.17)

Additionally, the constant pressure and the constant volume specific heat coefficients are normalized
(¢, =y and ¢, =1), while the perfect gas equation is transformed as:

p:pRgT:ﬁprefI/lif :ﬁprefjégcvf(l/lif/cv):p:ﬁégfjp:ﬁ(}/_l)T (218)
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As far as the dimensionless dynamic viscosity is concerned, it can be assumed quite safely to be
equal to unity in compressible flow simulations as these encountered in this work or preferably evaluated
via the Sutherland law using the dimensionless temperature as [Mar(07]

~ T 3/2Tref’+cz_ T(V}if/cv) 3/2fref(Vrif/CV)_Fcl_
702 T

Ty T+c, of (Véf /e, (Vrif Je, ) TG
7oy S - of, (2.19)
(i]z ref + (V;Z/,/Cv) :LiJ; T;ef- + ]_;ef
(Vrff / G ) ™ Tref

where 7" is the dimensionless local temperature, while Tref and T,ef are the dimensional and the

dimensionless reference temperature (usually the one in the far field). Finally, two more expressions used
in this work, concern the computation of the local speed of sound at a node P [Lan98]

& =rRT =\r (7 =17, = 72 (220)

P

and the computation of corresponding Mach number [Mun98]:

\/ﬁ
M, = i, +~VP+WP 2.21)
Cp

For simplification reasons the superscript "™, denoting the normalized variables, will be neglected at
the next sections.

2.1.2. The Reynolds Averaged Navier-Stokes (RANS) equations

Although the Navier-Stokes equations can account theoretically for turbulent flows (DNS-Direct
Numerical Simulation), their utilization is limited only to relatively simple flow problems at low
Reynolds numbers, due to their requirements for excessive spatial resolution and computation time.
Instead of them, approximation methods are preferred, such as the Large Eddy Simulation (LES) or the
Reynolds Averaged Navier Stokes (RANS) equations, the latter implemented in this work. The first
modelling approach was introduced by Osborne Reynolds in 1895, in accordance with which the flow
variables are decomposed into a mean and a fluctuating part, e.g., a flow variable U; is analyzed as
follows

U=U~+U, U =0 (2.22)

where the turbulent fluctuation is described by a prime and the mean value by an overbar, the latter
defined as:

_ 1 t+T
U =lim— | U, dr (2.23)

T—)ooT .
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Nevertheless, the previous equations can be implemented only in incompressible flows or in flows in
which the value of density can be assumed constant [Bla01]. Thus, for compressible flows the density
(mass) or the Favre averaging method is applied to certain quantities (velocity, enthalpy, energy), while
for the rest variables (density and pressure) the Reynolds averaging approach is maintained [Bla01]. As
such the previous equations are transformed for the velocity, enthalpy and energy as:

U=U+U" pU'=0 (2.24)
U —llimle U dt (2.25)
i /3 T—w T f p i )

Furthermore, in the governing equations the turbulent kinetic energy k has to be considered, which is
defined, using the velocity fluctuations, as follows:

i

1 —
pk == puji] (2.26)

With the above approaches the Favre and Reynolds Averaged Navier-Stokes (RANS) equations are
derived in the following formulation (implemented in this study) [Lygl4e]

aW a riny aéinv ajinv a]:—'vvi_v 6évis ajvis
+ + + — — —

o o o o o oy oz 0 (227)
pu pV oW
pu’+p pvu pWi
Fm puv LG =| pviap |, J™= PWY (2.28)
puw PYW PW +p
(PE+p)u (pE+p)v (PE+p)w
0 0
TXX Tyx
P ., Fu ,
Trz Tyz
ur, +vr, +wr,_+q,+E, ur, +vr, +wr,_+q,+E,
(2.29)
0
sz
J" = T,
T

zz

Ut +Vvr , +wr_ +q,+ E,

where the mean total energy per unit volume pE and the corresponding mean specific total enthalpy 4,
which include the contribution of the turbulent kinetic energy &, can be evaluated as [Koo0O0]:

2-5



Governing equations

p 1 2 2 2
pE = +—plu”+v +w )+ pk 2.30
(r-1) 2 ( ) =0
PE+p _yp 1o 5,
h = = +—(u"+v +w )+k 2.31
e p(r-1) 2( ) o0

Similarly, the viscous stress tensor is extended in the momentum and energy equation by the
corresponding Favre averaged turbulent stress tensor 7, [Bla01]:

T, =—pu) (2.32)
Based on the Boussinesq hypothesis (named in honor of the French mathematician and physicist
Joseph Valentin Boussinesq), which assumes a linear relationship between the turbulent shear stress and

the mean rate strain, the total averaged stress tensor 7;, divided in the laminar part denoted by the
superscript / and the turbulent part denoted by the superscript ¢, is defined as [Koo00]:

ou Ou.)| 2 ~ Ou. Ou, 2 ~ 2
e = | A T 2 (vp)s, | |+ iy -5V P)s, |-Zpks, | =
AR {Re[(@xj GxiJ 3( )’] H ox; Ox 3( )” 35
Re " )|\ax, ax, | 3 v |3

The total averaged thermal vector ¢, is defined accordingly to the total averaged stress tensor as
[Lyglde]

(2.33)

g vg = v Ay
qt qZ qZ Re Pr Pr (2’34)

t

where Pr, is the turbulent Prandtl number, which is in general assumed to be constant in the entire flow
field and equal to 0.9 for perfect gases or air. In case of the k-¢ turbulence model we define term E,_,

which corresponds to the partial derivative of the turbulent kinetic energy £, as

“o M | Ok
E, =| 4|
o (Re GkJﬁxi (2.35)

while in case of the k-w and SST turbulence model as:

Ox,

1

ok
E, = (i+ ﬂm)— (2.36)
' Re

The term g, is the turbulent dynamic viscosity, while oy is a constant; for their evaluation as well as
for the computation of the turbulent kinetic energy &, appropriate turbulence models have to employed
along with the RANS equations.
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2.1.3. Turbulence models

Three two-equation turbulence models have been incorporated in the present algorithm, namely k-¢,
k- and SST, to predict the features of high Reynolds flows. The interaction between the turbulence
model PDE's and the Navier-Stokes ones is obtained mainly via the turbulent dynamic viscosity. No
additional model was included to simulate transition.

2.1.3.1. Turbulence model k-¢

The turbulence model k-¢, which is one of the most widely applied two-equation eddy-viscosity
models, is based on the solution of PDE's for the turbulent kinetic energy & and the turbulent dissipation
rate ¢ [Lau74]. Its dimensionless differential formulation is similar to this of the flow model with the
exception of the non-zero source term:

o, | oF oGl all oFy oGy ay
ot Ox Oy 0z ox oy oz

=S, (2.37)

The Wkg = ( pk, ,DE)T is the conservative variables vector, while the advective (inv), the diffusive

(vis), and the source term vectors are defined as

- uk ) -. vk -. wk
F;;Z”{p }G:L”{” }Jﬁ?{” j (2.38)
pue pve PpwWE
KoM |0k 1o H |0k R s
. Re o, Jox | - . Re o, Joy | - . Re o, )0z
Fee = , Gy = s = (2.39)
L L M M08
Re o, )ox Re o, )oy Re o, )0z
P —pe+5;"
Ske (2.40)

= 2
& & LR
efPl-c fpi+s
lfi kk Zf‘Zp k £

where the terms oy, o, ¢;, ¢, f; and f> in the source term vector are constants with values o,=1, 0,=1.3,
c1=1.44, ¢;=1.92, f;i=1 and f;=1, while the terms SR and S are assumed equal to zero for high
Reynolds number flows (as those examined in our study) [Koo0O]. The turbulent viscosity x, is evaluated
as [Koo00, Kou03, ANSYS06]

Pk’
&

(2.41)

/’lt = fluc,u

with the constants ¢, and f, being equal to 0.09 and I respectively, while the turbulent energy production
term Py is computed as [Koo00]:
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2
P =-=pkV.-¢+1’
, 3'0 ”6xj

U,

51} o oy |

2 2 2
——pkV ¢ ——p (V-¢) + + =
37 3%( ) +u (axj x; O,

2 ou v ow) 2 (ou v owY
——pk| —+—+— =y | —+—+— | +
3 ox oy o0z) 3 ox oy oz

ouY (ov) (owY [(ou ovY (ou ow) (ov ow)
| 2| — | +2| — | +2|— | | —F+— | +| —F— | | —F+—
Ox oy oz oy Ox 0z Ox 0z Oy

The second term (—(2/ 3) y7s (V -c )2 ) of the turbulent energy production term Py is decreased by some

(2.42)

researchers to (=24, (V C )2 ), in order to prevent the values of £ and ¢ of becoming too large through

shocks [ANSYS06]; this situation becomes progressively worse as the mesh is refined at shocks’ regions.

For boundary layer modelling appropriate boundary conditions are implemented at the solid wall
region; two methods were incorporated in the present study, namely wall functions and an one-equation
model. According to the first methodology, suitable functions are implemented instead of the governing
equations for the computation of the kinetic energy k and the turbulent dissipation rate ¢ of the first layer
nodes next to the solid boundaries. Considering the common practice of using highly stretched grids at
this area, the aforementioned functions can be employed to the boundary nodes instead; in that case free-
slip boundary conditions are required instead of no-slip ones. Although this methodology is based on
simplifications of boundary layer modelling, it appears to be quite popular, due to its capability to derive
sufficiently accurate results even in coarse grids. The aforementioned functions are described as follows
[Hir90, Mav94, Koo00, Kou03]

P 2.43
R (2.43)

where u;, is the friction velocity and y is the distance of the boundary node from the next internal one. As
the wall functions are based on the theoretical division of the boundary layer in two discrete areas, namely
the linear (laminar) and the logarithmic one, u, is defined as [Kou03]

v y <11.6

2.44
l1ny++B vy >11.6 (244)
K

where the terms x and B are constants (0.4 and 5.5 respectively), while u" is the dimensionless velocity
and ¥, is the tangential component of velocity. y" is the dimensionless distance of the boundary node from
the next internal one, evaluated as [Hir90, Koo00, Kou03]:

+ ur
y =PV Re (2.45)
i

A value of y* between 20 and 200 has been identified by many researchers [Kou03], as appropriate to
capture sufficiently the features of the logarithmic area of the boundary layer; thus, the selection of this
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turbulence model has to be considered during the mesh generation procedure. The dimensionless distance
y" and the friction velocity u, are evaluated through an iterative procedure (Newton-Raphson) utilizing
equations (2.44) and (2.45), while then the friction stress tensor z,=pu,” is computed to contribute to the
viscous terms' fluxes of the flow governing equations [Koo00].

Except the previously described formulation (named at next WF1), according to which Dirichlet
conditions are imposed for both the turbulent kinetic energy & and the dissipation rate ¢ of the boundary
nodes, another formulation of wall functions (named at next WF2) has been included in the present
algorithm considering Dirichlet conditions only for &, while &k is computed via equation (2.37). In
accordance with this method, the turbulent dissipation rate ¢ of boundary nodes is evaluated as follows
[Kou03]

3/47.3/2
c, k

Ky

£= (2.46)

while the friction stress, the dimensionless distance, the dimensionless velocity and the turbulent energy
production term are defined as [Kou03]:

v
1’:—’ y" <116
ey
r = 2.47
chMk”zlL y 211.6 (2.47)
;ln(y+)+ B
1/47.1/2
c, "k
yr =Pt Ve (2.48)
7
. I/tcil/4k1/2
wt=e (2.49)
TW
I/t pcz/4k3/2u+
T, - —F——
p={ 7 4 (2.50)

1/47.1/2 3/47.3/2
c, k', pc,k

AL [lln(y*)+8}

Ky y K

The second formulation considers the implementation of an one-equation model near the solid wall
boundaries along with no-slip boundary conditions. Equation (2.37) is still being utilized for turbulent
kinetic energy k, while for dissipation rate ¢ and turbulent dynamic viscosity y, the following equations
are employed [Jon 97]

%
k
(pg)leq =P (2.51)

&

u, = pe,l Ak (2.52)
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where /, and /, are functions of y* [Jon97]:

l, =Kc#7%y[l—exp(—y+ /70)] (2.53)
[ =xc %y[l—exp(—)f /(2Kc 34))} (2.54)
£ u u :
y* =MRe (2.55)
7

Though the wall functions are implemented explicitly on the first layer or boundary nodes, the one-
equation model is employed via an indirect transition scheme. The transition from the one-equation model
to the two-equation governing equations, while getting away from the solid wall boundaries, is achieved
by using a blending interpolation coefficient /4, taking values between 0 and /. Thus, the expressions for
dissipation rate ¢ and turbulent dynamic viscosity x, become [Jon97]

0 O\ psu;
(p) , (o ,)_ M M08 =S, (2.56)
ot ox, Re o, )ox,
2 %
sg=z(clﬁa§—czﬁ%}(l—ﬂ)a[”l - pe (257)
2
M =Afe, pf +(1—/1)pcﬂk%lﬂ (2.58)

where a is a time constant taking values of the order of unity, adjusting time stiffness of ¢ at the boundary
layer region [Jon97]. The interpolation coefficient 4 controls not only the distance from the boundaries, in
which transition takes place, but also the length of this transition over the computational mesh; it is
computed via a hyperbolic tangential function as [Jon97]

1 Rey—Re;
A= |1+ tanh| ——— (2.59)
3
Re, :ﬂRe (2.60)
U

where Re, is the local Reynolds number, depending on the distance from the closest wall and the laminar
kinetic energy as shown in equation (2.60), while Re,* is the criterion for transition from the one-equation
model to the two-equation one, with typical values of 50-200 [Jon97]. Constant 4 with typical values
between / and [0, controls the number of cells, within which the transition is completed, and
consequently the sharpness of this transition.

Finally, in order to control the unphysical increase of the source term (independently of the
implemented formulation of boundary conditions), especially at stagnation points, special modifications
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have been proposed in the open literature, such as the Kato-Launder modification, the Yap correction
method, an explicit limitation to the computed corrections, the implicit treatment of the source term in
case of an explicit iterative scheme, etc. [Kun92, Mav94, Dur96, Bla01, Kou03, Lygl4a, Lygl5], the
latter being employed in this work.

2.1.3.2. Turbulence model k-®

The second incorporated two-equation turbulence model is k-w [Saf74], which is described by
similar to the previous model dimensionless differential governing equations (equation (2.37)), while its
inviscid, viscous and source terms, based on the conservative variables (pk, pw), are defined as

- uk \ - vk - wk
F,:::V:(” }G,:';r{” }J:;:{” j (2.61)

pPUOD PV PpWo
Ky Uo, j 2 (i+ ,u,akj% (i'f— uo, j%
- Re 0 s Re (o) - Re Oz
F;cw > Gk(u = s ‘]kw = (262)
7, Y7 ow 7, ow
_+ﬂ[0w A _+ﬂlaw A _+ILIIG[A) A
(Re )6 (Re j@y (Re )62
) P, — 8 pok
S, = 2.63
a2 B, - ppor 269

with constant values 0;,=0.5, ¢,=0.5, 0a=5/9, f=3/40 and p*=0.09 [Kim03]. The turbulent energy
production term Py is evaluated similarly to k-¢ model, while the turbulent viscosity is computed as

u=a Lk (2.64)
(4]

where constant a* is set equal to unity. Special treatment of the model’s source term is required as well,
to minimize a possible excessive and sudden increase in the values of the conservative variables;
therefore, besides the implicit treatment of the source term in case of an explicit iterative scheme [Bla01],
the turbulent energy production term is limited as follows [Kim03, Men03a]:

P, =min(P,,108’ park) (2.65)

2.1.3.3. Turbulence model SS7

The last incorporated turbulence model is SST (Shear Stress Transport) [Men94, Men03a, Men03b,
NASA], which is a combination of the previously presented k- and k-¢ models. The transition from the
first to the second, while getting away from solid wall boundaries, is achieved by using appropriate
blending functions. The inviscid and viscous terms of the SS7 model’s governing equations are exactly
the same with those of k-, while the source term slightly differs as [Men03b, NASA]:

-

Sssr = gkw + Bkw (2.66)

2-11



Governing equations

P, — 5" pwk 0
S = , D, =
1

(2.67)

The additional vector in the source term D, accounts for the switching between the two models. It

includes the first blending function F;, which is equal to zero far away from the surface (k-¢ model) and
switches over to unity inside the boundary layer region (k-w model). The turbulent energy production
term is computed via equation (2.42), while the first blending function F; is evaluated as [Men03b]:

F, = tanh (argf )

Jk o 500u j4p0'w2k}

arg, = min| max| ————, ,
‘ { [ﬂ wd’ pdWRe | CD,, d’

(2.68)

CD,,, = max (2,0(7&,2 leVa),IOmj
®

The value of the turbulent viscosity is also based on a blending function; for its calculation the
invariant of strain rates tensor is utilized [Men03, NASA]:

___ pak
Ho= (. SF) (2.69)

. Ou ou .
s=42(5,5,) =, |2 l%+— Ll O o 1|2
! 2\ ox;,  ox, ox;  Ox,

, (2.70)
j oY aw ou oY (ﬁu an2 o ow)
+2| — —t— | | —+— | +|—+—
oy 82 6y Ox 0z Ox 0z Oy
61,{ ou .
S. = +— 2.71
Y {6)( ox, J @71
F, = tanh(argi)
2k 500u (2.72)
arg, =max| ——,——
P wd pd owRe

The ¢ coefficients of the model, are also obtained by a blending function, which defines their value

between a minimum value @, and maximum value @, (f* and «, are constant values equal to 0.09 and

0.31, respectively). This function, utilizing minimum and maximum constants £,=0.075, f,=0.0828,
y1*=0.555, y2*=0.44, 011=0.85, 01,=1, 6,;=0.5 and ¢,,,=0.856, is described as follows:

p=Fg+(1-F)g, (2.73)

2-12



Fluid flow

Because of the activation of k-w model inside the boundary layer region, special treatment of the
source term of SS7 model is performed in the same to k- approach way [Liu96, Kim03, Men03b,
Lygl4a, Lygl5].

2.2. Spatial discretization

For the discretization of the computational field and consequently the computation of numerical
fluxes of flow and turbulence models, a node-centered finite-volume scheme is employed. According to
this scheme the examined grid is divided into a number of finite control volumes, in each of which the
magnitude of the conservative variables is assumed constant. In Figure 2.1 a median dual control volume
for a node P in a two-dimensional triangular mesh is illustrated; it is defined by an assembly of linear
segments, where each segment is connected to the midpoint of an edge and to the barycenter of its
neighbouring triangular face [Kal96, Kal05a, Lygl2b, Sarl4].

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

C e e mcecccmcmceemme———————————— -

Figure 2.1: Median dual control volume of a node P in a two-dimensional triangular grid.

In three dimensions the employed median dual control volume of a node P is constructed by
connecting lines defined by edge midpoints, barycenters of faces and barycenters of elements, sharing this
node [Mav94, Kal96, Mav96, Koo00, Bla01, Kim03, Kou03, Kal05a, Lygl2b]. According to this
definition the volume of each element is equally divided to each of its nodes' control volumes.
Contributions to the control volume of a node P from different types of elements (prismatic, pyramidical
and tetrahedral) are shown in Figure 2.2. The volume of a tetrahedral element can be computed, based on
the coordinates of its nodes, as [Wolfram]

XN g
_i X, M 4
MNx, ¥y, z

Xy Vi Z4

(2.74)

T

—_

while the computation of the volumes of the prismatic and pyramidical elements is performed with their
suitable division in tetrahedral ones.
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--------

Figure 2.2: Contribution of a prismatic, pyramidical and tetrahedral element to the control volume of a node P.

Considering the aforementioned discretization scheme, equation (2.1) is integrated over the control
volume CV, of each node P as

77 Fvinv Ainy Finv Fvvis AVis T vis .
] a—dedydz +[] OFT (OG" " oF7 GT ¥ dxdyds = [[[ Sdxdzdy (2.75)
o, Of o, Ox oy 0z ox oy 0z .,
while employing the Green-Gauss divergence theorem is transformed as
If W e+ [[ = rryds = [[[ 8 dxdzdy (2.76)
CVp ot acv, CVp

where oCV, denotes the boundaries of the control volume of node P, defined by the facets constructed
around the edges connecting node P with each neighbouring node Q. If 0CV,, is the interfacing part of

acv, and 0CV,, Ky(P) is the set of neighbouring nodes to P, and I is the domain's external boundary,
then 6CV, is defined as:

ocv,= |J ocv,,+(aCV, NT)

QeKy (P)

(2.77)

H s the vector of the inviscid or viscous numerical fluxes, evaluated at the midpoint of an edge
connected to node P; this midpoint actually coincides with the interface between the adjacent control
volumes of nodes P and Q connected with this edge. As mentioned in Introduction, an edge-based data
structure is used to reduce the required computational effort and accelerate the solution. Utilizing the

outward unit normal vector 75,) of the corresponding 0CV,, face of the control volume, the

(9]
aforementioned vectors are described as [Koo00, Kou03]
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inv A inv | A %inv A inv

H™ =np, F™ +11p, G +1p, J 278

IZ:IW'S oA Fvvis A évis A Jvis '
- nPQ,x + nPQ,y + nPQ,z

ipg = = (Tipg s 7ipg y31pg ) (2.79)
il

where 71, is defined as the vector sum of the outward normal vectors of all the facets forming ac¥v,,
Their computation is achieved by a single element-loop in a pre-computation stage, deriving actually the
main edge-wise data structure of the algorithm. In Figure 2.3 part of such a vector 7,, contributed by a

tetrahedron is presented; the illustrated barycenter of the tetrahedron G, medians of the faces G,, G, and
of the edge M are utilized for the computation of this vector.

P

Figure 2.3: Part of vector 1 po contributed by a tetrahedron.

Thus, equation (2.76) is transformed as follows:

m_dxdydz+ S [ G fydse [ G- ds = [[[S dvdsay .50

<Ky (P) oy, oCV,AT cvp

Assuming that the conservative variables at node P are equal to their mean values over CV,, (main
idea of the finite-volume method) the first term of equation (2.80) becomes:

m —dxdydz = (Z—Vfl [[[ dxdyaz = (%}P v, 2.81)

cvp CVp
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Expressing then the integrals of the numerical fluxes as summations of fluxes through the faces
composing the control volume of node P, equation (2.80) is transformed as

dW Tyinv A inv T\ Vis T\ Vis o
[Ej Vet Z Dipg + Z Qo ~ Z Dpy — Z Dy = ”.[dedzdy (2.82)
P

QeKy (P) (Ko €0CVpAT) QeKy (P) (K, €0CVpAT) vy

B = [[ H"ds = F (i iing ). @y = [[ 7 ds = g (W1 7y

aCVpp aCVpp

) (2.83)
— jj Ads = g(W,.W,,.ji,, )

P,out
oCVpI oCVpI'

12" “out

oy, = ([ #"ds=F(W,07,,.i,). B

where WPLQ and WfQ are the vectors of the conservative variables on the left and right side of the edge

PQ respectively, while W

out

is the corresponding vector on the boundary.

2.3. Numerical fluxes

2.3.1. Inviscid fluxes

For the computation of the flow equations’ convective numerical fluxes, a one-dimensional Riemann
problem in the direction of the normal vector of each face of the control volume of a node P is
considered. As its exact solution would require excessive computational effort [Lan98], an upwind
scheme using Roe’s approximate Riemann solver [Roe81] is employed to evaluate the inviscid fluxes at
the midpoint of the edge PQ, as follows

By = (A O fling) + ™ 07y = 5| Ao (5 7, (2.84)

inv

where 4 is the Jacobian matrix of the convective flux vector H™ , also evaluated at the midpoint of the

corresponding edge PQ by utilizing Roe's averaged values of the primitive variables (denoted with tilde 7)
[Roe81, Ven95, Lan98, Koo00, Kou03], defined as

= \/p7L(7L + pRUR
Uy = 2.85
PO \/;L+\/E ( )

where U , and U . are the values of primitive variables at the left and right side of the edge PQ

respectively, assuming a first-order accurate scheme; in case of a higher-order one these values have to be
reconstructed using the Taylor series expansions, as analyzed in next section. Additional information on
the computation of the Jacobian matrix of the convective flux vector is given in Appendix A.

Based on the following equation (2.86), equation (2.84) is transformed in an equivalent formulation
(2.87), implemented finally in this work [Roe81, Lan98]:

ﬁt‘nv (WPRQ) _ Hiriv (WPLQ) — A;Q (ng _ WPLQ) (286)
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EISII% =H™ (WPLQ9ﬁPQ ) + A;Q (WPRQ - WPLQ) (2.87)

Considering the edge-wise data structure of the algorithm, evaluation of the convective fluxes for all
the mesh nodes is achieved with a single edge-loop, as no information is needed about the cell topology
[Lygl4a, Lygl5s].

2.3.2. Higher-order accurate schemes and slope limiters

For a first-order accurate spatial scheme the left and right states of an edge PQ are approximated by
the values at the end-points P and Q respectively. In a higher-order accurate scheme, these states are
reconstructed with the Taylor series expansions, taking into account the corresponding values of more
mesh nodes when computing the numerical fluxes. The incorporated higher-order accurate scheme is
based on the MUSCL (Monotonic Upstream Scheme for Conservation Laws) reconstruction of the
primitives or conservatives variables, using additionally a slope limiter (Van Albada -Van Leer
[VanAS82], Min-mod [Swe84] or Barth-Jespersen [Bar89]) to control the total variation of the
reconstructed field [VanL85, Bar92, And94, Lan98, Bla01, ANSYS06, Lygl13b]. Thus, the left and right
states for a primitive or a conservative variable U at the midpoint of an edge PQ are approximated as
[Bar92, And94, Bla01, ANSYS06, Lygl3c, Sarl4]

UﬁQ =U, +%-(VU)L “Tpg

) (2.88)
Up,=U, —E-(VU)R Fop

where, the first R/H side terms are the left and right nodes’ values of variable U and 7, is the vector
connecting these nodes. In case of a second-order accurate scheme the extrapolation gradients (VU )*
and (VU)*® are equal to the gradients (VU), and (VU), at the nodes P and Q respectively. For the

evaluation of these derivatives the element-by-element approach [Bar92] can be employed, which for a
node P, being the common vertex of the neighbouring tetrahedra 7, is described as [Bar92]:

1 v,
(VU), =5~ 2 A (VU), (2.89)

p TeK,(P)

where Vp and V7 are the volumes of the control volume of node P and adjacent element 7. Nevertheless,
in this study an equivalent expression, derived by the Green-Gauss linear representation method, is
employed, which is more suitable for the utilized edge-based data structure of the algorithm [Bar92,
Bla01]:

1 1 _
(vu),=— Y E(UP+UQ)-nPQ (2.90)

P QeKy(P)

In case of a boundary node (Figure 2.5) the previous equation is modified to include also the
boundary interfaces as follows [Lygl3c]:

(VU)pzi( Z %( P+UQ)'ﬁPQ+ z Up'ﬁgu,j (2.91)

P \ Q€K y (P) (K €0CpT)
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For the minimization of the total variation in the reconstructed field three slope limiters have been
incorporated in the present algorithm, namely the Van Albada -Van Leer [VanAS82], the Min-mod
[Swe84] and the Barth-Jespersen [Bar89].

The first limiter is actually an expansion of the MUSCL scheme, maintaining monotonicity between

the values at the end-points P and Q, while its formulation is based on the centered (V U ); 0 and upwind

gradients (VU )l; ,(V U )MQ , defined as:

c

PO "_;PQ
(VU), =2(VU), -(VU), 0 (2.92)
(VU); =2(VU), —(VU);Q

(VU) =U,-U,

Once these gradients are obtained, equation (2.88) including a non-linear slope limiter is formulated
as [Bla01, Lygl3c]

1 u —_ c —
UL, =U, +E-(D((VU)P Fog (VU s g )
) (2.93)
Upo =Uy _E'CD((VU)Q .?'PQ’(VU)PQ 'FPQ)
where @ is the limiter function, described as [VanA82]
(@*+e)b+(b> +e)a .
if ab>0
®(a,b)= a’+b*+2e 4 (2.94)
0 if ab<0

where e is a very small number with a typical value of 1.0E-16, used to prevent division by zero.
The second incorporated Min-mod limiter is characterized by the smoothing of solution, choosing
always the slope with the smallest magnitude; its formulation is exactly the same to this of the Van

Albada-Van Leer (equations (2.93) and (2.94)), while the corresponding limiting function @ is defined
as [Swe84, Lygl3c]:

a if |a|<|b| and ab>0
®(a,b) =1 b if |b| <|a| and ab>0 (2.95)
0 ifab<0

The Barth-Jespersen [Bar89] approach extends limitation further of the values at the two end-nodes
P and Q, to these of all adjacent points connected with an edge to the pre-mentioned nodes. It is
formulated similarly to the previous limiters as [Bar89, Lygl1]

1 -
UII;Q =U, +¥, '5'(VU)P “Tpo

| (2.96)
Usy=Up=¥o -+ (VU)g g
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where the coefficients ¥',,'Y, are defined as:
¥, =min{¥,,.0 €K, (P)n{P}] (2.97)

min{LA, . /A,} A,>0

> ='1,max

¥, =qmin{LA, .. /A,} A, <0 (2.98)
1 A, =0

AZ = UVec,L - UP

Al,max = Umax - UP

Al,min = Umm - UP

U, =max {U,,0 € K, (P)n{P}} (2.99)
U, =min{U,,0 € K, (P)N{P}}
U

1 -
=U, +5'(VU)P “Tro

rec,L

Although this scheme is assumed to be more effective in assuring monotonicity comparing to Van
Albada-Van Leer and Min-mod limiters, it is susceptible of exhibiting oscillations and consequently poor
convergence due to the overreacted limiting of small amplitude noise it entails [And94, Del13].

In case of an even higher-order accurate scheme, the extrapolation gradients are obtained via a
blending function, utilizing the centered (°) and upwind (") derivatives again, as [Kaz12, Smi07]

(VU) g =3[ (1= B)-(VUY, g + (14 5) (VU g
(2.100)

(VU)" g =3[ (1= B)- (VU )y o + (14 B)- (VU |

where parameter f can be selected suitably to derive a family of reconstruction schemes; in structured
grids f=1 yields a fully upwind scheme, f=0 a semi-upwind approximation (Fromm's scheme), and f=-1
a central differencing one [Kaz12]. If it is set equal to 1/3, it leads to a third-order accurate upwind
scheme, although third-order accuracy is strictly correct only for linear problems [Kazl2, Smi07].
Considering these gradients along with the requirement for minimization of oscillations in the
reconstructed field, Van Albada - Van Leer limiter in a slightly different formulation to the pre-mentioned
one is used as follows [Kaz12, Smi07]

1 u — c — —
Upo =U, +§'X((VU)p "’PQ’(VU)pQ 'FPQ)(VU)L Tro

X (2.101)
u c - R
Upo =Uy _E'X((VU)Q 'rPQ’(VU)pQ "’PQ)(VU) Tro
where X is the non-linear limiter function defined as:
b+|ab|+
X(a,b) = w (2.102)
a +b +e
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2.3.3. Viscous fluxes

The computation of viscous fluxes is based on the gradients of the velocity components and
temperature at the middle of each edge (interface of adjacent control volumes) of the grid. For the
evaluation of these derivatives two methods were included in the proposed algorithm, an element-based
[Bra96, Kal96, Bla01, Kal05a, Lygl4a, Lygl5] and a nodal-averaging one [Bla01, Lygl4a, Lygl5].

The first methodology introduces new control volumes, the edge-dual volumes, which include all the
neighbouring cells sharing a common edge [Kal96, Kal05a, Lygl4e]; in Figure 2.4. such volumes around
an edge e (~PQ) are illustrated by prismatic, tetrahedral and different types of adjacent mesh elements.
The divergence theorem is then implemented on these new finite volumes and the gradients of primitive
variables at the midpoints of each edge are calculated, performing the surface integrals along the edge-
dual boundaries as [Kal96, Kal05a, Ahn06, Ahn07, Lygl4a, Lygl5]

1
(5) ZVI xkz_ (2.103)

e e k=1

where V. is the volume of the edge-dual volume, m is the number of its boundary surfaces and L is the
number of nodes at each such surface. Despite the capability of this method to avoid spurious oscillations
[Kal05a], it leads to significantly increased computational effort as it requires a loop over an element-
based or a cell-based data structure [Lygl4a, Lygl4e, Lygl5].

Figure 2.4: Edge-dual volumes of edge e composed of prisms, tetrahedra and different types of elements.

Considering the previous state along with the edge-wise evaluation of gradients at each node of the
mesh by implementing equations (2.90) and (2.91), another scheme, the nodal-averaging one, was
incorporated in the present algorithm [Bla01]. This method is particularly attractive, as gradients’
calculation can be completed by a single edge-loop, which is employed for the convective fluxes anyway,
without requiring any additional storage. Utilizing the corresponding gradients at the end-points P and Q

of the examined edge PQ, as well as the directional derivative along these nodes (5U / ol ) P> this scheme

is described mathematically as [Bla01, Lygl4a, Lygl5]:

(v0),, =%((VU)P+(VU)Q) (2.104)
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(8_Uj e TR 2.105
0l Jpo ‘FPQ‘ o ‘FPQ‘ (2.105)
= = z oU z
(VU)PQ - (VU)PQ _l:(VU)PQ Tro _(Ej :IFPQ (2.106)
PO

Furthermore, as it depends on the edges of the grid and not on the type of the elements (tetrahedral,
prismatic, pyramidical), it appears even more valuable in case of utilization of hybrid grids.

2.3.4. Turbulence models' fluxes

For the computation of turbulence models' fluxes the same node-centered finite-volume
discretization scheme is implemented. The convective fluxes are evaluated at the midpoint of each edge
PQ, employing a simple first-order accurate upwind scheme as [Lar91, And94, Koo00, Kou03,
ANSYSO06, Lygl4a, Lygl5]

5, =(0V,) 6 +(0V,) ¢y (2.107)

(p¥,)" =max(pV,,0), (pV,) =min(pV,,0) (2.108)

n n

where ¢ is each primitive variable of the model and 7, :ﬁﬁpg is the value of the normal to the face

around the edge PQ velocity. In general, a higher-order accurate scheme isn’t necessary for the
computation of these numerical fluxes, as the viscous terms are the main reacting ones in turbulence
models' PDE's; the numerical diffusion imported due to the first-order method can be assumed quite
reasonably negligible [And94, Kou03, Lygl4a, Lygl5].

As far as the computation of the diffusive fluxes at the midpoint of each edge is concerned, the
gradients of the corresponding primitive variables are needed to be pre-computed in the same way
velocity components’ gradients are evaluated for the flow equations. Since these derivatives are obtained,
the viscous fluxes in case of turbulence model k-¢ are calculated for an edge PQ as [Kou03]:

uou | ok Ok ok
oo T Ao eox T eoy T Mo 2
Re o, )\ ox oy 7 0Oz

L e
Re o, J\ox ™" oy ™ oz ™°

For k~w and SST turbulence models a corresponding relation is extracted, whose differences to the
previous one are focused on the specific dissipation rate @ equation.

Dy = (2.109)

2.3.5. Boundary conditions

The contribution of boundary surfaces has to be also considered in the flux balance of the
corresponding nodes; in this study, wall, inlet, outlet and symmetry boundary conditions are encountered.
In general such fluxes are computed at the barycenters of boundary faces, using the arithmetic averages of
conservative variables of their nodes, and assigned to the same nodes, weighted by the area of the face,
which corresponds to them, e.g., solid wall boundary fluxes in case of inviscid flow or inlet/outlet ones.

As far as the solid wall boundary nodes are concerned, a free-slip condition is implemented for
inviscid flows, while for laminar and turbulent ones a no-slip condition is used. The free-slip condition is
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implemented implicitly, by adding a flux with zero normal to the boundary face velocity V,, described as
[Mav94]

V=V-i =0 (2.110)

out,x

where 7, = (n nom’y,nom’z) is the normal to the boundary face vector. Such a vector is shown in

Figure 2.5; the illustrated median point of face M, medians of edges Mp, Mg, Mg and median point of
tetrahedron G are utilized for the computation of this normal vector. The added free-slip convective flux
is calculated finally as follows:

oV, 0
puV, +pn,, PPy
H iy =| PV, P, | = P, 2.111)
PWY, +ph,. || Phy,.
( pE + p) v, 0

Figure 2.5: Normal to the boundary face POR vector 7

out *

The same free-slip condition is applied in case of employing the turbulence model k-& along with
wall functions WF1 or WF2; although wall functions should be imposed at the first layer of nodes from
the solid surface, they are implemented on the boundary nodes, considering that in the usually employed
grids, which are highly stretched in this area, the distance of the first layer from the solid walls is very
small [Mav94, Kou03]. In this case, the turbulent kinetic energy k and the dissipation rate & at wall
boundary nodes are evaluated using the wall functions, while the convective flux of equation (2.111),
along with the diffusive flux caused by the computed friction stress tensor z,, are added to the flux balance
of the corresponding nodes [Koo00, Kou03].

Unlike the aforementioned flows, for laminar as well as turbulent flows employing k-¢ with one-
equation model near the solid wall region, k- or SST model, no-slip conditions are imposed explicitly at
the corresponding nodes, by zeroizing their components of velocity (low Reynolds number approach). As
far as the turbulence models' variables are concerned, the turbulent kinetic energy k and the turbulent
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dynamic viscosity x4, are set similarly equal to zero at these nodes; the dissipation rate ¢ for the first model
is computed by employing equation (2.56), while the specific dissipation rate for the k- and SST models
is evaluated as

604

@i =5
p wall ﬁyzRe

(2.112)

where y is the distance of the wall boundary node from the nearest non-boundary one of the grid. Due to
this condition k- and SST require finer grids in this region with y* less than 2.5 [Saf74, Men94, Bla01,
Bre02, Kim03, Kou03, Men03a, Men03b].

In inlet boundary faces, an one-dimensional Riemann problem is assumed again between the face’s
barycenter and far field for the computation of the flow PDE's convective fluxes; the obtained fluxes are
shared then to the corresponding boundary nodes. The aforementioned problem is solved by employing
the Steger-Warming scheme [Ste81, Lan98] via the following equation:

A, v A7

K,out — %= ZZK"" out (2 1 13)
where subscript K denotes the barycenter of the boundary face, while subscript out denotes the far field,;
the values of the variables of vector 17 are obtained either from the far field or the boundary

barycenter, depending on the type of the flow (internal or external) [Hir90, BlaO1]. Further information
for the computation of Jacobian matrices is given in Appendix A. Following the common practice in the
open literature [Kou03], the diffusive fluxes are omitted due to their negligible contribution away from
solid obstacles. If a turbulent flow is encountered, Dirichlet conditions are imposed for the turbulence
models' variables at this region. In case of k-¢ model, their values are defined, based on the turbulence
intensity 7, and the ratio of turbulent to laminar viscosity a in inlet area, as [Lau74, Kim03, Kou03]:

in

k.
)2, _an ginZM (2.114)
Re a

Typical values for this ratio and turbulence intensity at the inlet boundary are 0./ and /% respectively. In
the same way, for k- and SST turbulence models the imposed values are defined as [NASA]

, :Cm,y

ir _ ap _ luz w[n
in 1 L t -

in

2o’ 5 (2.115)
where L is a characteristic length (equal to unity in this algorithm due to its dimensionless formulation),
C; is a constant with value between / and 10, and « is again the ratio of turbulent to laminar viscosity
with value between /.0E-2 and 1.0E-5 [NASA].

Similarly to inlet boundary faces, a one-dimensional Riemann problem is considered and solved at
outlet ones for the computation of the flow PDE's convective fluxes, while the values of the variables of
vector 3, are obtained again either from the far field or the boundary barycenter depending on the type
of the flow (internal or external); the viscous fluxes are neglected again [Hir90, Bla0O1]. However, in
turbulence models the corresponding variables are not evaluated with Dirichlet conditions; the convective
numerical flux for each primitive variable ¢ in an outlet boundary node P is calculated via a simple

upwind scheme, expressed as follows
o), = (V)¢ 2.116)
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while its diffusive flux is omitted in the same way to the flow equations.
Finally, for a symmetry surface free-slip boundary conditions are imposed to the flow equations
similarly to these for solid wall boundaries along with an inviscid flow.

2.3.6. Source terms

As mentioned in the first section of this Chapter, the source term of flow equations is set equal to
zero, while this of turbulence models is computed, based on the finite-volume discretization, as follows
[Bla01, Lygl4e]:

gjgdxdydz = ngp 2.117)

2.4. Time integration

For time integration two schemes have been incorporated in the proposed methodology for both the
Navier-Stokes and the turbulence models PDE's (either selected by the user), a point-implicit one using
the Jacobi or the Gauss-Seidel algorithm [Ven95, Kou03, Lygl1] and an explicit one utilizing a second-
order temporal accurate four-stage Runge-Kutta (RK(4)) method [Lal88a, Kal96, Bla01, Sor03, Lygl4a,
Lygl5]. Equation (2.82) is transformed in the following formulation for their implementation

dt "oAL,

Z C_I.):Zé + Z &)izfout - Z C_IS\;‘Q - z C_I.);jf.out - §PVP = ié}")

QeKy (P) (Ko €0CVpAT) Q<K (P) (Ko €0CVpAT)

17 Trn+l
_V,,(d_Wj Ly AT
P

(2.118)

where Atp is the local time step at node P, which depending on the type of the flow (inviscid, laminar or
turbulent) is computed as [Kim03, Lygl1]

0.5c

Af™ = CF, . ——minledse.
‘UP e
Az‘ff"" — CFL- (O.Saminledge,P )2 oo
(10, ]+ ¢ )05 + 2w ,
" ppRePr

%

P

turb __
At _CFL(l:+/16y+lcz)+4.(4;+zg’+ﬁj)

where ‘(7 »

is the value of velocity at node P, cp is the speed of sound evaluated on the same node and

@ yinledge,p 18 the length of the shortest edge connected to P. The convective spectral radii 4. and the

viscous spectral radii 4, are evaluated as [Kim03, Kal05a]

A=(Ul+c, )M, j=xy,z (2.120)
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\2
AA’
2 = max| = L | A A ), j=xp.z (2.121)
PrRe Pr¢ Vp

where AA/ is the sum of the absolute projections of the node P control volume surfaces’ normal vectors
in direction j, calculated as [Kim03]:

.=—Z‘A ’\csp j=x,,z (2.122)

CSP

The local time stepping technique is commonly employed in CFD, enhancing each control volume with
the maximum permissible time step, which consequently results in the acceleration of the convergence to
the steady-state solution [Bla01]; in case a global time step is required, it is defined as the smallest of the
local time steps of all the nodes of the mesh.

2.4.1. Point-implicit scheme
For the employment of the point-implicit scheme, the R/H side of equation (2.118) has to be
linearized per Newton as [Ven 95]:

ROV™)= ROV" +5W) = ROV") +(§—§j (W +O0(6W?) (2.123)

where n denotes the current pseudo time step, in which the numerical fluxes are computed. Considering

the desired formulation 4-x=5b with unknowns the corrections of conservative variables, equation
(2.118) becomes as follows [Ven95, Kou03]

Ly (aR] SW =-RW") =
At ow

(1-1 (aRj J SW =—R(W")
At ow

where / is a unit matrix with dimensions 5x5 (2x2 for the turbulence models). According to this approach
the inviscid and viscous numerical fluxes have to be linearized similarly to the way they are computed.

The inviscid numerical flux at the midpoint of an edge PQ is defined for the node P via Newton
linearization as [Ven95, Kou03]

(2.124)

(CI)’,Z; )" =(D},)" + B,6W," + B.sw," (2.125)

where EZ and ﬁz are diagonal and off-diagonal matrices, calculated as follows [Kou03]:
By (T )

B = Ao (WysTing) = drg (oo )

(2.126)
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The previous equations (2.125) and (2.126) are obtained using the alternative formulation of the Roe’s
approximate Riemann solver, which for time step n+1 is described as [Lan98]:

(®e)™ = H™ (Wiyiing ) = A (Wi W5 (2.127)

The inviscid flux vector H i""(WPL(J,ﬁ »o) at the midpoint of edge PQ, based on the conservative variables of

L/H node P and the corresponding vector n po for the time step n+1, can be calculated as [Ven95, Kou03]

Fliw(WPLQ’ﬁPQ) =4, Wy, (2.128)
= inv n+l = o\ aHmv . = ~
() =) { aWj W, = 4, -] + 4, - SW, (2.129)
P

(85" =005 ) 409 i 0 7, -

=(HY') - A0y = W)+ (dy — A)5W, + A3y SW, (2.130)

B )+ (Ay = 1), + 4, 0W,

Although a higher-order accurate scheme is implemented for the computation of convective fluxes, the
corresponding linearized terms in the L/H side of equation (2.124) are based on a first-order one for
simplification reasons; nevertheless, they don't constrain the accuracy in case of steady-state flows.

In a similar to the inviscid fluxes way, the viscous ones at the midpoint of an edge PQ are defined for
the node P via Newton linearization as [Kou03]

(@)™ = (D) + CoW " + CooWy ™ +Cl W, (2.131)

where g; and QZ are also diagonal and off-diagonal matrices, used with the conservative variables’

corrections of nodes P and Q, while C, is combined with the corresponding corrections of the rest nodes

R adjacent to the edge PQ; their computation is based on the scheme employed for the evaluation of
velocity components and temperature gradients. Further information for their formulation is contained in
Appendix B.

The numerical fluxes derived by the boundary conditions (free-slip and inlet/outlet) have also to be
linearized per Newton. Thus, the inviscid diagonal contribution at the inlet/outlet boundary nodes is
defined as [Ven95, Kou03]

()" =(Am,) + 4o (2.132)

while at the free-slip surfaces' nodes as [Kou03]:
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(I:I g?f'reesl[p )H1 = (]:1 gz,‘»/f}feesl[p )” + (GHZ?:W ) ) jpl;i ’ 5W;+1 (2.133)
P P

Further information for its computation is included in Appendix C. The free-slip and inlet/outlet viscous
diagonal contributions are assumed negligible and are omitted similarly to the corresponding internal
fluxes (section 2.3.5). Nevertheless, in case of turbulent flow modelled with k~¢ WF1 or WF2, these solid
wall surfaces are taken into account; as the friction stress tensor z,, flux is added to the viscous terms of

n
Navier-Stokes PDE's, its linearized contribution has to be considered in the diagonal matrix C 4 as:

(a5, )" =(az.) +(a’;’—) Sy (2.134)

Since the linearization of all the components of R/H side of equation (2.118) is accomplished,
equation (2.124) becomes [Kou03]:

Dy -6W + D Oy W'+ D Chy- W =-R;

QeKy(P) Readj(PQ),0eKy (P)

(2.135)

where QZ) and O, are the diagonal and off-diagonal matrices including both the inviscid and viscous

contributions, while §W;+' and §VI7Q”” are the computed corrections of conservative variables of nodes P
and 0. C Zd]- denotes the corresponding matrix for the rest nodes R neighbouring the examined edge PQ,

which is used with the corresponding computed corrections (S‘WR“1 . The Jacobi or the Gauss-Seidel
algorithm can be implemented then to re-compute the values of the conservative variables' corrections,
via internal iterations, the number of which should be carefully chosen in order an acceptable
convergence to be succeeded [Ven95, Kou03]. Employing the Jacobi algorithm, the corrections of
conservative variables for time step n+/ are computed as follows

5W;“’“‘=(22)1~[—f3}i— DI QZ@@WJ”*J (2.136)

ek, (P) Readj(PQ),0<K  (P)

while in case the Gauss-Seidel algorithm along with the Red-Black procedure [Dec92, Ven95] is selected,
as:

- -1 - - -
n+lk+1 __ n n n n+l,k n n+l,k+1
oWy a (QP ) R - Z Opg Wy " = Z Opy - oWy
QeKy (P),mod(Q,2)=0 QeKy (P),mod(0,2)>0
(2.137)
-1 - —
n n n+l,k n n+l,k+1
_(QP) gadj oWy + E / gadj oWy
Readj(PQ),QeKN(P),mod(R,Z)zO Readj(PQ),QeKN(P),mod(R,Z)>0

In the first internal iteration (k=0) for both methods the corrections of conservative variables are
evaluated as:
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SWy =) -(-Ry) (2.138)

The incorporated turbulence models are managed in the same way, but separately to flow equations
(loose coupling); the flow variables are updated firstly and then the corrections of turbulence models'
variables are obtained employing the respective to (2.136) or (2.137) equations. Newton linearization is
implemented to their convective fluxes as well, deriving the following components of diagonal and off-
diagonal matrices:

., . |un,+vn, +wn, 0
B, =B = (2.139)
0 un, +vn, +wn,

An analysis for the corresponding diffusive components is included in Appendix B. The boundary
conditions’ diagonal contributions are omitted, except for the inviscid ones at the outlet surfaces, defined
as follows

ryinv n+l inv Trn+l
(HtPuut) (HtPout) +Lt,K '5VVL‘,P (2140)
where L, x 1s computed as:
uKnx,out + VK y,out + WK z,out 0
L= (2.141)
0 uK X,out +v ny out + Wan,out

The main difference between the turbulence models’ and Navier-Stokes’ PDE's is the existence of
the source term in the first set, which has to be linearized as well for the implementation of the point-
implicit scheme:

S/ =S8+ L oW, (2.142)

In order to reinforce the diagonal dominance of Jacobian matrix ]_Jf »» only the negative source term

components S » are considered for its computation, resulting for k-¢ turbulence model WF1 and WF2 in
the following relations [Lar91, Koo0O]

./,
e[S
Semip = g1=l (2.143)
_c2f2p7 Ny (pe)
2J2
pk
nyC pk 0
. 4
Lks—WF,P = (p8)2 e (2.144)
czfz—z 2f2_k
(k) p
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while for the blended one with the one-equation method near the solid wall boundaries in:

¢/, 2
_Swlu o
- H, (p )
ko-leg.p = 2 (2.145)
ﬂ{—czﬁ%]+(l—i)a(—p8)
21,C,pk .
_ H
Lis—leq,P = (,05)2 (2146)
e firEl | 2| 2, 2ﬁj— 1-2
ch(pkf] [ )-0-e

If turbulence model k- or SST is selected instead, the corresponding vectors are similarly computed as
[Chi96, Kim03]:

. -p pok
o —p pok
Sk(,,,p=[_ oo J= B ﬂ(pa))z (2.147)
Yo
S —,B*a) _ﬂ*k S - _ﬁ*w 0 .
o [ 0 280 T 0 28 (2.148)

It is common practice to omit the second term in the first row of the previous vector (2.148); in that way
the completely uncoupled solution of these equations is obtained, resulting in increased stability of the
methodology [Chi96]. If a negative value of a conservative variable is extracted during the iterative
procedure, the value of previous iteration is restored for this node.

2.4.2. Explicit scheme
If an explicit scheme is selected instead, a four-stage Runge-Kutta (RK(4)) method [Lal88a, Kal96,
Bla01, Sor03, Lygl4a, Sarl4, Lyg15] is employed to solve equation (2.118) iteratively as follows

W;1+1,0 — W;l

Satlk _ yin Atp = =ikt

Wk = —akV—R(WP ) k=1,...4 (2.149)
P

W;H — W;HA

where £ is the number of current internal stage of the scheme. In this study, constants a;, a,, a3 and a, of
the method with values 0.11, 0.26, 0.5 and 1.0 respectively, are used attributing second-order temporal
accuracy to the procedure [Bla01].

Considering the relatively low convergence rate of explicit methods, an implicit residual smoothing
technique has been incorporated, enhancing it with implicit features [Bla01, Kim03] and consequently
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allowing for the utilization of larger CFL numbers. The modified residual for a node P is defined as
[Kim03]

/
Ry+£) Ry
J
=l

1+ gil
j=1

m+l _
R =

(2.150)

where Q; are the neighbouring nodes of node P and ¢ is a coefficient with typical values 0.5-0.8, defining
the blending degree [Bla01].

The rapid change of turbulence models’ source term can cause instability to the solution or even its
complete failure; a remedy to this shortcoming appears to be the implicit handling of this component
[Kim03]. While this treatment is a prerequisite for implicit methods, for explicit ones constitutes an
additional technique, implemented by a similar Newton linearization procedure only for the source term
[Bla01, Kim03]. Considering this approach, the corresponding equation (2.118) for turbulence models
becomes

AT
"oAL,
(2.151)
Finv T inv 3\ Vis 3\ Vis aon S Trn+l
Z D, pp + Z Dpout Z D, pp— Z (Dz,P,ouz_(St,P+L¢,P5Wt,; )VP
Q€K (P) (K €2CpY) QeKy (P) (K, €0CpI)
AW}’H—I .
—Vp L2 +[_’iP5VI/t,;1VP =
L - . . - (2.152)
DB+ D N, D Bhe— D B, S
0eKy (P) (Ko €0CpI) 0Ky (P) (K €0CpI)
I 5 Ve Kb
Ny S P /7S —_ 2.153
Lo -

where [ is a unit matrix with dimensions 2x2. Thus, the iterative step for the Runge-Kutta method is
transformed as [Kim03]:

-1

- - I o

Wk =, _%(F_L‘S’PJ R(W3H) k=1,...4 (2.154)
pA\Rlp

Similarly to equations (2.144), (2.146) and (2.148) only the negative source term components are taken
into account for the computation of the reverse matrices; for turbulence model k-¢ WF1 and WF2 the
latter is defined as

:utAtP O
-1
I : w+2f,C, pkAt
P ] I (2.155)
Aty ’ 0 kA—tP
k+2c, f,eAt,
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while for the blended one with the one-equation method near the solid wall boundaries as:

:utAtP 0
-1
L_LS’ _| +2f,C, pkAt, 2.156)
Atp —ke-leq,P O kAtP N

k+A2¢,f,eAt, +(1-A)akAt,

If turbulence model &-w or SST is implemented instead, the corresponding vector is computed accordingly
as:

At, 0
I ) | 1+ALfw
(A__LkS”’P] - P (2.157)
) At
1+ At,2 0
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3. Radiative heat transfer

3.1. Governing equation

The radiative intensity / for a gray medium at any node P in position 7 along a path § through an

absorbing, emitting and scattering medium is computed by radiative transfer equation (RTE) [Kim88,
Rai90, Chu92, Cha93, Chu93a, Chu93b, Cha94a, Cha94b, Bae97, Bae98a, Bae98b, Kim98, Rai99,
KimO1, Cha03, Kim05a, Kim05b, Kim08, Kim10, Lyg12b] as:

L) (3,01, 5) k1, (7)o 2 [ 1,590 (5.5 ) o 6
ds ar ;.

Similarly to Navier-Stokes conservation PDE's, the RTE expresses conservation of radiative energy,
while its terms denote the following: The left hand side represents the rate of change of intensity in
position/direction 7 /S ; the first right hand side term expresses the attenuation by absorption and
scattering to other directions; the second right hand side term is the emission source term and the last one
is the in-scattering integral, describing radiation obtained by scattering from all the other directions to the
examined one [Hos06]. Alternatively, the time-dependent RTE can be utilized [Hunl1, Lyg13b, Lygl3c,

Lygl4f]

ldlp(r,s’t) + dIP( ,S’t) :_(ka +O_s)]P(ﬂ’§’t)+ka Ib (F’t)_l_ % J.IP'(F’§i "t)q)(§’§i ')dw (32)
”47{

c dt ds 4

which can be employed for both transient and steady-state simulations with real and pseudo-time steps
respectively; in that case the left hand side terms express the rate of change of intensity in time ¢ and in

position/direction 7 /5§

Intensity I, depends on spatial position 7, angular direction$and time ¢, which correspond for a
three-dimensional problem to six variables, /(x,),z,6,¢,2); the position vector is defined by the Cartesian
coordinates x,y,z, while the intensity direction by the polar  and azimuthal ¢ angles [KimO1, Tal05,
Hunll, Lygl3c]. In case of a steady-state simulation, the blackbody intensity 7, (#,¢)depends only on

the spatial position 7, as its computation is based only on the temperature of the medium at the specific
position [Lie02, Lygl2b]. The Scattering Phase Function (SPF) @(5,3,") expresses the radiative energy

scattered from a solid angle defined by direction §,' to the direction § [Tri04a, Tri08, Lyg12b]; it is equal
to unity for isotropic scattering and takes different values in various directions §,5,' for anisotropic

scattering, depending on the model used for its calculation (e.g., with Legendre polynomials) [Rai99,
Tri04a, Hos06, Tri08, Lyg12b].

For predicting radiative heat transfer in a general enclosure by using RTE, boundary conditions for
walls have also to be modelled and imposed. A wall can be fully emitting or partially emitting and
reflecting, depending on the value of wall emissivity (or conversely reflectivity) [Lie02]. For a black
surface, emission is considered equal to the black body one (being always diffusive), while for a gray one
a reflected portion of incoming rays, which can be diffusive or specular, is added to the blackbody energy
emitted from the surface. When reflection is diffusive, as in this study, there is no preferred direction for
outgoing rays, while when it is fully specular each incoming ray derives a discrete outgoing reflected ray,
e.g., in mirroring surfaces [Lie02, Lygl12b]. In Figure 3.1 diffusively emitting radiative rays are illustrated,
while in Figure 3.2 partially diffusively and specularly reflecting radiative rays, caused by an incoming
ray, are presented. In accordance with this approach, for a diffusively emitting and reflecting surface the
total radiative energy g,,.., leaving the wall can be computed as [Lie02, Lygl2b]
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qw,out = gw qw,b + (1 - gw ) qw,r (33)

where ¢,,, denotes the blackbody energy and g,,, the heat derived from reflection of incoming radiative
rays, multiplied both with the appropriate coefficients ¢, and /-¢,, which stand for wall emissivity and
reflectivity respectively (0<e¢, <1) [Hos02, Lie02, Kim05b, Lygl3c]. Boundary walls are assumed to

behave as diffusive reflectors when ¢,<1, while when ¢,~1 they are considered to be black (only emitting,
non-reflecting).

Figure 3.1: Diffusively emitting radiative rays from a boundary surface.
!
|
|
|
|
|
|

_
Figure 3.2: Partially diffusively and specularly reflecting radiative rays from a boundary surface.

In addition, the surfaces as well as the enclosed medium are assumed to exhibit approximately gray
behaviour, neglecting wave lengths and emitting only monochromatically; although this approximation
does not stand for real bodies and gases, many of them behave in such a way under certain circumstances
[Lie02, Tri04b, Talll, Lygl2b].

3.2. Spatial and angular discretization

As intensity /p at a node P depends on its spatial position 7 and the angular direction § of radiative
ray, RTE is solved for a discrete number of finite solid angles, which requires angular discretization, and
is integrated for each direction over the control volume of the examined node P, which requires spatial
discretization. As far as the spatial discretization is concerned, the node-centered finite-volume method,
analysed in Chapter 2, is implemented on unstructured tetrahedral or hybrid grids to divide them in finite
control volumes. For angular discretization the directional domain is subdivided in a finite number of
solid control angles, which should exactly fill the directional domain without overlapping; although this
can be achieved in many ways, it is quite common and efficient to select the solid angles associated with
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areas on the surface of a sphere defined by lines of constant longitude and constant latitude [Rai99,
Lyg12b]. In Figure 3.3 such a control angle discretization is illustrated along with a discrete solid angles .

Figure 3.3: Angular discretization and a solid angle S .

Considering the aforementioned spatial and angular discretization, the main concept is the
integration of RTE over the finite control volumes and finite solid control angles; thus, the transport
equation of radiative energy is redefined as an integral over the surface of each finite volume, constituted
by all the faces of the examined control volume, and over every finite solid angle, composed also by a
pre-defined number of sub-solid control angles. Nevertheless, it is quite common for simplicity reasons,
the finite solid angles to be selected in a way that they do not need to be further subdivided [Rai99,
Lygl2b]. To complete the equation set and obtain the algebraic equation for /, the radiative intensity on
each face for a specific solid angle is approximated by another algebraic equation that involves control
volume geometry and nodal values; the main idea is the conservation of radiative energy within a discrete

direction § , crossing the boundary face of any control volume. Since each step in the angular
discretization is similar with the corresponding step in the spatial discretization, the employed method
could be termed as finite-volume (in space) / finite-volume (in direction) method [Rai99, Lyg12b].

3.3. Mathematical analysis

3.3.1. Formulation of the discrete equations
Integrating equation (3.1) for a node P over the spatial finite volume V» and over the finite solid

mn

angle Q™ (m denotes current polar angle, while n the corresponding azimuthal one) derives:

dl, (7,3)
ds

dVdw=

Q"™ v,

| j[—(ka +o ), (F.8)+k 1, (7F)+ ij [1,(7.5)0(5.5 ’)da)]d o

Q" v,

(3.4)
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Equation (3.2) is transformed in a similar way as follows [Hunl11, Lyg13c]:

J-J-[ldIP(F,§,t) dl, (ds )]dde_

| C dt

ot (3.5)
| j(—(ka+as)l (7,8,0) + kI, (F jl D (5,8, )da)jd Wi o

Q" V,

Applying divergence theorem on their left hand side and considering that in finite-volume method
the magnitude of radiative intensity is taken constant over the examined control angle and control volume,
the following formulations can be obtained [KimO1, Hun11, Lygl2b, Lygl3c]

Z I"A4 D" = [—(ka +o )+ S ] v, AQ™ (3.6)

V,AQ™
Almn

+ Zlm”D";"AA,. =[=(k, + o)1} + 3" [V, AQ™ (3.7)

where AQ™ and D" are the magnitude and directional weight respectively of solid control angle Q™

b

while S : " is the sum of emissive and in-scattering terms, all defined as follows [KimO1, Lyg13c]:

o g
AQ™ = j j sin0dodo (3.8)
6" 9"

0" 9"
D" = j j (5-4)sin0dOde (3.9)

0" "
s=sinf cosp e +sind sing e +cosb e, (3.10)
no=ne +ne +ne, (3.11)
S =k, +— 1 J.I'"" CD mn mn) dw (3.12)

4

Each solid angle Q™" is obtained by the division of 4 steradians into N, x N , directions, where 0 is a

polar angle ranging from 0 to 7 and ¢ is an azimuthal angle ranging from 0 to 2z, while Ny and N, are the
numbers of pre-defined polar and azimuthal angles respectively (Figures 3.3 and 3.4). Although a control

angle can be selected arbitrarily, it is usually equally divided such that A" =0" -0" = ﬂ/ N, and
A" =9" 9" = 277/ N, (a technique also adopted in this work) [Kim01, Lyg13c].
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Figure 3.4: Solid angle 5 .

Once the angular discretization is accomplished and limits for each control angle are defined, the

directional weight DZ-M , which determines the direction of flow of radiative energy across the control

volume face depending on its sign, is computed as [KimO1, Lyg13c]

ci,x ci,y ci,z

D" =D" +D" +D" I j § ﬁ sm@dﬁdq):
o o

nt

0" ¢

- I .[(§'(nxéx+nyé},+nzéz))5in9d6’d¢)

D" = J. J. (3,-ne, smﬁa’ed(/):gjr q}J. n_cos@ sin@ sinf@dfdep =

:jq] s ‘ne, smé?dé’dgo Ijn sing sin@ sinfdfdo =
0" ¢"

0" 9"

n

oy
2

D = I I(s ‘n.e )s1n49d9d(p I J.n cos@ sinfdOde =

= —z((o'” -p" )(sin2 0" —sin’ 0" )

while each discrete solid angle of the sphere of 4x steradians is defined as [KimO1, Lyg13c]:

3-5

= nz‘ (sin @" —sing" ) [(0"’+ -0" ) - (cos 6" sin@"" —cos@" sinf"" )]

(cos Q" —cosp" ) [(9"” -0" ) - (cos 0" sin@"" —cos@" sin O™ )]

(3.13)

(3.14)

(3.15)

(3.16)



Mathematical analysis

AQ™ = j Isiné’dﬁd(pz((p“—go”’)(cos&"”—cosé"“) (3.17)

In order to complete the equation set, the i facial intensity I ,-mn should be expressed in terms of the

nodal intensity [Rai99, Chu93b, Kim01, Lygl3c]; several approaches have been developed so far, as the
finite-volume method does not constrain this choice as long as conservation is maintained. The step
scheme is utilized in this study, according to which the value of radiative intensity of a downstream face
is set equal to that of the upstream node [Rai99, Kim01, Lygl3c]. It is associated with a simple upwind
scheme in CFD, ensuring as such the positivity of the intensity values. In Figure 3.5 such an example is
illustrated; the value of radiative intensity for a control angle s at face ip=1 is equal to the value of node
pP=].

i A

Figure 3.5: Associating facial (ip) and nodal (P) radiative intensity.

Considering the definition of the step scheme, a typical relation between facial and nodal intensity is
described as [KimO1, Lygl3c]

mn mn __ ymn mn
["p™ =1"D

ci,out

+1;'D (3.18)

where 1 ;m and / g” are the values of radiative intensity at control volumes of neighbouring nodes P and

QO respectively (Figure 3.6).

Depending on the manipulation of solid control angles, values of directional weights DT and D),

ci,out ci,in
can differ. In a structured mesh around a hexahedral geometry a control angle usually lays tangentially to
its corresponding control volume; however the situation is changed for an unstructured one, as in these
grids a control angle doesn’t match exactly with the corresponding control volume face, becoming
inevitably overlapped (overhang problem) and thus requiring appropriate manipulation for a more
accurate solution [Cha94a, KimO1, Lygl3c]. Such remedies of this drawback are the bold approximation
and the pixelation method.
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Figure 3.5: Neighbouring control volumes (CVs) of nodes P and Q.

outgoing

CV of . .
Q imncoming

a
R outgoing W .y outgoing
CVotQ of Q meoming
CVofP CVofP
b C

Figure 3.6: a) Schematic representation of the control angle overhang problem. b) Implementation of bold
approximation. c) Implementation of pixelation method.

According to the first approach, a solid angle is assumed wholly either outgoing or incoming,
depending on the sign of its directional weight [KimO1, Lygl3c]. Depending on previous illustration of
Figure 3.5, Figure 3.6a presents the problem of a simultaneously incoming and outgoing solid angle in
two dimensions; Figure 3.6b includes the solution obtained by the bold approximation (wholly outgoing
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radiation). Mathematically this methodology derives the following expressions for directional weights
[Cha%94a, Kim01, Lygl3c]

D mn mn

ci,out bnld u ,bold

(Do)
D e =—(1=a (Do)

mn 1 lf‘ DZ';" 20
ci,bold = . mn
0if D" <0

(3.19)

where (Z:j;dd is the method coefficient based on the sign of the corresponding directional weight.

Unlike this approach, pixelation method considers the division of the examined solid control angle in
smaller ones; although their number N, x N, can be arbitrarily selected, in this work it is defined as

N(;XN(/, [Mur98a, Kim01, Kim05b, Lygl3c]. For each new sub-angle the bold approximation is

employed, as illustrated in Figure 3.6c, while the following expressions for directional weights are
derived

N, N,
Dmn mn
L'i,out,pvc - cz , Dix

m;=1n;=1

N, N,
mn mn
Dci,in.ptx - (1 acz , pix ) z z

m;=1n;=1

N, N,
2, 2 max(D".0)

mn _m =1

ci, pix N, N,
=1n=1

m.n;
Dcil i

D"

(3.20)

(94

where the coefficient o is evaluated by the sum of the positive sub-angles’ directional weights,

divided by the sum of the absolute values of them. Most of researchers utilize the pixelation approach
only for solid angles-control volume faces, at which overhang is exhibited [Mur98a, Kim0O1, Kim05b]. In
this work it is employed to the total number of nodes and control angles at a pre-computation stage;

considering that the values of coefficients a:n , as well as of directional weights D:l-m , don’t change

during the solution of the RTE, they are calculated only once at this stage for both approaches (bold
approximation and pixelation method). As a result a reduced computational cost per iteration is succeeded

[Lygl3c].
The last term, which has to be computed in equations (3.6) and (3.7), is S;m , representing the

emissive (blackbody) and in-scattering contributions; it can be evaluated as follows [KimO1, Lie02,
Lygl4f]

Sy = s J‘I;’V”' ®(m'n',mn) dw =

7[4” T m =ln/=

(m/n] mn)AQ”"‘,”'{ 3.21

i

where the quantity @ (m/n/,mn) is the normalized or average SPF (Scattering Phase Function), denoting
the diffusive contribution from the control angle m'n/ (incident angle) to the control angle mn (in-
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scattering angle) [Tri04a, Tri04b, Tri08, Lygl12b]. This quantity is assumed equal to unity for isotropic
scattering, while for anisotropic one it has to be further analyzed, depending on the utilized model (e.g.,
with Legendre polynomials), as [Cla57, Hun70, Rai99, Jim03, Tri04a, Tri08, Lygl14f]:

NyxN,, NgxN,,

J‘ J' m I’l mn dcu'da) Z Z (D((mlrnlr)” ,(mn)kk)AQ(mn)kkAQ(m[n;)// (3.22)

) mn min] _ (’"”)Ak ("’1”11’),,

CD(m n.,mn = —
AanAQm,-n,- AanAQm‘ni

(AR

According to the previous equation, the examined incident and in-scattering control angles are divided in
smaller ones (the number of which is defined in this work as N, x N ), approximating the summed term.
Considering that the values of average SPF don’t change during the solution, their evaluation can be
performed before the beginning of the iterative procedure, succeeding similarly to bold
approximation/pixelation method coefficients a reduced computational cost per iteration.

In this study the Legendre polynomial expansions are employed to model anisotropic scattering as
follows [Jim03, Tri04a, Tri08, Lyg12b]

®((min)), (mn),, )= ®(cos¥) =3 C,P, (cos¥) (3.23)

where ¥ is the angle between the divided incoming and scattered direction, while P; and C; denote the
Legendre polynomials of order j and their coefficients respectively; for the forward scattering function F2
(up to order 8) these polynomials are described as [Wolfram]|

P

0

I cos‘I") =cos¥
cos¥) = 1/2(30052 ‘P—l)

cosV)=1

P,

2

P

4

(
(
(
P, (cos¥) = 1/2(50053 ¥ —3cos‘I’)
(cos W) =1/8(35c0s* ¥ —~30cos’ ¥ +3) (3.24)
P, (cos W) =1/8(63cos’ ¥ =70 cos’ W +15cos V)
P, (cos¥)= 1/16(23lcos6 ¥ —315cos* ¥ +105cos’ ¥ —5)
P (cos¥)= 1/16(4290057 ¥ -693cos” ¥ +315cos’ ¥ —35cos ‘P)

P, (cos W) =1/128(6435 cos® ¥ ~12012 cos” ¥ + 6930 cos* ¥ 1260 cos” ¥ +35)

while their coefficients as [Cla57, Hun70, Ryb96, Lyg12b]:

Cy=1.0000 C3=0.6741 Cs=0.0067
C=2.0092 C=0.2222 C,=0.0007 (3.25)
C,=1.5634 Cs=0.0473 Cs=0.0001

The cosine of angle ¥, included in the previous equations, can be calculated as follows [Jim03, Tri04a,
Tri08, Lygl12b]:
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cosVW = uu ’+(1—,uz)”2 (1—/1'2 )1/2 cos(p'- )
M1 =cosb

(3.26)

Finally, utilizing the above supplementary equations, (3.6) and (3.7) can be further modified in the
following ones:

21D A4+ DDA, = [~k + o) 1+ 57 [v,807 (3.27)

ci,out ci,in

Nt 21’""1)’"" A, + 15D A, = [~ (K, + 0, )+ 57" |V, AQ™ (3.28)

ci,out cl,mn

3.3.2. Boundary conditions

The numerical contribution of the boundaries has also to be considered for the prediction of radiative
heat transfer in a general enclosure; in this algorithm both explicit and implicit treatment of boundary
conditions has been incorporated. Additionally, besides the most commonly seen boundary conditions in
radiative heat transfer, i.e., opaque and diffuse surfaces, symmetry boundaries are also modelled in case
of implicit manipulation.

According to the first explicit approach the boundary mesh nodes get their intensity values simply
summing their blackbody intensity due to their temperature and the reflected ones by the incoming rays.
As such, radiative intensity of a node P on an opaque and diffuse surface can be computed as [Rai99,
KimO1, KimO05b, Lyg12b]

1-
mn __ m;n; m;n; M m;n; m;n; A
Iw - gw[bw + z [ ‘Dm out gW]bW + z Z] D(‘w out Sl nw < 0
T §;+n,, <0 m;=ln= (329)
mn _ AoA AoA
D(‘w,nut - J‘ (S : nw )dQ s nw > 0
AQ™

where [ :,m is the radiative intensity coming into the computational domain, ¢, is the wall emissivity, /5, is

the blackbody emission of the boundary node P, while I :,.lin[ and DéH o are its radiative intensity and

directional weight respectively going toward the bounding wall; the second term is used in case of
reflecting surfaces only.

As the common tactic of explicit treatment requires a priori finer computational meshes in the
boundary region, the proposed algorithm was enhanced with the capability to manipulate boundary
conditions in an implicit way, contributing to the flux balance of the corresponding nodes. By this
approach, the step scheme is applied between the boundary node and a ghost node outside the
computational domain; thus, the intensity of the boundary node is calculated by the time-dependent RTE
(a corresponding equation is derived for non-time-dependent RTE) as [Lyg13c]

AI,”,M—VPAQM + > 1 (D, A4 + DI, A4 )+ D (15D, A4+ 1" DY, AA,) =

ci,in ci,in,w

CAt - ci,out ci,out ,w - (330)
[=(k, +o) 13"+ Sy |V, AQ™

where | : is the radiative intensity of the ghost node, while D” ;u, . 18 the directional weight going toward
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the boundary wall (outward to the control volume of node P) and D”  the corresponding directional

weight coming into the mesh (inward to the control volume of node P). For the evaluation of these
weights, either equation (3.19) or (3.20) is utilized, depending on the implemented scheme (bold
approximation or pixelation method). For the ghost node the radiative intensity is computed summing the
blackbody intensity of node P and its reflected intensities going toward the boundaries as [Lygl3c]:

-, Yo
mn __ w mn;
[w - gwlb,P + T z IP Dci,out,w (33 1)
m;=1n;=l1

The mirroring boundary conditions are implemented in the same implicit way, while the radiative

mn

intensity of the boundary surface I, is evaluated such as the net heat flux to become zero at the

symmetry plane. Thus, the intensities of a boundary node P, [ Zm going out of a surface are placed as

intensities [:m of the same node coming into this surface in the mirroring direction (Figure 3.7). This

attitude can be resembled with this of a specularly reflecting wall [Liu00, Lie02, Lygl3c]. The utilization
of symmetry surfaces is common practice in CFD, as it allows for the use of smaller domains with
significantly reduced numbers of Degrees of Freedom (DoF's) and consequently for reduced
computational effort and memory requirements. A drawback of this methodology is that the mirroring
direction has to be selected to coincide with a discrete one; in order to implement it on more directions, an
interpolation technique should be employed [Liu00]. Nevertheless, as the symmetry planes are usually
designed parallel to the axes’ planes (as in this work), this shortcoming appears to be relatively negligible

[Lygl3c].

Figure 3.7: Symmetry boundary condition on surface.

3.3.3. High-order accurate spatial scheme

For a first-order accurate spatial scheme the left and right states of an edge PQ (interface between
adjacent control volumes) are approximated by the values of radiative intensity at the end-points P and Q
respectively. For a higher-order one, these states are reconstructed with the Taylor series expansions
taking into account the values of more mesh nodes when computing the numerical fluxes similarly to
CFD. In this study the higher-order methodology is based on the MUSCL reconstruction of radiative
intensity values, using additionally a slope limiter to control the total variation of the reconstructed field
[VanA82, Swed4, Bar92, Lygl3c]. As such, radiative intensity ™" at the left and right states of midpoint
of an edge PQ is approximated as [Bar92, Lyg13b]
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(1) =1 +%(v1"’")[) P
(3.32)
oY = —Lwrm 5
0 o5 o'Po

where, the first right hand side terms are the intensities of left and right nodes respectively, while 7, is

the vector connecting them; as such, the step scheme, defined in equation (3.18), can be described as
follows:

(3.33)

ci,out ci,in

o =(1nm) D, + (1) DI

In order to implement the aforementioned second-order accurate spatial scheme, the extrapolation

gradients (VI mn)P and (VI™), have to be evaluated at nodes P and Q respectively, applying the Green-

Gauss linear representation method as [Bar92, Lygl3c]

et g M S o

VP i,edge PQ 2 i,P—wall

where Vp is the volume of the control volume of node P and Q is its neighbouring node; the second
summing term is added only in case node P is a boundary node.

In addition, two slope limiters have been incorporated in the present algorithm, the Van Albada-Van
Leer [VanA82] and the Min-mod [Swe84], in order the total variation in the reconstructed field to be
diminished. As mentioned in previous Chapter, the first one is actually an expansion of MUSCL
methodology, preserving monotonicity between the values at end-points, while the second one is
characterized by the smoothing of solution, choosing always the slope with the smallest magnitude. Their

u

mathematical formulation is based on centered (VI o )C and upwind (VI 1’;’") ,(Vlg” )u gradients, defined
as follows [VanA82, Swe84, Lygl3c]:

(VI7) T = 15" = 17"

c

(vip) =2(vip)-(viy) (3.35)

(V")

c

2(vig) -(vig)

Since these gradients are computed, equation (3.32) including additionally a non-linear slope limiter
is modified as [VanAS82, Swe84, Lygl3c]

(1) =+ 3 ((VE) o (VE23) 7o)

) ) (3.36)
X((VI) T (V155 ) oo

D= 0

(17) =15 -

where X is the limiter function, defined in case of Van Albada-Van Leer as [VanA82]
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2 2
(a +2e)b+2(b +e)a ab>0
X(a,b)= a’+b* +2e (3.37)
0 ab<0

where e is a very small number with a typical value of /.0E-16, used to prevent division by zero.
Similarly the Min-mod function is described as follows [Swe84]:

a if |a| <|b| and ab >0
X(a,b)=1b if |b|<|a| and ab >0 (3.38)
0 ifab<0

In case a negative unphysical value of radiative intensity is derived by the aforementioned method
(usually in the initial iterations), it is reverted to its non-reconstructed value (first-order accurate scheme).
Based on the previous supplementary equations for left and right intensity values, equation (3.30) (a
corresponding equation is derived for non-time-dependent RTE) is transformed as:

V AQ mn
cAt

¥ () Dran D, a4 ) -3 (15) D g 1D 0 ) R

Almn

=[~(k, +a )13+ Sy [V, AQ™
(3.39)

3.3.4. Iterative solution
For the solution of steady (non time-dependent) RTE, equation (3.27) is modified in the following
formulation [Chu92, Cha94b, Bae98b, Rai99, Kim01, Lyg12b]:

out

Zl’"”D””’ Ad, +(k, + o ) I V,AQ™ = SF"V,AQ™ = 17" D" A4, (3.40)

ci,out ci,in

I ( D A4+ (k, + o) VPAQ’""j = S;"V,AQ™ 3 13Dl A, (341)

SMV,AQ™ — Z["’"D'"" A4

ci,in

Imn —

P (3.42)
( D" AA,.+(ka+a\,)VPAQm")

ci,out

The previous relation is implemented iteratively, until either a desired radiative intensity residual
convergence or a desired number of iterations is achieved.

In case of time-dependent RTE (equation (3.39)), an explicit temporal scheme with a four-stage
Runge-Kutta (RK(4)) method [Lal88a, Bla01] is employed instead for time integration and solution as
[Lygl3c]

V Aan
A]mn P — Rmn 343
TV (3.43)
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(1 )m’k =(1y )l +akCA—tPR;’” ((I,’;"’ )M’H), k=1,..,4 (3.44)

where k and / are the numbers of current internal (Runge-Kutta method) and external iterations

mn mn

respectively, while R, is the total flux balance of node P for the solid control angle Q™ . The employed

in this study constants of the method oy attribute the procedure with a second-order accuracy in time
[Lal88a]; their values are defined similarly to the CFD algorithm (Chapter 2) [Bla0O1, Lyg13c].

Atp is the local pseudo-time step for node P [Fit99, Bla01], based on the length &, , of the

shortest edge of the grid connected to node P and defined for a steady-state simulation as [Hunll,
Lygl3c]:

1 .
CAtP S Emln(aminledge,l’) (345)

The local time stepping technique is a common practice in CFD, enhancing each control volume with the
maximum permissible time step and consequently accelerating the convergence to the steady-state
solution [Bla01, Lygl3c]. Nevertheless, it cannot be applied to an unsteady-transient simulation, in which
a global time step should be used instead, evaluated as the smallest of the local time steps of all the nodes
of the examined mesh.

For both equations (with or not time-dependency), if a negative unphysical value of intensity is
obtained (usually in the initial iterations along with a higher-order accurate spatial scheme), a fix-up
procedure is employed, setting this value equal to zero [Cap10, Lyg14f].
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4. Parallel computation strategy

4.1. Domain decomposition

As mentioned in the Introduction, the incorporated SPMD (Single Program-Multiple Data)
parallelization strategy, is based on the domain decomposition approach. According to this methodology
the computational domain is divided into a number of sub-domains equal to the number of available
processors/processes [Ven95, Smi96, Lan96, Tai03, Kal05a, Lyg12b, Sarl5].

The whole procedure begins with the implementation of METIS, which is an acclaimed multi-level
graph partitioning application used for dividing unstructured meshes; it is capable of providing high
quality partitions with less CPU time workload balancing [METIS, Kar99]. METIS derives a number of
sets of non-common nodes, the core nodes, depending on the number of available computational
processors/processes. Based on these sets (sub-domains), a single process is assigned to [Lygl2b,
Lygl4a, Lygl5, Sarl5]:

a) Divide the elements of the initial grid accordingly; each element is assigned to the partition
including its first node.

b) Identify the elements situated at the interface between two adjacent sub-domains; these elements are
included in both partitions, despite remaining incomplete.

c) Identify and add as extra nodes the missing ones (named ghost nodes), completing the deficient
elements, which subsequently form an overlapping region included to both neighbouring partitions; it is
this region that allows for interaction between the corresponding sub-grids via the exchange of data (flow,
turbulence and radiative heat transfer model variables and nodal gradients) with the MPI (Message
Passing Interface) communication protocol [Tai03, MPI].

d) Distribute to other processors/processes the corresponding new data, including overlapping region
nodes and elements, coordinates of core and ghost nodes, initial values of conservative and primitive
variables, etc.

Figure 4.1 presents the initial division (by METIS) of a two-dimensional triangular unstructured grid, as
well as the same mesh including the constructed overlapping region (coloured orange). Similarly, in
Figure 4.2, the decomposition of a three-dimensional tetrahedral unstructured mesh in two sub-domains
for parallel process is illustrated.

Figure 4.1: Partitioning of a two-dimensional triangular unstructured grid, before (left) and after (right) the
construction of the overlapping region (coloured orange).
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Figure 4.2: Decomposition of a three-dimensional tetrahedral unstructured mesh in two sub-domains.

4.2. Data exchange

The interaction between the neighbouring partitions is succeeded via the exchange of data (model
variables and nodal gradients) of the nodes constituting the overlapping area; these shared nodes either
send (core) or receive (ghost) data to or from the corresponding identical nodes of the adjacent sub-
domains [Ven95, Lan96, Tai03, Lygl4a, Lygl5, Sarl5]. While for core nodes the appropriate governing
equations are normally implemented, no calculation is performed for the ghost ones; their values are
explicitly received by their corresponding core nodes at the neighbouring processors/processes, ensuring
in that way the consistency of the solution across the virtual internal boundaries. Although this strategy
might seem memory consuming at first glance it appears to be quite efficient, as for an explicit iterative
scheme it is not the memory usage that should concern, but the communication cost between the adjacent
partitions [Kal05a, Lyg12b, Sarl5].

Since partitioning by METIS application is accomplished, each available processor/process is
assigned a unique rank; the one with a rank equal to zero is identified as the master processor/process,
which will perform the tasks analyzed in the previous section. Additional information, stored for each
processor/process in simple array data structures, is required to supplement the communication procedure
[Lygl2b, Lygl4a, Lygl5, Sarl5]; more specifically, these data structures are the following:

a) nneighbours: an integer representing the number of adjacent processors/processes.

b) ineighbours(n): an integer array with size nneighbours, including the ranks of neighbouring sub-
domains.

¢) nreceivenodes(n). an integer array with size nneighbours, which includes the number of ghost
nodes receiving information from each of the adjacent partitions.

d) nsendnodes(n): an integer array with size nneighbours, which includes the number of core nodes
sending information to each of the adjacent partitions.

e) ireceivenodes(n,m). a matrix with nneighbours rows; each row, constituted by nreceivenodes(n)
integers, includes the indexes of the ghost nodes receiving data from the neighbouring sub-domain 7.

f) isendnodes(n,m): a matrix with nneighbours rows; each row, constituted by nsendnodes(n) integers,
includes the indexes of the core nodes sending data to the neighbouring sub-domain n.

In order to ensure that data sent from a specific core node are received by its corresponding ghost one at
the adjacent partition, master processor/process fills in the same order the isendnodes(n,m) and
ireceivenodes(n,m) matrices. Figure 4.3 includes a schematic representation of the core and ghost nodes
of a sub-domain with rank 0; according to the previous definitions the additional data structures for this
partition are the following:

42
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Figure 4.3: Schematic representation of the core and ghost nodes of processor/process with rank 0.

nneighbours =2
ineighbours(1) = 1
ineighbours(2) = 2
nreceivenodes(1) = 12
nreceivenodes(2) = 11
nsendnodes(1) =11
nsendnodes(2) = 10

As mentioned above, the exchange of data is based on the MPI communication protocol libraries,
which enable point-to-point communication as well as collective communication procedure [MPI].
Nevertheless, considering the unique mapping of corresponding core and ghost nodes of neighbouring
partitions, a blocking point-to-point communication was selected for the proposed algorithm. This
communication procedure is performed at the end of each step of the iterative procedure (internal and
external), while to assure synchronicity of processors/processes the MPI BARRIER function of the MPI
library is used, pausing the faster processes until the slowest one executes this command [MPI]. In case a
second-order accurate spatial scheme is employed, the nodal gradients have to be exchanged as well,
since they are computed; the same stands for the conservative variables' corrections if an implicit iterative
scheme is selected. The whole procedure is presented in pseudo-code formulation as

Initialization of simulation by the master process
Initialization of parallelization (domain decomposition, overlapping region construction, etc.) by the
master process
Distribution of data to the rest processes
Iterative procedure
Do i = I to max iterations
Do j = 1 to iterative method steps

Perform relaxation of governing equations

MPI BARRIER

Exchanging data
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MPI BARRIER
End
End

while the exchange procedure as:

Do i = 0 to number of processes - 1
If (process rank = i) then
Do j = I to nneighbours
Send data of isendnodes(j,m)
End
Else
Receive data from process i and store them in ireiceivenodes(i,m) (if applicable)
End
End

Employing the aforementioned methodology, equally accurate but more computationally efficient
solutions compared to serial schemes, can be obtained [Ven95, Lan96]; its contribution appears especially
valuable in large-scale problems, such as flows over aircrafts usually requiring grids with millions or tens
of millions nodes, which consequently result to excessive time-consuming simulations [Lygl2b, Lygl4a,
Lygl5, Sarl5]. Besides the validation of obtained solutions' accuracy in Chapters 7 and 8, the proposed
parallelization strategy is evaluated against benchmark test cases, such as this considering turbulent flow
over the NASA Common Research Model (CRM).
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5. Agglomeration multigrid methods

5.1. Spatial agglomeration multigrid scheme

5.1.1. Spatial agglomeration strategy

The first issue, which has to be defined for the implementation of the agglomeration multigrid
method, is the generation of the coarser grids, i.e., the agglomeration strategy [Mav97, Mav98, Car(0,
Bla01, Nis10, Nis11, Nis13, Lygl4c, Lygl4d, Lygl4f, Lygl4g]. The fusion of the control volumes in this
study is performed on a topology-preserving framework at each partition, resembling the advancing front
technique [Nis11]; both isotropic and directional agglomeration methodologies (either selected by the
user) have been developed to be employed on tetrahedral and hybrid grids respectively [Bla01, Mav97,
Nisll1, Lygl4c].

The procedure is limited though by pre-defined rules in order consistency between the solution of the
initial finest grid and those of the coarser ones to be preserved at external (especially at the boundary
layer region) [Nis11, Lygl4c] and internal boundaries (between the sub-domains constructed for parallel
implementation of the algorithm). More specifically, the following constraints are employed [Lygl4c,
Lygl4d, Lygl4f]:

a) The control volume of a node located at the internal region of a grid can be fused only with its
neighbouring, also internal, nodes' control volumes, to construct a new virtual supernode [Nis10, Nis11,
Nis13].

b) In the same way, a boundary node can be agglomerated only with its adjacent boundary nodes of
the same type [Nisl1], e.g., a node positioned at a solid wall surface (or at a diffusively reflecting surface
in case of radiative heat transfer simulation) can be associated only with another node belonging to the
same surface.

¢) A node belonging to two or more boundary-condition-type closures (e.g., a node belonging
simultaneously to inlet and solid wall surfaces) isn't agglomerated and remains singleton at the next
multigrid level [Nis11]. Nevertheless, the nodes belonging to two boundary-condition-type closures, with
the one being a symmetry surface, are excluded from this limitation; they can be agglomerated with an
adjacent node having the same two boundary condition types.

d) A boundary node belonging to two or more boundary slope discontinuities isn't agglomerated and
remains singleton at the next multigrid level [Nis11]; examples of such nodes are those situated among
three different surfaces or among two different walls of the same type forming a 90° angle. In this
algorithm the limit set to restrict the fusion procedure is equal to 30°.

e) A boundary node can be merged with its adjacent one, only if their control areas unit normal vectors
form an angle less than 70°.

f) Although the control volumes of core nodes at overlapping region (sending information to
neighbouring partitions) [Ven95, Lygl2b] are considered for fusion, these of ghost ones (receiving
information from adjacent sub-domains) aren't merged during each level main agglomeration procedure;
at the end of each level they are fused accordingly to the agglomeration of their corresponding core nodes
at neighbouring partitions, creating actually virtual ghost supernodes.

g) In simulations, concerning turbulent flows and consequently relatively fine hybrid grids with highly
stretched elements in boundary layer region, a maximum threshold of merged nodes to a supernode (eight
for internal and four for boundary) is imposed to preserve even more the topology of the initial finest grid
[Nis11].

Considering the aforementioned limitations, the isotropic and directional agglomeration methodologies
are analyzed in the next sections.
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5.1.1.1. Isotropic agglomeration
In case of a tetrahedral grid, the isotropic spatial agglomeration procedure is performed in the
following sequence [Lygl4c, Lygl4d, Lygl4f]:

1) The nodes of the initial mesh, prohibited for agglomeration due to pre-mentioned constraints (¢) and
(d), are identified and marked.

2) The nodes, marked for confined "agglomeration", remain singletons (simply transferred to the next
level). The derived supernodes are marked in the same way for prohibited fusion at the next level
agglomeration.

3) The solid wall boundary nodes of each sub-domain are selected to create the list of the so-called
seed nodes [Sor03, Nisl1]. In case a partition includes no such boundary nodes, the core nodes of the
overlapping region are assigned as seed ones.

4) At this step the main agglomeration procedure begins by looping over the nodes of the
aforementioned list and examining the eligibility for fusion of all their adjacent nodes (due to the pre-
mentioned constraints or in case they are already fused to another supernode); if no limitation is
identified, their control volumes are added to the control volume of the seed node, constructing the
control volume of a new supernode. Figure 5.1 illustrates the schematic representation of the generation
of a supernode via agglomeration at the prismatic region of a hybrid grid. In case no appropriate for
fusion (already agglomerated or constrained) adjacent node is identified, further examination is
performed; the seed node's neighbouring supernodes are examined, in order to include it. If more than one
supernodes are identified as eligible for this merging, the one with the lower number of included nodes is
selected, while if no suitable supernode is found, the seed node remains as singleton to the next multigrid
level. The procedure is assumed to be complete when all the seed nodes are agglomerated or become
singletons.

Figure 5.1: Construction of a supernode via agglomeration at a prismatic region.

5) A new list of seed nodes is constructed, including the nodes whose control volumes have been
touched by the agglomeration front, which are actually the neighbouring, non-agglomerated yet, nodes of
the already fused ones [Han02]. In this list a priority hierarchy is applied, taking into account the number
of times a node is touched by the agglomeration front, as well as the number of its adjacent control cells.
Therefore, the set of nodes which have the maximum touch number will be initially examined for
agglomeration, while for the same set the procedure begins from the node with the minimum number of
adjacent nodes [Han02].

6) Steps 4 and 5 are repeated until all the nodes of each partition (except the ghost ones) are fused or
assigned as singletons. In Figure 5.2 the progress of the agglomeration front as well as the merging
procedure are presented schematically in a part of two-dimensional triangular grid, beginning from the
solid wall boundary surface and extending then to the internal area of the computational domain.
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7) The generated unconstrained singleton supernodes are examined once more to be merged with their
adjacent ones, according to the procedure described in step 4.

8) A loop over the derived supernodes is performed in order the completely surrounded by other ones

to be identified (they are connected with only one supernode); in such case they are agglomerated with
their surrounding ones [Sor03].

9) The ghost nodes at the overlapping region of each partition (coloured black in Figure 5.3) are
agglomerated or become singletons according to their corresponding core nodes' fusion at the adjacent
sub-grids. Therefore, virtual ghost supernodes are actually generated, as the number of their merged
nodes may differ from this of their overlapping core supernodes; such a two-dimensional example is
illustrated in Figure 5.4, where it is obvious that the virtual ghost supernodes do not coincide with their
overlapping core ones. Nevertheless, the ghost supernodes get the correct data (volume, coordinates, etc.)
of their overlapping core ones by exchange of information.

A \T‘ A ~T* LA T LA \T‘ LA \TI) Y & AL > ’L\ AL \T"'*“*T» AT*T 'L\'*T‘"’J\\T"'k‘ T ’l‘
IY:YLMIY;YEVEX‘(I :\vrkarw rl_v/,i\\vAgg.l:ront
B I T ,1\\( NP Il Agg. Front "A\“Y’ 'I"\v—"ﬁ\ P \Y/I_‘V,_ - 'ﬁ\w—‘/:
Figure 5.2: Progress of the agglomeration front and fusion procedure in a part of a two-dimensional triangular
grid.

10) The new virtual superedges, connecting the supernodes obtained by the previous steps, are
constructed. At each super control volume the internal edges are deleted, while the external ones are used

for the evaluation of the new vectors ﬁPQ at the interface areas with its neighbouring super control

volumes; such vectors are simply evaluated by summing the vectors of the corresponding surfaces
interfacing two adjacent super control volumes [Sor03]. As unstructured grids are utilized, special
attention is required in order to avoid summing vectors with opposite signs and subsequently opposite
directions (inward and outward to the examined control volume).

11) At the final step of the main spatial agglomeration procedure the supernodes that remained
singletons as well as their neighbouring ones are identified and marked, in order to become also
singletons at the next level (coarser) grid. In that way the generation of adjacent control volumes with

large differences in size is avoided, and consequently a possible harsh irregularity at next agglomeration
levels is alleviated.
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12) The whole procedure is repeated in case an even coarser mesh is required. Depending on the test
cases encountered in this study, a number of three or four spatial multigrid levels has been identified to be
adequate.

Sub-domain

Overlapping area

Sub-domain

Figure 5.3: Sub-domains and overlapping region in a part of a two-dimensional triangular grid.
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Figure 5.4: Generation of corresponding core and ghost supernodes in a part of a two-dimensional triangular grid.
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Implementing the previously described steps on an unstructured tetrahedral grid representing the domain
over a rectangular wing with a NACAO0O012 airfoil, the illustrations of symmetry surface included in

Figure 5.5 are obtained.
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Figure 5.5: Symmetry surface of the initial and isotropically generated coarser control volume grid over a
rectangular wing with a NACA0012 airfoil.

Since the agglomeration procedure is complete, the required variables for the new coarser grids, such
as the volumes of super control volumes, the pseudo-coordinates of supernodes, the normal vectors of
boundary faces included to new control volumes, the directional weights and the pixelation coefficients of
superedges in case of a radiative heat transfer problem, have to be evaluated; these computations are
performed, based on the corresponding values of merged nodes and edges. In addition, the data for the
new core and ghost supernodes of overlapping regions have to be added to the existing structures
(initially including data only for the overlapping core and ghost nodes of the finest mesh), in order
interaction between the agglomerated partitions to be established [Lygl14f].

Moreover, the expression deriving the local time step for each supernode is reformulated; as virtual
edges are considered in coarser grids, the time step computation is based on the volume and the total
surface of the control volume of examined supernode P independently of the type of flow. Therefore, the
time step is defined similarly to Chapter 2 as:

Vp

A, =CFL(/1;+/1;+,15)+4.(,1;+13+/15) (5.1)

In case an inviscid flow problem is encountered the term 4- (/1‘;‘ +A+ lj) is neglected, while if a laminar

flow simulation is performed the turbulent viscosity included in the viscous spectral radii 4, (equation
(2.121)) is assumed equal to zero. In the same way, for a radiative heat transfer problem, the time step
utilized in Runge-Kutta method is calculated as [Lygl4f]:

"2 AA, (5.2)
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5.1.1.2. Directional agglomeration

In case of a laminar or turbulent viscous flow problem, usually encountered along with a hybrid grid,
full-coarsening directional agglomeration [Car0O, Nisl1, Nis13] is performed instead, described as
follows [Lygl4c, Lygl4d]:

1) Step 1 of isotropic agglomeration procedure is performed.

2) The solid wall boundary nodes at the prismatic region are identified and assigned an index, e.g., an
ascending number. The same index is assigned to the corresponding nodes of the next prismatic layers; in
this way lines of prismatic nodes with the same index (implicit lines) [Nis11, Nis13] are constructed.

3) Step 2 of isotropic agglomeration procedure is accomplished.

4) The boundary prismatic nodes are merged with their eligible for agglomeration adjacent ones,
which belong to the same surface, generating in that way new boundary supernodes (bottoms of implicit
lines) [Mav97, Nis11]. Their indexes are stored together in a data structure in order the nodes of the next
prismatic layers to be fused accordingly. If a semi-coarsening process [Mav97, Mav98] is selected
instead, the examined boundary prismatic nodes are simply transferred as singletons to the next coarser
level; only one node is included at the bottom of each implicit line.

5) Similarly to isotropic agglomeration, a list of seed nodes is created, including the nodes touched by
the agglomeration front, which are actually the nodes of the next prismatic layer.

6) A loop over this list is performed, in order the seed nodes to be merged with their adjacent non-
agglomerated and non-constrained ones, similarly to isotropic strategy. Nevertheless, an extra limitation
is imposed to these nodes, according to which a node at prismatic region can be fused with another one
only if their indexes are associated and consequently if their corresponding boundary nodes (bottoms of
implicit lines) have already been merged. Thus, the nodes belonging to the same implicit line (defined by
the corresponding bottom agglomeration) at each two successive prismatic layers are fused together.

7) A new seed list is constructed similarly to isotropic procedure, including though only prismatic
nodes.

8) The previous steps 6 and 7 are repeated, until all the prismatic nodes have been transferred to the
next coarser level either agglomerated or as singletons. In addition, another limitation is imposed to
preserve the topology of the initial mesh up to the coarsest generated one; after the first agglomeration
process the nodes of the lowest prismatic layer are not allowed to be merged with the nodes of the next
layer, while the same constraint is applied to the nodes of the second prismatic layer after the second
process, and so forth. Figure 5.6 includes the schematic representation of the proposed directional
agglomeration procedure at the quadrilateral area of a two-dimensional hybrid grid.

9) The directional agglomeration is accomplished by performing steps 4 to 8 for the prismatic nodes,
whose implicit lines' bottoms belong to a different partition; the core nodes of overlapping region are
considered as lines' bottoms, instead of the boundary ones.

10) A new seed list is constructed including the nodes next to the already agglomerated prismatic ones,
belonging to tetrahedral or pyramidical elements.

11) The isotropic agglomeration procedure is performed for the remaining nodes, beginning from step
4.

Implementing the previously described steps on a hybrid unstructured grid representing the domain over a
rectangular wing with a NACAO0012 airfoil, the illustrations of symmetry surface included in Figure 5.7
are obtained, while in Figure 5.8 the flow chart of isotropic and directional agglomeration is presented.
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Figure 5.6: Directional agglomeration at the quadrilateral area of a two-dimensional hybrid grid (level 1-red, level
2-green, level 3-blue).

o
!

7%

4
@t ==s
st
}ﬁkfé\}\r =
STA

-
IO EGR *Jﬁjf? )
DS Oa sy w}wj % 5

AVCH LN PoN 4 Y ¢
«a?u%“ YT
< 7Y g

Figure 5.7: Symmetry surface of the initial and directionally generated coarser control volume grid over a
rectangular wing with a NACA0012 airfoil.

= A
i?&z 8g
Iy |



Spatial agglomeration multigrid scheme

|

Identify and mark nodes constrained
for fusion

|

Directional
agglomeration?

Identify prismatic nodes of initial
grid

* No

|

Transfer of marked nodes as ]

singletons to the next coarser mesh J‘

Directional Yes

agglomeration?

v

Construction of initial seed list

Agglomeration of boundary
prismatic nodes

including nodes at solid walls

!

Construction of initial seed list with

i the nodes of the first prismatic layer
Agglomeration of seed nodes h T =
r t ~ Agglomeration of seed prismatic
Construction of a new seed list with nodes
the nodes touched by the - T o

agglomeration front

Does the list

~

Construction of a new seed list with

the prismatic nodes touched by the
agglomeration front

include any nodes?

-
Merge not constrained singlefons
and completely surrounded
supernodes with their adjacent ones
o

¥

~

Construction of virtual ghost
supernodes and superedges

¥

Mark neighboring to singletons
supernodes for prohibited fusion

e N
Previous steps are repeated for
prismatic nodes, whose
corresponding boundary nodes

L belong to a different partition
vy

Does the list
include any nodes?

!

-

Is desired level
achieved?

[

Computation of required variables ]

End

Construction of seed list, including
nodes next to prismatic ones

Figure 5.8: Flow chart of isotropic and directional agglomeration procedures.
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5.1.2. Flux computation and numerical solution

For a multigrid accelerated iterative solution FAS is implemented, in accordance with which
equation (2.118) (and/or equation (3.43) in case of radiative heat transfer) is solved at the first non-
agglomerated level but at the coarser ones an approximate version of the same equation is used [BlaO1].
The interaction between two successive multigrid levels is obtained via the restriction of conservative
variables and flux balances from the finer to the coarser level, as well as the prolongation of conservative
variables' corrections from the coarser to the finer level [Sor03, Nill, Lygl4c]. FAS is implemented in a
V(vi,v2)-cycle process, where v, denotes the number of relaxations before proceeding to the coarser mesh
from the finer one, while v, the number of relaxations after obtaining the solution from the coarser grid
[Nisl1, Lygl4c]. For flow simulations performed with an explicit scheme a V(1,0) process is employed,
while for those encountered with an implicit one a V(2,1) is used; in test cases involving turbulent flow a
V(1,1) and V(2,2) strategy, respectively, is followed instead. If radiative heat transfer is considered, FAS
is employed for RTE in a V(1,0)-cycle strategy. For simplification reasons the procedure is analyzed

below only for flow equations; its steps are also applicable to RTE by substituting W, with 77" and RP

with R’" , unless otherwise stated.

At each cycle the procedure begins with the solution of equation (2.118) for the first non-
agglomerated level (denoted at next with the subscript %), deriving updated values for conservative
variables and flux balances of each computational node p. These values are restricted by means of
smoothing to the next coarser grid (denoted at next with the subscript H), using the restriction operators

(IW ):’ and ([R ):’ respectively as follows [Man97, Car00, Sor03, Nill, Lygl4c]:

- . W oV
WP,restricted = (]W );[;] Wp = Z I/p . (53)
P

RP,reslr[cled = (IR );[ Ep = Z ﬁl’ (54)

is actually the volume-weighted sum vector of the values of conservative variables of nodes p

P,restricted

merged to construct the supernode P, while R is the sum vector of flux balances of the same nodes

P, restricted
p; Figure 5.10 illustrates the schematic representation of the spatial agglomeration multigrid restriction
process at a prismatic region.

Figure 5.10: Spatial agglomeration multigrid restriction at a prismatic region.
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Since the restriction is complete, the approximated equation (2.118) has to be relaxed for the coarser
mesh, which is obtained by substituting the right hand side term of this equation with the following one
[Mav97, Car00, BlaO1, Nis11, Lygl4c, Lygl4f]

RP,FAS = kP (WP ) + [EP,resrric'ted - EP (Wp,rem~med ):| ( 5 5)

‘EH

where RP(WP) is the current flux balance of node P in the coarse grid. Considering the edge-based

structure of this algorithm, as well as the derived superedges by the agglomeration process, the
computation of fluxes appears to be a straightforward procedure; for the inviscid fluxes a first-order
accurate spatial scheme is employed (the solution on the coarser levels does not influence the final
solution [Bla01, Lygl4f]), while for the viscous ones the necessary gradients are obtained either by
applying the nodal-averaging method (described in Chapter 2) or by restricting them similarly to equation
(5.3) for conservative variables. The same stands for boundary surfaces' fluxes, as the control volume
boundary surface of a supernode is the sum of the corresponding surfaces of its incorporated nodes. The

next two terms included in the forcing function 4, [Bla01, Lygl4f] denote respectively the restricted flux

balance to node P from the finer level and the flux balance of the same node generated by using the
restricted values of conservative variables. It is quite obvious that at the first internal iteration of Runge-

Kutta method or at the first external of Jacobi or Gauss-Seidel algorithm, RP, s 18 equal to the restricted

flux balance RP,,QS[,Wd , confirming the approximation character of FAS; it actually derives a smoothed

version of the finest grid solution at the coarser levels [Bla0O1, Fer02, Lygl14f]. As such, equation (2.118)
is reformulated and solved via the iterative scheme for each agglomerated supernode P as [Mav96,
Mav97, Mav98, Bla01, Fer02, Sor03, Nis10, Nis11, Nis13, Lygl14f]:

AWP :_%EP,FAS :_%(EP( qP)+‘ZH) (5.6)
P

If an implicit scheme is selected, the Newton-linearized inviscid, viscous and source terms have to be
defined before the relaxation of the previous equation; they are evaluated in the same way with this
applied for the initial finest grid [Nis11]. However, as elements do not exist in coarser resolutions, only
the linearization based on the nodal-averaging computation of gradients can be implemented for viscous
terms [Lygl4f].

In case an even coarser mesh has been generated via agglomeration, the restriction process
(equations (5.3)-(5.4)) as well as the relaxation process (equations (5.5)-(5.6)) are employed similarly for
this grid. As mentioned above, only a first-order accurate spatial scheme is used for the higher
agglomerated levels [Sor03, Nisl1, Lygl4c]; the flux sum of the finest grid, transferred not only to the
next coarser grid but to all the multigrid levels, influences via the forcing function the accuracy of their
solutions [Bla01]. The previous state is confirmed by the following analytical equation of the forcing

function ;12 ,; for the second agglomerated mesh [Lyg14f]:

= = 2H
2P restricted R (W 2P, restricted ) (IR )H RP - RZP (VVZP,restricted ) =

= (1)) (B (7, )+ » (7

2P, restricted )

Y
=
=3

(5.7)
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Since the solution at the coarsest grid is obtained, the corrections of conservative variables are
prolongated by means of smoothing to the next finer mesh [Fer02, Nisl1, Lygl4c]; in case of inviscid

flow or radiative heat transfer a simple point injection scheme, namely the prolongation operator (I W ) o

is implemented as [Car00, Lyg14f]

AW, =(1,,), AW, =AW, =W, —W

p

(5.8)

"V P restricted

while in case of laminar or turbulent viscous flow a distance-based scheme is employed, considering only
the nodes of the same type (internal or boundary ones of the same surface) [Nis11] as follows [Kat09]

a, AW, + > a, ,AW,

AW =(1,)" AW, = Ok (P)
! (W)H ' appt Z 40 (5.9)
QeKy (P)
4
ap—Q:|rpQ|

where FPQ denotes the vector connecting the agglomerated node p and the supernode Q, while AWP and

AWQ represent respectively their corrections. The distance-based operator is downgraded to the simple

point injection one for singleton supernodes, as 4, , is zeroized in such cases. Figure 5.11 illustrates the

0
schematic representation of the spatial agglomeration multigrid prolongation procedure at a prismatic
region.

Figure 5.11: Spatial agglomeration multigrid (point-injected) prolongation at a prismatic region.

Although not necessary, an averaging operator can be used to smooth the total error components
before updating the conservative variables of the finer grid nodes as [Car00, Lyg14f]

AWV, + 3, AW,

AW — qeKy (p) (5 10)
p.averaged .
Ve 2,
q€Ky (p)
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where g are the neighbouring nodes of each node p. The updated final values Wf of the finer mesh

nodes at / multigrid iteration/cycle are computed as follows [Car00, Sor03, Nis11, Lygl4f]

Wit =W!+AW, (5.11)

where W,f is the vector of previously calculated and not restricted values of conservative variables. The

prolongation process is repeated up to the initial finest mesh, accomplishing in that way the V-cycle
procedure.

The previously described V-cycle scheme (V(1,0)-cycle strategy) is illustrated schematically in
Figure 5.12, in which the bullets denote the relaxation of the solution by the Runge-Kutta iterative
method, while at next the whole procedure is presented in pseudo-code formulation [Lygl4{]:

Do i =1 to NS (NS stands for the number of spatial agglomeration levels)
If (i > 1) then (1 corresponds to the finest non-agglomerated grid)
Perform spatial restriction
End if
Perform the Runge-Kutta (RK(4)) scheme
End do
Do i = NS-1to 1, step=-1
Perform spatial prolongation
End do

h 4

Restriction

Prolongation

3H
Figure 5.12: Schematic representation of the spatial agglomeration multigrid V(1,0)-cycle scheme.

If an unphysical value of a conservative variable is obtained, e.g., a negative value of pressure,
turbulent kinetic energy or radiative intensity, either by the iterative method or by the prolongation
process, a fix-up procedure is implemented [Capl0, Lygl4f]. According to this methodology the
conservative variables of flow or turbulence model get their previous acceptable values. It is implemented
similarly in case of radiative heat transfer; for the finest grid the value is set equal to zero if it was derived
by the Runge-Kutta method and equal to its previous value if the unphysical intensity was a result of
prolongation from the coarser level, while for the agglomerated grids the negative values are always
restored to their previous values. The same procedure is followed for the corresponding flux balances.
Independently of the employed scheme (explicit or implicit), each level process of the FAS is completed
firstly for the flow equations and then for the turbulence model (loose coupling); in case of radiative heat
transfer a similar FAS procedure is followed.

In this study, the FAS is incorporated in the Full Multigrid (FMG) scheme [Fer02, Lygl4c], in order
further acceleration to be obtained; following this strategy the solution is decomposed in two stages,
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namely the preliminary and the main one (not applicable to radiative heat transfer). At the first stage the
flow and turbulence model PDE's are relaxed beginning from the coarsest grid and, as the number of
iterative cycles increases, the solution extends successively to the finer meshes up to the initial finest one,
at which point the main stage begins; in this way a better initial guess is obtained for each finer level
[Lygl4c]. Figure 5.13 includes a schematic representation of the developed combined FMG-FAS (V(1,0)-
cycle strategy) procedure.

h

4 4 4
H R 3 3 3
4H - ]
—— Preliminary Stage + Main Stageg ——»

Figure 5.13: FMG-FAS procedure.
5.2. Angular agglomeration multigrid scheme

5.2.1. Angular agglomeration strategy

As mentioned in Introduction, the agglomeration multigrid scheme for RTE is extended in this study
beyond the coarsening of spatial resolution to the coarsening of angular one; it is performed in a similar
manner, based on the solution of RTE on successively coarser angular levels, requiring as such the
implementation of a corresponding angular agglomeration strategy [Lygl4b, Lygl4f, Lygldg]. The
angular fusion is performed by merging neighbouring solid control angles of the finer angular
discretization and creating new solid control superangles. Although being a similar process to the spatial
scheme, it is much simpler, mainly due to the absence of the large number of restrictions of the spatial
one.

For each angular level the procedure begins with the identification and fusion of every two
neighbouring azimuthal angles; it extends then similarly to the polar direction, deriving the new solid
control superangles (respectively to supernodes derived by the spatial agglomeration scheme). Therefore,
the equal division of 4z steradians into N,xn, directions employed for the single-grid level, is

reformulated into ~,/2xn~, /2 ones, such that A" =0" -0" = 77/ 2N, and Ag" =¢" " =27/2N,

[Lyg14f]. Considering the commonly used circle and sphere, representing the two- and three-dimensional
discretization respectively [Rai99], the angular agglomeration derives finally a circle with the half
number of angles and a sphere with the quarter number of solid angles. In case an even coarser angular
discretization is required the procedure is repeated, resulting in n, /4x N, /4 directions; depending on the

test cases encountered in this study, a number of two or three angular multigrid levels has been identified
to be adequate. Figure 5.14 illustrates the schematic representation of the angular merging process in two
dimensions, in which sixteen control angles of the initial resolution are agglomerated successively to
eight and four ones for the second and third multigrid level respectively. In Figure 5.15 the corresponding
three-dimensional procedure is presented, in which thirty two solid control angles are agglomerated in
eight new superangles.
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1st Level 2nd Level 3rd Level

Figure 5.14: Angular agglomeration in two dimensions.

Figure 5.15: Angular agglomeration in three dimensions.

Although the spatial agglomeration methodology is constrained by a non-trivial number of
limitations, only one is applied to the angular one; the adjacent angles, either in azimuthal or polar
direction, examined for merging, shall belong to the same quadrant of the directional circle or sphere
[Lygl4b, Lygl4f]. In that way the fused angles as well as the derived superangles have the same sign,
ensuring the consistency of the restriction and prolongation relations for two successive angular
discretizations. As the common practice is to employ an even number of angles in both directions for
symmetry reasons, the agglomeration procedure is not influenced significantly by this restriction. In
addition, this limitation defines a minimum allowed number of control superangles for each direction,
four in the azimuthal and two in the polar direction; it is applied separately in each direction, in order not
to affect the number of the pre-defined angular multigrid levels. For example in a quasi-3D test case, in
which sixteen azimuthal and four polar angles are considered along with three multigrid resolutions, the
angular agglomeration method derives eight azimuthal and two polar angles for the second level and four
azimuthal and two polar ones for the third angular grid.

Since the coarser angular resolutions are ready, the corresponding required variables, such as the
directional weights and the pixelation coefficients, are computed [Lygl4b, Lygl4f]. This calculation can
be performed either analytically, using the new solid control superangles for each edge and boundary
surface, or by simply summing the absolute values of directional weights, as well as their positive ones,
for the merged control angles; the latter is incorporated in this method. Because of the aforementioned
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limitation there is no need for special treatment, in order to avoid summing adverse directional weights.
As far as the parallelization strategy is concerned, additional data structures for the new superangles have
to be constructed for the interaction between the partitions via their overlapping regions. Finally, the
angular agglomeration procedure is completed with the computation of the average scattering phase
functions for the new superangles and the definition of the corresponding mirroring directions [Lyg14b,

Lygl4f].

5.2.2. Flux computation and numerical solution

For the angular multigrid accelerated iterative solution of RTE, the FAS via a V(1,0)-cycle is
implemented again. Similarly to spatial multigrid methodology, each cycle begins with the solution of
equation (3.43) for the first non-agglomerated level (denoted at next with the superscript mn) updating the
values of radiative intensity as well as those of flux balance; these values are transferred then to the next

coarser resolution (denoted at next with the superscript MN), utilizing the restriction operators (1, )MN and

(1,)" respectively as follows [Lyg14b, Lygl4f]

R;\;/,Ixstricted = (IR ):;1:/ R:m = Z R;m (5 * 12)
MN MN +mp Z[’;n ) Aan 5 13
p.,restricted = ( I )m,, 4 = MN ( ’ )

AQ

where Rﬂmw denotes the sum of flux balances of merged solid control angles mn to the superangle MN,
while / %L.,,,Med represents the angular-weighted sum of radiative intensity values of the same fused control

angles. Figure 5.16 includes the schematic representation of restriction procedure in two dimensions, in
which the bullets stand for the summation/weighted-summation of transferred variables (radiative
intensity and flux balance).

The solution at the coarser angular resolution is succeeded once more via the implementation of the
approximate equation (3.43), in which the right hand side term is reformulated similarly to this of
equation (5.5) as [Lygl4b, Lygl4f]

RN _ R:/tN ([]lefN ) " I:RMN _ R[/;/IN ([MN ):l

p,FAS ‘ p.restricted p.restricted | ( 5 . 1 4)

A MN

where R ( Iﬁ“) is the current flux balance in direction MN of the coarse angular grid, while 4" is the

angular forcing function, controlling the accuracy of the coarser angular levels. Similarly to spatial
multigrid technique, the computation of the required fluxes of the first right hand side term is a
straightforward process; a first-order accurate spatial scheme is applied to the coarser resolutions,
considering that they do not influence the accuracy of the final steady-state solution. For an even coarser
angular grid the restriction as well as the relaxation with the Runge-Kutta method are repeated.

Since the solution at the coarsest angular discretization is obtained, the corrections of radiative
intensity are prolongated by means of interpolation to the next angularly denser level, considering a

simple point-injection scheme, which utilizes the prolongation operator (/ as S
imple point-injecti h hich utili he prolongation op ()" [Lygldb, Lygl4f]

MN

A 19

p.restricted
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where AI’" is the correction for the agglomerated angle mn, while AI)" is the respective correction for

the superangle MN. Figure 5.17 presents the schematic representation of the prolongation procedure in
two dimensions.

Figure 5.16: Angular agglomeration multigrid restriction in two dimensions.

Figure 5.17: Angular agglomeration multigrid prolongation in two dimensions.

For the computation of the updated final value of radiative intensity at the initial densest resolution
equation (5.11) is implemented again. The whole procedure is presented schematically in Figure 5.18,
while at next it is outlined in pseudo-code formulation as [Lyg14f]:

Do j = 1 to NA (NA stands for the number of angular agglomeration levels).
If G > 1) then (I corresponds to the densest angular resolution)
Perform angular restriction
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End if

Perform the Runge-Kutta (RK(4)) scheme
End do
Do j = NA-1 to 1, step= -1

Perform angular prolongation
End do

In case a negative, unphysical radiative intensity is obtained by the prolongation process, its previous
value, as well as the previous value of the corresponding flux balance, is restored; if it is derived through
the Runge-Kutta method at the densest level, its value is set equal to zero [Cap10, Lyg14{].

mn 4

Restriction

Yea,

MN 4

i Prolongation

2MN

Figure 5.18: Schematic representation of the angular agglomeration multigrid V(1,0)-cycle scheme.

5.3. Combined spatial/angular agglomeration multigrid scheme

A nested combination of the aforementioned (spatial and angular) agglomeration multigrid schemes
was finally developed for additional acceleration in radiative heat transfer computations [Lygl4b,
Lygl4f]. The whole procedure begins with the spatial agglomeration of the initial finest mesh and the
generation of the coarser grids; it extends then to the construction of the coarser angular resolutions. For
the accelerated solution of RTE a complete angular FAS V-cycle is employed at each level of the spatial
multigrid scheme, described in Figure 5.19 and the following pseudo-code [Lygl14f]:

Do i =1 to NS (NS stands for the number of spatial agglomeration levels)
If (i > 1) then (1 corresponds to the finest non-agglomerated grid)
Perform spatial restriction for i level (angular level is 1)
End if
Do j = 1 to NA (NA stands for the number of angular agglomeration levels).
If G > 1) then (I corresponds to the densest angular resolution)
Perform angular restriction for i and j level respectively
Endif
Perform the Runge-Kutta (RK(4)) scheme for i and j level respectively
End do
Do j = NA-1to 1, step=-1
Perform angular prolongation for i level and j level respectively
End do
Perform the Runge-Kutta (RK(4)) scheme for i level (angular level is 1)
End do
Do i = NS-1to 1, step=-1
Perform spatial prolongation for i level (angular level is 1)
End do
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Combined Spatial/Angular Multigrid Cycle
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Figure 5.19: Schematic representation of the combined (nested) spatial/angular agglomeration multigrid scheme.

Considering the implementation of a complete angular multigrid scheme at each spatial
agglomeration level, the computation of the appropriate directional weights and pixelation coefficients is
performed for all the combinations of spatial grids and angular resolutions at a pre-processing stage
[Lygl14f]. The spatial and angular, restriction and prolongation operators are applied similarly to the only-
spatial and only-angular multigrid schemes, while the evaluation of the numerical fluxes is performed
exactly in the same way. The main difference concerns the forcing function, which, for the nested angular
multigrid stage, includes not only the angular function 4" but also the spatial one 4, as indicated by the
following equation for a coarser spatial and angular resolution:

AP = (1) Ritpes = R (1) 12 ) = (1) (R )= R (1), 157 (5.16)

Moreover, an additional difference is identified to the double implementation of the Runge-Kutta
method per multigrid cycle for each spatial level at the initial densest angular discretization; this second
relaxation is necessary in order the values of radiative intensity and flux balances to be updated after
being prolongated angularly and before being restricted spatially. Similarly to the aforementioned
methods, the second-order accurate spatial scheme and the zero fix up procedure [Capl0, Lygl4f] are
employed only for the finest spatial and angular resolutions.
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6. Grid adaptation

6.1. H-refinement

Numerical diffusion and false scattering in flow and radiative heat transfer predictions respectively
can be mitigated by the utilization of finer meshes, resulting however in increased memory requirements
and computational effort. In such cases as well as in simulations with sufficiently localized phenomena or
in problems faced for the first time, for which no previous knowledge exists for the required resolution,
local grid adaptation techniques can be implemented during the iterative procedure in order to resolve the
physical behaviour and increase the accuracy of the final solution, along with significant computational
savings [Loh92, Lygl3c, Lygl4a, Lygl5]. As mentioned in Introduction, various methods have been
developed for mesh adaptation divided mainly in two categories, namely redistribution and refinement;
the h-refinement has been incorporated in this algorithm [Kal96, Kha(00].

According to this methodology, the whole procedure begins with the detection of desired areas for
enrichment, usually concerning regions with discontinuities, shocks, stagnation points, etc., [Loh92].
Thus, appropriate criteria have to be implemented to capture the characteristics of the intent local physical
behaviour of the flow or radiative heat transfer; these criteria target either areas with a specific value of a
variable/function (Mach number, velocity, pressure, radiative intensity, etc.) or areas designated by the
corresponding experimental data (shock location), e.g., the region over the surface of a wing with Mach
number greater equal to (.95, if the shock location is desired to be enriched [Lygl3b, Lygl3c, Lygl4a,
Lygl5].

After the appropriate regions are selected for refinement, the corresponding mesh edges are divided,
while next the division is extended to the faces and elements following pre-defined rules [Loh92, Kha00,
Kav10]. This edge-based feature makes h-refinement particularly attractive for implementation in hybrid
grids, including various types of elements [Lygl3c]. In the next paragraphs the aforementioned rules are
analyzed, as well as the steps of the whole procedure are summarized. The pre-defined rules, concerning
the division of the existing edges, faces and elements, are described as follows [Lygl3c]:

1) Every new, embedded in an edge, node of the grid must be a common point of all the neighbouring
faces and elements; hanging-nodes are not accepted. Figure 6.1 illustrates an acceptable and an
unacceptable embedded node in a part of a two-dimensional triangular grid.

Figure 6.1: Acceptable (left) and unacceptable (right) embedded node in a part of a two-dimensional triangular
grid.

2) The new nodes are embedded only at the midpoints of the marked edges of the mesh; their
coordinates (as well as the variables' values for initialization purposes) are set equal to the arithmetic
averages of the corresponding values at the two end-points.

3) Every new edge is a common edge of all the neighbouring elements.

4) A tetrahedron can be divided in five ways (as shown in Figure 6.2) resulting in [Loh92, Kal96,
Kha00]:
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H-refinement

(a) two new tetrahedra,

(b) four new tetrahedra,

(c) eight new tetrahedra,

(d) one new tetrahedron and one new pyramid,

(e) two new tetrahedra, one new pyramid and one new prism.

The last two types are implemented only in the transition region of the grid, from the prismatic to the
tetrahedral elements. For tetrahedra divided in eight new ones, three possible ways of division can be
employed, depending on the selected internal diagonal edge (7-9, 5-10, 6-8), as depicted in Figure 6.3.
The shortest inner diagonal edge should always be chosen, decreasing in that way the possibility of
producing distorted new tetrahedra [Loh92].

\ £

Figure 6.2: Permitted ways of division for tetrahedra.

5) Respectively, a prism can be divided in two (a) or four (b) new prisms, as illustrated in Figure 6.4
[Kha0O0]. As their height is usually pre-defined, the refinement is implemented only in the longitudinal

direction.

6) Considering that the pyramidical elements are located usually only in the transition region of the
grid from the prismatic to the tetrahedral elements, a pyramid can be divided in three ways [Kal96,
Kha00], as shown in Figure 6.5, producing:

(a) two new pyramids,
(b) three new prisms and a new pyramid,
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(¢) anew prism and a new pyramid.

) L & 2 2 - —
5 @2 1 3 i 1 3

Figure 6.4: Permitted ways of division for prisms.

Figure 6.5: Permitted ways of division for pyramids.
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7) Similar rules have to be followed for the division of the triangular and rectangular faces, as well; as
illustrated in Figure 6.6 a triangular face can be divided in two or four new triangular faces, while a
rectangular one can be divided only in two new rectangular faces [Loh92].

—

® L L L L
Figure 6.6: Permitted ways of division for triangular and rectangular faces.

6.2. Subdivision method

According to afore-mentioned rule (2), the new nodes are embedded as midpoints of the marked
edges of the mesh, getting as coordinates' and variables' values the arithmetic averages of the
corresponding values at the two end-points. Although not necessarily, for the new nodes embedded at
boundary edges a subdivision technique can be implemented for the corresponding computation instead
of arithmetic averaging [Ull06, Zor98]; in accordance to this method the values of more neighbouring
nodes are considered in order to avoid distorting the boundary surfaces. Figure 6.7 illustrates such an
example in a part of a two-dimensional triangular grid with a distorted boundary edge derived by the
implementation of the arithmetic average technique, as well as its smoothed correction, taking into
account more adjacent mesh nodes.

In three-dimensional grids, such as those used with the proposed algorithm, a diamond scheme is
employed for the computation of the coordinates' and variables' values of the new embedded boundary
nodes. Mathematically is formulated as follows [U1106]

X, +x, +3x,+3x
xM=( — o (6.1)
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where subscripts denote the nodes of the two adjacent triangular boundary faces, as illustrated in Figure
6.8.

Midpoint M

/

1/8
Figure 6.8: Embedding a new node in a boundary edge PQ of a three-dimensional unstructured grid, using the
subdivision technique.

6.3. Procedure description
Considering the previous rules/limitations, the h-refinement procedure can be divided in four main
steps [Lygl13b, Lygl3c, Lygl4a, Lygl5]
a) Initial marking of the edges, according to the selected criteria,
b) spread of marking information to the neighbouring edges,
c) division of targeted edges, and
d) Division of faces and elements,

while in Figure 6.9. the flow chart of the whole procedure is presented.
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Input of grid data and construction
of appropriate data structures
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grid. Firstly the prisms are
examined, then the pyramids and
finally the tetrahedrons (see
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Figure 6.9: Flow chart of h-refinement procedure.
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As it can be observed, the procedure begins with the input of grid data and the construction of
required data structures, i.e., since nodes' connectivities and elements of the mesh have been obtained,
their faces as well as their edges are defined. The process continues with marking the edges at desired
regions for enrichment (step a); an appropriate criterion is employed, defined by user’s requirements, e.g.,
targeting edges which include endpoints with value of Mach number greater or equal to unity. At this
point the marked edges are enumerated in order this number to be used later as a criterion for the
completion of the procedure. The derived list of marked edges is still however in a preliminary status and
cannot lead to an admissible refinement pattern for the construction of a new mesh. Therefore, their
adjacent edges shall be also examined for marking (and consequently division), in order an admissible
pattern to be reached. The procedure is accomplished by looping several times over the elements of the
mesh (step b) [Loh92, Lygl4a, Lygl5]; firstly the prismatic edges are examined, while at next a loop
over the pyramidical and the tetrahedral elements of the mesh is performed. This sequence derives from
rule 5 that forbids division of prismatic edges, located along the stretched direction of the element. If
however a prohibited for division edge of a prism is identified as marked, it is unmarked and flagged as
forbidden for remarking during this stage. For the corresponding edges of pyramids there is no need for
such an examination, as in case they have been marked during the initial marking entailed by the
employed criterion, they would have been unmarked during the loop over the prismatic elements. In order
to distinguish the transitional tetrahedra (located at the transition region from prismatic to pyramidical and
tetrahedral elements) from the non-transitional ones, their edges are examined for existence of a
prohibited for division edge among them; if one is identified, type (d) or (e) division is implemented. In
Figures 6.10-6.12 the corresponding flow charts of spread of information among the different types of
elements are depicted.

Spread of marking information,
looping over the prismatic elements
of the grid.

Unmark any marked edges,
belonging only to rectangular faces.

. v

How many
marked edges are
included in the

prism?

Continue

Mark its opposite one

2 3,4o0r5
Mark the six edges of
the prism, allowed for
Are the marked No division.

edges opposite
Yes located?

Mark the six edges of

the prism, allowed for

division.

Figure 6.10: Flow chart for the spread of marking information among the edges of the prismatic elements.
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For instance a tetrahedron is examined; during the first step of the procedure, one up to six edges of
it can be marked. If three ones are assigned for division according to the employed criterion, further
examination is required as two possible ways of division exist; in case those edges are located at the same
face the element is divided in four new tetrahedra, while if they belong to different faces three more edges
should be marked in order the element to be divided in eight new tetrahedra. The previous example is
applicable for a tetrahedron located far from the prismatic region; if the tetrahedron lies at the transition
region (from prismatic to tetrahedral elements) further examination is required, as two more ways of
division can be employed (type (d) and (e) ones, producing one new tetrahedron and one new pyramid or
two new tetrahedra, one new pyramid and one new prism respectively). In case of prismatic or
pyramidical elements, the aforementioned procedure is much simpler, due to the fewer number of
permitted ways of division (two for prisms and three for pyramids).

Once the final number of the selected edges for division is defined (twice), the refinement procedure
begins, deriving new edges with half the length of the initial ones, as well as new nodes embedded at their
midpoints (step c); the variables of new nodes are then computed. Subsequently, the new elements along
with the new faces are constructed, following the rules analyzed previously (step d). Although the
refinement procedure can be implemented in a parallelized computational system [Kav10], it is still
performed serially in our algorithm, for simplification reasons; nevertheless, it appears significantly
efficient as it requires less than a few minutes to refine locally a grid with about 4,500,000 nodes,
producing a new one with about 6,500,000 nodes (CRM WBHT aircraft) [Lygl4a, Lygl5].

Spread of marking information,
looping over the pyramidical
elements of the grid.

How many
marked edges are
included in the

pyramid?

Continue

Mark the six edges of
the pyramid, allowed
for division.

Do the marked
edges belong to
the same face?

Does the
rectangular face

Yes

include the

marked edge?

Continue

Mark its opposite one

Mark the other edge of at the same face Mark the six edges of
the triangular face, the pyramid, allowed
which doesn’t belong for division.

simultaneously to the
rectangular face.

Figure 6.11: Flow chart for the spread of marking information among the edges of the pyramidical elements.
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Spread of marking information,
looping over the tetrahedral
elements of the grid.
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an edge that should
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Yes

How many
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included in the

Oor5 tetrahedron?

h

Mark the five edges of
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tetrahedron, allowed
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Yes
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Mark all the edges of
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2

How many
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Y

Mark the third edge of ]

the same face.
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belong to the
same face?

Mark all the edges of
the tetrahedron.

Mark all the edges of
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Figure 6.12: Flow chart for the spread of marking information among the edges of the tetrahedral elements.
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7. Fluid flow numerical results

7.1. Definitions

The developed fluid flow solver has been validated (especially in terms of accuracy and efficiency)
against two- and three-dimensional benchmark test cases, while its results have been compared with
experimental data as well as with the results obtained by other solvers. The compared solutions concern
mainly the distributions of pressure coefficient, defined as [Abb49, Mun98]

2(p-p.
cp:% (7.1

where p denotes the local pressure, while p_, 0, and 1700 the pressure, density and velocity at far-field

respectively. In problems considering fluid flow over aircrafts, the lift and drag coefficients are also used
for comparison reasons; they can be computed as follows [Abb49, Mun9§]

2L

C,=—=

L pwVwQS (72)
2D

C,=——

= s (7.3)

where S is a characteristic area of the aircraft (usually the projection of the wing area on the horizontal
plane). The total lift L and drag D forces can be evaluated by a single loop over the boundary nodes or
faces, using the (pressure and viscous) stress tensor (near-field analysis) [Vos10, Vos13]. Besides the
dimensionless pressure and Mach number contours, the isentropic Mach number can be utilized for the
visualization of the extracted solutions, which is defined as [Mun98]

4
o0 y-1 2
4 41’xentro ic = {p(’ J - l ' (74)
2
P y—1

where p denotes the local static pressure, while P:) the total pressure at the far-field; for the latter the

value at the inlet boundary surface is usually assigned. In order to validate the present method's
computational performance, the density residual is computed at each cycle (of the multigrid scheme) or at
each iteration (of the single-grid scheme) as [Lygl3c, Lygl4f]

Np
> |or' -l

residual = £=. (7.3)

P

where / is the number of the current multigrid cycle or single-grid iteration, while N, is the number of
nodes of the initial finest mesh; a corresponding expression is employed for the residual of turbulent
kinetic energy in case of turbulent flows.

This section is continued with the evaluation of the proposed methodology against test cases,
considering inviscid, viscous laminar and viscous turbulent flows over wings and aircrafts.
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Inviscid flow over a rectangular wing with a NACAO0012 airfoil

7.2. Inviscid flow over a rectangular wing with a NACAO0012 airfoil

The first (quasi-3D) test case considers inviscid flow with Mach number 0.8 and angle of attack 0°
over a rectangular wing with a NACAO0012 airfoil [Bae09, Lygl1, Lygl4c]. The utilized grid is composed
of 625,250 nodes and 3,500,243 tetrahedra, while for parallel computation on a DELL T7500 workstation
with two Intel® Xeon™-X5550 four-core processors at 2.67 GHz it was divided in four partitions; Figure
7.1 illustrates the employed grid as well as its density on symmetry surface. Accuracy improvement was
succeeded with the incorporated second-order spatial accurate scheme, coupled with Van Albada-Van
Leer limiter. Both an explicit (Runge-Kutta method) and implicit (Jacobi algorithm) scheme were
implemented for the iterative solution of the problem (without of course any difference in their final
results); for the first method a CFL number equal to unity was employed, while for the second one CFL

was linearly increased up to 5.0. The parameters of the simulation are summarized in the following Table
7.1.

Table 7.1: Parameters of simulation (inviscid flow over a rectangular wing with a NACA0012 airfoil).
Parameters

Type of flow Inviscid
Mach number 0.8

Reynolds number -
Angle of attack (deg.) 0°

. . 625,250 nodes and
Grid density 3,500,243 tetrahedra
Number of partitions 4
Iterative scheme Runge-Kutta method (CFL=/.0) and Jacobi algorithm (CFL=1/.0-5.0)
Computational system DELL T7500 workstation with two Intel™ Xeon™-X5550 four-core
processors at 2.67 GHz

Nevertheless, the aforementioned grid was identified to be insufficient for the accurate capturing of
flow phenomena, especially those located at shock formations. Therefore, the developed h-refinement
methodology was applied, resulting in an increased number of DoF’s and consequently in improved
accuracy at the shock region; its implementation was based on a criterion automatically targeting and
enriching areas with value of Mach number between 0.95 and /.05. The new mesh, whose density on the
mirroring surface is presented in Figure 7.2, compared with the initial one, consists of 7,084,667 nodes
and 6,171,465 tetrahedra. The iterative solution was continued, since the up to that moment computed
primitive variables were interpolated to the adapted grid; in that way the generation of a new mesh from
scratch was avoided and consequently significant computational savings were achieved.
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Figure 7.1: Employed grid and its density on symmetry surface (inviscid flow over a rectangular wing wit
NACAO0012 airfoil).
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Figure 7.2: Mesh density on the symmetry surface prior (left) and after (right) h-refinement (inviscid flow over a
rectangular wing with a NACA0012 airfoil).
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Figure 7.3: Dimensionless pressure contours (left) and distribution of pressure coefficient (right) at the mid-span of
the wing (inviscid flow over a rectangular wing with a NACA0012 airfoil).

Figure 7.3 illustrates the obtained dimensionless pressure contours at the mid-span of the refined
wing, as well as the distributions of pressure coefficient Cp along the same slice for both grids (initial and
refined), compared with the corresponding one of Baeza et al. [Bae09]. A sufficient agreement is
identified between the reference and the extracted by the adapted grid results, indicating the potential of
the developed solver for such simulations. Additionally, the mis-capturing of the shock by the initial grid,
compared to the improved shock prediction by the refined one, demonstrates the capability of h-
refinement methodology for improving the solution's accuracy.

In order to evaluate the developed multigrid methodology, three-coarser resolutions of the initial
mesh were created via isotropic agglomeration. In Figure 7.4 far views of the initial and agglomerated
control volume grids are illustrated, while Figure 7.5 includes the corresponding close-up views at
symmetry surface. In case of the explicit scheme, iterations/cycles and time speed-up coefficients equal to
~10.5 and ~8.8 respectively were succeeded for a final residual equal to /.0E-10 (only FAS); in Figure
7.6 the density convergence histories per number of iterations/cycles and time are presented for the
single-grid and multigrid simulations. Figure 7.7 illustrates the corresponding history for the runs with the

7-3
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implicit scheme, performed on a workstation with an AMD FX™-8350 eight-core processor at 4.0 GHz;
iterations/cycles and temporal acceleration coefficients equal to ~/4.0 and ~3.5 were obtained (only
FAS). Despite that a higher acceleration was achieved in case of the explicit scheme, significantly
reduced wall-clock computation time (~0.8 hours) was achieved by the implicit method, mainly due to the
increased CFL value. Independently of the employed scheme, the aforementioned coefficients reveal the
proposed multigrid method’s potential for considerably improved computational performance.
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Figure 7.4: Initial and agglomerated control volume grids (inviscid flow over a rectangular wing with a NACA0012
airfoil).

7.3. Laminar flow over a rectangular wing with a NACA0012 airfoil

The second (quasi-3D) problem encountered, concerns laminar flow with 0° angle of attack, Mach
number (.85 and Reynolds number 500 over a rectangular wing with a NACAO0012 airfoil [Mit98, Lygl1,
Lygl4c]. The utilized hybrid grid consists of 305,978 nodes, 566,245 tetrahedra and 394,760 prisms, the
latter located on the solid wall region (wing) to allow for the effective prediction of boundary layer
region; Figure 7.8 illustrates the employed grid as well as its density on the symmetry surface. For the
computation of velocity components' gradients, which are necessary to viscous terms' evaluation, the
nodal-averaging method was followed, while for the inviscid fluxes the incorporated second-order
accurate spatial scheme was accompanied by the Min-mod limiter. Both an explicit (Runge-Kutta
method) and implicit (Jacobi algorithm) scheme were implemented for the iterative solution of the
problem (without of course any difference in their final results); for the first method a CFL number equal
to unity was employed, while for the second one CFL was linearly increased up to 2.0. In order to
accelerate the solution procedure on a DELL T7500 workstation with two Intel® Xeon™-X5650 six-core
processors at 2.67 GHz, the developed parallelization strategy, as well as the incorporated agglomeration
multigrid scheme were implemented (FMG-FAS). Therefore, the initial grid was divided in four sub-
domains, for which three-coarser resolutions were generated via directional agglomeration. In Figure 7.9
far views of the initial and agglomerated control volume grids are illustrated, while Figure 7.10 includes
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the corresponding close-up views of the symmetry surface, where the topology-preserving framework,
according to which the proposed multigrid methodology is applied, is clearly demonstrated. The
parameters of the simulation are summarized in the following Table 7.2.
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Figure 7.5: Mesh density on the symmetry surface of the initial and agglomerated control volume grids (inviscid

flow over a rectangular wing with a NACA0012 airfoil).
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Figure 7.6: Density convergence history per iterations/cycles and time (explicit scheme, inviscid flow over a
rectangular wing with a NACA0012 airfoil).
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Figure 7.7: Density convergence history per iterations/cycles and time (implicit scheme, inviscid flow over a

rectangular wing with a NACA0012 airfoil).

In Figure 7.11 the extracted Mach number contours at the mid-span of the wing are presented along

with the distribution of pressure

coefficient Cp at the same slice, compared with the corresponding one of

Mittal [Mit98].The obtained results agree very well with those of the reference solver, indicating the
capability of the proposed methodology for such simulations in terms of accuracy.

Table 7.2: Parameters of the simulation (laminar flow over a rectangular wing with a NACA0012 airfoil).

Parameters
Type of flow Laminar
Mach number 0.85
Reynolds number 500
Angle of attack (deg.) 0°
305,978 nodes,
Grid density 566,245 tetrahedra and
394,760 prisms
Number of partitions 4
Number of multigrid levels 4
Iterative scheme Runge-Kutta method (CFL=1.0) and Jacobi algorithm (CFL=1.0-2.0)
Computational system DELL T7500 workstation with two Intel™ Xeon®™-X5650 six-core
processors at 2.67 GHz

Besides the initial multigrid runs (explicit and implicit), single-grid simulations were also performed,
revealing the superiority of the former in terms of efficiency. In case of the explicit scheme,
iterations/cycles and time speed-up coefficients equal to ~7.2 and ~6.0 respectively were achieved for a
final residual equal to /.0E-9; in Figure 7.12 the density convergence histories per number of
iterations/cycles and time are presented for the single-grid and the four-level multigrid simulation. In
addition, a two- and three-level FMG-FAS multigrid run was performed, with its convergence history
included in the same figure; as expected, additional acceleration is obtained for any additional spatial
multigrid level. Similarly Figure 7.13 shows the corresponding history for the implicit scheme;

iterations/cycles and temporal

acceleration coefficients equal to ~/2.8 and ~3.9 were succeeded

considering a three-level multigrid scheme.
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Figure 7.9: Initial and agglomerated control volume grids (laminar flow over a rectangular wing with a NACA0012

airfoil).

In addition, two more simulations (single-grid and 4-level multigrid, only FAS) were performed,
implementing the incorporated explicit scheme along with the element-based method (edge-dual volume
approach) for the velocity components and temperature gradients' computation; CFL number was set
equal to unity. In Figure 7.14 the density convergence history per number of iterations and time is
presented for these runs; a temporal speed-up coefficient equal to ~7.1 was achieved. Although a larger
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time speed-up coefficient was succeeded, comparing to the corresponding simulations with nodal-
averaging scheme, the wall clock computation time was significantly increased (~3.3 hours); coefficients
per number of iterations are equal (~7.2) for both sets of simulations. Thus, the superior computational
efficiency of the nodal-averaging scheme, compared to the edge-dual volume one, is demonstrated
independently of implementing or not the multigrid methodology.

Figure 7.10: Mesh density on the symmetry surface of the initial and agglomerated control volume grids (laminar
flow over a rectangular wing with a NACA0012 airfoil).
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Figure 7.11: Mach number contours (left) and distribution of pressure coefficient (right) at the mid-span of the wing
(laminar flow over a rectangular wing with a NACA0012 airfoil).
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7.4. Turbulent flow over a rectangular wing with a RAE2822 airfoil

The third (quasi-3D) benchmark test case considers "steady-state" fully turbulent flow over a
rectangular wing with a RAE2822 airfoil [Lygl1]; experimental data for this problem have been
published by Cook et al. [Coo79]. The Mach and Reynolds numbers are set equal to 0.725 and 6.5E+6
respectively, while the angle of attack is set to 2.6” in order to account for the side effects of the wind
tunnel. The employed hybrid mesh is composed of 683,346 nodes, 2,165,362 tetrahedra, 587,465 prisms
and 5,201 pyramids, while for parallel solution of the problem on a DELL T7400 workstation with two
Intel® Xeon™®-E5410 four-core processors at 2.33 GHz, it was divided in eight sub-domains; in Figure
7.15 the utilized grid as well as its density on the symmetry surface is presented. For the iterative
approximation of the solution the second-order time accurate Runge-Kutta method was employed along
with a CFL number equal to 0.5. The gradients at control volumes interfaces, required for the calculation
of viscous fluxes, were obtained with the edge-dual volume approach, while inviscid fluxes' accuracy was
improved with a second-order accurate spatial scheme, coupled with the Van Albada-Van Leer limiting
function. The parameters of the simulation are summarized in the following Table 7.3.

RAE2822 airfoil).
Table 7.3: Parameters of simulation (turbulent flow over a rectangular wing with a RAE2822 airfoil).
Parameters
Type of flow Turbulent
Mach number 0.725
Reynolds number 6.5E+6
Angle of attack (deg.) 2.6°
683,346 nodes,
. . 2,165,362 tetrahedra,
Grid density 587,465 prisms and
3,201 pyramids
Number of partitions 8
Iterative scheme Runge-Kutta method (CFL=0.35)
. DELL T7400 workstation with two Intel™ Xeon®™-E5410 four-
Computational system
core processors at 2.33 GHz

The main goal of this test case is the evaluation of the performance of the three incorporated in the
proposed algorithm turbulence models (without any transition scheme), namely k-¢ with wall functions
(WF1 and WF2), k-0 and SST. In Figure 7.16 the derived by the k-w model dimensionless pressure
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contours at the mid-span of the wing are depicted, while Figure 7.17 illustrates the pressure coefficient
distributions at the same slice for all the employed models, compared with the corresponding results of
Cook et al. [Coo79]; in general all the applied turbulence models provided equally satisfactory results,
agreeing very well with the experimental data.

Figure 7.16: Dimensionless pressure contours at the mid-span of the wing predicted with k- model (turbulent flow
over a rectangular wing with a RAE2822 airfoil).

14
1.2
1
0.8
0.6
0.4
0.2
&g o
' o2 02 03 04 05 06 8.
04 ‘
06 O Cooketal. 1979
Current k-£¢ WF1
0.8
] < Current k-e WF2
i = = =Current k-w
12 X Current SST
-1.4
Y/C
Figure 7.17: Distribution of pressure coefficient at the mid-span of the wing (turbulent flow over a rectangular wing
with a RAE2822 airfoil).

Besides the effectiveness of turbulence modelling, the scalability provided by the adopted
parallelization strategy was evaluated with this test case, utilizing a DELL T7500 workstation with two
Intel® Xeon™-X5650 six-core processors at 2.67 GHz. Therefore, the sub-case including k-w model was
calculated in a parallel environment of two, four, eight and twelve processors, deriving the speed-up per
number of processors distribution, illustrated in Figure 7.18; the relatively slight deviation between the
ideal and the current computation derives from the increase of communication load with the increase of
employed processors.
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Figure 7.18: Scalability of parallel implementation (k-w model, turbulent flow over a rectangular wing with a
RAE2822 airfoil).

7.5. Turbulent flow over a rectangular wing with a NACA0012 airfoil

A quasi-3D test case involving "steady-state" fully turbulent flow over a rectangular wing with a
NACAO0012 airfoil [Per07] was used for the evaluation of the k-¢ model blended with the one-equation
model at the solid wall region. The Mach and Reynolds numbers are assumed equal to 0.85 and 1.85E+6
respectively, while the angle of attack is set to 0°. The utilized hybrid grid consists of 7,900,703 nodes,
3,017,043 tetrahedra, 2,702,647 prisms and 4,154 pyramids, while for its employment on the same to the
previous test case computational system it was divided in eight partitions; in Figure 7.19 the employed
grid as well as its density on the symmetry surface is presented.
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Figure 7.19: Employed grid and its density on the symmetry surface (turbulent flow over a rectangular wing with a
NACA0012 airfoil).
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For the iterative approximation of the final steady-state solution the second-order accurate in time
Runge-Kutta method was employed along with a CFL number equal to 0.5. The gradients at the middle of
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each edge, required for the calculation of viscous fluxes, were obtained with the edge-dual volume
method, while inviscid fluxes' accuracy was improved with a second-order accurate spatial scheme,
coupled with the Van Albada-Van Leer limiting function. The parameters of the simulation are
summarized in Table 7.4. In Figure 7.20 the obtained Mach number contours at the mid-span of the wing
are illustrated along with the derived distribution of pressure coefficient at the same slice, compared with
the corresponding one of Persson [Per07]; a satisfactory agreement is obtained between the results of the
present and the reference solver.

Table 7.4: Parameters of simulation (turbulent flow over a rectangular wing with a NACA0012 airfoil).

Parameters
Type of flow Turbulent
Mach number 0.85
Reynolds number 1.85E+6
Angle of attack (deg.) 0°

1,900,703 nodes,
3,017,043 tetrahedra,

Grid density 2,702,647 prisms and
4,154 pyramids
Number of partitions 8
Iterative scheme Runge-Kutta method (CFL=0.5)

DELL T7400 workstation with two Intel™ Xeon™-E5410 four-
core processors at 2.33 GHz

Computational system
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Figure 7.20: Mach number contours (left) and distribution of pressure coefficient (right) at the mid-span of the wing
(turbulent flow over a rectangular wing with a NACA0012 airfoil).

7.6. Turbulent flow over the ONERA M6 wing

The next benchmark problem encountered in this study considers the prediction of three-dimensional
"steady-state" fully turbulent flow over the ONERA M6 wing [Sch79, Sor03, Aral0, Lygl3a, PAB3D,
WIND]. The free-stream Mach number is assumed equal to 0.8395, the angle of attack equal to 3.06° and
the Reynolds number (based on the mean aerodynamic chord) equal to 71.72E+6. The generated hybrid
grid includes 4,676,354 nodes, 7,231,670 tetrahedra and 6,775,840 prisms, while for its utilization on the
parallel computational environment, utilizing a DELL T7500 workstation with two Intel® Xeon®™-X5650
six-core processors at 2.67 GHz, it was decomposed in twelve partitions; Figure 7.21 illustrates the
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utilized grid as well as its density on the symmetry surface. For the iterative solution the four-stage
Runge-Kutta method was implemented with a CFL number equal to unity, while for turbulence prediction
the SST model was employed along with an implicit source term treatment. The gradients, required for the
calculation of viscous fluxes, were obtained with the nodal-averaging scheme, while inviscid fluxes'
accuracy was improved with a second-order accurate spatial scheme, coupled with Van Albada-Van Leer
limiting function. The parameters of the simulation are summarized in the following Table 7.5.

Table 7.5: Parameters of simulation (turbulent flow over the ONERA M6 wing).

Parameters
Type of flow Turbulent (SS7)
Mach number 0.8395
Reynolds number 11.72E+6
Angle of attack (deg.) 3.06°
4,676,354 nodes,
Grid density 7,231,670 tetrahedra and

6,775,840 prisms

Number of partitions

12

Iterative scheme Runge-Kutta method (CFL=1.0)
DELL T7500 workstation with two Intel™ Xeon™-X5650 six-core

processors at 2.67 GHz

Computational system
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Figure 7.21: Employed grid and its density on the symmetry surface (turbulent flow over the ONERA M6 wing).

Nevertheless, this grid was identified insufficient for the accurate capturing of the flow phenomena,
especially in the area of shock formations and for span-wise sections greater than 44%. Therefore, the h-
refinement technique was applied at this region, based on a criterion targeting the areas with Mach
number greater than 0.95; the derived adapted mesh was composed of 5,302,368 nodes, 8,315,389
tetrahedra and 7,653,360 prisms. As the second mesh proved to be also insufficient, an additional grid
adaptation was implemented, targeting the shock regions defined by the available experimental data,
resulting in the final grid including 6,431,378 nodes, 8,978,240 tetrahedra and /17,048,643 prisms. Figures
7.22 and 7.23 illustrate the mesh density at the wing span-wise section 40%, and the wing surface
respectively prior and after h-refinement.

Figure 7.24 illustrates the predicted dimensionless pressure contours on the upper surface of the wing
for the initial and the refined mesh, while Figures 7.25-7.31 include the finally obtained distributions of
pressure coefficient at seven different span-wise sections of the wing, compared with the available
experimental data [Sch79] as well as with the computed ones by reference solvers [Aral0, PAB3D]. The
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current results appear to be in satisfactory agreement with the reference ones (experimental and
computed); even more, at wing section 8§0% the proposed method appears to predict more accurately the
shock at the upper side of the wing, comparing to the reference solvers.
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Figure 7.23: Mesh density on the wing surface prior (left) and after (vight) h-refinement (turbulent flow over the
ONERA M6 wing).
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Figure 7.24: Predicted dimensionless pressure contours on the wing surface prior (left) and after (right) h-
refinement (turbulent flow over the ONERA M6 wing).
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Figure 7.28: Distribution of pressure coefficient at the
span-wise section 80% (turbulent flow over the ONERA
M6 wing).
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7.7. Turbulent flow over the DLR-F6 aircraft

A validation of the developed methodology was performed against the test cases of the second AIAA
Drag Prediction Workshop (DPW 1II), held in Orlando in June 2003; the fully turbulent flow over the
DLR-F6 aircraft with (Wing-Body-Nacelles-Pylons, WBNP) and without nacelles-pylons (Wing-Body,
WB), representing a twin engine wide body aircraft of Airbus type, is examined [Bro0O1, Laf05, Lan05,
Luo05, Lygl3a, Lygl4e]. The utilized meshes, which were provided by the NASA Langley Research
Center (LARC) (http://aaac.larc.nasa.gov), include only the half configuration, while they were re-
dimensionalized such as the mean aerodynamic chord to become equal to unity and consequently the
grids to be eligible for simulation with the proposed dimensionless methodology. In Figure 7.32 the
employed grid for the DLR F-6 WB configuration as well as a close-up view of its solid/symmetry
surface is illustrated.
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Figure 7.32: Employed grid and its densi

<

The flow for both aircraft configurations (WB and WBNP) is characterized by free-stream Mach
number and Reynolds number (based on the unit mean aerodynamic chord) equal to (.75 and 3.0E+6,
respectively [Luo05]. For the iterative approximation of the final steady-state solution, the incorporated
four-stage Runge-Kutta method was applied with a CFL number equal to unity, while turbulence
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Turbulent flow over the DLR-F6 aircraft

prediction was succeeded utilizing the SST model; for the latter one implicit treatment of the source term
was additionally employed [BlaO1]. The gradients at control volumes' interfaces, required for the
calculation of viscous fluxes, were obtained with the nodal-averaging scheme, while inviscid fluxes'
accuracy was improved with a second-order accurate spatial scheme, coupled with Van Albada-Van Leer
limiting function; for multigrid evaluation the Min-mod limiter was used instead, due to its smoothing
attitude and consequently its better convergence behaviour.

7.7.1. DLR-F6 wing-body (WB) aircraft configuration

The utilized grid for the WB configuration is composed of 5,666,335 nodes, 4,175,553 tetrahedra,
9,768,149 prisms and 2,587 pyramids, while for parallel processing on a DELL T7500 workstation with
two Intel® Xeon™-X5660 six-core processors at 2.80 GHz it was divided in twelve partitions. The angle
of attack is set equal to 0.275°, in order the desired lift coefficient equal to 0.5 to be obtained [Luo05].The
parameters of the simulation are summarized in the following Table 7.6.

Table 7.6: Parameters of simulation (turbulent flow over the DLR F-6 WB aircrafi).

Parameters
Type of flow Turbulent (SST)
Mach number 0.75
Reynolds number 3.0E+6
Angle of attack (deg.) 0.275°
5,666,335 nodes,
. . 4,175,553 tetrahedra,
Grid density 9,768,149 prisms and
2,587 pyramids
Number of partitions 12
Iterative scheme Runge-Kutta method (CFL=1.0)
Computational system DELL T7500 workstation with two Intel™ Xeon™-X5660 six-core
processors at 2.80 GHz

Figure 7.33: Mesh density (left) and predicted dimensionless pressure contours (right) on the surface of the aircraft
(turbulent flow over the DLR F-6 WB aircraft).

In Figure 7.33 the mesh density and the predicted contours of the dimensionless pressure on the
surface of the aircraft are presented; the latter, compared to the corresponding illustration of Luo et al.
[Luo05], demonstrates qualitatively the effectiveness of the proposed methodology. Figure 7.34 includes
a close-up view of the predicted dimensionless pressure contours/velocity traces on the upper wing
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surface (left) and the obtained isentropic Mach number contours on the lower one (right); the traces reveal
a wing-body junction separation on the upper surface area of the wing [Lan05].

Figure 7.34: Predicted dimensionless pressure contours/velocity traces on the upper wing surface (left) and
isentropic Mach number contours (right) on the lower one (turbulent flow over the DLR F-6 WB aircraft).
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In Figures 7.35 to 7.42 the distributions of pressure coefficient Cp at different span-wise sections of
aircraft's wing are illustrated, compared with the experimental as well as with the computed by the
corresponding simulation of Luo et al. [Luo05]; the obtained results compare well, both with the
experimental and the computed reference ones, confirming the equal potential of the developed algorithm
for such simulations.

Besides for the qualitative and quantitative validation of accuracy of the final steady-state solution,
the incorporated spatial agglomeration multigrid methodology was evaluated against this test case,
utilizing initially a relatively coarse grid of the WB configuration, composed of 622,445 nodes, 1,217,387
tetrahedra, 790,934 prisms and 78 pyramids. The single-grid and multigrid (only FAS) runs, using the
explicit Runge-Kutta method or the Jacobi algorithm, were performed on a workstation with an AMD
FX™-8350 eight-core processor at 4.0 GHz. For all the encountered simulations the CFL number was set
equal to unity (in case of the implicit scheme it was gradually increased up to 2.0), while the initial grid
was decomposed in eight sub-domains for parallel processing. Three coarser sub-grids were generated via
directional agglomeration for each partition; in Figure 7.43 far views of the initial and the agglomerated
control volumes are illustrated, while Figure 7.44 includes the corresponding close-up views on the
symmetry surface.
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Figure 7.43: Initial and agglomerated control volume grids (turbulent flow over the DLR F-6 WB aircraft).
Figure 7.44: Mesh density on the symmetry surface of the initial and agglomerated control volume grids (turbulent
flow over the DLR F-6 WB aircraft).
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In case of the explicit scheme, iterations/cycles and time speed-up coefficients equal to ~7.4 and ~3.2
respectively were achieved for a final density residual equal to /.0E-9; for turbulent kinetic energy the
corresponding coefficients were ~7.2 and ~3.1. In Figures 7.45 and 7.46 the single-grid and four-level
multigrid simulations' convergence histories per number of iterations/cycles and wall-clock time are
presented for density and turbulent kinetic energy respectively. In case of the implicit method, density
iterations/cycles and temporal acceleration coefficients equal to ~9.3 and ~/.9 were obtained, while for
turbulent kinetic energy the respective coefficients were ~/0.0 and ~2.0; Figures 7.47 and 7.48 include
the corresponding convergence histories per number of iterations/cycles and wall-clock time. The implicit
runs were relatively slow compared to the explicit ones, due to the small utilized CFL number; efficiency
of implicit schemes derives mainly from their capability to handle large CFL numbers. Nevertheless, the
aforementioned acceleration coefficients indicate the developed multigrid methodology's potential for
significantly improved computational performance even for relatively coarse grids.
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Figure 7.45: Density convergence history per iterations/cycles and time (explicit scheme, turbulent flow over the
DLR F-6 WB aircraft).
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Figure 7.46: Turbulent kinetic energy convergence history per iterations/cycles and time (explicit scheme, turbulent
flow over the DLR F-6 WB aircraft).

Besides the aforementioned coarse mesh, the fine one (5,666,335 nodes, 4,175,553 tetrahedra,
9,768,149 prisms and 2,587 pyramids), employed for the validation of the proposed methodology's
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accuracy, was utilized to study the influence of the grid size on the gained speed-up due to the multigrid
algorithm. The single-grid and multigrid simulations, using the explicit Runge-Kutta method (CFL=1.0),
were performed on a DELL T7500 workstation with two Intel® Xeon®™-X5550 four-core processors at
2.67 GHz, while for parallel processing the initial grid was divided in eight sub-domains. Three coarser
sub-grids were generated via full-coarsening and semi-coarsening directional agglomeration for each
partition; in Figure 7.49 far views of the first and second full-coarsening agglomerated control volumes
grids are illustrated, while Figures 7.50 and 7.51 include the corresponding close-up views on the
symmetry surface and near aircraft nose. Table 7.7 includes the number of DoF's (nodes) per sub-domain
of the initial and coarser grids, for both semi- and full-coarsening cases; the ghost nodes at overlapping
regions are also included in this Table, resulting in an increased summed number of DoF's at first level
compared to the total one. Moreover, in order to confirm the additional acceleration, gained by the
combined FMG-FAS procedure compared to the only FAS one, simulations with both of them were
encountered. In Figures 7.52 and 7.53 the single-grid and four multigrid simulations' convergence
histories per number of iterations/cycles and time are presented for density and turbulent kinetic energy
respectively.
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Figure 7.47: Density convergence history per iterations/cycles and time (implicit scheme, turbulent flow over the
DLR F-6 WB aircraft).
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Figure 7.48: Turbulent kinetic energy convergence history per iterations/cycles and time (implicit scheme,
(turbulent flow over the DLR F-6 WB aircraft).
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Figure 7.49: First and second full-coarsening agglomerated control volume grids (fine mesh, turbulent flow over
the DLR F-6 WB aircraft).
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Figure 7.50: Mesh density on the symmetry surface of the first and second full-coarsening agglomerated control
volume grids (fine mesh, turbulent flow over the DLR F-6 WB aircraft).
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Figure 7.51: Boundary density near aircraft nose of the first and second full-coarsening agglomerated control
volume grids (fine mesh, turbulent flow over the DLR F-6 WB aircraft).

An acceleration increase is evident, compared to the corresponding results on the coarser initial
mesh; the greater the number of computational nodes, the greater is the acceleration obtained [Lygl4g].
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The maximum density speed-up coefficient equal to ~5.3 was obtained by the full-coarsening
agglomeration FMG-FAS. As expected, full-coarsening agglomeration multigrid scheme was revealed
much more efficient than the semi-coarsening one, due to the more extended DoF's decrease it entails,
which subsequently results to an elevated acceleration for the same computational system. Unlike this
merging strategy the semi-coarsening one seems to be useless against this test case, as it accelerated
negligibly the corresponding run comparing to the single-grid one. Finally, the combined FMG-FAS runs
derived better temporal speed-up coefficients, comparing to those performed with only FAS, although the
latter ones succeeded greater ratios per number of iterations/cycles; in case of full-coarsening fusion
FMG-FAS succeeded an acceleration ratio of ~9.5 and ~5.3 per iterations and time respectively, while
FAS ~10.6 and ~4.6 respectively. However, the convergence history curves of the FMG-FAS runs
(especially for the full-coarsening fusion strategy) seem to diverge after several orders decrease of the
residuals; therefore, the corresponding only FAS runs appear to be more time-effective this point forward.
This FMG-FAS methodology deficiency derives from the insufficient and irreversible approximation
derived at the preliminary stage. Despite the FMG-FAS is assumed in general more efficient than only
FAS, it is susceptible to be confined to local maxima or minima and therefore generate oscillations or
even fail.
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Figure 7.52: Density convergence history per iterations/cycles and time (fine grid, turbulent flow over the DLR F-6

WB aircraft).
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Figure 7.53: Turbulent kinetic energy convergence history per iterations/cycles and time (fine grid, turbulent flow
over the DLR F-6 WB aircraft).
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Table 7.7: Grid coarsening by semi- and full-coarsening directional agglomeration.

Sub-domains | Level 1 (DoF's) | Level 2 (DoF's) | Level 3 (DoF's) | Level 4 (DoF's)

Ist 728,628 354,399 202,529 155,316
2nd 725,734 359,573 211,640 167,769
3rd 717,934 323,993 175,954 125,165
Semi- 4th 722,500 350,838 198,323 147,571
coarsening 5th 732,802 359,146 213,165 158,405
6th 722,019 351,405 198,571 151,802
7th 727,505 363,072 211,652 157,629
8th 720,742 357,037 206,502 145,302

Ist 728,628 135,299 35,738 16,737

2nd 725,734 137,450 37,101 16,994

3rd 717,934 135,718 35,414 17,645

Full- 4th 722,500 138,859 39,259 19,571
coarsening 5th 732,802 143,627 40,518 21,072
6th 722,019 129,100 32,056 15,993

7th 727,505 119,366 24,911 9,859

8th 720,742 118,164 24,928 10,164

7.7.2. DLR-F6 wing-body-nacelles-pylons (WBNP) aircraft configuration

The sub-case considering the WBNP aircraft configuration was examined, utilizing a mesh
consisting of 5,887,240 nodes, 3,037,873 tetrahedra, 10,594,701 prisms and 9,1/4 pyramids. For parallel
computation on a DELL T7500 workstation with two Intel™® Xeon™-X5650 six-core processors at 2.67
GHz it was divided in twelve sub-domains. The angle of attack is set equal to 0.8°, in order the desired lift
coefficient equal to 0.5 to be obtained [Luo05].The parameters of the simulation are summarized in the
following Table 7.8.

Table 7.8: Parameters of simulation (turbulent flow over the DLR F-6 WBNP aircraft).

Parameters
Type of flow Turbulent (SS7)
Mach number 0.75
Reynolds number 3.0E+6
Angle of attack (deg.) 0.8°
5,887,240 nodes,
. . 3,037,873 tetrahedra,
Grid density 10,594,701 prisms and
9,114 pyramids
Number of partitions 12
Iterative scheme Runge-Kutta method (CFL=1.0)

DELL T7500 workstation with two Intel® Xeon™-X5650 six-core

Computational system processors at 2.67 GHz

In Figure 7.54 the mesh density and the obtained dimensionless pressure distribution on the surface
of the WBNP aircraft are presented; the latter illustration indicates a qualitative agreement with the
corresponding computed one of Luo et al. [Luo05]. Figure 7.55 includes close-up views of the predicted
dimensionless pressure contours/velocity traces on the upper (top) and lower (bottom) wing surfaces;
compared to the experimental oil flow visualizations contained in the study of Langtry et al. [Lan05]
sufficient agreement can be observed. On the upper wing surface area a wing-body junction separation is
noticed at the wing root for both the experimental and simulated results [Lan05]. Similarly on the lower
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one, the presence of the nacelle-pylon produces supersonic flow at the internal area of the wing, which
results after the shock in flow separation at the wing-pylon junction [Lan05].

Figure 7.54: Mesh density (left) and predicted dimensionless pressure contours (right) on the surface of the aircraft
(turbulent flow over the DLR F-6 WBNP aircraft).

Figure 7.55: Predicted dimensionless pressure contours/velocity traces on the upper (top) and lower (bottom)
wing surface of the aircraft, compared to the experimental oil flow visualizations contained in the study of Langtry
et al. [Lan05] (turbulent flow over the DLR F-6 WBNP aircraft).
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Figure 7.56: Predicted isentropic Mach number contours on the upper (left) and lower (right) wing surface of the
aircraft (turbulent flow over the DLR F-6 WBNP aircraft).
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span-wise section 37.7% (turbulent flow over the DLR
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In Figure 7.56 the predicted isentropic Mach number contours are presented for the same wing
surfaces (upper and lower), confirming the aforementioned flow separations. Figures 7.57 to 7.64 contain
the distributions of pressure coefficient Cp at different span-wise sections of aircraft's wing, compared
with the experimental ones and those computed by Luo et al. [Luo05]; the obtained results achieve a
satisfactory agreement both with the experimental and the computed reference ones, revealing the
potential of this algorithm for such predictions.
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7.8. Turbulent flow over the common research model (CRM)

The last fluid flow test case encountered in this study, concerns the fully turbulent flow over the
NASA CRM aircraft with (Wing-Body-Horizontal Tail, WBHT) and without horizontal tail (Wing-Body,
WB) [Leel0, Mav10, Cez13, Murl3, Parl3, Scal3, Scl13, Vos10, Vos13, Lygl4a, Lygl5, Sarl5]; the
aforementioned problem was examined by the participants of the fourth and fifth AIAA Drag Prediction
Workshop (DPW), held in San Antonio in 2009 and in New Orleans in 2012, respectively. The CRM,
which is a 2.7% scaled representative of a modern commercial transonic flow aircraft, was designed
specifically for the evaluation of CFD codes [Scl13]. Therefore, the geometry parameters as well as the
experimental (wind tunnel) results are available; furthermore, most of the grids used by the participants of
the pre-mentioned DPW's can be obtained from the NASA Langley Research Center (LARC)
(http://aaac.larc.nasa.gov/tsab/cfdlarc/aiaadpw). The provided grids, utilized in this study, include only
the half aircraft, while they were re-dimensionalized, in order the mean aerodynamic chord to become
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equal to unity and, consequently, to be used with the developed dimensionless methodology; in Figure
7.65 the utilized grid for the CRM WB configuration as well as a close-up view of its solid/symmetry
surface are illustrated.

For both aircrafts (WB and WBHT), the free-stream flow is characterized by Mach number 0.85,
Reynolds number (based on the unit mean aerodynamic chord) 5.0E+6 and reference temperature
310,927 K (100° F). The final steady-state solution was approximated by employing the incorporated
second-order time accurate four-stage Runge-Kutta method with a CFL number equal to unity, while
turbulence prediction was succeeded with the SS7 model, along with an implicit treatment of its source
term; no transition was assumed. The simulations were accelerated with the developed directional
agglomeration multigrid scheme (full-coarsening) and parallelization strategy, while no further
optimization for computational performance has been carried out.
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Figure 7.65: Employed grid and its density on symmetry surface (turbulent flow over the CRM WB aircraft).

7.8.1. CRM wing-body (WB) aircraft configuration

A relatively coarse grid, consisted of 3,342,884 nodes, 5,042,388 tetrahedra, 4,425,652 prisms and
33,072 pyramids, was utilized for the representation of the computational domain around the WB aircraft.
The angle of attack of the free-stream flow was set equal to 2.15°, considering the desired value equal to
0.5 of the lift coefficient. The gradients, required for viscous fluxes, were obtained with the nodal-
averaging method, while the second-order spatial accurate scheme, used for the inviscid ones, was
coupled with Van Albada-Van Leer slope limiter. Implementing a three-level multigrid scheme along
with a twelve-partitions parallel processing on a DELL T7500 workstation with two Intel® Xeon®™-
X5660 six-core processors at 2.80 GHz, the density residual was decreased approximately three orders of
magnitude in 24 hours. The parameters of the simulation are summarized in the following Table 7.9.
Nevertheless, the employed mesh revealed to be insufficient for the accurate prediction of the expected
flow phenomena, especially in the region of shock waves and for wing span-wise sections approximately
greater than 28.28%. The developed h-refinement methodology was implemented to this area, while a
second refinement was used for the outer half wing compartment due to its significantly coarse initial
density, deriving the finally used grid, which consists of 4,570,180 nodes, 6,721,680 tetrahedra, 6,651,436
prisms and 34,318 pyramids; Figure 7.66 depicts the mesh density on the wing surface prior (left) and
after (right) h-refinement.

Since the results for the initial mesh were interpolated on the refined grid, the simulation was
continued deriving the final steady-state solution. In Figure 7.67 the final mesh density and predicted
dimensionless pressure contours on the aircraft surface are illustrated. Figures 7.68 and 7.69 include the
corresponding Mach number contours on the symmetry surface and a section at 37% of the wing span,
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allowing for qualitative comparison of the derived results with those of other solvers [Cez13, Murl3,

Par13]; the equal potential of the proposed solver for such simulations is indicated.

Parameters of simulation (turbulent flow over the CRM WB aircraft).

Table 7.9

Parameters
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Figure 7.68: Predicted Mach number contours on the symmetry surface of the aircraft (turbulent flow over the CRM
WB aircraft).

oo
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Figure 7.69: Predicted Mach number contours on the wing span-wise section 37% of the aircraft (turbulent flow
over the CRM WB aircraft).

No considerable wing-body juncture separation at the upper side of the wing was observed, similarly
to some of the participants of the DPW's [Cez13, Par13, Scal3, Scl13]; its absence might derive from the
utilization of a relatively coarse mesh along with the SS7 turbulence model [Scll13]. Figures 7.70 up to
7.75 contain the pressure coefficient distributions at different wing span-wise sections of the aircraft,
compared to the corresponding experimental and reference calculated ones [Scal3]. A satisfactory
agreement is identified between the obtained results and the reference experimental and computed data
[Scal3], considering the relatively small number of DoF’s of the finally utilized mesh as well as the
differences, especially in the area of shock formations, between the results of the DPWs' participants
[Lev13]. Additionally, the significant contribution of the h-refinement methodology is demonstrated with
the better shock capturing at wing span-wise sections greater equal than 50.24% of the adapted mesh,
comparing to the initial one. Local grid adaptation had though a negligible impact to the lift and drag
coefficients; thus, angle of attack of free-stream flow wasn't adjusted. In Table 7.10 the aforementioned
coefficients (lift and idealized drag ones), derived by near-field analysis [Vos10, Vos13] from the initial
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and refined mesh, are presented in comparison with the experimental ones [Vas10] as well as with the
calculated ones by Vos and Sanchi [Vos10]; the idealized drag coefficient is defined as follows [Leel0]

C

C.——L 7.6
P r AR (7.6)

CD idealized —

where AR is the wing aspect ratio [Leel0]. The obtained lift coefficients are very close with both the
reference computed and experimental one [Leel0, Vas10, Vos10], while grid adaptation entails a slight
increase. As far as the idealized drag results are concerned, a satisfactory agreement is achieved with the
reference computed one [Vos10]. Nevertheless, an overestimation is obvious when it is compared to the
experimental one, deriving from the relatively coarse utilized grid [Scal3]; drag is reduced when going
from a coarser to a finer resolution [Vos10]. The previous state is confirmed with the corresponding
comparison between the initial and refined grid, as well as with the utilization of a medium grid in the

next section, concerning the WBHT configuration.
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Figure 7.70: Pressure coefficient distribution at wing
span-wise section 13.06% (turbulent flow over the CRM
WB aircraft).
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——Scalabrin and Souza 2013
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Figure 7.72: Pressure coefficient distribution at wing
span-wise section 39.71% (turbulent flow over the CRM
WB aircrafi).
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Figure 7.71: Pressure coefficient distribution at wing
span-wise section 28.28% (turbulent flow over the CRM
WB aircraft).
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Figure 7.73: Pressure coefficient distribution at wing
span-wise section 50.24% (turbulent flow over the CRM
WB aircraft).
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< Current (refined grid) p < Current (refined grid)
X/C Xic
Figure 7.74: Pressure coefficient distribution at wing Figure 7.75: Pressure coefficient distribution at wing
span-wise section 72.68% (turbulent flow over the CRM  span-wise section 95.00% (turbulent flow over the CRM
WB aircraft). WB aircraft).

Table 7.10: Lift and idealized drag coefficients (C~0.5, turbulent flow over the CRM WB aircraft).

CL D idealized

Current (initial coarse grid) 0.5014 0.01939
Current (refined coarse grid) 0.5016 0.01934
Vos and Sanchi 2010 [Vos10] ~0.5 ~0.01960
NTF Run 44 [Vas10] ~0.5 ~0.01671

An additional analysis was performed, considering the different available options in Galatea (slope
limiters and schemes, implemented for the computation of inviscid and viscous fluxes, respectively). The
corresponding runs were accomplished on a DELL T7500 workstation with two Intel™ Xeon™-X5550
four-core processors at 2.67 GHz, utilizing the refined grid, divided in eight partitions for parallel
processing. In order to implement the developed multigrid scheme, three coarser polyhedral sub-grids
were constructed for each sub-domain via full-coarsening directional agglomeration.

The first part of this sensitivity analysis includes simulations with the limiting functions of Van
Albada-Van Leer, Min-mod and Barth-Jespersen; for all of them the nodal-averaging scheme for
gradients' computation and consequently diffusive fluxes' evaluation was employed. In Figure 7.76 the
density (left) and turbulent kinetic energy (right) convergence history per multigrid cycles for the runs
with these three different slope limiters is presented. Density residual was reduced approximately four
orders of magnitude with Van Albada-Van Leer and Min-mod, while only two with Barth-Jespersen,
resulting in an unconverged and, consequently, wrong solution; the limiter of Barth-Jespersen is
acknowledged in some studies to exhibit poor convergence characteristics due to the overreacted limiting
of small amplitude noise [Dell13]. As far as the rest two limiting approaches (Van Albada-Van Leer and
Min-mod) are concerned, both qualitative and quantitative differences were observed between them,
despite their similar convergence behaviour. Figure 7.77 illustrates the finally extracted Mach number
contours on a section at 70% of the wing span for both of them; Van Albada-Van Leer (left) produced a
more accurate solution compared to Min-mod (right), identified by the sharper shock wave as well as by
its more forward position on this section. Inaccuracy for the second limiter derives from its smoothing
behaviour, as it always chooses the slope with the smallest magnitude [Lygl3c]. The aforementioned
qualitative differentiation is verified quantitatively with the comparison of the corresponding pressure
coefficient distributions at wing span-wise sections 50.24% and 72.68%, shown in Figures 7.78 and 7.79,
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respectively. Van Albada-Van Leer slope limiter superiority is clearly demonstrated at shock wave
formation region as well as ahead of it (especially at section 72.68%).

The second part of this analysis includes runs with either the nodal-averaging or the element-based
(edge-dual volume) scheme, used for the computation of the gradients at the middle of each edge and
consequently the evaluation of the viscous fluxes at the same point. Considering the results of the
previous part, the simulations were performed with the superior Van Albada-Van Leer slope limiter.
Although the element-based approach is assumed to be more accurate [Bla01], no differences were
observed between the extracted results as well as between the convergence histories per multigrid cycles.
Nevertheless, differences do exist regarding the corresponding density (left) and turbulent kinetic energy
(right) convergence history curves per wall-clock computation time, as illustrated in Figure 7.80. The
edge-dual volume run lasted almost twice the time required by the nodal-averaging one, in order the
density residual to be reduced at least three order of magnitude. Thus, the superior efficiency of the nodal-
averaging scheme is revealed once more, resolving capability from the edge-based structure it uses,
whose dimensions are a priori smaller from those of the element-based methodology.

1.E+00 1.E+00 1 1
[0 500 1000 1500 2000 2500 500 1000 1500 2000 2500
1.E-01 ! !
1.E-01 1E.02 —~Current (Van Albada-Van Leer)
—Current (Van Albada-Van Leer) —~Current (Min-mod)
1.E-03
1E-02 —Current (Min-mod) —Current (Barth-Jespersen)
1.E-04
E —Current (Barth-Jespersen) g 1.E-05
'g 1.E-03 'g
E _? 1.E-06 - R PP
1.E-07
1.E-04 ; T T Y | 8 kL
1.E-08
1E-05 N 1.E-09
\w‘.‘ 1.E-10 ¥
1.E-06 E-
Multigrid cycles TEM Multigrid cycles

Figure 7.76: Density (left) and turbulent kinetic energy (right) convergence history for three different slope limiters
(turbulent flow over the CRM WB aircraft).

N=7 /) B NS=7/l \

Figure 7.77: Mach number contours on a section at 70% of the wing span obtained with limiters of Van Albada-Van
Leer (left) and Min-mod (right) (turbulent flow over the CRM WB aircraft).
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Figure 7.80: Density (left) and turbulent kinetic energy (right) convergence histories, obtained with nodal-
averaging and element-based scheme (turbulent flow over the CRM WB aircrafi).

Since the most suitable options of Galatea solver (Van Albada-Van Leer limiting function and
nodal-averaging approach) were identified for this problem, a downwash study was performed similarly
to these of DPW's participants; the flow on the refined grid but in different angles of attack, namely (°, 1°,
3° and 4° was considered. Figure 7.81 includes the distribution of lift coefficient for the aforementioned
angles of attack, while in Figure 7.82 the same distribution is illustrated for different values of idealized
drag coefficient. The obtained and reference lift coefficient distributions are close across all the
encountered angles of attack; a break in lift curve is identified prior to 4°, similarly to other codes
applying the SST turbulence model [Lev13]. An also satisfactory comparison is observed for the lift
coefficient - idealized drag coefficient curve [Vos10]; an overestimation is identified again comparing to
experimental data [Vas10] due to previously analyzed reasons.

The incorporated spatial agglomeration multigrid methodology was also validated on this test case;
single-grid and multigrid runs were performed on a DELL™ R815 Poweredge server with four AMD
Opteron"™ 6380 sixteen-core processors at 2.50 Ghz. Three coarser grids were generated via semi- and
full-coarsening directional agglomeration, while for parallelization reasons the initial mesh was
decomposed in eight partitions; in Figure 7.83 far views of the initial and agglomerated control volumes
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are illustrated, while Figure 7.84 includes the corresponding close-up views on the symmetry surface.
Inviscid fluxes were obtained with a second-order accurate spatial scheme, coupled with the Min-mod
limiter, while the computation of the viscous ones was based on the nodal-averaging method. Figures 7.85
and 7.86 present the convergence history for density and turbulent kinetic energy respectively per number
of iterations/cycles and time; in case of more efficient full-coarsening run, time speed-up coefficients (for
density and turbulent kinetic energy) equal to ~4.9 and ~4.3 were succeeded respectively, considering the
final residual of the single-grid simulation.

0.8

0.7 1

0.6 1

0.5 1

Co

0.4 1
0.3 1

02 4
——Lee-Rausch et al. 2010
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0.1

-1 0 1 2 3 4 5
alpha,deg
Figure 7.81: Lift coefficient for different values of angle of attack (turbulent flow over the CRM WB aircrafi).
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Figure 7.82: Lift coefficient - idealized drag coefficient curve (turbulent flow over the CRM WB aircraft).
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Figure 7.85: Density convergence history per iterations/cycles and time (turbulent flow over the CRM WB aircraft).
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Figure 7.86: Turbulent kinetic energy convergence history per iterations/cycles and time (turbulent flow over the
CRM WB aircraft).

7.8.2. CRM wing-body-horizontal-tail (WBHT) aircraft configuration

The utilized grid for the aircraft configuration with horizontal-tail (WBHT) consisted of more DoF's
than the WB one to adequately describe the extra surfaces; it includes 4,653,134 nodes, 8,226,704
tetrahedra, 2,685,704 prisms and 53,630 pyramids. The angle of attack of the free-stream flow was set
equal to 2.33°, considering again the desired value equal to 0.5 of the lift coefficient. Implementing a
three-level multigrid scheme along with a twelve-partitions parallel processing on a DELL T7500
workstation with two Intel™ Xeon™-X5650 six-core processors at 2.67 GHz, the density residual was
decreased approximately three orders of magnitude in 28 hours. Similarly to the WB configuration, the
nodal-averaging approach was implemented for gradients' computation, while inviscid fluxes were
computed with a second-order accurate spatial scheme utilizing the Van Albada-Van Leer limiting
function. The parameters of the simulation are summarized in the following Table 7.11. As the grid wasn't
fine enough to capture the shock formations at the upper side of the wing, a similar to WB aircraft test
case mesh refinement was implemented, deriving a new grid with 6,334,399 nodes, 10,920,171
tetrahedra, 4,571,468 prisms and 55,697 pyramids; the initial grid results were interpolated on the new
resolution and the simulation was continued. In addition, in order to verify that h-refinement methodology
indeed improves the accuracy of the final steady-state solution, the same test case (same simulation
features) was faced with a medium grid, composed of 9,265,094 nodes, 7,702,336 prisms, 15,711,044
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tetrahedra and 96,285 pyramids; the area above the outer half wing compartment at this medium mesh
was also h-refined, producing a new grid, consisted of 9,761,321 nodes, 8,009,980 prisms, 16,593,580
tetrahedra and 96,881 pyramids. The angle of attack wasn't adjusted for neither of the two meshes (refined
coarse and medium).

Table 7.11: Parameters of simulation (turbulent flow over the CRM WBHT aircrafi).

Parameters
Type of flow Turbulent (SS7)
Mach number 0.85
Reynolds number 5.0E+6
Angle of attack (deg.) 2.33°

4,653,134 nodes,
8,226,704 tetrahedra,

Grid density 2,685,704 prisms and
53,630 pyramids
Number of partitions 12
Number of multigrid levels 3
Iterative scheme Runge-Kutta method (CFL=1.0)

DELL T7500 workstation with two Intel® Xeon®-X5650 six-core

Computational system processors at 2.67 GHz

In Figure 7.87 the refined coarse mesh density and predicted dimensionless pressure contours on the
aircraft surface are illustrated, demonstrating their qualitative agreement with those of other solvers
[Leel0, Mav10]; similarly to the WB aircraft and independently of the mesh density no significant wing-
body juncture separation was observed, while the same stands for horizontal tail-body juncture separation
(probably due to the SST turbulence model utilized [Scl13]). Figures 7.88-7.101 contain the pressure
coefficient distributions at different wing and horizontal tail span-wise sections for the initial coarse, the
refined coarse, the initial medium and the refined medium mesh, compared to those of the study of Lee-
Rausch et al. [Leel0]; in Figures 7.88-7.90 and 7.95-7.101 the distributions, derived by the initial grids
(coarse and medium) are not contained, as they are the same to those of the corresponding refined ones.
As expected, the medium grids produced more accurate results than the coarse ones, while the adapted
grids provided sharper pressure distributions at shock regions compared to the initial unrefined ones. It
should be highlighted that the slope limiters reduce the order of the spatial discretization scheme at shock
areas; therefore, the accurate prediction of this discontinuity is mainly based on the local grid density. In
that way the importance of the incorporated h-refinement methodology is revealed; depending on the
examined test case, the construction of a new finer mesh from the very beginning might be avoided along
with significant computational savings. Moreover, in wing tip section (95%) Galatea is revealed to
predict more accurately the shock at the upper side of the wing, independently of the density of the
employed grid.

Correspondingly to Table 7.10 for WB configuration, Table 7.12 contains the lift and idealized drag
coefficients obtained with the initial coarse, the refined coarse, the initial medium and the refined medium
grid for WBHT aircraft, in comparison with the experimental and the computed by Vos and Sanchi
[Vos10] ones. Despite no adjustment was made to the angle of attack, the extracted lift coefficients agree
sufficiently with both the reference computed and experimental ones [Vas10, Vos10]; similarly to WB
aircraft a slight change of lift coefficient is observed with grid adaptation and the utilization of the
medium mesh. The idealized drag coefficients obtained with the initial and refined coarse grids are close
enough with the reference computed ones [Vos10]; however, their values are overestimated, compared to
the experimental coefficients [Vas10]. In case of medium grids this difference is decreased considerably;
it is closer to the experimental than the reference computed one, indicating therefore the insufficiency of
the employed initial and refined coarse grids.
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Figure 7.87: Mesh density (left) and predicted dimensionless pressure contours (right) on the surface of the aircraft
(turbulent flow over the CRM WBHT aircraft).
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Table 7.12: Lift and idealized drag coefficients (C;~0.5, turbulent flow over the CRM WBHT aircraft).

CL Didealized

Current (initial coarse grid) 0.5027 0.02161
Current (refined coarse grid) 0.5031 0.02145
Current (initial medium grid) 0.5092 0.01955
Current (refined medium grid) 0.5088 0.01955
Vos and Sanchi 2010 [Vos10] ~0.5 ~0.02210
NTF Run 97 [Vas10] ~0.5 ~0.01877

A downwash study, considering different angles of attack (0°, 1°, 3° and 4°), was performed similarly
to the WB aircraft test case, employing the refined grid. Figure 7.102 includes the distribution of lift
coefficient for the aforementioned angles of attack, while in Figure 7.103 the same distribution is
illustrated for different values of idealized drag coefficient. The obtained results compare sufficiently with
the reference computed ones [Lee10, Vos10], while a break in the lift curve is also identified at about 3°.
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A deviation of the idealized drag coefficient curve is identified for greater values probably due to the
insufficient number of DoF's; nevertheless, considering the scattering of the corresponding distributions,
included in the summary paper of the fourth DPW [Vas10], the current one is still located among of them.
In addition, Figure 7.104 includes close-up views of the wing and tail surfaces along with the obtained
dimensionless pressure contours in case of a 4° angle of attack; a shock-including flow on the main wing
and a fully attached one on the tail are observed. Their comparison with the corresponding ones of
Mavriplis and Long [Mav10] confirms once more the capability of the developed methodology for such
simulations.
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Finally, the refined grid (6,334,399 nodes, 10,920,171 tetrahedra, 4,571,468 prisms and 55,697
pyramids), examined in this test case, was used in order to evaluate the incorporated in the proposed
algorithm acceleration techniques, namely the parallelization strategy and the agglomeration multigrid
scheme. Therefore, single-grid and multigrid (three-level full-coarsening fusion, only FAS) simulations
employing the explicit Runge-Kutta method (CFL=/.0), but different numbers of partitions (2, 4, 8, 16

7-43



Turbulent flow over the common research model (CRM)

and 32) were run on a DELL™ R815 Poweredge server with four AMD Opteron™ 6380 sixteen-core

processors at 2.50 Ghz. In Figure 7.105 far views of the initial and agglomerated control volumes grids
are illustrated, while Figure 7.106 includes the corresponding close-up views of the symmetry/ WBHT
aircraft surface (/6 partitions). Inviscid fluxes were obtained with a second-order accurate spatial scheme,
coupled with the Min-mod limiter, while the computation of the viscous ones was based on the nodal-
averaging method. Figure 7.107 illustrates the density (left) and turbulent kinetic energy (right)
convergence history for the performed single-grid runs, while Figure 7.108 includes the corresponding
speed-up/number of processors distribution. A sufficient agreement between the ideal and the current
computation is observed up to /6 processors, while for more of them a deviation is identified due to the
increase of communication load with the increase of used cores. It should be noted here that the
parallelization strategy has not been optimized yet for larger number of processes.
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Figure 7.104: Shock-including flow on the main wing and fully attached one on the horizontal tail (4° angle of
attack, turbulent flow over the CRM WBHT aircraft).

In Figures 7.109 and 7.110 the corresponding convergence results for multigrid simulations are
presented. As expected, the deviation between the ideal and the current computation is increased,
comparing to the single-grid distribution; nevertheless, the needed simulation time is considerably
reduced, as the run combining multigrid scheme and parallel processing in 32 cores required less than 20
hours to decrease density residual more than three orders of magnitude.

Finally, Figure 7.111 includes the density convergence time history for the single-grid and multigrid
simulations distributed in 2 and 32 processes. The considerable improvement of algorithm's
computational performance by the incorporated acceleration techniques is clearly demonstrated; in
simulation combining parallel computation in 32 processes and multigrid method a temporal speed-up
equal to ~18.0 was succeeded, comparing to the single-grid run distributed to only two processors.
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Figure 7.105: Initial and agglomerated control volume grids (turbulent flow over the CRM WBHT aircraft).
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8. Radiative heat transfer numerical results

8.1. Definitions

Similarly to the fluid flow methodology validation, the radiative heat transfer solver has been
evaluated, especially in terms of accuracy and efficiency, against three- and quasi-three-dimensional
benchmark test cases, while its results have been compared with those of reference solvers. This
comparison is mainly based on the distribution of dimensionless incident radiative heat flux Q' (¥) along

a line on the enclosure under examination; the aforementioned heat flux is defined as [Kim88]

N yxN,
[1(7.5)-(5-A)a > o

7)) = _ Az —_mn
o) E oT* oT*

(8.1)

where Q(7)denotes the incident radiative heat flux, while E is the initial radiative energy generating the

heat transfer, e.g., in case that the medium has the highest temperature E,, is used, while in case that
boundary walls have the highest temperature E,, is applied instead. Considering that in most of the cases
the radiative flux in a specific direction (x, y, z) is required, the appropriate directional weight

(D”’” D" D™ ), based on the corresponding unit normal vector (éx,é},,éz), is utilized in equation (8.1).

ci, x> i,y ci,z

In addition, the average radiative heat flux G is computed, mainly for the visualization of the extracted
solutions; it is defined as follows [Kim88]

N gxN,
G(F)=[1(7.5)dQ="Y I"aQ" (8.2)
Ax mn

while in case its dimensionless formulation is required, it is divided (similarly to the dimensionless
incident radiative heat flux) with 4F.

In order to validate the computational performance of the developed methodology, the radiative
intensity residual is computed, similarly to density residual, at each cycle (of multigrid runs) or at each
iteration (of single-grid runs) /+/ as

Np Ny N,

zzz [

P=1 m=1 n=1 (83)
N,N,N,

residual =

where Np denotes the total number of nodes of the non-agglomerated mesh, while Ny and N, represent the
numbers of the initially defined polar and azimuthal control angles respectively; a decrease of residual
about two or three orders of magnitude is usually enough to extract the desired radiative heat flux
distributions. Additionally, throughout the test cases in which spatial and/or angular agglomeration
multigrid method is employed, the following notation "SxAy" is used; "x" corresponds to the defined
number of Spatial levels, while "y" to the defined number of Angular ones. For example, SIA1 denotes a
single-grid run, S4A1 a four-level spatial agglomeration multigrid one and S4A3 a combined four-level
spatial/three-level angular agglomeration multigrid simulation. It should be noted that the solver has not

been further optimized for computational performance.
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8.2. A hexahedral enclosure with quadratic bases

The first (quasi-3D) benchmark test case concerns radiative heat transfer in a hexahedral enclosure
with quadratic bases; its dimensions (I, I/, 5) m are illustrated in the following Figure 8.1 [Kim88,
Lygl2b]. The included medium is a purely scattering one (k,=0 m”, o,=1 m™) while all the walls are
assumed cold (7=0 K) and black (g,=1), except for the bottom face (y=0 m), at which a constant heating
energy is imposed (E=1 W/m’, corresponding to 64.80435 K). Both isotropic and anisotropic forward (F2)
scattering was considered in this problem. The utilized tetrahedral mesh consists of 796,732 nodes and
1,053,402 tetrahedra, while for parallel computation on a DELL T7500 workstation with two Intel®
Xeon™-X5650 six-core processors at 2.67 GHz, it was divided in twelve sub-domains; in Figure 8.2 the
employed grid, representing the examined enclosure, as well as a close-up view of its quadratic bases'
density is presented. The angular domain was discretized by sixteen azimuthal and eight polar control
angles, while in order the overhang problem to be alleviated the bold approximation was employed.
Radiative intensity at walls was explicitly imposed with Dirichlet boundary conditions, while the steady
(non time-dependent) RTE was solved with iterative approximations along with a first-order accurate
spatial scheme; it required about /.7 s per iteration. The parameters of the simulation are summarized in
the following Table 8.1.

Table 8.1: Parameters of simulation (hexahedral enclosure with quadratic bases).

Parameters
Absorption coefficient 0m’
Scattering coefficient Im’
Wall emissivity 1

Grid density

196,732 nodes and

1,053,402 tetrahedra
Number of partitions 12
16 azimuthal and
8 polar control angles
Iterative approximations
DELL T7500 workstation with two Intel™ Xeon™-X5650 six-core
processors at 2.67 GHz

Angular resolution

Iterative scheme

Computational system

Figure 8.1: Dimensions of hexahedral enclosure with quadratic bases.

In Figures 8.3 and 8.4 the dimensionless incident (left) and average (right), respectively, radiative
heat flux distributions along the A-A line, which corresponds to the centerline of the hexahedral enclosure
in y-direction (x=0.5 m and z=2.5 m), are illustrated for an isotropically and anisotropically scattering
medium; they compare with the corresponding distributions extracted by the two-dimensional, cell-
centered, DOM solver of Kim and Lee [Kim88], succeeding a satisfactory agreement. As expected,
anisotropic scattering with respect to isotropic one derives greater values of radiative intensity, reaching
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almost the value of imposed heating power at the bottom side. In general, with forward scattering
functions (based on Legendre polynomials), i.e., F1 and F2, larger values of radiation are obtained than
the isotropic and backward (B1 and B2) ones; the latter leads to even smaller values comparing to the
isotropic one [Lygl2b]. Nevertheless, in dimensionless average heat flux curves, an alternation is
observed between higher values of anisotropic and isotropic distributions; the isotropic function leads to
higher values near the heating source surface, while the anisotropic one predicts more radiation near the
upper boundary.
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Figure 8.2: Employed grid and its density on one of its quadratic bases (hexahedral enclosure with quadratic bases).
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Figure 8.3: Distributions of dimensionless incident Figure 8.4: Distributions of dimensionless average
radiative heat flux along the A-A line (hexahedral radiative heat flux along the A-A line (hexahedral
enclosure with quadratic bases). enclosure with quadratic bases).

Additional runs with different values of scattering albedo (w=0/f) and wall emissivity ¢, were
performed, in order to evaluate their contribution to the predicted radiative heat transfer. Figure 8.5
includes the distributions of dimensionless incident radiative heat flux along the A-A line for different
scattering albedos, compared well with the corresponding ones obtained by the two-dimensional DOM
algorithm of Kim and Lee [Kim88]; the values of extinction coefficient (f=k,+o;) and wall emissivity ¢,
remained equal to unity. As scattering albedo increases higher values of radiation are obtained, due to the
forward effect of the employed function F2 [Lyg12b]. Similarly, Figure 8.6 illustrates the distributions of
dimensionless incident radiative heat flux along the A-A line for different values of wall emissivity,
compared well with those of the aforementioned reference solver [Kim88]; the values of extinction
coefficient § and scattering albedo w remained equal to unity. As expected, the emissivity coefficient
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reduction leads to less produced radiation at the same distance from the heating source surface, because of
the diffusive effect of the walls. The previous distributions (per values of scattering albedo and wall
emissivity) appear to be consistent with the reference two-dimensional ones [Kim88], despite the fact that
a three-dimensional method usually adds larger amounts of false scattering.
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Figure 8.5: Distributions of dimensionless incident radiative heat flux along the A-A line for different values of
scattering albedo (hexahedral enclosure with quadratic bases).
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emissivity (hexahedral enclosure with quadratic bases).
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8.3. A cubic enclosure

The second radiative heat transfer problem examined in this study concerns a cubic enclosure with
edges’ length equal to unity, as presented in Figure 8.7 [Kim88, Tri08, Cap10, Lygl3c, Lygl4b, Lygl4g].
Three sub-cases were encountered with this enclosure, the first considering an absorbing and emitting
medium, while the second and the third one an isotropically and anisotropically scattering medium
respectively.
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Figure 8.7: Dimensions of the cubic enclosure.

For the first sub-problem, the enclosure walls are assumed radiatively black (g,=1) and cold (7,,=0
K), while the included medium is considered absorbing and emitting (k,=1 m™, 6,=0 m™) with a constant
heating energy equal to unity (E=1 W/m’, corresponding to 64.80435 K). The employed mesh consists of
5,914 nodes, 15,399 tetrahedra and 4,900 prisms, while for parallel computation on a DELL® Laptop
with a single Intel® Core™" 2 Duo T6400 two-core processor at 2.00 GHz, it was divided in two sub-
domains; the utilized mesh is illustrated in Figure 8.8. For angular discretization eight azimuthal and four
polar angles are used along with the pixelation method to allow for the alleviation of the overhang
problem, derived from the combination of the unstructured grid and the division of the angular domain in
finite solid angles. Radiative intensity at wall surfaces is obtained implicitly. The final steady-state
solution of the time-dependent RTE is approximated with the incorporated second-order accurate in time
Runge-Kutta method. The parameters of the simulation are summarized in Table 8.2.

Table 8.2: Parameters of simulation (cubic enclosure - first sub-case).

Parameters
Absorption coefficient Im’
Scattering coefficient 0m’
Wall emissivity 1
5,914 nodes,
Grid density 15,399 tetrahedra and
4,900 prisms
Number of partitions 2

8 azimuthal and
4 polar control angles
Iterative scheme Runge-Kutta method
DELL® Laptop with a single Intel® Core™ 2 Duo T6400 two-core
processor at 2.00 GHz

Angular resolution

Computational system
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In order to evaluate additionally the contribution of the developed grid adaptation methodology in
the improvement of accuracy, the initial mesh was h-refined, employing a criterion targeting the region of
the extracted results (upper surface); more specifically the edges with end-points with coordinate z greater
than 0.95 m were marked for division. The new mesh is composed of 74,179 nodes, 16,827 tetrahedra and
19,600 prisms; in Figure 8.9 the mesh density on the face of the cube with coordinate y equal to zero is
illustrated prior (left) and after (right) h-refinement. Figure 8.10 includes the distributions of
dimensionless incident radiative heat flux along the A-A line of the initial mesh for a first-order accurate
spatial scheme, a simple second-order one , a second-order jointed with the Van Albada-Van Leer limiter
(VAVL) and a second-order with the Min-mod one, compared with the exact distribution, obtained from
the study of Capdevilla et al. [Cap10]; in Figure 8.11 the corresponding distributions are presented for the

adapted finer grid. The solutions were extracted in approximately twenty four minutes, achieving a seven-
order decrease of radiative intensity residual. The superiority of second-order accurate solutions,
compared to the first-order one, is clearly observed, while among them this employing the Min-mod
limiter seems to be more accurate as the other two appear to lead to overestimations. Furthermore, the
contribution of the h-refinement methodology to the improvement of the extracted results is identified,
especially in case of the first-order accurate scheme; for the rest of the simulations improvement is

marginally noticed near the cold surfaces.
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Figure 8.9: Mesh density on the face of the cube with coordinate y equal to zero prior (left) and after (right) h-
refinement (cubic enclosure - first sub-case).
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Figure 8.10: Distributions of dimensionless incident radiative heat flux along the A-A line of the initial mesh (cubic
enclosure - first sub-case).
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Figure 8.11: Distributions of dimensionless incident radiative heat flux along the A-A line of the refined mesh
(cubic enclosure - first sub-case).

In the second sub-case the adapted grid from the previous simulation is employed on the same
computational system, including a purely (isotropically) scattering medium (k,=0 m™, 6,=1 m™") instead.
The radiatively black walls (¢, =1) as well as the medium are assumed cold (7,,=0 K, 7,,=0 K), except for
the lower surface (z=0 m) at which a constant heating power is imposed (E=1 W/m?). The time-dependent
RTE is approximated with the Runge-Kutta method, while implicit boundary conditions are implemented.
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The angular domain was divided by twenty four azimuthal and twelve polar angles due to the significant
ray effect encountered in this sub-case; the pixelation method was applied for the mitigation of the
overhang problem. The parameters of the simulation are summarized in the following Table 8.3.

Table 8.3: Parameters of simulation (cubic enclosure - second sub-case).

Parameters
Absorption coefficient 0m’
Scattering coefficient Im’
Wall emissivity 1
14,179 nodes,
Grid density 16,827 tetrahedra and
19,600 prisms
Number of partitions 2

24 azimuthal and
12 polar control angles
Iterative scheme Runge-Kutta method
DELL™ Laptop with a single Intel™ Core'™ 2 Duo T6400 two-core
processor at 2.00 GHz

Angular resolution

Computational system

In Figure 8.12 the obtained distributions of dimensionless incident radiative heat flux along the half
A-A line for all the available schemes are depicted, compared with the computed ones by the ZM-MC
(Zone Method - Monte Carlo Method) and FV-ME (Finite-Volume method - Mie Equations) methods of
Trivic et al. [Tri08]. The results were extracted after the radiative intensity residual was decreased about
four orders of magnitude. Although the first-order accurate distribution almost coincides with the
corresponding FV-ME one, it overestimates the incident radiation [Tri08]. On the other hand, the
solutions obtained by the second-order methods are sufficiently accurate compared with the more
accurate ZM-ME one, while no considerable differentiation is identified among them; the improvement in
accuracy of the final solution, derived by the second-order accurate schemes, is demonstrated once more.

03
Trivic & Amon 2008 ZM-MC
095 Trivic & Amon 2008 FV-ME
— Current 1st Order
0.2 O Current 2nd Order
' 2 Current VAVL
. + Current Min-mod
g 0.15 w—ww—s 3
I""' E—i-..._____
$ e -'i""' —
0.1 » e~
0.05
0
05 06 07 08 0.9 1
X

Figure 8.12: Distributions of dimensionless incident radiative heat flux along the half A-A line (cubic enclosure -
second sub-case).
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Table 8.4: Parameters of simulation (cubic enclosure - third sub-case).

Parameters
Absorption coefficient 0-1 m”’
Scattering coefficient 0-1 m”
Wall emissivity 0-1
. . 13,433 nodes and
Grid density 71,589 tetrahedra
Number of partitions 2
Number of spatial multigrid levels 1-4

Angular resolution

16 azimuthal and
8 polar control angles

Number of angular multigrid levels

1-3

Iterative scheme

Runge-Kutta method

Workstation with an AMD FX"™-8350 eight-core processor

Computational system at 4.0 GHz

The third (quasi-3D) sub-case considering radiative heat transfer in a cubic enclosure, was
encountered mainly for the evaluation of the developed spatial/angular agglomeration multigrid
methodology and more specifically of its contribution to the solution's convergence rate for various
values of scattering albedo (forward anisotropic, F2, w=0-1, =1 m™") and wall emissivity (&,=0.1-1). It is
similar to the case of section 8.2, concerning a cold medium (7,,=0 K) as well as cold and black walls
(Tw=0 K, &,=1I), except for the bottom face (z,=0 m) and the bases normal to x-direction, where a
constant heating energy (E,,=I W/m’ corresponding to 64.80435 K) and symmetry boundary conditions
are applied respectively; implicit treatment of boundary conditions was employed. The utilized tetrahedral
grid, divided into two partitions for parallelized solution of time-dependent RTE with the Runge-Kutta
method on a workstation with an AMD FX™-8350 eight-core processor at 4.0 GHz, consists of 73,433
nodes and 71,589 tetrahedra; it is illustrated in Figure 8.13. For angular discretization sixteen azimuthal
and eight polar angles were applied, while the pixelation method subdued the overhang problem. For all
the single-grid and multigrid runs a second-order accurate spatial scheme, with the Min-mod slope
limiter, was implemented unless otherwise stated. The parameters of the simulation are summarized in
Table 8.4.
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Figure 8.13: Initial mesh representing the cubic enclosure (third sub-case).
As mentioned above, runs with different values of scattering albedo @ and wall emissivity ¢, were

performed. The implementation of the developed multigrid method influences only the number of
required iterations and wall-clock computation time; the extracted solution remains independent of the
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acceleration technique. Figures 8.14 and 8.15 include the finally obtained distributions of dimensionless
incident radiative heat flux along the B-B line (centerline of the grid in z-direction, x=0.5 m, y=0.5 m) for
various values of scattering albedo and wall emissivity respectively. They are close enough with the
corresponding ones obtained by the two-dimensional DOM algorithm of Kim and Lee [Kim8&§].
Comparing to the similar simulation of section 8.2, another significant conclusion is extracted; equally
accurate results were obtained with a much coarser grid. Employing a second-order accurate spatial
scheme along with the implicit treatment of boundary conditions as well as the implementation of
symmetry ones, decrease the excessive need for very fine spatial resolution.

1 4 1
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0.6 i i 0.6 v :
NN 1
*n 0.5 h AN | *. 0.5
g X \M g
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0.3 Q-\ ‘.‘%& 0.3 %%N
0.1 1 01 dmaicy
0 0 T T = oy g
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
Z(m) Z(m)
Figure 8.14: Distributions of dimensionless incident Figure 8.15: Distributions of dimensionless incident
radiative heat flux along the B-B line for different values  radiative heat flux along the B-B line for different values
of scattering albedo (cubic enclosure - third sub-case). of wall emissivity (cubic enclosure - third sub-case).

Table 8.5: Grid coarsening by agglomeration of two, four and six sub-grids (cubic enclosure - third sub-case).

| Level 1 (DoF's) | Level 2 (DoF's) | Level 3 (DoF's) | Level 4 (DoF's)
2 Partitions
First Sub-domain 7,363 1,517 403 230
Second Sub-domain 7,316 1,486 414 237
4 Partitions
First Sub-domain 3,959 878 267 155
Second Sub-domain 3,898 881 268 156
Third Sub-domain 4,009 900 268 154
Fourth Sub-domain 4,033 892 262 151
6 Partitions
First Sub-domain 2,827 662 211 132
Second Sub-domain 2,775 651 194 99
Third Sub-domain 2,746 643 191 107
Fourth Sub-domain 2,787 652 186 103
Fifth Sub-domain 2,803 647 192 98
Sixth Sub-domain 2,788 656 217 139

Three coarser grids were generated via isotropic agglomeration in order to validate the spatial and
the combined spatial/angular agglomeration multigrid scheme. Figure 8.16 illustrates their boundary mesh
density; the blue coloured faces correspond to mirroring surfaces, employed to simulate the two-
dimensional problem with a three-dimensional grid. Table 8.5 includes the number of DoF's (nodes) per
sub-domain of the initial and coarser grids, considering a two-, four- and six-partitions division. The ghost
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nodes at overlapping regions are also included in this Table; as such, the total number of DoF's differs
among different number of sub-grids of the initial mesh. Similarly, angular agglomeration was performed,
deriving two coarser angular resolutions, in which the initial discretization of /6 azimuthal and & polar
angles was reduced to 8 x 4 (second level) and 4 x 2 (third level) respectively.
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Figure 8.16: Initial and agglomerated control volume grids (cubic enclosure - third sub-case).

The evaluation of the developed multigrid methodology began with the study of an absorbing but no
scattering medium (k,=/ m”, 0,=0 m™") along with black walls (&,=1). In Figure 8.17 its convergence
history per number of iterations/cycles and wall-clock computation time is illustrated for the single-grid
(S1A1) and different combinations of the multigrid schemes (spatial-S4A1, angular-S1A2 and nested
spatial/angular-S4A2), while in Table 8.6 the corresponding speed-up coefficients to the final residual
value of 1.0E-15 are included (bold style denotes the higher time speed-up coefficient for each set of
runs). Due to the absence of scattering and walls' reflection, the acceleration obtained by the spatial and
the nested spatial/angular scheme isn't so significant. The speed-up gained by the angular scheme
(compared to the single-grid one), as well as the one derived by the nested scheme (compared to the
spatial one), although not expected, is attributed to the back and forth travel of information imposed by
the symmetry surfaces and the second-order accurate spatial scheme.
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Table 8.6: Speed-up coefficients per number of iterations/cycles and time, considering runs with different values of
k,, o, and g, (cubic enclosure - third sub-case).

k,(m’) | o,(m”) | &, | Iter.Speed-up | Time Speed-up

S1A2 1 0 1 1.1155 1.075

S4A1 1 0 1 1.6937 1.6433
S4A2 1 0 1 3.5944 1.6765
S1A3 0.5 0.5 1 1.3109 1.2881
S4A1 0.5 0.5 1 2.2051 1.9287
S4A2 0.5 0.5 1 4.5989 1.9917
S1A3 0 1 1 1.4331 1.3213
S4A1 0 1 1 2.8015 2.3625
S4A2 0 1 1 5.8072 2.3719
S1A3 0 1 0.5 2.6473 2.4474
S4A1 0 1 0.5 5.1482 4.2825
S4A2 0 1 0.5 14.2349 4.7256
S1A3 0 1 0.1 2.8813 2.1678
S4A1 0 1 0.1 4.9996 4.1377
S4A3 0 1 0.1 19.2667 7.5545

Another test case, against which the single-grid (S1A1) and various multigrid schemes were applied
(S1A3, S4A1 and S4A2), concerned a half absorbing and half scattering (k,=0.5 m™, 6,=0.5 m™) medium.
As illustrated in Figure 8.18 the employed multigrid schemes succeed an increased acceleration, up to a
~2.0 temporal speed-up coefficient for the nested version (Table 8.6). The same attitude is identified in
case a purely scattering medium (k,=0 m”, o,=1 m™) is considered instead; the corresponding
convergence history per number of iterations/cycles and computational time is included in Figure 8.19,
while Table 8.6 contains the finally derived speed-up coefficients (S1A3, S4A1 and S4A2). Although the
gained acceleration by the spatial scheme in the previous cases was quite encouraging, the one achieved
by the angular scheme (compared to this of the single-grid one), as well as this of the nested scheme
(compared to this of the spatial one) is relatively negligible; the small number of DoF's along with the
absence of reflecting walls (excepting the mirroring ones) resulted in a reduced radiation exchange
between the defined solid control angles.
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Figure 8.17: Radiative intensity convergence history per iterations/cycles and time (k,=1 m”, 6,=0 m™, ¢,,=1, cubic
enclosure - third sub-case).
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Figure 8.18: Radiative intensity convergence history per iterations/cycles and time (k,=0.5 m™, 6,=0.5 m™ &,=1,
cubic enclosure - third sub-case).
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Figure 8.19: Radiative intensity convergence history per iterations/cycles and time (k,=0 m”, 6,=1 m”, &,=1, (cubic
enclosure - third sub-case).

Nevertheless, the situation is changing for a purely scattering medium (k,=0 m”, o,=1 m™) along
with reflecting walls (¢,=0.5). According to the results included in Figure 8.20 and Table 8.6, the
obtained acceleration coefficients for the final residual /.0E-15 increase almost two times for all the
multigrid schemes (S1A3, S4A1 and S4A2), compared to the corresponding ones of the previous
simulations; the maximum ~4.73 speed-up coefficient in time is derived by the nested methodology. The
contribution of angular agglomeration (both for the angular and the combined scheme) appears to be quite
significant, compared to all of the previous runs (with black boundaries).

In order to study the effect of grid size to the gained acceleration by the multigrid algorithm, a finer
mesh was employed, composed of 105,856 nodes and 589,283 tetrahedra. Figure 8.21 contains the
convergence history per number of iterations/cycles and wall-clock computation time for the single-grid
(S1A1) and all the applied multigrid schemes (S1A2, S4A1 and S4A2) on the finer grid, which was
divided in two sub-domains for parallel processing on a DELL workstation T7400 with two Intel Xeon
E5410 four-core processors at 2.33 GHz; an acceleration increase is obvious, compared to the
corresponding results on the coarser mesh. Table 8.7 contains the speed-up coefficients for residual's
value equal to /.0E-9 (bold style denotes the higher time speed-up coefficient for each set of runs),
obtained by the multigrid schemes on both grids (coarse and fine), confirming the previous state; the
S4A2 scheme achieved a temporal speed-up coefficient equal to ~4.57 and ~6.17 for the coarse and fine
grid respectively.
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Figure 8.20: Radiative intensity convergence history per iterations/cycles and time (k,=0 m™, o,=1 m”, ,=0.5,
(cubic enclosure - third sub-case).
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Figure 8.21: Radiative intensity convergence history per iterations/cycles and time (k,=0 m™, 6,=1 m™, &,=0.5, fine
grid, cubic enclosure - third sub-case).

Table 8.7: Speed-up coefficients per number of iterations/cycles and time, considering runs on different spatial

resolutions (k,=0 m? o.=1m", £,=0.5, cubic enclosure - third sub-case).

Number of DoF's | Iter. Speed-up | Time Speed-up
S1A3 13,433 2.5975 2.3931
S4A1 13,433 4.8282 4.0063
S4A2 13,433 13.7500 4.5659
S1A2 105,856 1.8699 1.7073
S4A1 105,856 5.3334 4.5336
S4A2 105,856 15.2911 6.1690

The contribution of the developed methodology is revealed even more valuable, in case a purely
scattering medium (k,=0 m™, o,=1 m™") along with almost fully reflecting walls (¢,,=0.1) is assumed. The
single-grid (S1A1) and various multigrid schemes were employed (S1A3, S4A1 and S4A3), while the
convergence rates per iterations/cycles and time are illustrated in Figure 8.22. The increased radiation
exchange between different solid control angles, generated by the combination of the purely scattering
behaviour of the medium, the almost fully reflecting walls and the imposed symmetry boundary
conditions, resulted in higher acceleration rates (Table 8.6); the maximum temporal coefficient ~7.55 was
succeeded by the nested four-level spatial/three-level angular scheme (S4A3). The same simulation was
performed employing a first-order accurate spatial scheme instead, in order to assess the effect of spatial

8-14



Radiative heat transfer numerical results

accuracy (used for the computation of fluxes) to the gained multigrid acceleration; Figure 8.23 and Table
8.8 (bold style denotes the higher time speed-up coefficient for each set of runs) contain the
corresponding results. Although the second-order scheme is implemented only to the initial non-
agglomerated level, it causes a non-trivial delay (depending of course on the examined case), compared to
the fully first-order one; the first-order multigrid solutions were obtained in less computation time but

with slight differentiations in acceleration compared to the second-order ones.
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Figure 8.22: Radiative intensity convergence history per iterations/cycles and time (k,=0 m™, o,=1 m”, £,=0.1,

cubic enclosure - third sub-case).
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Figure 8.23: Radiative intensity convergence history per iterations/cycles and time (k,=0 m™, o,=1 m”, £,=0.1,

first-order accurate scheme, cubic enclosure - third sub-case).

In order to further evaluate the contribution of the developed multigrid methodology in accelerating
the numerical solution of RTE, three additional runs were performed with the same medium and walls
features (k,=0 m”, o,=1 m”, &,=0.1), but with different multigrid schemes, namely SIA2, S2A1 and
S3Al. Figure 8.24 illustrates the convergence history per iterations/cycles and computation time, derived
by the single-grid and three spatial agglomeration multigrid schemes, whose differentiation regards the
number of employed multigrid levels (S2A1, S3A1 and S4Al); the distributions, along with the
corresponding acceleration coefficients (Table 8.8), confirm that additional acceleration is gained for any
additional spatial multigrid level. Similarly, in Figure 8.25 and Table 8.8 the convergence rate of the
single-grid run is compared to those of the angular agglomeration multigrid ones, employing two different
numbers of successive angular levels (S1A2 and S1A3); the contribution of each extra angular level is
revealed as the three-level simulation led to a faster solution than the two-level one. Furthermore,
considering that the acceleration derived by the three-level angular multigrid scheme is almost equal to
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the one obtained by the three-level spatial one, the potential of the first for increased computational
performance is reinforced. Finally, another nested scheme (S4A2) with only two angular levels was
employed, to examine whether the increase of the angular discretizations in the combined scheme causes
a delay to the solution; the results in Table 8.8 confirm the superiority of S4A3 scheme comparing to
S4A2 one.

Table 8.8: Speed-up coefficients per number of iterations/cycles and time, considering low and high-order accurate
spatial schemes as well as different numbers of sub-grids (k,=0 m™, o,=1 m”, &,=0.1, cubic enclosure - third sub-

case).
Number of Partitions | Order Scheme | Iter. Speed-up | Time Speed-up
S1A3 2 Ist 2.7508 2.4294
S4A1 2 Ist 4.7696 3.7588
S4A3 2 Ist 18.4890 6.8036
S1A2 2 2nd-Minmod 1.9523 1.51745
S1A3 2 2nd-Minmod 2.8813 2.1678
S2A1 2 2nd-Minmod 1.8231 1.3326
S3A1 2 2nd-Minmod 3.1514 2.1991
S4A1 2 2nd-Minmod 4.9996 4.1377
S4A2 2 2nd-Minmod 14.6555 5.8690
S4A3 2 2nd-Minmod 19.2667 7.5545
S1A3 4 2nd-Minmod 2.8813 2.6856
S4A1 4 2nd-Minmod 4.9158 4.0878
S4A3 4 2nd-Minmod 18.9301 7.4375
S1A3 6 2nd-Minmod 2.8811 3.2992
S4A1 6 2nd-Minmod 4.9224 4.1117
S4A3 6 2nd-Minmod 18.9542 8.9062
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Figure 8.24: Radiative intensity convergence history per iterations/cycles and time (k,=0 m”, o,=1 m”, &,=0.1,
various spatial multigrid levels, cubic enclosure - third sub-case).

The effect of the number of sub-grids, dividing the initial mesh for parallel processing, was
examined with the last simulations on the cubic enclosure. Thus, the initial cubic mesh was divided in
four and six partitions respectively, for each of which three coarser sub-grids were generated via isotropic
agglomeration; Figure 8.26 illustrates their boundary mesh density, while Table 8.5 contains the
corresponding number of DoF's (nodes) for each sub-domain of the initial and the coarser meshes. As the
ghost nodes at overlapping regions are also included in this Table, the number of total nodes differs
among different partitionings of the initial grid. The convergence histories and coefficients per number of

8-16



Radiative heat transfer numerical results

iterations/cycles and time of the simulations with four sub-domains (S1A1, S1A3, S4A1 and S4A3) are
presented in Figure 8.27 and Table 8.8 respectively; although the total wall-clock computation time is
reduced comparing to this obtained with two partitions due to utilization of two more processors, no
significant difference is identified as far as the convergence rates are concerned. However, the
corresponding numerical solutions with six sub-domains appear to provide increased temporal speed-up
coefficients (Figure 8.28 and Table 8.8), especially in case of the angular (~3.3) and the nested
spatial/angular scheme (~8.9). This acceleration derives probably from the decreased number of
transferred variables between the neighbouring sub-grids, due to angular coarsening (for the second

angular level only N, P X(Ng / 2)><(N p / 2) variables are exchanged) as well as due to the less DoF's at

the coarsest mesh (fourth multigrid level) in case of six sub-domains compared to those at the coarsest
grids in case of two or four partitions (Table 8.5); a more extended agglomeration is achieved,
contributing consequently to an elevated acceleration for the same computational system.
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Figure 8.25: Radiative intensity convergence history per iterations/cycles and time (k,=0 m™, o,=1 m”, &,=0.1,
various angular multigrid levels, cubic enclosure - third sub-case).

Figure 8.26: Initial and coarser control volume grids, divided in four (left) and six (right) partitions (cubic
enclosure - third sub-case).
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Figure 8.27: Radiative intensity convergence history per iterations/cycles and time (k,=0 m™, o,=1 m™, £,=0.1, four

partitions, cubic enclosure - third sub-case).
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Figure 8.28: Radiative intensity convergence history per iterations/cycles and time (k,=0 m”, o,=1 m”, &,=0.1, six

partitions, cubic enclosure - third sub-case).

8.4. A prismatic enclosure

The third test case concerns radiative heat transfer in a prismatic enclosure with equilateral triangular
bases; its dimensions are illustrated in Figure 8.29 [KimO1, Gril0, Lygl2a, Lygl3c]. Two sub-cases were
simulated for this enclosure, employing the time-dependent RTE along with the Runge-Kutta method on a
DELL T7400 workstation with two Intel® Xeon™-E5410 four-core processors at 2.33 GHz.

For the first (quasi-3D) sub-case, the walls are considered radiatively black (¢,=1) and cold (7,,=0
K), except for the two equilateral triangular bases assumed to behave as symmetry planes; all types of
boundary conditions were imposed in an implicit way. The included medium is considered absorbing and
emitting, but no scattering (o,=0 m), maintained at constant temperature (7,,=/000 K); an absorption
coefficient equal to unity (k,=1 m™) was selected. For spatial discretization a mesh, composed of 10,989
nodes, 8,159 tetrahedra, 16,658 prisms and /5 pyramids, was employed, divided in two partitions for
parallel processing (Figure 8.30). Two different angular resolutions were defined, resulting in the
decomposition of the angular sphere in eight azimuthal - four polar angles and in sixteen azimuthal - four

polar angles respectively. Pixelation method was selected instead of bold approximation for the mitigation
of the overhang problem. The parameters of the simulation are included in Table 8.9.
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\/1

Figure 8.29: Dimensions of the prismatic enclosure.

Table 8.9: Parameters of simulation (prismatic enclosure - first sub-case).
Parameters
Absorption coefficient Im’
Scattering coefficient 0m’
Wall emissivity 1
10,989 nodes,
. . 8,159 tetrahedra,
Grid density 16,658 prisms and
15 pyramids
Number of partitions 2
Angular resolution .8 azimuthal - 4 polar and
16 azimuthal - 4 polar control angles
Iterative scheme Runge-Kutta method
. DELL T7400 workstation with two Intel™ Xeon™-E5410 four-core
Computational system
processors at 2.33 GHz
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Additionally, in order to evaluate the contribution of the developed h-refinement methodology in
accuracy improvement of the final steady-state solution, the initial grid was adapted employing a
criterion, which targeted the nodes at the region of the bottom face; more specifically, the edges with end-
points with coordinate y less than 0.05 m were marked. The derived adapted mesh consisted of 38,285
nodes, /1,522 tetrahedra, 66,976 prisms and /54 pyramids. Figure 8.31 illustrates the mesh density on the
equilateral triangular base with coordinate z equal to zero (z=0 m) prior (left) and after (right) h-
refinement; the division of the lower elements (prismatic and tetrahedral) into smaller ones can be
identified.

(prismatic enclosure - first sub-case).
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Figure 8.32: Distributions of dimensionless incident radiative heat flux along the A-A line (initial grid, 8-4 angular
resolution, prismatic enclosure - first sub-case).
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Figure 8.33: Distributions of dimensionless incident radiative heat flux along the A-A line (initial grid, 16-4
angular resolution, prismatic enclosure - first sub-case).
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Figure 8.34: Distributions of dimensionless incident radiative heat flux along the A-A line (adapted grid, 8-4
angular resolution, prismatic enclosure - first sub-case).

0.2 1

TR

Figures 8.32 - 8.35 include the distributions of dimensionless incident radiative heat flux along the

A-A line of the initial (8.32, 8.33) and the adapted grid (8.34, 8.35), derived by the §-4 (left) and /6-4
(right) angular discretization as well as by all the available spatial schemes, compared with the exact and
the computed ones of Man Young Kim et al. [Kim01]. As expected the denser angular resolution (/6-4)
produced more accurate results; nevertheless, implementing the incorporated higher-order accurate spatial
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schemes reduced considerably this differentiation. In general, the second-order accurate schemes derived
better results than the first-order one, while among them this accompanied by the Min-mod limiter
appears to approximate more precisely the exact solution. Although the accuracy improvement gained by
the h-refinement method is more obvious in the solution considering an §-4 angular resolution and a first-
order accurate spatial scheme, it contributed more or less to all the employed schemes. The
aforementioned solutions were obtained after radiative intensity residual was decreased at least six orders
of magnitude, while they required approximately two seconds per iteration for the first-order scheme and
five seconds per iteration for the second-order ones, considering the initial mesh and the denser angular
discretization. In case of the coarser angular resolution the temporal difference per iteration between the
first- and the second-order scheme is decreased. Although the first-order scheme appears to be twice
faster of the second-order ones, the radiative intensity convergence history per number of iterations,
illustrated in Figure 8.36, reveals that the latter ones succeeded a greater convergence rate, as well as a
more accurate solution.
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Figure 8.35: Distributions of dimensionless incident radiative heat flux along the A-A line (adapted grid, 16-4
angular resolution, prismatic enclosure - first sub-case).

In order to assure that the derived differentiation between the previously encountered simulations,
originates indeed from the upgrading of the spatial resolution with the implementation of the developed
higher-order accurate spatial schemes, a very fine mesh was utilized, consisting of 225,15/ nodes,
665,561 tetrahedra and 207,780 prisms. In Figure 8.37 this grid as well as the density on one of its
equilateral triangular bases is illustrated.

The first- and the second-order accurate scheme coupled with the Min-mod limiter were
implemented, along with both 8-4 and /6-4 angular resolutions. In Figures 8.38 and 8.39 the distributions
of dimensionless incident radiative heat flux along the A-A line, derived by the aforementioned spatial
accurate schemes and angular discretizations are presented, compared with the exact and the computed
ones of Man Young Kim et al. [Kim01]. As expected, the differentiation between the results of the
employed schemes is reduced considerably, especially for the /6-4 angular resolution, confirming in that
way the enhancement of the proposed algorithm by the higher-order accurate spatial schemes.
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Figure 8.36: Radiative intensity convergence history per iterations (initial grid, 16-4 angular resolution, prismatic
enclosure - first sub-case).
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sub-case).

The second three-dimensional sub-case concerns an absorbing, but no scattering (g,=0 m""), medium
assigned with an emissive radiative power of unity (E=1 W/m’), which corresponds to 64.80435 K; three
different absorption coefficients k, were employed, namely 0./, 1.0 and 10.0 m”. All the walls are
assumed black (e,=1) and cold (7,,=0 K), while the respective boundary conditions are imposed
implicitly. The utilized mesh consists of 29,170 nodes, 81,217 tetrahedra and 26,100 prisms, while for
parallel computation it was decomposed in four partitions (Figure 8.40). Angular discretization is
achieved using 8 azimuthal and 8 polar angles, while pixelation method alleviates any arisen overhang
problem. The parameters of this simulation are summarized in Table 8.10.

This sub-case is focused on the evaluation of the accuracy improvement, obtained by the
incorporated h-refinement methodology. Therefore, the initial mesh was locally refined, employing the
same to the previous sub-case criterion (bottom face region); the generated grid is composed of 78,822
nodes, 128,604 tetrahedra and 104,400 prisms. In Figure 8.41 the mesh density on one of its equilateral
triangular bases is illustrated prior (left) and after (right) adaptation.
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Figure 8.38: Distributions of dimensionless incident radiative heat flux along the A-A line (very fine grid, 8-4
angular resolution, prismatic enclosure - first sub-case).
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Figure 8.39: Distributions of dimensionless incident radiative heat flux along the A-A line (very fine grid, 16-4
angular resolution, prismatic enclosure - first sub-case).
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Table 8.10: Parameters of simulation (prismatic enclosure - second sub-case).

Parameters
Absorption coefficient 0.1, 1.0, 10.0 m”
Scattering coefficient 0m’
Wall emissivity 1

29,170 nodes,

81,217 tetrahedra and
26,100 prisms

4
8 azimuthal - 8 polar control angles
Runge-Kutta method
Computational system DELL T7400 workstation with two Intel™ Xeon™-E5410 four-core
processors at 2.33 GHz

Grid density

Number of partitions
Angular resolution
Iterative scheme
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Figure 8.42 includes the distributions of dimensionless incident radiative heat flux along the half B-B
line of the initial and refined mesh for the pre-mentioned values of absorption coefficient (k,=0.1, 1.0,
10.0 m™), compared with the corresponding exact ones of Grissa et al. [Gril0]. The encountered
simulations succeeded at least a four-order of residual decrease, requiring approximately two seconds per
iteration for the initial mesh and five seconds for the refined one. As far as the runs with absorption
coefficient values equal to 0./ and 1.0 m™ are concerned, no significant accuracy improvement is
identified, except that values of intensity can be retrieved from the area very close to the cold walls. The
situation is changing in case of absorption coefficient equal to /0.0 m™; a difference in the same area
between the two grids is clearly observed, revealing the potential of h-refinement for more accurate
solutions, without the need to start from scratch the construction of a new finer grid. Although the
accuracy improvement, obtained by grid adaptation, isn’t so significant, compared to the one provided by
the implementation of second-order accurate schemes, it can be proved helpful depending on the
examined problem.
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Figure 8.42: Distributions of dimensionless incident radiative heat flux along the half B-B line for different values
of absorption coefficient (prismatic enclosure - second sub-case).

8.5. A cylindrical enclosure

This test case concerns radiative heat transfer in a cylindrical enclosure with the radius of each base
equal to unity and height equal to 2 m, as this illustrated in Figure 8.43 [Sal04, Hunl1, Lyg12b, Lygl4g].
Three different sub-cases were encountered on this enclosure, whose differences are focused on the type
of medium (absorbing or scattering) as well as on the source surface generating heat transfer (medium or
wall surface).

In the first sub-case, the included medium is considered absorbing and emitting, but no scattering,
(0,=0) held at constant temperature (7,,=100 K); three different absorption coefficients &, were employed,
namely 0.1, 1.0 and 5.0 m™. All the walls are assumed radiatively black (g,,=/) and cold (7,=0 K), while
the corresponding boundary conditions were implemented explicitly (Dirichlet conditions). The utilized
grid consists of 95,716 nodes, 447,436 tetrahedra and 30,352 prisms, while for parallel processing it was
decomposed in twelve partitions; its boundary mesh density is presented in Figure 8.44. The angular
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domain was divided by twelve azimuthal and twelve polar angles, while bold approximation was utilized
to alleviate any possible overhang problem. The solution of non-time-dependent RTE with iterative
approximations and a first-order accurate spatial scheme was performed on a DELL T7500 workstation
with two Intel® Xeon™-X5650 six-core processors at 2.67 GHz, succeeding a final radiative intensity
residual equal to /.0E-9. The parameters of these runs are included in Table 8.11. Figure 8.45 illustrates
the extracted distributions of dimensionless incident radiative heat flux along the A-A line (cylinder
lateral surface), compared with those obtained by the corresponding three-dimensional cell-centered
finite-volume algorithm of Salah et al. [Sal04]. A satisfactory agreement between the computed and
reference results for all the employed absorption coefficients can be identified; as expected an increase to
the value of this coefficient leads to an increased blackbody term of RTE and consequently to an
increased incident radiative heat flux. Independently of the absorption coefficient value, a rapid decrease
of the exiting flux is observed near the circular bases, due to the neighbouring cold walls.

Figure 8.43: Dimensions of cylindrical enclosure.

Table 8.11: Parameters of simulation (cylindrical enclosure - first sub-case).

Parameters
Absorption coefficient 0.1,1.0,5.0m”
Scattering coefficient 0m’
Wall emissivity 1
95,716 nodes,
Grid density 447,436 tetrahedra and
30,352 prisms
Number of partitions 12
Angular resolution 12 azimuthal - /2 polar control angles
Iterative scheme Iterative approximations
Computational system DELL T7500 workstation with two Intel™ Xeon™-X5650 six-core
processors at 2.67 GHz
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Figure 8.45: Distributions of dimensionless incident radiative heat flux along the A-A line for different values of
absorption coefficient (cylindrical enclosure - first sub-case).

For the second sub-case, the enclosure is filled with a purely scattering medium (k, =0 m™, 6,=1 m™")
instead, maintained cold (7,,=0 K); an isotropic and a forward anisotropic (F2) scattering function was
employed for the validation of scattering capability of the developed methodology. All the walls are
considered black (g,=1); the circular bases are assumed cold (7,,=0 K), while the lateral surface at
constant temperature (7,,=1/00 K). Radiative intensity at walls was explicitly imposed (Dirichlet boundary
conditions), while the steady (non time-dependent) RTE was solved with iterative approximations along
with a first-order accurate spatial scheme. The same to the previous sub-case spatial (grid) and angular
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(12 azimuthal - /2 polar control angles along with bold approximation) resolution was employed on the
same computational system, deriving a radiative intensity residual equal to /.0E-6 in approximately
~6.5E-5 s per iteration and number of DoF's (anisotropic scattering run). The parameters of this
simulation are summarized in Table 8.12.

Table 8.12: Parameters of simulation (cylindrical enclosure - second sub-case).

Parameters
Absorption coefficient 0m’
Scattering coefficient Im’
Wall emissivity 1
95,716 nodes,
Grid density 447,436 tetrahedra and
30,352 prisms
Number of partitions 12
Angular resolution 12 azimuthal - /2 polar control angles
Iterative scheme Iterative approximations
Computational system DELL T7500 workstation with two Intel™ Xeon™-X5650 six-core
processors at 2.67 GHz

Figure 8.46 includes the obtained distributions of dimensionless incident radiative heat flux along the
B-B line (half base surface) for an isotropically and anisotropically scattering medium, compared with the
corresponding ones provided by the study of Salah et al. [Sal04]. As expected, the forward anisotropic
scattering function (F2) produces higher values of exiting intensity, comparing to the isotropic one, as it
enables greater diffusion. Computed and reference incident radiation fluxes compare satisfactorily,
indicating the good potential of the developed algorithm for such simulations.
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Figure 8.46: Distributions of dimensionless incident radiative heat flux along the B-B line for isotropically and
anisotropically scattering medium (cylindrical enclosure - second sub-case).
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Additionally, in order to assess the parallelization strategy incorporated in the present solver, similar
to the previous case runs (concerning an anisotropically scattering medium) were performed on the same
computational system, utilizing two, four, and eight processors; in Figure 8.47 the derived speed-
up/number of processors distribution is illustrated. As the number of employed processors increases a
deviation between the ideal and the achieved performance is observed, deriving from the increase of
communication load. Nevertheless, it is an acceptable deviation, which can be further improved if the
proposed methodology is applied to larger scale problems with more DoF's.
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Figure 8.47: Scalability of parallel implementation (anisotropic scattering, cylindrical enclosure - second sub-case).
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Figure 8.48: Employed mesh (cylindrical enclosure - third sub-case).

The third sub-case concerning radiative heat transfer in a cylindrical enclosure, was encountered
mainly for the evaluation of the developed spatial/angular agglomeration multigrid methodology. The
included absorbing and isotropically scattering medium is maintained cold (7,,=0 K), while runs with
different values of scattering albedo were performed (8 =1 m”, @=0.1-1.0). All the walls are considered
black (e,=1), while their radiative intensity is computed implicitly; the circular bases are assumed cold
(T,»=0 K), while the lateral surface exhibits a constant unity heating power (Ejyera=1 W/m® corresponding
to 64.80435 K). The employed grid consists of 55,572 nodes, /31,731 tetrahedra and 61,040 prisms, while
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for parallel processing, it was decomposed in four partitions; its boundary mesh density is presented in
Figure 8.48. The angular sphere was divided by sixteen azimuthal and eight polar angles, while the
pixelation method was used to mitigate any overhang problem. The solution of the time-dependent RTE
with the Runge-Kutta method, applying a first-order accurate spatial scheme, was performed on a
workstation equipped with an AMD FX™ -8350 eight-core processor at 4.00 GHz. The parameters of this
simulation are included in Table 8.13.

Table 8.13: Parameters of simulation (cylindrical enclosure - third sub-case).

Parameters
Absorption coefficient 0-1 m”’
Scattering coefficient 0-1m”’
Wall emissivity 1
55,572 nodes,
Grid density 131,731 tetrahedra and
61,040 prisms
Number of partitions 4
Angular resolution 16 azimuthal - 8 polar control angles
Iterative scheme Runge-Kutta method
. Workstation with an AMD FX"™-8350 eight-core processor at 4.0
Computational system GHz

Figure 8.49 includes the obtained distributions of dimensionless incident radiative heat flux along the
A-A line for scattering albedo w equal to 0./ and /.0. The value of normalized heat flux has a minimum at
the midplane (z=/ m), where the effects of cold bases are minimized. Although a first-order accurate
spatial scheme was employed, the derived results are close enough with the corresponding ones obtained
by the finite-volume algorithm of Hunter and Guo [Hunl1].
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Figure 8.49: Distributions of dimensionless incident radiative heat flux along the A-A line for values 0.1 and 1.0 of
scattering coefficient (cylindrical enclosure - third sub-case).

In order to implement the developed multigrid methodology, three coarser meshes were generated
via isotropic agglomeration, at each of which the included DoF's were reduced about four times; in Figure
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8.50 the boundary density of the initial and agglomerated control volume grids is illustrated. Similarly,
angular agglomeration was performed, deriving a coarser angular resolution, including eight azimuthal
and four polar angles.

Only the spatial agglomeration multigrid scheme was implemented in the simulation considering the
medium with 0.7 scattering albedo, due to the reduced radiation exchange between different solid control
angles. Figure 8.51 includes the radiative intensity convergence history, as well as the corresponding
convergence rate, per number of iterations/cycles and time of the multigrid scheme (S4A1), compared to
those of the single-grid one (S1A1). Considering the depicted temporal speed-up coefficient, computed
for a residual value of /.0E-8, the multigrid run converged more than twice faster than the single-grid
one; because of the absence of symmetry and reflecting surfaces as well as of the small value of the
scattering coefficient, the produced rate is assumed relatively satisfactory.
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Figure 8.50: Initial and agglomerated control volume grids (cylindrical enclosure - third su
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Figure 8.51: Radiative intensity convergence history per iterations/cycles and time (k,=0.9 m™, 0,=0.1 m”, w=0.1,
&v,=1, cylindrical enclosure - third sub-case).

For the second simulation regarding a medium with a unit scattering albedo, various multigrid
schemes (S1A3, S4A1 and S4A2) were implemented besides the single-grid one (S1A1). Figure 8.52
includes the corresponding convergence histories (per iterations/cycles and computation time) and speed-
up coefficients, the latter computed for final residual equal to /.0E-8; the significant contribution of
spatial agglomeration as well as the negligible one of angular fusion is revealed. However, if these rates
are re-computed for a value of residual equal to /.0E-6, a considerable increase is observed; more
specifically this re-calculation results in ~/.37 for S1A3, ~3.24 for S4Al and ~3.41 for S4A2.
Considering that a decrease in residual of three orders of magnitude is usually enough for the extraction
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of the required incident radiative heat flux distributions, the contribution of angular agglomeration
appears to be non-trivial, especially in case the combined spatial/angular scheme is selected.

Finally, dummy runs, regarding semi-reflecting surfaces with wall emissivity ¢, equal to 0.5, were
performed with the single-grid (S1A1) and various multigrid schemes (S1A3, S4A1 and S4A2), in order
to examine the effect of reflectivity. In Figure 8.53 the multigrid convergence histories and acceleration
coefficients are illustrated, compared to this of the non-multigrid one; the maximum obtained speed-up
coefficient in time for a residual equal to /.0E-8 is ~3.3, derived by the nested spatial/angular scheme
(S4A2). Re-computing this rate for a higher but simultaneously sufficient residual equal to 1.0E-6,
provides an even higher value of ~4.3, indicating the enhancement of the present solver by the
incorporated angular agglomeration multigrid methodology.
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Figure 8.52: Radiative intensity convergence history per iterations/cycles and time (k,=0 m”, o0,=1.0 m”, w=1.0,
ew=1, cylindrical enclosure - third sub-case).
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Figure 8.53: Radiative intensity convergence history per iterations/cycles and time (k,=0 m™, 0,=1.0 m”, w=1.0,

&,=0.5, cylindrical enclosure - third sub-case).

8.6. A hemi-cylindrical enclosure

In this test case radiative heat transfer is predicted in a hemi-cylindrical enclosure, as this illustrated
in Figure 8.54 [Kim08, Lygl3c]. All the walls are assumed black (e,=17) and cold (7,,=0 K), except for
the two half-circular bases in which symmetry boundary conditions are imposed; for the computation of
radiative intensity on these surfaces the implicit treatment was selected. The included medium is
considered absorbing and emitting, but no scattering (o,=0 m), while it is maintained at constant
temperature (7,,=1000 K); three different absorption coefficients k, were employed, namely 0.1, 1.0 and
10.0 m”. The used mesh consists of 18,217 nodes, 53,658 tetrahedra, and 14,424 prisms, while for
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parallel processing it was decomposed in two sub-domains; Figure 8.55 includes the utilized grid as well
as the boundary density on one of its half-circular bases. Angular discretization is succeeded by dividing
the directional domain in sixteen azimuthal and four polar angles, while the effects of overhang problem
are subdued by the pixelation approach.

Table 8.14: Parameters of simulation (hemi-cylindrical enclosure).

Parameters
Absorption coefficient 0.1,1.0,10.0 m”
Scattering coefficient 0m’
Wall emissivity 1
18,217 nodes,
Grid density 53,658 tetrahedra and
14,424 prisms
Number of partitions 2
Angular resolution 16 azimuthal - 4 polar control angles
Iterative scheme Runge-Kutta method
. DELL T7400 workstation with two Intel™ Xeon™-E5410 four-core
Computational system
processors at 2.33 GHz

The solution of the time-dependent RTE with the Runge-Kutta method, applying all the available
second-order accurate spatial schemes besides the first-order one, was performed on a DELL T7400
workstation with two Intel®™ Xeon™-E5410 four-core processors at 2.33 GHz. The parameters of this test
case are summarized in Table 8.14. Figure 8.56 illustrates the obtained distributions of dimensionless
incident radiative heat flux along the A-B line (Figure 8.54) by all the performed simulations (various
spatial schemes and absorption coefficients), compared with the corresponding computed ones provided
in the work of Man Young Kim et al. [Kim08]. Between the results of runs with absorption coefficient
equal to 0./ m™” but different spatial schemes, no difference can be identified. However for the rest
simulations a deviation between the first- and the second-order accurate spatial schemes can be clearly
distinguished. In all simulations, the results were extracted after radiative intensity residual was decreased
at least seven orders of magnitude, requiring approximately twenty three minutes for the first-order
accurate scheme and thirty four minutes for the second-order ones.

Figure 8.54: Dimensions of hemi-cylindrical enclosure.
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Figure 8.56: Distributions of dimensionless incident radiative heat flux along the A-B line for various values of
absorption coefficient (hemi-cylindrical enclosure).



An L-shaped enclosure

8.7. An L-shaped enclosure

An L-shaped enclosure, being illustrated in Figure 8.57, including an absorbing and emitting, but no
scattering medium (o,=0 m™"), held at a constant temperature (7,,=/000 K), is studied in this section
[Tal05, Lygl3c]; three different absorption coefficients k, were assumed, namely 0.5, 1.0 and 2.0 m™. All
the walls are considered black (¢,=7) with a constant temperature (7,,=500 K); for the computation of
radiative intensity on these surfaces the implicit treatment was selected. The utilized tetrahedral mesh is
composed of 78,130 nodes and 96,010 tetrahedra, while for parallel solution of the time-dependent RTE
with the Runge-Kutta method it was divided in two partitions; Figure 8.58 includes the employed grid as
well as the boundary density on the surface with A-B line. The directional sphere was divided by eight
azimuthal and four polar angles, while pixelation method was implemented to alleviate the effects of
overhang problem. Simulations for all the incorporated spatial schemes were performed on a DELL
T7400 workstation with two Intel® Xeon™-E5410 four-core processors at 2.33 GHz, requiring
approximately five minutes for the first-order accurate scheme and fifteen minutes for the second-order
ones to decrease the radiative intensity residual at least nine orders of magnitude. The parameters of these
runs are included in Table 8.15.
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In Figure 8.59 the extracted distributions of incident radiative heat flux (Q, in kW/m?) along the A-B
line are presented for all the employed spatial schemes and values of absorption coefficient, compared to
the corresponding computed ones provided in the paper of Talukdar et al. [Tal05]; a satisfactory
agreement is achieved in general. Independently of the value of absorption coefficient, a significant
improvement in accuracy of the exiting fluxes is obvious for the runs utilizing the second-order accurate
spatial approaches; the deviation from the distribution of the first-order scheme increases with the
increase of absorption coefficient. A slight flux overestimation can be identified in the distribution of the
simple second-order scheme (without limiting) unlike the schemes coupled with the slope limiters
(VAVL and Min-mod), due to the unbounded reconstructed values of radiative intensity. Nevertheless,
the potential of all the developed higher-order accurate schemes for improved accuracy, even in very
coarse spatial resolutions, such as in this test case, is demonstrated.

Figure 8.57: Dimensions of L-shaped enclosure.
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Table 8.15: Parameters of simulation (L-shaped enclosure).

Parameters
Absorption coefficient 0.5,1.0,2.0m”
Scattering coefficient 0m’
Wall emissivity 1
. . 18,130 nodes and
Grid density 96,010 tetrahedra
Number of partitions 2
Angular resolution 8 azimuthal - 4 polar control angles
Iterative scheme Runge-Kutta method

DELL T7400 workstation with two Intel™® Xeon™-E5410 four-core

Computational system processors at 2.33 GHz
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Figure 8.58: Employed grid and its density on the surface with A-B line (L-shaped enclosure).

8.8. A J-shaped enclosure

Radiative heat transfer in a J-shaped enclosure, being illustrated in Figure 8.60, is examined in this
section [Kim08, Lyg13b]. It is filled with an absorbing and emitting (k,=0.01 m™"), but no scattering (,=0
m™), cold medium (7,,=0 K), while its walls are assumed black (¢,=1) and cold (7,=0 K), except for the
upper surface at y=2.4 m held at constant temperature of /00 K and the two bases at z=0 m and z=1 m for
which symmetry boundary conditions are considered; boundary conditions are implemented implicitly.
The employed grid includes 4,040 nodes, 11,132 tetrahedra and 2,800 prisms, while for parallel
processing it was decomposed in two sub-domains; Figure 8.61 presents the utilized grid as well as the
boundary density on one of its mirroring surfaces.

For angular discretization, a relatively fine resolution of thirty azimuthal and four polar angles was
selected, due to the significant ray effect encountered; pixelation method was used to subdue the effects
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of the overhang problem. Iterative solution of the time-dependent RTE for all the available spatial
schemes was obtained with the implementation of Runge-Kutta method on a DELL T7400 workstation
with two Intel® Xeon®™-E5410 four-core processors at 2.33 GHz; it required approximately five minutes
for the first-order scheme and fourteen minutes for the second-order ones, to achieve a four-order
magnitude decrease of radiative intensity residual. The parameters of this test case are summarized in

Table 8.16.
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Figure 8.59: Distributions of incident radiative heat flux along the A-B line for various values of absorption

coefficient (L-shaped enclosure).

Table 8.16: Parameters of simulation (J-shaped enclosure).

Parameters
Absorption coefficient 0.01 m”
Scattering coefficient 0m’
Wall emissivity 1
4,040 nodes,
Grid density 11,132 tetrahedra
and 2,800 prisms
Number of partitions 2
Angular resolution 30 azimuthal - 4 polar control angles
Iterative scheme Runge-Kutta method
. DELL T7400 workstation with two Intel™ Xeon™-E5410 four-core
Computational system
processors at 2.33 GHz
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Figure 8.61: Utilized grid and its density on the symmetry surface (J-shaped enclosure).

Figure 8.62 illustrates the distribution of dimensionless incident radiative heat flux along the ABCD
line (z=0.5 m) (Figure 8.60) for all the employed spatial schemes, compared with the computed ones of
Man Young Kim et al. using two-dimensional triangular and polygonal meshes [KimOS8]. Similarly to
previous test cases, a deviation between the results of the first- and second-order runs is identified; this
difference is more clearly distinguished in the areas near the points A, B and C. Moreover, the simple
second-order scheme appears to mispredict slightly the exited fluxes in specific regions (e.g., near point
B), comparing its results with those of the schemes enhanced with limiters. Nevertheless, the potential of
all the developed higher-order schemes for improved accuracy of the final steady-state solution is
revealed in this test case, despite the relatively coarse density of the utilized grid.

8.9. A hexahedral enclosure with trapezoidal bases
Another quasi-3D test case concerns radiative heat transfer in a hexahedral enclosure with
trapezoidal bases; its dimensions are illustrated in Figure 8.63 [Mur98c, Lygl2a, Lygl3b]. Two sub-
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problems were modelled for this enclosure, employing the time-dependent RTE along with the Runge-
Kutta method on a DELL T7400 workstation with two Intel® Xeon™-E5410 four-core processors at 2.33
GHz.
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Figure 8.62: Distributions of dimensionless incident radiative heat flux along the ABCD line for various spatial
schemes (J-shaped enclosure).
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Figure 8.63: Dimensions of hexahedral enclosure with trapezoidal bases.
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In the first sub-problem, the walls are assumed radiatively black (¢,=1) and cold (7,,=0 K), except
for the two trapezoidal bases at z=0 m and z=I m for which symmetry boundary conditions are imposed;
radiative intensity on all the surfaces is implicitly obtained. The included medium is considered absorbing
and emitting (k,=/ m™), but no scattering (,=0 m™"), held at constant temperature of /00 K. The spatial
field is discretized with a mesh composed of 8,507 nodes, 12,608 tetrahedra 10,754 prisms and 28
pyramids, while for parallel processing it was divided in two partitions; Figure 8.64 presents the utilized
grid as well as the boundary density on one of its mirroring surfaces. Angular discretization is obtained
with sixteen azimuthal and four polar angles, while pixelation method is employed to alleviate overhang
problem and increase accuracy of the final steady-state solution. The parameters of this sub-case are
contained in Table 8.17.
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Table 8.17: Parameters of simulation (hexahedral enclosure with trapezoidal bases - first sub-case).

Parameters
Absorption coefficient Im’
Scattering coefficient 0m’
Wall emissivity 1
8,507 nodes,
. . 12,608 tetrahedra
Grid density 10,754 prisms and
28 pyramids
Number of partitions 2
Angular resolution 16 azimuthal - 4 polar control angles
Iterative scheme Runge-Kutta method

DELL T7400 workstation with two Intel™ Xeon™-E5410 four-core

Computational system processors at 2.33 GHz

In Figures 8.65 to 8.68 the distributions of extracted dimensionless incident radiative heat flux along
the AB, BC, CD and DA lines (z=0.5 m) (Figure 8.63) for all the available spatial schemes are illustrated,
compared with the corresponding exact ones of Murthy and Mathur [Mur98c]. They were extracted after
radiative intensity residual was decreased at least four orders of magnitude; approximately two and five
seconds per iteration were required for the first- and second-order schemes respectively. As expected the
higher-order runs derived more accurate results than the first-order one; moreover, those ones which are
coupled with limiting functions managed to avoid the flux under-prediction near the cold wall boundaries,
produced by the unlimited second-order scheme.
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Figure 8.65: Distributions of dimensionless incident radiative heat flux along the AB line (hexahedral enclosure
with trapezoidal bases - first sub-case).
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Figure 8.66: Distributions of dimensionless incident radiative heat flux along the BC line (hexahedral enclosure
with trapezoidal bases - first sub-case).

In the second sub-problem the same behavior is assumed for the medium and the walls, except for
the value of absorption coefficient; three different values are imposed, namely, k,=0.1, 1.0 and 10.0 m™.
Similarly to the first sub-case boundary conditions are implicitly treated, but only a first-order accurate
scheme is applied. The employed mesh includes 22,788 nodes, 53,692 tetrahedra and 23,184 prisms,
while for parallel computation it was divided in two sub-domains; its boundary density is presented in
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Figure 8.69. The division of angular field was achieved using twenty azimuthal and eight polar angles,
while pixelation method was selected to manage the overhang problem. The parameters of this sub-case
are summarized in Table 8.18.

1
0.8
E_EEEEE-EEQ_Q_&
/w- “T ~ -
0.6 +=< »
£
o
0.4
Murthy & Mathur 1998 exact
— = Current 1st Order
0.2 O Current 2nd Order
Current VAVL
¢ Current Min-mod
0 T T
0 0.2 04 0.6 0.8 1

]
Figure 8.67: Distributions of dimensionless incident radiative heat flux along the CD line (hexahedral enclosure
with trapezoidal bases - first sub-case).
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Figure 8.68: Distributions of dimensionless incident radiative heat flux along the DA line (hexahedral enclosure
with trapezoidal bases - first sub-case).

The validation of the contribution of the developed grid adaptation methodology in accuracy
improvement was the main goal of this sub-case. Therefore, the initial mesh was refined implementing a
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criterion, which targeted the region up to 0./ m away from the cold boundaries; as a result a new grid was
derived, composed of 83,305 nodes, 184,522 tetrahedra and 92,736 prisms. However, as the solution,
extracted by the run combining the refined mesh and a value of absorption coefficient equal to 70.0 m™
wasn't satisfactory, especially at the areas near the lower cold corners, an additional h-refinement was
applied, producing a mesh with 790,771 nodes, 428,159 tetrahedra and 277,812 prisms. Figure 8.70

illustrates the mesh density on the mirroring surface (z=0 m) prior and after the first and second h-
refinement.
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Figure 8.69: Boundary density of utilized grid (hexahedral enclosure with trapezoidal bases - second sub-case)

Table 8.18: Parameters of simulation (hexahedral enclosure with trapezoidal bases - second sub-case).
Parameters
Absorption coefficient 0.1, 1.0 and 10.0 m”’
Scattering coefficient 0m’
Wall emissivity 1
22,788 nodes,
Grid density 53,692 tetrahedra and
23,184 prisms
Number of partitions 2
Angular resolution 20 azimuthal - § polar control angles
Iterative scheme Runge-Kutta method
. DELL T7400 workstation with two Intel™ Xeon™-E5410 four-core
Computational system
processors at 2.33 GHz
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lgure 8.70: Mesh density on e mirroring surface (z=0 m) prior and after the first and second h-refinement
(hexahedral enclosure with trapezoidal bases - second sub-case).

Figure 8.71 contains the distributions of dimensionless incident radiative heat flux along the A-B line
(Figure 8.63) for the three different values of absorption coefficient with the initial and the refined
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meshes, compared with the corresponding exact ones of Murthy and Mathur [Mur98c]. They were
extracted after radiative intensity residual was decreased at least five orders of magnitude; approximately
twelve seconds per iteration were required for the initial mesh, while after the first and second grid
adaptation each iteration lasted about thirty and sixty seconds respectively. As far as the accuracy
improvement is concerned, no obvious difference can be identified between the runs with absorption
coefficient equal to 0./ m”. For the remaining ones the situation is different; the difference between the
initial and the refined grids is evident, revealing h-refinement potential to produce more accurate
solutions, without the need to start from the very beginning the construction of a new finer grid. Although
the improvement, provided by grid adaptation, isn’t so important, compared to the one obtained by the
second-order accurate schemes, it can be proved a viable tool, depending on the examined problem.
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0.6
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0.4 —Current (refined grid)
] 0 Current (2nd time refined grid)
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Figure 8.71: Distributions of dimensionless incident radiative heat flux along the A-B line for three different values
of absorption coefficient, employing the initial and the refined meshes (hexahedral enclosure with trapezoidal bases
- second sub-case).

8.10. A cubic enclosure with three baffles

In this test case radiative heat transfer in a cubic enclosure with three baffles is considered [Coe98,
Lygl13b, Lygl4g]; its dimensions are illustrated in Figure 8.72. It is filled with an absorbing and emitting
but non-scattering medium (k,=0.1 m”, 6,=0 m™") with a constant heating power E,, equal to 10 W/m’. Its
walls as well as the baffles are assumed black (¢, =1) with a constant heating energy equal to unity (£,=1
W/m®), except for the faces normal to the z-direction, at which symmetry boundary conditions are
implemented; radiative intensity on all the surfaces is implicitly obtained.

The utilized mesh consists of 46,798 nodes, 58,624 tetrahedra and 66,024 prisms, while for parallel
processing it was decomposed in two sub-domains; Figure 8.73 illustrates the employed grid as well as
the boundary density on one of its mirroring surfaces. Angular discretization was obtained with twenty
four azimuthal and four polar angles, while the effects, derived by the overlapping of control angles and
faces of control volumes, were subdued by the pixelation method. In order to implement the developed
multigrid methodology, three coarser meshes were generated via isotropic agglomeration, at each of
which the included DoF's were reduced approximately four times; in Figure 8.74 the boundary density of
the initial and agglomerated control volumes is presented. Similarly, angular agglomeration was
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performed, deriving a coarser directional resolution, including twelve azimuthal and two polar angles.
The solution of time-dependent RTE with the Runge-Kutta method, applying a first- and second-order
accurate spatial scheme coupled with Min-mod limiter, was performed on a workstation equipped with an
AMD FX™-8120 eight-core processor at 3./ GHz; besides multigrid simulations, single-grid ones were
performed for the evaluation of the corresponding scheme. The parameters of these runs are included in

Table 8.19.

/7

1

/

Figure 8.72: Dimensions of cubic enclosure with three buffles.

Figure 8.75 illustrates the contours of average radiative heat flux G derived by the run with the
second-order scheme, while Figure 8.76 includes the obtained distributions of incident radiative heat flux
along the ABCD line (Figure 8.72) for runs with both schemes, compared with the corresponding
computed with Z-M (Zone-Method) ones of Coelho et al. [Coe98]. As expected, the results extracted with
the higher-order method are more close to the reference ones, especially along the line AB, comparing to
those obtained by the first-order accurate simulation.
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Figure 8.74: Initial and agglomerated control volume grids (cubic enclosure with three buffles).

Table 8.19: Parameters of simulation (cubic enclosure with three buffles).

Parameters
Absorption coefficient 0.1m’
Scattering coefficient 0m’
Wall emissivity 1
46,198 nodes,
Grid density 58,624 tetrahedra and
66,024 prisms
Number of partitions 2
Number of spatial multigrid levels 1-4
24 azimuthal and

Angular resolution

4 polar control angles

Number of angular multigrid levels

1-2

Iterative scheme

Runge-Kutta method

Computational system

Workstation with an AMD FX™-8120 eight-core processor
at 3./ GHz
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Figure 8.75: Contours of average radiative heat ﬂx G, obtained by the second-order accurate run (cubic enclosure
with three buffles).
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Figure 8.76: Distributions of incident radiative heat flux along the ABCD line for different spatial schemes (cubic
enclosure with three buffles).

Only spatial agglomeration multigrid method (S4A1) was employed for the acceleration of the sub-
problem with first-order spatial accuracy as the angular one was revealed to contribute negatively. Figure

8.77 includes the radiative intensity convergence history per number of iterations/cycles and computation
time, compared with those of a single-grid run (S1A1); an iteration and temporal speed-up coefficient
equal to ~2.65 and ~1.8 respectively was achieved for a final residual equal to /.0E-6. Different multigrid
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schemes (S1A2, S4A1 and S4A2) were implemented along with the higher-order accurate spatial method,
resulting in the corresponding convergence histories per iterations and time, presented in Figure 8.78; the
nested spatial/angular scheme results in a slightly faster solution than the simple spatial one, while
similarly the angular method in a slightly faster run than the single-grid one. Thus, the small contribution

of the angular multigrid method is confirmed once more for test cases with no medium scattering and wall
reflection.
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Figure 8.77: Radiative intensity convergence history per iterations/cycles and time (first-order scheme, cubic
enclosure with three buffles).
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Figure 8.78: Radiative intensity convergence history per iterations/cycles and time (second-order scheme, cubic
enclosure with three buffles).

An additional (multigrid and single-grid) simulation was made with the aforementioned enclosure,
assuming the same parameters, except for the value of wall emissivity of walls (¢,=0.8) and baffles
(e.»=0.6) (gray walls). Figure 8.79 contains the obtained distributions of incident radiative heat flux along
the ABCD line for runs with both schemes (first- and second-order accurate with Min-mod limiter),
compared to the corresponding ones computed with Z-M (Zone-Method) of Coelho et al. [Coe98];
similarly to previous runs (with black walls), the results derived by the higher-order method agree more
with the reference ones. Only the spatial multigrid method (S4A1) was employed again along with the
first-order accurate scheme due to the absence of medium scattering and wall reflection. Figure 8.80
illustrates the radiative intensity convergence history per number of iterations/cycles and wall-clock
computation time, compared to those of a single-grid run (S1A1); an increased time speed-up coefficient
(~2.34) for a final residual equal to /.0F-6 was obtained, compared to the corresponding one of the sub-
case with black walls (~7.80), due to the increased radiation transfer between the solid control angles,
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imposed by the increased values of wall reflectivity. Different multigrid schemes (S1A2, S4A1 and
S4A2) were applied along with the higher-order method, deriving the corresponding convergence
histories per iterations and time, presented in Figure 8.81. Similarly to the runs with black walls, the
contribution of angular acceleration method appears to be relatively unimportant; nevertheless, an
increased time speed-up coefficient is succeeded for all multigrid schemes, with a maximum value of
~3.02 obtained by the nested four-level spatial/two-level angular scheme (S4A2).
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Figure 8.79: Distributions of incident radiative heat flux along the ABCD line for different spatial schemes (gray
walls, cubic enclosure with three buffles).
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Figure 8.80: Radiative intensity convergence history per iterations/cycles and time (first-order scheme, gray walls,
cubic enclosure with three buffles).

8.11. An annular sector

Another problem examined mainly for the validation of the developed multigrid methodology,
concerns radiative heat transfer in a black (¢,=7) annular sector with thickness of 0.5 m, length equal to
unity (L=1 m) and angular extent ¢ of 60°, as illustrated in Figure 8.82 [Bae98b, Lygl2a, Lygl4g]. The
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medium as well as all the walls are considered cold (7,=0 K, 7,,=0 K), except for the inner surface,
maintained at constant temperature of /00 K; boundary conditions are implemented implicitly. Two sub-
cases were examined regarding different medium features; for the first one the medium is assumed
absorbing and emitting, but non-scattering (k,=I/ m”, a,=0 m”, w=0), while for the second one it is
assumed to be isotropically scattering (k,=0.5 m”, 6,=0.5 m”', ©=0.5). The employed grid consists of
49,925 nodes, 216,595 tetrahedra and 20,460 prisms, the latter positioned at the outer surface of the
annular sector; Figure 8.83 illustrates the utilized grid as well as the boundary density on one of its bases.
For parallel solution of the time-dependent RTE with the Runge-Kutta method and a first-order accurate
spatial scheme on a workstation with an AMD FX"™-8120 eight-core processor at 3./ GHz, it was
divided in two partitions. The angular discretization was obtained with sixteen azimuthal and eight polar
angles, while pixelation approach was applied for the alleviation of the overhang problem. Besides single-
grid simulations, multigrid ones were performed for the evaluation of the corresponding scheme.
Therefore, two coarser meshes were generated via isotropic agglomeration; the number of DoF's was
decreased approximately five times for the second agglomerated level and four additional times for the
final one. In Figure 8.84 the initial and agglomerated control volume grids are presented. Similarly,
angular agglomeration was performed, deriving a coarser directional resolution, including eight azimuthal
and four polar angles. The parameters of this case are contained in Table 8.20.
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Figure 8.81: Radiative intensity convergence history per iterations/cycles and time (second-order scheme, gray
walls, cubic enclosure with three buffles).

Figure 8.82: Dimensions of the annular sector.
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Figure 8.84: Initial and agglomerated control volume grids (annular sector).

Table 8.20: Parameters of simulation (annular sector).

Parameters
Absorption coefficient 0.5-1 m”
Scattering coefficient 0-0.5m”
Wall emissivity 1
49,925 nodes,
Grid density 216,595 tetrahedra and
20,460 prisms
Number of partitions 2
Number of spatial multigrid levels 1-3
. 16 azimuthal and
Angular resolution
8 polar control angles
Number of angular multigrid levels 1-2
Iterative scheme Runge-Kutta method
. Workstation with an AMD FX"™-8120 eight-core processor
Computational system at 3.1 GHz

Figure 8.85 contains the obtained distributions of dimensionless incident radiative heat flux along the
half A-A line (Figure 8.82) for scattering albedo equal to 0 and 0.5. Although only a first-order accurate
spatial scheme was applied, the extracted results agree sufficiently with the corresponding ones of the
cell-centered finite-volume solver of Baek et al. [Bae98b]. In Figure 8.86 the contours of average
radiative heat flux G at the middle of the annular sector (z=0.5) are illustrated for the sub-case concerning
a medium with scattering albedo 0.5.
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Figure 8.85: Distributions of dimensionless incident radiative heat flux along the half A-A line for different values
of scattering albedo (annular sector).
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Figure 8.86: Contours of average radiative heat flux G at the middle of the sector (z=0.5) for the sub-case
considering a medium with scattering albedo 0.5 (annular sector).

Considering the absence of scattering behaviour of the medium and reflection of the walls, for the
first sub-case, only the spatial agglomeration multigrid method was employed with different number of
levels (S2A1 and S3A1). Figure 8.87 includes their convergence history per number of iterations/cycles
and computation time, compared with the corresponding one of the single-grid simulation (S1A1). As the
S2A1 scheme derived a temporal speed-up coefficient equal to ~/.68 and the S3A1 a corresponding
coefficient equal to ~2.35, it is confirmed that extra acceleration is gained with addition of an extra
coarser level to the multigrid procedure.
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Figure 8.87: Radiative intensity convergence history per iterations/cycles and time (only absorbing and emitting
medium, annular sector).

Unlike the previous sub-case, different multigrid schemes, namely, S1A2, S3A1 and S3A2, were
employed for the second sub-problem with the isotropically scattering medium. Figure 8.88 includes their
convergence history per number of iterations/cycles and computation time, compared with the
corresponding one of the single-grid simulation (S1A1). According to the extracted temporal speed-up
coefficients for the final residual /.0E-12, the nested scheme (~2.28) led to a slightly faster solution than
the only spatial one (~2.24); similarly the solution with the only angular method (~/.09) is slightly
accelerated, compared to the single-grid one. However, for a residual value 1.0E-6, which is more than
sufficient for practical radiative heat transfer applications, the temporal speed-up coefficients are re-
computed as ~I.31 for S1A2, ~2.35 for S3A1 and ~2.72 for S3A2, demonstrating a satisfactory
acceleration obtained by the angular agglomeration methodology for both the angular and the nested
multigrid scheme.
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Figure 8.88: Radiative intensity convergence history per iterations/cycles and time (isotropically scattering medium,
annular sector).

8.12. A tetrahedral enclosure

The last test case considers radiative heat transfer in a tetrahedral enclosure with black (e,=1) and
cold (7,,=0 K) walls, as this is illustrated in Figure 8.89 [Mur98c, Lygl2a, Lygl4b]. It is filled with an
absorbing and emitting, but non-scattering, (k,=/ m”, 0,=0 m) medium, held at constant temperature
100 K. The utilized grid includes 796,847 nodes and 1,119,456 tetrahedra, while for parallel processing it
was divided in two partitions; Figure 8.90 presents the employed grid as well as its density on the surface
with A-A line. Although such a fine grid wasn't necessary as far as the solution accuracy is concerned, it
was employed in order to amplify the effect of the developed multigrid method and evaluate its
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performance in large resolutions. Angular discretization was obtained with sixteen azimuthal and eight
polar angles, while pixelation method subdued overhang problem effects. Radiative intensity on all the
walls was obtained implicitly. The solution of time-dependent RTE with the Runge-Kutta method,
applying a first-order accurate spatial scheme, was performed on a workstation equipped with an AMD
FX™-8120 eight-core processor at 3./ GHz.
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Figure 8.89: Dimensions of tetrahedral enclosure.
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Figure 8.90: Employed grid and its density on the surface with A-A line (tetrahedral enclosure).

In order to implement the developed multigrid methodology, two coarser meshes were generated via
isotropic agglomeration; in Figure 8.91 the boundary density of the initial and agglomerated control
volumes is presented. Besides multigrid simulations, a single-grid one was performed for the evaluation
of the corresponding scheme. The parameters of those runs are summarized in Table 8.21.

In Figure 8.92 the distribution of dimensionless incident radiative heat flux along the A-A line
(Figure 8.89) is illustrated, compared with the corresponding one of Murthy and Mathur [Mur98c]; a
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satisfactory agreement is identified between the obtained and reference results. Figure 8.93 contains the
convergence history per iterations/cycles and time for all the employed spatial multigrid schemes,
compared with this of the single-grid simulation; a maximum temporal speed-up coefficient equal just to
1.95 was obtained, due to the absence of medium's scattering behaviour and walls' reflection.
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Figure 8.92: Distributions of dimensionless incident radiative heat flux along the A-A line (tetrahedral enclosure).

In order to further evaluate the incorporated multigrid methodology, additional (multigrid and single-
grid) simulations were performed for the aforementioned enclosure, assuming though a purely
anisotropically scattering (k,=0 m”, 6,=1 m™) and cold (7,,=0 K) medium as well as black (&,=/) and
cold (7,,=0 K) walls, except for the face including the A-A line, which is held at constant temperature of
100 K. Angular agglomeration was also implemented, deriving a coarser directional resolution with eight
azimuthal and four polar angles. Figure 8.94 illustrates the extracted convergence histories along with the
corresponding speed-up rates per number of iterations/cycles and computation time for all the employed
multigrid runs, namely, S1A2, S3A1 and S3A2, compared with those of the single-grid simulation. The
maximum temporal coefficient of ~3.07 was derived by the nested S3A2 scheme, revealing once more the
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capability of the algorithm for enhanced acceleration of the solution procedure when a scattering medium
is considered.

Table 8.21: Parameters of simulation (tetrahedral enclosure).

Parameters
Absorption coefficient Im’
Scattering coefficient 0m’
Wall emissivity 1
196,847 nodes and
Grid densi ’
ty 1,119,456 tetrahedra
Number of partitions 2
Number of spatial multigrid levels 1-3
. 16 azimuthal and
Angular resolution
8 polar control angles
Number of angular multigrid levels 1
Iterative scheme Runge-Kutta method
. Workstation with an AMD FX"™-8120 eight-core processor
Computational system
at 3.1 GHz
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Figure 8.93: Radiative intensity convergence history per iterations/cycles and time (only absorbing medium,
tetrahedral enclosure).
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Figure 8.94: Radiative intensity convergence history per iterations/cycles and time (anisotropically scattering
medium, tetrahedral enclosure).
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9. Conclusions

9.1. Summary

In this thesis the development and validation of methodologies allowing for the numerical solution of
steady-state compressible fluid flow, and radiative heat transfer problems was reported. For the
representation of computational fields, three-dimensional unstructured hybrid grids were employed,
composed of tetrahedral, prismatic and pyramidical elements, mainly to resolve effectively the severe
anisotropy of boundary layer in viscous fluid flows [Sor03, Lygl4a, Lygl15]. Unlike flow simulations, this
type of mesh discretized with a node-centered finite-volume scheme is rarely used in radiative heat
transfer predictions comparing to tetrahedral grids along with a cell-centered method [Kim88, Bae98b,
Mur98c, Kim01, Sal04, Kim10]; nevertheless, the examined in this study numerical runs with such
meshes derived equally accurate solutions [Lygl12b, Lygl13c]. Moreover, their capability to include highly
stretched elements at selected areas of the examined grid, e.g., at boundary regions with large radiative
intensity gradients, resulted in utilization of relatively coarser grids and consequently in considerable
computational savings, maintaining though the desired accuracy [Lygl2b].

Fluid flow numerical results, obtained by the implementation of RANS PDE's along with appropriate
turbulence models, namely, k-¢ (in three versions), k~w and SST [Lau74, Saf74, Koo00, Men0O3a, Lygl1],
compare sufficiently well with the corresponding experimental data and computational results of
reference solvers, indicating the potential of the proposed methodology for such simulations. The
previous statement derives mainly from the satisfactory solutions extracted for the more complicated test
cases performed, concerning fully turbulent flow over aircrafts (DLR-F6 and CRM) with the presence of
considerable flow discontinuities, although coarse meshes were utilized [Lygl3a, Lyglda, Lyglde,
Lygl5]. The incorporated high-order accurate spatial scheme coupled with the slope limiters of Van
Albada-Van Leer, Min-mod and Barth-Jespersen [VanAS82, Swe84, Bar89, Bar92, BlaOl], appears to
enhance the present algorithm with improved accuracy by alleviating sufficiently numerical diffusion as
well as with the capability to utilize relatively coarse grids along with significant computational economy;
depending on the test case, the appropriate limiting function should be selected, e.g. min-mod limiter is
not appropriate for problems involving sharp shock waves, due to its smoothing attitude. Although the
nodal-averaging scheme [Bla01], employed for the computation of flow and turbulence model variables'
gradients at control volumes' interfaces, is assumed generally less accurate than the element-based one,
using edge-dual volumes [Kal96, Kal05a], it derived equally accurate but much more computationally
efficient solutions, utilizing the edge-based data structure of the algorithm [Lygl4c]. It is this structure
that allows nodal-averaging scheme, unlike the element-based method, to be applied to the agglomerated
grids also, composed of polyhedral elements for the implementation of the developed multigrid
methodology [Lygl4c]. Implicit schemes, such as those incorporated in the proposed algorithm
employing the Jacobi or the Gauss-Seidel algorithm [Ven95, Kou03], are considered more effective in
terms of efficiency, comparing to the corresponding explicit ones, as they allow for the utilization of
larger CFL numbers; nevertheless, considering the available finite computing resources, the included
second-order temporal accurate four-stage Runge-Kutta (RK(4)) method [Lal88a] revealed to be a
valuable tool, due to its reduced requirements for memory storage and communication load in a parallel
computational environment.

Similarly to fluid flow, radiative heat transfer numerical results, considering their prediction in
general enclosures through absorbing, emitting and isotropically or anisotropically scattering gray media,
obtained either with the time-dependent or steady (non time-dependent) RTE, agree sufficiently well with
the exact solutions or computed ones of reference solvers. The incorporated second-order accurate spatial
scheme with or without limiting function (Van Albada-Van Leer or Min-mod) [VanAS82, Swe84,
Lygl3c], was proved to be an important enhancement of the algorithm, alleviating sufficiently false
scattering [Cha93, Coe02, Cap10], especially at boundary surfaces' regions with large radiative intensity
gradients, and consequently improving the accuracy of the final steady-state solution even in very coarse
spatial resolutions [Lygl3b, Lygl3c]. Among the developed second-order accurate schemes (simple or
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together with Van Albada-Van Leer or Min-mod limiter), the unlimited former one appeared to produce a
flux over- or under-estimation (depending on the test case), due to the unbounded reconstructed values of
radiative intensity, while no significant difference was distinguished between the other two limited ones
[Lygl3b, Lygl3c]. The main drawback of these schemes is the requirement for increased computational
effort comparing to the first-order one; it can be assumed relatively trivial, considering the resulting
accuracy improvement, especially for coarse grids. The non time-dependent RTE, solved with iterative
approximations and a second-order scheme appeared to lead to spurious oscillations in some test cases
[Lygl3c]; the remedy to this shortcoming revealed to be the employment of the time-dependent RTE
[Hunl1] along with the second-order accurate in time four-stage Runge-Kutta (RK(4)) method [Lal88a,
Lygl3c]. Any overhang conditions, caused by the utilization of unstructured grids and the division of
directional domain in finite solid control angles [Cha94a, KimO1], were sufficiently mitigated by the
incorporated methods, namely, the bold approximation and the pixelation method [Lygl3b]. The latter
approach, being of course more accurate, is implemented by most of the researchers only at solid control
angles-control volume faces, for which significant overhang is exhibited [Mur98a, Kim01, KimO05b,
Lygl3c]. Unlike this common practice, in this study it is employed to the total number of nodes and
control angles in a pre-computation stage, considering that the values of method's coefficients, as well as
those of directional weights, do not change during the solution of the RTE; in that way a reduced
computational cost per iteration is succeeded [Lygl3b, Lygl3c]. Implicit treatment of boundary
conditions is another feature of the proposed methodology; besides being a technique more close to those
employed in CFD than the explicit approach, e.g. in free-slip, inlet and outlet surfaces, it avoids the
requirement of the latter one for a priori finer computational grids at these regions, thus resulting in
significant computational savings [Lygl3c]. In addition, it allows for the implementation of mirroring
boundary conditions, resembling specularly reflecting walls, and consequently for the utilization of
smaller grids with significantly reduced numbers of DoF's. A drawback of this methodology is that the
mirroring direction has to be selected to coincide with a discrete one; in order to implement it on more
directions, an interpolation technique should be employed [Liu00]. Nevertheless, as the symmetry planes
are usually designed parallel to the axes’ planes (as in this work), this shortcoming appears to be
relatively unimportant [Lygl3c].

Significant contribution to the accuracy of the final steady-state solutions of both flow and radiative
heat transfer problems was obtained from the implementation of the developed h-refinement methodology,
enriching with more DoF's specific grid regions, selected either automatically or by the user [Lygl3c,
Lygl4a, Lygl5]. For example, although relatively coarse initial grids were used in test cases concerning
flow over the CRM aircraft and radiative heat transfer in a hexahedral enclosure with trapezoidal bases,
the applied grid adaptation method resulted in accurate predictions of the surface pressure and
dimensionless incident radiative heat flux distributions, respectively [Lygl4a, Lygl5]. As such, h-
refinement was demonstrated to be a viable tool in test cases where important amounts of numerical
diffusion and false scattering in flow and radiative heat transfer predictions, respectively, are important,
or in problems faced first time for which no previous knowledge exists about the required spatial
resolution [Loh92, Kal96, Lygl3c, Lyglda, Lygl5]. Besides the accuracy improvement it entails, it
results in significant computational savings, as it avoids the construction of a locally or globally finer
mesh from the very beginning, being implemented during the solution procedure; it requires a few
minutes to refine locally a grid with approximately 4,500,000 nodes, producing a new mesh with about
6,500,000 nodes (CRM WBHT aircraft) [Lygl4a, Lygl5].

Besides the effectiveness of the present methodology in terms of accuracy, the obtained numerical
results demonstrated its satisfactory efficiency, derived by the incorporated acceleration techniques,
namely, the edge-based data structure along with the local time-stepping scheme, the parallelization
strategy based on the domain decomposition approach and MPI library functions, and the agglomeration
multigrid method, employed in isotropic or directional (semi- or full-coarsening) spatial formulation for
the flow solver and in spatial, angular or nested spatial/angular one for radiative heat transfer algorithm
[Lygl4b, Lygldc, Lyglad, Lygl4f, Lygl4dg]. Although unstructured grids entail significant geometric
flexibility, they call for increased computational effort and memory requirements, comparing to structured
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ones; therefore the utilization of a more sophisticated data structure with indirect addressing, such as the
edge-based one employed with the present algorithm, becomes a prerequisite [Lygl2b]. In addition,
parallel processing reduced considerably the required wall-clock computation time, especially in large-
scale simulations including grids with millions of DoF's, such as in the test cases of DLR-F6 and CRM
aircrafts [Lygl3a, Lygl4a, Lyglde, Lygl5]. Considering the scalability results of the developed
parallelization strategy for both the flow and radiative heat transfer solver, a linear relation between
speed-up and number of employed processors was identified up to approximately sixteen processors; a
deviation between the ideal and the current computations began at this point, caused by the increase of
communication load with the increase of utilized processors [Lygl2b]. Nevertheless, it is assumed an
acceptable deviation, which can be further improved if the proposed methodology is applied to larger
scale problems with more DoF's [Lyg12b].

The last method, which contributed significantly to the improvement of the proposed algorithm's
computational performance, is the parallel agglomeration multigrid scheme [Nisl1, Lygl4b, Lygl4c,
Lygl4d, Lygl4f, Lygldg]. For the flow solver, it was employed in an isotropic or directional (semi- or
full-coarsening) formulation, depending on the type of flow (inviscid or viscous) and consequently on the
type of the examined grid (tetrahedral or hybrid); a maximum temporal speed-up coefficient equal to ~9.0
was obtained for an inviscid flow (isotropic fusion), while for laminar and turbulent ones ~7.5 and ~5.0
rates were achieved respectively (directional full-coarsening agglomeration), indicating the potential of
this methodology for considerable acceleration of solution procedure [Lygl4c]. Based on speed-up results
extracted from the DLR-F6 WB test case, the superiority of full-coarsening directional agglomeration
[Nisl1, Lygl4a, Lygl5] was proved, comparing to this of semi-coarsening one [Mav97, Mav9§];
moreover, the higher contribution by the combined FMG-FAS strategy was revealed, comparing to only
FAS one, although the first one remains susceptible to be confined in local minima or even lead solution
to failure. For radiative heat transfer simulations, the aforementioned methodology was extended to an
angular and a combined (nested) spatial/angular version, enhancing the corresponding solver with further
acceleration capabilities [Lygl4b, Lygl4f, Lygl4g]; a maximum temporal speed-up coefficient equal to
~4.3 was succeeded for the spatial scheme, while for angular and nested ones ~3.3 and ~8.9 rates were
obtained respectively (all of them extracted from test cases considering purely scattering media). Based
on the examined results, the acceleration, derived by the developed multigrid schemes (spatial, angular
and combined spatial/angular), was revealed to become higher with the increase of radiation exchange
between different solid control angles; this interaction is usually a result of the combination of purely
scattering media, fully reflecting surfaces, and symmetry boundary conditions [Lygl4g]. Unlike them, for
simulations concerning only absorbing media and black walls, the spatial agglomeration multigrid scheme
should be the preferred choice. Independently of the employed solver (flow or radiative heat transfer), the
acceleration obtained by the developed multigrid methodology increases with the corresponding increase
to the mesh size; the greater the number of DoF's, the greater is the acceleration gained [Lygl4g]. As the
spatial agglomeration is performed separately in each partition (in which the initial grid is divided for
parallel processing), the acceleration coefficients derived by the proposed multigrid scheme vary for
different numbers of sub-domains, for the same test case. Based on the radiative heat transfer cases
encountered in this study, an acceleration was observed with the increase of the number of sub-grids,
instead of an expected decceleration due to a processor load imbalance; this improvement is assumed to
be a result of the effective treatment of ghost nodes at overlapping regions during fusion procedure,
deriving actually virtual ghost supernodes [Lygl4f].

To conclude, the obtained results by the developed numerical approach (Galatea code) against three-
and quasi-three-dimensional benchmark test cases revealed its capability for both compressible fluid flow
and radiative heat transfer simulations in terms of accuracy, geometric flexibility and computational
efficiency.

9.2. Contributions
Considering similar studies available in open literature, the following original contributions have
been introduced in this thesis:
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e A combination of a parallel node-centered finite-volume method with three-dimensional
unstructured hybrid grids for radiative heat transfer prediction. In three-dimensional runs, a
priori greater numerical diffusion exists, comparing to two-dimensional ones; a remedy to this
shortcoming appears to be the utilization of highly stretched elements at the region of interest, e.g.,
at boundary surfaces from which the desired distribution of incident radiative heat flux is obtained
[Lygl2b]. Unlike CFD, cell-centered discretized tetrahedral grids are usually employed in a serial
way for radiation simulations [Kim88, Bae98b, Mur98c, Kim01, Sal04, Kim10]; nevertheless, the
proposed methodology derives equally accurate results in an acceptable computational time due to
parallelization [Lygl2a, Lyg12b].

e A second-order accurate spatial scheme jointed or not with the slope limiter of Van Albada-
Van Leer or Min-mod, improving accuracy of radiative heat transfer finite-volume solutions,
especially at boundary surfaces' regions with large radiative intensity gradients. Unlike CFD,
such methods aren't frequently employed in radiation simulations, except for a few similar studies
concerning though unlimited second-order schemes with a cell-centered finite-volume method
[Cap10] or bounded ones with DOM [Coe02]. Among the developed higher-order schemes (simple
or coupled with Van Albada-Van Leer or Min-mod limiter), the unlimited first one appears to
produce a flux over- or under-estimation (depending on the test case) due to the unbounded
reconstructed values of radiative intensity, while no significant differences are observed between
the other two more accurate ones incorporating limiting functions [Lyg13b, Lygl3c].

e Implicit treatment of diffusively and specularly reflecting surfaces' boundary conditions.
According to the common practice, the wall boundary conditions of a general enclosure are
imposed explicitly, setting radiative intensity of boundary nodes equal to the sum of their
blackbody intensity, due to their temperature and the reflected one by the incoming rays [Bae98b,
Rai99, Kim01, Kim05]; nevertheless, implicit approach developed in this study, besides resembling
corresponding CFD techniques for free-slip, inlet and outlet surfaces, contributing to flux balances
of boundary nodes, it avoids the requirement of the explicit one for a priori finer computational
grids at these areas, resulting in significant computational savings [Lygl3b, Lygl3c]. Based on this
approach, mirroring boundary conditions, resembling specularly reflecting walls, can be
implemented as well. Unlike CFD, such boundaries aren't commonly applied in radiative heat
transfer computations, except for a few studies, such as this of Liu et al. [Liu00], although in that
way even coarser spatial resolutions can be used. For example, in axisymmetric test cases only the
half computational field can be discretized [Lygl3c].

e A grid adaptation method, employing h-refinement technique to improve accuracy of
radiative heat transfer solution at specific regions of the examined mesh. Although such
methodologies, adapting grids with the addition of more DoF's [Kal96, Lygl3c, Lygl4a, Lygl5] or
with their redistribution [Loh92, Kha00], are commonly applied in flow computations, they aren't
frequently met in radiation ones. However, h-refinement approach developed in this study is
revealed to be a viable tool alleviating significantly false scattering and consequently increasing
accuracy of the final radiation prediction; it enriches automatically selected or user defined regions
of the grid with more DoF's (nodes). Besides accuracy improvement, it results in significant
computational savings, as it is implemented during the solution procedure, avoiding the
construction of a locally or globally finer mesh from the begining [Lygl3a].

e A parallel spatial agglomeration multigrid method enhancing both flow and radiative heat
transfer algorithms with improved computational performance. Although such a methodology
is frequently incorporated in CFD algorithms [Mav94, Mav96, Mav97, Mav98, Car00, Bla01,
Sor03, Nis10, Nisl1, Nis13, Lygl4b, Lygl4c, Lygldd, Lygl4f, Lygl4g], this is not the case for
radiative heat transfer ones; according to the presented results in Chapters 7 and 8 their efficiency
can be considerably improved with its implementation. The proposed scheme considers the
implementation of FAS (nested in FMG procedure) on successively coarser spatial resolutions,
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derived from the finest initial sub-grids (in which the whole initial mesh has been decomposed for
parallel processing) through the isotropic or directional (full- or semi-coarsening) fusion of their
adjacent control volumes in a way similar to advancing front technique [Lygl4f]. The merging
strategy is based on the methodology reported by Nishikawa et al. [Nis11], which allows for full-
coarsening directional agglomeration of adjacent control cells on hybrid grids, preserving
simultaneously the topology of the initial finest mesh; therefore, it is assumed to be more
computationally efficient than the semi-coarsening approach introduced by Mavriplis [Mav97],
which limits the fusion of implicit lines bottom nodes [Mav97, Lam04]. The previous state is
confirmed by the speed-up results obtained for the CRM test case, encountered in this study.
Further features have been included to the proposed algorithm, differentiating it from this of
Nishikawa et al. [Nis10, Nis11, Nis13] as follows [Lygl4c, Lygl4f]: a) Agglomeration is extended
across partition boundaries creating virtual ghost supernodes at overlapping regions according to
the fusion of their corresponding core nodes at neighbouring sub-domains. b) Considering the
previous characteristic, an implicit line can belong to different sub-grids, allowing for the
utilization of a general partitioning application, such as METIS. ¢) Another limitation is imposed to
preserve the topology of the initial mesh up to the coarsest generated one; after the first
agglomeration process the nodes of the lowest prismatic layer are not allowed to be merged with
the nodes of the next layer, while the same constraint is applied to the nodes of the second
prismatic layer after the second process, and so forth. d) Since the line-agglomeration is
accomplished, the isotropic fusion is performed similarly to the advancing front technique concept,
assuming as initial seed nodes not the rest boundary ones, but those touched by the agglomeration
front, which are actually the adjacent to the prismatic region tetrahedral nodes. ¢) In case of laminar
or turbulent viscous flow, a distance-based scheme is employed for the prolongation of variables'
corrections from the coarser to the finer grid; unlike other sophisticated types of prolongation (not
simple point injected), it requires no more topological information than the edge-based data
structure employed for flux computation on coarse resolutions.

A parallel angular agglomeration multigrid scheme for radiative heat transfer simulations. A
noticable contribution of this thesis concerns the extension of spatial agglomeration multigrid
method in angular direction for radiation computations. In the same to spatial scheme way, the RTE
is approximated with FAS on successively coarser angular resolutions, derived from the initial
finest one via the fusion of neighbouring solid control angles [Lygl4b, Lygl4f, Lygl4g]. Besides
similarities, angular agglomeration appears to be much simpler, mainly due to the absence of the
large number of limitations of the spatial scheme. Based on the performed simulations' results, the
acceleration derived by this method is revealed to become higher with the increase of radiation
exchange between different solid control angles; this interaction is usually a result of the
combination of purely scattering media, fully reflecting surfaces, and symmetry boundary
conditions [Lygl4f]. Although this methodology doesn't contribute in general so significantly to
algorithm's efficiency, depending on the examined problem it can derive equally accelerated to the
spatial one solutions; in the encountered test case considering radiative heat transfer in a cubic
enclosure with reflecting walls (¢,,=0.7), and an absorbing, emitting and anisotropically scattering
gray medium (k,=0 m”, o,=1 m™) almost the same speed-up coefficient was obtained by a three-
level angular and a three-level spatial scheme [Lygl4g].

An extension of previous methods in a combined (nested) spatial/angular agglomeration
multigrid scheme for radiation problems. The last novelty developed in this study concerns a
nested combination of the aforementioned (spatial and angular) agglomeration multigrid schemes,
according to which a complete angular FAS cycle is accomplished at each level of the spatial
multigrid methodology [Lygl4b, Lygl4f, Lygl4g]. Similarly to the angular multigrid version, it
achieves better acceleration rates in test cases with increased radiation exchange between different
solid control angles. Considering the simulations' results, it is revealed to be capable to succeed
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even two or three times higher acceleration, comparing to only spatial or only angular multigrid
method respectively [Lygl4g].

9.3. Ongoing work

Ongoing work concerns the incorporation of the developed spatial agglomeration procedure (slightly
modified) in a mesh deformation algorithm using Radial Basis Functions (RBF's), in order to improve its
computational performance by a reduced surface point selection. Although RBF-based mesh motion is
assumed in general to be a very robust method producing high quality deformed grids, it appears to call
for excessive computational effort and memory storage, especially in large-scale problems including
meshes with millions or tens of millions nodes, as it requires the solution of an equation system with
dimensions Ng x N, where N, denotes the number of surface nodes, while &, the number of volume

mesh nodes to be moved [Renl0]. A remedy to this shortcoming is revealed to be the proposed
agglomeration method, employed though only to boundary surfaces, in order to reduce successively the
number of their nodes; in the work of Rendall and Allen [Renl10] an error function is utilized for this
point selection instead. In that way the dimensions of the aforementioned equation system are reduced
and the volume mesh motion depends on a smaller number of surface points; as a result, efficiency of the
algorithm is considerably improved. The new positions of the surface nodes of the initial (non-
agglomerated) grid are finally obtained implementing RBF's interpolation. Figure 9.1 includes an
example of the described methodology, concerning parabolic movement of the CRM (WB) aircraft wing
in upper direction; more specifically the agglomerated surface nodes (yellow coloured) and
aircraft/symmetry surface grid (black coloured) prior and after mesh deformation respectively are
illustrated.

Figure 9.1: Agglomerated surface nodes (coloured yellow) and CRM aircraft/symmetry surface grid (coloured
black) prior and after mesh deformation respectively.

9.4. Future developments

Besides the previously described ongoing work, future extensions of the presented numerical
methodology include the following:
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Incorporation of the developed radiative heat transfer algorithm to the corresponding compressible
fluid flow one, in order coupled compressible fluid flow/radiative heat transfer simulations to be
encountered [Kim96, Ko08].

Implementation of Arbitrary Lagrangian-Eulerian (ALE) approach to allow for the solution of fluid
dynamics problems with moving mesh and boundaries [Koo00, Zha03, Ahn06]; combining this
method with the aforementioned mesh deformation algorithm using RBF's, aeroelasticity analysis
and Fluid-Structure Interaction (FSI) simulations can be performed [Bra09].

Modelling of turbulence with the LES approach; according to this method the contributions of
large, energy-carrying, eddies are computed straightforward with the numerical scheme, while the
small ones are obtained with a Sub-Grid Scale (SGS) model [Sma63, Dea70, Bla01].

Implementation of preconditioning methodology for test cases involving low Mach number flows,
in order the stiff attitude of convective terms to be overcome [Bla01].

Enhancement of flow and radiative heat transfer solvers with the capability of unsteady/transient
simulations [K0o00, Tan02, Cha03, Tai03].

Coupling of the developed radiative heat transfer algorithm with an appropriate model, e.g.,
WSGGM (Weighted Sum of Gray Gases Model) or SLW (Spectral Line-based Weighted sum of
gray gases model), to account for non-gray media [Tri04b].

Incorporation of a more sophisticated and accurate scheme than Legendre polynomials to compute
scattering phase functions, e.g., Mie theory [Tri04a, Tri08].

Examination of different combinations of the proposed spatial and angular agglomeration multigrid
schemes, besides the nested one presented in this study [Lygl4b, Lygl4f, Lygl4g].
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Appendix A

Appendix A: Jacobian matrix decomposition

For the implementation of the Roe’s approximate Riemann problem solver the Jacobian matrix of the

convective flux vector H™ has to be computed; it is analyzed via the eigenvalue decomposition as
follows [Hir90, Lan98]

A=TAT" (A1)

where A is a x5 diagonal matrix, whose entries are the eigenvalues of the Jacobian matrix A4, defined
as [Hir90]

il, v, iV, | .7, + o)

0, =i} (A2)

A:daig?n

while 7 is a matrix, including the eigenvectors of the Jacobian matrix 4 [Hir90]

[ A, i, i, C C
nu nu—np nau+np Clu+cn) Cu-cn,)
T ’?xv-'-ﬁfp ) ﬁyvA ﬁsz—ﬁxp C(v+cﬁAy) C(v—cﬁAy) (A3)
nw—np AW+np nw Cw+cn,)) C(w—cn,)
J2 % J2 . .
Tﬁx'f'pX 7ﬁv+pY Tﬁz'i‘pZ C(H+CV;1) C(H—cVn)
-l
and I is its inverse matrix [Hir90]
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>

where u, v and w are the components of velocity V ,i= (ﬁx,ﬁy,ﬁ:) 1s the unit normal vector and I}” =V-n

is the value of corresponding velocity. The terms C, H, X, Y, Z and B are auxiliary values defined as:



Jacobian matrix decomposition

c=F*

2c

e
H=—+

2 -1
X=nv-nw (A.5)
Y=nw-nu
Z=nu-ny

72

poy -V

Depending on the eigenvalue 4, the Jacobian matrix for the Roe’s approximate Riemann solver is
calculated as [Hir90]

(A.6)

while the eigenvalues 4 as:

A =max(4,0),i=1,.5
A" =min(4,0), i =1,..5

(A.7)



Appendix B

Appendix B: Newton linearization of the viscous fluxes

B.1. Flow model

The flow model's viscous fluxes at the midpoint of an edge PQ with a vector 7,, = (n o Tpp.y o Tt ,,sz)

of the interface area of adjacent control volumes of P and Q are defined as
- . - . = - . T
Oy =npp Dy, +11pp Dy, + 1, Py . = (<D1,(D2,CD3,®4,CD5) (B.1)

where @, ®,,®,,®,, 0, are described as follows

CD] =0 (B.2)
q)Z nPQ \Txx + nPQ,yTxy + nPQ,_ sz
2 ou oOv ow ou oOv ou ow
=My, SH 2 A +nPQyi —+— +nPQZi(—+—)
“|3Re\ ox oy oz " Reloy ox “Re\ oz Ox (B.3)
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11 12 13 21 x 22 a 23 82 31 ax 32 ay 33 aZ
D, = Mpo Ty tMpp T+, T
ou ou ou ov ov ov ow ow ow (B.4)
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31

while their coefficients ay;, by, ¢, d; and e; are computed as:

_4u I S i

11 3 Re PQ,x 12 Re PO,y 13 Re PO 21 Re PO,y
——gin =0 a =in a,=0 a,-= gin

2 3 Re PO.x 23 31 Re PO,z 32 33 3 Re PO.x
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Flow model

Y7
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B.1.1. Linearization based on the edge-dual volume method

In case of employing the edge-dual volume-based methodology for the computation of the required
derivatives, equations (B.3) - (B.6) are transformed as [Kal96, Lygl4a, Lygl5]

| T 1~ I
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e e e

I I I
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where n, accounts for the components of the normal vector to each face k£ with nodes L, of the PQ edge-

dual volume. Based on these transformations, equation (B.1) is redefined as:

0 0 0 0 0 |
0 ialjnxj,k ia2jnxj,k iaS/’nxj,k O
— L — L — L T 5]
J=1 k J=1 k Jj=1 k P,
L e k|0 ibljnx_,,k injnxj,k ib3jnxj,k 0 u, )
o = — = L = L ~ L v |=— M,V
PO Ve;; J=1 k J=1 k J=1 k 1 Ve ;; k"1 (B.12)
3¢ N, 3,Cy N, g 3.y, w
0 J iy 7", 0
2L XL & ;
sdn., ddyn , Sdyn , Zen .|
0 iy, 7", 7% 7',
XL X A, A

k J=1 k

Considering the new variables’ vector V', the viscous flux at the midpoint of an edge PQ at the time step
n+1 is written as:

m_ L

T Vis ,n+ -\ Vis,n 1 v _'
P =Dy -2 D M,V (B.13)

e k=1 [=1

The last equation has to be further analyzed to include the conservative variables’ vector of the flow

—

equations W ; utilizing the following equations (B.14) and (B.15), which derive the appropriate

transformation vector Q , the final equation (B.16) is obtained:
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v=w, v=lz oyl
1 Wl
. (B.14)
y W W WA,
4 ’ 5
1 1 2’VVlz
. oY - . -
oV = (a_”j OW = QW (B.15)
i 1 0 0 0 0 |
1
—K@ — 0 0 0
W /4
) W L S
0= W, /4 (B.16)
A A L
/4 4
W w;? we  w:oowe oW

Thus, equation (B.13) for the examined edge PQ is written in the following formulation, deriving the

. . . . n n n . .
required per Newton linearized matrices C J» Qo , C «di » Dased on the values of conservative variables at

the end-points P and Q, and the rest nodes R of the corresponding edge-dual volume as well:

1 m Lk

g™ = g+ 2, 2 My 00V, B.17

B.1.2. Linearization based on the nodal-averaging scheme
If the nodal-averaging method (equations (2.104)-(2.106)) is selected, the gradients at the middle of
an edge PQ of the grid are evaluated as follows [Bla01, Lygl4a, Lygl5]

oU =
=)
PO

while omitting the directional derivative, the previous equation becomes:

<3

(v0), =(vz7>w{(w7>,,g-

(VU),, =(VO),, =%((vu)[) +(VU)Q) (B.19)

Utilizing equation (2.91), according to which the gradients of the flow variables are obtained at each
computational node, the previous relation for a variable u; is further transformed as
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P

11 1 1
E{V_( z _(uiQ+uiT)nQT,+ Z )”iQ”aur/‘H:

0 \T<K,(0) (7,0, Ar

1 1 1 1 (B.20)
e n, +—— n, |4, +| — n, +—— n, . |4, +
[41/ RE%P) PR, 2Vp (Rmeéchﬁl') JJ P [ Z 0T, Z ./} 0

P 4VQ Teky(Q) 2VQ (7,,€0C,Ar)

ou 1{ ou, Ou, 1|1 1
irg _ L Op L0 = —( Z _(”m +”,-R)”p1e, + z uipnou,jJ +
axj 2 axj ﬁxj 2 V ReK, (P) 2 (R,, €0C,T)

Dy, D,

1
Z PR Up + Z nQT/. Ur

4V ReK, (P) 0 TeKy(0)

(%]

POuj
where P and Q are the end-points of the examined edge PQ, while R and T are their neighbouring nodes,

connected with an edge, respectively. Considering the previous expression, equations (B.3) - (B.6) are
described as

ou ou ou ov ov ov ow ow ow

q)z:an_x+alzg+alzg+azla'}_azza"—azzg—’_asla‘i'awg"_aﬂg:
3 3 5W
Z @, 8 2j Z a4, =
J=1 J=1 xj J=1 a'xj
3 X (B.21)
>a (D u, +Dyu +EPQW) > a, (D v, + D,V +E,,QW)
j=1 Jj=1
3
2a, (DF?J'WP + Dy W, +EPQw')
j=1
®3:Z3:b (Dyu, + Doy +E,p, )+ ib (Dv, +Dyvy +E,py, )+
o a (B.22)
Db, (D,w, + Dyw, +E,,,. )
j=1
q>4=i (D u, +Dyu +EPQW) i (D v, +D,v +EPQV)
o0 - (B.23)
203/ (D W, +DQ,W +EPQW/.)
j=1
3 3
®,=>d, (Dyu, +Dyu, +E,,, )+ 2.d,, (DP v, +Dyv, +EPQW)+
- i (B.24)
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while equation (B.1) is per Newton linearized as:

[0 0 0 0 0 |[p,]
|9 @Dy @Dy @Dy 0w,
Gy, =20 b,D, byDy bD, 0 v, |+
j=1
|0 eDy oDy Dy 0w,
10 4,0, 4,0, d,D, eD,]||T, |
W,
) o - (B29)
0 0 0 0 0 e, 0 0 0 0 0
10 @Dy @Dy ayDy 0wy 10 ayEy,  ay B, ayE,, 0
2|0 BDy byDy byDy O vy (+310 B Eyy, by Ey, bEy, 0
j=1 j=1
10 Dy Dy Dy O |y | O e By 6 6By, 0
|0 d;Dy d;Dy dy;Dy eDy || T, | 0 dyE, B, dyE, € By, |
A;IQ ﬁ;’g

Finally, the transformation matrix Q is utilized similarly to the previous section, in order equation (B.25)
to include conservative variables’ vector as

3 3 3
St =0+ Y M ,0,0W, + > M,0,6W,+ ) E},, (B.26)
j=1 j=l

j=l
where the matrix EI',Q s includes also the transformation matrix 0.

B.2. Turbulence models

For the diffusive terms of the incorporated turbulence models, the same procedure is followed; the
viscous fluxes at the midpoint of an edge PQ are defined similarly to these of the flow PDE's (equations
(B.2)-(B.6)) as

Ok ok ok
® =a —+a —+a —
ox 0oy oz

op  Op . 0
®,=b Ly Ly L

Ox oy 0z

(B.27)

where the variable ¢ corresponds to ¢ if k-¢ model is employed and to w if k- or SST model is

implemented instead. The coefficients in the previous equation &, and bY‘ are computed for k-¢ model
J -

as

(B.28)
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while for k-w and SST models as:

N
Il

Y7
x; (g-i-ﬂtakjnPQ,x/
(B.29)

)7
b T + to-a) n X
X; (Re /'l j PO, ;

B.2.1. Linearization based on the edge-dual volume method
If the edge-dual volume-based methodology is implemented for the computation of the required

derivatives, equation (B.27) is defined similarly to equations (B.8)-(B.11) as

Lok &1 1 oo %
D, = —= — | kny,ds =— L
' ;‘/a, ;a’“VeIn’S 2 L,
3 5‘ o b (B.30)
(0 ~ 4 - X Ux Lk
®,=)b —=)b —|on,ds=— e
. ;x/axl ]ZEYVHI(P",S ;;‘,” L

while considering additionally the corresponding transformation vector, its final linearized formulation is

the following:

3 ax]nx/,k 1
i > . 0 — 0
\13 1 C =1 p ’0
PQ __ZZ J I { 1 1:| (B31)
Vo b n, 0 1 || oo

o k=1 i=1 0 23: 1
L, £,

J=1

B.2.2. Linearization based on the nodal-averaging scheme
In case the nodal-averaging method is used for the evaluation of gradients, the diffusive fluxes of the

incorporated turbulence models are linearized in the same way to equation (B.25) as:

— 0

- 3 ax DP_/' 0 P P k
0> I N et
j=1 xR 0o — PrPr
Py
1 (B.32)
— 0
23: ax,DQf O pQ {kaQ:| Z?’: a“'/Et‘PQ"j 0
|+
j=1 0 bx/DQ/ O L ,DQ(DQ Jj=1 O bx/Et,PQuj
Po
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Appendix C: Newton linearization of the free-slip convective fluxes

The free-slip convective flux vector, required at inviscid solid wall or symmetry boundary surfaces,
is computed as follows

— T
H/’ree,vlip = (O pnout,x pnout,y pnout,z 0) (C 1)

while its diagonal contribution for the point-implicit scheme is defined by implementing the chain rule as

[op op op op op |
op Opu Opv OJOpw OpE

- q 6_u ou ou ou ou

00 0 0 O - -
op Opu Opv Opw OpE
Iy r7 e O 0 0 0 nmnx p p p p p
aH freeslip aH freeslip a U ' 6\/ av av a \% 0 v
== ——=/0 0 0 0 n, |'|— — — (C.2)
ow ou ow Y11 0p Opu Opv Opw OpE
0000 n,
M=l low ow  ow  ow  Ow
00 0 0 O - - T T —

- - |0p Opu Opv Opw OpE

» P P P P
| Op Opu Opv Opw OpFE |

where 7 is the conservative variables’ vector and U  is the primitive variables’ vector. Thus, the free-
slip contribution becomes as

0 0 0 0 0

a_I)naut X ap nout X ap nout x ap nout x a_pnout X

op © 7 Opu T Opv T Opw 7 OpE T
OH ;s
w = a_pn(mt ap nout y ap nnut ) ap nuut ) a_pn()ut ) (C3)

ow op ™" opu T opv " Spw " OpE
a_l?noul z ap noul z ap noul z ap noul z a_lynoul z
op 77 Opu T Opv T Opw T OpE T
0 0 0 0 0 |

where 7, :(nom’x,nvut’y,nom‘z) is the normal to the boundary face vector. Considering equation (2.10)

transformed in the following formulation (C.4)

p- (y—l)pE—%[w (o) +(ow) ] (C4)

the final free-slip diagonal contribution can be calculated as:
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I 0 0 0 0 0
-1
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