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Abstract 

In this study the development of a methodology for the numerical solution of steady-state compressible 
fluid flow and radiative heat transfer problems is reported. For the discretization of the computational 
domains, three-dimensional unstructured hybrid grids with tetrahedral, prismatic and pyramidical 
elements are employed along with a node-centered finite-volume scheme. Flow modelling is achieved via 
the Reynolds-Averaged Navier-Stokes (RANS) equations, along with appropriate two-equation 
turbulence models, namely, k-ε (in three versions), k-ω and SST. For the computation of the inviscid 
fluxes an upwind method, applying Roe's approximate Riemann solver, is implemented, together with a 
higher-order accurate spatial scheme, while for the viscous ones the required gradients are evaluated with 
an element-based (edge-dual volume) or a nodal-averaging approach. The time advancement of the 
aforementioned equations is achieved with either an explicit scheme, applying a second-order temporal 
accurate four-stage Runge-Kutta (RK(4)) method, or an implicit one, implementing the Jacobi or the 
Gauss-Seidel algorithm. For the modelling of radiative heat transfer in general enclosures through 
absorbing, emitting, and either isotropically or anisotropically scattering gray media, the time-dependent 
or steady (non time-dependent) Radiative Transfer Equation (RTE) is employed. Similarly to fluid flow, a 
second-order accurate spatial scheme along with appropriate slope limiters is applied to increase accuracy 
of the solution, especially at the boundary regions, while time integration is obtained with simple iterative 
approximations or the same to flow model explicit scheme. In order to increase the efficiency of the 
proposed methodology additional acceleration techniques are used, namely, an edge-based data structure, 
a parallelization strategy based on the domain decomposition approach and MPI library functions, and an 
agglomeration multigrid method employed in isotropic or directional formulation for the flow solver and 
in spatial, angular or nested spatial/angular one for radiative heat transfer algorithm. Finally, the h-
refinement technique is incorporated to increase accuracy at pre-selected regions of the examined grid, by 
enriching them with more nodes during the solution procedure; as a result, the generation of dense meshes 
from the very beginning is avoided. Based on the aforementioned methods, an academic CFD code, 
named Galatea, was developed; it has been validated against three- and quasi-three-dimensional 
benchmark test cases presented in the open literature, while its results have been compared with wind 
tunnel experimental data as well as results obtained by reference numerical solutions, confirming its 
capability to effectively perform such simulations in terms of accuracy, geometric flexibility and 
computational efficiency. 

 

Keywords: Compressible flow, RANS equations, turbulence modelling, radiative heat transfer, three-
dimensional unstructured hybrid grids, node-centered finite-volume scheme, parallel processing, 
agglomeration multigrid method, FAS, FMG, h-refinement. 
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Περίληψη  

(Extended Abstract in Greek) 

Σκοπός της παρούσας Διδακτορικής Διατριβής ήταν η ανάπτυξη μεθοδολογίας για την αριθμητική 
επίλυση προβλημάτων μόνιμης ροής συμπιεστού ρευστού και μετάδοσης θερμότητας μέσω ακτινοβολίας. 
Η υπόψη μέθοδος δύναται να χρησιμοποιηθεί σε ένα ευρύ φάσμα εφαρμογών τόσο σε ακαδημαϊκό όσο 
και σε βιομηχανικό επίπεδο, π.χ., σε θαλάμους καύσης, βιομηχανικούς φούρνους, εσωτερική ή εξωτερική 
αεροδυναμική ροή, κινητήρες τύπου ramjet, κ.λπ.  

Πιο συγκεκριμένα, αναπτύχθηκε μεθοδολογία τύπου χρονοπροέλασης για την προσομοίωση 
ατριβούς και συνεκτικής στρωτής ή τυρβώδους μόνιμης συμπιεστής ροής. Η διακριτοποίηση των 
εξισώσεων Navier-Stokes επί τρισδιάστατων τετραεδρικών ή υβριδικών μη-δομημένων υπολογιστικών 
πλεγμάτων επιτυγχάνεται με την κεντροκομβική μέθοδο πεπερασμένων όγκων (FVM/Finite Volume 
Method). Για την μοντελοποίηση τυρβώδους ροής εφαρμόζονται οι κατά Reynolds ολοκληρωμένες 
εξισώσεις Navier-Stokes (RANS/Reynolds-Averaged Navier-Stokes), χρησιμοποιώντας την υπόθεση 
Boussinesq και επακόλουθα τον όρο της τυρβώδους συνεκτικότητας, για τον υπολογισμό της οποίας 
συμπεριλήφθηκαν τρία διαφορετικά μοντέλα τύρβης, το k-ε, το k-ω και το SST (Shear Stress Transport). 
Για την εκτίμηση των μη-συνεκτικών διανυσμάτων ροής εφαρμόζεται ο προσεγγιστικός επιλύτης του 
Roe, θεωρώντας ένα τοπικό μονοδιάστατο πρόβλημα Riemann στη διεπαφή των γειτονικών όγκων 
ελέγχου. Αύξηση της ακρίβειας του προαναφερθέντος υπολογισμού επιτυγχάνεται με την εφαρμογή 
σχήματος δεύτερης τάξης χωρικής ακρίβειας, βασισμένου στην τεχνική MUSCL (Monotonic Upwind 
Scheme for Conservation Laws). Το εν λόγω σχήμα συνδυάζεται με κατάλληλη συνάρτηση περιορισμού 
(Van Albada-Van Leer, Min-mod ή Barth-Jespersen) προκειμένου να διασφαλιστεί η μονοτονία μεταξύ 
των τιμών των μεταβλητών των γειτονικών όγκων ελέγχου. Η εκτίμηση των συνεκτικών διανυσμάτων 
ροής προϋποθέτει τον πρωτύτερο υπολογισμό των παραγώγων των συνιστωσών της ταχύτητας και της 
θερμοκρασίας στη διεπαφή των όγκων ελέγχου, η οποία συμπίπτει με το μέσο της ακμής που συνδέει 
τους αντίστοιχους υπολογιστικούς κόμβους. Για τον υπόψη υπολογισμό εισήχθησαν δύο τεχνικές στην 
παρούσα μεθοδολογία, εκ των οποίων η πρώτη βασίζεται στη δημιουργία νέων δυικών όγκων ελέγχου 
γύρω από την υπό εξέταση ακμή (edge-dual volume method), ενώ σύμφωνα με τη δεύτερη μέθοδο οι 
επιθυμητές παράγωγοι προκύπτουν από τις αντίστοιχες των ακραίων κόμβων της ακμής (nodal-averaging 
method). Ο υπολογισμός τόσο των μη-συνεκτικών όσο και των συνεκτικών διανυσμάτων ροής εκτελείται 
με σάρωση των ακμών του πλέγματος, χρησιμοποιώντας κατάλληλες δομές δεδομένων (edge-based data 
structures), προκειμένου να μειωθεί όσο το δυνατόν ο απαιτούμενος υπολογιστικός χρόνος. Η χρονική 
ολοκλήρωση και τελική κατάσταση της ροής προσεγγίζεται επαναληπτικά, είτε με ρητό σχήμα, 
εφαρμόζοντας την μέθοδο Runge-Kutta τεσσάρων βημάτων (RK(4)) και δεύτερης τάξης χρονικής 
ακρίβειας, είτε με σημειακά πεπλέγμενο σχήμα, εφαρμόζοντας τον αλγόριθμο Jacobi ή τον αλγόριθμο 
Gauss-Seidel. Για την επιτάχυνση της επίλυσης εφαρμόζεται επιπρόσθετα η τεχνική του τοπικού ψευδο-
χρονικού βήματος (local time-stepping technique). Τέλος, σημειώνεται ότι για τις εξισώσεις των 
μοντέλων τύρβης ακολουθείται παρόμοια με τις εξισώσεις ροής διαδικασία χρονικής ολοκλήρωσης και 
υπολογισμού των διανυσμάτων ροής, εκτός του προσεγγιστικού επιλύτη του Roe και του σχήματος 
δεύτερης τάξης χωρικής ακρίβειας, καθώς η κύρια συνεισφορά στα εν λόγω μοντέλα προέρχεται από 
τους συνεκτικούς όρους. 
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Για την μοντελοποίηση της μετάδοσης θερμότητας μέσω ακτινοβολίας σε γκρι μέσο με δυνατότητα 
απορρόφησης, εκπομπής και σκέδασης εφαρμόζεται η εξίσωση μεταφοράς ακτινοβολίας (RTE/Radiative 
Transfer Equation) με παρουσία  (time-dependent) ή μη (non time-dependent) χρονικού όρου. Καθώς η 
υπόψη εξίσωση θα πρέπει να επιλυθεί για κάθε πεπερασμένο όγκο ελέγχου και για κάθε πεπερασμένη 
στερεά γωνία ελέγχου, διακριτοποιείται χωρικά και χρονικά. Η εν λόγω χωρική διακριτοποίηση 
επιτυγχάνεται με τη κεντροκομβική μέθοδο πεπερασμένων όγκων, ομοίως των εξισώσεων ροής, ενώ η 
γωνιακή παρομοιάζεται με το χωρισμό της επιφάνειας «σφαίρας» (περιμέτρου «κύκλου» στις δύο 
διαστάσεις) σε μικρότερες αντίστοιχες των επιθυμητών στερεών γωνιών ελέγχου. Για τον υπολογισμό 
των διανυσμάτων θερμορροής στη διεπαφή των όγκων ελέγχου εφαρμόζεται απλό άναντες σχήμα (step 
scheme), σύμφωνα με το οποίο η ένταση της ακτινοβολίας στη διεπαφή τίθεται ίση με αυτή του κόμβου 
στα ανάντη της θερμορροής. Για την αύξηση της ακρίβειας της λύσης χρησιμοποιείται σχήμα δεύτερης 
τάξης χωρικής ακρίβειας, αντίστοιχο αυτού για τα μη-συνεκτικά διανύσματα ροής των εξισώσεων 
Navier-Stokes. Το υπόψη σχήμα συνδυάζεται με τη συνάρτηση περιορισμού Van Albada-Van Leer ή 
Min-mod, προκειμένου να διασφαλιστεί η μονοτονία μεταξύ των τιμών της έντασης της ακτινοβολίας 
των γειτονικών κόμβων, ιδιαίτερα κοντά στις οριακές επιφάνειες. Το πρόβλημα επικάλυψης όγκων 
ελέγχου και στερεών γωνιών ελέγχου, στο οποίο αναπόφευκτα οδηγείται η εν λόγω μέθοδος λόγω 
συνδυασμού μη-δομημένων πλεγμάτων και γωνιακής διακριτοποίησης, αντιμετωπίζεται με την εφαρμογή 
της Bold Approximation ή της Pixelation Technique. Αν και κατά τη συνήθη τακτική οι οριακές 
συνθήκες επιβάλλονται ρητά σε τέτοιους είδους μεθοδολογίες, στην παρούσα εργασία υιοθετήθηκε η 
πεπλεγμένη επιβολή τους, επιτρέποντας τη χρήση αραιότερων πλεγμάτων στην περιοχή των οριακών 
επιφανειών, καθώς και την ανάπτυξη και εφαρμογή οριακών συνθηκών τύπου συμμετρίας. Τέλος, η 
προσέγγιση της τελική λύσης της εξίσωσης επιτυγχάνεται είτε με επαναληπτική διόρθωση των τιμών 
(non time-dependent RTE) είτε με χρονική ολοκλήρωση και εφαρμογή της μεθόδου Runge-Kutta 
τεσσάρων βημάτων (RK(4)) και δεύτερης τάξης χρονικής ακρίβειας (time-dependent RTE). 

Με στόχο την επιτάχυνση της αριθμητικής επίλυσης τόσο των προβλημάτων ροής όσο και των 
προβλημάτων μετάδοσης θερμότητας μέσω ακτινοβολίας (επιπλέον της διάρθρωσης των δεδομένων κατά 
τις ακμές του υπολογιστικού πλέγματος και της εφαρμογής της τεχνικής του τοπικού ψευδο-χρονικού 
βήματος), χρησιμοποιήθηκε μεθοδολογία παράλληλης επεξεργασίας και πολυπλέγματος. Η μέθοδος 
παραλληλοποίησης βασίζεται στην τεχνική διαμέρισης του υπολογιστικού πλέγματος σε μικρότερα 
υποχωρία (domain decomposition approach), ώστε να καταστεί δυνατή η ταυτόχρονη επίλυση των 
εξισώσεων σε αυτά. Η όλη διαδικασία ξεκινάει στον κύριο επεξεργαστή με την εφαρμογή του λογισμικού 
METIS, το οποίο διαχωρίζει τους κόμβους του αρχικού πλέγματος σε μικρότερα σύνολα κόμβων (core 
nodes). Ωστόσο, με αυτόν τον τρόπο τα στοιχεία του πλέγματος στα όρια των υπο-συνόλων (υπο-
πλεγμάτων) παραμένουν ανολοκλήρωτα, καθώς δεν περιέχονται όλοι οι κόμβοι τους στα αντίστοιχα 
σύνολα. Για την ολοκλήρωση τους προστίθενται οι ελλείποντες κόμβοι (ghost nodes) στα αντίστοιχα 
υπο-πλέγματα, δημιουργώντας ταυτόχρονα μία περιοχή αλληλοκάλυψης ανάμεσα τους, ενώ στη συνέχεια 
διανέμονται τα απαραίτητα δεδομένα και στους υπόλοιπους επεξεργαστές. Η ανταλλαγή πληροφορίας 
μεταξύ των γειτονικών υπο-πλεγμάτων, που αφορά στις τιμές των μεταβλητών καθώς και των 
παραγώγων αυτών, επιτυγχάνεται μέσω των κόμβων στις περιοχές αλληλοκάλυψης και τις εντολές του 
πρωτόκολλου επικοινωνίας MPI (Message Passing Interface). Οι προαναφερθείσες τιμές των ghost 
κόμβων δεν υπολογίζονται από τις εξισώσεις μεταφοράς, αλλά λαμβάνονται απευθείας από τους 
αντίστοιχους core κόμβους των γειτονικών υπο-πλεγμάτων. 

Η μέθοδος πολυπλέγματος (multigrid method) στην παρούσα Διδακτορική Διατριβή εφαρμόζεται σε 
χωρική μορφή για την περίπτωση προβλημάτων ροής και μετάδοσης θερμότητας μέσω ακτινοβολίας, 
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καθώς και σε γωνιακή και συνδυασμένη χωρική-γωνιακή μορφή μόνο για προβλήματα ακτινοβολίας. Η 
χωρική μέθοδος βασίζεται στη δημιουργία μίας σειράς αραιότερων του αρχικού πλεγμάτων και στην 
επίλυση προσεγγιστικών εξισώσεων σε αυτά, με σκοπό την ταχύτερη σύγκλιση στην τελική λύση. Για τη 
δημιουργία αυτών των πλεγμάτων εφαρμόζεται η τεχνική συσσωμάτωσης (agglomeration approach), 
σύμφωνα με την οποία οι όγκοι ελέγχου των γειτονικών κόμβων ενώνονται δημιουργώντας ένα νέο υπερ-
κόμβο του αραιότερου υπο-πλέγματος. Η υπόψη συσσωμάτωση, η οποία δύναται να είναι είτε ισότροπη 
(isotropic) είτε κατευθυνόμενη (directional), πραγματοποιείται με τρόπο τέτοιο ώστε να διατηρεί την 
αρχική τοπολογία, ενώ ξεκινάει από τις οριακές επιφάνειες και εκτείνεται προς το εσωτερικό του 
πλέγματος προσομοιάζοντας την τεχνική του προελαύνοντος μετώπου (advancing front technique). 
Ωστόσο, η εν λόγω ένωση υπόκειται σε προκαθορισμένους περιορισμούς, που αφορούν κυρίως στους 
κόμβους των εσωτερικών και εξωτερικών ορίων των υπο-πλεγμάτων, π.χ., ένας οριακός κόμβος δύναται 
να ενωθεί μόνο με έναν άλλο οριακό του ίδιου είδους, ενώ οι "ghost" κομβοι δε λαμβάνονται υπόψη κατά 
την κύρια διαδικασία αλλά ενώνονται σύμφωνα με τη συσσωμάτωση που έχουν υποστεί οι αντίστοιχοι 
τους core κόμβοι στα γειτονικά υπο-πλέγματα. Λαμβάνοντας υπόψη τα ανωτέρω, η όλη διαδικασία 
ξεκινάει σε κάθε υπο-πλέγμα με την ένωση των όγκων ελέγχου των οριακών κόμβων στερεάς επιφάνειας 
με αυτούς των γειτονικών τους, επίσης οριακών κόμβων, ενώ στη συνέχεια καταρτίζεται λίστα με τους 
κόμβους που έχουν έρθει σε επαφή με το "μέτωπο" της συσσωμάτωσης (seed nodes). Η ένωση των 
κόμβων και η δημιουργία υπερ-κόμβων συνεχίζεται με τη συσσωμάτωση των όγκων ελέγχου των "seed" 
κόμβων με αυτούς των γειτονικών τους. Κατόπιν καταρτίζεται μία νέα λίστα "seed" κόμβων με τον ίδιο 
τρόπο και η όλη διαδικασία επαναλαμβάνεται έως ότου εξεταστούν όλοι οι κόμβοι του υπολογιστικού 
πλέγματος. Στην περίπτωση της κατευθυνόμενης συσσωμάτωσης, η οποία εφαρμόζεται σε πλέγματα 
υβριδικού τύπου και δύναται να είναι είτε μερική (semi-directional) είτε ολική (full-directional), η 
διαδικασία ξεκινάει από τους οριακούς κόμβους των πρισματικών στοιχείων και συνεχίζεται στους 
κόμβους των επόμενων πρισματικών στρωμάτων, διατηρώντας το μοτίβο συσσωμάτωσης των πρώτων. 
Αφού ολοκληρωθεί η ένωση των πρισματικών κόμβων, η διαδικασία συνεχίζεται ισότροπα για τους 
υπόλοιπους κόμβους, εκκινώντας από τους γειτονικούς των ανώτερων πρισματικών στρωμάτων. Όπως 
αναφέρθηκε παραπάνω, οι "ghost" κόμβοι δε λαμβάνονται υπόψη κατά την κύρια διαδικασία, αλλά 
ενώνονται σύμφωνα με τη συσσωμάτωση που έχουν υποστεί οι αντίστοιχοι τους "core" κόμβοι στα 
γειτονικά υπο-πλέγματα. Με τον τρόπο αυτό δημιουργούνται "ghost" ψευδο-υπερ-κόμβοι, καθώς ο 
περικλειόμενος αριθμός κόμβων τους πιθανόν να διαφέρει από αυτόν στους αντίστοιχους core υπερ-
κόμβους. Εφόσον απαιτείται ακόμη αραιότερο πλέγμα, η όλη διαδικασία επαναλαμβάνεται. Η επίλυση 
των εξισώσεων στη εν λόγω σειρά πλεγμάτων πραγματοποιείται με το σχήμα FAS (Full Approximation 
Scheme) σε κύκλο σχήματος V, σύμφωνα με το οποίο στα αραιότερα πλέγματα επιλύεται μία 
προσεγγιστική μορφή των εξισώσεων μεταφοράς. Η μεταφορά πληροφορίας σε έναν υπερ-κόμβο από 
τους περικλειόμενους κόμβους του (restriction) αφορά στις σταθμισμένες κατ' όγκο συντηρητικές 
μεταβλητές τους και στο άθροισμα των διανυσμάτων ροής τους. Αντίθετα, από τον υπερ-κόμβο 
μεταφέρονται στους περικλειόμενους κόμβους του (prolongation) οι διορθώσεις των μεταβλητών είτε με 
απλή μεταφορά στην περίπτωση ατριβούς ροής είτε με μεταφορά σταθμισμένη με την απόσταση μεταξύ 
τους στην περίπτωση συνεκτικής ροής. Για την επίτευξη ακόμη μεγαλύτερης επιτάχυνσης κατά τα πρώτα 
στάδια του σχήματος FAS, εφαρμόζεται το σχήμα FMG (Full Multigrid). 

Η γωνιακή μέθοδος πολυπλέγματος εφαρμόζεται με ανάλογο της χωρικής τρόπο στη γωνιακή 
διακριτοποίηση των προβλημάτων μετάδοσης θερμότητας μέσω ακτινοβολίας. Η συσσωμάτωση 
συνίσταται στην ένωση των γειτονικών στερεών γωνιών ελέγχου, μειώνοντάς τες στο ένα τέταρτο των 
αρχικών κάθε φορά. Σε αντίθεση με τη χωρική, η γωνιακή συσσωμάτωση υπόκειται σε έναν μόνο 
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περιορισμό που απαγορεύει την ένωση στερεών γωνιών που ανήκουν σε διαφορετικά τεταρτημόρια. Με 
αυτόν τον τρόπο διασφαλίζεται η συνέχεια κατά τη μεταφορά της πληροφορίας από την πυκνότερη στην 
αραιότερη διακριτοποίηση και αντίστροφα. Η επίλυση της RTE στα διαδοχικά αραιότερα γωνιακά 
"πλέγματα" πραγματοποιείται με το σχήμα FAS ομοίως της χωρικής μεθόδου πολυπλέγματος, ενώ η 
στάθμιση των μεταβλητών κατά τη μεταφορά τους από το πυκνότερο στο αραιότερο υλοποιείται κατά 
γωνία (όχι κατ' όγκο). Τέλος, στην παρούσα εργασία αναπτύχθηκε και συνδυασμένη χωρική-γωνιακή 
μεθοδολογία για την επιτάχυνση προβλημάτων μετάδοσης θερμότητας μέσω ακτινοβολίας. Σύμφωνα με 
αυτήν, σε κάθε επίπεδο του χωρικού σχήματος πολυπλέγματος εκτελείται ένας πλήρης FAS V-κύκλος 
του γωνιακού σχήματος, ενώ η μεταφορά της έντασης της ακτινοβολίας, των διανυσμάτων ροής και των 
διορθώσεων εκτελούνται ομοίως προς τις απλέςν μεθόδους. 

Επιπρόσθετα, με σκοπό την περαιτέρω αύξηση της ακρίβειας της παρούσας μεθόδου και πέραν της 
εφαρμογής των προαναφερθέντων σχημάτων υψηλότερης τάξης χωρικής ακρίβειας, αναπτύχτηκε 
μεθοδολογία αυτόματης τοπικής πύκνωσης του πλέγματος. Με αυτόν τον τρόπο δύνανται να αυξηθούν οι 
βαθμοί ελευθερίας του υπό εξέταση πλέγματος, αποφεύγοντας ταυτόχρονα την απαίτηση κατασκευής 
ενός νέου εξαρχής. Η υπόψη τεχνική αναδεικνύεται ιδιαίτερα πολύτιμη σε περιπτώσεις εμφάνισης 
τοπικών φαινομένων, π.χ. περιοχές κυμάτων κρούσης, αποκόλλησης ροής, κ.λπ., καθώς και σε 
προβλήματα που αντιμετωπίζονται για πρώτη φορά, με συνέπεια να μην είναι εκ των προτέρων γνωστό 
το απαιτούμενο επίπεδο πύκνωσης στις διάφορες περιοχές του πλέγματος. Η όλη διαδικασία δύναται να 
διαιρεθεί σε τέσσερα βασικά βήματα: α) Εντοπισμός των περιοχών προς πύκνωση και σημείωση των 
αντίστοιχων ακμών βάσει ενός προκαθορισμένου κριτηρίου, π.χ. ακμές που περιλαμβάνουν κόμβους με 
τιμή του αριθμού Mach υψηλότερη της μονάδας. β) Διάχυση της πληροφορίας σημείωσης στις γειτονικές 
ακμές, ώστε να καταστεί δυνατή η διαίρεση των αντίστοιχων στοιχείων του πλέγματος. γ) Διαίρεση των 
σημειωμένων ακμών και εισαγωγή νέων κόμβων στο μέσο τους. δ) Διαίρεση των αντίστοιχων πλευρών 
και στοιχείων του πλέγματος, βάσει προκαθορισμένων κανόνων διαίρεσης, π.χ., ένα πρισματικό στοιχείο 
δύναται να διαιρεθεί σε δύο ή τέσσερα νέα πρισματικά στοιχεία. 

Εφαρμόζοντας τις ανωτέρω τεχνικές αναπτύχθηκε ο ακαδημαϊκός κώδικας Galatea (Γαλάτεια) στα 
πλαίσια της παρούσας Διδακτορικής Διατριβής. Για την αξιολόγηση του εν λόγω λογισμικού και κατ' 
επέκταση των προαναφερθεισών μεθόδων εξετάστηκαν διάφορα προβλήματα αναφοράς, ενώ τα 
αποτελέσματα του συγκρίθηκαν ποιοτικά και ποσοτικά με διαθέσιμα πειραματικά δεδομένα, καθώς και 
με αριθμητικά αποτελέσματα αντίστοιχων αλγορίθμων αναφοράς. Από τις υπόψη συγκρίσεις διαφαίνεται 
η δυνατότητα της εν λόγω μεθοδολογίας για τέτοιου είδους προσομοιώσεις τόσο από την πλευρά της 
ακρίβειας όσο και από την πλευρά της αποδοτικότητας. Εν κατακλείδι, λαμβάνοντας υπόψη τις 
αντίστοιχες διαθέσιμες στη διεθνή βιβλιογραφία μελέτες, η συνεισφορά της παρούσας εργασίας 
συνοψίζεται στα κάτωθι: 

• Στην ανάπτυξη της γωνιακής μεθόδου πολυπλέγματος. 
• Στην ανάπτυξη της συνδυασμένης χωρικής-γωνιακής μεθόδου πολυπλέγματος. 
• Στην εφαρμογή σχήματος δεύτερης τάξης χωρικής ακρίβειας με συναρτήσεις περιορισμού για την 

προσομοίωση της μετάδοσης θερμότητας μέσω ακτινοβολίας. 
• Στην ανάπτυξη της πεπλεγμένης επιβολής των οριακών συνθηκών σε προβλήματα μετάδοσης 

θερμότητας μέσω ακτινοβολίας. 
• Στην τοπική προσαρμογή του πλέγματος για την προσομοίωση της μετάδοσης θερμότητας μέσω 

ακτινοβολίας. 
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• Στη χρήση υβριδικών πλεγμάτων σε συνδυασμό με την κεντροκομβική μέθοδο πεπερασμένων 
όγκων σε προβλήματα μετάδοσης θερμότητας μέσω ακτινοβολίας. 

• Στη χωρική μέθοδο πολυπλέγματος (δημιουργία ghost ψευδο-υπερ-κόμβων, μεταφορά διορθώσεων 
από το αραιότερο στο πυκνότερο πλέγμα βάσει απόστασης των κόμβων, κ.λπ.). 
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Nomenclature 
,A L  Jacobian matrices qi thermal tensor 

AH spatial forcing function q  incident radiative heat flux, W/m2 
AMN angular forcing function R



 flux balance vector 

c propagation speed of radiation in 
the medium Re Reynolds number 

Pc  sound speed of node P  Rg gas constant (Rg=287.04 m2sec-2K-1) 

jC  Legendre polynomials' coefficients S


 source term 
cp constant pressure specific heat Sij strain rate 

cv constant volume specific heat ŝ  
unit vector in s direction of a solid 
angle 

CFL Courant-Friedrichs-Lewy number t time 
mn
ciD  directional weight of solid angle mn Tu turbulence intensity 

e energy per unit mass T temperature (K only for radiative 
heat transfer problems) 

ˆ ˆ ˆ, ,x y ze e e  unit vectors in x, y and z directions u, v, w components of the velocity 

E 
total energy per unit mass 
(reference energy in radiative heat 
transfer problems) 

U  averaged Roe value of a primitive 
variable 

, ,F G J
 

 Navier-Stokes and turbulence 
models PDE's vectors uτ friction velocity 

*G  dimensionless average radiative 
heat flux VP volume of control volume of a node 

P 
ht specific total enthalpy W



 conservative variables' vector 
I unit matrix x, y, z cartesian coordinates 
( )ˆ,I r s  radiative intensity, W/m2 sr y+ dimensionless distance 

k turbulent kinetic energy mn
ciα  pixelation coefficient 

αk  absorption coefficient, m-1 β extinction coefficient, β=ka+σs 
M Mach number γ ideal gas constant (γ=1.4) 

PN  number of nodes (finest grid) δij Kronecker's delta 

,N Nθ ϕ  number of polar and azimuthal 
angles (finest resolution) 

∆ iA  
part i of surface area of control 
volume 

p pressure mn∆Ω  discrete control angle 
Pj Legendre polynomials of order j ε dissipation rate 
Pk turbulent energy production term εw  wall emissivity 
Pr laminar Prandtl number (Pr=0.72) θ  polar angle 
Prt turbulent Prandtl number (Prt=0.9) κ Von Karman constant (κ=0.41) 
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μ laminar viscosity Subscripts 
μt turbulent viscosity b  blackbody 
ρ density h first non-agglomerated grid 
σ  Stefan-Boltzmann constant  (σ= 

5,67 10-8 W/m2K4)  
H agglomerated grid 

σ s  scattering coefficient, m-1 in inlet 
τij stress tensor k, ε, ω equations of turbulence models 
τw friction stress tensor m medium 
ϕ  azimuthal angle out outgoing 
Φ  scattering phase function PQ edge connecting P and Q nodes 
Φ  average scattering phase function P, p present control volume 
ω specific dissipation rate (scattering 

albedo ω=σs/β in radiative heat 
transfer problems) 

Q, q adjacent control volume 

Superscripts r reflected 
inv inviscid rad radiative 
mn first non-agglomerated angular 

resolution 
t turbulent 

MN agglomerated angular resolution ref reference 
vis viscous w  wall 
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• A node-centered finite-volume algorithm for the prediction of inviscid and viscous (laminar and 
turbulent) compressible fluid flows on unstructured tetrahedral or hybrid three-dimensional grids. 

1. Introduction 
 
1.1. Objectives 

As the title of this thesis suggests, its main objective is the development of methodologies capable of 
solving numerically steady-state compressible fluid flow and radiative heat transfer problems. Such a 
methodology has many academic and industrial engineering applications, e.g., in aircrafts, engine inlets, 
industrial furnaces, combustion chambers, ramjet engines, etc. Considering the aforementioned goal, the 
following objectives were accomplished, while main attention was directed toward the improvement of 
the obtained solutions' accuracy as well as of the efficiency of the simulations: 

• A corresponding methodology simulating radiative heat transfer. 

• Improvement of solutions' accuracy, employing: 
a) Higher-order accurate schemes along with appropriate limiting functions, especially in case 
of radiative heat transfer. 
b) A grid adaptation technique (h-refinement). 

• Improvement of methods efficiency, implementing: 
a) A parallelization strategy. 
b) A spatial agglomeration multigrid scheme. 
c) An angular and a combined (nested) spatial/angular agglomeration multigrid methodology for 
radiative heat transfer simulations. 

• Validation of the developed method against benchmark test cases, via the qualitative and 
quantitative comparison of the obtained results with experimental data as well as with the results of 
acclaimed corresponding solvers. 

This Chapter is continued with a literature review, concerning the main features of this type of 
algorithms, i.e., fluid flow and radiative heat transfer modelling, parallel computation, multigrid 
methodology and grid adaptation, while in its final section an overview of the proposed methodology 
along with its original contributions is summarized. 
 
1.2. Literature review 
 
1.2.1. Fluid flow modelling 

The attempt of English mathematician L.F. Richardson around 1920 to predict weather by solving 
Partial Differential Equations (PDE's) is assumed to be the beginning of Computational Fluid Dynamics 
or CFD for short, as it included the main four features of CFD: a practical problem, PDE's to model 
mathematically this problem, a numerical scheme and computers (the original sense of word computers is 
utilized here - people, and not machines, doing calculations) [Tor97]. Nevertheless, many years passed for 
CFD history to actually start, mainly due to the limited computing capabilities; its beginning is dated 
about the early 1970's [Bla01]. Since then, CFD has denoted the combination of physics, numerical 
analysis and computer science, employed to simulate fluid flows, while it has routinely been applied to 
the scientific fields of aeronautics, marine engineering, turbomachinery, meteorology, oceanography, 
astrophysics, oil recovery and architecture [Tor97, Bla01]. 

A significant effort has been exerted during the past decades in the field of aerodynamics for the 
development of industrial, commercial and academic CFD algorithms, mainly due to their capability for 
analyzing the aerodynamic behaviour of complete aircraft configurations in a relatively short period of 
time; one of the first such codes was developed by Jameson et al. [Jam86]. Nowadays, the aerodynamics 
designers rely strongly on the CFD algorithms' results, as in that way they may avoid (initially at least) a 
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large fraction of the extremely time and money consuming experiments in wind tunnels. The decreased 
effort, obtained by the employment of CFD codes, especially those based on the Reynolds Averaged 
Navier-Stokes (RANS) equations, produces finally a reduced design cycle time. Nevertheless, the results 
obtained even by the most acclaimed methodologies appear not to always match with the corresponding 
wind tunnel experimental results. As the accuracy of the numerically derived flow affects significantly the 
lift, drag and general aerodynamic payload of an aircraft, which subsequently influences its final design, a 
continuous need arises for more accurate and more efficient methods, making CFD an evolving scientific 
field. Therefore, although various academic and commercial compressible flow solvers have been 
developed in the past years, many issues concerning the methods of grid generation, discretization, flux 
computation, turbulence modelling, etc., are still subjects of continuous research.  

Considering the previous state, the first issue to be defined for a CFD algorithm is the type of the 
grid used to represent the physical domain under examination. For the first solvers, structured grids were 
employed, constructed either by algebraic methods or by using PDE's; in test cases requiring meshes with 
increased complexity overlapping grids were also utilized, derived by the Chimera technique [Bla01]. As 
excessive time was demanded for their construction (even weeks in case of a military aircraft), the 
researchers started to focus on the development of unstructured grid generators [And94, Bla01]. 
Unstructured grids, usually consisted of tetrahedral elements (triangular faces in two dimensions), offer 
the largest possible flexibility in the treatment of complex geometries along with reduced time and 
minimum user intervention for their generation/adaptation (compared to structured ones). In case of a 
viscous flow simulation a hybrid mesh should be selected instead, including prismatic or hexahedral 
elements at boundary layer region to resolve effectively the severe anisotropy of the flow at this area 
which demands a priori smaller spacing besides excessive geometric flexibility; tetrahedra are used for 
the rest of the field, while pyramids fill the transition region (from prismatic to tetrahedral elements) 
[Kim03, Kal05a]. In that way, not only the accuracy of the final solution is improved, but the number of 
required elements, faces and edges is decreased, compared to a tetrahedral grid with appropriate spacing, 
resulting in reduced computational effort and memory requirements [Bla01]. Considering the 
aforementioned advantages of unstructured grids, they appear to be preferable compared to structured 
ones for problems concerning external aerodynamic flow over a complex geometry, in which the mesh 
size is adapted to local geometrical and flow features, e.g., in case of an aircraft. Despite their arbitrary 
nodal distribution, which typically results to approximately twice the number of edges of a corresponding 
structured hexahedral mesh and consequently to double computational and memory cost when an edge-
based technique is employed, they remain the preferred choice for such simulations [Bar92, Kal96, Bla01, 
Sor03, Kal05a]. In addition, the unstructured meshes have another important feature as analyzed at a next 
paragraph, the easy adaptation; it can be performed during the solution procedure to capture more 
efficiently localized phenomena such as shocks [Loh92, Kal96, Bla01, Kal05a].  

For the discretization of the computational field and subsequently the numerical approximation of 
the governing equations an appropriate modelling strategy is required, such as the finite-volume method, 
probably being the most widely applied in three-dimensional flow simulations [Jam81, Bar92, Kal96, 
Lan98, Bla01, Lyr02, Kim03, Kou03, Kal05a, Del11]. According to this scheme the computational 
domain is discretized into a certain number of arbitrary finite control volumes, at each of which the 
magnitude of variables is assumed to be constant (for first order schemes) [Kim01]. This method can be 
implemented to both structured and unstructured grids, while it can be categorized in two main types, the 
cell-centered and the node-centered (also named vertex-centered), depending on the location of the 
computational nodes surrounded by the corresponding control volumes [Del11]. In the first case, the mesh 
elements represent the aforementioned control volumes, while the variables are stored at their 
barycenters. For the node-centered approach, the control volumes are constructed around the nodes of the 
grid; several methodologies have been developed for their construction, e.g., by connecting lines defined 
by edge midpoints, barycenters of faces and barycenters of elements, sharing a node [Kim03, Kal05a]. 
Although one should expect the wider implementation of the cell-centered scheme, considering that for 
the same computational grid it includes many more Degrees of Freedom (DoF's) compared to the node-
centered one, both options are almost equally used nowadays [Bla01]. Moreover, there exist studies 
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indicating the equal or even superior potential of the node-centered method in terms of accuracy, 
compared to the cell-centered one for the same number of Degrees of Freedom [Del11]. 

Another important issue in CFD methodologies concerns the scheme implemented for the 
computation of the numerical fluxes. The upwind method, considering a one-dimensional Riemann 
problem in the direction of the normal vector of each face of a finite control volume (interface between 
adjacent control cells), appears to be strongly established as the most appropriate model for the evaluation 
of the inviscid fluxes [Bar89, Dec92, Bla01]. For the solution of this problem approximate Riemann 
solvers have been developed (Roe, Osher-Engquist, HLLC, etc.), as the exact solution would require 
excessive computational effort [Roe81, Osh84, Bar89, Bar92, Dec92, Lan98, Bla01, Sor03]. 
Unfortunately, the discretization of the continuous computational field into finite control volumes results 
in significant values of numerical diffusion; a remedy to this drawback is the implementation of higher-
order spatial schemes, such as the Monotonic Upstream Scheme for Conservation Laws (MUSCL), that 
reconstructs the variables' values at computational nodes using Taylor series expansion [VanA82, 
VanL85, Bar89, Bar92, And94, Kal96, Lan98, Bla01, Kal05a]. Moreover, to control the total variation of 
the reconstructed field and assure monotonicity between the adjacent control volumes, appropriate slope 
limiters accompany the aforementioned scheme, such as the Van Albada-Van Leer, Min-mod, Barth-
Jespersen, Superbee, etc., [VanA82, Swe84, Bar89, Bar92, Bla01]. For the viscous fluxes, the 
temperature and velocity components’ gradients have to be evaluated at the control volumes' interfaces; 
usually a nodal-averaging or an element-based method (approximate Galerkin finite-element approach, 
face-centered control volume approach, etc.,) are applied [Bra96, Kal96, Bla01, Kal05a]. Although the 
first approach, especially when considering a simple arithmetic nodal-averaging, is susceptive to odd/even 
oscillations, it is frequently selected due to the relatively increased computational effort required by the 
element-based approach [Bra96]. 

For the simulation of turbulent flows the Direct Numerical Simulation (DNS) and the Large Eddy 
Simulation (LES) models appear to be the methods producing the most accurate numerical results; 
nevertheless, their computing requirements for excessively decreased spatial and temporal discretization 
cannot yet be afforded widely [Bla01]. As such, the RANS equations with an appropriate statistical 
turbulence model, such as k-ε, k-ω, SST (Shear Stress Transport) or Spalart-Allmaras, is still the most 
widely employed methodology in engineering applications [Lau74, Saf74, Men03a, Du05, Kal05a]. The 
aforementioned one- or two-equation models are typical examples of PDE's with source terms, based on 
the Boussinesq assumption, according to which the turbulent shear stress is associated with the mean rate 
strain with a linear relationship [Bla01, Kou03, Du05]. One of the most popular turbulence models is 
revealed to the k-ε [Lau74, Lar91, Kun92, And94, Ste94, Mav94, Jon97, Yod99, Koo00, Kou03, Du05], 
being a well established method for the prediction of unsteady mean characteristics of a class of low-
speed vortex dominated flows [Koo00]. It has been developed in various formulations, depending mainly 
on the boundary wall treatment; for example it can be applied at the solid wall boundary region via wall 
functions [Koo00] or with a one-equation model employed at the same area [Jon97]. Although strong 
non-linearities of the model may interact with numerical errors in such a way that positivity of the 
variables k and ε is lost, appropriate treatment can overcome these difficulties quite easily [Lar91, Du05]. 
Another also widely applied turbulence model is the k-ω of Wilcox [Saf74, Lar91, Men94, Chi96, Liu96, 
Pen99, Bre02, Kim03, Men03a], which unlikely the k-ε does not usually consider wall functions at the 
solid wall region but allows simple Dirichlet boundary conditions to be specified (low Reynolds number 
approach). Despite its high level accuracy at this area, it appears to be relatively sensitive to the value of 
free-stream dissipation rate [Men94, Men03a, Men03b]. This was one of the main motivations for the 
development of the SST scheme [Men94], which is actually a combination of the aforementioned models. 
It utilizes the k-ω at the inner region of the boundary layer and switches via an appropriate blending 
function to the standard k-ε at the outer region and at the free shear flow· As such, it has a similar 
performance to the k-ω model, but avoids at the same time its strong free-stream sensitivity [Men94, 
Men03a, Men03b]. Significant efforts have been made for the efficient treatment of source term of the 
pre-described models, in order to alleviate its rapid increase during the iterative solution of corresponding 
equations (especially in case of an explicit iterative scheme), a phenomenon usually arising at stagnation 
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points [Lar91, Mav94, Dur96, Du05]. As a result, various methods have been developed, such as the 
explicit limiting of the obtained corrections of model's variables [Mav94], use of different time step for 
the flow and turbulence model PDE's [Mav94], implicit treatment of the source term in case of an explicit 
iterative scheme [Bla01], utilization of only negative contributions of the source term for the construction 
of the corresponding Jacobian matrix [Lar91, Koo00], etc. All these models were originally applied in 
aeronautical applications, but since then have made their way into most industrial, commercial and many 
research codes. Although they give satisfactory results in a computationally acceptable time, they are still 
statistical models, so they do not derive turbulent variables' distributions in total agreement with DNS 
data [Men94].  

As CFD concerns numerical methods, the last main issue, which has to be defined is the iterative 
approximation scheme employed for the solution of flow and turbulence model's equations (in a strongly 
or loosely coupled manner) [Bla01]. The simplest means of solving iteratively a system of PDE's is the 
implementation of an explicit scheme [Jam81, And94, Mav94, Ven95, Kal96, Kim03, Sor03, Kal05a], 
e.g., a multi-stage Runge-Kutta method [Lal88a]. According to this scheme the temporal derivative of 
conservative variables is discretized using a finite-difference formulation at each time step, after 
evaluating the flux sum at the same step [Ven95]; in that way the explicit methods call for only simple 
updates, resulting in easy parallelization and reduced memory requirements. Nevertheless, for large-scale 
flow simulations, such as flows over aircrafts necessitating millions or tens of millions of computational 
nodes, the rate of convergence slows down dramatically, resulting in relatively inefficient solution 
schemes. Implicit schemes appear under certain circumstances more appropriate for fine grids, as they 
allow for the use of larger CFL (Courant-Friedrichs-Lewy) numbers and consequently for larger time 
steps, accelerating the solution process [Ven91, Ven95, Gri98, Joh04, Pet07]. Nevertheless, they aren't so 
simple to implement, compared to the explicit ones, especially in a parallel computational environment, 
while they call for increased memory storage. The point-implicit schemes (a category of implicit iterative 
methods), usually implemented with the Jacobi or the Gauss-Seidel iterative algorithms, preserve 
relatively the simple implementation of explicit schemes, even in parallelized simulations, along with the 
utilization of large time steps [Kou03]. 

In order to increase the convergence rate and consequently accelerate the solution procedure 
independently of the iterative scheme (explicit or implicit), especially in large-scale flow problems, 
various techniques have been developed during the past years. Considering the use of unstructured grids 
and the increase of computational effort and memory requirements which entail (especially the hybrid 
ones), a more sophisticated data structure with indirect addressing, such as an edge-based one, can be 
utilized [Bar92, Eva92, Bla01, Sor03]. According to this approach, the solver gets information from the 
examined mesh as sets of nodes connected by an edge; in that way the nature of the hybrid mesh is 
concealed from the main calculation loops, enhancing the solver with the capability of handling grids 
composed of complex elements [Eva92]. Besides the main solver, h-refinement methodologies, analyzed 
at a next paragraph, take advantage from the edge-based data storage, considering that the new nodes, 
enriching the mesh, are introduced at the middle of the existing edges [Eva92, Loh92]. Another widely 
applied acceleration method is the local time-stepping technique, defining for each computational node 
the maximum allowable time step, which consequently results to the improvement of convergence of the 
simulation [Bla01]. In case of an explicit iterative scheme usually entailing a relatively low convergence 
rate, an implicit residual smoothing technique may be employed, which enhances the procedure with 
implicit features and allows for the utilization of larger CFL numbers [Kim03]. Last but certainly not least 
methods reducing the required wall-clock simulation time are the parallel computation [Ven95, Lan96, 
Smi96, Kar99] and the multigrid method [Mav94, Mav96, Mav97, Mav98, Car00, Bla01, Sor03, Nis10, 
Nis11, Nis13], analyzed in detail in the following sections. 
 
1.2.2. Radiative heat transfer modelling 

Radiative heat transfer has to be considered and therefore be modelled in the simulation of any 
engineering problem including combustion, e.g., fire in the internal area of a building or a tunnel, 
combustion chambers, etc. Therefore, various methodologies were developed during the past decades, 
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mainly divided in two categories, those using exchange view factors (zonal type approaches) and those 
utilizing flux models (CFD type approaches) [Bor13]. 

The first model employing the Radiative Transfer Equation (RTE), which describes mathematically 
radiative heat transfer in a general enclosure, was the Hottel's zone method [Hot67, Loc81]. Although it 
has been widely applied, it appears to be relatively inefficient, due to its requirement for pre-computation 
of the necessary exchange view factors. For complex geometries with a large number of discrete surfaces 
the time for these evaluations increases excessively; therefore its implementation is limited to enclosures 
including few discrete surfaces [Loc81]. This shortcoming was alleviated partially by the Monte Carlo 
method, which considers the automatic computation of exchange view factors, tracking in a random 
manner selected energy releases [Ste71, Loc81]. Based on the feature of geometric flexibility, the Monte 
Carlo method became quite popular, though it didn't also achieve satisfactory convergence rates [Loc81]. 
Nevertheless, for both aforementioned methods belonging to the first category, which depend on the 
utilization of exchange view factors, adequate accuracy is achieved only in the expense of a relatively 
high computational cost [Sas95]. 

The second category of methods, employed for the prediction of radiative heat transfer, is based on 
flux models (also named differential approximations), which, similarly to CFD, depend on the exchange 
and balance of fluxes at control cells in which a computational domain is discretized. They have been 
widely implemented in engineering applications, as they appear to be relatively more computationally 
efficient, compared to the pre-mentioned zonal type approaches. In a similar manner to CFD solvers, 
extra accuracy is gained with the increase of DoF's, e.g., by applying a grid adaptation technique, in 
expense however of an also increased simulation time. Various algorithms involving flux models have 
been developed and tested during the past decades, such as the six-flux model [Loc81, Hof88, Sas95, 
Ker00], the Finite-Element Method (FEM) [Raz83, Fiv94, Fum04, Liu04, Liu05, Liu06], the Discrete 
Ordinates Method (DOM) [Car68, Fiv84, Fiv87, Fiv88, Jam92, Kim98, Rai99, Gri08, Hun11, Coe14] and 
the Finite-Volume Method (FVM) [Rai90, Chu92, Chu93a, Chu93b, Mur98a, Mur98b, Mur98c, Mat99, 
Rai99, Kim01, Kim08, Kim10, Cap10, Coe14].  

The six-flux model [Hof88] was one of the first CFD type approaches, which became quite popular, 
mainly due to its capability to retain the important effects of hot enclosure cases along with computational 
economy by solving directly on the flow domain spatial grid and without needing any special description 
of the geometry [Ker00]. Hybrid versions of this model have been also developed, such as the hybrid six-
flux/zone model. The Discrete Transfer Model (DTM) [Loc81, Sas95], which combines also 
characteristics of zonal type methodologies [Loc81], was widely applied, due to its potential of preserving 
the physics of the problem with relatively simple mathematics and controlling its accuracy by increasing 
the number of rays projected from each physical surface and the number of zones that the domain is 
divided into; this increase of DoF's results of course to a corresponding increase of required 
computational resources [Ker00]. Therefore, an accurate surface model, being necessary for the examined 
geometry to be described, along with accurately shaped control volumes and positioning of the rays are 
prerequisites in order also accurate solutions to be obtained by this method [Ker00]. 

Other broadly employed flux models for radiative heat transfer simulations are the Finite-Element 
Method (FEM) [Raz83, Fiv94, Fum04, Liu04, Liu05, Liu06] and the Discrete Ordinates Method (DOM) 
[Rai90, Chu92, Chu93a, Chu93b, Mur98a, Mur98b, Mur98c, Mat99, Rai99, Kim01, Kim08, Kim10, 
Cap10, Coe14]. The popularity of the first model derives mainly from its feature that the radiative 
intensity in a computational cell can differentiate across this domain and that this variation can be traced 
to increase degrees of approximation [Liu06]. Despite DOM's inflexibility in anisotropic scattering 
modelling and angular discretization [Rai99], especially in cylindrically configured enclosures under 
axisymmetric or non-axisymmetric radiative heat transfer [Car68, Jam92, Gri08, Hun11], it has been 
applied in various multidimensional problems, providing accurate and computationally efficient solutions 
[Fiv84, Fiv87, Fiv88, Kim98, Coe14]. For axisymmetric radiative heat transfer in cylindrical enclosures 
the Modified Discrete Ordinates Method (MDOM) has been also proposed, according to which any set of 
arbitrary control angles can be selected, while the simplicity of the conventional DOM is retained 
[Bae98a]. 
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The Finite-Volume Method (FVM), proposed initially by Raithby and Chui [Rai90], is revealed as 
one of the most viable and robust tools for analyzing radiative heat transfer, mainly due to its simplicity 
and its applicability to complex geometries. Considering these characteristics, many researchers have 
focused on this methodology, studying its potential for effective radiative heat transfer prediction in 
various shapes of enclosures, represented by structured or unstructured tetrahedral (triangular for 2D), 
hybrid or polygonal grids and Cartesian or cylindrical coordinates. For example, Chui et al. [Chu92, 
Chu93a, Chu93b] as well as Grissa et al. [Gri08] employed this method on cylindrical enclosures, Kim 
and Baek treated unstructured meshes, including complex geometries and obstacles [Bae97, Kim01], 
Murthy and Mathur [Mur98a, Mur98b, Mur98c, Mat99] implemented it on structured, unstructured and 
hybrid grids, extending it to account also for periodic boundaries, while Kim et al. applied it in 
unstructured polygonal meshes [Kim08, Kim10], etc. Modifications of this method were also developed, 
as its coupling with the Mie theory for anisotropically scattering media by Trivic et al. [Tri04a, Tri08], its 
combination with the lattice Boltzmann method in conjunction with genetic algorithms for transient 
conduction-radiation heat transfer problems by Das et al. [Das08], the corresponding to MDOM Modified 
Finite-Volume Method (MFVM) for axisymmetric radiative heat transfer in cylindrical enclosures by 
Kim and Baek [Kim05b], etc. Other researchers worked on the improvement of its efficiency, such as 
Kim et al. proposing a parallelized version of it [Kim05a], or on the increase of its accuracy, such as 
Guedri et al. implementing a higher-order spatial differencing scheme [Gue09] and Hassanzadeh and 
Raithby employing a second-order radiative transfer equation [Has08]. 

According to the finite-volume scheme, the RTE is discretized and solved in a discrete number of 
control cells (similarly to CFD) as well as for a discrete number of finite solid control angles; it is 
integrated for each direction over the control volume under examination. Conservation of energy, spatial 
discretization, application of boundary conditions, and, formulation and solution of discrete equations are 
common procedures for fluid flow and radiation [Rai99, Kim05a]. It is this the main feature making this 
method attractive for CFD scientists, as it allows radiative heat transfer to be treated in a way familiar to 
them, compared for example with Monte-Carlo method, which requires additional knowledge and 
experience considering the employed exchange view factors [Rai99, Ste07]. Consequently, via the finite-
volume modelling of radiative heat transfer, the assets of well established in CFD techniques can be 
utilized, e.g., the employment of hybrid unstructured grids with highly stretched elements at boundary 
surfaces, resulting in increased accuracy at the same regions, or the incorporation of acceleration 
techniques, such as parallel computation [Ven95, Lan96, Smi96, Kar99, Kim05a] and multigrid scheme 
[Mav94, Mav96, Mav97, Mav98, Car00, Bla01, Sor03, Nis10, Nis11, Nis13]. Despite the aforementioned 
similarities, an important difference exists between them; heat transfer via radiation occurs 
simultaneously in all directions [Rai99]. Nevertheless, considering its main features it appears to be the 
first choice for performing radiative heat transfer simulations by scientists familiar with CFD [Rai99, 
Kim05a], and for enhancing existing finite-volume CFD solvers with additional radiative heat transfer 
computation capability [Kim96, Ko08]. 

Based on the test cases solved with the finite-volume scheme during the past years, two main 
shortcomings have been identified, causing reduction of the method's accuracy: the ray effect and the 
false scattering [Cha93, Coe02, Cap10]. The first drawback derives from the discretization of the 
continuous angular field in finite solid control angles, and can be alleviated with a denser angular 
resolution [Cha93]. It doesn't depend at all on the selected spatial resolution; therefore, it can be observed 
even to a very fine mesh. On the other hand, the false scattering is associated only to the spatial 
discretization, resembling false or numerical diffusion in CFD scientific field [Coe02], while its effects 
can be subdued by the utilization of finer grids (globally or locally employing grid adaptation) or more 
accurate spatial schemes [Cap10]. Significant efforts have been exerted during the last years to moderate 
the consequences of this drawback and improve the accuracy of the finite-volume method, such as the 
development of the second-order RTE [Has08] or of higher-order accurate spatial schemes [Cap10, 
Gue09]. 

As mentioned in the previous section a higher-order accurate spatial scheme, based on the MUSCL 
methodology, considers the reconstruction of variables' values (radiative intensity in case of RTE) 
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employing the Taylor series expansions [VanA82, VanL85, Bar89, Bar92, And94, Kal96, Lan98, Kal05a, 
Bla01]; in that way more mesh nodes are taken into account for the computation of radiative intensity 
numerical fluxes, avoiding significant amounts of false scattering. Limiting by appropriate functions, such 
as those of Van Albada-Van Leer [VanA82] and Min-mod [Swe84], is required mainly for boundary 
surfaces, where strong discontinuities arise similarly to shock waves in compressible flow. Unfortunately, 
higher-order schemes may lead sometimes to negative - unphysical - values of radiative intensity; a fix-up 
procedure, reverting them to zero or to their previous values [Cap10], can be employed to subdue this 
problem. Despite this temporary remedy, such values along with the common practice of solving RTE 
with simple iterative approximations, a procedure being susceptible to oscillations, may lead the 
simulation even to failure. Although the time-dependent RTE is applied usually to transient-unsteady 
simulations [Das08, Hun11, Tan02, Cha03], it can be employed along with more sophisticated iterative 
schemes to mitigate the aforementioned problem. Such a scheme is the multi-stage Runge-Kutta method 
[Lal88a], formulated suitably to provide a second-order temporal discretization [Bla01], considering that 
a higher-order spatial scheme shall be accompanied by an also higher-order temporal one. 
 
1.2.3. Parallel computation 

Large-scale test cases involving grids with millions or tens of millions DoF's, e.g., in flows over 
aircrafts, result in very time-consuming simulations; thus, considerable efforts were exerted during the 
past decades for the development of appropriate strategies to enhance the existing numerical solvers with 
the capability of solution of such problems in a parallel computation environment. These efforts were 
significantly augmented by the rapid increase of computing capabilities during the same decades, as well 
as by the widespread availability of multi-processor computer systems. According to the so called Flynn's 
taxonomy [PARCOMP], proposed by the American Professor Michael J. Flynn in 1966, the following 
classifications of multi-processor computer architecture, based on the two independent dimensions of 
Instruction Stream and Data Stream, can be distinguished [Fly98, PARCOMP]: 

• SISD (Single Instruction-Single Data Stream), 

• SIMD (Single Instruction-Multiple Data Stream), 

• MISD (Multiple Instruction-Single Data Stream), 

• MIMD (Multiple Instruction-Multiple Data Stream). 

From the aforementioned categorization, the first group does not actually correspond to parallel 
computing (a single processor/process is assigned), while the SIMD or the slightly different SPMD 
(Single Program-Multiple Data Stream, corresponding to the same program but not necessarily to the 
same instruction) appears to be the most widely applied one in CFD numerical methods, based on the 
domain decomposition methods [Loh92, Ven95, Lan96, Smi96, Gri98, Sor03, Kim05a]. Considering the 
aforementioned governing PDE's, the domain decomposition approach entails the process of distributing 
and exchanging data among the processors/processes in a distributed memory computational system. In 
this context, domain decomposition indicates the methodologies developed for decomposing a data 
structure; thus, data decomposition is perhaps a more appropriate term [Smi96].  

In CFD simulations the domain decomposition approach is implemented via the division of the 
examined grid among the available processors/processes (almost always one process corresponds to one 
processor); a mesh partitioning application, such as METIS, can be used for this division. Special care is 
required in order decomposition to be performed in a judicious manner, since it has a significant impact 
on the parallel performance of the solver via the work balance and the communication load among the 
processors [Tai03, Kal05a]. Since initial partitioning of computational field is accomplished, two main 
strategies can be employed in order the communication among the adjacent sub-domains to be 
established; the first is based on overlapping of interface cells, whose nodes are assigned to multiple 
partitions, as well as the exchange of values of the variables and nodal gradients, while the second 
considers straightforward the exchange of numerical fluxes at interfacing faces with no overlapping areas 
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[Tai03, Kal05a]. Although the first strategy might seem more memory consuming, it appears to be quite 
efficient, as for an explicit especially iterative scheme it is not the memory usage that should concern, but 
the communication cost between the adjacent sub-grids [Kal05a]. Finally, an appropriate interface 
protocol, such as the Message Passing Interface (MPI), is required in order internal boundary data of each 
sub-domain to be exchanged and the iterative communication to be achieved [Loh92, Ven95, Sor03, 
Tai03, Kal05a].  

 
1.2.4. Multigrid methodology 

Although unstructured mesh solvers offer the largest possible flexibility in the treatment of complex 
geometries, they appear to be relatively inferior in terms of efficiency compared to structured ones 
[Mav99, Car00]. A remedy to this significant shortcoming is the multigrid methodology; a scheme 
originally introduced to increase the convergence rate of the numerical solution of elliptic problems 
[Bra84, Mav97, Fer02], but since then it has made its way into most types of numerical simulations in 
CFD. Its main idea derives from an observation identified to most of the well-established iterative 
methods; they converge more slowly on finer resolutions as information is carried out to only one node 
per iteration (one-dimensional problem) [Fer02]. As a result information has to go back and forth on the 
computational domain several times during an iterative solution, generating both high and low frequency 
errors, whose damping defines actually the convergence rate of the simulation [Fer02]. The commonly 
implemented iterative schemes succeed in efficient relaxation of the first errors, but they seem to be 
relatively inefficient against the low frequency ones [Fer02]. The multigrid method, which is based on the 
solution of governing PDE's on successively coarser grids, actually transforms these low frequency errors 
in high frequency ones on the coarser resolutions, allowing for their efficient damping [Fer02]. The 
solutions, obtained by the coarser meshes in a relatively negligible computation time, are prolongated to 
these of the finer grids up to the initial finest one, requiring as such an associating relation between two 
successive grids. More specifically, appropriate operators, namely restriction and prolongation operators, 
have to be defined; the first one considers a method for transferring smoothed values of flux balances 
and/or conservative variables from the finer to the coarser grid (restriction procedure), while the second 
operator includes a scheme for interpolating conservative variables' corrections from the coarser to the 
finer grid (prolongation) [Fer02]. Many researchers have focused on the multigrid methodology during 
the past years,  developing various types; their differences are mainly identified on the generation of the 
coarser resolutions as well as on their associating relation [Mav94, Bra96, Liu96, Mav96, Mav97, Mav98, 
Car00, Dar06, Bla01, Fer02, Han02, Sor03, Tai03, Liu06, Kat09, Vak09, Nis10, Nis11, Nis13]. 

Considering the way the coarser resolutions are generated, the multigrid method can be divided in 
two main types, the geometrical and the agglomeration approach [Bla01]. According to the first 
classification, the sequence of the coarser grids is obtained either by the construction from scratch of 
completely independent grids with a corresponding application (non-nested grids approach) or by the 
generation of associated grids (nested) [Bla01]. If the second (topological) method is selected, the 
successive grids can be obtained either by starting from the coarsest one enriching it with more mesh 
nodes via a grid adaptation technique, such as h-refinement, or by starting from the finest one removing 
nodes and implementing re-triangulation [Bla01]. In a similar way to the previous topological approach, 
the second (agglomeration) multigrid type, initially proposed by M.H. Lallemand [Lal88b], begins from 
the initial finest grid generating the sequence of required successive coarser grids via merging the 
adjacent control volumes; in this way coarser meshes of irregular polyhedral elements are constructed. 
Despite the satisfactory performance of this scheme for inviscid flow problems along with tetrahedral 
grids, some studies indicate the reduced gained acceleration in case of its implementation for viscous flow 
simulations accompanied by hybrid meshes with highly stretched elements at the boundary layer region 
[Mav97, Mav98, Lam04, Nis10, Nis11, Nis13]. A semi-coarsening or directional-coarsening 
agglomeration technique was proposed by D.J. Mavriplis [Mav97, Mav98] to alleviate the effects of the 
aforementioned shortcoming. According to this method, the control volumes of nodes belonging to 
stretched elements (prisms or hexahedrons) are fused together only if they are located in the normal to the 
boundary surface direction, while for the rest nodes of tetrahedral elements the isotropic procedure is 
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employed; thus, the grid anisotropy is moderated as the generated coarser meshes appear to be less 
stretched than the initial finest one [Lam04]. Alternatively, full coarsening directional agglomeration can 
be implemented, which considers the fusion of control cells on a topology-preserving framework, 
resembling the advancing front technique [Han02, Nis10, Nis11, Nis13]. In accordance with this method, 
the procedure begins by merging the solid wall boundary control cells, while next a line-agglomeration 
step is performed fusing control volumes along implicit lines starting directly above the boundary 
volumes [Nis11]; compared to semi-coarsening technique, this agglomeration type seems to result to 
more efficient solutions, as it allows for greater reduction of DoF's between two successive grids. Finally, 
an alternative to the aforementioned types of multigrid scheme (geometrical and agglomeration) is the 
Algebraic Multigrid (AMG), which considers the construction of a coarsening matrix rather than the 
generation of any grid topology [Vak09]. 

The second feature distinguishing types of multigrid method, concerns the associating relation and 
consequently the way in which data are transferred between two successive grids. The initially introduced 
multigrid schemes were based on the Full Multigrid (FMG) method [Bra84], according to which after 
fully or partially relaxing the governing PDE's on the coarsest grid the obtained solution is interpolated to 
the finer one and utilized as an initial guess. The procedure is repeated up to the finest resolution, 
achieving in that way a better and simultaneously cheaper initial guess/solution, considering that most 
simulations begin from a uniform unphysical state [Fer02]. Alternatively, the Full Approximation Scheme 
(FAS) can be implemented, in which at each multigrid cycle the governing PDE's are solved only for the 
finest resolution, while for the coarser ones approximate versions of the same equations are relaxed 
[Fer02, Sor03, Lam04, Nis10, Nis11, Nis13]; the solutions obtained by the coarser grids correspond 
actually to smoothed versions of the finest mesh solution [Fer02]. More specifically, since a solver's 
external iteration is complete on the finest grid, the values of conservative variables and flux balances are 
restricted to the coarser level; this process of solution and restriction is repeated up to the coarsest mesh 
[Fer02]. At next, the conservative variables' corrections are transferred via prolongation from each coarser 
level to its finer one, up to the initial finest mesh. In this way a V-cycle process is accomplished, being 
probably the most commonly applied strategy; otherwise a W-cycle strategy can be followed [Bla01]. In 
addition, a nested combination of the pre-mentioned methods has been proposed in the open literature 
aiming to improve even more the gained acceleration; it considers the incorporation of FAS approach in 
the FMG scheme and the division of the solution procedure in two main stages, namely the preliminary 
and the main one [Lam04]. At the first stage the governing PDE's are relaxed, beginning from the coarsest 
grid and, as the number of iterative cycles increases, the solution extends successively to the finer meshes 
up to the initial finest one, at which point the main stage begins. In that way a better initial guess is 
obtained for each finer FAS level, resulting subsequently to an even faster convergence of the simulation 
to the final steady-state [Fer02]. 
 
1.2.5. Grid adaptation 

As already mentioned, in order for the effects of numerical diffusion (or false scattering for radiative 
heat transfer problems) to be subdued, finer grids can be employed, which however increase the memory 
and computing requirements [Cap10]. Alternatively, a grid adaptation technique can be implemented to 
improve the accuracy at the region of interest, without increasing significantly the computational 
requirements. The same methodology can be followed in test cases including sufficiently localized 
phenomena, such as shocks in compressible fluid flows, or in problems encountered for the first time, for 
which no previous knowledge exists about the necessary spatial resolution [Loh92]. The main idea is to 
refine the mesh in regions with large solution gradients and maintain or even coarsen it in areas where the 
solution doesn't vary considerably [Kal05b]. Considering additionally the easiness of its application along 
with solvers utilizing unstructured grids and an edge-based data structure [Eva92, Loh92], it can be 
employed during the solution procedure to increase the accuracy at user- or automatically-defined areas, 
achieving significant computational savings, as it avoids the generation of a new mesh from scratch. 
Many studies have been performed for grid adaptation, resulting in methods, classified mainly in two 
types, redistribution and refinement [Kal96, Kha00].  
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The first classification considers the reposition of the mesh nodes in order a more effective resolution 
in a selected region to be obtained; it targets test cases involving grids, constituted by a sufficient total 
number of nodes to capture the whole phenomenon, but with insufficient point distribution in a specific 
area of the field for satisfactory accuracy [Kha00]. For example, redistribution of prismatic nodes based 
on their dimensionless distance (y+) values has been implemented in the study of Kallinderis and Baron 
[Kal92] to resolve more accurately the viscous stresses at this region [Kal05b]. Moreover, in [Fel03], 
[Ili99] and [Pai01] edge and face swapping strategies are followed in order to align the mesh under study 
with flow behaviour [Kal05b]. In general, two main redistribution approaches have prevailed, the Spring 
Systems, handling computational meshes as systems of springs, and the Moving Finite-Element method, 
according to which the positions of mesh nodes are assumed unknown in order to be computed as well 
[Loh92]. Despite this method appears to be relatively simple, it encounters difficulties in cases of 
complex geometries, requiring more DoF's.  

The second category (refinement), considers the enrichment of the mesh under examination with 
more DoF's, following specific rules; it is basically divided in two types, namely p-refinement and h-
refinement. According to the first one, extra DoF's are added following hierarchical shape functions 
[Loh92], while it even allows for different orders of spatial approximation throughout the computational 
domain [Kal05b]. The h-refinement technique effects the enrichment of the examined grid by splitting the 
existing elements into new ones [Kal05a]; it begins with the detection of desired areas for adaptation and 
the division of the corresponding mesh edges along with the embedding of new nodes as midpoints of 
them. The division is extended then to the faces and the elements of the targeted regions following pre-
defined rules [Loh92]. Special treatment is required for hybrid grids (including hexahedral, prismatic, 
tetrahedral and pyramidical elements), due to the variety of element types and division ways of them 
[Kal05a]. Despite it is assumed a relatively efficient process, in some studies such as this of Kavouklis 
and Kallinderis [Kav10] its parallel implementation has been proposed in order the required wall-clock 
time to be further decreased. Moreover, the aforementioned methodology can be coupled with p-
refinement or de-refinement approach [Kal05b]; the latter is employed in an analogous to h-refinement 
manner at regions where the solution doesn't vary significantly [Kal05b].  

 
1.3. Present study 
 
1.3.1 Overview 

According to the main objective of this thesis, methodologies to support the numerical simulation of 
compressible fluid flow and radiative heat transfer were developed. For the representation of the 
examined computational domains, three-dimensional unstructured tetrahedral grids are employed. 
However, if a viscous flow is simulated, prisms and pyramids are also included (hybrid grids) to resolve 
effectively the severe anisotropy of the flow at the boundary layer region; for radiative heat transfer 
problems, highly stretched elements are utilized at the areas of boundary surfaces in case increased 
accuracy is required [Lyg12b, Lyg14a, Lyg15]. The discretization and the corresponding reformulation of 
governing PDE's (RANS, turbulence model equations and RTE) is implemented with a node-centered 
finite-volume scheme [Lyg13c, Lyg14a, Lyg15]. 

For the computation of the RANS PDE's inviscid fluxes, an upwind scheme is employed, assuming a 
one-dimensional Riemann problem at each face of a finite control-volume, while its solution is succeeded 
using the Roe's approximate Riemann solver. The pre-mentioned scheme is enhanced by a higher-order 
accurate spatial reconstruction method, based on the MUSCL technique, along with appropriate slope 
limiters, namely Van Albada-Van Leer, Barth-Jespersen and Min-mod. These limiting functions are 
required to control the variation of reconstructed values and maintain monotonicity between the states at 
the interface of each two adjacent control volumes. For viscous fluxes, the same discretization is utilized, 
while the necessary velocity and temperature gradients are calculated implementing either an element-
based method, which considers the construction of edge-dual volumes, or a nodal-averaging one. For 
turbulent flows, three two-equation turbulence models, namely k-ε (in three versions), k-ω and SST, have 
been incorporated; no additional model is included to allow for transition modelling [Lyg11]. For time 
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integration and iterative approximation of the flow and turbulence equations, either an explicit scheme, 
applying a second-order temporal accurate four-stage Runge-Kutta (RK(4)) method, or an implicit one, 
employing the Jacobi or the Gauss-Seidel algorithm, is implemented [Lyg11]. 

In a similar way, a node-centered finite-volume discretized, time- or non-time-dependent RTE is 
employed to allow for the prediction of radiative heat transfer in general enclosures through absorbing, 
emitting, and either isotropically or anisotropically scattering gray media; the considered forward 
scattering ratio (F2) is based on the Legendre polynomial expansions [Lyg12a, Lyg12b]. The effects of 
overhang problem, caused by the combination of unstructured grids and the division of angular domain in 
finite solid angles, are alleviated with either the bold approximation or the pixelation method. The 
methodology is enhanced with a second-order accurate spatial scheme, based on the MUSCL 
reconstruction of the radiative intensity values, while Van Albada-Van Leer or Min-mod slope limiter is 
used to bound the reconstructed values, especially at the boundary surfaces' regions [Lyg13b, Lyg13c]. 
The final steady-state solution is achieved by either iterative approximations (steady RTE, non time-
dependent) [Lyg12a, Lyg12b] or a second-order temporal accurate four-stage Runge-Kutta (RK(4)) 
method (time-dependent RTE) [Lyg13b, Lyg13c]. 

In order to increase accuracy and efficiency of the proposed methodology, additional enhancing 
schemes have been incorporated to both fluid flow and radiative heat transfer solvers. An edge-based data 
structure along with the local-time stepping technique, suitably defined for each solver, is used for the 
computation of numerical fluxes, resulting in reduced memory requirements and computational effort 
[Lyg13c, Lyg14a, Lyg15]. To alleviate increased computational requirements especially in large-scale 
simulations a parallelization strategy was developed, based on the domain decomposition approach and 
the MPI library [Lyg12b, Lyg14a, Lyg15]. In addition, a spatial agglomeration multigrid methodology is 
incorporated, resulting in more acceleration of the solution procedure; it considers the implementation of 
FAS (included in FMG) on successively coarser spatial resolutions, derived from the initial finest grid 
through the fusion of adjacent control volumes in a way similar to advancing front technique [Lyg14b, 
Lyg14c, Lyg14d, Lyg14f]. In case of radiative heat transfer simulations, the aforementioned method is 
extended to an angular version, which considers coarsening of the angular resolution by the fusion of 
neighbouring solid control angles, along with the FAS employment in a corresponding to spatial scheme 
way. Furthermore, a combined (nested) spatial/angular agglomeration multigrid method is introduced, 
according to which a complete angular FAS cycle is accomplished at each level of the spatial multigrid 
scheme [Lyg14b, Lyg14f, Lyg14g]. Finally, the h-refinement technique is incorporated to enrich the 
desired regions (either automatically selected or user defined) of unstructured, tetrahedral or hybrid grids 
and consequently increase accuracy of the final steady-state solution at the same areas; it can be 
performed during the solution procedure, avoiding the generation of a new mesh from scratch [Lyg13b, 
Lyg13c]. 

Based on the aforementioned methods an academic CFD code, named Galatea (one of the fifty 
goddess-nymphs of the sea, the Nereides), was developed; it has been validated against three- and quasi-
three-dimensional benchmark test cases, while its results have been compared qualitatively and 
quantitatively with wind tunnel experimental data as well as with those obtained by acclaimed 
corresponding solvers. The solutions results confirm that the proposed methodology/code is capable at 
effectively simulating compressible fluid flows and radiative heat transfer in terms of accuracy, geometric 
flexibility and computational efficiency [Lyg11, Lyg12b, Lyg13c, Lyg14a, Lyg14e, Lyg14g, Lyg15].  

 
1.3.2 Contributions 

Considering similar studies available in the open literature, the following original contributions have 
been introduced in this thesis: 

• A combination of a parallel node-centered finite-volume method with three-dimensional 
unstructured hybrid grids for radiative heat transfer prediction [Lyg12b]. 
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• A second-order accurate spatial scheme jointed or not with the slope limiter of Van Albada-Van 
Leer or Min-mod, improving accuracy of radiative heat transfer finite-volume solutions, especially 
at boundary surfaces' regions with large radiative intensity gradients [Lyg13c]. 

• Implicit treatment of diffusively and specularly (mirroring) reflecting surfaces' boundary conditions 
[Lyg13c]. 

• A grid adaptation method, employing h-refinement technique to improve the accuracy of radiative 
heat transfer solution at specific regions of the examined mesh [Lyg13c]. 

• A parallel spatial agglomeration multigrid method enhancing both flow and radiative heat transfer 
algorithms with improved computational performance [Lyg14b, Lyg14c, Lyg14d, Lyg14f, 
Lyg14g]. 

• A parallel angular agglomeration multigrid scheme for radiative heat transfer simulations [Lyg14b, 
Lyg14f, Lyg14g]. 

• An extension of previous methods in a combined (nested) spatial/angular agglomeration multigrid 
scheme for radiation problems [Lyg14b, Lyg14f, Lyg14g]. 

The aforementioned contributions have been published in sixteen Journal and Conferences' papers, listed 
below. 

 
1.3.3 Outline 

The structure of this thesis is as follows: Chapter 2 describes the fluid flow model, including 
governing equations, discretization method, computation of numerical fluxes and iterative solution, while 
in Chapter 3 the corresponding topics are analyzed for the radiative heat transfer model. In Chapter 4 the 
implemented parallelization strategy is summarized, while Chapter 5 includes the spatial, the angular and 
the combined (nested) spatial/angular agglomeration multigrid scheme, developed to improve the 
computational performance of the proposed (flow and radiative heat transfer) methodology. Chapter 6 
contains the employed automatic mesh enrichment method (h-refinement), enhancing the algorithm with 
the capability of increasing solution's accuracy at specific locations, defined either automatically 
depending on selected criteria, or by the user. Finally, in Chapters 7 and 8 the validation of the proposed 
method against benchmark test cases is analyzed, including qualitative and quantitative comparisons of 
the obtained results with the available experimental data as well as other solvers, while Chapter 9 contains 
some conclusions and information on ongoing and future work.  
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2. Fluid flow 
 
2.1. Governing equations 
 
2.1.1. The Navier-Stokes equations 

A compressible viscous flow is described by the Navier-Stokes equations (named of the French 
mathematician Claude Louis Marie Henri Navier and the English engineer Sir George Gabriel Stokes), 
which are derived by the conservation laws of mass, momentum and energy [Bla01]. In three dimensions, 
arranged into convective (inviscid), diffusive (viscous) and source terms, they can be written in 
differential form as: 

 
inv inv inv vis vis visW F G J F G J S

t x y z x y z
∂ ∂ ∂ ∂ ∂ ∂ ∂

+ + + − − − =
∂ ∂ ∂ ∂ ∂ ∂ ∂

     



 
(2.1) 

  

The conservative variables’ vector ( ), , , ,W u v w Eρ ρ ρ ρ ρ Τ=


, the inviscid flux vectors , ,inv inv invF G J
  , 

the viscous flux vectors , ,vis vis visF G J
   and the vector of the source term S



are expressed in terms of the 
primitive variables ( ), , , ,u v w pρ . The source term is set to zero in this work, while the inviscid and 
viscous vectors are defined as [Koo00, Lyg14e]: 
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For an inviscid flow only the corresponding flux vectors , ,inv inv invF G J

 

are considered, leading in the 
so-called Euler equations (named of the Swiss mathematician and physicist Leonhard Euler). On the other 
hand, for a viscous flow the diffusive flux vectors , ,vis vis visF G J

 

 have to be taken into account, based on 

the components of the stress tensor ( ), , , , ,xx xy xz yy yz zzτ τ τ τ τ τ , which are defined for Newtonian fluids 

(shear stresses proportional to the velocity gradients) as [Hir90] 
  

( )2
3

ji
ij ij

j i

uu V
x x

τ µ δ
  ∂∂

= + − ∇ ⋅   ∂ ∂   



 (2.4) 

  
where μ is the dynamic viscosity coefficient, which for a perfect gas depends strongly on the temperature 
but only weakly on the pressure [Bla01]. Considering this state, it can be computed from the local 
temperature of the fluid (in K) via the Sutherland formula as [Luo05] 
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3 2

1

2

c T
T c

µ =
+

 (2.5) 

  
where the coefficients c1 and c2 are equal to 1.458E-6 kg m-1 sec-1 K-1/2 and 110.4 K respectively, e.g., the 
obtained dynamic viscosity for air at 300 K equals to 1.846E-5 kg m-1 sec-1. Using another formulation of 
the same equation, which is based on the reference dynamic viscosity μref and the reference temperature 
Tref  (usually the ones in the far field) it can be computed as [Luo05]: 

  
3 2

2

2

ref
ref

ref

T cT
T T c

µ µ
  +

=    + 
 (2.6) 

  
The three-dimensional Navier-Stokes equations are expressed by a set of five equations with five 

conservative unknown variables ( ), , , ,u v w Eρ ρ ρ ρ ρ ; nevertheless, they contain seven unknown flow field 
variables, namely ( ), , , , , ,u v w E p Tρ , necessitating two more equations. Considering that in pure 
aerodynamics, the fluid can quite reasonably be assumed to behave like a perfect gas, the perfect gas state 
equation is included in the equation set [Lan98] 

  
gp R Tρ=  (2.7) 

  
where the gas constant Rg equals to 287.04 m2sec-2K-1 and it is associated with the constant pressure and 
volume specific heat coefficients with the following equations 

  
, /g p v p vR c c c cγ= − =  (2.8) 
  

while these coefficients are defined as follows 
  

,p vh c T e c T= =  (2.9) 
  

where h and e are the enthalpy and internal energy of the gas per unit mass. The specific heat coefficients 
are assumed constants, although for different gases they take different values; for air the constant pressure 
specific heat coefficient cp equals to 1004.64 m2sec-2K-1, the constant volume specific heat coefficient cv 
equals to 717.6 m2sec-2K-1 and the dimensionless coefficient γ equals to 1.4 [Lan98]. The last expression 
completing the equation set, associates the pressure p with the total energy per unit volume ρΕ [Bla01] 

  

( ) ( )

( ) ( ) ( )

2 2 2 2 2 2

2 2 2 2 2 2

1 1
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 (2.10) 

  
where ρe is the internal energy per unit volume The corresponding specific total enthalpy ht  then is 
associated with the pressure p and the total energy per unit volume ρΕ as: 

  

( ) ( )2 2 21
1 2t

E p ph u v wρ γ
ρ ρ γ
+

= = + + +
−

 (2.11) 
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The heat flux vector ( ), ,x y zq q q  in the energy equation is defined accordingly to the stress tensor as 

[Bla01] 
  

,
Pr

p
i

c
q T

µ
χ χ= ∇ =  (2.12) 

  
where the conductivity coefficient χ depends on the dimensionless Prandtl number Pr (named in honor of 
the German professor Ludwig Prandtl), and is commonly considered constant in the entire flow field and 
equal to 0.72 for perfect gases. 

Following the common strategy in CFD as well as in experimental fluid mechanics, the governing 
equations are expressed in dimensionless form;  the normalization of the variables is performed utilizing a 
characteristic length Lref, the free-stream velocity Vref, the free-stream density ρref, the free-stream dynamic 
viscosity μref and the constant volume specific heat coefficient cv as: 

  

, , , , 1gi i
i i g

ref ref ref ref v

Rx ux u R
L V c

ρ µρ µ γ
ρ µ

= = = = = = −

    (2.13) 

  
Considering the previous normalizations, the rest of the variables, included in the equations (2.1)-

(2.3) and (2.10)-(2.11), are expressed as 
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
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while taking into account the dimensionless Reynolds number (named of the British engineer Osborne 
Reynolds), defined as [Mun98] 

  

Re ref ref ref

ref

V Lρ
µ

=  (2.15) 

  
the dynamic viscosity μ in the equations for the stress tensor and heat flux vector, is substituted by the 
term Reµ : 
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RePriq Tµγ
= ∇





  (2.17) 

  
Additionally, the constant pressure and the constant volume specific heat coefficients are normalized 

( pc γ=  and 1vc = ), while the perfect gas equation is transformed as: 
  

( ) ( )2 2 1g ref ref ref g v ref v gp R T p V R c T V c p R T p Tρ ρ ρρ ρ ρ γ= ⇒ = ⇒ = ⇒ = −    

      (2.18) 
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As far as the dimensionless dynamic viscosity is concerned, it can be assumed quite safely to be 
equal to unity in compressible flow simulations as these encountered in this work or preferably evaluated 
via the Sutherland law using the dimensionless temperature as [Mar07] 
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where T  is the dimensionless local temperature, while refT  and refT are the dimensional and the 
dimensionless reference temperature (usually the one in the far field).  Finally, two more expressions used 
in this work, concern the computation of the local speed of sound at a node P [Lan98] 

  

( )1 P
P g P P

P

pc R T T γγ γ γ
ρ

= = − =

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



 (2.20) 

  
and the computation of corresponding Mach number [Mun98]: 

  
2 2 2
P P P
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u v w
M

c
+ +

=
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

 (2.21) 

  
For simplification reasons the superscript "~", denoting the normalized variables, will be neglected at 

the next sections. 
 
2.1.2. The Reynolds Averaged Navier-Stokes (RANS) equations 

Although the Navier-Stokes equations can account theoretically for turbulent flows (DNS-Direct 
Numerical Simulation), their utilization is limited only to relatively simple flow problems at low 
Reynolds numbers, due to their requirements for excessive spatial resolution and computation time. 
Instead of them, approximation methods are preferred, such as the Large Eddy Simulation (LES) or the 
Reynolds Averaged Navier Stokes (RANS) equations, the latter implemented in this work. The first 
modelling approach was introduced by Osborne Reynolds in 1895, in accordance with which the flow 
variables are decomposed into a mean and a fluctuating part, e.g., a flow variable Ui is analyzed as 
follows 

  
, 0i i i iU U U U′ ′= + =  (2.22) 

  
where the turbulent fluctuation is described by a prime and the mean value by an overbar, the latter 
defined as: 

  
1lim

t T

i iT
t

U U dt
T

+

→∞
= ∫  (2.23) 
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Nevertheless, the previous equations can be implemented only in incompressible flows or in flows in 
which the value of density can be assumed constant [Bla01]. Thus, for compressible flows the density 
(mass) or the Favre averaging method is applied to certain quantities (velocity, enthalpy, energy), while 
for the rest variables (density and pressure) the Reynolds averaging approach is maintained [Bla01]. As 
such the previous equations are transformed for the velocity, enthalpy and energy as: 

  
, 0i i i iU U U Uρ′′ ′′= + =  (2.24) 

  
1 1lim

t T

i iT
t

U U dt
T

ρ
ρ

+

→∞
= ∫  (2.25) 

  
Furthermore, in the governing equations the turbulent kinetic energy k has to be considered, which is 

defined, using the velocity fluctuations, as follows: 
  


1
2 i ik u uρ ρ ′′ ′′=  (2.26) 

  
With the above approaches the Favre and Reynolds Averaged Navier-Stokes (RANS) equations are 

derived in the following formulation (implemented in this study) [Lyg14e] 
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E p u E p v E p w

ρ ρ ρ
ρ ρ ρ
ρ ρ ρ
ρ ρ ρ

ρ ρ ρ

     
     +     
     += = =
     

+     
     + + +     

 

 (2.28) 

  
0 0

, ,

0

xx yx
vis vis

xy yy

xz yz

xx xy xz x tx yx yy yz y ty

zx
vis

zy

zz

zx zy zz z tz

F G

u v w q E u v w q E

J

u v w q E

τ τ
τ τ
τ τ

τ τ τ τ τ τ

τ
τ
τ

τ τ τ

   
   
   
   = =
   
   
   + + + + + + + +   

 
 
 
 =
 
 
 + + + + 



 (2.29) 

  
where the mean total energy per unit volume ρΕ and the corresponding mean specific total enthalpy ht, 
which include the contribution of the turbulent kinetic energy k, can be evaluated as [Koo00]: 
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( ) ( )2 2 21
1 2

pE u v w kρ ρ ρ
γ

= + + + +
−

 (2.30) 

  

( ) ( )2 2 21
1 2t

E p ph u v w kρ γ
ρ ρ γ
+

= = + + + +
−

 (2.31) 

  
Similarly, the viscous stress tensor is extended in the momentum and energy equation by the 

corresponding Favre averaged turbulent stress tensor t
ijτ

 

[Bla01]: 
  


t
ij i ju uτ ρ ′′ ′′= −  (2.32) 

  
Based on the Boussinesq hypothesis (named in honor of the French mathematician and physicist 

Joseph Valentin Boussinesq), which assumes a linear relationship between the turbulent shear stress and 
the mean rate strain, the total averaged stress tensor τij, divided in the laminar part denoted by the 
superscript l and the turbulent part denoted by the superscript t, is defined as [Koo00]: 

  

( ) ( )

( )

2 2 2
Re 3 3 3

2 2
Re 3 3

j jl t i i
ij ij ij ij t ij ij

j i j i

ji
t ij ij

j i

u uu uV V k
x x x x

uu V k
x x

µτ τ τ δ µ δ ρ δ

µ µ δ ρ δ

         ∂ ∂∂ ∂
   = + = + − ∇ ⋅ + + − ∇ ⋅ − =         ∂ ∂ ∂ ∂               

  ∂∂ + + − ∇ ⋅ −     ∂ ∂     

 



 (2.33) 

  
The total averaged thermal vector iq  is defined accordingly to the total averaged stress tensor as 

[Lyg14e] 
  

RePr Pr
l t t

i i i
t

q q q T Tµ γµγ
= + = ∇ + ∇  (2.34) 

  
where Prt is the turbulent Prandtl number, which is in general assumed to be constant in the entire flow 
field and equal to 0.9 for perfect gases or air. In case of the k-ε turbulence model we define term 

itxΕ , 
which corresponds to the partial derivative of the turbulent kinetic energy k, as 

  

Rei

t
tx

k i

k
x

µµ
σ

  ∂
Ε = +  ∂ 

 (2.35) 

  
while in case of the k-ω and SST turbulence model as: 

  

Reitx t k
i

k
x

µ µ σ ∂ Ε = +  ∂ 
 (2.36) 

  
The term μt is the turbulent dynamic viscosity, while σk is a constant; for their evaluation as well as 

for the computation of the turbulent kinetic energy k, appropriate turbulence models have to employed 
along with the RANS equations. 
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2.1.3. Turbulence models 

Three two-equation turbulence models have been incorporated in the present algorithm, namely k-ε, 
k-ω and SST, to predict the features of high Reynolds flows. The interaction between the turbulence 
model PDE's and the Navier-Stokes ones is obtained mainly via the turbulent dynamic viscosity. No 
additional model was included to simulate transition. 
 
2.1.3.1. Turbulence model k-ε 

The turbulence model k-ε, which is one of the most widely applied two-equation eddy-viscosity 
models, is based on the solution of PDE's for the turbulent kinetic energy k and the turbulent dissipation 
rate ε [Lau74]. Its dimensionless differential formulation is similar to this of the flow model with the 
exception of the non-zero source term: 

  
inv inv inv vis vis vis

k k k k k k k
k

W F G J F G J S
t x y z x y z
ε ε ε ε ε ε ε

ε
∂ ∂ ∂ ∂ ∂ ∂ ∂

+ + + − − − =
∂ ∂ ∂ ∂ ∂ ∂ ∂

     



 (2.37) 

  

The ( ),ε ρ ρε Τ=


kW k  is the conservative variables vector, while the advective (inv), the diffusive 
(vis), and the source term vectors are defined as 

  

, ,inv inv inv
k k k

uk vk wk
F G J

u v wε ε ε
ρ ρ ρ
ρ ε ρ ε ρ ε

     
= = =     
     

 

 (2.38) 

  

Re Re Re
, ,

Re Re Re

t t t

k k kvis vis vis
k k k

t t t

k k k
x y z

F G J

x y z

ε ε ε

ε ε ε

µ µ µµ µ µ
σ σ σ

µ µ µµ ε µ ε µ ε
σ σ σ

          ∂ ∂ ∂
+ + +          ∂ ∂ ∂          = = =          ∂ ∂ ∂     + + +          ∂ ∂ ∂          

 

 (2.39) 

  

2

1 1 2 2

LR
k k

k LR
k

P S
S

c f P c f S
k k

ε
ε

ρε

ε ερ

 − +
 =  − + 
 



 (2.40) 

  
where the terms σk, σε, c1, c2, f1 and f2 in the source term vector are constants with values σk=1, σε=1.3, 
c1=1.44, c2=1.92, f1=1 and f2=1, while the terms Sk

LR and Sε
LR are assumed equal to zero for high 

Reynolds number flows (as those examined in our study) [Koo00]. The turbulent viscosity μt is evaluated 
as [Koo00, Kou03, ANSYS06] 

  
2

t
kf cµ µ

ρµ
ε

=  (2.41) 

  
with the constants cμ and fμ being equal to 0.09 and 1 respectively, while the turbulent energy production 
term Pk is computed as [Koo00]: 
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( )
2

2

2

2 22 2

2
3

2 2
3 3

2 2
3 3

2 2 2

t i
k ij

j

ji i
t t

j j i

t

t

uP k c
x

uu uk c c
x x x

u v w u v wk
x y z x y z

u v w u v u w
x y z y x z

ρ τ

ρ µ µ

ρ µ

µ

∂
= − ∇ ⋅ +

∂

   ∂∂ ∂ − ∇ ⋅ − ∇ ⋅ + + =  ∂ ∂ ∂   

   ∂ ∂ ∂ ∂ ∂ ∂
− + + − + + +   ∂ ∂ ∂ ∂ ∂ ∂   

   ∂ ∂ ∂ ∂ ∂ ∂ ∂   + + + + + + +      ∂ ∂ ∂ ∂ ∂ ∂      



 

22 v w
x z y

  ∂ ∂  + +   ∂ ∂ ∂    

 (2.42) 

  

The second term ( ( ) ( )22 3 t cµ− ∇ ⋅


) of the turbulent energy production term Pk is decreased by some 

researchers to ( ( )22 t cµ− ∇ ⋅


), in order to prevent the values of k and ε of becoming too large through 
shocks [ANSYS06]; this situation becomes progressively worse as the mesh is refined at shocks’ regions.  

For boundary layer modelling appropriate boundary conditions are implemented at the solid wall 
region; two methods were incorporated in the present study, namely wall functions and an one-equation 
model. According to the first methodology, suitable functions are implemented instead of the governing 
equations for the computation of the kinetic energy k and the turbulent dissipation rate ε of the first layer 
nodes next to the solid boundaries. Considering the common practice of using highly stretched grids at 
this area, the aforementioned functions can be employed to the boundary nodes instead; in that case free-
slip boundary conditions are required instead of no-slip ones. Although this methodology is based on 
simplifications of boundary layer modelling, it appears to be quite popular, due to its capability to derive 
sufficiently accurate results even in coarse grids. The aforementioned functions are described as follows 
[Hir90, Mav94, Koo00, Kou03] 

  
2 3

0.5 ,u uk
c y
τ τ

µ

ε
κ

= =  (2.43) 

  
where uτ is the friction velocity and y is the distance of the boundary node from the next internal one. As 
the wall functions are based on the theoretical division of the boundary layer in two discrete areas, namely 
the linear (laminar) and the logarithmic one, uτ is defined as [Kou03] 

  
11.6

1 ln 11.6
t

y yVu
u y B yτ κ

+ +

+
+ +

 <
= = 

+ ≥

 (2.44) 

  
where the terms κ and B are constants (0.41 and 5.5 respectively), while u+ is the dimensionless velocity 
and Vt is the tangential component of velocity. y+ is the dimensionless distance of the boundary node from 
the next internal one, evaluated as [Hir90, Koo00, Kou03]: 

  

Reu yy τρ
µ

+ =  (2.45) 

  
A value of y+ between 20 and 200 has been identified by many researchers [Kou03], as appropriate to 
capture sufficiently the features of the logarithmic area of the boundary layer; thus, the selection of this 
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turbulence model has to be considered during the mesh generation procedure. The dimensionless distance 
y+ and the friction velocity uτ are evaluated through an iterative procedure (Newton-Raphson) utilizing 
equations (2.44) and (2.45), while then the friction stress tensor τw=ρuτ

2 is computed to contribute to the 
viscous terms' fluxes of the flow governing equations [Koo00].  

Except the previously described formulation (named at next WF1), according to which Dirichlet 
conditions are imposed for both the turbulent kinetic energy k and the dissipation rate ε of the boundary 
nodes, another formulation of wall functions (named at next WF2) has been included in the present 
algorithm considering Dirichlet conditions only for ε, while k is computed via equation (2.37). In 
accordance with this method, the turbulent dissipation rate ε of boundary nodes is evaluated as follows 
[Kou03] 

  
3/ 4 3/ 2c k

y
µε
κ

=  (2.46) 

  
while the friction stress, the dimensionless distance, the dimensionless velocity and the turbulent energy 
production term are defined as [Kou03]: 

  

( )
1/ 4 1/ 2

11.6
Re

11.61 ln

t

w t

V y
y

Vc k y
y B

µ

µ

τ
ρ

κ

+

+

+

 <


= 
≥

 +


 (2.47) 

  
1/ 4 1/ 2

Re
c k y

y µρ
µ

+ =  (2.48) 

  
1/ 4 1/ 2

t

w

V c k
u µ

τ
+ =  (2.49) 

  

( )

3/ 4 3/ 2

1/ 4 1/ 2 3/ 4 3/ 2 1 ln

t
w

k
t

w

c k uV
y y

P
c k c k

y B
y y

µ

µ µ

ρ
τ

ρ
τ

κ κ

+

+


−

= 
  − +   

 (2.50) 

  
The second formulation considers the implementation of an one-equation model near the solid wall 

boundaries along with no-slip boundary conditions. Equation (2.37) is still being utilized for turbulent 
kinetic energy k, while for dissipation rate ε and turbulent dynamic viscosity μt the following equations 
are employed [Jon 97] 

  

( )
3

2

1eq
k
lε

ρε ρ=  (2.51) 

  
  

t c l kµ µµ ρ=  (2.52) 
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where lμ and lε are functions of  y+ [Jon97]: 

  
( )3

4 1 exp / 70l c y yµ µκ
− + = − −   (2.53) 

  

( )( )3 3
4 41 exp / 2l c y y cε µ µκ κ

− −+ = − −  
 (2.54) 

  

Rey ky ρ
µ

+ =  (2.55) 

  
Though the wall functions are implemented explicitly on the first layer or boundary nodes, the one-

equation model is employed via an indirect transition scheme. The transition from the one-equation model 
to the two-equation governing equations, while getting away from the solid wall boundaries, is achieved 
by using a blending interpolation coefficient λ, taking values between 0 and 1. Thus, the expressions for 
dissipation rate ε and turbulent dynamic viscosity μt become [Jon97] 

  
( ) ( )

Re
j t

j j

u
S

t x x ε
ε

ρερε µµ ελ
σ

 ∂∂   ∂
 + − + = ∂ ∂ ∂   

 (2.56) 

  

( )
32 2

1 1 2 2 1k
kS c f P c f

k k lε
ε

ε ε ρλ λ α ρε
    = − + − −      

 (2.57) 

  

( )
2 1

21t
kf c c k lµ µ µ µ

ρµ λ λ ρ
ε

= + −  (2.58) 

  
where α is a time constant taking values of the order of unity, adjusting time stiffness of ε at the boundary 
layer region [Jon97]. The interpolation coefficient λ controls not only the distance from the boundaries, in 
which transition takes place, but also the length of this transition over the computational mesh; it is 
computed via a hyperbolic tangential function as [Jon97] 

  
*Re Re1 1 tanh

2
y y

A
λ

  −
= +      

 (2.59) 

  

Re Rey
y kρ
µ

=  (2.60) 

  
where Rey is the local Reynolds number, depending on the distance from the closest wall and the laminar 
kinetic energy as shown in equation (2.60), while Rey* is the criterion for transition from the one-equation 
model to the two-equation one, with typical values of 50-200 [Jon97]. Constant A with typical values 
between 1 and 10, controls the number of cells, within which the transition is completed, and 
consequently the sharpness of this transition. 

Finally, in order to control the unphysical increase of the source term (independently of the 
implemented formulation of boundary conditions), especially at stagnation points, special modifications 
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have been proposed in the open literature, such as the Kato-Launder modification, the Yap correction 
method, an explicit limitation to the computed corrections, the implicit treatment of the source term in 
case of an explicit iterative scheme, etc. [Kun92, Mav94, Dur96, Bla01, Kou03, Lyg14a, Lyg15], the 
latter being employed in this work. 

 
2.1.3.2. Turbulence model k-ω 

The second incorporated two-equation turbulence model is k-ω [Saf74], which is described by 
similar to the previous model dimensionless differential  governing equations (equation (2.37)), while its 
inviscid, viscous and source terms, based on the conservative variables (ρk, ρω), are defined as 

  

, ,inv inv inv
k k k

uk vk wk
F G J

u v wω ω ω

ρ ρ ρ
ρ ω ρ ω ρ ω

     
= = =     
     

 

 (2.61) 

  

ReRe Re
, ,

Re Re Re

t kt k t k
vis vis vis

k k k

t t t

kk k
yx z

F G J

x y z

ω ω ω

ω ω ω

µµ µµ σµ σ µ σ

µ ω µ ω µ ωµ σ µ σ µ σ

 ∂   ∂ ∂    ++ +        ∂∂ ∂        = = =
    ∂ ∂ ∂     + + +          ∂ ∂ ∂         

 

 (2.62) 

  
*

2

k

k
k

P k
S

P
k

ω

β ρω
ωα βρω

 −
 =  − 
 



 (2.63) 

  
with constant values σk=0.5, σω=0.5, α=5/9,  β=3/40 and β*=0.09 [Kim03]. The turbulent energy 
production term Pk is evaluated similarly to k-ε model, while the turbulent viscosity is computed as 

  
*

t
kρµ α
ω

=  (2.64) 

  
where constant α* is set equal to unity. Special treatment of the model’s source term is required as well, 
to minimize a possible excessive and sudden increase in the values of the conservative variables; 
therefore, besides the implicit treatment of the source term in case of an explicit iterative scheme [Bla01], 
the turbulent energy production term is limited as follows [Kim03, Men03a]: 

  
( )*min ,10k kP P kβ ρω=  (2.65) 

  
2.1.3.3. Turbulence model SST 

The last incorporated turbulence model is SST (Shear Stress Transport) [Men94, Men03a, Men03b, 
NASA], which is a combination of the previously presented k-ω and k-ε models. The transition from the 
first to the second, while getting away from solid wall boundaries, is achieved by using appropriate 
blending functions. The inviscid and viscous terms of the SST model’s governing equations are exactly 
the same with those of k-ω, while the source term slightly differs as [Men03b, NASA]: 

  

SST k kS S Dω ω= +
  

 (2.66) 
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( )

*

*
2 2

1

0
,

2 1

k

k k
k

t

P k
S D

P F kω ω ω

β ρω
ρσγ ρ βρω ω

µ ω

 −  
   = =   − − ∇ ∇     

 

 (2.67) 

  

The additional vector in the source term kD ω



accounts for the switching between the two models. It 
includes the first blending function F1, which is equal to zero far away from the surface (k-ε model) and 
switches over to unity inside the boundary layer region (k-ω model). The turbulent energy production 
term is computed via equation (2.42), while the first blending function F1 is evaluated as [Men03b]: 

  
( )4

1 1

2
1 * 2 2

10
2

tanh arg

4500arg min max , ,
Re

1max 2 ,10

k

k

F

kk
d d CD d

CD k

ω

ω

ω ω

ρσµ
β ω ρ ω

ρσ ω
ω

−

=

  
=       

 = ∇ ∇ 
 

 (2.68) 

  
The value of the turbulent viscosity is also based on a blending function; for its calculation the 

invariant of strain rates tensor is utilized [Men03, NASA]: 
  

( )
1

1 2max ,t
k

SF
ραµ
α ω

=  (2.69) 

  

( )
1

2 2 22 2 2 2

1 12 2
2 2

2 2 2

j ji i
ij ij

j i j i

u uu uS S S
x x x x

u v w u v u w v w
x y z y x z x z y

    ∂ ∂∂ ∂
= = + + =        ∂ ∂ ∂ ∂    

      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     + + + + + + + +           ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂            

 (2.70) 

  
1
2

ji
ij

j i

uuS
x x

 ∂∂
= +  ∂ ∂ 

 (2.71) 

  
( )2

2 2

2 * 2

tanh arg

2 500arg max ,
Re

F

k
d d

µ
β ω ρ ω

=

 
=   

 

 (2.72) 

  
The φ  coefficients of the model, are also obtained by a blending function, which defines their value 

between a minimum value 1φ  and maximum value 2φ  (β* and α1 are constant values equal to 0.09 and 
0.31, respectively). This function, utilizing minimum and maximum constants β1=0.075, β2=0.0828, 
γ1

*=0.555, γ2
*=0.44, σk1=0.85, σk2=1, σω1=0.5 and σω2=0.856, is described as follows: 

  
( )1 1 1 21F Fφ φ φ= + −  (2.73) 
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Because of the activation of k-ω model inside the boundary layer region, special treatment of the 

source term of SST model is performed in the same to k-ω approach way [Liu96, Kim03, Men03b, 
Lyg14a, Lyg15]. 
 
2.2. Spatial discretization 

For the discretization of the computational field and consequently the computation of numerical 
fluxes of flow and turbulence models, a node-centered finite-volume scheme is employed. According to 
this scheme the examined grid is divided into a number of finite control volumes, in each of which the 
magnitude of the conservative variables is assumed constant. In Figure 2.1 a median dual control volume 
for a node P in a two-dimensional triangular mesh is illustrated; it is defined by an assembly of linear 
segments, where each segment is connected to the midpoint of an edge and to the barycenter of its 
neighbouring triangular face [Kal96, Kal05a, Lyg12b, Sar14]. 
 

 
Figure 2.1: Median dual control volume of a node P in a two-dimensional triangular grid. 

 
In three dimensions the employed median dual control volume of a node P is constructed by 

connecting lines defined by edge midpoints, barycenters of faces and barycenters of elements, sharing this 
node [Mav94, Kal96, Mav96, Koo00, Bla01, Kim03, Kou03, Kal05a, Lyg12b]. According to this 
definition the volume of each element is equally divided to each of its nodes' control volumes. 
Contributions to the control volume of a node P from different types of elements (prismatic, pyramidical 
and tetrahedral) are shown in Figure 2.2. The volume of a tetrahedral element can be computed, based on 
the coordinates of its nodes, as [Wolfram] 

  
1 1 1

2 2 2

3 3 3

4 4 4

1
11
13!
1

T

x y z
x y z

V
x y z
x y z

=  (2.74) 

  
while the computation of the volumes of the prismatic and pyramidical elements is performed with their 
suitable division in tetrahedral ones.   
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Figure 2.2: Contribution of a prismatic, pyramidical and tetrahedral element to the control volume of a node P. 

 
Considering the aforementioned discretization scheme, equation (2.1) is integrated over the control 

volume PCV of each node P as 
  

P P P

inv inv inv vis vis vis

CV CV CV

W F G J F G Jdxdydz dxdydz Sdxdzdy
t x y z x y z

∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + − − − =

∂ ∂ ∂ ∂ ∂ ∂ ∂∫∫∫ ∫∫∫ ∫∫∫
     



 (2.75) 

  
while employing the Green-Gauss divergence theorem is transformed as 

  

ˆ ˆ( )
P P P

inv vis

CV CV CV

W dxdydz H H ds S dxdzdy
t ∂

∂
+ − =

∂∫∫∫ ∫∫ ∫∫∫


 



 (2.76) 

  
where PCV∂  denotes the boundaries of the control volume of node P, defined by the facets constructed 

around the edges connecting node P with each neighbouring node Q. If PQCV∂ is the interfacing part of 

PCV∂  and QCV∂ , KN(P) is the set of neighbouring nodes to P,  and Γ is the domain's external boundary, 
then PCV∂ is defined as: 

  
( )

( )N

P PQ P
Q K P

CV CV CV
∈

∂ = ∂ + ∂ ∩Γ


 
(2.77) 

  

Ĥ


 is the vector of the inviscid or viscous numerical fluxes, evaluated at the midpoint of an edge 
connected to node P; this midpoint actually coincides with the interface between the adjacent control 
volumes of nodes P and Q connected with this edge. As mentioned in Introduction, an edge-based data 
structure is used to reduce the required computational effort and accelerate the solution. Utilizing the 
outward unit normal vector ˆPQn



 of the corresponding PQCV∂ face of the control volume, the 
aforementioned vectors are described as [Koo00, Kou03] 

  



Fluid flow 
 

2-15 
 

, , ,

, , ,

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

= + +

= + +



 



 

inv inv inv inv
PQ x PQ y PQ z

vis vis vis vis
PQ x PQ y PQ z

H n F n G n J

H n F n G n J
 (2.78) 

  

, , ,ˆ ˆ ˆ ˆ( , , )= =






PQ
PQ PQ x PQ y PQ z

PQ

n
n n n n

n
 (2.79) 

  
where PQn is defined as the vector sum of the outward normal vectors of all the facets forming PQCV∂ · 
Their computation is achieved by a single element-loop in a pre-computation stage, deriving actually the 
main edge-wise data structure of the algorithm. In Figure 2.3 part of such a vector PQn

 contributed by a 
tetrahedron is presented; the illustrated barycenter of the tetrahedron G, medians of the faces G1, G2 and 
of the edge M are utilized for the computation of this vector.   
 

 
Figure 2.3: Part of vector PQn  contributed by a tetrahedron. 

 
Thus, equation (2.76) is transformed as follows: 

  

( )

ˆ ˆ ˆ ˆ( ) ( )
NP PQ P P

inv vis inv vis

Q K PCV CV CV CV

W dxdydz H H ds H H ds S dxdzdy
t ∈ ∂ ∂ ∩Γ

∂
+ − + − =

∂ ∑∫∫∫ ∫∫ ∫∫ ∫∫∫


   



 (2.80) 

  
Assuming that the conservative variables at node P are equal to their mean values over PCV , (main 

idea of the finite-volume method) the first term of equation (2.80) becomes: 
   

P P

P
CV CVP P

W dW dWdxdydz dxdydz V
t dt dt

   ∂
= =   ∂    

∫∫∫ ∫∫∫
  

 (2.81) 
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Expressing then the integrals of the numerical fluxes as summations of fluxes through the faces 
composing the control volume of node P, equation (2.80) is transformed as 

  

( ) ( )
, ,

( ) ( )N out P N out P P

inv inv vis vis
P PQ P out PQ P out

Q K P K CV Q K P K CV CVP

dW V S dxdzdy
dt ∈ ∈∂ ∩Γ ∈ ∈∂ ∩Γ

 
+ Φ + Φ − Φ − Φ = 

 
∑ ∑ ∑ ∑ ∫∫∫




   

 (2.82) 

  
  

( ) ( )

( ) ( ), ,

ˆ ˆ, , , , ,

ˆ ˆ, , , , ,

PQ PQ

P P

inv inv L R vis vis L R
PQ PQ PQ PQ PQ PQ PQ PQ

CV CV

inv inv vis vis
P out P out out P out P out out

CV CV

H ds f W W n H ds g W W n

H ds f W W n H ds g W W n

∂ ∂

∂ ∩Γ ∂ ∩Γ

Φ = = Φ = =

Φ = = Φ = =

∫∫ ∫∫

∫∫ ∫∫

 


    

  

 


    

  

 (2.83) 

  
where L

PQW


 and R
PQW


 are the vectors of the conservative variables on the left and right side of the edge 

PQ respectively, while outW


is the corresponding vector on the boundary. 
 
2.3. Numerical fluxes 
 
2.3.1. Inviscid fluxes 

For the computation of the flow equations’ convective numerical fluxes, a one-dimensional Riemann 
problem in the direction of the normal vector of each face of the control volume of a node P is 
considered. As its exact solution would require excessive computational effort [Lan98], an upwind 
scheme using Roe’s approximate Riemann solver [Roe81] is employed to evaluate the inviscid fluxes at 
the midpoint of the edge PQ, as follows 

   

( ) ( )1 1( , ) ( , )
2 2

inv inv L inv R R L
PQPQ PQ PQ PQ PQ PQ PQH W n H W n A W WΦ = + − −

     

 

  (2.84) 

  
where A  is the Jacobian matrix of the convective flux vector invH



, also evaluated at the midpoint of the 
corresponding edge PQ by utilizing Roe's averaged values of the primitive variables (denoted with tilde ~) 
[Roe81, Ven95, Lan98, Koo00, Kou03], defined as 

   

L L R R
PQ

L R

U U
U

ρ ρ

ρ ρ

+
=

+

 



  (2.85) 

  

where LU


 and RU


 are the values of primitive variables at the left and right side of the edge PQ 
respectively, assuming a first-order accurate scheme; in case of a higher-order one these values have to be 
reconstructed using the Taylor series expansions, as analyzed in next section. Additional information on 
the computation of the Jacobian matrix of the convective flux vector is given in Appendix A. 

Based on the following equation (2.86), equation (2.84) is transformed in an equivalent formulation 
(2.87), implemented finally in this work [Roe81, Lan98]: 

  

( )( ) ( )inv R inv L R L
PQPQ PQ PQ PQH W H W A W W−

− = −
     

  (2.86) 
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( ) ( ),inv inv L R L
PQPQ PQ PQ PQ PQH W n A W W−

Φ = + −
   



  (2.87) 
  

Considering the edge-wise data structure of the algorithm, evaluation of the convective fluxes for all 
the mesh nodes is achieved with a single edge-loop, as no information is needed about the cell topology 
[Lyg14a, Lyg15]. 
  
2.3.2. Higher-order accurate schemes and slope limiters 

For a first-order accurate spatial scheme the left and right states of an edge PQ are approximated by 
the values at the end-points P and Q respectively. In a higher-order accurate scheme, these states are 
reconstructed with the Taylor series expansions, taking into account the corresponding values of more 
mesh nodes when computing the numerical fluxes. The incorporated higher-order accurate scheme is 
based on the MUSCL (Monotonic Upstream Scheme for Conservation Laws) reconstruction of the 
primitives or conservatives variables, using additionally a slope limiter (Van Albada -Van Leer 
[VanA82], Min-mod [Swe84] or Barth-Jespersen [Bar89]) to control the total variation of the 
reconstructed field [VanL85, Bar92, And94, Lan98, Bla01, ANSYS06, Lyg13b]. Thus, the left and right 
states for a primitive or a conservative variable U at the midpoint of an edge PQ are approximated as 
[Bar92, And94, Bla01, ANSYS06, Lyg13c, Sar14] 

   
1 ( )
2
1 ( )
2

L L
PQ P PQ

R R
PQ Q PQ

U U U r

U U U r

= + ⋅ ∇ ⋅

= − ⋅ ∇ ⋅





 (2.88) 

  
where, the first R/H side terms are the left and right nodes’ values of variable U and PQr  is the vector 
connecting these nodes. In case of a second-order accurate scheme the extrapolation gradients ( )LU∇  

and ( )RU∇  are equal to the gradients ( )PU∇  and ( )QU∇  at the nodes P and Q respectively. For the 
evaluation of these derivatives the element-by-element approach [Bar92] can be employed, which for a 
node P, being the common vertex of the neighbouring tetrahedra T, is described as [Bar92]: 

   

( ) ( )
( )

1
4

T

T
P T

T K PP

VU U
V ∈

∇ = ∇∑  (2.89) 

  
where VP and VT are the volumes of the control volume of node P and adjacent element T. Nevertheless, 
in this study an equivalent expression, derived by the Green-Gauss linear representation method, is 
employed, which is more suitable for the utilized edge-based data structure of the algorithm [Bar92, 
Bla01]: 

   

( ) ( )
( )

1 1
2

N

P Q PQP
Q K PP

U U U n
V ∈

∇ = + ⋅∑ 

 (2.90) 

  
In case of a boundary node (Figure 2.5) the previous equation is modified to include also the 

boundary interfaces as follows [Lyg13c]: 
   

( ) ( )
( )( )

1 1
2

N out P

P Q PQ P outP
Q K P K CP

U U U n U n
V ∈ ∈∂ ∩Γ

 
∇ = + ⋅ + ⋅  

 
∑ ∑   (2.91) 
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For the minimization of the total variation in the reconstructed field three slope limiters have been 
incorporated in the present algorithm, namely the Van Albada -Van Leer [VanA82], the Min-mod 
[Swe84] and the Barth-Jespersen [Bar89].  

The first limiter is actually an expansion of the MUSCL scheme, maintaining monotonicity between 
the values at the end-points P and Q, while its formulation is based on the centered  ( )c

PQU∇

 

and upwind 

gradients ( ) ( ),u u

P QU U∇ ∇ , defined as: 

   
( )

( ) ( )

( ) ( )

2( )

2( )

c
PQ Q PPQ

u c
PP PQ

u c
QQ PQ

U r U U

U U U

U U U

∇ ⋅ = −

∇ = ∇ − ∇

∇ = ∇ − ∇



 (2.92) 

  
Once these gradients are obtained, equation (2.88) including a non-linear slope limiter is formulated 

as [Bla01, Lyg13c] 
   

( ) ( )( )
( ) ( )( )

1 ,
2
1 ,
2

u cL
PQ P PQ PQP PQ

u cR
PQ Q PQ PQQ PQ

U U U r U r

U U U r U r

= + ⋅Φ ∇ ⋅ ∇ ⋅

= − ⋅Φ ∇ ⋅ ∇ ⋅

 

 

 (2.93) 

  
where Φ  is the limiter function, described as [VanA82] 

   
2 2

2 2

( ) ( ) 0( , ) 2
0 0

a e b b e a if aba b a b e
if ab

 + + +
>Φ = + +

 ≤

 (2.94) 

  
where e is a very small number with a typical value of 1.0E-16, used to prevent division by zero. 

The second incorporated Min-mod limiter is characterized by the smoothing of solution, choosing 
always the slope with the smallest magnitude; its formulation is exactly the same to this of the Van 
Albada-Van Leer (equations (2.93) and (2.94)), while the corresponding limiting function Φ  is defined 
as [Swe84, Lyg13c]: 

   
 if  and 0

( , )  if  and 0
0                    if 0

a a b ab
a b b b a ab

ab

 < >
Φ = < >
 ≤

 (2.95) 

  
The Barth-Jespersen [Bar89] approach extends limitation further of the values at the two end-nodes 

P and Q, to these of all adjacent points connected with an edge to the pre-mentioned nodes. It is 
formulated similarly to the previous limiters as [Bar89, Lyg11]  

   
1 ( )
2
1 ( )
2

L
PQ P P P PQ

R
PQ Q Q Q PQ

U U U r

U U U r

= + Ψ ⋅ ⋅ ∇ ⋅

= −Ψ ⋅ ⋅ ∇ ⋅





 (2.96) 
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where the coefficients ,P QΨ Ψ  are defined as: 
  

{ }{ }min , ( )P PQ NQ K P PΨ = Ψ ∈ ∩  (2.97) 
  

{ }
{ }

1,max 2 2

1,min 2 2

2

min 1, / 0

min 1, / 0

1 0
PQ

 ∆ ∆ ∆ >
Ψ = ∆ ∆ ∆ <
 ∆ =

 (2.98) 

  

{ }{ }
{ }{ }

2 ,

1,max max

1,min min

max

min

,

max , ( )

min , ( )

1 ( )
2

rec L P

P

P

Q N

Q N

rec L P P PQ

U U
U U
U U

U U Q K P P

U U Q K P P

U U U r

∆ = −

∆ = −

∆ = −

= ∈ ∩

= ∈ ∩

= + ⋅ ∇ ⋅


 (2.99) 

  
Although this scheme is assumed to be more effective in assuring monotonicity comparing to Van 

Albada-Van Leer and Min-mod limiters, it is susceptible of exhibiting oscillations and consequently poor 
convergence due to the overreacted limiting of small amplitude noise it entails [And94, Del13]. 

In case of an even higher-order accurate scheme, the extrapolation gradients are obtained via a 
blending function, utilizing the centered (c) and upwind (u) derivatives again, as [Kaz12, Smi07] 

   

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1 1
2
1 1 1
2

L u c
PQ PQ PQP PQ

R u c
PQ PQ PQQ PQ

U r U r U r

U r U r U r

β β

β β

 ∇ ⋅ = − ⋅ ∇ ⋅ + + ⋅ ∇ ⋅ 

 ∇ ⋅ = − ⋅ ∇ ⋅ + + ⋅ ∇ ⋅ 

  

  

 (2.100) 

  
where parameter β can be selected suitably to derive a family of reconstruction schemes; in structured 
grids β=1 yields a fully upwind scheme, β=0 a semi-upwind approximation (Fromm's scheme), and β=-1 
a central differencing one [Kaz12]. If it is set equal to 1/3, it leads to a third-order accurate upwind 
scheme, although third-order accuracy is strictly correct only for linear problems [Kaz12, Smi07]. 
Considering these gradients along with the requirement for minimization of oscillations in the 
reconstructed field, Van Albada - Van Leer limiter in a slightly different formulation to the pre-mentioned 
one is used as follows [Kaz12, Smi07] 

   

( ) ( )( )( )

( ) ( )( )( )

1 ,
2
1 ,
2

u c LL
PQ P PQ PQ PQP PQ

u c RR
PQ Q PQ PQ PQQ PQ

U U U r U r U r

U U U r U r U r

= + ⋅Χ ∇ ⋅ ∇ ⋅ ∇ ⋅

= − ⋅Χ ∇ ⋅ ∇ ⋅ ∇ ⋅

  

  

 (2.101) 

  
where Χ  is the non-linear limiter function defined as: 

   

2 2( , )
+ +

Χ =
+ +

ab ab e
a b

a b e
 (2.102) 
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2.3.3. Viscous fluxes 

The computation of viscous fluxes is based on the gradients of the velocity components and 
temperature at the middle of each edge (interface of adjacent control volumes) of the grid. For the 
evaluation of these derivatives two methods were included in the proposed algorithm, an element-based 
[Bra96, Kal96, Bla01, Kal05a, Lyg14a, Lyg15] and a nodal-averaging one [Bla01, Lyg14a, Lyg15]. 

The first methodology introduces new control volumes, the edge-dual volumes, which include all the 
neighbouring cells sharing a common edge [Kal96, Kal05a, Lyg14e]; in Figure 2.4. such volumes around 
an edge e (~PQ) are illustrated by prismatic, tetrahedral and different types of adjacent mesh elements. 
The divergence theorem is then implemented on these new finite volumes and the gradients of primitive 
variables at the midpoints of each edge are calculated, performing the surface integrals along the edge-
dual boundaries as [Kal96, Kal05a, Ahn06, Ahn07, Lyg14a, Lyg15] 

   



,
1 1

1 1 kLm
l

x x k
k le e e ke

UU U n ds n
x V V L= =

∂  = = ∂ 
∑ ∑∫  (2.103) 

  
where Ve is the volume of the edge-dual volume, m is the number of its boundary surfaces and Lk is the 
number of nodes at each such surface. Despite the capability of this method to avoid spurious oscillations 
[Kal05a], it leads to significantly increased computational effort as it requires a loop over an element-
based or a cell-based data structure [Lyg14a, Lyg14e, Lyg15]. 

 

 
Figure 2.4: Edge-dual volumes of edge e composed of prisms, tetrahedra and different types of elements. 
 
Considering the previous state along with the edge-wise evaluation of gradients at each node of the 

mesh by implementing equations (2.90) and (2.91), another scheme, the nodal-averaging one, was 
incorporated in the present algorithm [Bla01]. This method is particularly attractive, as gradients’ 
calculation can be completed by a single edge-loop, which is employed for the convective fluxes anyway, 
without requiring any additional storage. Utilizing the corresponding gradients at the end-points P and Q 
of the examined edge PQ, as well as the directional derivative along these nodes ( )PQU l∂ ∂ , this scheme 

is described mathematically as [Bla01, Lyg14a, Lyg15]: 
  

( ) ( ) ( )( )1
2 P QPQ

U U U∇ = ∇ + ∇  (2.104) 
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ˆ,
−∂  ≈ = ∂ 





 

Q P PQ
PQ

PQ PQ PQ

U U rU r
l r r

 (2.105) 

  

( ) ( ) ( ) ˆ ˆPQ PQPQ PQ PQ
PQ

UU U U r r
l

 ∂ ∇ = ∇ − ∇ ⋅ −  ∂   

 

 (2.106) 

  
Furthermore, as it depends on the edges of the grid and not on the type of the elements (tetrahedral, 

prismatic, pyramidical), it appears even more valuable in case of utilization of hybrid grids.  
 
2.3.4. Turbulence models' fluxes 

For the computation of turbulence models' fluxes the same node-centered finite-volume 
discretization scheme is implemented. The convective fluxes are evaluated at the midpoint of each edge 
PQ, employing a simple first-order accurate upwind scheme as [Lar91, And94, Koo00, Kou03, 
ANSYS06, Lyg14a, Lyg15] 

  

( ) ( ),
inv

PQ n P n QV Vφ ρ φ ρ φ+ −Φ = +  (2.107) 
  

( ) ( )max( ,0), min( ,0)n n n nV V V Vρ ρ ρ ρ+ −= =  (2.108) 
  

where φ  is each primitive variable of the model and n PQV Vn=


  is the value of the normal to the face 
around the edge PQ velocity. In general, a higher-order accurate scheme isn’t necessary for the 
computation of these numerical fluxes, as the viscous terms are the main reacting ones in turbulence 
models' PDE's; the numerical diffusion imported due to the first-order method can be assumed quite 
reasonably negligible [And94, Kou03, Lyg14a, Lyg15]. 

As far as the computation of the diffusive fluxes at the midpoint of each edge is concerned, the 
gradients of the corresponding primitive variables are needed to be pre-computed in the same way 
velocity components’ gradients are evaluated for the flow equations. Since these derivatives are obtained, 
the viscous fluxes in case of turbulence model k-ε are calculated for an edge PQ as [Kou03]: 
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kvis
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t
PQ x PQ y PQ z

k k kn n n
x y z

n n n
x y z

 (2.109) 

  
For k-ω and SST turbulence models a corresponding relation is extracted, whose differences to the 
previous one are focused on the specific dissipation rate ω equation. 
 
2.3.5. Boundary conditions 

The contribution of boundary surfaces has to be also considered in the flux balance of the 
corresponding nodes; in this study, wall, inlet, outlet and symmetry boundary conditions are encountered. 
In general such fluxes are computed at the barycenters of boundary faces, using the arithmetic averages of 
conservative variables of their nodes, and assigned to the same nodes, weighted by the area of the face, 
which corresponds to them, e.g., solid wall boundary fluxes in case of inviscid flow or inlet/outlet ones. 

As far as the solid wall boundary nodes are concerned, a free-slip condition is implemented for 
inviscid flows, while for laminar and turbulent ones a no-slip condition is used. The free-slip condition is 
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implemented implicitly, by adding a flux with zero normal to the boundary face velocity Vn, described as 
[Mav94] 

   

0n outV V n= ⋅ =




 (2.110) 
  

where ( ), , ,, ,=


out out x out y out zn n n n  is the normal to the boundary face vector. Such a vector is shown in 

Figure 2.5; the illustrated median point of face M, medians of edges MP, MQ, MR and median point of 
tetrahedron G are utilized for the computation of this normal vector. The added free-slip convective flux 
is calculated finally as follows: 
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 (2.111) 

  

 
Figure 2.5: Normal to the boundary face PQR vector outn . 

 
The same free-slip condition is applied in case of employing the turbulence model k-ε along with 

wall functions WF1 or WF2; although wall functions should be imposed at the first layer of nodes from 
the solid surface, they are implemented on the boundary nodes, considering that in the usually employed 
grids, which are highly stretched in this area, the distance of the first layer from the solid walls is very 
small [Mav94, Kou03]. In this case, the turbulent kinetic energy k and the dissipation rate ε at wall 
boundary nodes are evaluated using the wall functions, while the convective flux of equation (2.111), 
along with the diffusive flux caused by the computed friction stress tensor τw are added to the flux balance 
of the corresponding nodes [Koo00, Kou03]. 

Unlike the aforementioned flows, for laminar as well as turbulent flows employing k-ε with one-
equation model near the solid wall region, k-ω or SST model, no-slip conditions are imposed explicitly at 
the corresponding nodes, by zeroizing their components of velocity (low Reynolds number approach). As 
far as the turbulence models' variables are concerned, the turbulent kinetic energy k and the turbulent 
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dynamic viscosity μt are set similarly equal to zero at these nodes; the dissipation rate ε for the first model 
is computed by employing equation (2.56), while the specific dissipation rate for the k-ω and SST models 
is evaluated as 

   

2

60
Rewall y
µρω

β
=  (2.112) 

  
where y is the distance of the wall boundary node from the nearest non-boundary one of the grid. Due to 
this condition k-ω and SST require finer grids in this region with y+ less than 2.5 [Saf74, Men94, Bla01, 
Bre02, Kim03, Kou03, Men03a, Men03b]. 

In inlet boundary faces, an one-dimensional Riemann problem is assumed again between the face’s 
barycenter and far field for the computation of the flow PDE's convective fluxes; the obtained fluxes are 
shared then to the corresponding boundary nodes. The aforementioned problem is solved by employing 
the Steger-Warming scheme [Ste81, Lan98] via the following equation: 

   

,
inv

K KK out K outH A W A W+ −
= +

  

   (2.113) 
  

where subscript K denotes the barycenter of the boundary face, while subscript out denotes the far field; 
the values of the variables of vector outW

  are obtained either from the far field or the boundary 
barycenter, depending on the type of the flow (internal or external) [Hir90, Bla01]. Further information 
for the computation of Jacobian matrices is given in Appendix A. Following the common practice in the 
open literature [Kou03], the diffusive fluxes are omitted due to their negligible contribution away from 
solid obstacles. If a turbulent flow is encountered, Dirichlet conditions are imposed for the turbulence 
models' variables at this region. In case of k-ε model, their values are defined, based on the turbulence 
intensity Tu and the ratio of turbulent to laminar viscosity α in inlet area, as [Lau74, Kim03, Kou03]: 
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Typical values for this ratio and turbulence intensity at the inlet boundary are 0.1 and 1% respectively. In 
the same way, for k-ω and SST turbulence models the imposed values are defined as [NASA] 
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in t in
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V a
C k
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ω µ
ρ

= = =



 (2.115) 

  
where L is a characteristic length (equal to unity in this algorithm due to its dimensionless formulation), 
C1 is a constant with value between 1 and 10, and a is again the ratio of turbulent to laminar viscosity 
with value between 1.0E-2 and 1.0E-5 [NASA]. 

Similarly to inlet boundary faces, a one-dimensional Riemann problem is considered and solved at 
outlet ones for the computation of the flow PDE's convective fluxes, while the values of the variables of 
vector outW

  are obtained again either from the far field or the boundary barycenter depending on the type 
of the flow (internal or external); the viscous fluxes are neglected again [Hir90, Bla01]. However, in 
turbulence models the corresponding variables are not evaluated with Dirichlet conditions; the convective 
numerical flux for each primitive variable φ  in an outlet boundary node P is calculated via a simple 
upwind scheme, expressed as follows 

   
( ),

inv
P out n PVφ ρ φ−Φ =  (2.116) 
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while its diffusive flux is omitted in the same way to the flow equations.   

Finally, for a symmetry surface free-slip boundary conditions are imposed to the flow equations 
similarly to these for solid wall boundaries along with an inviscid flow. 
 
2.3.6. Source terms 

As mentioned in the first section of this Chapter, the source term of flow equations is set equal to 
zero, while this of turbulence models is computed, based on the finite-volume discretization, as follows 
[Bla01, Lyg14e]: 

   

P

P P
C

Sdxdydz S V=∫∫∫
 

 (2.117) 

  
2.4. Time integration 

For time integration two schemes have been incorporated in the proposed methodology for both the 
Navier-Stokes and the turbulence models PDE's (either selected by the user), a point-implicit one using 
the Jacobi or the Gauss-Seidel algorithm [Ven95, Kou03, Lyg11] and an explicit one utilizing a second-
order temporal accurate four-stage Runge-Kutta (RK(4)) method [Lal88a, Kal96, Bla01, Sor03, Lyg14a, 
Lyg15]. Equation (2.82) is transformed in the following formulation for their implementation 
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where ΔtP is the local time step at node P, which depending on the type of the flow (inviscid, laminar or 
turbulent) is computed as [Kim03, Lyg11] 
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where PU



 is the value of velocity at node P, cP is the speed of sound evaluated on the same node and 

min ,l edge Pα  is the length of the shortest edge connected to P. The convective spectral radii λc and the 
viscous spectral radii λv are evaluated as [Kim03, Kal05a] 

  

( ) , , ,i j
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where j

i∆Α  is the sum of the absolute projections of the node P control volume surfaces’ normal vectors 
in direction j, calculated as [Kim03]:  
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1 , , ,
2 P j

P

j j
i CS

CS

j x y z∆Α = ∆Α =∑  (2.122) 

  
The local time stepping technique is commonly employed in CFD, enhancing each control volume with 
the maximum permissible time step, which consequently results in the acceleration of the convergence to 
the steady-state solution [Bla01]; in case a global time step is required, it is defined as the smallest of the 
local time steps of all the nodes of the mesh. 
 
2.4.1. Point-implicit scheme 

For the employment of the point-implicit scheme, the R/H side of equation (2.118) has to be 
linearized per Newton as [Ven 95]: 
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where n denotes the current pseudo time step, in which the numerical fluxes are computed. Considering 
the desired formulation A x b⋅ =  with unknowns the corrections of conservative variables, equation 
(2.118) becomes as follows [Ven95, Kou03] 
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where I is a unit matrix with dimensions 5x5 (2x2 for the turbulence models). According to this approach 
the inviscid and viscous numerical fluxes have to be linearized similarly to the way they are computed.  

The inviscid numerical flux at the midpoint of an edge PQ is defined for the node P via Newton 
linearization as [Ven95, Kou03] 

   
1 1 1( ) ( ) n ninv n inv n n n

d oPQ PQ P QB W B Wδ δ+ + +Φ = Φ + +
  

 (2.125) 
  

where 
n
dB  and 

n
oB  are diagonal and off-diagonal matrices, calculated as follows [Kou03]: 
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The previous equations (2.125) and (2.126) are obtained using the alternative formulation of the Roe’s 
approximate Riemann solver, which for time step n+1 is described as [Lan98]: 
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The inviscid flux vector ( , )inv L
PQ PQH W n

 

  at the midpoint of edge PQ, based on the conservative variables of 

L/H node P and the corresponding vector PQn for the time step n+1, can be calculated as [Ven95, Kou03] 
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while considering equation (2.129), equation (2.127) obtains its final formulation [Ven95]: 
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Although a higher-order accurate scheme is implemented for the computation of convective fluxes, the 
corresponding linearized terms in the L/H side of equation (2.124) are based on a first-order one for 
simplification reasons; nevertheless, they don't constrain the accuracy in case of steady-state flows. 

In a similar to the inviscid fluxes way, the viscous ones at the midpoint of an edge PQ are defined for 
the node P via Newton linearization as [Kou03] 

   
1 1 1 1( ) ( ) n n nvis n vis n n n n

d o adjPQ PQ P Q RC W C W C Wδ δ δ+ + + +Φ = Φ + + +
   

 (2.131) 
  

where 
n
dC  and 

n
oC  are also diagonal and off-diagonal matrices, used with the conservative variables’ 

corrections of nodes P and Q, while n
adjC  is combined with the corresponding corrections of the rest nodes 

R adjacent to the edge PQ; their computation is based on the scheme employed for the evaluation of 
velocity components and temperature gradients. Further information for their formulation is contained in 
Appendix B.  

The numerical fluxes derived by the boundary conditions (free-slip and inlet/outlet) have also to be 
linearized per Newton. Thus, the inviscid diagonal contribution at the inlet/outlet boundary nodes is 
defined as [Ven95, Kou03] 
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while at the free-slip surfaces' nodes as [Kou03]: 
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Further information for its computation is included in Appendix C. The free-slip and inlet/outlet viscous 
diagonal contributions are assumed negligible and are omitted similarly to the corresponding internal 
fluxes (section 2.3.5). Nevertheless, in case of turbulent flow modelled with k-ε WF1 or WF2, these solid 
wall surfaces are taken into account; as the friction stress tensor τw flux is added to the viscous terms of 

Navier-Stokes PDE's, its linearized contribution has to be considered in the diagonal matrix 
n
dC  as: 
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Since the linearization of all the components of R/H side of equation (2.118) is accomplished, 

equation (2.124) becomes [Kou03]: 
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where 
n
PD  and n

PQO are the diagonal and off-diagonal matrices including both the inviscid and viscous 

contributions, while 1n
PWδ +


 and 1n
QWδ +


 are the computed corrections of conservative variables of nodes P 

and Q. n
adjC  denotes the corresponding matrix for the rest nodes R neighbouring the examined edge PQ, 

which is used with the corresponding computed corrections 1n
RWδ +


. The Jacobi or the Gauss-Seidel 
algorithm can be implemented then to re-compute the values of the conservative variables' corrections, 
via internal iterations, the number of which should be carefully chosen in order an acceptable 
convergence to be succeeded [Ven95, Kou03]. Employing the Jacobi algorithm, the corrections of 
conservative variables for time step n+1 are computed as follows  
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while in case the Gauss-Seidel algorithm along with the Red-Black procedure [Dec92, Ven95] is selected, 
as: 
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In the first internal iteration (k=0) for both methods the corrections of conservative variables are 
evaluated as: 
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( )1,0 1( )nn n
PP PW D Rδ + −= ⋅ −

 

 (2.138) 
  

The incorporated turbulence models are managed in the same way, but separately to flow equations 
(loose coupling); the flow variables are updated firstly and then the corrections of turbulence models' 
variables are obtained employing the respective to (2.136) or (2.137) equations. Newton linearization is 
implemented to their convective fluxes as well, deriving the following components of diagonal and off-
diagonal matrices: 
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An analysis for the corresponding diffusive components is included in Appendix B. The boundary 
conditions’ diagonal contributions are omitted, except for the inviscid ones at the outlet surfaces, defined 
as follows 
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where ,t KL

 

is computed as: 
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The main difference between the turbulence models’ and Navier-Stokes’ PDE's is the existence of 

the source term in the first set, which has to be linearized as well for the implementation of the point-
implicit scheme: 
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 (2.142) 
  

In order to reinforce the diagonal dominance of Jacobian matrix ,
S
t PL , only the negative source term 

components ,t PS −


 are considered for its computation, resulting for k-ε turbulence model WF1 and WF2 in 
the following relations [Lar91, Koo00] 
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while for the blended one with the one-equation method near the solid wall boundaries in: 
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If turbulence model k-ω or SST is selected instead, the corresponding vectors are similarly computed as 
[Chi96, Kim03]: 
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It is common practice to omit the second term in the first row of the previous vector (2.148); in that way 
the completely uncoupled solution of these equations is obtained, resulting in increased stability of the 
methodology [Chi96]. If a negative value of a conservative variable is extracted during the iterative 
procedure, the value of previous iteration is restored for this node. 
 
2.4.2. Explicit scheme 

If an explicit scheme is selected instead, a four-stage Runge-Kutta (RK(4)) method [Lal88a, Kal96, 
Bla01, Sor03, Lyg14a, Sar14, Lyg15] is employed to solve equation (2.118) iteratively as follows 
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where k is the number of current internal stage of the scheme. In this study, constants α1, α2, α3 and α4 of 
the method with values 0.11, 0.26, 0.5 and 1.0 respectively, are used attributing second-order temporal 
accuracy to the procedure [Bla01]. 

Considering the relatively low convergence rate of explicit methods, an implicit residual smoothing 
technique has been incorporated, enhancing it with implicit features [Bla01, Kim03] and consequently 
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allowing for the utilization of larger CFL numbers. The modified residual for a node P is defined as 
[Kim03] 
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where Qj are the neighbouring nodes of node P and ε is a coefficient with typical values 0.5-0.8, defining 
the blending degree [Bla01]. 

The rapid change of turbulence models’ source term can cause instability to the solution or even its 
complete failure; a remedy to this shortcoming appears to be the implicit handling of this component 
[Kim03]. While this treatment is a prerequisite for implicit methods, for explicit ones constitutes an 
additional technique, implemented by a similar Newton linearization procedure only for the source term 
[Bla01, Kim03]. Considering this approach, the corresponding equation (2.118) for turbulence models 
becomes 
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where I is a unit matrix with dimensions 2x2. Thus, the iterative step for the Runge-Kutta method is 
transformed as [Kim03]: 

   

( )
1
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 (2.154) 

  
Similarly to equations (2.144), (2.146) and (2.148) only the negative source term components are taken 
into account for the computation of the reverse matrices; for turbulence model k-ε WF1 and WF2 the 
latter is defined as 
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while for the blended one with the one-equation method near the solid wall boundaries as: 
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If turbulence model k-ω or SST is implemented instead, the corresponding vector is computed accordingly 
as: 
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r

3. Radiative heat transfer 
 
3.1. Governing equation 

The radiative intensity I for a gray medium at any node P in position  along a path ŝ  through an 
absorbing, emitting and scattering medium is computed by radiative transfer equation (RTE) [Kim88, 
Rai90, Chu92, Cha93, Chu93a, Chu93b, Cha94a, Cha94b, Bae97, Bae98a, Bae98b, Kim98, Rai99, 
Kim01, Cha03, Kim05a, Kim05b, Kim08, Kim10, Lyg12b] as: 

  
( ) ( ) ( ) ( ) ( ) ( )

4

ˆ,
ˆ ˆ ˆ ˆ, ' , ' , '

4
P s

s P b P i i

dI r s
k I r s k I r I r s s s d

ds α α
π

σ
σ ω

π
= − + + + Φ∫



    (3.1) 

  
Similarly to Navier-Stokes conservation PDE's, the RTE expresses conservation of radiative energy, 
while its terms denote the following: The left hand side represents the rate of change of intensity in 
position/direction ˆ/r s

; the first right hand side term expresses the attenuation by absorption and 
scattering to other directions; the second right hand side term is the emission source term and the last one 
is the in-scattering integral, describing radiation obtained by scattering from all the other directions to the 
examined one [Hos06]. Alternatively, the time-dependent RTE can be utilized [Hun11, Lyg13b, Lyg13c, 
Lyg14f] 

  
( ) ( ) ( ) ( ) ( ) ( ) ( )

4

ˆ ˆ, , , ,1 ˆ ˆ ˆ ˆ, , , ' , ', , '
4

P P s
s P b P i i

dI r s t dI r s t
k I r s t k I r t I r s t s s d

c dt ds α α
π

σ
σ ω

π
+ = − + + + Φ∫

 

    (3.2) 

  
which can be employed for both transient and steady-state simulations with real and pseudo-time steps 
respectively; in that case the left hand side terms express the rate of change of intensity in time t and in 
position/direction ˆ/r s

. 
Intensity IP depends on spatial position r , angular direction ŝ and time t, which correspond for a 

three-dimensional problem to six variables, I(x,y,z,θ,φ,t); the position vector is defined by the Cartesian 
coordinates x,y,z, while the intensity direction by the polar θ and azimuthal φ angles [Kim01, Tal05, 
Hun11, Lyg13c]. In case of a steady-state simulation, the blackbody intensity ( ),bI r t depends only on 

the spatial position 
r , as its computation is based only on the temperature of the medium at the specific 

position [Lie02, Lyg12b]. The Scattering Phase Function (SPF) ( )ˆ ˆ, 'is sΦ  expresses the radiative energy 
scattered from a solid angle defined by direction ˆ 'is  to the direction ŝ  [Tri04a, Tri08, Lyg12b]; it is equal 
to unity for isotropic scattering and takes different values in various directions ˆ ˆ, 'is s  for anisotropic 
scattering, depending on the model used for its calculation (e.g., with Legendre polynomials) [Rai99, 
Tri04a, Hos06, Tri08, Lyg12b]. 

For predicting radiative heat transfer in a general enclosure by using RTE, boundary conditions for 
walls have also to be modelled and imposed. A wall can be fully emitting or partially emitting and 
reflecting, depending on the value of wall emissivity (or conversely reflectivity) [Lie02]. For a black 
surface, emission is considered equal to the black body one (being always diffusive), while for a gray one 
a reflected portion of incoming rays, which can be diffusive or specular, is added to the blackbody energy 
emitted from the surface. When reflection is diffusive, as in this study, there is no preferred direction for 
outgoing rays, while when it is fully specular each incoming ray derives a discrete outgoing reflected ray, 
e.g., in mirroring surfaces [Lie02, Lyg12b]. In Figure 3.1 diffusively emitting radiative rays are illustrated, 
while in Figure 3.2 partially diffusively and specularly reflecting radiative rays, caused by an incoming 
ray, are presented. In accordance with this approach, for a diffusively emitting and reflecting surface the 
total radiative energy qw,out leaving the wall can be computed as [Lie02, Lyg12b]  

  



Spatial and angular discretization 
 

3-2 
 

( ), , ,1w out w w b w w rq q qε ε= + −  (3.3) 
  

where qw,b denotes the blackbody energy and qw,r the heat derived from reflection of incoming radiative 
rays, multiplied both with the appropriate coefficients εw and 1-εw, which stand for wall emissivity and 
reflectivity respectively ( )0 1wε≤ ≤ [Hos02, Lie02, Kim05b, Lyg13c]. Boundary walls are assumed to 
behave as diffusive reflectors when εw<1, while when εw=1 they are considered to be black (only emitting, 
non-reflecting). 
 

 
Figure 3.1: Diffusively emitting radiative rays from a boundary surface. 

 

 
Figure 3.2: Partially diffusively and specularly reflecting radiative rays from a boundary surface. 

 
In addition, the surfaces as well as the enclosed medium are assumed to exhibit approximately gray 

behaviour, neglecting wave lengths and emitting only monochromatically; although this approximation 
does not stand for real bodies and gases, many of them behave in such a way under certain circumstances 
[Lie02, Tri04b, Tal11, Lyg12b]. 
 
3.2. Spatial and angular discretization 

As intensity IP at a node P depends on its spatial position 
r and the angular direction ŝ of radiative 

ray, RTE is solved for a discrete number of finite solid angles, which requires angular discretization, and 
is integrated for each direction over the control volume of the examined node P, which requires spatial 
discretization. As far as the spatial discretization is concerned, the node-centered finite-volume method, 
analysed in Chapter 2, is implemented on unstructured tetrahedral or hybrid grids to divide them in finite 
control volumes. For angular discretization the directional domain is subdivided in a finite number of 
solid control angles, which should exactly fill the directional domain without overlapping; although this 
can be achieved in many ways, it is quite common and efficient to select the solid angles associated with 
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areas on the surface of a sphere defined by lines of constant longitude and constant latitude [Rai99, 
Lyg12b]. In Figure 3.3 such a control angle discretization is illustrated along with a discrete solid angle ŝ .  
 

 
Figure 3.3: Angular discretization and a solid angle ŝ . 

 
Considering the aforementioned spatial and angular discretization, the main concept is the 

integration of RTE over the finite control volumes and finite solid control angles; thus, the transport 
equation of radiative energy is redefined as an integral over the surface of each finite volume, constituted 
by all the faces of the examined control volume, and over every finite solid angle, composed also by a 
pre-defined number of sub-solid control angles. Nevertheless, it is quite common for simplicity reasons, 
the finite solid angles to be selected in a way that they do not need to be further subdivided [Rai99, 
Lyg12b]. To complete the equation set and obtain the algebraic equation for I, the radiative intensity on 
each face for a specific solid angle is approximated by another algebraic equation that involves control 
volume geometry and nodal values; the main idea is the conservation of radiative energy within a discrete 
direction ŝ , crossing the boundary face of any control volume. Since each step in the angular 
discretization is similar with the corresponding step in the spatial discretization, the employed method 
could be termed as finite-volume (in space) / finite-volume (in direction) method [Rai99, Lyg12b]. 
 
3.3. Mathematical analysis 
 
3.3.1. Formulation of the discrete equations 

Integrating equation (3.1) for a node P over the spatial finite volume VP and over the finite solid 
angle mnΩ  (m denotes current polar angle, while n the corresponding azimuthal one) derives: 
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( ) ( ) ( ) ( ) ( )
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 
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∫ ∫

∫ ∫ ∫



  

 (3.4) 
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Equation (3.2) is transformed in a similar way as follows [Hun11, Lyg13c]: 
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 
− + + + Φ 
 

∫ ∫
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 

  

 (3.5) 

  
Applying divergence theorem on their left hand side and considering that in finite-volume method 

the magnitude of radiative intensity is taken constant over the examined control angle and control volume, 
the following formulations can be obtained [Kim01, Hun11, Lyg12b, Lyg13c] 

  
( )mn mn mn mn mn

i i ci s P R P
i

I A D k I S Vα σ∆ = − + + ∆Ω  ∑  (3.6) 

  

( )
mn

mn mn mn mn mn mnP
P i ci i s P R P

i

VI I D A k I S V
c t α σ∆Ω  ∆ + ∆ = − + + ∆Ω ∆ ∑  (3.7) 

  

where mn∆Ω  and 
mn
ciD  are the magnitude and directional weight respectively of solid control angle mnΩ , 

while 
mn
RS  is the sum of emissive and in-scattering terms, all defined as follows [Kim01, Lyg13c]: 

  

sin
nm

m n

mn d d
ϕθ

θ ϕ

θ θ ϕ
++

− −

∆Ω = ∫ ∫  (3.8) 

  

( )ˆ ˆ sin
nm

m n

mn
ci iD s n d d

ϕθ

θ ϕ

θ θ ϕ
++

− −

= ⋅∫ ∫  (3.9) 

  
ˆ ˆ ˆ ˆsin cos sin sin cosx y zs e e eθ ϕ θ ϕ θ= + +  (3.10) 

  
ˆ ˆ ˆ ˆi x x y y z zn n e n e n e= + +  (3.11) 

  

( )'

4

',
4

mn mns
R b PS k I I mn mn dα

π

σ
ω

π
= + Φ∫  (3.12) 

  

Each solid angle mnΩ  is obtained by the division of 4π steradians into N N
θ ϕ
× directions, where θ is a 

polar angle ranging from 0 to π and φ is an azimuthal angle ranging from 0 to 2π, while Nθ and Nφ are the 
numbers of pre-defined polar and azimuthal angles respectively (Figures 3.3 and 3.4). Although a control 

angle can be selected arbitrarily, it is usually equally divided such that 
m m m N

θ
θ θ θ π+ −∆ = − = and 

2 ϕϕ ϕ ϕ π+ −∆ = − =m m m N (a technique also adopted in this work) [Kim01, Lyg13c].  
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Figure 3.4: Solid angle ŝ . 

 
Once the angular discretization is accomplished and limits for each control angle are defined, the 

directional weight 
mn
ciD , which determines the direction of flow of radiative energy across the control 

volume face depending on its sign, is computed as [Kim01, Lyg13c] 
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 (3.16) 

  
while each discrete solid angle of the sphere of 4π steradians is defined as [Kim01, Lyg13c]: 
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( )( )sin cos cos
nm

m n

mn n n m md d
ϕθ

θ ϕ

θ θ ϕ ϕ ϕ θ θ
++

− −

+ − − +∆Ω = = − −∫ ∫  (3.17) 

  

In order to complete the equation set, the ith facial intensity 
mn
iI  should be expressed in terms of the 

nodal intensity [Rai99, Chu93b, Kim01, Lyg13c]; several approaches have been developed so far, as the 
finite-volume method does not constrain this choice as long as conservation is maintained. The step 
scheme is utilized in this study, according to which the value of radiative intensity of a downstream face 
is set equal to that of the upstream node [Rai99, Kim01, Lyg13c]. It is associated with a simple upwind 
scheme in CFD, ensuring as such the positivity of the intensity values. In Figure 3.5 such an example is 
illustrated; the value of radiative intensity for a control angle s at face ip=1 is equal to the value of node 
P=1.  

 

 
Figure 3.5: Associating facial (ip) and nodal (P) radiative intensity. 

 
Considering the definition of the step scheme, a typical relation between facial and nodal intensity is 
described as [Kim01, Lyg13c] 

  

, ,
mn mn mn mn mn mn
i ci P ci out Q ci inI D I D I D= +  (3.18) 

  

where 
mn
PI

 and mn
QI are the values of radiative intensity at control volumes of neighbouring nodes P and 

Q respectively (Figure 3.6). 

Depending on the manipulation of solid control angles, values of directional weights ,
mn
ci outD  and ,

mn
ci inD  

can differ. In a structured mesh around a hexahedral geometry a control angle usually lays tangentially to 
its corresponding control volume; however the situation is changed for an unstructured one, as in these 
grids a control angle doesn’t match exactly with the corresponding control volume face, becoming 
inevitably overlapped (overhang problem) and thus requiring appropriate manipulation for a more 
accurate solution [Cha94a, Kim01, Lyg13c]. Such remedies of this drawback are the bold approximation 
and the pixelation method.  
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Figure 3.5: Neighbouring control volumes (CVs) of nodes P and Q. 

 

 
Figure 3.6: a) Schematic representation of the control angle overhang problem. b) Implementation of bold 

approximation. c) Implementation of pixelation method. 
 

According to the first approach, a solid angle is assumed wholly either outgoing or incoming, 
depending on the sign of its directional weight [Kim01, Lyg13c]. Depending on previous illustration of 
Figure 3.5, Figure 3.6a presents the problem of a simultaneously incoming and outgoing solid angle in 
two dimensions; Figure 3.6b includes the solution obtained by the bold approximation (wholly outgoing 
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radiation). Mathematically this methodology derives the following expressions for directional weights 
[Cha94a, Kim01, Lyg13c] 

  
( )

( ) ( )
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, , ,
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α
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=

= − −

 ≥= 
<

 
(3.19) 

  

where ,
mn
ci boldα  is the method coefficient based on the sign of the corresponding directional weight.  

Unlike this approach, pixelation method considers the division of the examined solid control angle in 
smaller ones; although their number m nN N×  can be arbitrarily selected, in this work it is defined as

N Nθ ϕ× [Mur98a, Kim01, Kim05b, Lyg13c]. For each new sub-angle the bold approximation is 
employed, as illustrated in Figure 3.6c, while the following expressions for directional weights are 
derived 
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∑∑

∑∑

 
(3.20) 

  
where the coefficient 

,
mn
ci pixα  is evaluated by the sum of the positive sub-angles’ directional weights, 

divided by the sum of the absolute values of them. Most of researchers utilize the pixelation approach 
only for solid angles-control volume faces, at which overhang is exhibited [Mur98a, Kim01, Kim05b]. In 
this work it is employed to the total number of nodes and control angles at a pre-computation stage; 

considering that the values of coefficients 
mn
ciα , as well as of directional weights 

mn
ciD , don’t change 

during the solution of the RTE, they are calculated only once at this stage for both approaches (bold 
approximation and pixelation method). As a result a reduced computational cost per iteration is succeeded 
[Lyg13c]. 

The last term, which has to be computed in equations (3.6) and (3.7), is 
mn
RS , representing the 

emissive (blackbody) and in-scattering contributions; it can be evaluated as follows [Kim01, Lie02, 
Lyg14f] 

  

( ) ( )
4

1 14

, ,
4 4

i i i i

i i

NN
m n m nmn m ns s

R b p p i i
m n

TS k I I m n mn d k I m n mn
ϕθ

α α
π

σ σσω
π π π

′ ′ ′ ′′ ′

′ ′= =

′ ′ ′ ′= + Φ = + Φ ∆Ω∑∑∫  (3.21) 

  
where the quantity ( ),i im n mn′ ′Φ  is the normalized or average SPF (Scattering Phase Function), denoting 
the diffusive contribution from the control angle i im n′ ′  (incident angle) to the control angle mn (in-



Radiative heat transfer 
 

3-9 
 

scattering angle) [Tri04a, Tri04b, Tri08, Lyg12b]. This quantity is assumed equal to unity for isotropic 
scattering, while for anisotropic one it has to be further analyzed, depending on the utilized model (e.g., 
with Legendre polynomials), as [Cla57, Hun70, Rai99, Jim03, Tri04a, Tri08, Lyg14f]: 

  

( )
( ) ( ) ( )( ) ( ) ( )

( )( )
, ,

,

i ikk ll

i ikki i ll

i i i i

N N N N
m nmn
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mn m nmn m n
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m n mn d d m n mn
m n mn

θ ϕ θ ϕ

ω ω
× ×

′ ′

′ ′′ ′
′ ′ ′ ′

′ ′ ′ ′ ′Φ Φ ∆Ω ∆Ω
′ ′Φ = =

∆Ω ∆Ω ∆Ω ∆Ω

∑ ∑∫ ∫
 

(3.22) 

  
According to the previous equation, the examined incident and in-scattering control angles are divided in 
smaller ones (the number of which is defined in this work as N Nθ ϕ× ), approximating the summed term. 
Considering that the values of average SPF don’t change during the solution, their evaluation can be 
performed before the beginning of the iterative procedure, succeeding similarly to bold 
approximation/pixelation method coefficients a reduced computational cost per iteration. 

In this study the Legendre polynomial expansions are employed to model anisotropic scattering as 
follows [Jim03, Tri04a, Tri08, Lyg12b] 

  

( ) ( )( ) ( ) ( )
0

, cos cos
N

i i j jll kk
j

m n mn C P
=

′ ′Φ = Φ Ψ = Ψ∑  (3.23) 

  
where Ψ is the angle between the divided incoming and scattered direction, while Pj and Cj denote the 
Legendre polynomials of order j and their coefficients respectively; for the forward scattering function F2 
(up to order 8) these polynomials are described as [Wolfram] 
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( ) ( )8 6 4 21 128 6435cos 12012cos 6930cos 1260cos 35Ψ = Ψ − Ψ + Ψ − Ψ +

 (3.24) 

  
while their coefficients as [Cla57, Hun70, Ryb96, Lyg12b]: 

  
C0=1.0000 
C1=2.0092 
C2=1.5634 

C3=0.6741 
C4=0.2222 
C5=0.0473 

C6=0.0067 
C7=0.0007 
C8=0.0001 

(3.25) 

  
The cosine of angle Ψ, included in the previous equations, can be calculated as follows [Jim03, Tri04a, 
Tri08, Lyg12b]: 
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( ) ( ) ( )1/ 2 1/ 22 2cos ' 1 1 ' cos '

cos

µµ µ µ ϕ ϕ

µ θ

Ψ = + − − −

=
 (3.26) 

  
Finally, utilizing the above supplementary equations, (3.6) and (3.7) can be further modified in the 
following ones:  

  
( ), ,

mn mn mn mn mn mn mn
P ci out i Q ci in i s P R P

i i

I D A I D A k I S Vα σ∆ ∆ = − + + ∆Ω +  ∑ ∑  (3.27) 

  

( ), ,

mn
mn mn mn mn mn mn mn mnP
P P ci out i Q ci in i s P R P

i i

VI I D A I D A k I S V
c t α σ∆Ω  ∆ + ∆ + ∆ = − + + ∆Ω ∆ ∑ ∑  (3.28) 

  
  
3.3.2. Boundary conditions 

The numerical contribution of the boundaries has also to be considered for the prediction of radiative 
heat transfer in a general enclosure; in this algorithm both explicit and implicit treatment of boundary 
conditions has been incorporated. Additionally, besides the most commonly seen boundary conditions in 
radiative heat transfer, i.e., opaque and diffuse surfaces, symmetry boundaries are also modelled in case 
of implicit manipulation. 

According to the first explicit approach the boundary mesh nodes get their intensity values simply 
summing their blackbody intensity due to their temperature and the reflected ones by the incoming rays. 
As such, radiative intensity of a node P on an opaque and diffuse surface can be computed as [Rai99, 
Kim01, Kim05b, Lyg12b] 

  

( )

, ,
ˆ ˆ 0 1 1

,

1 1 ˆ ˆ 0

ˆ ˆ ˆ ˆ 0

i i i i i i i i

i w i i

mn

NN
m n m n m n m nmn w w

w w bw w cw out w bw P cw out i w
s n m n

mn
cw out w w

I I I D I I D s n

D s n d s n

ϕθε ε
ε ε

π π⋅ < = =

∆Ω

− −
= + = + ⋅ <

= ⋅ Ω ⋅ >

∑ ∑∑

∫
 (3.29) 

  

where 
mn
wI  is the radiative intensity coming into the computational domain, εw is the wall emissivity, Ibw is 

the blackbody emission of the boundary node P, while i im n
wI  and ,

mn
cw outD  are its radiative intensity and 

directional weight respectively going toward the bounding wall; the second term is used in case of 
reflecting surfaces only. 

As the common tactic of explicit treatment requires a priori finer computational meshes in the 
boundary region, the proposed algorithm was enhanced with the capability to manipulate boundary 
conditions in an implicit way, contributing to the flux balance of the corresponding nodes. By this 
approach, the step scheme is applied between the boundary node and a ghost node outside the 
computational domain; thus, the intensity of the boundary node is calculated by the time-dependent RTE 
(a corresponding equation is derived for non-time-dependent RTE) as [Lyg13c] 

  

( ) ( )
( )

, , , , , ,

mn
mn mn mn mn mn mn mn mnP
P P ci out i ci out w w Q ci in i w ci in w w

i i

mn mn mn
s P R P

VI I D A D A I D A I D A
c t

k I S Vα σ

∆Ω
∆ + ∆ + ∆ + ∆ + ∆ =

∆

 − + + ∆Ω 

∑ ∑  (3.30) 

  

where 
mn
wI  is the radiative intensity of the ghost node, while , ,

mn
ci out wD  is the directional weight going toward 
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the boundary wall (outward to the control volume of node P) and , ,
mn
ci in wD the corresponding directional 

weight coming into the mesh (inward to the control volume of node P). For the evaluation of these 
weights, either equation (3.19) or (3.20) is utilized, depending on the implemented scheme (bold 
approximation or pixelation method). For the ghost node the radiative intensity is computed summing the 
blackbody intensity of node P and its reflected intensities going toward the boundaries as [Lyg13c]: 

  

, , ,
1 1

1
i i i i

i i

NN
m n m nmn w

w w b P P ci out w
m n

I I I D
ϕθε

ε
π = =

−
= + ∑∑  (3.31) 

  
The mirroring boundary conditions are implemented in the same implicit way, while the radiative 

intensity of the boundary surface 
mn
wI  is evaluated such as the net heat flux to become zero at the 

symmetry plane. Thus, the intensities of a boundary node P, 
mn
PI  going out of a surface are placed as 

intensities 
mn
wI  of the same node coming into this surface in the mirroring direction (Figure 3.7). This 

attitude can be resembled with this of a specularly reflecting wall [Liu00, Lie02, Lyg13c]. The utilization 
of symmetry surfaces is common practice in CFD, as it allows for the use of smaller domains with 
significantly reduced numbers of Degrees of Freedom (DoF's) and consequently for reduced 
computational effort and memory requirements. A drawback of this methodology is that the mirroring 
direction has to be selected to coincide with a discrete one; in order to implement it on more directions, an 
interpolation technique should be employed [Liu00]. Nevertheless, as the symmetry planes are usually 
designed parallel to the axes’ planes (as in this work), this shortcoming appears to be relatively negligible 
[Lyg13c].  

 

 
Figure 3.7: Symmetry boundary condition on surface. 

 
3.3.3. High-order accurate spatial scheme 

For a first-order accurate spatial scheme the left and right states of an edge PQ (interface between 
adjacent control volumes) are approximated by the values of radiative intensity at the end-points P and Q 
respectively. For a higher-order one, these states are reconstructed with the Taylor series expansions 
taking into account the values of more mesh nodes when computing the numerical fluxes similarly to 
CFD. In this study the higher-order methodology is based on the MUSCL reconstruction of radiative 
intensity values, using additionally a slope limiter to control the total variation of the reconstructed field 
[VanA82, Swe84, Bar92, Lyg13c]. As such, radiative intensity Imn at the left and right states of midpoint 
of an edge PQ is approximated as [Bar92, Lyg13b] 
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( ) ( )

( ) ( )

1
2
1
2

Lmn mn mn
PQ P PQP

Rmn mn mn
PQ Q PQQ

I I I r

I I I r

= + ∇

= − ∇





 (3.32) 

  
where, the first right hand side terms are the intensities of left and right nodes respectively, while PQr  is 
the vector connecting them; as such, the step scheme, defined in equation (3.18), can be described as 
follows: 

  

( ) ( ), ,
L Rmn mn mn mn mn mn

i ci ci out ci inPQ PQI D I D I D= +  (3.33) 
  

In order to implement the aforementioned second-order accurate spatial scheme, the extrapolation 

gradients ( )mn
PI∇  and ( )mn

QI∇  have to be evaluated at nodes P and Q respectively, applying the Green-
Gauss linear representation method as [Bar92, Lyg13c] 

  

( ) ( ) ,
, ,

1 1 ˆ ˆ
2

mn mn mn mn
P Q i i P i w wP

i edge PQ i P wallP

I I I n A I n A
V −

 
∇ = + ∆ + ⋅ ∆ 

 
∑ ∑  (3.34) 

  
where VP is the volume of the control volume of node P and Q is its neighbouring node; the second 
summing term is added only in case node P is a boundary node. 

In addition, two slope limiters have been incorporated in the present algorithm, the Van Albada-Van 
Leer [VanA82] and the Min-mod [Swe84], in order the total variation in the reconstructed field to be 
diminished. As mentioned in previous Chapter, the first one is actually an expansion of MUSCL 
methodology, preserving monotonicity between the values at end-points, while the second one is 
characterized by the smoothing of solution, choosing always the slope with the smallest magnitude. Their 
mathematical formulation is based on centered ( )cmn

PQI∇  and upwind ( ) ( ),
u umn mn

P QI I∇ ∇  gradients, defined 

as follows [VanA82, Swe84, Lyg13c]: 
  

( )
( ) ( ) ( )
( ) ( ) ( )

2

2

cmn mn mn
PQ PQ Q P

u cmn mn mn
P P PQ

u u cmn mn mn
Q Q PQ

I r I I

I I I

I I I

∇ ⋅ = −

∇ = ∇ − ∇

∇ = ∇ − ∇



 (3.35) 

  
Since these gradients are computed, equation (3.32) including additionally a non-linear slope limiter 

is modified as [VanA82, Swe84, Lyg13c] 
  

( ) ( ) ( )( )
( ) ( ) ( )( )

1 ,
2
1 ,
2

L u cmn mn mn mn
PQ P P PQ PQ PQ

R u cmn mn mn mn
PQ Q Q PQ PQ PQ

I I X I r I r

I I X I r I r

= + ⋅ ∇ ⋅ ∇ ⋅

= − ⋅ ∇ ⋅ ∇ ⋅

 

 

 (3.36) 

  
where X is the limiter function, defined in case of Van Albada-Van Leer as [VanA82] 
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2 2

2 2

( ) ( ) 0( , ) 2
0 0

a e b b e a abX a b a b e
ab

 + + +
>= + +

 ≤

 (3.37) 

  
where e is a very small number with a typical value of 1.0E-16, used to prevent division by zero. 
Similarly the Min-mod function is described as follows [Swe84]: 

  
 if  and 0

( , )  if  and 0
0                    if 0

a a b ab
X a b b b a ab

ab

 < >
= < >
 ≤

 (3.38) 

  
In case a negative unphysical value of radiative intensity is derived by the aforementioned method 

(usually in the initial iterations), it is reverted to its non-reconstructed value (first-order accurate scheme). 
Based on the previous supplementary equations for left and right intensity values, equation (3.30) (a 
corresponding equation is derived for non-time-dependent RTE) is transformed as: 

  

( )

( )( ) ( )( ), , , , , ,

mn
mn mn mn mnP
P s P R P

L Rmn mn mn mn mn mn mn mn mn
PQ ci out i P ci out w w PQ ci in i w ci in w w P

i i

VI k I S V
c t

I D A I D A I D A I D A R

α σ∆Ω  ∆ = − + + ∆Ω ∆

− ∆ + ∆ − ∆ + ∆ =∑ ∑
 (3.39) 

  
3.3.4. Iterative solution 

For the solution of steady (non time-dependent) RTE, equation (3.27) is modified in the following 
formulation [Chu92, Cha94b, Bae98b, Rai99, Kim01, Lyg12b]:  

  
( ), ,

mn mn mn mn mn mn mn mn
P ci out i s P P R P Q ci in i

i i

I D A k I V S V I D Aα σ∆ + + ∆Ω = ∆Ω − ∆∑ ∑  (3.40) 
  

( ), ,
mn mn mn mn mn mn mn
P ci out i s P R P Q ci in i

i i

I D A k V S V I D Aα σ∆ + + ∆Ω = ∆Ω − ∆ 
 
 
∑ ∑  (3.41) 

  

( )

,

,

mn mn mn mn
R P Q ci in i

mn i
P

mn mn
ci out i s P

i

S V I D A
I

D A k Vα σ

∆Ω − ∆
=

∆ + + ∆Ω 
 
 

∑

∑
 (3.42) 

  
The previous relation is implemented iteratively, until either a desired radiative intensity residual 
convergence or a desired number of iterations is achieved. 

In case of time-dependent RTE (equation (3.39)), an explicit temporal scheme with a four-stage 
Runge-Kutta (RK(4)) method [Lal88a, Bla01] is employed instead for time integration and solution as 
[Lyg13c] 

  
mn

mn mnP
P P

P

VI R
c t
∆Ω

∆ =
∆

 (3.43) 
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( ) ( )
( ) ( ) ( )( )
( ) ( )

1,0

1, 1, 1

1 1,4

, 1,...,4

l lmn mn
P P

l k l l kmn mn mn mnP
P P k P Pmn

P
l lmn mn

P P

I I

c tI I R I k
V

I I

α

+

+ + −

+ +

=

∆
= + =

∆Ω

=

 (3.44) 

  
where k and l are the numbers of current internal (Runge-Kutta method) and external iterations 

respectively, while mn
PR is the total flux balance of node P for the solid control angle mnΩ . The employed 

in this study constants of the method αk attribute the procedure with a second-order accuracy in time 
[Lal88a]; their values are defined similarly to the CFD algorithm (Chapter 2) [Bla01, Lyg13c].  

ΔtP is the local pseudo-time step for node P [Fit99, Bla01], based on the length min ,l edge Pα
 
of the 

shortest edge of the grid connected to node P and defined for a steady-state simulation as [Hun11, 
Lyg13c]: 

  

min ,
1 min( )
2P l edge Pc t α∆ ≤  (3.45) 

  
The local time stepping technique is a common practice in CFD, enhancing each control volume with the 
maximum permissible time step and consequently accelerating the convergence to the steady-state 
solution [Bla01, Lyg13c]. Nevertheless, it cannot be applied to an unsteady-transient simulation, in which 
a global time step should be used instead, evaluated as the smallest of the local time steps of all the nodes 
of the examined mesh. 

For both equations (with or not time-dependency), if a negative unphysical value of intensity is 
obtained (usually in the initial iterations along with a higher-order accurate spatial scheme), a fix-up 
procedure is employed, setting this value equal to zero [Cap10, Lyg14f]. 
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Figure 4.1: Partitioning of a two-dimensional triangular unstructured grid, before (left) and after (right) the 

construction of the overlapping region (coloured orange). 
 

4. Parallel computation strategy 
 

4.1. Domain decomposition 
As mentioned in the Introduction, the incorporated SPMD (Single Program-Multiple Data) 

parallelization strategy, is based on the domain decomposition approach. According to this methodology 
the computational domain is divided into a number of sub-domains equal to the number of available 
processors/processes [Ven95, Smi96, Lan96, Tai03, Kal05a, Lyg12b, Sar15].  

The whole procedure begins with the implementation of METIS, which is an acclaimed multi-level 
graph partitioning application used for dividing unstructured meshes; it is capable of providing high 
quality partitions with less CPU time workload balancing [METIS, Kar99]. METIS derives a number of 
sets of non-common nodes, the core nodes, depending on the number of available computational 
processors/processes. Based on these sets (sub-domains), a single process is assigned to [Lyg12b, 
Lyg14a, Lyg15, Sar15]: 

a) Divide the elements of the initial grid accordingly; each element is assigned to the partition 
including its first node. 

b) Identify the elements situated at the interface between two adjacent sub-domains; these elements are 
included in both partitions, despite remaining incomplete. 

c) Identify and add as extra nodes the missing ones (named ghost nodes), completing the deficient 
elements, which subsequently form an overlapping region included to both neighbouring partitions; it is 
this region that allows for interaction between the corresponding sub-grids via the exchange of data (flow, 
turbulence and radiative heat transfer model variables and nodal gradients) with the MPI (Message 
Passing Interface) communication protocol [Tai03, MPI]. 

d) Distribute to other processors/processes the corresponding new data, including overlapping region 
nodes and elements, coordinates of core and ghost nodes, initial values of conservative and primitive 
variables, etc. 

Figure 4.1 presents the initial division (by METIS) of a two-dimensional triangular unstructured grid, as 
well as the same mesh including the constructed overlapping region (coloured orange). Similarly, in 
Figure 4.2, the decomposition of a three-dimensional tetrahedral unstructured mesh in two sub-domains 
for parallel process is illustrated. 
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Figure 4.2: Decomposition of a three-dimensional tetrahedral unstructured mesh in two sub-domains. 

 
4.2. Data exchange 

The interaction between the neighbouring partitions is succeeded via the exchange of data (model 
variables and nodal gradients) of the nodes constituting the overlapping area; these shared nodes either 
send (core) or receive (ghost) data to or from the corresponding identical nodes of the adjacent sub-
domains [Ven95, Lan96, Tai03, Lyg14a, Lyg15, Sar15]. While for core nodes the appropriate governing 
equations are normally implemented, no calculation is performed for the ghost ones; their values are 
explicitly received by their corresponding core nodes at the neighbouring processors/processes, ensuring 
in that way the consistency of the solution across the virtual internal boundaries. Although this strategy 
might seem memory consuming at first glance it appears to be quite efficient, as for an explicit iterative 
scheme it is not the memory usage that should concern, but the communication cost between the adjacent 
partitions [Kal05a, Lyg12b, Sar15]. 

Since partitioning by METIS application is accomplished, each available processor/process is 
assigned a unique rank; the one with a rank equal to zero is identified as the master processor/process, 
which will perform the tasks analyzed in the previous section. Additional information, stored for each 
processor/process in simple array data structures, is required to supplement the communication procedure 
[Lyg12b, Lyg14a, Lyg15, Sar15]; more specifically, these data structures are the following: 

a) nneighbours: an integer representing the number of adjacent processors/processes. 

b) ineighbours(n): an integer array with size nneighbours, including the ranks of neighbouring sub-
domains. 

c) nreceivenodes(n): an integer array with size nneighbours, which includes the number of ghost 
nodes receiving information from each of the adjacent partitions. 

d) nsendnodes(n): an integer array with size nneighbours, which includes the number of core nodes 
sending information to each of the adjacent partitions. 

e) ireceivenodes(n,m): a matrix with nneighbours rows; each row, constituted by nreceivenodes(n) 
integers, includes the indexes of the ghost nodes receiving data from the neighbouring sub-domain n. 

f) isendnodes(n,m): a matrix with nneighbours rows; each row, constituted by nsendnodes(n) integers, 
includes the indexes of the core nodes sending data to the neighbouring sub-domain n. 

In order to ensure that data sent from a specific core node are received by its corresponding ghost one at 
the adjacent partition, master processor/process fills in the same order the isendnodes(n,m) and 
ireceivenodes(n,m) matrices. Figure 4.3 includes a schematic representation of the core and ghost nodes 
of a sub-domain with rank 0; according to the previous definitions the additional data structures for this 
partition are the following:  
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Figure 4.3: Schematic representation of the core and ghost nodes of processor/process with rank 0. 

 
• nneighbours = 2 
• ineighbours(1) = 1 
• ineighbours(2) = 2 
• nreceivenodes(1) = 12 
• nreceivenodes(2) = 11 
• nsendnodes(1) = 11 
• nsendnodes(2) = 10 
 
As mentioned above, the exchange of data is based on the MPI communication protocol libraries, 

which enable point-to-point communication as well as collective communication procedure [MPI]. 
Nevertheless, considering the unique mapping of corresponding core and ghost nodes of neighbouring 
partitions, a blocking point-to-point communication was selected for the proposed algorithm. This 
communication procedure is performed at the end of each step of the iterative procedure (internal and 
external), while to assure synchronicity of processors/processes the MPI_BARRIER function of the MPI 
library is used, pausing the faster processes until the slowest one executes this command [MPI]. In case a 
second-order accurate spatial scheme is employed, the nodal gradients have to be exchanged as well, 
since they are computed; the same stands for the conservative variables' corrections if an implicit iterative 
scheme is selected. The whole procedure is presented in pseudo-code formulation as 

 
Initialization of simulation by the master process 
Initialization of parallelization (domain decomposition, overlapping region construction, etc.) by the 
master process 
Distribution of data to the rest processes 
Iterative procedure 

Do i = 1 to max iterations 
Do j = 1 to iterative method steps 

Perform relaxation of governing equations 
MPI_BARRIER 
Exchanging data  
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MPI_BARRIER 
End 

End 
  

while the exchange procedure as: 
 

Do i = 0 to number of processes - 1 
If (process rank = i) then 

Do j = 1 to nneighbours 
Send data of isendnodes(j,m) 

End 
Else 

Receive data from process i and store them in ireiceivenodes(i,m) (if applicable) 
   End 
End 

 
Employing the aforementioned methodology, equally accurate but more computationally efficient 

solutions compared to serial schemes, can be obtained [Ven95, Lan96]; its contribution appears especially 
valuable in large-scale problems, such as flows over aircrafts usually requiring grids with millions or tens 
of millions nodes, which consequently result to excessive time-consuming simulations [Lyg12b, Lyg14a, 
Lyg15, Sar15]. Besides the validation of obtained solutions' accuracy in Chapters 7 and 8, the proposed 
parallelization strategy is evaluated against benchmark test cases, such as this considering turbulent flow 
over the NASA Common Research Model (CRM). 
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5. Agglomeration multigrid methods 
 
5.1. Spatial agglomeration multigrid scheme 
 
5.1.1. Spatial agglomeration strategy 

The first issue, which has to be defined for the implementation of the agglomeration multigrid 
method, is the generation of the coarser grids, i.e., the agglomeration strategy [Mav97, Mav98, Car00, 
Bla01, Nis10, Nis11, Nis13, Lyg14c, Lyg14d, Lyg14f, Lyg14g]. The fusion of the control volumes in this 
study is performed on a topology-preserving framework at each partition, resembling the advancing front 
technique [Nis11]; both isotropic and directional agglomeration methodologies (either selected by the 
user) have been developed to be employed on tetrahedral and hybrid grids respectively [Bla01, Mav97, 
Nis11, Lyg14c].  

The procedure is limited though by pre-defined rules in order consistency between the solution of the 
initial finest grid and those of the coarser ones to be preserved at external (especially at the boundary 
layer region) [Nis11, Lyg14c] and internal boundaries (between the sub-domains constructed for parallel 
implementation of the algorithm). More specifically, the following constraints are employed [Lyg14c, 
Lyg14d, Lyg14f]: 

a) The control volume of a node located at the internal region of a grid can be fused only with its 
neighbouring, also internal, nodes' control volumes, to construct a new virtual supernode [Nis10, Nis11, 
Nis13]. 

b) In the same way, a boundary node can be agglomerated only with its adjacent boundary nodes of 
the same type [Nis11], e.g., a node positioned at a solid wall surface (or at a diffusively reflecting surface 
in case of radiative heat transfer simulation) can be associated only with another node belonging to the 
same surface. 

c) A node belonging to two or more boundary-condition-type closures (e.g., a node belonging 
simultaneously to inlet and solid wall surfaces) isn't agglomerated and remains singleton at the next 
multigrid level [Nis11]. Nevertheless, the nodes belonging to two boundary-condition-type closures, with 
the one being a symmetry surface, are excluded from this limitation; they can be agglomerated with an 
adjacent node having the same two boundary condition types. 

d) A boundary node belonging to two or more boundary slope discontinuities isn't agglomerated and 
remains singleton at the next multigrid level [Nis11]; examples of such nodes are those situated among 
three different surfaces or among two different walls of the same type forming a 90o angle. In this 
algorithm the limit set to restrict the fusion procedure is equal to 30o. 

e) A boundary node can be merged with its adjacent one, only if their control areas unit normal vectors 
form an angle less than 10o. 

f) Although the control volumes of core nodes at overlapping region (sending information to 
neighbouring partitions) [Ven95, Lyg12b] are considered for fusion, these of ghost ones (receiving 
information from adjacent sub-domains) aren't merged during each level main agglomeration procedure; 
at the end of each level they are fused accordingly to the agglomeration of their corresponding core nodes 
at neighbouring partitions, creating actually virtual ghost supernodes. 

g) In simulations, concerning turbulent flows and consequently relatively fine hybrid grids with highly 
stretched elements in boundary layer region, a maximum threshold of merged nodes to a supernode (eight 
for internal and four for boundary) is imposed to preserve even more the topology of the initial finest grid 
[Nis11]. 

Considering the aforementioned limitations, the isotropic and directional agglomeration methodologies 
are analyzed in the next sections.  
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5.1.1.1. Isotropic agglomeration 
In case of a tetrahedral grid, the isotropic spatial agglomeration procedure is performed in the 

following sequence [Lyg14c, Lyg14d, Lyg14f]: 

1) The nodes of the initial mesh, prohibited for agglomeration due to pre-mentioned constraints (c) and 
(d), are identified and marked. 

2) The nodes, marked for confined "agglomeration", remain singletons (simply transferred to the next 
level). The derived supernodes are marked in the same way for prohibited fusion at the next level 
agglomeration. 

3) The solid wall boundary nodes of each sub-domain are selected to create the list of the so-called 
seed nodes [Sor03, Nis11]. In case a partition includes no such boundary nodes, the core nodes of the 
overlapping region are assigned as seed ones. 

4) At this step the main agglomeration procedure begins by looping over the nodes of the 
aforementioned list and examining the eligibility for fusion of all their adjacent nodes (due to the pre-
mentioned constraints or in case they are already fused to another supernode); if no limitation is 
identified, their control volumes are added to the control volume of the seed node, constructing the 
control volume of a new supernode. Figure 5.1 illustrates the schematic representation of the generation 
of a supernode via agglomeration at the prismatic region of a hybrid grid. In case no appropriate for 
fusion (already agglomerated or constrained) adjacent node is identified, further examination is 
performed; the seed node's neighbouring supernodes are examined, in order to include it. If more than one 
supernodes are identified as eligible for this merging, the one with the lower number of included nodes is 
selected, while if no suitable supernode is found, the seed node remains as singleton to the next multigrid 
level. The procedure is assumed to be complete when all the seed nodes are agglomerated or become 
singletons. 

 

 
Figure 5.1: Construction of a supernode via agglomeration at a prismatic region. 

 
5) A new list of seed nodes is constructed, including the nodes whose control volumes have been 

touched by the agglomeration front, which are actually the neighbouring, non-agglomerated yet, nodes of 
the already fused ones [Han02]. In this list a priority hierarchy is applied, taking into account the number 
of times a node is touched by the agglomeration front, as well as the number of its adjacent control cells. 
Therefore, the set of nodes which have the maximum touch number will be initially examined for 
agglomeration, while for the same set the procedure begins from the node with the minimum number of 
adjacent nodes [Han02]. 

6) Steps 4 and 5 are repeated until all the nodes of each partition (except the ghost ones) are fused or 
assigned as singletons. In Figure 5.2 the progress of the agglomeration front as well as the merging 
procedure are presented schematically in a part of two-dimensional triangular grid, beginning from the 
solid wall boundary surface and extending then to the internal area of the computational domain. 
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7) The generated unconstrained singleton supernodes are examined once more to be merged with their 
adjacent ones, according to the procedure described in step 4. 

8) A loop over the derived supernodes is performed in order the completely surrounded by other ones 
to be identified (they are connected with only one supernode); in such case they are agglomerated with 
their surrounding ones [Sor03]. 

9) The ghost nodes at the overlapping region of each partition (coloured black in Figure 5.3) are 
agglomerated or become singletons according to their corresponding core nodes' fusion at the adjacent 
sub-grids. Therefore, virtual ghost supernodes are actually generated, as the number of their merged 
nodes may differ from this of their overlapping core supernodes; such a two-dimensional example is 
illustrated in Figure 5.4, where it is obvious that the virtual ghost supernodes do not coincide with their 
overlapping core ones. Nevertheless, the ghost supernodes get the correct data (volume, coordinates, etc.) 
of their overlapping core ones by exchange of information. 
 

 
Figure 5.2: Progress of the agglomeration front and fusion procedure in a part of a two-dimensional triangular 

grid. 
 

10) The new virtual superedges, connecting the supernodes obtained by the previous steps, are 
constructed. At each super control volume the internal edges are deleted, while the external ones are used 
for the evaluation of the new vectors PQn at the interface areas with its neighbouring super control 
volumes; such vectors are simply evaluated by summing the vectors of the corresponding surfaces 
interfacing two adjacent super control volumes [Sor03]. As unstructured grids are utilized, special 
attention is required in order to avoid summing vectors with opposite signs and subsequently opposite 
directions (inward and outward to the examined control volume). 

11) At the final step of the main spatial agglomeration procedure the supernodes that remained 
singletons as well as their neighbouring ones are identified and marked, in order to become also 
singletons at the next level (coarser) grid. In that way the generation of adjacent control volumes with 
large differences in size is avoided, and consequently a possible harsh irregularity at next agglomeration 
levels is alleviated. 
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12) The whole procedure is repeated in case an even coarser mesh is required. Depending on the test 
cases encountered in this study, a number of three or four spatial multigrid levels has been identified to be 
adequate. 

 

 
Figure 5.3: Sub-domains and overlapping region in a part of a two-dimensional triangular grid. 

 

 
Figure 5.4: Generation of corresponding core and ghost supernodes in a part of a two-dimensional triangular grid. 
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Implementing the previously described steps on an unstructured tetrahedral grid representing the domain 
over a rectangular wing with a NACA0012 airfoil, the illustrations of symmetry surface included in 
Figure 5.5 are obtained. 

 

 
Figure 5.5: Symmetry surface of the initial and isotropically generated coarser control volume grid over a 

rectangular wing with a NACA0012 airfoil. 
 

Since the agglomeration procedure is complete, the required variables for the new coarser grids, such 
as the volumes of super control volumes, the pseudo-coordinates of supernodes, the normal vectors of 
boundary faces included to new control volumes, the directional weights and the pixelation coefficients of 
superedges in case of a radiative heat transfer problem, have to be evaluated; these computations are 
performed, based on the corresponding values of merged nodes and edges. In addition, the data for the 
new core and ghost supernodes of overlapping regions have to be added to the existing structures 
(initially including data only for the overlapping core and ghost nodes of the finest mesh), in order 
interaction between the agglomerated partitions to be established [Lyg14f]. 

Moreover, the expression deriving the local time step for each supernode is reformulated; as virtual 
edges are considered in coarser grids, the time step computation is based on the volume and the total 
surface of the control volume of examined supernode P independently of the type of flow. Therefore, the 
time step is defined similarly to Chapter 2 as: 

   

( ) ( )4
P

P
x y z x y z

c c c v v v

Vt CFL
λ λ λ λ λ λ

∆ =
+ + + ⋅ + +

 (5.1) 

  
In case an inviscid flow problem is encountered the term ( )4 x y z

v v vλ λ λ⋅ + +  is neglected, while if a laminar 
flow simulation is performed the turbulent viscosity included in the viscous spectral radii λv (equation 
(2.121)) is assumed equal to zero. In the same way, for a radiative heat transfer problem, the time step 
utilized in Runge-Kutta method is calculated as [Lyg14f]: 

  
1
2

P

P
P

i
CV

Vc t

∂

∆ =
∆Α∑

 (5.2) 
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5.1.1.2. Directional agglomeration 
In case of a laminar or turbulent viscous flow problem, usually encountered along with a hybrid grid, 

full-coarsening directional agglomeration [Car00, Nis11, Nis13] is performed instead, described as 
follows [Lyg14c, Lyg14d]: 

1) Step 1 of isotropic agglomeration procedure is performed. 

2) The solid wall boundary nodes at the prismatic region are identified and assigned an index, e.g., an 
ascending number. The same index is assigned to the corresponding nodes of the next prismatic layers; in 
this way lines of prismatic nodes with the same index (implicit lines) [Nis11, Nis13] are constructed. 

3) Step 2 of isotropic agglomeration procedure is accomplished. 

4) The boundary prismatic nodes are merged with their eligible for agglomeration adjacent ones, 
which belong to the same surface, generating in that way new boundary supernodes (bottoms of implicit 
lines) [Mav97, Nis11]. Their indexes are stored together in a data structure in order the nodes of the next 
prismatic layers to be fused accordingly. If a semi-coarsening process [Mav97, Mav98] is selected 
instead, the examined boundary prismatic nodes are simply transferred as singletons to the next coarser 
level; only one node is included at the bottom of each implicit line. 

5) Similarly to isotropic agglomeration, a list of seed nodes is created, including the nodes touched by 
the agglomeration front, which are actually the nodes of the next prismatic layer. 

6) A loop over this list is performed, in order the seed nodes to be merged with their adjacent non-
agglomerated and non-constrained ones, similarly to isotropic strategy. Nevertheless, an extra limitation 
is imposed to these nodes, according to which a node at prismatic region can be fused with another one 
only if their indexes are associated and consequently if their corresponding boundary nodes (bottoms of 
implicit lines) have already been merged. Thus, the nodes belonging to the same implicit line (defined by 
the corresponding bottom agglomeration) at each two successive prismatic layers are fused together. 

7) A new seed list is constructed similarly to isotropic procedure, including though only prismatic 
nodes. 

8) The previous steps 6 and 7 are repeated, until all the prismatic nodes have been transferred to the 
next coarser level either agglomerated or as singletons. In addition, another limitation is imposed to 
preserve the topology of the initial mesh up to the coarsest generated one; after the first agglomeration 
process the nodes of the lowest prismatic layer are not allowed to be merged with the nodes of the next 
layer, while the same constraint is applied to the nodes of the second prismatic layer after the second 
process, and so forth. Figure 5.6 includes the schematic representation of the proposed directional 
agglomeration procedure at the quadrilateral area of a two-dimensional hybrid grid. 

9) The directional agglomeration is accomplished by performing steps 4 to 8 for the prismatic nodes, 
whose implicit lines' bottoms belong to a different partition; the core nodes of overlapping region are 
considered as lines' bottoms, instead of the boundary ones. 

10) A new seed list is constructed including the nodes next to the already agglomerated prismatic ones, 
belonging to tetrahedral or pyramidical elements. 

11) The isotropic agglomeration procedure is performed for the remaining nodes, beginning from step 
4. 

Implementing the previously described steps on a hybrid unstructured grid representing the domain over a 
rectangular wing with a NACA0012 airfoil, the illustrations of symmetry surface included in Figure 5.7 
are obtained, while in Figure 5.8 the flow chart of isotropic and directional agglomeration is presented. 
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Figure 5.6: Directional agglomeration at the quadrilateral area of a two-dimensional hybrid grid (level 1-red, level 

2-green, level 3-blue). 
 

 
Figure 5.7: Symmetry surface of the initial and directionally generated coarser control volume grid over a 

rectangular wing with a NACA0012 airfoil. 
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Figure 5.8: Flow chart of isotropic and directional agglomeration procedures. 

 



Agglomeration multigrid method 
 

5-9 
 

5.1.2. Flux computation and numerical solution 
For a multigrid accelerated iterative solution FAS is implemented, in accordance with which 

equation (2.118) (and/or equation (3.43) in case of radiative heat transfer) is solved at the first non-
agglomerated level but at the coarser ones an approximate version of the same equation is used [Bla01]. 
The interaction between two successive multigrid levels is obtained via the restriction of conservative 
variables and flux balances from the finer to the coarser level, as well as the prolongation of conservative 
variables' corrections from the coarser to the finer level [Sor03, Ni11, Lyg14c]. FAS is implemented in a 
V(v1,v2)-cycle process, where v1 denotes the number of relaxations before proceeding to the coarser mesh 
from the finer one, while v2 the number of relaxations after obtaining the solution from the coarser grid 
[Nis11, Lyg14c]. For flow simulations performed with an explicit scheme a V(1,0) process is employed, 
while for those encountered with an implicit one a V(2,1) is used; in test cases involving turbulent flow a 
V(1,1) and V(2,2) strategy, respectively, is followed instead. If radiative heat transfer is considered, FAS 
is employed for RTE in a V(1,0)-cycle strategy. For simplification reasons the procedure is analyzed 
below only for flow equations; its steps are also applicable to RTE by substituting pW



 with mn
pI  and pR



 

with mn
pR , unless otherwise stated. 

At each cycle the procedure begins with the solution of equation (2.118) for the first non-
agglomerated level (denoted at next with the subscript h), deriving updated values for conservative 
variables and flux balances of each computational node p. These values are restricted by means of 
smoothing to the next coarser grid (denoted at next with the subscript H), using the restriction operators 
( )H

W h
I  and ( )H

R h
I respectively as follows [Man97, Car00, Sor03, Ni11, Lyg14c]: 

  

( ),
H p p

P restricted W ph
P

W V
W I W

V
⋅

= = ∑


 

 (5.3) 

  
( ),

H
P restricted R p ph

R I R R= =∑
    (5.4) 

  

,P restrictedW


 is actually the volume-weighted sum vector of the values of conservative variables of nodes p 

merged to construct the supernode P, while ,P restrictedR


 is the sum vector of flux balances of the same nodes 
p; Figure 5.10 illustrates the schematic representation of the spatial agglomeration multigrid restriction 
process at a prismatic region. 
 

 
Figure 5.10: Spatial agglomeration multigrid restriction at a prismatic region. 
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Since the restriction is complete, the approximated equation (2.118) has to be relaxed for the coarser 
mesh, which is obtained by substituting the right hand side term of this equation with the following one 
[Mav97, Car00, Bla01, Nis11, Lyg14c, Lyg14f] 

  
( ) ( ), , ,

H

P FAS P P P restricted P P restricted

A

R R W R R W= + −  


     



 
(5.5) 

  
where ( )P PR W

 

 is the current flux balance of node P in the coarse grid. Considering the edge-based 

structure of this algorithm, as well as the derived superedges by the agglomeration process, the 
computation of fluxes appears to be a straightforward procedure; for the inviscid fluxes a first-order 
accurate spatial scheme is employed (the solution on the coarser levels does not influence the final 
solution [Bla01, Lyg14f]), while for the viscous ones the necessary gradients are obtained either by 
applying the nodal-averaging method (described in Chapter 2) or by restricting them similarly to equation 
(5.3) for conservative variables. The same stands for boundary surfaces' fluxes, as the control volume 
boundary surface of a supernode is the sum of the corresponding surfaces of its incorporated nodes. The 

next two terms included in the forcing function HA


 [Bla01, Lyg14f] denote respectively the restricted flux 
balance to node P from the finer level and the flux balance of the same node generated by using the 
restricted values of conservative variables. It is quite obvious that at the first internal iteration of Runge-

Kutta method or at the first external of Jacobi or Gauss-Seidel algorithm, ,P FASR


 is equal to the restricted 

flux balance ,P restrictedR


, confirming the approximation character of FAS; it actually derives a smoothed 
version of the finest grid solution at the coarser levels [Bla01, Fer02, Lyg14f]. As such, equation (2.118) 
is reformulated and solved via the iterative scheme for each agglomerated supernode P as [Mav96, 
Mav97, Mav98, Bla01, Fer02, Sor03, Nis10, Nis11, Nis13, Lyg14f]: 

  

( )( ),
P P

P P FAS P P H
P P

t tW R R W A
V V
∆ ∆

∆ = − = − +
   

 (5.6) 

  
If an implicit scheme is selected, the Newton-linearized inviscid, viscous and source terms have to be 
defined before the relaxation of the previous equation; they are evaluated in the same way with this 
applied for the initial finest grid [Nis11]. However, as elements do not exist in coarser resolutions, only 
the linearization based on the nodal-averaging computation of gradients can be implemented for viscous 
terms [Lyg14f]. 

In case an even coarser mesh has been generated via agglomeration, the restriction process 
(equations (5.3)-(5.4)) as well as the relaxation process (equations (5.5)-(5.6)) are employed similarly for 
this grid. As mentioned above, only a first-order accurate spatial scheme is used for the higher 
agglomerated levels [Sor03, Nis11, Lyg14c]; the flux sum of the finest grid, transferred not only to the 
next coarser grid but to all the multigrid levels, influences via the forcing function the accuracy of their 
solutions [Bla01]. The previous state is confirmed by the following analytical equation of the forcing 
function 2HA



for the second agglomerated mesh [Lyg14f]: 
  

( ) ( ) ( )
( ) ( )( ) ( )

2
2 2 , 2 2 , 2 2 ,

2
2 2 ,

H
H P restricted P P restricted R P P P restrictedH

H
R P P H P P restrictedH

A R R W I R R W

I R W A R W

= − = − =

= + −

      

   

 (5.7) 
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Since the solution at the coarsest grid is obtained, the corrections of conservative variables are 
prolongated by means of smoothing to the next finer mesh [Fer02, Nis11, Lyg14c]; in case of inviscid 
flow or radiative heat transfer a simple point injection scheme, namely the prolongation operator ( )h

W H
I , 

is implemented as [Car00, Lyg14f] 
  

( ) ,
h

p W P P P P restrictedH
W I W W W W∆ = ∆ = ∆ = −
    

 (5.8) 
  

while in case of laminar or turbulent viscous flow a distance-based scheme is employed, considering only 
the nodes of the same type (internal or boundary ones of the same surface) [Nis11] as follows [Kat09] 

  

( ) ( )

( )

4

N

N

p P P p Q Q
h Q K P

p W PH
p P p Q

Q K P

p Q pQ

a W a W
W I W

a a

a r

− −
∈

− −
∈

−

−

∆ + ∆
∆ = ∆ =

+

=

∑
∑

 

 



 (5.9) 

  
where pQr

 

denotes the vector connecting the agglomerated node p and the supernode Q, while pW∆


 and 

QW∆


 represent respectively their corrections. The distance-based operator is downgraded to the simple 
point injection one for singleton supernodes, as p Qa −

 is zeroized in such cases. Figure 5.11 illustrates the 
schematic representation of the spatial agglomeration multigrid prolongation procedure at a prismatic 
region.  

 

 
Figure 5.11: Spatial agglomeration multigrid (point-injected) prolongation at a prismatic region. 

 
Although not necessary, an averaging operator can be used to smooth the total error components 

before updating the conservative variables of the finer grid nodes as [Car00, Lyg14f] 
  

( )
,

( )

N

N

p p q q
q K p

p averaged
p q

q K p

W V W V
W

V V
∈

∈

∆ + ∆
∆ =

+

∑
∑

 



 (5.10) 
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where q are the neighbouring nodes of each node p. The updated final values l
pW +


 of the finer mesh 
nodes at l multigrid iteration/cycle are computed as follows [Car00, Sor03, Nis11, Lyg14f] 

  
l l
p p pW W W+ = + ∆
  

 (5.11) 
  

where l
pW


 is the vector of previously calculated and not restricted values of conservative variables. The 
prolongation process is repeated up to the initial finest mesh, accomplishing in that way the V-cycle 
procedure.  

The previously described V-cycle scheme (V(1,0)-cycle strategy) is illustrated schematically in 
Figure 5.12, in which the bullets denote the relaxation of the solution by the Runge-Kutta iterative 
method, while at next the whole procedure is presented in pseudo-code formulation [Lyg14f]: 
 
Do i = 1 to NS (NS stands for the number of spatial agglomeration levels) 

If (i > 1) then (1 corresponds to the finest non-agglomerated grid) 
Perform spatial restriction 

End if 
Perform the Runge-Kutta (RK(4)) scheme 

End do 
Do i = NS-1 to 1, step= -1 

Perform spatial prolongation 
End do 
  

 
Figure 5.12: Schematic representation of the spatial agglomeration multigrid V(1,0)-cycle scheme. 

 
If an unphysical value of a conservative variable is obtained, e.g., a negative value of pressure, 

turbulent kinetic energy or radiative intensity, either by the iterative method or by the prolongation 
process, a fix-up procedure is implemented [Cap10, Lyg14f]. According to this methodology the 
conservative variables of flow or turbulence model get their previous acceptable values. It is implemented 
similarly in case of radiative heat transfer; for the finest grid the value is set equal to zero if it was derived 
by the Runge-Kutta method and equal to its previous value if the unphysical intensity was a result of 
prolongation from the coarser level, while for the agglomerated grids the negative values are always 
restored to their previous values. The same procedure is followed for the corresponding flux balances. 
Independently of the employed scheme (explicit or implicit), each level process of the FAS is completed 
firstly for the flow equations and then for the turbulence model (loose coupling); in case of radiative heat 
transfer a similar FAS procedure is followed. 

In this study, the FAS is incorporated in the Full Multigrid (FMG) scheme [Fer02, Lyg14c], in order 
further acceleration to be obtained; following this strategy the solution is decomposed in two stages, 
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namely the preliminary and the main one (not applicable to radiative heat transfer). At the first stage the 
flow and turbulence model PDE's are relaxed beginning from the coarsest grid and, as the number of 
iterative cycles increases, the solution extends successively to the finer meshes up to the initial finest one, 
at which point the main stage begins; in this way a better initial guess is obtained for each finer level 
[Lyg14c]. Figure 5.13 includes a schematic representation of the developed combined FMG-FAS (V(1,0)-
cycle strategy) procedure. 
 

 
Figure 5.13: FMG-FAS procedure. 

 
5.2. Angular agglomeration multigrid scheme 
 
5.2.1. Angular agglomeration strategy 

As mentioned in Introduction, the agglomeration multigrid scheme for RTE is extended in this study 
beyond the coarsening of spatial resolution to the coarsening of angular one; it is performed in a similar 
manner, based on the solution of RTE on successively coarser angular levels, requiring as such the 
implementation of a corresponding angular agglomeration strategy [Lyg14b, Lyg14f, Lyg14g]. The 
angular fusion is performed by merging neighbouring solid control angles of the finer angular 
discretization and creating new solid control superangles. Although being a similar process to the spatial 
scheme, it is much simpler, mainly due to the absence of the large number of restrictions of the spatial 
one.  

For each angular level the procedure begins with the identification and fusion of every two 
neighbouring azimuthal angles; it extends then similarly to the polar direction, deriving the new solid 
control superangles (respectively to supernodes derived by the spatial agglomeration scheme). Therefore, 
the equal division of 4π steradians into N Nθ ϕ×  directions employed for the single-grid level, is 

reformulated into 2 2N Nθ ϕ×  ones, such that 2m m m N
θ

θ θ θ π+ −∆ = − =  and 2 2n n n Nϕϕ ϕ ϕ π+ −∆ = − =  
[Lyg14f]. Considering the commonly used circle and sphere, representing the two- and three-dimensional 
discretization respectively [Rai99], the angular agglomeration derives finally a circle with the half 
number of angles and a sphere with the quarter number of solid angles. In case an even coarser angular 
discretization is required the procedure is repeated, resulting in 4 4N Nθ ϕ× directions; depending on the 
test cases encountered in this study, a number of two or three angular multigrid levels has been identified 
to be adequate. Figure 5.14 illustrates the schematic representation of the angular merging process in two 
dimensions, in which sixteen control angles of the initial resolution are agglomerated successively to 
eight and four ones for the second and third multigrid level respectively. In Figure 5.15 the corresponding 
three-dimensional procedure is presented, in which thirty two solid control angles are agglomerated in 
eight new superangles. 
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Figure 5.14: Angular agglomeration in two dimensions. 

 

 
Figure 5.15: Angular agglomeration in three dimensions. 

 
Although the spatial agglomeration methodology is constrained by a non-trivial number of 

limitations, only one is applied to the angular one; the adjacent angles, either in azimuthal or polar 
direction, examined for merging, shall belong to the same quadrant of the directional circle or sphere 
[Lyg14b, Lyg14f]. In that way the fused angles as well as the derived superangles have the same sign, 
ensuring the consistency of the restriction and prolongation relations for two successive angular 
discretizations. As the common practice is to employ an even number of angles in both directions for 
symmetry reasons, the agglomeration procedure is not influenced significantly by this restriction. In 
addition, this limitation defines a minimum allowed number of control superangles for each direction, 
four in the azimuthal and two in the polar direction; it is applied separately in each direction, in order not 
to affect the number of the pre-defined angular multigrid levels. For example in a quasi-3D test case, in 
which sixteen azimuthal and four polar angles are considered along with three multigrid resolutions, the 
angular agglomeration method derives eight azimuthal and two polar angles for the second level and four 
azimuthal and two polar ones for the third angular grid. 

Since the coarser angular resolutions are ready, the corresponding required variables, such as the 
directional weights and the pixelation coefficients, are computed [Lyg14b, Lyg14f]. This calculation can 
be performed either analytically, using the new solid control superangles for each edge and boundary 
surface, or by simply summing the absolute values of directional weights, as well as their positive ones, 
for the merged control angles; the latter is incorporated in this method. Because of the aforementioned 
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limitation there is no need for special treatment, in order to avoid summing adverse directional weights. 
As far as the parallelization strategy is concerned, additional data structures for the new superangles have 
to be constructed for the interaction between the partitions via their overlapping regions. Finally, the 
angular agglomeration procedure is completed with the computation of the average scattering phase 
functions for the new superangles and the definition of the corresponding mirroring directions [Lyg14b, 
Lyg14f]. 
 
5.2.2. Flux computation and numerical solution 

For the angular multigrid accelerated iterative solution of RTE, the FAS via a V(1,0)-cycle is 
implemented again. Similarly to spatial multigrid methodology, each cycle begins with the solution of 
equation (3.43) for the first non-agglomerated level (denoted at next with the superscript mn) updating the 
values of radiative intensity as well as those of flux balance; these values are transferred then to the next 
coarser resolution (denoted at next with the superscript MN), utilizing the restriction operators ( )MN

R mn
I  and 

( )MN

I mn
I  respectively as follows [Lyg14b, Lyg14f] 

  
( ),

MNMN mn mn
p restricted R p pmn

R I R R= =∑  (5.12) 
  

( ),

mn mn
MN pMN mn

p restricted I p MNmn

I
I I I

⋅ ∆Ω
= =

∆Ω
∑  (5.13) 

  
where ,

MN
p restrictedR  denotes the sum of flux balances of merged solid control angles mn to the superangle MN, 

while ,
MN
p restrictedI  represents the angular-weighted sum of radiative intensity values of the same fused control 

angles. Figure 5.16 includes the schematic representation of restriction procedure in two dimensions, in 
which the bullets stand for the summation/weighted-summation of transferred variables (radiative 
intensity and flux balance). 

The solution at the coarser angular resolution is succeeded once more via the implementation of the 
approximate equation (3.43), in which the right hand side term is reformulated similarly to this of 
equation (5.5) as [Lyg14b, Lyg14f] 

  
( ) ( ), , ,

MN

MN MN MN MN MN MN
p FAS p p p restricted p p restricted

A

R R I R R I = + − 


 
(5.14) 

  
where ( )MN MN

p pR I  is the current flux balance in direction MN of the coarse angular grid, while AMN is the 
angular forcing function, controlling the accuracy of the coarser angular levels. Similarly to spatial 
multigrid technique, the computation of the required fluxes of the first right hand side term is a 
straightforward process; a first-order accurate spatial scheme is applied to the coarser resolutions, 
considering that they do not influence the accuracy of the final steady-state solution. For an even coarser 
angular grid the restriction as well as the relaxation with the Runge-Kutta method are repeated. 

Since the solution at the coarsest angular discretization is obtained, the corrections of radiative 
intensity are prolongated by means of interpolation to the next angularly denser level, considering a 
simple point-injection scheme, which utilizes the prolongation operator ( )mn

I MN
I  as [Lyg14b, Lyg14f] 

  

( ) ,
mnmn MN MN MN MN

p I p p p p restrictedMN
I I I I I I∆ = ∆ = ∆ = −  (5.15) 
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where mn
pI∆  is the correction for the agglomerated angle mn, while MN

pI∆  is the respective correction for 
the superangle MN. Figure 5.17 presents the schematic representation of the prolongation procedure in 
two dimensions.  
 

 
Figure 5.16: Angular agglomeration multigrid restriction in two dimensions. 

 

 
Figure 5.17: Angular agglomeration multigrid prolongation in two dimensions. 

 
For the computation of the updated final value of radiative intensity at the initial densest resolution 

equation (5.11) is implemented again. The whole procedure is presented schematically in Figure 5.18, 
while at next it is outlined in pseudo-code formulation as [Lyg14f]: 
 
Do j = 1 to NA (NA stands for the number of angular agglomeration levels). 

If (j > 1) then (1 corresponds to the densest angular resolution) 
Perform angular restriction 
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End if 
Perform the Runge-Kutta (RK(4)) scheme 

End do 
Do j = NA-1 to 1, step= -1 

Perform angular prolongation 
End do 
  

In case a negative, unphysical radiative intensity is obtained by the prolongation process, its previous 
value, as well as the previous value of the corresponding flux balance, is restored; if it is derived through 
the Runge-Kutta method at the densest level, its value is set equal to zero [Cap10, Lyg14f]. 
 

 
Figure 5.18: Schematic representation of the angular agglomeration multigrid V(1,0)-cycle scheme. 

 
5.3. Combined spatial/angular agglomeration multigrid scheme 

A nested combination of the aforementioned (spatial and angular) agglomeration multigrid schemes 
was finally developed for additional acceleration in radiative heat transfer computations [Lyg14b, 
Lyg14f]. The whole procedure begins with the spatial agglomeration of the initial finest mesh and the 
generation of the coarser grids; it extends then to the construction of the coarser angular resolutions. For 
the accelerated solution of RTE a complete angular FAS V-cycle is employed at each level of the spatial 
multigrid scheme, described in Figure 5.19 and the following pseudo-code [Lyg14f]: 
 
Do i = 1 to NS (NS stands for the number of spatial agglomeration levels) 

If (i > 1) then (1 corresponds to the finest non-agglomerated grid) 
Perform spatial restriction for i level (angular level is 1) 

End if 
Do j = 1 to NA (NA stands for the number of angular agglomeration levels). 

If (j > 1) then (1 corresponds to the densest angular resolution) 
Perform angular restriction for i and j level respectively 

End if 
Perform the Runge-Kutta (RK(4)) scheme for i and j level respectively 

End do 
Do j = NA-1 to 1, step=-1 

Perform angular prolongation for i level and j level respectively 
End do 
Perform the Runge-Kutta (RK(4)) scheme for i level (angular level is 1) 

End do 
Do i = NS-1 to 1, step=-1 

Perform spatial prolongation for i level (angular level is 1) 
End do 
 



Combined spatial/angular agglomeration multigrid scheme 

 

5-18 
 

 
Figure 5.19: Schematic representation of the combined (nested) spatial/angular agglomeration multigrid scheme. 

 
Considering the implementation of a complete angular multigrid scheme at each spatial 

agglomeration level, the computation of the appropriate directional weights and pixelation coefficients is 
performed for all the combinations of spatial grids and angular resolutions at a pre-processing stage 
[Lyg14f]. The spatial and angular, restriction and prolongation operators are applied similarly to the only-
spatial and only-angular multigrid schemes, while the evaluation of the numerical fluxes is performed 
exactly in the same way. The main difference concerns the forcing function, which, for the nested angular 
multigrid stage, includes not only the angular function AMN but also the spatial one AH, as indicated by the 
following equation for a coarser spatial and angular resolution: 

  
( ) ( )( ) ( ) ( ) ( )( ),

MN MN MN MNMN mn MN mn mn mn MN mn
H R P FAS P I P R P H P I Pmn mn mn mn

A I R R I I I R A R I I= − = + −  (5.16) 
  

Moreover, an additional difference is identified to the double implementation of the Runge-Kutta 
method per multigrid cycle for each spatial level at the initial densest angular discretization; this second 
relaxation is necessary in order the values of radiative intensity and flux balances to be updated after 
being prolongated angularly and before being restricted spatially. Similarly to the aforementioned 
methods, the second-order accurate spatial scheme and the zero fix up procedure [Cap10, Lyg14f] are 
employed only for the finest spatial and angular resolutions.  
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Figure 6.1: Acceptable (left) and unacceptable (right) embedded node in a part of a two-dimensional triangular 

grid. 
 

2) The new nodes are embedded only at the midpoints of the marked edges of the mesh; their 
coordinates (as well as the variables' values for initialization purposes) are set equal to the arithmetic 
averages of the corresponding values at the two end-points. 

3) Every new edge is a common edge of all the neighbouring elements. 
4) A tetrahedron can be divided in five ways (as shown in Figure 6.2) resulting in [Loh92, Kal96, 

Kha00]:  

6. Grid adaptation 
 
6.1. H-refinement 

Numerical diffusion and false scattering in flow and radiative heat transfer predictions respectively 
can be mitigated by the utilization of finer meshes, resulting however in increased memory requirements 
and computational effort. In such cases as well as in simulations with sufficiently localized phenomena or 
in problems faced for the first time, for which no previous knowledge exists for the required resolution, 
local grid adaptation techniques can be implemented during the iterative procedure in order to resolve the 
physical behaviour and increase the accuracy of the final solution, along with significant computational 
savings [Loh92, Lyg13c, Lyg14a, Lyg15]. As mentioned in Introduction, various methods have been 
developed for mesh adaptation divided mainly in two categories, namely redistribution and refinement; 
the h-refinement has been incorporated in this algorithm [Kal96, Kha00]. 

According to this methodology, the whole procedure begins with the detection of desired areas for 
enrichment, usually concerning regions with discontinuities, shocks, stagnation points, etc., [Loh92]. 
Thus, appropriate criteria have to be implemented to capture the characteristics of the intent local physical 
behaviour of the flow or radiative heat transfer; these criteria target either areas with a specific value of a 
variable/function (Mach number, velocity, pressure, radiative intensity, etc.) or areas designated by the 
corresponding experimental data (shock location), e.g., the region over the surface of a wing with Mach 
number greater equal to 0.95, if the shock location is desired to be enriched [Lyg13b, Lyg13c, Lyg14a, 
Lyg15]. 

After the appropriate regions are selected for refinement, the corresponding mesh edges are divided, 
while next the division is extended to the faces and elements following pre-defined rules [Loh92, Kha00, 
Kav10]. This edge-based feature makes h-refinement particularly attractive for implementation in hybrid 
grids, including various types of elements [Lyg13c]. In the next paragraphs the aforementioned rules are 
analyzed, as well as the steps of the whole procedure are summarized. The pre-defined rules, concerning 
the division of the existing edges, faces and elements, are described as follows [Lyg13c]: 
 

1) Every new, embedded in an edge, node of the grid must be a common point of all the neighbouring 
faces and elements; hanging-nodes are not accepted. Figure 6.1 illustrates an acceptable and an 
unacceptable embedded node in a part of a two-dimensional triangular grid. 
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(a) two new tetrahedra, 
(b) four new tetrahedra, 
(c) eight new tetrahedra, 
(d) one new tetrahedron and one new pyramid, 
(e) two new tetrahedra, one new pyramid and one new prism. 

 
The last two types are implemented only in the transition region of the grid, from the prismatic to the 
tetrahedral elements. For tetrahedra divided in eight new ones, three possible ways of division can be 
employed, depending on the selected internal diagonal edge (7-9, 5-10, 6-8), as depicted in Figure 6.3. 
The shortest inner diagonal edge should always be chosen, decreasing in that way the possibility of 
producing distorted new tetrahedra [Loh92]. 
 

 
Figure 6.2: Permitted ways of division for tetrahedra. 

 
5) Respectively, a prism can be divided in two (a) or four (b) new prisms, as illustrated in Figure 6.4 

[Kha00]. As their height is usually pre-defined, the refinement is implemented only in the longitudinal 
direction. 

6) Considering that the pyramidical elements are located usually only in the transition region of the 
grid from the prismatic to the tetrahedral elements, a pyramid can be divided in three ways [Kal96, 
Kha00], as shown in Figure 6.5, producing:  
 

(a) two new pyramids, 
(b) three new prisms and a new pyramid, 
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(c) a new prism and a new pyramid. 
 

 
Figure 6.3: Possible inner diagonal edges for the division of a tetrahedron in eight new ones. 

 

 
Figure 6.4: Permitted ways of division for prisms. 

 

 
Figure 6.5: Permitted ways of division for pyramids. 
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7) Similar rules have to be followed for the division of the triangular and rectangular faces, as well; as 
illustrated in Figure 6.6 a triangular face can be divided in two or four new triangular faces, while a 
rectangular one can be divided only in two new rectangular faces [Loh92]. 
 

 
Figure 6.6: Permitted ways of division for triangular and rectangular faces. 

 
6.2. Subdivision method 

According to afore-mentioned rule (2), the new nodes are embedded as midpoints of the marked 
edges of the mesh, getting as coordinates' and variables' values the arithmetic averages of the 
corresponding values at the two end-points. Although not necessarily, for the new nodes embedded at 
boundary edges a subdivision technique can be implemented for the corresponding computation instead 
of arithmetic averaging [Ull06, Zor98]; in accordance to this method the values of more neighbouring 
nodes are considered in order to avoid distorting the boundary surfaces. Figure 6.7 illustrates such an 
example in a part of a two-dimensional triangular grid with a distorted boundary edge derived by the 
implementation of the arithmetic average technique, as well as its smoothed correction, taking into 
account more adjacent mesh nodes. 

In three-dimensional grids, such as those used with the proposed algorithm, a diamond scheme is 
employed for the computation of the coordinates' and variables' values of the new embedded boundary 
nodes. Mathematically is formulated as follows [Ull06] 

  
( )3 3

8
K L P Q

M

x x x x
x

+ + +
=  (6.1) 
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where subscripts denote the nodes of the two adjacent triangular boundary faces, as illustrated in Figure 
6.8.  

 

 
Figure 6.7: Distorted boundary edge and its smoothed correction in a part of a two-dimensional triangular grid. 

 

 
Figure 6.8: Embedding a new node in a boundary edge PQ of a three-dimensional unstructured grid, using the 

subdivision technique. 
 
6.3. Procedure description 

Considering the previous rules/limitations, the h-refinement procedure can be divided in four main 
steps [Lyg13b, Lyg13c, Lyg14a, Lyg15] 

 
a) Initial marking of the edges, according to the selected criteria,  
b) spread of marking information to the neighbouring edges, 
c) division of targeted edges, and 
d) Division of faces and elements, 

 
while in Figure 6.9. the flow chart of the whole procedure is presented. 
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Figure 6.9: Flow chart of h-refinement procedure. 
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As it can be observed, the procedure begins with the input of grid data and the construction of 

required data structures, i.e., since nodes' connectivities and elements of the mesh have been obtained, 
their faces as well as their edges are defined. The process continues with marking the edges at desired 
regions for enrichment (step a); an appropriate criterion is employed, defined by user’s requirements, e.g., 
targeting edges which include endpoints with value of Mach number greater or equal to unity. At this 
point the marked edges are enumerated in order this number to be used later as a criterion for the 
completion of the procedure. The derived list of marked edges is still however in a preliminary status and 
cannot lead to an admissible refinement pattern for the construction of a new mesh. Therefore, their 
adjacent edges shall be also examined for marking (and consequently division), in order an admissible 
pattern to be reached. The procedure is accomplished by looping several times over the elements of the 
mesh (step b) [Loh92, Lyg14a, Lyg15]; firstly the prismatic edges are examined, while at next a loop 
over the pyramidical and the tetrahedral elements of the mesh is performed. This sequence derives from 
rule 5 that forbids division of prismatic edges, located along the stretched direction of the element. If 
however a prohibited for division edge of a prism is identified as marked, it is unmarked and flagged as 
forbidden for remarking during this stage. For the corresponding edges of pyramids there is no need for 
such an examination, as in case they have been marked during the initial marking entailed by the 
employed criterion, they would have been unmarked during the loop over the prismatic elements. In order 
to distinguish the transitional tetrahedra (located at the transition region from prismatic to pyramidical and 
tetrahedral elements) from the non-transitional ones, their edges are examined for existence of a 
prohibited for division edge among them; if one is identified, type (d) or (e) division is implemented. In 
Figures 6.10-6.12 the corresponding flow charts of spread of information among the different types of 
elements are depicted.  

 

 
Figure 6.10: Flow chart for the spread of marking information among the edges of the prismatic elements. 
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For instance a tetrahedron is examined; during the first step of the procedure, one up to six edges of 

it can be marked. If three ones are assigned for division according to the employed criterion, further 
examination is required as two possible ways of division exist; in case those edges are located at the same 
face the element is divided in four new tetrahedra, while if they belong to different faces three more edges 
should be marked in order the element to be divided in eight new tetrahedra. The previous example is 
applicable for a tetrahedron located far from the prismatic region; if the tetrahedron lies at the transition 
region (from prismatic to tetrahedral elements) further examination is required, as two more ways of 
division can be employed (type (d) and (e) ones, producing one new tetrahedron and one new pyramid or 
two new tetrahedra, one new pyramid and one new prism respectively). In case of prismatic or 
pyramidical elements, the aforementioned procedure is much simpler, due to the fewer number of 
permitted ways of division (two for prisms and three for pyramids). 

Once the final number of the selected edges for division is defined (twice), the refinement procedure 
begins, deriving new edges with half the length of the initial ones, as well as new nodes embedded at their 
midpoints (step c); the variables of new nodes are then computed. Subsequently, the new elements along 
with the new faces are constructed, following the rules analyzed previously (step d). Although the 
refinement procedure can be implemented in a parallelized computational system [Kav10], it is still 
performed serially in our algorithm, for simplification reasons; nevertheless, it appears significantly 
efficient as it requires less than a few minutes to refine locally a grid with about 4,500,000 nodes, 
producing a new one with about 6,500,000 nodes (CRM WBHT aircraft) [Lyg14a, Lyg15]. 

 

 
Figure 6.11: Flow chart for the spread of marking information among the edges of the pyramidical elements. 
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Figure 6.12: Flow chart for the spread of marking information among the edges of the tetrahedral elements. 
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7. Fluid flow numerical results 
 
7.1. Definitions 

The developed fluid flow solver has been validated (especially in terms of accuracy and efficiency) 
against two- and three-dimensional benchmark test cases, while its results have been compared with 
experimental data as well as with the results obtained by other solvers. The compared solutions concern 
mainly the distributions of pressure coefficient, defined as [Abb49, Mun98] 

 
( )
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where p  denotes the local pressure, while p∞ , ρ∞ and V∞



 
the pressure, density and velocity at far-field 

respectively. In problems considering fluid flow over aircrafts, the lift and drag coefficients are also used 
for comparison reasons; they can be computed as follows [Abb49, Mun98] 
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where S is a characteristic area of the aircraft (usually the projection of the wing area on the horizontal 
plane). The total lift L and drag D forces can be evaluated by a single loop over the boundary nodes or 
faces, using the (pressure and viscous) stress tensor (near-field analysis) [Vos10, Vos13]. Besides the 
dimensionless pressure and Mach number contours, the isentropic Mach number can be utilized for the 
visualization of the extracted solutions, which is defined as [Mun98] 
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where p  denotes the local static pressure, while op∞
 the total pressure at the far-field; for the latter the 

value at the inlet boundary surface is usually assigned. In order to validate the present method's 
computational performance, the density residual is computed at each cycle (of the multigrid scheme) or at 
each iteration (of the single-grid scheme) as [Lyg13c, Lyg14f] 
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where l is the number of the current multigrid cycle or single-grid iteration, while Np is the number of 
nodes of the initial finest mesh; a corresponding expression is employed for the residual of turbulent 
kinetic energy in case of turbulent flows. 

This section is continued with the evaluation of the proposed methodology against test cases, 
considering inviscid, viscous laminar and viscous turbulent flows over wings and aircrafts. 
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7.2. Inviscid flow over a rectangular wing with a NACA0012 airfoil 
The first (quasi-3D) test case considers inviscid flow with Mach number 0.8 and angle of attack 0o 

over a rectangular wing with a NACA0012 airfoil [Bae09, Lyg11, Lyg14c]. The utilized grid is composed 
of 625,250 nodes and 3,500,243 tetrahedra, while for parallel computation on a DELL T7500 workstation 
with two Intel(R) Xeon(R)-X5550 four-core processors at 2.67 GHz it was divided in four partitions; Figure 
7.1 illustrates the employed grid as well as its density on symmetry surface. Accuracy improvement was 
succeeded with the incorporated second-order spatial accurate scheme, coupled with Van Albada-Van 
Leer limiter. Both an explicit (Runge-Kutta method) and implicit (Jacobi algorithm) scheme were 
implemented for the iterative solution of the problem (without of course any difference in their final 
results); for the first method a CFL number equal to unity was employed, while for the second one CFL 
was linearly increased up to 5.0. The parameters of the simulation are summarized in the following Table 
7.1. 
 

Table 7.1: Parameters of simulation (inviscid flow over a rectangular wing with a NACA0012 airfoil). 
Parameters 

Type of flow Inviscid 
Mach number 0.8 

Reynolds number - 
Angle of attack (deg.) 0o 

Grid density 625,250 nodes and 
3,500,243 tetrahedra 

Number of partitions 4 
Iterative scheme Runge-Kutta method (CFL=1.0) and Jacobi algorithm (CFL=1.0-5.0) 

Computational system DELL T7500 workstation with two Intel(R) Xeon(R)-X5550 four-core 
processors at 2.67 GHz 

 
Nevertheless, the aforementioned grid was identified to be insufficient for the accurate capturing of 

flow phenomena, especially those located at shock formations. Therefore, the developed h-refinement 
methodology was applied, resulting in an increased number of DoF’s and consequently in improved 
accuracy at the shock region; its implementation was based on a criterion automatically targeting and 
enriching areas with value of Mach number between 0.95 and 1.05. The new mesh, whose density on the 
mirroring surface is presented in Figure 7.2, compared with the initial one, consists of 1,084,667 nodes 
and 6,171,465 tetrahedra. The iterative solution was continued, since the up to that moment computed 
primitive variables were interpolated to the adapted grid; in that way the generation of a new mesh from 
scratch was avoided and consequently significant computational savings were achieved. 

 

     
Figure 7.1: Employed grid and its density on symmetry surface (inviscid flow over a rectangular wing with a 

NACA0012 airfoil). 
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Figure 7.2: Mesh density on the symmetry surface prior (left) and after (right) h-refinement (inviscid flow over a 

rectangular wing with a NACA0012 airfoil). 
 

 
Figure 7.3: Dimensionless pressure contours (left) and distribution of pressure coefficient (right) at the mid-span of 

the wing (inviscid flow over a rectangular wing with a NACA0012 airfoil). 
 

Figure 7.3 illustrates the obtained dimensionless pressure contours at the mid-span of the refined 
wing, as well as the distributions of pressure coefficient Cp along the same slice for both grids (initial and 
refined), compared with the corresponding one of Baeza et al. [Bae09]. A sufficient agreement is 
identified between the reference and the extracted by the adapted grid results, indicating the potential of 
the developed solver for such simulations. Additionally, the mis-capturing of the shock by the initial grid, 
compared to the improved shock prediction by the refined one, demonstrates the capability of h-
refinement methodology for improving the solution's accuracy. 

In order to evaluate the developed multigrid methodology, three-coarser resolutions of the initial 
mesh were created via isotropic agglomeration. In Figure 7.4 far views of the initial and agglomerated 
control volume grids are illustrated, while Figure 7.5 includes the corresponding close-up views at 
symmetry surface. In case of the explicit scheme, iterations/cycles and time speed-up coefficients equal to 
~10.5 and ~8.8 respectively were succeeded for a final residual equal to 1.0E-10 (only FAS); in Figure 
7.6 the density convergence histories per number of iterations/cycles and time are presented for the 
single-grid and multigrid simulations. Figure 7.7 illustrates the corresponding history for the runs with the 
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implicit scheme, performed on a workstation with an AMD FX(tm)-8350 eight-core processor at 4.0 GHz; 
iterations/cycles and temporal acceleration coefficients equal to ~14.0 and ~3.5 were obtained (only 
FAS). Despite that a higher acceleration was achieved in case of the explicit scheme, significantly 
reduced wall-clock computation time (~0.8 hours) was achieved by the implicit method, mainly due to the 
increased CFL value. Independently of the employed scheme, the aforementioned coefficients reveal the 
proposed multigrid method’s potential for considerably improved computational performance.  
 

  

  
Figure 7.4: Initial and agglomerated control volume grids (inviscid flow over a rectangular wing with a NACA0012 

airfoil). 
 

7.3. Laminar flow over a rectangular wing with a NACA0012 airfoil 
The second (quasi-3D) problem encountered, concerns laminar flow with 0o angle of attack, Mach 

number 0.85 and Reynolds number 500 over a rectangular wing with a NACA0012 airfoil [Mit98, Lyg11, 
Lyg14c]. The utilized hybrid grid consists of 305,978 nodes, 566,245 tetrahedra and 394,760 prisms, the 
latter located on the solid wall region (wing) to allow for the effective prediction of boundary layer 
region; Figure 7.8 illustrates the employed grid as well as its density on the symmetry surface. For the 
computation of velocity components' gradients, which are necessary to viscous terms' evaluation, the 
nodal-averaging method was followed, while for the inviscid fluxes the incorporated second-order 
accurate spatial scheme was accompanied by the Min-mod limiter. Both an explicit (Runge-Kutta 
method) and implicit (Jacobi algorithm) scheme were implemented for the iterative solution of the 
problem (without of course any difference in their final results); for the first method a CFL number equal 
to unity was employed, while for the second one CFL was linearly increased up to 2.0. In order to 
accelerate the solution procedure on a DELL T7500 workstation with two Intel(R) Xeon(R)-X5650 six-core 
processors at 2.67 GHz, the developed parallelization strategy, as well as the incorporated agglomeration 
multigrid scheme were implemented (FMG-FAS). Therefore, the initial grid was divided in four sub-
domains, for which three-coarser resolutions were generated via directional agglomeration. In Figure 7.9 
far views of the initial and agglomerated control volume grids are illustrated, while Figure 7.10 includes 
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the corresponding close-up views of the symmetry surface, where the topology-preserving framework, 
according to which the proposed multigrid methodology is applied, is clearly demonstrated. The 
parameters of the simulation are summarized in the following Table 7.2.  

 

  
 

  
Figure 7.5: Mesh density on the symmetry surface of the initial and agglomerated control volume grids (inviscid 

flow over a rectangular wing with a NACA0012 airfoil). 
 

 
Figure 7.6: Density convergence history per iterations/cycles and time (explicit scheme, inviscid flow over a 

rectangular wing with a NACA0012 airfoil). 
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Figure 7.7: Density convergence history per iterations/cycles and time (implicit scheme, inviscid flow over a 

rectangular wing with a NACA0012 airfoil). 
 

In Figure 7.11 the extracted Mach number contours at the mid-span of the wing are presented along 
with the distribution of pressure coefficient Cp at the same slice, compared with the corresponding one of 
Mittal [Mit98].The obtained results agree very well with those of the reference solver, indicating the 
capability of the proposed methodology for such simulations in terms of accuracy. 
 

Table 7.2: Parameters of the simulation (laminar flow over a rectangular wing with a NACA0012 airfoil). 
Parameters 

Type of flow Laminar 
Mach number 0.85 

Reynolds number 500 
Angle of attack (deg.) 0o 

Grid density 
305,978 nodes, 

566,245 tetrahedra and 
394,760 prisms 

Number of partitions 4 
Number of multigrid levels 4 

Iterative scheme Runge-Kutta method (CFL=1.0) and Jacobi algorithm (CFL=1.0-2.0) 

Computational system DELL T7500 workstation with two Intel(R) Xeon(R)-X5650 six-core 
processors at 2.67 GHz 

 
Besides the initial multigrid runs (explicit and implicit), single-grid simulations were also performed, 

revealing the superiority of the former in terms of efficiency. In case of the explicit scheme, 
iterations/cycles and time speed-up coefficients equal to ~7.2 and ~6.0 respectively were achieved for a 
final residual equal to 1.0E-9; in Figure 7.12 the density convergence histories per number of 
iterations/cycles and time are presented for the single-grid and the four-level multigrid simulation. In 
addition, a two- and three-level FMG-FAS multigrid run was performed, with its convergence history 
included in the same figure; as expected, additional acceleration is obtained for any additional spatial 
multigrid level. Similarly Figure 7.13 shows the corresponding history for the implicit scheme; 
iterations/cycles and temporal acceleration coefficients equal to ~12.8 and ~3.9 were succeeded 
considering a three-level multigrid scheme. 
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Figure 7.8: Employed grid and its density on the symmetry surface (laminar flow over a rectangular wing with a 

NACA0012 airfoil). 
 

   

   
Figure 7.9: Initial and agglomerated control volume grids (laminar flow over a rectangular wing with a NACA0012 

airfoil). 
 

In addition, two more simulations (single-grid and 4-level multigrid, only FAS) were performed, 
implementing the incorporated explicit scheme along with the element-based method (edge-dual volume 
approach) for the velocity components and temperature gradients' computation; CFL number was set 
equal to unity. In Figure 7.14 the density convergence history per number of iterations and time is 
presented for these runs; a temporal speed-up coefficient equal to ~7.1 was achieved. Although a larger 
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time speed-up coefficient was succeeded, comparing to the corresponding simulations with nodal-
averaging scheme, the wall clock computation time was significantly increased (~3.3 hours); coefficients 
per number of iterations are equal (~7.2) for both sets of simulations. Thus, the superior computational 
efficiency of the nodal-averaging scheme, compared to the edge-dual volume one, is demonstrated 
independently of implementing or not the multigrid methodology. 

 

   
 
 

   
Figure 7.10: Mesh density on the symmetry surface of the initial and agglomerated control volume grids (laminar 

flow over a rectangular wing with a NACA0012 airfoil). 
 

  
Figure 7.11: Mach number contours (left) and distribution of pressure coefficient (right) at the mid-span of the wing 

(laminar flow over a rectangular wing with a NACA0012 airfoil). 
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Figure 7.12: Density convergence history per iterations/cycles and time (2-, 3- and 4-level FMG-FAS multigrid 

explicit scheme, CFL=1.0, laminar flow over a rectangular wing with a NACA0012 airfoil). 
 

    
Figure 7.13: Density convergence history per iterations/cycles and time (3-level FAS multigrid implicit scheme 

CFL=1.0-2.0, laminar flow over a rectangular wing with a NACA0012 airfoil). 
 

    
Figure 7.14: Density convergence history per iterations/cycles and time (explicit scheme, element-based method, 

laminar flow over a rectangular wing with a NACA0012 airfoil).
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7.4. Turbulent flow over a rectangular wing with a RAE2822 airfoil 
The third (quasi-3D) benchmark test case considers "steady-state" fully turbulent flow over a 

rectangular wing with a RAE2822 airfoil [Lyg11]; experimental data for this problem have been 
published by Cook et al. [Coo79]. The Mach and Reynolds numbers are set equal to 0.725 and 6.5E+6 
respectively, while the angle of attack is set to 2.6o in order to account for the side effects of the wind 
tunnel. The employed hybrid mesh is composed of 683,346 nodes, 2,165,362 tetrahedra, 587,465 prisms 
and 5,201 pyramids, while for parallel solution of the problem on a DELL T7400 workstation with two 
Intel(R) Xeon(R)-E5410 four-core processors at 2.33 GHz, it was divided in eight sub-domains; in Figure 
7.15 the utilized grid as well as its density on the symmetry surface is presented. For the iterative 
approximation of the solution the second-order time accurate Runge-Kutta method was employed along 
with a CFL number equal to 0.5. The gradients at control volumes interfaces, required for the calculation 
of viscous fluxes, were obtained with the edge-dual volume approach, while inviscid fluxes' accuracy was 
improved with a second-order accurate spatial scheme, coupled with the Van Albada-Van Leer limiting 
function. The parameters of the simulation are summarized in the following Table 7.3.  

 

            
Figure 7.15: Employed grid and its density on the symmetry surface (turbulent flow over a rectangular wing with a 

RAE2822 airfoil). 
 

Table 7.3: Parameters of simulation (turbulent flow over a rectangular wing with a RAE2822 airfoil). 
Parameters 

Type of flow Turbulent 
Mach number 0.725 

Reynolds number 6.5E+6 
Angle of attack (deg.) 2.6o 

Grid density 

683,346 nodes,  
2,165,362 tetrahedra,  
587,465 prisms and  

5,201 pyramids 
Number of partitions 8 

Iterative scheme Runge-Kutta method (CFL=0.5) 

Computational system DELL T7400 workstation with two Intel(R) Xeon(R)-E5410 four-
core processors at 2.33 GHz 

 
The main goal of this test case is the evaluation of the performance of the three incorporated in the 

proposed algorithm turbulence models (without any transition scheme), namely k-ε with wall functions 
(WF1 and WF2), k-ω and SST. In Figure 7.16 the derived by the k-ω model dimensionless pressure 
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contours at the mid-span of the wing are depicted, while Figure 7.17 illustrates the pressure coefficient 
distributions at the same slice for all the employed models, compared with the corresponding results of 
Cook et al. [Coo79]; in general all the applied turbulence models provided equally satisfactory results, 
agreeing very well with the experimental data. 

 

 
Figure 7.16: Dimensionless pressure contours at the mid-span of the wing predicted with k-ω model (turbulent flow 

over a rectangular wing with a RAE2822 airfoil). 
 

 
Figure 7.17: Distribution of pressure coefficient at the mid-span of the wing (turbulent flow over a rectangular wing 

with a RAE2822 airfoil). 
 

Besides the effectiveness of turbulence modelling, the scalability provided by the adopted 
parallelization strategy was evaluated with this test case, utilizing a DELL T7500 workstation with two 
Intel(R) Xeon(R)-X5650 six-core processors at 2.67 GHz. Therefore, the sub-case including k-ω model was 
calculated in a parallel environment of two, four, eight and twelve processors, deriving the speed-up per 
number of processors distribution, illustrated in Figure 7.18; the relatively slight deviation between the 
ideal and the current computation derives from the increase of communication load with the increase of 
employed processors. 
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Figure 7.18: Scalability of parallel implementation (k-ω model, turbulent flow over a rectangular wing with a 

RAE2822 airfoil). 
 

7.5. Turbulent flow over a rectangular wing with a NACA0012 airfoil 
A quasi-3D test case involving "steady-state" fully turbulent flow over a rectangular wing with a 

NACA0012 airfoil [Per07] was used for the evaluation of the k-ε model blended with the one-equation 
model at the solid wall region. The Mach and Reynolds numbers are assumed equal to 0.85 and 1.85E+6 
respectively, while the angle of attack is set to 0o. The utilized hybrid grid consists of 1,900,703 nodes, 
3,017,043 tetrahedra, 2,702,647 prisms and 4,154 pyramids, while for its employment on the same to the 
previous test case computational system it was divided in eight partitions; in Figure 7.19 the employed 
grid as well as its density on the symmetry surface is presented. 

 

           
Figure 7.19: Employed grid and its density on the symmetry surface (turbulent flow over a rectangular wing with a 

NACA0012 airfoil). 
 
For the iterative approximation of the final steady-state solution the second-order accurate in time 

Runge-Kutta method was employed along with a CFL number equal to 0.5. The gradients at the middle of 
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each edge, required for the calculation of viscous fluxes, were obtained with the edge-dual volume 
method, while inviscid fluxes' accuracy was improved with a second-order accurate spatial scheme, 
coupled with the Van Albada-Van Leer limiting function. The parameters of the simulation are 
summarized in Table 7.4. In Figure 7.20 the obtained Mach number contours at the mid-span of the wing 
are illustrated along with the derived distribution of pressure coefficient at the same slice, compared with 
the corresponding one of Persson [Per07]; a satisfactory agreement is obtained between the results of the 
present and the reference solver. 

 
Table 7.4: Parameters of simulation (turbulent flow over a rectangular wing with a NACA0012 airfoil). 

Parameters 
Type of flow Turbulent 

Mach number 0.85 
Reynolds number 1.85E+6 

Angle of attack (deg.) 0o 

Grid density 

1,900,703 nodes,  
3,017,043 tetrahedra,  
2,702,647 prisms and  

4,154 pyramids 
Number of partitions 8 

Iterative scheme Runge-Kutta method (CFL=0.5) 

Computational system DELL T7400 workstation with two Intel(R) Xeon(R)-E5410 four-
core processors at 2.33 GHz 
 

 
Figure 7.20: Mach number contours (left) and distribution of pressure coefficient (right) at the mid-span of the wing 

(turbulent flow over a rectangular wing with a NACA0012 airfoil). 
 
7.6. Turbulent flow over the ONERA M6 wing 

The next benchmark problem encountered in this study considers the prediction of three-dimensional 
"steady-state" fully turbulent flow over the ONERA M6 wing [Sch79, Sor03, Ara10, Lyg13a, PAB3D, 
WIND]. The free-stream Mach number is assumed equal to 0.8395, the angle of attack equal to 3.06o and 
the Reynolds number (based on the mean aerodynamic chord) equal to 11.72E+6. The generated hybrid 
grid includes 4,676,354 nodes, 7,231,670 tetrahedra and 6,775,840 prisms, while for its utilization on the 
parallel computational environment, utilizing a DELL T7500 workstation with two Intel(R) Xeon(R)-X5650 
six-core processors at 2.67 GHz, it was decomposed in twelve partitions; Figure 7.21 illustrates the 
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utilized grid as well as its density on the symmetry surface. For the iterative solution the four-stage 
Runge-Kutta method was implemented with a CFL number equal to unity, while for turbulence prediction 
the SST model was employed along with an implicit source term treatment. The gradients, required for the 
calculation of viscous fluxes, were obtained with the nodal-averaging scheme, while inviscid fluxes' 
accuracy was improved with a second-order accurate spatial scheme, coupled with Van Albada-Van Leer 
limiting function. The parameters of the simulation are summarized in the following Table 7.5. 

 
Table 7.5: Parameters of simulation (turbulent flow over the ONERA M6 wing). 

Parameters 
Type of flow Turbulent (SST) 

Mach number 0.8395 
Reynolds number 11.72E+6 

Angle of attack (deg.) 3.06o 

Grid density 
4,676,354 nodes,  

7,231,670 tetrahedra and  
6,775,840 prisms 

Number of partitions 12 
Iterative scheme Runge-Kutta method (CFL=1.0) 

Computational system DELL T7500 workstation with two Intel(R) Xeon(R)-X5650 six-core 
processors at 2.67 GHz 

 

        
Figure 7.21: Employed grid and its density on the symmetry surface (turbulent flow over the ONERA M6 wing). 

 
Nevertheless, this grid was identified insufficient for the accurate capturing of the flow phenomena, 

especially in the area of shock formations and for span-wise sections greater than 44%. Therefore, the h-
refinement technique was applied at this region, based on a criterion targeting the areas with Mach 
number greater than 0.95; the derived adapted mesh was composed of 5,302,368 nodes, 8,315,389 
tetrahedra and 7,653,360 prisms. As the second mesh proved to be also insufficient, an additional grid 
adaptation was implemented, targeting the shock regions defined by the available experimental data, 
resulting in the final grid including 6,431,378 nodes, 8,978,240 tetrahedra and 11,048,643 prisms. Figures 
7.22 and 7.23 illustrate the mesh density at the wing span-wise section 40%, and the wing surface 
respectively prior and after h-refinement. 

Figure 7.24 illustrates the predicted dimensionless pressure contours on the upper surface of the wing 
for the initial and the refined mesh, while Figures 7.25-7.31 include the finally obtained distributions of 
pressure coefficient at seven different span-wise sections of the wing, compared with the available 
experimental data [Sch79] as well as with the computed ones by reference solvers [Ara10, PAB3D]. The 
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current results appear to be in satisfactory agreement with the reference ones (experimental and 
computed); even more, at wing section 80% the proposed method appears to predict more accurately the 
shock at the upper side of the wing, comparing to the reference solvers. 

 

 
Figure 7.22: Mesh density at the wing span-wise section 40% prior (left) and after (right) h-refinement (turbulent 

flow over the ONERA M6 wing). 
 

 
Figure 7.23: Mesh density on the wing surface prior (left) and after (right) h-refinement (turbulent flow over the 

ONERA M6 wing). 
 

 
Figure 7.24: Predicted dimensionless pressure contours on the wing surface prior (left) and after (right) h-

refinement (turbulent flow over the ONERA M6 wing). 
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Figure 7.25: Distribution of pressure coefficient at the 
span-wise section 20% (turbulent flow over the ONERA 

M6 wing). 

Figure 7.26: Distribution of pressure coefficient at the 
span-wise section 44% (turbulent flow over the ONERA 

M6 wing). 
 

  
Figure 7.27: Distribution of pressure coefficient at the 
span-wise section 65% (turbulent flow over the ONERA 

M6 wing). 

Figure 7.28: Distribution of pressure coefficient at the 
span-wise section 80% (turbulent flow over the ONERA 

M6 wing). 
 

  
Figure 7.29: Distribution of pressure coefficient at the 
span-wise section 90% (turbulent flow over the ONERA 

M6 wing). 

Figure 7.30: Distribution of pressure coefficient at the 
span-wise section 95% (turbulent flow over the ONERA 

M6 wing). 
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Figure 7.31: Distribution of pressure coefficient at the 
span-wise section 99% (turbulent flow over the ONERA 

M6 wing). 
 

 
7.7. Turbulent flow over the DLR-F6 aircraft 

A validation of the developed methodology was performed against the test cases of the second AIAA 
Drag Prediction Workshop (DPW II), held in Orlando in June 2003; the fully turbulent flow over the 
DLR-F6 aircraft with (Wing-Body-Nacelles-Pylons, WBNP) and without nacelles-pylons (Wing-Body, 
WB), representing a twin engine wide body aircraft of Airbus type, is examined [Bro01, Laf05, Lan05, 
Luo05, Lyg13a, Lyg14e]. The utilized meshes, which were provided by the NASA Langley Research 
Center (LARC) (http://aaac.larc.nasa.gov), include only the half configuration, while they were re-
dimensionalized such as the mean aerodynamic chord to become equal to unity and consequently the 
grids to be eligible for simulation with the proposed dimensionless methodology. In Figure 7.32 the 
employed grid for the DLR F-6 WB configuration as well as a close-up view of its solid/symmetry 
surface is illustrated. 

 

    
Figure 7.32: Employed grid and its density on the symmetry surface (turbulent flow over the DLR F-6 WB aircraft). 

 
The flow for both aircraft configurations (WB and WBNP) is characterized by free-stream Mach 

number and Reynolds number (based on the unit mean aerodynamic chord) equal to 0.75 and 3.0E+6, 
respectively [Luo05]. For the iterative approximation of the final steady-state solution, the incorporated 
four-stage Runge-Kutta method was applied with a CFL number equal to unity, while turbulence 

http://en.wiktionary.org/wiki/dimensionalized#English�
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prediction was succeeded utilizing the SST model; for the latter one implicit treatment of the source term 
was additionally employed [Bla01]. The gradients at control volumes' interfaces, required for the 
calculation of viscous fluxes, were obtained with the nodal-averaging scheme, while inviscid fluxes' 
accuracy was improved with a second-order accurate spatial scheme, coupled with Van Albada-Van Leer 
limiting function; for multigrid evaluation the Min-mod limiter was used instead, due to its smoothing 
attitude and consequently its better convergence behaviour. 

 
7.7.1. DLR-F6 wing-body (WB) aircraft configuration 

The utilized grid for the WB configuration is composed of 5,666,335 nodes, 4,175,553 tetrahedra, 
9,768,149 prisms and 2,587 pyramids, while for parallel processing on a DELL T7500 workstation with 
two Intel(R) Xeon(R)-X5660 six-core processors at 2.80 GHz it was divided in twelve partitions. The angle 
of attack is set equal to 0.275o, in order the desired lift coefficient equal to 0.5 to be obtained [Luo05].The 
parameters of the simulation are summarized in the following Table 7.6. 

 
Table 7.6: Parameters of simulation (turbulent flow over the DLR F-6 WB aircraft). 

Parameters 
Type of flow Turbulent (SST) 

Mach number 0.75 
Reynolds number 3.0E+6 

Angle of attack (deg.) 0.275o 

Grid density 

5,666,335 nodes,  
4,175,553 tetrahedra,  
9,768,149 prisms and  

2,587 pyramids 
Number of partitions 12 

Iterative scheme Runge-Kutta method (CFL=1.0) 

Computational system DELL T7500 workstation with two Intel(R) Xeon(R)-X5660 six-core 
processors at 2.80 GHz 

 

 
Figure 7.33: Mesh density (left) and predicted dimensionless pressure contours (right) on the surface of the aircraft 

(turbulent flow over the DLR F-6 WB aircraft). 
 
In Figure 7.33 the mesh density and the predicted contours of the dimensionless pressure on the 

surface of the aircraft are presented; the latter, compared to the corresponding illustration of Luo et al. 
[Luo05], demonstrates qualitatively the effectiveness of the proposed methodology. Figure 7.34 includes 
a close-up view of the predicted dimensionless pressure contours/velocity traces on the upper wing 
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surface (left) and the obtained isentropic Mach number contours on the lower one (right); the traces reveal 
a wing-body junction separation on the upper surface area of the wing [Lan05].  

 

 
Figure 7.34: Predicted dimensionless pressure contours/velocity traces on the upper wing surface (left) and 
isentropic Mach number contours (right) on the lower one (turbulent flow over the DLR F-6 WB aircraft). 

 

  
Figure 7.35: Distribution of pressure coefficient at the 

span-wise section 15% (turbulent flow over the DLR F-6 
WB aircraft). 

Figure 7.36: Distribution of pressure coefficient at the 
span-wise section 23.9% (turbulent flow over the DLR 

F-6 WB aircraft). 
 

  
Figure 7.37: Distribution of pressure coefficient at the 
span-wise section 33.1% (turbulent flow over the DLR 

F-6 WB aircraft). 

Figure 7.38: Distribution of pressure coefficient at the 
span-wise section 37.7% (turbulent flow over the DLR 

F-6 WB aircraft). 
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Figure 7.39: Distribution of pressure coefficient at the 
span-wise section 41.1% (turbulent flow over the DLR 

F-6 WB aircraft). 

Figure 7.40: Distribution of pressure coefficient at the 
span-wise section 51.4% (turbulent flow over the DLR 

F-6 WB aircraft). 
 

  
Figure 7.41: Distribution of pressure coefficient at the 
span-wise section 63.8% (turbulent flow over the DLR 

F-6 WB aircraft). 

Figure 7.42: Distribution of pressure coefficient at the 
span-wise section 84.7% (turbulent flow over the DLR 

F-6 WB aircraft). 
 

In Figures 7.35 to 7.42 the distributions of pressure coefficient Cp at different span-wise sections of 
aircraft's wing are illustrated, compared with the experimental as well as with the computed by the 
corresponding simulation of Luo et al. [Luo05]; the obtained results compare well, both with the 
experimental and the computed reference ones, confirming the equal potential of the developed algorithm 
for such simulations. 

Besides for the qualitative and quantitative validation of accuracy of the final steady-state solution, 
the incorporated spatial agglomeration multigrid methodology was evaluated against this test case, 
utilizing initially a relatively coarse grid of the WB configuration, composed of 622,445 nodes, 1,217,387 
tetrahedra, 790,934 prisms and 78 pyramids. The single-grid and multigrid (only FAS) runs, using the 
explicit Runge-Kutta method or the Jacobi algorithm, were performed on a workstation with an AMD 
FX(tm)-8350 eight-core processor at 4.0 GHz. For all the encountered simulations the CFL number was set 
equal to unity (in case of the implicit scheme it was gradually increased up to 2.0), while the initial grid 
was decomposed in eight sub-domains for parallel processing. Three coarser sub-grids were generated via 
directional agglomeration for each partition; in Figure 7.43 far views of the initial and the agglomerated 
control volumes are illustrated, while Figure 7.44 includes the corresponding close-up views on the 
symmetry surface. 
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Figure 7.43: Initial and agglomerated control volume grids (turbulent flow over the DLR F-6 WB aircraft). 

 

   
 

   
Figure 7.44: Mesh density on the symmetry surface of the initial and agglomerated control volume grids (turbulent 

flow over the DLR F-6 WB aircraft). 
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In case of the explicit scheme, iterations/cycles and time speed-up coefficients equal to ~7.4 and ~3.2 

respectively were achieved for a final density residual equal to 1.0E-9; for turbulent kinetic energy the 
corresponding coefficients were ~7.2 and ~3.1. In Figures 7.45 and 7.46 the single-grid and four-level 
multigrid simulations' convergence histories per number of iterations/cycles and wall-clock time are 
presented for density and turbulent kinetic energy respectively. In case of the implicit method, density 
iterations/cycles and temporal acceleration coefficients equal to ~9.3 and ~1.9 were obtained, while for 
turbulent kinetic energy the respective coefficients were ~10.0 and ~2.0; Figures 7.47 and 7.48 include 
the corresponding convergence histories per number of iterations/cycles and wall-clock time. The implicit 
runs were relatively slow compared to the explicit ones, due to the small utilized CFL number; efficiency 
of implicit schemes derives mainly from their capability to handle large CFL numbers. Nevertheless, the 
aforementioned acceleration coefficients indicate the developed multigrid methodology's potential for 
significantly improved computational performance even for relatively coarse grids. 

 

 
Figure 7.45: Density convergence history per iterations/cycles and time (explicit scheme, turbulent flow over the 

DLR F-6 WB aircraft). 
 

 
Figure 7.46: Turbulent kinetic energy convergence history per iterations/cycles and time (explicit scheme, turbulent 

flow over the DLR F-6 WB aircraft). 
 

Besides the aforementioned coarse mesh, the fine one (5,666,335 nodes, 4,175,553 tetrahedra, 
9,768,149 prisms and 2,587 pyramids), employed for the validation of the proposed methodology's 
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accuracy, was utilized to study the influence of the grid size on the gained speed-up due to the multigrid 
algorithm. The single-grid and multigrid simulations, using the explicit Runge-Kutta method (CFL=1.0), 
were performed on a DELL T7500 workstation with two Intel(R) Xeon(R)-X5550 four-core processors at 
2.67 GHz, while for parallel processing the initial grid was divided in eight sub-domains. Three coarser 
sub-grids were generated via full-coarsening and semi-coarsening directional agglomeration for each 
partition; in Figure 7.49 far views of the first and second full-coarsening agglomerated control volumes 
grids are illustrated, while Figures 7.50 and 7.51 include the corresponding close-up views on the 
symmetry surface and near aircraft nose. Table 7.7 includes the number of DoF's (nodes) per sub-domain 
of the initial and coarser grids, for both semi- and full-coarsening cases; the ghost nodes at overlapping 
regions are also included in this Table, resulting in an increased summed number of DoF's at first level 
compared to the total one. Moreover, in order to confirm the additional acceleration, gained by the 
combined FMG-FAS procedure compared to the only FAS one, simulations with both of them were 
encountered. In Figures 7.52 and 7.53 the single-grid and four multigrid simulations' convergence 
histories per number of iterations/cycles and time are presented for density and turbulent kinetic energy 
respectively. 

 

 
Figure 7.47: Density convergence history per iterations/cycles and time (implicit scheme, turbulent flow over the 

DLR F-6 WB aircraft). 
 

 
Figure 7.48: Turbulent kinetic energy convergence history per iterations/cycles and time (implicit scheme, 

(turbulent flow over the DLR F-6 WB aircraft). 
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Figure 7.49: First and second full-coarsening agglomerated control volume grids (fine mesh, turbulent flow over 

the DLR F-6 WB aircraft). 
 

        
Figure 7.50: Mesh density on the symmetry surface of the first and second full-coarsening agglomerated control 

volume grids (fine mesh, turbulent flow over the DLR F-6 WB aircraft). 
 

 
Figure 7.51: Boundary density near aircraft nose of the first and second full-coarsening agglomerated control 

volume grids (fine mesh, turbulent flow over the DLR F-6 WB aircraft). 
 
An acceleration increase is evident, compared to the corresponding results on the coarser initial 

mesh; the greater the number of computational nodes, the greater is the acceleration obtained [Lyg14g]. 
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The maximum density speed-up coefficient equal to ~5.3 was obtained by the full-coarsening 
agglomeration FMG-FAS. As expected, full-coarsening agglomeration multigrid scheme was revealed 
much more efficient than the semi-coarsening one, due to the more extended DoF's decrease it entails, 
which subsequently results to an elevated acceleration for the same computational system. Unlike this 
merging strategy the semi-coarsening one seems to be useless against this test case, as it accelerated 
negligibly the corresponding run comparing to the single-grid one. Finally, the combined FMG-FAS runs 
derived better temporal speed-up coefficients, comparing to those performed with only FAS, although the 
latter ones succeeded greater ratios per number of iterations/cycles; in case of full-coarsening fusion 
FMG-FAS succeeded an acceleration ratio of ~9.5 and ~5.3 per iterations and time respectively, while 
FAS ~10.6 and ~4.6 respectively. However, the convergence history curves of the FMG-FAS runs 
(especially for the full-coarsening fusion strategy) seem to diverge after several orders decrease of the 
residuals; therefore, the corresponding only FAS runs appear to be more time-effective this point forward. 
This FMG-FAS methodology deficiency derives from the insufficient and irreversible approximation 
derived at the preliminary stage. Despite the FMG-FAS is assumed in general more efficient than only 
FAS, it is susceptible to be confined to local maxima or minima and therefore generate oscillations or 
even fail. 

 

 
Figure 7.52: Density convergence history per iterations/cycles and time (fine grid, turbulent flow over the DLR F-6 

WB aircraft). 
 

 
Figure 7.53: Turbulent kinetic energy convergence history per iterations/cycles and time (fine grid, turbulent flow 

over the DLR F-6 WB aircraft). 
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Table 7.7: Grid coarsening by semi- and full-coarsening directional agglomeration. 
 Sub-domains Level 1 (DoF's) Level 2 (DoF's) Level 3 (DoF's) Level 4 (DoF's) 

Semi-
coarsening 

1st 728,628 354,399 202,529 155,316 
2nd 725,734 359,573 211,640 167,769 
3rd 717,934 323,993 175,954 125,165 
4th 722,500 350,838 198,323 147,571 
5th 732,802 359,146 213,165 158,405 
6th 722,019 351,405 198,571 151,802 
7th 727,505 363,072 211,652 157,629 
8th 720,742 357,037 206,502 145,302 

Full-
coarsening 

1st 728,628 135,299 35,738 16,737 
2nd 725,734 137,450 37,101 16,994 
3rd 717,934 135,718 35,414 17,645 
4th 722,500 138,859 39,259 19,571 
5th 732,802 143,627 40,518 21,072 
6th 722,019 129,100 32,056 15,993 
7th 727,505 119,366 24,911 9,859 
8th 720,742 118,164 24,928 10,164 

 
7.7.2. DLR-F6 wing-body-nacelles-pylons (WBNP) aircraft configuration 

The sub-case considering the WBNP aircraft configuration was examined, utilizing a mesh 
consisting of 5,887,240 nodes, 3,037,873 tetrahedra, 10,594,701 prisms and 9,114 pyramids. For parallel 
computation on a DELL T7500 workstation with two Intel(R) Xeon(R)-X5650 six-core processors at 2.67 
GHz it was divided in twelve sub-domains. The angle of attack is set equal to 0.8o, in order the desired lift 
coefficient equal to 0.5 to be obtained [Luo05].The parameters of the simulation are summarized in the 
following Table 7.8.  

 
Table 7.8: Parameters of simulation (turbulent flow over the DLR F-6 WBNP aircraft). 

Parameters 
Type of flow Turbulent (SST) 

Mach number 0.75 
Reynolds number 3.0E+6 

Angle of attack (deg.) 0.8o 

Grid density 

5,887,240 nodes,  
3,037,873 tetrahedra,  

10,594,701 prisms and  
9,114 pyramids 

Number of partitions 12 
Iterative scheme Runge-Kutta method (CFL=1.0) 

Computational system DELL T7500 workstation with two Intel(R) Xeon(R)-X5650 six-core 
processors at 2.67 GHz 

 
In Figure 7.54 the mesh density and the obtained dimensionless pressure distribution on the surface 

of the WBNP aircraft are presented; the latter illustration indicates a qualitative agreement with the 
corresponding computed one of Luo et al. [Luo05]. Figure 7.55 includes close-up views of the predicted 
dimensionless pressure contours/velocity traces on the upper (top) and lower (bottom) wing surfaces; 
compared to the experimental oil flow visualizations contained in the study of Langtry et al. [Lan05] 
sufficient agreement can be observed. On the upper wing surface area a wing-body junction separation is 
noticed at the wing root for both the experimental and simulated results [Lan05]. Similarly on the lower 
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one, the presence of the nacelle-pylon produces supersonic flow at the internal area of the wing, which 
results after the shock in flow separation at the wing-pylon junction [Lan05].  

 

 
Figure 7.54: Mesh density (left) and predicted dimensionless pressure contours (right) on the surface of the aircraft 

(turbulent flow over the DLR F-6 WBNP aircraft). 
 

 

 
          Figure 7.55: Predicted dimensionless pressure contours/velocity traces on the upper (top) and lower (bottom) 
wing surface of the aircraft, compared to the experimental oil flow visualizations contained in the study of Langtry 

et al. [Lan05] (turbulent flow over the DLR F-6 WBNP aircraft). 
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Figure 7.56: Predicted isentropic Mach number contours on the upper (left) and lower (right) wing surface of the 

aircraft (turbulent flow over the DLR F-6 WBNP aircraft). 
 

  
Figure 7.57: Distribution of pressure coefficient at the 

span-wise section 15% (turbulent flow over the DLR F-6 
WBNP aircraft). 

Figure 7.58: Distribution of pressure coefficient at the 
span-wise section 23.9% (turbulent flow over the DLR 

F-6 WBNP aircraft). 
 

  
Figure 7.59: Distribution of pressure coefficient at the 
span-wise section 33.1% (turbulent flow over the DLR 

F-6 WBNP aircraft). 

Figure 7.60: Distribution of pressure coefficient at the 
span-wise section 37.7% (turbulent flow over the DLR 

F-6 WBNP aircraft). 
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In Figure 7.56 the predicted isentropic Mach number contours are presented for the same wing 
surfaces (upper and lower), confirming the aforementioned flow separations. Figures 7.57 to 7.64 contain 
the distributions of pressure coefficient Cp at different span-wise sections of aircraft's wing, compared 
with the experimental ones and those computed by Luo et al. [Luo05]; the obtained results achieve a 
satisfactory agreement both with the experimental and the computed reference ones, revealing the 
potential of this algorithm for such predictions. 

 

  
Figure 7.61: Distribution of pressure coefficient at the 
span-wise section 41.1% (turbulent flow over the DLR 

F-6 WBNP aircraft). 

Figure 7.62: Distribution of pressure coefficient at the 
span-wise section 51.4% (turbulent flow over the DLR 

F-6 WBNP aircraft). 
 

  
Figure 7.63: Distribution of pressure coefficient at the 
span-wise section 63.8% (turbulent flow over the DLR 

F-6 WBNP aircraft). 

Figure 7.64: Distribution of pressure coefficient at the 
span-wise section 84.7% (turbulent flow over the DLR 

F-6 WBNP aircraft). 
 
7.8. Turbulent flow over the common research model (CRM) 

The last fluid flow test case encountered in this study, concerns the fully turbulent flow over the 
NASA CRM aircraft with (Wing-Body-Horizontal Tail, WBHT) and without horizontal tail (Wing-Body, 
WB) [Lee10, Mav10, Cez13, Mur13, Par13, Sca13, Scl13, Vos10, Vos13, Lyg14a, Lyg15, Sar15]; the 
aforementioned problem was examined by the participants of the fourth and fifth AIAA Drag Prediction 
Workshop (DPW), held in San Antonio in 2009 and in New Orleans in 2012, respectively. The CRM, 
which is a 2.7% scaled representative of a modern commercial transonic flow aircraft, was designed 
specifically for the evaluation of CFD codes [Scl13]. Therefore, the geometry parameters as well as the 
experimental (wind tunnel) results are available; furthermore, most of the grids used by the participants of 
the pre-mentioned DPW's can be obtained from the NASA Langley Research Center (LARC) 
(http://aaac.larc.nasa.gov/tsab/cfdlarc/aiaadpw). The provided grids, utilized in this study, include only 
the half aircraft, while they were re-dimensionalized, in order the mean aerodynamic chord to become 
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equal to unity and, consequently, to be used with the developed dimensionless methodology; in Figure 
7.65 the utilized grid for the CRM WB configuration as well as a close-up view of its solid/symmetry 
surface are illustrated. 

For both aircrafts (WB and WBHT), the free-stream flow is characterized by Mach number 0.85, 
Reynolds number (based on the unit mean aerodynamic chord) 5.0E+6 and reference temperature 
310,927 K (100o F). The final steady-state solution was approximated by employing the incorporated 
second-order time accurate four-stage Runge-Kutta method with a CFL number equal to unity, while 
turbulence prediction was succeeded with the SST model, along with an implicit treatment of its source 
term; no transition was assumed. The simulations were accelerated with the developed directional 
agglomeration multigrid scheme (full-coarsening) and parallelization strategy, while no further 
optimization for computational performance has been carried out. 

 

 
Figure 7.65: Employed grid and its density on symmetry surface (turbulent flow over the CRM WB aircraft). 
 

7.8.1. CRM wing-body (WB) aircraft configuration 
A relatively coarse grid, consisted of 3,342,884 nodes, 5,042,388 tetrahedra, 4,425,652 prisms and 

33,072 pyramids, was utilized for the representation of the computational domain around the WB aircraft. 
The angle of attack of the free-stream flow was set equal to 2.15o, considering the desired value equal to 
0.5 of the lift coefficient. The gradients, required for viscous fluxes, were obtained with the nodal-
averaging method, while the second-order spatial accurate scheme, used for the inviscid ones, was 
coupled with Van Albada-Van Leer slope limiter. Implementing a three-level multigrid scheme along 
with a twelve-partitions parallel processing on a DELL T7500 workstation with two Intel(R) Xeon(R)-
X5660 six-core processors at 2.80 GHz, the density residual was decreased approximately three orders of 
magnitude in 24 hours. The parameters of the simulation are summarized in the following Table 7.9. 
Nevertheless, the employed mesh revealed to be insufficient for the accurate prediction of the expected 
flow phenomena, especially in the region of shock waves and for wing span-wise sections approximately 
greater than 28.28%. The developed h-refinement methodology was implemented to this area, while a 
second refinement was used for the outer half wing compartment due to its significantly coarse initial 
density, deriving the finally used grid, which consists of 4,570,180 nodes, 6,721,680 tetrahedra, 6,651,436  
prisms and 34,318 pyramids; Figure 7.66 depicts the mesh density on the wing surface prior (left) and 
after (right) h-refinement. 

Since the results for the initial mesh were interpolated on the refined grid, the simulation was 
continued deriving the final steady-state solution. In Figure 7.67 the final mesh density and predicted 
dimensionless pressure contours on the aircraft surface are illustrated. Figures 7.68 and 7.69 include the 
corresponding Mach number contours on the symmetry surface and a section at 37% of the wing span, 
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allowing for qualitative comparison of the derived results with those of other solvers [Cez13, Mur13, 
Par13]; the equal potential of the proposed solver for such simulations is indicated.  

 
Table 7.9: Parameters of simulation (turbulent flow over the CRM WB aircraft). 

Parameters 
Type of flow Turbulent (SST) 

Mach number 0.85 
Reynolds number 5.0E+6 

Angle of attack (deg.) 2.15o 

Grid density 

3,342,884 nodes,  
5,042,388 tetrahedra,  
4,425,652 prisms and  

33,072 pyramids 
Number of partitions 12 

Number of multigrid levels 3 
Iterative scheme Runge-Kutta method (CFL=1.0) 

Computational system DELL T7500 workstation with two Intel(R) Xeon(R)-X5660 six-core 
processors at 2.80 GHz 

 

 
Figure 7.66: Mesh density on the wing surface prior (left) and after (right) h-refinement (turbulent flow over the 

CRM WB aircraft). 
 
 

 
Figure 7.67: Mesh density (left) and predicted dimensionless pressure contours (right) on the surface of the aircraft 

(turbulent flow over the CRM WB aircraft). 
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Figure 7.68: Predicted Mach number contours on the symmetry surface of the aircraft (turbulent flow over the CRM 

WB aircraft). 
 

 
Figure 7.69: Predicted Mach number contours on the wing span-wise section 37% of the aircraft (turbulent flow 

over the CRM WB aircraft). 
 

No considerable wing-body juncture separation at the upper side of the wing was observed, similarly 
to some of the participants of the DPW's [Cez13, Par13, Sca13, Scl13]; its absence might derive from the 
utilization of a relatively coarse mesh along with the SST turbulence model [Scl13]. Figures 7.70 up to 
7.75 contain the pressure coefficient distributions at different wing span-wise sections of the aircraft, 
compared to the corresponding experimental and reference calculated ones [Sca13]. A satisfactory 
agreement is identified between the obtained results and the reference experimental and computed data 
[Sca13], considering the relatively small number of DoF’s of the finally utilized mesh as well as the 
differences, especially in the area of shock formations, between the results of the DPWs' participants 
[Lev13]. Additionally, the significant contribution of the h-refinement methodology is demonstrated with 
the better shock capturing at wing span-wise sections greater equal than 50.24% of the adapted mesh, 
comparing to the initial one. Local grid adaptation had though a negligible impact to the lift and drag 
coefficients; thus, angle of attack of free-stream flow wasn't adjusted. In Table 7.10 the aforementioned 
coefficients (lift and idealized drag ones), derived by near-field analysis [Vos10, Vos13] from the initial 



Fluid flow numerical results 
 

7-33 
 

and refined mesh, are presented in comparison with the experimental ones [Vas10] as well as with the 
calculated ones by Vos and Sanchi [Vos10]; the idealized drag coefficient is defined as follows [Lee10] 

  
2
L

Didealized D
CC C

ARπ
= −

⋅
 (7.6) 

  
where AR is the wing aspect ratio [Lee10]. The obtained lift coefficients are very close with both the 
reference computed and experimental one [Lee10, Vas10, Vos10], while grid adaptation entails a slight 
increase. As far as the idealized drag results are concerned, a satisfactory agreement is achieved with the 
reference computed one [Vos10]. Nevertheless, an overestimation is obvious when it is compared to the 
experimental one, deriving from the relatively coarse utilized grid [Sca13]; drag is reduced when going 
from a coarser to a finer resolution [Vos10]. The previous state is confirmed with the corresponding 
comparison between the initial and refined grid, as well as with the utilization of a medium grid in the 
next section, concerning the WBHT configuration. 
 

  
Figure 7.70: Pressure coefficient distribution at wing 

span-wise section 13.06% (turbulent flow over the CRM 
WB aircraft). 

Figure 7.71: Pressure coefficient distribution at wing 
span-wise section 28.28% (turbulent flow over the CRM 

WB aircraft). 
 

  
Figure 7.72: Pressure coefficient distribution at wing 

span-wise section 39.71% (turbulent flow over the CRM 
WB aircraft). 

Figure 7.73: Pressure coefficient distribution at wing 
span-wise section 50.24% (turbulent flow over the CRM 

WB aircraft). 
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Figure 7.74: Pressure coefficient distribution at wing 

span-wise section 72.68% (turbulent flow over the CRM 
WB aircraft). 

Figure 7.75: Pressure coefficient distribution at wing 
span-wise section 95.00% (turbulent flow over the CRM 

WB aircraft). 
 

Table 7.10: Lift and idealized drag coefficients (CL~0.5, turbulent flow over the CRM WB aircraft). 
 LC  

idealizedDC  

Current (initial coarse grid) 0.5014 0.01939 
Current (refined coarse grid) 0.5016 0.01934 
Vos and Sanchi 2010 [Vos10] ~0.5 ~0.01960 

NTF Run 44 [Vas10] ~0.5 ~0.01671 
 

An additional analysis was performed, considering the different available options in Galatea (slope 
limiters and schemes, implemented for the computation of inviscid and viscous fluxes, respectively). The 
corresponding runs were accomplished on a DELL T7500 workstation with two Intel(R) Xeon(R)-X5550 
four-core processors at 2.67 GHz, utilizing the refined grid, divided in eight partitions for parallel 
processing. In order to implement the developed multigrid scheme, three coarser polyhedral sub-grids 
were constructed for each sub-domain via full-coarsening directional agglomeration. 

The first part of this sensitivity analysis includes simulations with the limiting functions of Van 
Albada-Van Leer, Min-mod and Barth-Jespersen; for all of them the nodal-averaging scheme for 
gradients' computation and consequently diffusive fluxes' evaluation was employed. In Figure 7.76 the 
density (left) and turbulent kinetic energy (right) convergence history per multigrid cycles for the runs 
with these three different slope limiters is presented. Density residual was reduced approximately four 
orders of magnitude with Van Albada-Van Leer and Min-mod, while only two with Barth-Jespersen, 
resulting in an unconverged and, consequently, wrong solution; the limiter of Barth-Jespersen is 
acknowledged in some studies to exhibit poor convergence characteristics due to the overreacted limiting 
of small amplitude noise [Del13]. As far as the rest two limiting approaches (Van Albada-Van Leer and 
Min-mod) are concerned, both qualitative and quantitative differences were observed between them, 
despite their similar convergence behaviour. Figure 7.77 illustrates the finally extracted Mach number 
contours on a section at 70% of the wing span for both of them; Van Albada-Van Leer (left) produced a 
more accurate solution compared to Min-mod (right), identified by the sharper shock wave as well as by 
its more forward position on this section. Inaccuracy for the second limiter derives from its smoothing 
behaviour, as it always chooses the slope with the smallest magnitude [Lyg13c]. The aforementioned 
qualitative differentiation is verified quantitatively with the comparison of the corresponding pressure 
coefficient distributions at wing span-wise sections 50.24% and 72.68%, shown in Figures 7.78 and 7.79, 
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respectively. Van Albada-Van Leer slope limiter superiority is clearly demonstrated at shock wave 
formation region as well as ahead of it (especially at section 72.68%). 

The second part of this analysis includes runs with either the nodal-averaging or the element-based 
(edge-dual volume) scheme, used for the computation of the gradients at the middle of each edge and 
consequently the evaluation of the viscous fluxes at the same point. Considering the results of the 
previous part, the simulations were performed with the superior Van Albada-Van Leer slope limiter. 
Although the element-based approach is assumed to be more accurate [Bla01], no differences were 
observed between the extracted results as well as between the convergence histories per multigrid cycles. 
Nevertheless, differences do exist regarding the corresponding density (left) and turbulent kinetic energy 
(right) convergence history curves per wall-clock computation time, as illustrated in Figure 7.80. The 
edge-dual volume run lasted almost twice the time required by the nodal-averaging one, in order the 
density residual to be reduced at least three order of magnitude. Thus, the superior efficiency of the nodal-
averaging scheme is revealed once more, resolving capability from the edge-based structure it uses, 
whose dimensions are a priori smaller from those of the element-based methodology. 

 

 
Figure 7.76: Density (left) and turbulent kinetic energy (right) convergence history for three different slope limiters 

(turbulent flow over the CRM WB aircraft). 
 

 
Figure 7.77: Mach number contours on a section at 70% of the wing span obtained with limiters of Van Albada-Van 

Leer (left) and Min-mod (right) (turbulent flow over the CRM WB aircraft). 
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Figure 7.78: Pressure coefficient distribution at wing 

span-wise section 50.24% with different limiters 
(turbulent flow over the CRM WB aircraft). 

Figure 7.79: Pressure coefficient distribution at wing 
span-wise section 72.68% with different limiters 

(turbulent flow over the CRM WB aircraft). 
 

 
Figure 7.80: Density (left) and turbulent kinetic energy (right) convergence histories, obtained with nodal-

averaging and element-based scheme (turbulent flow over the CRM WB aircraft). 
 
Since the most suitable options of Galatea solver (Van Albada-Van Leer limiting function and 

nodal-averaging approach) were identified for this problem, a downwash study was performed similarly 
to these of DPW's participants; the flow on the refined grid but in different angles of attack, namely 0o, 1o, 
3o and 4o was considered. Figure 7.81 includes the distribution of lift coefficient for the aforementioned 
angles of attack, while in Figure 7.82 the same distribution is illustrated for different values of idealized 
drag coefficient. The obtained and reference lift coefficient distributions are close across all the 
encountered angles of attack; a break in lift curve is identified prior to 4o, similarly to other codes 
applying the SST turbulence model [Lev13]. An also satisfactory comparison is observed for the lift 
coefficient - idealized drag coefficient curve [Vos10]; an overestimation is identified again comparing to 
experimental data [Vas10] due to previously analyzed reasons. 

The incorporated spatial agglomeration multigrid methodology was also validated on this test case; 
single-grid and multigrid runs were performed on a DELLTM R815 Poweredge server with four AMD 
OpteronTM 6380 sixteen-core processors at 2.50 Ghz. Three coarser grids were generated via semi- and 
full-coarsening directional agglomeration, while for parallelization reasons the initial mesh was 
decomposed in eight partitions; in Figure 7.83 far views of the initial and agglomerated control volumes 
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are illustrated, while Figure 7.84 includes the corresponding close-up views on the symmetry surface. 
Inviscid fluxes were obtained with a second-order accurate spatial scheme, coupled with the Min-mod 
limiter, while the computation of the viscous ones was based on the nodal-averaging method. Figures 7.85 
and 7.86 present the convergence history for density and turbulent kinetic energy respectively per number 
of iterations/cycles and time; in case of more efficient full-coarsening run, time speed-up coefficients (for 
density and turbulent kinetic energy) equal to ~4.9 and ~4.3 were succeeded respectively, considering the 
final residual of the single-grid simulation. 
 

 
Figure 7.81: Lift coefficient for different values of angle of attack (turbulent flow over the CRM WB aircraft). 

 

 
Figure 7.82: Lift coefficient - idealized drag coefficient curve (turbulent flow over the CRM WB aircraft). 
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Figure 7.83: Initial and agglomerated control volume grids (turbulent flow over the CRM WB aircraft). 

 

  
 

  
Figure 7.84: Mesh density on the symmetry surface of the initial and agglomerated control volume grids (turbulent 

flow over the CRM WB aircraft). 
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Figure 7.85: Density convergence history per iterations/cycles and time (turbulent flow over the CRM WB aircraft). 

 

 
Figure 7.86: Turbulent kinetic energy convergence history per iterations/cycles and time (turbulent flow over the 

CRM WB aircraft). 
 

7.8.2. CRM wing-body-horizontal-tail (WBHT) aircraft configuration 
The utilized grid for the aircraft configuration with horizontal-tail (WBHT) consisted of more DoF's 

than the WB one to adequately describe the extra surfaces; it includes 4,653,134 nodes, 8,226,704 
tetrahedra, 2,685,704 prisms and 53,630 pyramids. The angle of attack of the free-stream flow was set 
equal to 2.33o, considering again the desired value equal to 0.5 of the lift coefficient. Implementing a 
three-level multigrid scheme along with a twelve-partitions parallel processing on a DELL T7500 
workstation with two Intel(R) Xeon(R)-X5650 six-core processors at 2.67 GHz, the density residual was 
decreased approximately three orders of magnitude in 28 hours. Similarly to the WB configuration, the 
nodal-averaging approach was implemented for gradients' computation, while inviscid fluxes were 
computed with a second-order accurate spatial scheme utilizing the Van Albada-Van Leer limiting 
function. The parameters of the simulation are summarized in the following Table 7.11. As the grid wasn't 
fine enough to capture the shock formations at the upper side of the wing, a similar to WB aircraft test 
case mesh refinement was implemented, deriving a new grid with 6,334,399 nodes, 10,920,171 
tetrahedra, 4,571,468 prisms and 55,697 pyramids; the initial grid results were interpolated on the new 
resolution and the simulation was continued. In addition, in order to verify that h-refinement methodology 
indeed improves the accuracy of the final steady-state solution, the same test case (same simulation 
features) was faced with a medium grid, composed of 9,265,094 nodes, 7,702,336 prisms, 15,711,044 
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tetrahedra and 96,285 pyramids; the area above the outer half wing compartment at this medium mesh 
was also h-refined, producing a new grid, consisted of 9,761,321 nodes, 8,009,980 prisms, 16,593,580 
tetrahedra and 96,881 pyramids. The angle of attack wasn't adjusted for neither of the two meshes (refined 
coarse and medium).  

 
Table 7.11: Parameters of simulation (turbulent flow over the CRM WBHT aircraft). 

Parameters 
Type of flow Turbulent (SST) 

Mach number 0.85 
Reynolds number 5.0E+6 

Angle of attack (deg.) 2.33o 

Grid density 

4,653,134 nodes,  
8,226,704 tetrahedra, 
2,685,704 prisms and 

53,630 pyramids 
Number of partitions 12 

Number of multigrid levels 3 
Iterative scheme Runge-Kutta method (CFL=1.0) 

Computational system DELL T7500 workstation with two Intel(R) Xeon(R)-X5650 six-core 
processors at 2.67 GHz 

 
In Figure 7.87 the refined coarse mesh density and predicted dimensionless pressure contours on the 

aircraft surface are illustrated, demonstrating their qualitative agreement with those of other solvers 
[Lee10, Mav10]; similarly to the WB aircraft and independently of the mesh density no significant wing-
body juncture separation was observed, while the same stands for horizontal tail-body juncture separation 
(probably due to the SST turbulence model utilized [Scl13]). Figures 7.88-7.101 contain the pressure 
coefficient distributions at different wing and horizontal tail span-wise sections for the initial coarse, the 
refined coarse, the initial medium and the refined medium mesh, compared to those of the study of Lee-
Rausch et al. [Lee10]; in Figures 7.88-7.90 and 7.95-7.101 the distributions, derived by the initial grids 
(coarse and medium) are not contained, as they are the same to those of the corresponding refined ones. 
As expected, the medium grids produced more accurate results than the coarse ones, while the adapted 
grids provided sharper pressure distributions at shock regions compared to the initial unrefined ones. It 
should be highlighted that the slope limiters reduce the order of the spatial discretization scheme at shock 
areas; therefore, the accurate prediction of this discontinuity is mainly based on the local grid density. In 
that way the importance of the incorporated h-refinement methodology is revealed; depending on the 
examined test case, the construction of a new finer mesh from the very beginning might be avoided along 
with significant computational savings. Moreover, in wing tip section (95%) Galatea is revealed to 
predict more accurately the shock at the upper side of the wing, independently of the density of the 
employed grid.  

Correspondingly to Table 7.10 for WB configuration, Table 7.12 contains the lift and idealized drag 
coefficients obtained with the initial coarse, the refined coarse, the initial medium and the refined medium 
grid for WBHT aircraft, in comparison with the experimental and the computed by Vos and Sanchi 
[Vos10] ones. Despite no adjustment was made to the angle of attack, the extracted lift coefficients agree 
sufficiently with both the reference computed and experimental ones [Vas10, Vos10]; similarly to WB 
aircraft a slight change of lift coefficient is observed with grid adaptation and the utilization of the 
medium mesh. The idealized drag coefficients obtained with the initial and refined coarse grids are close 
enough with the reference computed ones [Vos10]; however, their values are overestimated, compared to 
the experimental coefficients [Vas10]. In case of medium grids this difference is decreased considerably; 
it is closer to the experimental than the reference computed one, indicating therefore the insufficiency of 
the employed initial and refined coarse grids. 
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Figure 7.87: Mesh density (left) and predicted dimensionless pressure contours (right) on the surface of the aircraft 

(turbulent flow over the CRM WBHT aircraft). 
 

  
Figure 7.88: Pressure coefficient distribution at wing 

span-wise section 13.06% (turbulent flow over the CRM 
WBHT aircraft). 

Figure 7.89: Pressure coefficient distribution at wing 
span-wise section 28.28% (turbulent flow over the CRM 

WBHT aircraft). 
 

  
Figure 7.90: Pressure coefficient distribution at wing 

span-wise section 39.71% (turbulent flow over the CRM 
WBHT aircraft). 

Figure 7.91: Pressure coefficient distribution at wing 
span-wise section 50.24% (turbulent flow over the CRM 

WBHT aircraft). 
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Figure 7.92: Pressure coefficient distribution at wing 

span-wise section 72.68% (turbulent flow over the CRM 
WBHT aircraft). 

Figure 7.93: Pressure coefficient distribution at wing 
span-wise section 84.56% (turbulent flow over the CRM 

WBHT aircraft). 
 

  
Figure 7.94: Pressure coefficient distribution at wing 

span-wise section 95.00% (turbulent flow over the CRM 
WBHT aircraft). 

Figure 7.95: Pressure coefficient distribution at 
horizontal-tail span-wise section 18.00% (turbulent flow 

over the CRM WBHT aircraft). 
 

Table 7.12: Lift and idealized drag coefficients (CL~0.5, turbulent flow over the CRM WBHT aircraft). 
 LC  

idealizedDC  

Current (initial coarse grid) 0.5027 0.02161 
Current (refined coarse grid) 0.5031 0.02145 
Current (initial medium grid) 0.5092 0.01955 

Current (refined medium grid) 0.5088 0.01955 
Vos and Sanchi 2010 [Vos10] ~0.5 ~0.02210 

NTF Run 97 [Vas10] ~0.5 ~0.01877 
 
A downwash study, considering different angles of attack (0o, 1o, 3o and 4o), was performed similarly 

to the WB aircraft test case, employing the refined grid. Figure 7.102 includes the distribution of lift 
coefficient for the aforementioned angles of attack, while in Figure 7.103 the same distribution is 
illustrated for different values of idealized drag coefficient. The obtained results compare sufficiently with 
the reference computed ones [Lee10, Vos10], while a break in the lift curve is also identified at about 3o. 
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Figure 7.96: Pressure coefficient distribution at 

horizontal-tail span-wise section 30.00% (turbulent flow 
over the CRM WBHT aircraft). 

Figure 7.97: Pressure coefficient distribution at 
horizontal-tail span-wise section 50.00% (turbulent flow 

over the CRM WBHT aircraft). 
 

A deviation of the idealized drag coefficient curve is identified for greater values probably due to the 
insufficient number of DoF's; nevertheless, considering the scattering of the corresponding distributions, 
included in the summary paper of the fourth DPW [Vas10], the current one is still located among of them. 
In addition, Figure 7.104 includes close-up views of the wing and tail surfaces along with the obtained 
dimensionless pressure contours in case of a 4o angle of attack; a shock-including flow on the main wing 
and a fully attached one on the tail are observed. Their comparison with the corresponding ones of 
Mavriplis and Long [Mav10] confirms once more the capability of the developed methodology for such 
simulations. 

 

  
Figure 7.98: Pressure coefficient distribution at 

horizontal-tail span-wise section 70.00% (turbulent flow 
over the CRM WBHT aircraft). 

Figure 7.99: Pressure coefficient distribution at 
horizontal-tail span-wise section 90.00% (turbulent flow 

over the CRM WBHT aircraft). 
 

Finally, the refined grid (6,334,399 nodes, 10,920,171 tetrahedra, 4,571,468 prisms and 55,697 
pyramids), examined in this test case, was used in order to evaluate the incorporated in the proposed 
algorithm acceleration techniques, namely the parallelization strategy and the agglomeration multigrid 
scheme. Therefore, single-grid and multigrid (three-level full-coarsening fusion, only FAS) simulations 
employing the explicit Runge-Kutta method (CFL=1.0), but different numbers of partitions (2, 4, 8, 16 
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and 32) were run on a DELLTM R815 Poweredge server with four AMD OpteronTM 6380 sixteen-core 
processors at 2.50 Ghz. In Figure 7.105 far views of the initial and agglomerated control volumes grids 
are illustrated, while Figure 7.106 includes the corresponding close-up views of the symmetry/WBHT 
aircraft surface (16 partitions). Inviscid fluxes were obtained with a second-order accurate spatial scheme, 
coupled with the Min-mod limiter, while the computation of the viscous ones was based on the nodal-
averaging method. Figure 7.107 illustrates the density (left) and turbulent kinetic energy (right) 
convergence history for the performed single-grid runs, while Figure 7.108 includes the corresponding 
speed-up/number of processors distribution. A sufficient agreement between the ideal and the current 
computation is observed up to 16 processors, while for more of them a deviation is identified due to the 
increase of communication load with the increase of used cores. It should be noted here that the 
parallelization strategy has not been optimized yet for larger number of processes. 

 

  
Figure 7.100: Pressure coefficient distribution at 

horizontal-tail span-wise section 95.00% (turbulent flow 
over the CRM WBHT aircraft). 

Figure 7.101: Pressure coefficient distribution at 
horizontal-tail span-wise section 99.00% (turbulent flow 

over the CRM WBHT aircraft). 
 

 
Figure 7.102: Lift coefficient for different values of angle of attack (turbulent flow over the CRM WBHT aircraft). 
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Figure 7.103: Lift coefficient - idealized drag coefficient curve (turbulent flow over the CRM WBHT aircraft). 

 

 
Figure 7.104: Shock-including flow on the main wing and fully attached one on the horizontal tail (4o angle of 

attack, turbulent flow over the CRM WBHT aircraft). 
 

In Figures 7.109 and 7.110 the corresponding convergence results for multigrid simulations are 
presented. As expected, the deviation between the ideal and the current computation is increased, 
comparing to the single-grid distribution; nevertheless, the needed simulation time is considerably 
reduced, as the run combining multigrid scheme and parallel processing in 32 cores required less than 20 
hours to decrease density residual more than three orders of magnitude.  

Finally, Figure 7.111 includes the density convergence time history for the single-grid and multigrid 
simulations distributed in 2 and 32 processes. The considerable improvement of algorithm's 
computational performance by the incorporated acceleration techniques is clearly demonstrated; in 
simulation combining parallel computation in 32 processes and multigrid method a temporal speed-up 
equal to ~18.0 was succeeded, comparing to the single-grid run distributed to only two processors. 
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Figure 7.105: Initial and agglomerated control volume grids (turbulent flow over the CRM WBHT aircraft). 

 

 
Figure 7.106: Mesh density on the symmetry surface of the initial and agglomerated control volume grids (turbulent 

flow over the CRM WBHT aircraft). 
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Figure 7.107: Density and turbulent kinetic energy convergence history per time (single-grid runs, turbulent flow 

over the CRM WBHT aircraft). 
 

 
Figure 7.108: Scalability of parallel implementation (single-grid runs, turbulent flow over the CRM WBHT aircraft). 

 

 
Figure 7.109: Density and turbulent kinetic energy convergence history per time (multigrid runs, turbulent flow 

over the CRM WBHT aircraft). 
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Figure 7.110: Scalability of parallel implementation (multigrid runs, turbulent flow over the CRM WBHT aircraft). 
 

 
Figure 7.111: Density convergence history per time (single-grid and multigrid runs with 2 and 32 partitions, 

turbulent flow over the CRM WBHT aircraft). 
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8. Radiative heat transfer numerical results 
 
8.1. Definitions 

Similarly to the fluid flow methodology validation, the radiative heat transfer solver has been 
evaluated, especially in terms of accuracy and efficiency, against three- and quasi-three-dimensional 
benchmark test cases, while its results have been compared with those of reference solvers. This 
comparison is mainly based on the distribution of dimensionless incident radiative heat flux  along 
a line on the enclosure under examination; the aforementioned heat flux is defined as [Kim88] 

  

( ) ( )
( ) ( )

* 4
4 4

ˆ ˆ ˆ,
N N

mn mn
i P ci

mn

I r s s n d I D
Q r

Q r
T T

θ ϕ

π

σ σ

×

⋅ ⋅ Ω

= = =
Ε

∫ ∑




  
(8.1) 

  
where ( )Q r denotes the incident radiative heat flux, while E is the initial radiative energy generating the 
heat transfer, e.g., in case that the medium has the highest temperature Em is used, while in case that 
boundary walls have the highest temperature Ew is applied instead. Considering that in most of the cases 
the radiative flux in a specific direction (x, y, z) is required, the appropriate directional weight 

( ), , ,, ,mn mn mn
ci x ci y ci zD D D , based on the corresponding unit normal vector ( )ˆ ˆ ˆ, ,x y ze e e , is utilized in equation (8.1). 

In addition, the average radiative heat flux G is computed, mainly for the visualization of the extracted 
solutions; it is defined as follows [Kim88] 
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while in case its dimensionless formulation is required, it is divided (similarly to the dimensionless 
incident radiative heat flux) with 4E. 

In order to validate the computational performance of the developed methodology, the radiative 
intensity residual is computed, similarly to density residual, at each cycle (of multigrid runs) or at each 
iteration (of single-grid runs) l+1 as 
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where NP denotes the total number of nodes of the non-agglomerated mesh, while Nθ and Nφ represent the 
numbers of the initially defined polar and azimuthal control angles respectively; a decrease of residual 
about two or three orders of magnitude is usually enough to extract the desired radiative heat flux 
distributions. Additionally, throughout the test cases in which spatial and/or angular agglomeration 
multigrid method is employed, the following notation "SxAy" is used; "x" corresponds to the defined 
number of Spatial levels, while "y" to the defined number of Angular ones. For example, S1A1 denotes a 
single-grid run, S4A1 a four-level spatial agglomeration multigrid one and S4A3 a combined four-level 
spatial/three-level angular agglomeration multigrid simulation. It should be noted that the solver has not 
been further optimized for computational performance. 
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8.2. A hexahedral enclosure with quadratic bases 
The first (quasi-3D) benchmark test case concerns radiative heat transfer in a hexahedral enclosure 

with quadratic bases; its dimensions (1, 1, 5) m are illustrated in the following Figure 8.1 [Kim88, 
Lyg12b]. The included medium is a purely scattering one (kα=0 m-1, σs=1 m-1) while all the walls are 
assumed cold (T=0 K) and black (εw=1), except for the bottom face (y=0 m), at which a constant heating 
energy is imposed (E=1 W/m2, corresponding to 64.80435 K). Both isotropic and anisotropic forward (F2) 
scattering was considered in this problem. The utilized tetrahedral mesh consists of 196,732 nodes and 
1,053,402 tetrahedra, while for parallel computation on a DELL T7500 workstation with two Intel(R) 
Xeon(R)-X5650 six-core processors at 2.67 GHz, it was divided in twelve sub-domains; in Figure 8.2 the 
employed grid, representing the examined enclosure, as well as a close-up view of its quadratic bases' 
density is presented. The angular domain was discretized by sixteen azimuthal and eight polar control 
angles, while in order the overhang problem to be alleviated the bold approximation was employed. 
Radiative intensity at walls was explicitly imposed with Dirichlet boundary conditions, while the steady 
(non time-dependent) RTE was solved with iterative approximations along with a first-order accurate 
spatial scheme; it required about 1.7 s per iteration. The parameters of the simulation are summarized in 
the following Table 8.1. 

 
Table 8.1: Parameters of simulation (hexahedral enclosure with quadratic bases). 

Parameters 
Absorption coefficient 0 m-1 
Scattering coefficient 1 m-1 

Wall emissivity 1 

Grid density 196,732 nodes and 
1,053,402 tetrahedra 

Number of partitions 12 

Angular resolution 16 azimuthal and 
8 polar control angles 

Iterative scheme Iterative approximations 

Computational system DELL T7500 workstation with two Intel(R) Xeon(R)-X5650 six-core 
processors at 2.67 GHz 

 

 
Figure 8.1: Dimensions of hexahedral enclosure with quadratic bases. 

 
In Figures 8.3 and 8.4 the dimensionless incident (left) and average (right), respectively, radiative 

heat flux distributions along the A-A line, which corresponds to the centerline of the hexahedral enclosure 
in y-direction (x=0.5 m and z=2.5 m), are illustrated for an isotropically and anisotropically scattering 
medium; they compare with the corresponding distributions extracted by the two-dimensional, cell-
centered, DOM solver of Kim and Lee [Kim88], succeeding a satisfactory agreement. As expected, 
anisotropic scattering with respect to isotropic one derives greater values of radiative intensity, reaching 
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almost the value of imposed heating power at the bottom side. In general, with forward scattering 
functions (based on Legendre polynomials), i.e., F1 and F2, larger values of radiation are obtained than 
the isotropic and backward (B1 and B2) ones; the latter leads to even smaller values comparing to the 
isotropic one [Lyg12b]. Nevertheless, in dimensionless average heat flux curves, an alternation is 
observed between higher values of anisotropic and isotropic distributions; the isotropic function leads to 
higher values near the heating source surface, while the anisotropic one predicts more radiation near the 
upper boundary. 
 

   
Figure 8.2: Employed grid and its density on one of its quadratic bases (hexahedral enclosure with quadratic bases). 

 

  
Figure 8.3: Distributions of dimensionless incident 
radiative heat flux along the A-A line (hexahedral 

enclosure with quadratic bases). 

Figure 8.4: Distributions of dimensionless average 
radiative heat flux along the A-A line (hexahedral 

enclosure with quadratic bases). 
 

Additional runs with different values of scattering albedo (ω=σs/β) and wall emissivity εw were 
performed, in order to evaluate their contribution to the predicted radiative heat transfer. Figure 8.5 
includes the distributions of dimensionless incident radiative heat flux along the A-A line for different 
scattering albedos, compared well with the corresponding ones obtained by the two-dimensional DOM 
algorithm of Kim and Lee [Kim88]; the values of extinction coefficient (β=kα+σs) and wall emissivity εw 
remained equal to unity. As scattering albedo increases higher values of radiation are obtained, due to the 
forward effect of the employed function F2 [Lyg12b]. Similarly, Figure 8.6 illustrates the distributions of 
dimensionless incident radiative heat flux along the A-A line for different values of wall emissivity, 
compared well with those of the aforementioned reference solver [Kim88]; the values of extinction 
coefficient β and scattering albedo ω remained equal to unity. As expected, the emissivity coefficient 
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reduction leads to less produced radiation at the same distance from the heating source surface, because of 
the diffusive effect of the walls. The previous distributions (per values of scattering albedo and wall 
emissivity) appear to be consistent with the reference two-dimensional ones [Kim88], despite the fact that 
a three-dimensional method usually adds larger amounts of false scattering.  

 

 
Figure 8.5: Distributions of dimensionless incident radiative heat flux along the A-A line for different values of 

scattering albedo (hexahedral enclosure with quadratic bases). 
 

 
Figure 8.6: Distributions of dimensionless incident radiative heat flux along the A-A line for different values of wall 

emissivity (hexahedral enclosure with quadratic bases). 
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8.3. A cubic enclosure 
The second radiative heat transfer problem examined in this study concerns a cubic enclosure with 

edges’ length equal to unity, as presented in Figure 8.7 [Kim88, Tri08, Cap10, Lyg13c, Lyg14b, Lyg14g]. 
Three sub-cases were encountered with this enclosure, the first considering an absorbing and emitting 
medium, while the second and the third one an isotropically and anisotropically scattering medium 
respectively. 

 

 
Figure 8.7: Dimensions of the cubic enclosure. 

 
For the first sub-problem, the enclosure walls are assumed radiatively black (εw=1) and cold (Tw=0 

K), while the included medium is considered absorbing and emitting (kα=1 m-1, σs=0 m-1) with a constant 
heating energy equal to unity (E=1 W/m3, corresponding to 64.80435 K). The employed mesh consists of 
5,914 nodes, 15,399 tetrahedra and 4,900 prisms, while for parallel computation on a DELL(R) Laptop 
with a single Intel(R)  Core(TM) 2 Duo T6400 two-core processor at 2.00 GHz, it was divided in two sub-
domains; the utilized mesh is illustrated in Figure 8.8. For angular discretization eight azimuthal and four 
polar angles are used along with the pixelation method to allow for the alleviation of the overhang 
problem, derived from the combination of the unstructured grid and the division of the angular domain in 
finite solid angles. Radiative intensity at wall surfaces is obtained implicitly. The final steady-state 
solution of the time-dependent RTE is approximated with the incorporated second-order accurate in time 
Runge-Kutta method. The parameters of the simulation are summarized in Table 8.2. 

 
Table 8.2: Parameters of simulation (cubic enclosure - first sub-case). 

Parameters 
Absorption coefficient 1 m-1 
Scattering coefficient 0 m-1 

Wall emissivity 1 

Grid density 
5,914 nodes,  

15,399 tetrahedra and  
4,900 prisms 

Number of partitions 2 

Angular resolution 8 azimuthal and 
4 polar control angles 

Iterative scheme Runge-Kutta method 

Computational system DELL(R) Laptop with a single Intel(R)  Core(TM) 2 Duo T6400 two-core 
processor at 2.00 GHz 
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In order to evaluate additionally the contribution of the developed grid adaptation methodology in 

the improvement of accuracy, the initial mesh was h-refined, employing a criterion targeting the region of 
the extracted results (upper surface); more specifically the edges with end-points with coordinate z greater 
than 0.95 m were marked for division. The new mesh is composed of 14,179 nodes, 16,827 tetrahedra and 
19,600 prisms; in Figure 8.9 the mesh density on the face of the cube with coordinate y equal to zero is 
illustrated prior (left) and after (right) h-refinement. Figure 8.10 includes the distributions of 
dimensionless incident radiative heat flux along the A-A line of the initial mesh for a first-order accurate 
spatial scheme, a simple second-order one , a second-order jointed with the Van Albada-Van Leer limiter 
(VAVL) and a second-order with the Min-mod one, compared with the exact distribution, obtained from 
the study of Capdevilla et al. [Cap10]; in Figure 8.11 the corresponding distributions are presented for the 
adapted finer grid. The solutions were extracted in approximately twenty four minutes, achieving a seven-
order decrease of radiative intensity residual. The superiority of second-order accurate solutions, 
compared to the first-order one, is clearly observed, while among them this employing the Min-mod 
limiter seems to be more accurate as the other two appear to lead to overestimations. Furthermore, the 
contribution of the h-refinement methodology to the improvement of the extracted results is identified, 
especially in case of the first-order accurate scheme; for the rest of the simulations improvement is 
marginally noticed near the cold surfaces.   

 

 
Figure 8.8: Initial mesh representing the cubic enclosure (first sub-case). 

 

 
Figure 8.9: Mesh density on the face of the cube with coordinate y equal to zero prior (left) and after (right) h-

refinement (cubic enclosure - first sub-case). 
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Figure 8.10: Distributions of dimensionless incident radiative heat flux along the A-A line of the initial mesh (cubic 

enclosure - first sub-case). 
 

 
Figure 8.11: Distributions of dimensionless incident radiative heat flux along the A-A line of the refined mesh 

(cubic enclosure - first sub-case). 
 

In the second sub-case the adapted grid from the previous simulation is employed on the same 
computational system, including a purely (isotropically) scattering medium (kα=0 m-1, σs=1 m-1) instead. 
The radiatively black walls (εw=1) as well as the medium are assumed cold (Tw=0 K, Tm=0 K), except for 
the lower surface (z=0 m) at which a constant heating power is imposed (E=1 W/m2). The time-dependent 
RTE is approximated with the Runge-Kutta method, while implicit boundary conditions are implemented. 
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The angular domain was divided by twenty four azimuthal and twelve polar angles due to the significant 
ray effect encountered in this sub-case; the pixelation method was applied for the mitigation of the 
overhang problem. The parameters of the simulation are summarized in the following Table 8.3. 
 

Table 8.3: Parameters of simulation (cubic enclosure - second sub-case). 
Parameters 

Absorption coefficient 0 m-1 
Scattering coefficient 1 m-1 

Wall emissivity 1 

Grid density 
14,179 nodes,  

16,827 tetrahedra and  
19,600 prisms 

Number of partitions 2 

Angular resolution 24 azimuthal and 
12 polar control angles 

Iterative scheme Runge-Kutta method 

Computational system DELL(R) Laptop with a single Intel(R)  Core(TM) 2 Duo T6400 two-core 
processor at 2.00 GHz 

 
In Figure 8.12 the obtained distributions of dimensionless incident radiative heat flux along the half 

A-A line for all the available schemes are depicted, compared with the computed ones by the ZM-MC 
(Zone Method - Monte Carlo Method) and FV-ME (Finite-Volume method - Mie Equations) methods of 
Trivic et al. [Tri08]. The results were extracted after the radiative intensity residual was decreased about 
four orders of magnitude. Although the first-order accurate distribution almost coincides with the 
corresponding FV-ME one, it overestimates the incident radiation [Tri08]. On the other hand, the 
solutions obtained by the second-order methods are sufficiently accurate compared with the more 
accurate ZM-ME one, while no considerable differentiation is identified among them; the improvement in 
accuracy of the final solution, derived by the second-order accurate schemes, is demonstrated once more. 

 

 
Figure 8.12: Distributions of dimensionless incident radiative heat flux along the half A-A line (cubic enclosure - 

second sub-case). 
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Table 8.4: Parameters of simulation (cubic enclosure - third sub-case). 
Parameters 

Absorption coefficient 0-1 m-1 
Scattering coefficient 0-1 m-1 

Wall emissivity 0-1 

Grid density 13,433 nodes and  
71,589 tetrahedra 

Number of partitions 2 
Number of spatial multigrid levels 1-4 

Angular resolution 16 azimuthal and 
8 polar control angles 

Number of angular multigrid levels 1-3 
Iterative scheme Runge-Kutta method 

Computational system Workstation with an AMD FX(tm)-8350 eight-core processor 
at 4.0 GHz 

 
The third (quasi-3D) sub-case considering radiative heat transfer in a cubic enclosure, was 

encountered mainly for the evaluation of the developed spatial/angular agglomeration multigrid 
methodology and more specifically of its contribution to the solution's convergence rate for various 
values of scattering albedo (forward anisotropic, F2, ω=0-1, β=1 m-1) and wall emissivity (εw=0.1-1). It is 
similar to the case of section 8.2, concerning a cold medium (Tm=0 K) as well as cold and black walls 
(Tw=0 K, εw=1), except for the bottom face (zw=0 m) and the bases normal to x-direction, where a 
constant heating energy (Ew=1 W/m2 corresponding to 64.80435 K) and symmetry boundary conditions 
are applied respectively; implicit treatment of boundary conditions was employed. The utilized tetrahedral 
grid, divided into two partitions for parallelized solution of time-dependent RTE with the Runge-Kutta 
method on a workstation with an AMD FX(tm)-8350 eight-core processor at 4.0 GHz, consists of 13,433 
nodes and 71,589 tetrahedra; it is illustrated in Figure 8.13. For angular discretization sixteen azimuthal 
and eight polar angles were applied, while the pixelation method subdued the overhang problem. For all 
the single-grid and multigrid runs a second-order accurate spatial scheme, with the Min-mod slope 
limiter, was implemented unless otherwise stated. The parameters of the simulation are summarized in 
Table 8.4. 

 
Figure 8.13: Initial mesh representing the cubic enclosure (third sub-case). 

 
As mentioned above, runs with different values of scattering albedo ω and wall emissivity εw were 

performed. The implementation of the developed multigrid method influences only the number of 
required iterations and wall-clock computation time; the extracted solution remains independent of the 
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acceleration technique. Figures 8.14 and 8.15 include the finally obtained distributions of dimensionless 
incident radiative heat flux along the B-B line (centerline of the grid in z-direction, x=0.5 m, y=0.5 m) for 
various values of scattering albedo and wall emissivity respectively. They are close enough with the 
corresponding ones obtained by the two-dimensional DOM algorithm of Kim and Lee [Kim88]. 
Comparing to the similar simulation of section 8.2, another significant conclusion is extracted; equally 
accurate results were obtained with a much coarser grid. Employing a second-order accurate spatial 
scheme along with the implicit treatment of boundary conditions as well as the implementation of 
symmetry ones, decrease the excessive need for very fine spatial resolution. 

 

  
Figure 8.14: Distributions of dimensionless incident 

radiative heat flux along the B-B line for different values 
of scattering albedo (cubic enclosure - third sub-case). 

Figure 8.15: Distributions of dimensionless incident 
radiative heat flux along the B-B line for different values 

of wall emissivity (cubic enclosure - third sub-case). 
 

Table 8.5: Grid coarsening by agglomeration of two, four and six sub-grids (cubic enclosure - third sub-case). 
 Level 1 (DoF's) Level 2 (DoF's) Level 3 (DoF's) Level 4 (DoF's) 

2 Partitions 
First Sub-domain 7,363 1,517 403 230 

Second Sub-domain 7,316 1,486 414 237 
4 Partitions 

First Sub-domain 3,959 878 267 155 
Second Sub-domain 3,898 881 268 156 
Third Sub-domain 4,009 900 268 154 
Fourth Sub-domain 4,033 892 262 151 

6 Partitions 
First Sub-domain 2,827 662 211 132 

Second Sub-domain 2,775 651 194 99 
Third Sub-domain 2,746 643 191 107 
Fourth Sub-domain 2,787 652 186 103 
Fifth Sub-domain 2,803 647 192 98 
Sixth Sub-domain 2,788 656 217 139 

 
Three coarser grids were generated via isotropic agglomeration in order to validate the spatial and 

the combined spatial/angular agglomeration multigrid scheme. Figure 8.16 illustrates their boundary mesh 
density; the blue coloured faces correspond to mirroring surfaces, employed to simulate the two-
dimensional problem with a three-dimensional grid. Table 8.5 includes the number of DoF's (nodes) per 
sub-domain of the initial and coarser grids, considering a two-, four- and six-partitions division. The ghost 
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nodes at overlapping regions are also included in this Table; as such, the total number of DoF's differs 
among different number of sub-grids of the initial mesh. Similarly, angular agglomeration was performed, 
deriving two coarser angular resolutions, in which the initial discretization of 16 azimuthal and 8 polar 
angles was reduced to 8 x 4 (second level) and 4 x 2 (third level) respectively.  

 

 
Figure 8.16: Initial and agglomerated control volume grids (cubic enclosure - third sub-case). 

 
The evaluation of the developed multigrid methodology began with the study of an absorbing but no 

scattering medium (ka=1 m-1, σs=0 m-1) along with black walls (εw=1). In Figure 8.17 its convergence 
history per number of iterations/cycles and wall-clock computation time is illustrated for the single-grid 
(S1A1) and different combinations of the multigrid schemes (spatial-S4A1, angular-S1A2 and nested 
spatial/angular-S4A2), while in Table 8.6 the corresponding speed-up coefficients to the final residual 
value of 1.0E-15 are included (bold style denotes the higher time speed-up coefficient for each set of 
runs). Due to the absence of scattering and walls' reflection, the acceleration obtained by the spatial and 
the nested spatial/angular scheme isn't so significant. The speed-up gained by the angular scheme 
(compared to the single-grid one), as well as the one derived by the nested scheme (compared to the 
spatial one), although not expected, is attributed to the back and forth travel of information imposed by 
the symmetry surfaces and the second-order accurate spatial scheme. 
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Table 8.6: Speed-up coefficients per number of iterations/cycles and time, considering runs with different values of 

ka, σs and εw (cubic enclosure - third sub-case). 
 kα (m-1) σs (m-1) εw Iter. Speed-up Time Speed-up 

S1A2 1 0 1 1.1155 1.075 
S4A1 1 0 1 1.6937 1.6433 
S4A2 1 0 1 3.5944 1.6765 
S1A3 0.5 0.5 1 1.3109 1.2881 
S4A1 0.5 0.5 1 2.2051 1.9287 
S4A2 0.5 0.5 1 4.5989 1.9917 
S1A3 0 1 1 1.4331 1.3213 
S4A1 0 1 1 2.8015 2.3625 
S4A2 0 1 1 5.8072 2.3719 
S1A3 0 1 0.5 2.6473 2.4474 
S4A1 0 1 0.5 5.1482 4.2825 
S4A2 0 1 0.5 14.2349 4.7256 
S1A3 0 1 0.1 2.8813 2.1678 
S4A1 0 1 0.1 4.9996 4.1377 
S4A3 0 1 0.1 19.2667 7.5545 

 
Another test case, against which the single-grid (S1A1) and various multigrid schemes were applied 

(S1A3, S4A1 and S4A2), concerned a half absorbing and half scattering (ka=0.5 m-1, σs=0.5 m-1) medium. 
As illustrated in Figure 8.18 the employed multigrid schemes succeed an increased acceleration, up to a 
~2.0 temporal speed-up coefficient for the nested version (Table 8.6). The same attitude is identified in 
case a purely scattering medium (ka=0 m-1, σs=1 m-1) is considered instead; the corresponding 
convergence history per number of iterations/cycles and computational time is included in Figure 8.19, 
while Table 8.6 contains the finally derived speed-up coefficients (S1A3, S4A1 and S4A2). Although the 
gained acceleration by the spatial scheme in the previous cases was quite encouraging, the one achieved 
by the angular scheme (compared to this of the single-grid one), as well as this of the nested scheme 
(compared to this of the spatial one) is relatively negligible; the small number of DoF's along with the 
absence of reflecting walls (excepting the mirroring ones) resulted in a reduced radiation exchange 
between the defined solid control angles. 

 

 
Figure 8.17: Radiative intensity convergence history per iterations/cycles and time (ka=1 m-1, σs=0 m-1, εw=1, cubic 

enclosure - third sub-case). 
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Figure 8.18: Radiative intensity convergence history per iterations/cycles and time (ka=0.5 m-1, σs=0.5 m-1, εw=1, 

cubic enclosure - third sub-case). 
 

 
Figure 8.19: Radiative intensity convergence history per iterations/cycles and time (ka=0 m-1, σs=1 m-1, εw=1, (cubic 

enclosure - third sub-case). 
 

Nevertheless, the situation is changing for a purely scattering medium (ka=0 m-1, σs=1 m-1) along 
with reflecting walls (εw=0.5). According to the results included in Figure 8.20 and Table 8.6, the 
obtained acceleration coefficients for the final residual 1.0E-15 increase almost two times for all the 
multigrid schemes (S1A3, S4A1 and S4A2), compared to the corresponding ones of the previous 
simulations; the maximum ~4.73 speed-up coefficient in time is derived by the nested methodology. The 
contribution of angular agglomeration (both for the angular and the combined scheme) appears to be quite 
significant, compared to all of the previous runs (with black boundaries).  

In order to study the effect of grid size to the gained acceleration by the multigrid algorithm, a finer 
mesh was employed, composed of 105,856 nodes and 589,283 tetrahedra. Figure 8.21 contains the 
convergence history per number of iterations/cycles and wall-clock computation time for the single-grid  
(S1A1) and all the applied multigrid schemes (S1A2, S4A1 and S4A2) on the finer grid, which was 
divided in two sub-domains for parallel processing on a DELL workstation T7400 with two Intel Xeon 
E5410 four-core processors at 2.33 GHz; an acceleration increase is obvious, compared to the 
corresponding results on the coarser mesh. Table 8.7 contains the speed-up coefficients for residual's 
value equal to 1.0E-9 (bold style denotes the higher time speed-up coefficient for each set of runs), 
obtained by the multigrid schemes on both grids (coarse and fine), confirming the previous state; the 
S4A2 scheme achieved a temporal speed-up coefficient equal to ~4.57 and ~6.17 for the coarse and fine 
grid respectively. 
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Figure 8.20: Radiative intensity convergence history per iterations/cycles and time (ka=0 m-1, σs=1 m-1, εw=0.5, 

(cubic enclosure - third sub-case). 
 

 
Figure 8.21: Radiative intensity convergence history per iterations/cycles and time (ka=0 m-1, σs=1 m-1, εw=0.5, fine 

grid, cubic enclosure - third sub-case). 
 

Table 8.7: Speed-up coefficients per number of iterations/cycles and time, considering runs on different spatial 
resolutions (kα=0 m-1, σs=1 m-1, εw=0.5, cubic enclosure - third sub-case). 

 Number of DoF's Iter. Speed-up Time Speed-up 
S1A3 13,433 2.5975 2.3931 
S4A1 13,433 4.8282 4.0063 
S4A2 13,433 13.7500 4.5659 
S1A2 105,856 1.8699 1.7073 
S4A1 105,856 5.3334 4.5336 
S4A2 105,856 15.2911 6.1690 

 
The contribution of the developed methodology is revealed even more valuable, in case a purely 

scattering medium (ka=0 m-1, σs=1 m-1) along with almost fully reflecting walls (εw=0.1) is assumed. The 
single-grid (S1A1) and various multigrid schemes were employed (S1A3, S4A1 and S4A3), while the 
convergence rates per iterations/cycles and time are illustrated in Figure 8.22. The increased radiation 
exchange between different solid control angles, generated by the combination of the purely scattering 
behaviour of the medium, the almost fully reflecting walls and the imposed symmetry boundary 
conditions, resulted in higher acceleration rates (Table 8.6); the maximum temporal coefficient ~7.55 was 
succeeded by the nested four-level spatial/three-level angular scheme (S4A3). The same simulation was 
performed employing a first-order accurate spatial scheme instead, in order to assess the effect of spatial 
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accuracy (used for the computation of fluxes) to the gained multigrid acceleration; Figure 8.23 and Table 
8.8 (bold style denotes the higher time speed-up coefficient for each set of runs) contain the 
corresponding results. Although the second-order scheme is implemented only to the initial non-
agglomerated level, it causes a non-trivial delay (depending of course on the examined case), compared to 
the fully first-order one; the first-order multigrid solutions were obtained in less computation time but 
with slight differentiations in acceleration compared to the second-order ones. 

 

 
Figure 8.22: Radiative intensity convergence history per iterations/cycles and time (ka=0 m-1, σs=1 m-1, εw=0.1, 

cubic enclosure - third sub-case). 
 

 
Figure 8.23: Radiative intensity convergence history per iterations/cycles and time (ka=0 m-1, σs=1 m-1, εw=0.1, 

first-order accurate scheme, cubic enclosure - third sub-case). 
 

In order to further evaluate the contribution of the developed multigrid methodology in accelerating 
the numerical solution of RTE, three additional runs were performed with the same medium and walls 
features (ka=0 m-1, σs=1 m-1, εw=0.1), but with different multigrid schemes, namely S1A2, S2A1 and 
S3A1. Figure 8.24 illustrates the convergence history per iterations/cycles and computation time, derived 
by the single-grid and three spatial agglomeration multigrid schemes, whose differentiation regards the 
number of employed multigrid levels (S2A1, S3A1 and S4A1); the distributions, along with the 
corresponding acceleration coefficients (Table 8.8), confirm that additional acceleration is gained for any 
additional spatial multigrid level. Similarly, in Figure 8.25 and Table 8.8 the convergence rate of the 
single-grid run is compared to those of the angular agglomeration multigrid ones, employing two different 
numbers of successive angular levels (S1A2 and S1A3); the contribution of each extra angular level is 
revealed as the three-level simulation led to a faster solution than the two-level one. Furthermore, 
considering that the acceleration derived by the three-level angular multigrid scheme is almost equal to 
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the one obtained by the three-level spatial one, the potential of the first for increased computational 
performance is reinforced. Finally, another nested scheme (S4A2) with only two angular levels was 
employed, to examine whether the increase of the angular discretizations in the combined scheme causes 
a delay to the solution; the results in Table 8.8 confirm the superiority of S4A3 scheme comparing to 
S4A2 one.  

 
Table 8.8: Speed-up coefficients per number of iterations/cycles and time, considering low and high-order accurate 
spatial schemes as well as different numbers of sub-grids (kα=0 m-1, σs=1 m-1, εw=0.1, cubic enclosure - third sub-

case). 
 Number of Partitions Order Scheme Iter. Speed-up Time Speed-up 

S1A3 2 1st 2.7508 2.4294 
S4A1 2 1st 4.7696 3.7588 
S4A3 2 1st 18.4890 6.8036 
S1A2 2 2nd-Minmod 1.9523 1.51745 
S1A3 2 2nd-Minmod 2.8813 2.1678 
S2A1 2 2nd-Minmod 1.8231 1.3326 
S3A1 2 2nd-Minmod 3.1514 2.1991 
S4A1 2 2nd-Minmod 4.9996 4.1377 
S4A2 2 2nd-Minmod 14.6555 5.8690 
S4A3 2 2nd-Minmod 19.2667 7.5545 
S1A3 4 2nd-Minmod 2.8813 2.6856 
S4A1 4 2nd-Minmod 4.9158 4.0878 
S4A3 4 2nd-Minmod 18.9301 7.4375 
S1A3 6 2nd-Minmod 2.8811 3.2992 
S4A1 6 2nd-Minmod 4.9224 4.1117 
S4A3 6 2nd-Minmod 18.9542 8.9062 

 

 
Figure 8.24: Radiative intensity convergence history per iterations/cycles and time (ka=0 m-1, σs=1 m-1, εw=0.1, 

various spatial multigrid levels, cubic enclosure - third sub-case). 
 

The effect of the number of sub-grids, dividing the initial mesh for parallel processing, was 
examined with the last simulations on the cubic enclosure. Thus, the initial cubic mesh was divided in 
four and six partitions respectively, for each of which three coarser sub-grids were generated via isotropic 
agglomeration; Figure 8.26 illustrates their boundary mesh density, while Table 8.5 contains the 
corresponding number of DoF's (nodes) for each sub-domain of the initial and the coarser meshes. As the 
ghost nodes at overlapping regions are also included in this Table, the number of total nodes differs 
among different partitionings of the initial grid. The convergence histories and coefficients per number of 
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iterations/cycles and time of the simulations with four sub-domains (S1A1, S1A3, S4A1 and S4A3) are 
presented in Figure 8.27 and Table 8.8 respectively; although the total wall-clock computation time is 
reduced comparing to this obtained with two partitions due to utilization of two more processors, no 
significant difference is identified as far as the convergence rates are concerned. However, the 
corresponding numerical solutions with six sub-domains appear to provide increased temporal speed-up 
coefficients (Figure 8.28 and Table 8.8), especially in case of the angular (~3.3) and the nested 
spatial/angular scheme (~8.9). This acceleration derives probably from the decreased number of 
transferred variables between the neighbouring sub-grids, due to angular coarsening (for the second 
angular level only ( ) ( )2 2

ghostPN N Nθ ϕ× ×  variables are exchanged) as well as due to the less DoF's at 

the coarsest mesh (fourth multigrid level) in case of six sub-domains compared to those at the coarsest 
grids in case of two or four partitions (Table 8.5); a more extended agglomeration is achieved, 
contributing consequently to an elevated acceleration for the same computational system. 

 

 
Figure 8.25: Radiative intensity convergence history per iterations/cycles and time (ka=0 m-1, σs=1 m-1, εw=0.1, 

various angular multigrid levels, cubic enclosure - third sub-case). 
  

  
Figure 8.26: Initial and coarser control volume grids, divided in four (left) and six (right) partitions (cubic 

enclosure - third sub-case). 
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Figure 8.27: Radiative intensity convergence history per iterations/cycles and time (ka=0 m-1, σs=1 m-1, εw=0.1, four 

partitions, cubic enclosure - third sub-case). 
 

 
Figure 8.28: Radiative intensity convergence history per iterations/cycles and time (ka=0 m-1, σs=1 m-1, εw=0.1, six 

partitions, cubic enclosure - third sub-case). 
 

8.4. A prismatic enclosure 
The third test case concerns radiative heat transfer in a prismatic enclosure with equilateral triangular 

bases; its dimensions are illustrated in Figure 8.29 [Kim01, Gri10, Lyg12a, Lyg13c]. Two sub-cases were 
simulated for this enclosure, employing the time-dependent RTE along with the Runge-Kutta method on a 
DELL T7400 workstation with two Intel(R) Xeon(R)-E5410 four-core processors at 2.33 GHz. 

For the first (quasi-3D) sub-case, the walls are considered radiatively black (εw=1) and cold (Tw=0 
K), except for the two equilateral triangular bases assumed to behave as symmetry planes; all types of 
boundary conditions were imposed in an implicit way. The included medium is considered absorbing and 
emitting, but no scattering (σs=0 m-1), maintained at constant temperature (Tm=1000 K); an absorption 
coefficient equal to unity (kα=1 m-1) was selected. For spatial discretization a mesh, composed of 10,989 
nodes, 8,159 tetrahedra, 16,658 prisms and 15 pyramids, was employed, divided in two partitions for 
parallel processing (Figure 8.30). Two different angular resolutions were defined, resulting in the 
decomposition of the angular sphere in eight azimuthal - four polar angles and in sixteen azimuthal - four 
polar angles respectively. Pixelation method was selected instead of bold approximation for the mitigation 
of the overhang problem. The parameters of the simulation are included in Table 8.9. 
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Figure 8.29: Dimensions of the prismatic enclosure. 

 
Table 8.9: Parameters of simulation (prismatic enclosure - first sub-case). 

Parameters 
Absorption coefficient 1 m-1 
Scattering coefficient 0 m-1 

Wall emissivity 1 

Grid density 

10,989 nodes,  
8,159 tetrahedra, 

 16,658 prisms and 
 15 pyramids 

Number of partitions 2 

Angular resolution 8 azimuthal - 4 polar and  
16 azimuthal - 4 polar control angles 

Iterative scheme Runge-Kutta method 

Computational system DELL T7400 workstation with two Intel(R) Xeon(R)-E5410 four-core 
processors at 2.33 GHz 

 

 
Figure 8.30: Employed grid (prismatic enclosure - first sub-case). 
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Additionally, in order to evaluate the contribution of the developed h-refinement methodology in 
accuracy improvement of the final steady-state solution, the initial grid was adapted employing a 
criterion, which targeted the nodes at the region of the bottom face; more specifically, the edges with end-
points with coordinate y less than 0.05 m were marked. The derived adapted mesh consisted of 38,285 
nodes, 11,522 tetrahedra, 66,976 prisms and 154 pyramids. Figure 8.31 illustrates the mesh density on the 
equilateral triangular base with coordinate z equal to zero (z=0 m) prior (left) and after (right) h-
refinement; the division of the lower elements (prismatic and tetrahedral) into smaller ones can be 
identified. 

 

 
Figure 8.31: Mesh density on an equilateral triangular base (z=0) prior (left) and after (right) h-refinement 

(prismatic enclosure - first sub-case). 
 

 
Figure 8.32: Distributions of dimensionless incident radiative heat flux along the A-A line (initial grid, 8-4 angular 

resolution, prismatic enclosure - first sub-case). 
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Figure 8.33: Distributions of dimensionless incident radiative heat flux along the A-A line (initial grid, 16-4 

angular resolution, prismatic enclosure - first sub-case). 
 

 
Figure 8.34: Distributions of dimensionless incident radiative heat flux along the A-A line (adapted grid, 8-4 

angular resolution, prismatic enclosure - first sub-case). 
 

Figures 8.32 - 8.35 include the distributions of dimensionless incident radiative heat flux along the 
A-A line of the initial (8.32, 8.33) and the adapted grid (8.34, 8.35), derived by the 8-4 (left) and 16-4 
(right) angular discretization as well as by all the available spatial schemes, compared with the exact and 
the computed ones of Man Young Kim et al. [Kim01]. As expected the denser angular resolution (16-4) 
produced more accurate results; nevertheless, implementing the incorporated higher-order accurate spatial 
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schemes reduced considerably this differentiation. In general, the second-order accurate schemes derived 
better results than the first-order one, while among them this accompanied by the Min-mod limiter 
appears to approximate more precisely the exact solution. Although the accuracy improvement gained by 
the h-refinement method is more obvious in the solution considering an 8-4 angular resolution and a first-
order accurate spatial scheme, it contributed more or less to all the employed schemes. The 
aforementioned solutions were obtained after radiative intensity residual was decreased at least six orders 
of magnitude, while they required approximately two seconds per iteration for the first-order scheme and 
five seconds per iteration for the second-order ones, considering the initial mesh and the denser angular 
discretization. In case of the coarser angular resolution the temporal difference per iteration between the 
first- and the second-order scheme is decreased. Although the first-order scheme appears to be twice 
faster of the second-order ones, the radiative intensity convergence history per number of iterations, 
illustrated in Figure 8.36, reveals that the latter ones succeeded a greater convergence rate, as well as a 
more accurate solution.  

 

 
Figure 8.35: Distributions of dimensionless incident radiative heat flux along the A-A line (adapted grid, 16-4 

angular resolution, prismatic enclosure - first sub-case). 
 

In order to assure that the derived differentiation between the previously encountered simulations, 
originates indeed from the upgrading of the spatial resolution with the implementation of the developed 
higher-order accurate spatial schemes, a very fine mesh was utilized, consisting of 225,151 nodes, 
665,561 tetrahedra and 207,780 prisms. In Figure 8.37 this grid as well as the density on one of its 
equilateral triangular bases is illustrated. 

The first- and the second-order accurate scheme coupled with the Min-mod limiter were 
implemented, along with both 8-4 and 16-4 angular resolutions. In Figures 8.38 and 8.39 the distributions 
of dimensionless incident radiative heat flux along the A-A line, derived by the aforementioned spatial 
accurate schemes and angular discretizations are presented, compared with the exact and the computed 
ones of Man Young Kim et al. [Kim01]. As expected, the differentiation between the results of the 
employed schemes is reduced considerably, especially for the 16-4 angular resolution, confirming in that 
way the enhancement of the proposed algorithm by the higher-order accurate spatial schemes. 
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Figure 8.36: Radiative intensity convergence history per iterations (initial grid, 16-4 angular resolution, prismatic 

enclosure - first sub-case). 
 

  
Figure 8.37: Employed grid and its density on one of its equilateral triangular bases (prismatic enclosure - first 

sub-case). 
 
The second three-dimensional sub-case concerns an absorbing, but no scattering (σs=0 m-1), medium 

assigned with an emissive radiative power of unity (E=1 W/m3), which corresponds to 64.80435 K; three 
different absorption coefficients kα were employed, namely 0.1, 1.0 and 10.0 m-1. All the walls are 
assumed black (εw=1) and cold (Tw=0 K), while the respective boundary conditions are imposed 
implicitly. The utilized mesh consists of 29,170 nodes, 81,217 tetrahedra and 26,100 prisms, while for 
parallel computation it was decomposed in four partitions (Figure 8.40). Angular discretization is 
achieved using 8 azimuthal and 8 polar angles, while pixelation method alleviates any arisen overhang 
problem. The parameters of this simulation are summarized in Table 8.10. 

This sub-case is focused on the evaluation of the accuracy improvement, obtained by the 
incorporated h-refinement methodology. Therefore, the initial mesh was locally refined, employing the 
same to the previous sub-case criterion (bottom face region); the generated grid is composed of 78,822 
nodes, 128,604 tetrahedra and 104,400 prisms. In Figure 8.41 the mesh density on one of its equilateral 
triangular bases is illustrated prior (left) and after (right) adaptation. 
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Figure 8.38: Distributions of dimensionless incident radiative heat flux along the A-A line (very fine grid, 8-4 

angular resolution, prismatic enclosure - first sub-case). 
 

 
Figure 8.39: Distributions of dimensionless incident radiative heat flux along the A-A line (very fine grid, 16-4 

angular resolution, prismatic enclosure - first sub-case). 
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Table 8.10: Parameters of simulation (prismatic enclosure - second sub-case). 
Parameters 

Absorption coefficient 0.1, 1.0, 10.0 m-1 
Scattering coefficient 0 m-1 

Wall emissivity 1 

Grid density 
29,170 nodes,  

81,217 tetrahedra and  
26,100 prisms 

Number of partitions 4 
Angular resolution 8 azimuthal - 8 polar control angles 

Iterative scheme Runge-Kutta method 

Computational system DELL T7400 workstation with two Intel(R) Xeon(R)-E5410 four-core 
processors at 2.33 GHz 

 

 
Figure 8.40: Utilized mesh (prismatic enclosure - second sub-case). 

 

 
Figure 8.41: Mesh density on an equilateral triangular base (z=0) prior (left) and after (right) h-refinement 

(prismatic enclosure - second sub-case). 
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Figure 8.42 includes the distributions of dimensionless incident radiative heat flux along the half B-B 
line of the initial and refined mesh for the pre-mentioned values of absorption coefficient (kα=0.1, 1.0, 
10.0 m-1), compared with the corresponding exact ones of Grissa et al. [Gri10]. The encountered 
simulations succeeded at least a four-order of residual decrease, requiring approximately two seconds per 
iteration for the initial mesh and five seconds for the refined one. As far as the runs with absorption 
coefficient values equal to 0.1 and 1.0 m-1 are concerned, no significant accuracy improvement is 
identified, except that values of intensity can be retrieved from the area very close to the cold walls. The 
situation is changing in case of absorption coefficient equal to 10.0 m-1; a difference in the same area 
between the two grids is clearly observed, revealing the potential of h-refinement for more accurate 
solutions, without the need to start from scratch the construction of a new finer grid. Although the 
accuracy improvement, obtained by grid adaptation, isn’t so significant, compared to the one provided by 
the implementation of second-order accurate schemes, it can be proved helpful depending on the 
examined problem. 

 

 
Figure 8.42: Distributions of dimensionless incident radiative heat flux along the half B-B line for different values 

of absorption coefficient (prismatic enclosure - second sub-case). 
 

8.5. A cylindrical enclosure 
This test case concerns radiative heat transfer in a cylindrical enclosure with the radius of each base 

equal to unity and height equal to 2 m, as this illustrated in Figure 8.43 [Sal04, Hun11, Lyg12b, Lyg14g]. 
Three different sub-cases were encountered on this enclosure, whose differences are focused on the type 
of medium (absorbing or scattering) as well as on the source surface generating heat transfer (medium or 
wall surface).  

In the first sub-case, the included medium is considered absorbing and emitting, but no scattering, 
(σs=0) held at constant temperature (Tm=100 K); three different absorption coefficients kα were employed, 
namely 0.1, 1.0 and 5.0 m-1. All the walls are assumed radiatively black (εw=1) and cold (Tw=0 K), while 
the corresponding boundary conditions were implemented explicitly (Dirichlet conditions). The utilized 
grid consists of 95,716 nodes, 447,436 tetrahedra and 30,352 prisms, while for parallel processing it was 
decomposed in twelve partitions; its boundary mesh density is presented in Figure 8.44. The angular 
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domain was divided by twelve azimuthal and twelve polar angles, while bold approximation was utilized 
to alleviate any possible overhang problem. The solution of non-time-dependent RTE with iterative 
approximations and a first-order accurate spatial scheme was performed on a DELL T7500 workstation 
with two Intel(R) Xeon(R)-X5650 six-core processors at 2.67 GHz, succeeding a final radiative intensity 
residual equal to 1.0E-9. The parameters of these runs are included in Table 8.11. Figure 8.45 illustrates 
the extracted distributions of dimensionless incident radiative heat flux along the A-A line (cylinder 
lateral surface), compared with those obtained by the corresponding three-dimensional cell-centered 
finite-volume algorithm of Salah et al. [Sal04]. A satisfactory agreement between the computed and 
reference results for all the employed absorption coefficients can be identified; as expected an increase to 
the value of this coefficient leads to an increased blackbody term of RTE and consequently to an 
increased incident radiative heat flux. Independently of the absorption coefficient value, a rapid decrease 
of the exiting flux is observed near the circular bases, due to the neighbouring cold walls. 

 

 
Figure 8.43: Dimensions of cylindrical enclosure. 

 
Table 8.11: Parameters of simulation (cylindrical enclosure - first sub-case). 

Parameters 
Absorption coefficient 0.1, 1.0, 5.0 m-1 
Scattering coefficient 0 m-1 

Wall emissivity 1 

Grid density 
95,716 nodes,  

447,436 tetrahedra and  
30,352 prisms 

Number of partitions 12 
Angular resolution 12 azimuthal - 12 polar control angles 

Iterative scheme Iterative approximations 

Computational system DELL T7500 workstation with two Intel(R) Xeon(R)-X5650 six-core 
processors at 2.67 GHz 
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Figure 8.44: Utilized grid (cylindrical enclosure - first and second sub-case). 

 

 
Figure 8.45: Distributions of dimensionless incident radiative heat flux along the A-A line for different values of 

absorption coefficient (cylindrical enclosure - first sub-case). 
 
For the second sub-case, the enclosure is filled with a purely scattering medium (kα =0 m-1, σs=1 m-1) 

instead, maintained cold (Tm=0 K); an isotropic and a forward anisotropic (F2) scattering function was 
employed for the validation of scattering capability of the developed methodology. All the walls are 
considered black (εw=1); the circular bases are assumed cold (Twb=0 K), while the lateral surface at 
constant temperature (Twl=100 K). Radiative intensity at walls was explicitly imposed (Dirichlet boundary 
conditions), while the steady (non time-dependent) RTE was solved with iterative approximations along 
with a first-order accurate spatial scheme. The same to the previous sub-case spatial (grid) and angular 
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(12 azimuthal - 12 polar control angles along with bold approximation) resolution was employed on the 
same computational system, deriving a radiative intensity residual equal to 1.0E-6 in approximately 
~6.5E-5 s per iteration and number of DoF's (anisotropic scattering run). The parameters of this 
simulation are summarized in Table 8.12. 

 
Table 8.12: Parameters of simulation (cylindrical enclosure - second sub-case). 

Parameters 
Absorption coefficient 0 m-1 
Scattering coefficient 1 m-1 

Wall emissivity 1 

Grid density 
95,716 nodes,  

447,436 tetrahedra and  
30,352 prisms 

Number of partitions 12 
Angular resolution 12 azimuthal - 12 polar control angles 

Iterative scheme Iterative approximations 

Computational system DELL T7500 workstation with two Intel(R) Xeon(R)-X5650 six-core 
processors at 2.67 GHz 

 
Figure 8.46 includes the obtained distributions of dimensionless incident radiative heat flux along the 

B-B line (half base surface) for an isotropically and anisotropically scattering medium, compared with the 
corresponding ones provided by the study of Salah et al. [Sal04]. As expected, the forward anisotropic 
scattering function (F2) produces higher values of exiting intensity, comparing to the isotropic one, as it 
enables greater diffusion. Computed and reference incident radiation fluxes compare satisfactorily, 
indicating the good potential of the developed algorithm for such simulations. 

 

 
Figure 8.46: Distributions of dimensionless incident radiative heat flux along the B-B line for isotropically and 

anisotropically scattering medium (cylindrical enclosure - second sub-case). 
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Additionally, in order to assess the parallelization strategy incorporated in the present solver, similar 
to the previous case runs (concerning an anisotropically scattering medium) were performed on the same 
computational system, utilizing two, four, and eight processors; in Figure 8.47 the derived speed-
up/number of processors distribution is illustrated. As the number of employed processors increases a 
deviation between the ideal and the achieved performance is observed, deriving from the increase of 
communication load. Nevertheless, it is an acceptable deviation, which can be further improved if the 
proposed methodology is applied to larger scale problems with more DoF's. 

 

 
Figure 8.47: Scalability of parallel implementation (anisotropic scattering, cylindrical enclosure - second sub-case). 

 

 
Figure 8.48: Employed mesh (cylindrical enclosure - third sub-case). 

 
The third sub-case concerning radiative heat transfer in a cylindrical enclosure, was encountered 

mainly for the evaluation of the developed spatial/angular agglomeration multigrid methodology. The 
included absorbing and isotropically scattering medium is maintained cold (Tm=0 K), while runs with 
different values of scattering albedo were performed (β =1 m-1, ω=0.1-1.0). All the walls are considered 
black (εw=1), while their radiative intensity is computed implicitly; the circular bases are assumed cold 
(Twb=0 K), while the lateral surface exhibits a constant unity heating power (Elateral=1 W/m2 corresponding 
to 64.80435 K). The employed grid consists of 55,572 nodes, 131,731 tetrahedra and 61,040 prisms, while 
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for parallel processing, it was decomposed in four partitions; its boundary mesh density is presented in 
Figure 8.48. The angular sphere was divided by sixteen azimuthal and eight polar angles, while the 
pixelation method was used to mitigate any overhang problem. The solution of the time-dependent RTE 
with the Runge-Kutta method, applying a first-order accurate spatial scheme, was performed on a 
workstation equipped with an AMD FX(tm) -8350 eight-core processor at 4.00 GHz. The parameters of this 
simulation are included in Table 8.13.  

 
Table 8.13: Parameters of simulation (cylindrical enclosure - third sub-case). 

Parameters 
Absorption coefficient 0-1 m-1 
Scattering coefficient 0-1 m-1 

Wall emissivity 1 

Grid density 
55,572 nodes, 

 131,731 tetrahedra and 
 61,040 prisms 

Number of partitions 4 
Angular resolution 16 azimuthal - 8 polar control angles 

Iterative scheme Runge-Kutta method 

Computational system Workstation with an AMD FX(tm)-8350 eight-core processor at 4.0 
GHz 

 
Figure 8.49 includes the obtained distributions of dimensionless incident radiative heat flux along the 

A-A line for scattering albedo ω equal to 0.1 and 1.0. The value of normalized heat flux has a minimum at 
the midplane (z=1 m), where the effects of cold bases are minimized. Although a first-order accurate 
spatial scheme was employed, the derived results are close enough with the corresponding ones obtained 
by the finite-volume algorithm of Hunter and Guo [Hun11]. 

 

 
Figure 8.49: Distributions of dimensionless incident radiative heat flux along the A-A line for values 0.1 and 1.0 of 

scattering coefficient (cylindrical enclosure - third sub-case). 
 

In order to implement the developed multigrid methodology, three coarser meshes were generated 
via isotropic agglomeration, at each of which the included DoF's were reduced about four times; in Figure 



A cylindrical enclosure 

 

8-32 
 

8.50 the boundary density of the initial and agglomerated control volume grids is illustrated. Similarly, 
angular agglomeration was performed, deriving a coarser angular resolution, including eight azimuthal 
and four polar angles. 

Only the spatial agglomeration multigrid scheme was implemented in the simulation considering the 
medium with 0.1 scattering albedo, due to the reduced radiation exchange between different solid control 
angles. Figure 8.51 includes the radiative intensity convergence history, as well as the corresponding 
convergence rate, per number of iterations/cycles and time of the multigrid scheme (S4A1), compared to 
those of the single-grid one (S1A1). Considering the depicted temporal speed-up coefficient, computed 
for a residual value of 1.0E-8, the multigrid run converged more than twice faster than the single-grid 
one; because of the absence of symmetry and reflecting surfaces as well as of the small value of the 
scattering coefficient, the produced rate is assumed relatively satisfactory. 

 

 
Figure 8.50: Initial and agglomerated control volume grids (cylindrical enclosure - third sub-case). 

 

 
Figure 8.51: Radiative intensity convergence history per iterations/cycles and time (ka=0.9 m-1, σs=0.1 m-1, ω=0.1, 

εw=1, cylindrical enclosure - third sub-case). 
 

For the second simulation regarding a medium with a unit scattering albedo, various multigrid 
schemes (S1A3, S4A1 and S4A2) were implemented besides the single-grid one (S1A1). Figure 8.52 
includes the corresponding convergence histories (per iterations/cycles and computation time) and speed-
up coefficients, the latter computed for final residual equal to 1.0E-8; the significant contribution of 
spatial agglomeration as well as the negligible one of angular fusion is revealed. However, if these rates 
are re-computed for a value of residual equal to 1.0E-6, a considerable increase is observed; more 
specifically this re-calculation results in ~1.37 for S1A3, ~3.24 for S4A1 and ~3.41 for S4A2. 
Considering that a decrease in residual of three orders of magnitude is usually enough for the extraction 
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of the required incident radiative heat flux distributions, the contribution of angular agglomeration 
appears to be non-trivial, especially in case the combined spatial/angular scheme is selected. 

Finally, dummy runs, regarding semi-reflecting surfaces with wall emissivity εw equal to 0.5, were 
performed with the single-grid (S1A1) and various multigrid schemes (S1A3, S4A1 and S4A2), in order 
to examine the effect of reflectivity. In Figure 8.53 the multigrid convergence histories and acceleration 
coefficients are illustrated, compared to this of the non-multigrid one; the maximum obtained speed-up 
coefficient in time for a residual equal to 1.0E-8 is ~3.3, derived by the nested spatial/angular scheme 
(S4A2). Re-computing this rate for a higher but simultaneously sufficient residual equal to 1.0E-6, 
provides an even higher value of ~4.3, indicating the enhancement of the present solver by the 
incorporated angular agglomeration multigrid methodology. 

 

 
Figure 8.52: Radiative intensity convergence history per iterations/cycles and time (ka=0 m-1, σs=1.0 m-1, ω=1.0, 

εw=1, cylindrical enclosure - third sub-case). 
 

 
Figure 8.53: Radiative intensity convergence history per iterations/cycles and time (ka=0 m-1, σs=1.0 m-1, ω=1.0, 

εw=0.5, cylindrical enclosure - third sub-case). 
 
8.6. A hemi-cylindrical enclosure 

In this test case radiative heat transfer is predicted in a hemi-cylindrical enclosure, as this illustrated 
in Figure 8.54 [Kim08, Lyg13c]. All the walls are assumed black (εw=1) and cold (Tw=0 K), except for 
the two half-circular bases in which symmetry boundary conditions are imposed; for the computation of 
radiative intensity on these surfaces the implicit treatment was selected. The included medium is 
considered absorbing and emitting, but no scattering (σs=0 m-1), while it is maintained at constant 
temperature (Tm=1000 K); three different absorption coefficients kα were employed, namely 0.1, 1.0 and 
10.0 m-1. The used mesh consists of 18,217 nodes, 53,658 tetrahedra, and 14,424 prisms, while for 
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parallel processing it was decomposed in two sub-domains; Figure 8.55 includes the utilized grid as well 
as the boundary density on one of its half-circular bases. Angular discretization is succeeded by dividing 
the directional domain in sixteen azimuthal and four polar angles, while the effects of overhang problem 
are subdued by the pixelation approach.  

 
Table 8.14: Parameters of simulation (hemi-cylindrical enclosure). 

Parameters 
Absorption coefficient 0.1, 1.0, 10.0 m-1 
Scattering coefficient 0 m-1 

Wall emissivity 1 

Grid density 
18,217 nodes,  

53,658 tetrahedra and  
14,424 prisms 

Number of partitions 2 
Angular resolution 16 azimuthal - 4 polar control angles 

Iterative scheme Runge-Kutta method 

Computational system DELL T7400 workstation with two Intel(R) Xeon(R)-E5410 four-core 
processors at 2.33 GHz 

 
 The solution of the time-dependent RTE with the Runge-Kutta method, applying all the available 
second-order accurate spatial schemes besides the first-order one, was performed on a DELL T7400 
workstation with two Intel(R) Xeon(R)-E5410 four-core processors at 2.33 GHz. The parameters of this test 
case are summarized in Table 8.14. Figure 8.56 illustrates the obtained distributions of dimensionless 
incident radiative heat flux along the A-B line (Figure 8.54) by all the performed simulations (various 
spatial schemes and absorption coefficients), compared with the corresponding computed ones provided 
in the work of Man Young Kim et al. [Kim08]. Between the results of runs with absorption coefficient 
equal to 0.1 m-1 but different spatial schemes, no difference can be identified. However for the rest 
simulations a deviation between the first- and the second-order accurate spatial schemes can be clearly 
distinguished. In all simulations, the results were extracted after radiative intensity residual was decreased 
at least seven orders of magnitude, requiring approximately twenty three minutes for the first-order 
accurate scheme and thirty four minutes for the second-order ones. 

 

 
Figure 8.54: Dimensions of hemi-cylindrical enclosure. 
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Figure 8.55: Employed grid and its density on symmetry surface (hemi-cylindrical enclosure). 

 

 
Figure 8.56: Distributions of dimensionless incident radiative heat flux along the A-B line for various values of 

absorption coefficient (hemi-cylindrical enclosure). 
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8.7. An L-shaped enclosure 
An L-shaped enclosure, being illustrated in Figure 8.57, including an absorbing and emitting, but no 

scattering medium (σs=0 m-1), held at a constant temperature (Tm=1000 K), is studied in this section 
[Tal05, Lyg13c]; three different absorption coefficients kα were assumed, namely 0.5, 1.0 and 2.0 m-1. All 
the walls are considered black (εw=1) with a constant temperature (Tw=500 K); for the computation of 
radiative intensity on these surfaces the implicit treatment was selected. The utilized tetrahedral mesh is 
composed of 18,130 nodes and 96,010 tetrahedra, while for parallel solution of the time-dependent RTE 
with the Runge-Kutta method it was divided in two partitions; Figure 8.58 includes the employed grid as 
well as the boundary density on the surface with A-B line. The directional sphere was divided by eight 
azimuthal and four polar angles, while pixelation method was implemented to alleviate the effects of 
overhang problem. Simulations for all the incorporated spatial schemes were performed on a DELL 
T7400 workstation with two Intel(R) Xeon(R)-E5410 four-core processors at 2.33 GHz, requiring 
approximately five minutes for the first-order accurate scheme and fifteen minutes for the second-order 
ones to decrease the radiative intensity residual at least nine orders of magnitude. The parameters of these 
runs are included in Table 8.15.  

 

 
Figure 8.57: Dimensions of L-shaped enclosure. 

 
In Figure 8.59 the extracted distributions of incident radiative heat flux (Qy in kW/m2) along the A-B 

line are presented for all the employed spatial schemes and values of absorption coefficient, compared to 
the corresponding computed ones provided in the paper of Talukdar et al. [Tal05]; a satisfactory 
agreement is achieved in general. Independently of the value of absorption coefficient, a significant 
improvement in accuracy of the exiting fluxes is obvious for the runs utilizing the second-order accurate 
spatial approaches; the deviation from the distribution of the first-order scheme increases with the 
increase of absorption coefficient. A slight flux overestimation can be identified in the distribution of the 
simple second-order scheme (without limiting) unlike the schemes coupled with the slope limiters 
(VAVL and Min-mod), due to the unbounded reconstructed values of radiative intensity. Nevertheless, 
the potential of all the developed higher-order accurate schemes for improved accuracy, even in very 
coarse spatial resolutions, such as in this test case, is demonstrated. 

 



Radiative heat transfer numerical results 
 

8-37 
 

Table 8.15: Parameters of simulation (L-shaped enclosure). 
Parameters 

Absorption coefficient 0.5, 1.0, 2.0 m-1 
Scattering coefficient 0 m-1 

Wall emissivity 1 

Grid density 18,130 nodes and  
96,010 tetrahedra 

Number of partitions 2 
Angular resolution 8 azimuthal - 4 polar control angles 

Iterative scheme Runge-Kutta method 

Computational system DELL T7400 workstation with two Intel(R) Xeon(R)-E5410 four-core 
processors at 2.33 GHz 

 

 
Figure 8.58: Employed grid and its density on the surface with A-B line (L-shaped enclosure). 

 
8.8. A J-shaped enclosure 

Radiative heat transfer in a J-shaped enclosure, being illustrated in Figure 8.60, is examined in this 
section [Kim08, Lyg13b]. It is filled with an absorbing and emitting (ka=0.01 m-1), but no scattering (σs=0 
m-1), cold medium (Tm=0 K), while its walls are assumed black (εw=1) and cold (Tw=0 K), except for the 
upper surface at y=2.4 m held at constant temperature of 100 K and the two bases at z=0 m and z=1 m for 
which symmetry boundary conditions are considered; boundary conditions are implemented implicitly. 
The employed grid includes 4,040 nodes, 11,132 tetrahedra and 2,800 prisms, while for parallel 
processing it was decomposed in two sub-domains; Figure 8.61 presents the utilized grid as well as the 
boundary density on one of its mirroring surfaces.  

For angular discretization, a relatively fine resolution of thirty azimuthal and four polar angles was 
selected, due to the significant ray effect encountered; pixelation method was used to subdue the effects 
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of the overhang problem. Iterative solution of the time-dependent RTE for all the available spatial 
schemes was obtained with the implementation of Runge-Kutta method on a DELL T7400 workstation 
with two Intel(R) Xeon(R)-E5410 four-core processors at 2.33 GHz; it required approximately five minutes 
for the first-order scheme and fourteen minutes for the second-order ones, to achieve a four-order 
magnitude decrease of radiative intensity residual. The parameters of this test case are summarized in 
Table 8.16. 

 

 
Figure 8.59: Distributions of incident radiative heat flux along the A-B line for various values of absorption 

coefficient (L-shaped enclosure). 
 

Table 8.16: Parameters of simulation (J-shaped enclosure). 
Parameters 

Absorption coefficient 0.01 m-1 
Scattering coefficient 0 m-1 

Wall emissivity 1 

Grid density 
4,040 nodes, 

 11,132 tetrahedra 
 and 2,800 prisms 

Number of partitions 2 
Angular resolution 30 azimuthal - 4 polar control angles 

Iterative scheme Runge-Kutta method 

Computational system DELL T7400 workstation with two Intel(R) Xeon(R)-E5410 four-core 
processors at 2.33 GHz 
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Figure 8.60: Dimensions of J-shaped enclosure. 

 

 
Figure 8.61: Utilized grid and its density on the symmetry surface (J-shaped enclosure). 

 
Figure 8.62 illustrates the distribution of dimensionless incident radiative heat flux along the ABCD 

line (z=0.5 m) (Figure 8.60) for all the employed spatial schemes, compared with the computed ones of 
Man Young Kim et al. using two-dimensional triangular and polygonal meshes [Kim08]. Similarly to 
previous test cases, a deviation between the results of the first- and second-order runs is identified; this 
difference is more clearly distinguished in the areas near the points A, B and C. Moreover, the simple 
second-order scheme appears to mispredict slightly the exited fluxes in specific regions (e.g., near point 
B), comparing its results with those of the schemes enhanced with limiters. Nevertheless, the potential of 
all the developed higher-order schemes for improved accuracy of the final steady-state solution is 
revealed in this test case, despite the relatively coarse density of the utilized grid. 

 
8.9. A hexahedral enclosure with trapezoidal bases 

Another quasi-3D test case concerns radiative heat transfer in a hexahedral enclosure with 
trapezoidal bases; its dimensions are illustrated in Figure 8.63 [Mur98c, Lyg12a, Lyg13b]. Two sub-
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problems were modelled for this enclosure, employing the time-dependent RTE along with the Runge-
Kutta method on a DELL T7400 workstation with two Intel(R) Xeon(R)-E5410 four-core processors at 2.33 
GHz. 

 

 
Figure 8.62: Distributions of dimensionless incident radiative heat flux along the ABCD line for various spatial 

schemes (J-shaped enclosure). 
 

 
Figure 8.63: Dimensions of hexahedral enclosure with trapezoidal bases. 
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In the first sub-problem, the walls are assumed radiatively black (εw=1) and cold (Tw=0 K), except 

for the two trapezoidal bases at z=0 m and z=1 m for which symmetry boundary conditions are imposed; 
radiative intensity on all the surfaces is implicitly obtained. The included medium is considered absorbing 
and emitting (kα=1 m-1), but no scattering (σs=0 m-1), held at constant temperature of 100 K. The spatial 
field is discretized with a mesh composed of 8,507 nodes, 12,608 tetrahedra 10,754 prisms and 28 
pyramids, while for parallel processing it was divided in two partitions; Figure 8.64 presents the utilized 
grid as well as the boundary density on one of its mirroring surfaces. Angular discretization is obtained 
with sixteen azimuthal and four polar angles, while pixelation method is employed to alleviate overhang 
problem and increase accuracy of the final steady-state solution. The parameters of this sub-case are 
contained in Table 8.17. 

 

  
Figure 8.64: Utilized grid and its density on the symmetry surface (hexahedral enclosure with trapezoidal bases - 

first sub-case). 
 

Table 8.17: Parameters of simulation (hexahedral enclosure with trapezoidal bases - first sub-case). 
Parameters 

Absorption coefficient 1 m-1 
Scattering coefficient 0 m-1 

Wall emissivity 1 

Grid density 

8,507 nodes,  
12,608 tetrahedra  
10,754 prisms and  

28 pyramids 
Number of partitions 2 
Angular resolution 16 azimuthal - 4 polar control angles 

Iterative scheme Runge-Kutta method 

Computational system DELL T7400 workstation with two Intel(R) Xeon(R)-E5410 four-core 
processors at 2.33 GHz 

 
In Figures 8.65 to 8.68 the distributions of extracted dimensionless incident radiative heat flux along 

the AB, BC, CD and DA lines (z=0.5 m) (Figure 8.63) for all the available spatial schemes are illustrated, 
compared with the corresponding exact ones of Murthy and Mathur [Mur98c]. They were extracted after 
radiative intensity residual was decreased at least four orders of magnitude; approximately two and five 
seconds per iteration were required for the first- and second-order schemes respectively. As expected the 
higher-order runs derived more accurate results than the first-order one; moreover, those ones which are 
coupled with limiting functions managed to avoid the flux under-prediction near the cold wall boundaries, 
produced by the unlimited second-order scheme. 
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Figure 8.65: Distributions of dimensionless incident radiative heat flux along the AB line (hexahedral enclosure 

with trapezoidal bases - first sub-case). 
 

 
Figure 8.66: Distributions of dimensionless incident radiative heat flux along the BC line (hexahedral enclosure 

with trapezoidal bases - first sub-case). 
 

In the second sub-problem the same behavior is assumed for the medium and the walls, except for 
the value of absorption coefficient; three different values are imposed, namely, kα=0.1, 1.0 and 10.0 m-1. 
Similarly to the first sub-case boundary conditions are implicitly treated, but only a first-order accurate 
scheme is applied. The employed mesh includes 22,788 nodes, 53,692 tetrahedra and 23,184 prisms, 
while for parallel computation it was divided in two sub-domains; its boundary density is presented in 
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Figure 8.69. The division of angular field was achieved using twenty azimuthal and eight polar angles, 
while pixelation method was selected to manage the overhang problem. The parameters of this sub-case 
are summarized in Table 8.18. 

 

 
Figure 8.67: Distributions of dimensionless incident radiative heat flux along the CD line (hexahedral enclosure 

with trapezoidal bases - first sub-case). 
 

 
Figure 8.68: Distributions of dimensionless incident radiative heat flux along the DA line (hexahedral enclosure 

with trapezoidal bases - first sub-case). 
 
The validation of the contribution of the developed grid adaptation methodology in accuracy 

improvement was the main goal of this sub-case. Therefore, the initial mesh was refined implementing a 
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criterion, which targeted the region up to 0.1 m away from the cold boundaries; as a result a new grid was 
derived, composed of 83,305 nodes, 184,522 tetrahedra and 92,736 prisms. However, as the solution, 
extracted by the run combining the refined mesh and a value of absorption coefficient equal to 10.0 m-1 
wasn't satisfactory, especially at the areas near the lower cold corners, an additional h-refinement was 
applied, producing a mesh with 190,771 nodes, 428,159 tetrahedra and 217,812 prisms. Figure 8.70 
illustrates the mesh density on the mirroring surface (z=0 m) prior and after the first and second h-
refinement. 

 

 
Figure 8.69: Boundary density of utilized grid (hexahedral enclosure with trapezoidal bases - second sub-case). 

 
Table 8.18: Parameters of simulation (hexahedral enclosure with trapezoidal bases - second sub-case). 

Parameters 
Absorption coefficient 0.1, 1.0 and 10.0 m-1 
Scattering coefficient 0 m-1 

Wall emissivity 1 

Grid density 
22,788 nodes,  

53,692 tetrahedra and  
23,184 prisms 

Number of partitions 2 
Angular resolution 20 azimuthal - 8 polar control angles 

Iterative scheme Runge-Kutta method 

Computational system DELL T7400 workstation with two Intel(R) Xeon(R)-E5410 four-core 
processors at 2.33 GHz 

 

 
Figure 8.70: Mesh density on the mirroring surface (z=0 m) prior and after the first and second h-refinement 

(hexahedral enclosure with trapezoidal bases - second sub-case). 
 

Figure 8.71 contains the distributions of dimensionless incident radiative heat flux along the A-B line 
(Figure 8.63) for the three different values of absorption coefficient with the initial and the refined 
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meshes, compared with the corresponding exact ones of Murthy and Mathur [Mur98c]. They were 
extracted after radiative intensity residual was decreased at least five orders of magnitude; approximately 
twelve seconds per iteration were required for the initial mesh, while after the first and second grid 
adaptation each iteration lasted about thirty and sixty seconds respectively. As far as the accuracy 
improvement is concerned, no obvious difference can be identified between the runs with absorption 
coefficient equal to 0.1 m-1. For the remaining ones the situation is different; the difference between the 
initial and the refined grids is evident, revealing h-refinement potential to produce more accurate 
solutions, without the need to start from the very beginning the construction of a new finer grid. Although 
the improvement, provided by grid adaptation, isn’t so important, compared to the one obtained by the 
second-order accurate schemes, it can be proved a viable tool, depending on the examined problem. 

 

 
Figure 8.71: Distributions of dimensionless incident radiative heat flux along the A-B line for three different values 
of absorption coefficient, employing the initial and the refined meshes (hexahedral enclosure with trapezoidal bases 

- second sub-case). 
 

8.10. A cubic enclosure with three baffles 
In this test case radiative heat transfer in a cubic enclosure with three baffles is considered [Coe98, 

Lyg13b, Lyg14g]; its dimensions are illustrated in Figure 8.72. It is filled with an absorbing and emitting 
but non-scattering medium (ka=0.1 m-1, σs=0 m-1) with a constant heating power Em equal to 10 W/m3. Its 
walls as well as the baffles are assumed black (εw=1) with a constant heating energy equal to unity (Ew=1 
W/m2), except for the faces normal to the z-direction, at which symmetry boundary conditions are 
implemented; radiative intensity on all the surfaces is implicitly obtained. 

The utilized mesh consists of 46,198 nodes, 58,624 tetrahedra and 66,024 prisms, while for parallel 
processing it was decomposed in two sub-domains; Figure 8.73 illustrates the employed grid as well as 
the boundary density on one of its mirroring surfaces. Angular discretization was obtained with twenty 
four azimuthal and four polar angles, while the effects, derived by the overlapping of control angles and 
faces of control volumes, were subdued by the pixelation method. In order to implement the developed 
multigrid methodology, three coarser meshes were generated via isotropic agglomeration, at each of 
which the included DoF's were reduced approximately four times; in Figure 8.74 the boundary density of 
the initial and agglomerated control volumes is presented. Similarly, angular agglomeration was 
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performed, deriving a coarser directional resolution, including twelve azimuthal and two polar angles. 
The solution of time-dependent RTE with the Runge-Kutta method, applying a first- and second-order 
accurate spatial scheme coupled with Min-mod limiter, was performed on a workstation equipped with an 
AMD FX(tm)-8120 eight-core processor at 3.1 GHz; besides multigrid simulations, single-grid ones were 
performed for the evaluation of the corresponding scheme. The parameters of these runs are included in 
Table 8.19. 

 

 
Figure 8.72: Dimensions of cubic enclosure with three buffles. 

 
Figure 8.75 illustrates the contours of average radiative heat flux G derived by the run with the 

second-order scheme, while Figure 8.76 includes the obtained distributions of incident radiative heat flux 
along the ABCD line (Figure 8.72) for runs with both schemes, compared with the corresponding 
computed with Z-M (Zone-Method) ones of Coelho et al. [Coe98]. As expected, the results extracted with 
the higher-order method are more close to the reference ones, especially along the line AB, comparing to 
those obtained by the first-order accurate simulation. 

 

  
Figure 8.73: Employed mesh and its density on one of its symmetry surfaces (cubic enclosure with three buffles). 
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Figure 8.74: Initial and agglomerated control volume grids (cubic enclosure with three buffles). 

 
Table 8.19: Parameters of simulation (cubic enclosure with three buffles). 

Parameters 
Absorption coefficient 0.1 m-1 
Scattering coefficient 0 m-1 

Wall emissivity 1 

Grid density 
46,198 nodes,  

58,624 tetrahedra and  
66,024 prisms 

Number of partitions 2 
Number of spatial multigrid levels 1-4 

Angular resolution 24 azimuthal and 
4 polar control angles 

Number of angular multigrid levels 1-2 
Iterative scheme Runge-Kutta method 

Computational system Workstation with an AMD FX(tm)-8120 eight-core processor 
at 3.1 GHz 
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Figure 8.75: Contours of average radiative heat flux G, obtained by the second-order accurate run (cubic enclosure 

with three buffles). 
 

 
Figure 8.76: Distributions of incident radiative heat flux along the ABCD line for different spatial schemes (cubic 

enclosure with three buffles). 
 
Only spatial agglomeration multigrid method (S4A1) was employed for the acceleration of the sub-

problem with first-order spatial accuracy as the angular one was revealed to contribute negatively. Figure 
8.77 includes the radiative intensity convergence history per number of iterations/cycles and computation 
time, compared with those of a single-grid run (S1A1); an iteration and temporal speed-up coefficient 
equal to ~2.65 and ~1.8 respectively was achieved for a final residual equal to 1.0E-6. Different multigrid 
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schemes (S1A2, S4A1 and S4A2) were implemented along with the higher-order accurate spatial method, 
resulting in the corresponding convergence histories per iterations and time, presented in Figure 8.78; the 
nested spatial/angular scheme results in a slightly faster solution than the simple spatial one, while 
similarly the angular method in a slightly faster run than the single-grid one. Thus, the small contribution 
of the angular multigrid method is confirmed once more for test cases with no medium scattering and wall 
reflection. 

 

 
Figure 8.77: Radiative intensity convergence history per iterations/cycles and time (first-order scheme, cubic 

enclosure with three buffles). 
 

 
Figure 8.78: Radiative intensity convergence history per iterations/cycles and time (second-order scheme, cubic 

enclosure with three buffles). 
 
An additional (multigrid and single-grid) simulation was made with the aforementioned enclosure, 

assuming the same parameters, except for the value of wall emissivity of walls (εw=0.8) and baffles 
(εwb=0.6) (gray walls). Figure 8.79 contains the obtained distributions of incident radiative heat flux along 
the ABCD line for runs with both schemes (first- and second-order accurate with Min-mod limiter), 
compared to the corresponding ones computed with Z-M (Zone-Method) of Coelho et al. [Coe98]; 
similarly to previous runs (with black walls), the results derived by the higher-order method agree more 
with the reference ones. Only the spatial multigrid method (S4A1) was employed again along with the 
first-order accurate scheme due to the absence of medium scattering and wall reflection. Figure 8.80 
illustrates the radiative intensity convergence history per number of iterations/cycles and wall-clock 
computation time, compared to those of a single-grid run (S1A1); an increased time speed-up coefficient 
(~2.34) for a final residual equal to 1.0E-6 was obtained, compared to the corresponding one of the sub-
case with black walls (~1.80), due to the increased radiation transfer between the solid control angles, 
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imposed by the increased values of wall reflectivity. Different multigrid schemes (S1A2, S4A1 and 
S4A2) were applied along with the higher-order method, deriving the corresponding convergence 
histories per iterations and time, presented in Figure 8.81. Similarly to the runs with black walls, the 
contribution of angular acceleration method appears to be relatively unimportant; nevertheless, an 
increased time speed-up coefficient is succeeded for all multigrid schemes, with a maximum value of 
~3.02 obtained by the nested four-level spatial/two-level angular scheme (S4A2).  

 

 
Figure 8.79: Distributions of incident radiative heat flux along the ABCD line for different spatial schemes (gray 

walls, cubic enclosure with three buffles). 
 

 
Figure 8.80: Radiative intensity convergence history per iterations/cycles and time (first-order scheme, gray walls, 

cubic enclosure with three buffles). 
 

8.11. An annular sector 
Another problem examined mainly for the validation of the developed multigrid methodology, 

concerns radiative heat transfer in a black (εw=1) annular sector with thickness of 0.5 m, length equal to 
unity (L=1 m) and angular extent φ of 60o, as illustrated in Figure 8.82 [Bae98b, Lyg12a, Lyg14g]. The 
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medium as well as all the walls are considered cold (Tm=0 K, Tw=0 K), except for the inner surface, 
maintained at constant temperature of 100 K; boundary conditions are implemented implicitly. Two sub-
cases were examined regarding different medium features; for the first one the medium is assumed 
absorbing and emitting, but non-scattering (ka=1 m-1, σs=0 m-1, ω=0), while for the second one it is 
assumed to be isotropically scattering (ka=0.5 m-1, σs=0.5 m-1, ω=0.5). The employed grid consists of 
49,925 nodes, 216,595 tetrahedra and 20,460 prisms, the latter positioned at the outer surface of the 
annular sector; Figure 8.83 illustrates the utilized grid as well as the boundary density on one of its bases. 
For parallel solution of the time-dependent RTE with the Runge-Kutta method and a first-order accurate 
spatial scheme on a workstation with an AMD FX(tm)-8120 eight-core processor at 3.1 GHz, it was 
divided in two partitions. The angular discretization was obtained with sixteen azimuthal and eight polar 
angles, while pixelation approach was applied for the alleviation of the overhang problem. Besides single-
grid simulations, multigrid ones were performed for the evaluation of the corresponding scheme. 
Therefore, two coarser meshes were generated via isotropic agglomeration; the number of DoF's was 
decreased approximately five times for the second agglomerated level and four additional times for the 
final one. In Figure 8.84 the initial and agglomerated control volume grids are presented. Similarly, 
angular agglomeration was performed, deriving a coarser directional resolution, including eight azimuthal 
and four polar angles. The parameters of this case are contained in Table 8.20. 

 

 
Figure 8.81: Radiative intensity convergence history per iterations/cycles and time (second-order scheme, gray 

walls, cubic enclosure with three buffles). 
 

 
Figure 8.82: Dimensions of the annular sector. 
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Figure 8.83: Utilized mesh and its density on one of its bases (annular sector). 

 

 
Figure 8.84: Initial and agglomerated control volume grids (annular sector). 

 
Table 8.20: Parameters of simulation (annular sector). 

Parameters 
Absorption coefficient 0.5-1 m-1 
Scattering coefficient 0-0.5 m-1 

Wall emissivity 1 

Grid density 
49,925 nodes,  

216,595 tetrahedra and  
20,460 prisms 

Number of partitions 2 
Number of spatial multigrid levels 1-3 

Angular resolution 16 azimuthal and 
8 polar control angles 

Number of angular multigrid levels 1-2 
Iterative scheme Runge-Kutta method 

Computational system Workstation with an AMD FX(tm)-8120 eight-core processor 
at 3.1 GHz 

 
Figure 8.85 contains the obtained distributions of dimensionless incident radiative heat flux along the 

half A-A line (Figure 8.82) for scattering albedo equal to 0 and 0.5. Although only a first-order accurate 
spatial scheme was applied, the extracted results agree sufficiently with the corresponding ones of the 
cell-centered finite-volume solver of Baek et al. [Bae98b]. In Figure 8.86 the contours of average 
radiative heat flux G at the middle of the annular sector (z=0.5) are illustrated for the sub-case concerning 
a medium with scattering albedo 0.5. 
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Figure 8.85: Distributions of dimensionless incident radiative heat flux along the half A-A line for different values 

of scattering albedo (annular sector). 
 

 
Figure 8.86: Contours of average radiative heat flux G at the middle of the sector (z=0.5) for the sub-case 

considering a medium with scattering albedo 0.5 (annular sector). 
 
Considering the absence of scattering behaviour of the medium and reflection of the walls, for the 

first sub-case, only the spatial agglomeration multigrid method was employed with different number of 
levels (S2A1 and S3A1). Figure 8.87 includes their convergence history per number of iterations/cycles 
and computation time, compared with the corresponding one of the single-grid simulation (S1A1). As the 
S2A1 scheme derived a temporal speed-up coefficient equal to ~1.68 and the S3A1 a corresponding 
coefficient equal to ~2.35, it is confirmed that extra acceleration is gained with addition of an extra 
coarser level to the multigrid procedure.  
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Figure 8.87: Radiative intensity convergence history per iterations/cycles and time (only absorbing and emitting 

medium, annular sector). 
 
Unlike the previous sub-case, different multigrid schemes, namely, S1A2, S3A1 and S3A2, were 

employed for the second sub-problem with the isotropically scattering medium. Figure 8.88 includes their 
convergence history per number of iterations/cycles and computation time, compared with the 
corresponding one of the single-grid simulation (S1A1). According to the extracted temporal speed-up 
coefficients for the final residual 1.0E-12, the nested scheme (~2.28) led to a slightly faster solution than 
the only spatial one (~2.24); similarly the solution with the only angular method (~1.09) is slightly 
accelerated, compared to the single-grid one. However, for a residual value 1.0E-6, which is more than 
sufficient for practical radiative heat transfer applications, the temporal speed-up coefficients are re-
computed as ~1.31 for S1A2, ~2.35 for S3A1 and ~2.72 for S3A2, demonstrating a satisfactory 
acceleration obtained by the angular agglomeration methodology for both the angular and the nested 
multigrid scheme. 

 

 
Figure 8.88: Radiative intensity convergence history per iterations/cycles and time (isotropically scattering medium, 

annular sector). 
 

8.12. A tetrahedral enclosure 
The last test case considers radiative heat transfer in a tetrahedral enclosure with black (εw=1) and 

cold (Tw=0 K) walls, as this is illustrated in Figure 8.89 [Mur98c, Lyg12a, Lyg14b]. It is filled with an 
absorbing and emitting, but non-scattering, (ka=1 m-1, σs=0 m-1) medium, held at constant temperature 
100 K. The utilized grid includes 196,847 nodes and 1,119,456 tetrahedra, while for parallel processing it 
was divided in two partitions; Figure 8.90 presents the employed grid as well as its density on the surface 
with A-A line. Although such a fine grid wasn't necessary as far as the solution accuracy is concerned, it 
was employed in order to amplify the effect of the developed multigrid method and evaluate its 
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performance in large resolutions. Angular discretization was obtained with sixteen azimuthal and eight 
polar angles, while pixelation method subdued overhang problem effects. Radiative intensity on all the 
walls was obtained implicitly. The solution of time-dependent RTE with the Runge-Kutta method, 
applying a first-order accurate spatial scheme, was performed on a workstation equipped with an AMD 
FX(tm)-8120 eight-core processor at 3.1 GHz. 

 

 
Figure 8.89: Dimensions of tetrahedral enclosure. 

 

  
Figure 8.90: Employed grid and its density on the surface with A-A line (tetrahedral enclosure). 

 
In order to implement the developed multigrid methodology, two coarser meshes were generated via 

isotropic agglomeration; in Figure 8.91 the boundary density of the initial and agglomerated control 
volumes is presented. Besides multigrid simulations, a single-grid one was performed for the evaluation 
of the corresponding scheme. The parameters of those runs are summarized in Table 8.21. 

In Figure 8.92 the distribution of dimensionless incident radiative heat flux along the A-A line 
(Figure 8.89) is illustrated, compared with the corresponding one of Murthy and Mathur [Mur98c]; a 
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satisfactory agreement is identified between the obtained and reference results. Figure 8.93 contains the 
convergence history per iterations/cycles and time for all the employed spatial multigrid schemes, 
compared with this of the single-grid simulation; a maximum temporal speed-up coefficient equal just to 
1.95 was obtained, due to the absence of medium's scattering behaviour and walls' reflection. 

 

 
Figure 8.91: Initial and agglomerated control volume grids (tetrahedral enclosure). 

 

 
Figure 8.92: Distributions of dimensionless incident radiative heat flux along the A-A line (tetrahedral enclosure). 

 
In order to further evaluate the incorporated multigrid methodology, additional (multigrid and single-

grid) simulations were performed for the aforementioned enclosure, assuming though a purely 
anisotropically scattering (ka=0 m-1, σs=1 m-1) and cold (Tm=0 K) medium as well as black (εw=1) and 
cold (Tw=0 K) walls, except for the face including the A-A line, which is held at constant temperature of 
100 K. Angular agglomeration was also implemented, deriving a coarser directional resolution with eight 
azimuthal and four polar angles. Figure 8.94 illustrates the extracted convergence histories along with the 
corresponding speed-up rates per number of iterations/cycles and computation time for all the employed 
multigrid runs, namely, S1A2, S3A1 and S3A2, compared with those of the single-grid simulation. The 
maximum temporal coefficient of ~3.07 was derived by the nested S3A2 scheme, revealing once more the 
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capability of the algorithm for enhanced acceleration of the solution procedure when a scattering medium 
is considered. 

 
Table 8.21: Parameters of simulation (tetrahedral enclosure). 

Parameters 
Absorption coefficient 1 m-1 
Scattering coefficient 0 m-1 

Wall emissivity 1 

Grid density 196,847 nodes and  
1,119,456 tetrahedra 

Number of partitions 2 
Number of spatial multigrid levels 1-3 

Angular resolution 16 azimuthal and 
8 polar control angles 

Number of angular multigrid levels 1 
Iterative scheme Runge-Kutta method 

Computational system Workstation with an AMD FX(tm)-8120 eight-core processor 
at 3.1 GHz 

 

 
Figure 8.93: Radiative intensity convergence history per iterations/cycles and time (only absorbing medium, 

tetrahedral enclosure). 
 

 
Figure 8.94: Radiative intensity convergence history per iterations/cycles and time (anisotropically scattering 

medium, tetrahedral enclosure).
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Similarly to fluid flow, radiative heat transfer numerical results, considering their prediction in 
general enclosures through absorbing, emitting and isotropically or anisotropically scattering gray media, 
obtained either with the time-dependent or steady (non time-dependent) RTE, agree sufficiently well with 
the exact solutions or computed ones of reference solvers. The incorporated second-order accurate spatial 
scheme with or without limiting function (Van Albada-Van Leer or Min-mod) [VanA82, Swe84, 
Lyg13c], was proved to be an important enhancement of the algorithm, alleviating sufficiently false 
scattering [Cha93, Coe02, Cap10], especially at boundary surfaces' regions with large radiative intensity 
gradients, and consequently improving the accuracy of the final steady-state solution even in very coarse 
spatial resolutions [Lyg13b, Lyg13c]. Among the developed second-order accurate schemes (simple or 

9. Conclusions 
 
9.1. Summary 

In this thesis the development and validation of methodologies allowing for the numerical solution of 
steady-state compressible fluid flow, and radiative heat transfer problems was reported. For the 
representation of computational fields, three-dimensional unstructured hybrid grids were employed, 
composed of tetrahedral, prismatic and pyramidical elements, mainly to resolve effectively the severe 
anisotropy of boundary layer in viscous fluid flows [Sor03, Lyg14a, Lyg15]. Unlike flow simulations, this 
type of mesh discretized with a node-centered finite-volume scheme is rarely used in radiative heat 
transfer predictions comparing to tetrahedral grids along with a cell-centered method [Kim88, Bae98b, 
Mur98c, Kim01, Sal04, Kim10]; nevertheless, the examined in this study numerical runs with such 
meshes derived equally accurate solutions [Lyg12b, Lyg13c]. Moreover, their capability to include highly 
stretched elements at selected areas of the examined grid, e.g., at boundary regions with large radiative 
intensity gradients, resulted in utilization of relatively coarser grids and consequently in considerable 
computational savings, maintaining though the desired accuracy [Lyg12b]. 

Fluid flow numerical results, obtained by the implementation of RANS PDE's along with appropriate 
turbulence models, namely, k-ε (in three versions), k-ω and SST [Lau74, Saf74, Koo00, Men03a, Lyg11], 
compare sufficiently well with the corresponding experimental data and computational results of 
reference solvers, indicating the potential of the proposed methodology for such simulations. The 
previous statement derives mainly from the satisfactory solutions extracted for the more complicated test 
cases performed, concerning fully turbulent flow over aircrafts (DLR-F6 and CRM) with the presence of 
considerable flow discontinuities, although coarse meshes were utilized [Lyg13a, Lyg14a, Lyg14e, 
Lyg15]. The incorporated high-order accurate spatial scheme coupled with the slope limiters of Van 
Albada-Van Leer, Min-mod and Barth-Jespersen [VanA82, Swe84, Bar89, Bar92, Bla01], appears to 
enhance the present algorithm with improved accuracy by alleviating sufficiently numerical diffusion as 
well as with the capability to utilize relatively coarse grids along with significant computational economy; 
depending on the test case, the appropriate limiting function should be selected, e.g. min-mod limiter is 
not appropriate for problems involving sharp shock waves, due to its smoothing attitude. Although the 
nodal-averaging scheme [Bla01], employed for the computation of flow and turbulence model variables' 
gradients at control volumes' interfaces, is assumed generally less accurate than the element-based one, 
using edge-dual volumes [Kal96, Kal05a], it derived equally accurate but much more computationally 
efficient solutions, utilizing the edge-based data structure of the algorithm [Lyg14c]. It is this structure 
that allows nodal-averaging scheme, unlike the element-based method, to be applied to the agglomerated 
grids also, composed of polyhedral elements for the implementation of the developed multigrid 
methodology [Lyg14c]. Implicit schemes, such as those incorporated in the proposed algorithm 
employing the Jacobi or the Gauss-Seidel algorithm [Ven95, Kou03], are considered more effective in 
terms of efficiency, comparing to the corresponding explicit ones, as they allow for the utilization of 
larger CFL numbers; nevertheless, considering the available finite computing resources, the included 
second-order temporal accurate four-stage Runge-Kutta (RK(4)) method [Lal88a] revealed to be a 
valuable tool, due to its reduced requirements for memory storage and communication load in a parallel 
computational environment. 



Summary 

 

9-2 
 

together with Van Albada-Van Leer or Min-mod limiter), the unlimited former one appeared to produce a 
flux over- or under-estimation (depending on the test case), due to the unbounded reconstructed values of 
radiative intensity, while no significant difference was distinguished between the other two limited ones 
[Lyg13b, Lyg13c]. The main drawback of these schemes is the requirement for increased computational 
effort comparing to the first-order one; it can be assumed relatively trivial, considering the resulting 
accuracy improvement, especially for coarse grids. The non time-dependent RTE, solved with iterative 
approximations and a second-order scheme appeared to lead to spurious oscillations in some test cases 
[Lyg13c]; the remedy to this shortcoming revealed to be the employment of the time-dependent RTE 
[Hun11] along with the second-order accurate in time four-stage Runge-Kutta (RK(4)) method [Lal88a, 
Lyg13c]. Any overhang conditions, caused by the utilization of unstructured grids and the division of 
directional domain in finite solid control angles [Cha94a, Kim01], were sufficiently mitigated by the 
incorporated methods, namely, the bold approximation and the pixelation method [Lyg13b]. The latter 
approach, being of course more accurate, is implemented by most of the researchers only at solid control 
angles-control volume faces, for which significant overhang is exhibited [Mur98a, Kim01, Kim05b, 
Lyg13c]. Unlike this common practice, in this study it is employed to the total number of nodes and 
control angles in a pre-computation stage, considering that the values of method's coefficients, as well as 
those of directional weights, do not change during the solution of the RTE; in that way a reduced 
computational cost per iteration is succeeded [Lyg13b, Lyg13c]. Implicit treatment of boundary 
conditions is another feature of the proposed methodology; besides being a technique more close to those 
employed in CFD than the explicit approach, e.g. in free-slip, inlet and outlet surfaces, it avoids the 
requirement of the latter one for a priori finer computational grids at these regions, thus resulting in 
significant computational savings [Lyg13c]. In addition, it allows for the implementation of mirroring 
boundary conditions, resembling specularly reflecting walls, and consequently for the utilization of 
smaller grids with significantly reduced numbers of DoF's. A drawback of this methodology is that the 
mirroring direction has to be selected to coincide with a discrete one; in order to implement it on more 
directions, an interpolation technique should be employed [Liu00]. Nevertheless, as the symmetry planes 
are usually designed parallel to the axes’ planes (as in this work), this shortcoming appears to be 
relatively unimportant [Lyg13c]. 

Significant contribution to the accuracy of the final steady-state solutions of both flow and radiative 
heat transfer problems was obtained from the implementation of the developed h-refinement methodology, 
enriching with more DoF's specific grid regions, selected either automatically or by the user [Lyg13c, 
Lyg14a, Lyg15]. For example, although relatively coarse initial grids were used in test cases concerning 
flow over the CRM aircraft and radiative heat transfer in a hexahedral enclosure with trapezoidal bases, 
the applied grid adaptation method resulted in accurate predictions of the surface pressure and 
dimensionless incident radiative heat flux distributions, respectively [Lyg14a, Lyg15]. As such, h-
refinement was demonstrated to be a viable tool in test cases where important amounts of numerical 
diffusion and false scattering in flow and radiative heat transfer predictions, respectively, are important, 
or in problems faced first time for which no previous knowledge exists about the required spatial 
resolution [Loh92, Kal96, Lyg13c, Lyg14a, Lyg15]. Besides the accuracy improvement it entails, it 
results in significant computational savings, as it avoids the construction of a locally or globally finer 
mesh from the very beginning, being implemented during the solution procedure; it requires a few 
minutes to refine locally a grid with approximately 4,500,000 nodes, producing a new mesh with about 
6,500,000 nodes (CRM WBHT aircraft) [Lyg14a, Lyg15]. 

Besides the effectiveness of the present methodology in terms of accuracy, the obtained numerical 
results demonstrated its satisfactory efficiency, derived by the incorporated acceleration techniques, 
namely, the edge-based data structure along with the local time-stepping scheme, the parallelization 
strategy based on the domain decomposition approach and MPI library functions, and the agglomeration 
multigrid method, employed in isotropic or directional (semi- or full-coarsening) spatial formulation for 
the flow solver and in spatial, angular or nested spatial/angular one for radiative heat transfer algorithm 
[Lyg14b, Lyg14c, Lyg14d, Lyg14f, Lyg14g]. Although unstructured grids entail significant geometric 
flexibility, they call for increased computational effort and memory requirements, comparing to structured 
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ones; therefore the utilization of a more sophisticated data structure with indirect addressing, such as the 
edge-based one employed with the present algorithm, becomes a prerequisite [Lyg12b]. In addition, 
parallel processing reduced considerably the required wall-clock computation time, especially in large-
scale simulations including grids with millions of DoF's, such as in the test cases of DLR-F6 and CRM 
aircrafts [Lyg13a, Lyg14a, Lyg14e, Lyg15]. Considering the scalability results of the developed 
parallelization strategy for both the flow and radiative heat transfer solver, a linear relation between 
speed-up and number of employed processors was identified up to approximately sixteen processors; a 
deviation between the ideal and the current computations began at this point, caused by the increase of 
communication load with the increase of utilized processors [Lyg12b]. Nevertheless, it is assumed an 
acceptable deviation, which can be further improved if the proposed methodology is applied to larger 
scale problems with more DoF's [Lyg12b].  

The last method, which contributed significantly to the improvement of the proposed algorithm's 
computational performance, is the parallel agglomeration multigrid scheme [Nis11, Lyg14b, Lyg14c, 
Lyg14d, Lyg14f, Lyg14g]. For the flow solver, it was employed in an isotropic or directional (semi- or 
full-coarsening) formulation, depending on the type of flow (inviscid or viscous) and consequently on the 
type of the examined grid (tetrahedral or hybrid); a maximum temporal speed-up coefficient equal to ~9.0 
was obtained for an inviscid flow (isotropic fusion), while for laminar and  turbulent ones ~7.5 and ~5.0 
rates were achieved respectively (directional full-coarsening agglomeration), indicating the potential of 
this methodology for considerable acceleration of solution procedure [Lyg14c]. Based on speed-up results 
extracted from the DLR-F6 WB test case, the superiority of full-coarsening directional agglomeration 
[Nis11, Lyg14a, Lyg15] was proved, comparing to this of semi-coarsening one [Mav97, Mav98]; 
moreover, the higher contribution by the combined FMG-FAS strategy was revealed, comparing to only 
FAS one, although the first one remains susceptible to be confined in local minima or even lead solution 
to failure. For radiative heat transfer simulations, the aforementioned methodology was extended to an 
angular and a combined (nested) spatial/angular version, enhancing the corresponding solver with further 
acceleration capabilities [Lyg14b, Lyg14f, Lyg14g]; a maximum temporal speed-up coefficient equal to 
~4.3 was succeeded for the spatial scheme, while for angular and nested ones ~3.3 and ~8.9 rates were 
obtained respectively (all of them extracted from test cases considering purely scattering media). Based 
on the examined results, the acceleration, derived by the developed multigrid schemes (spatial, angular 
and combined spatial/angular), was revealed to become higher with the increase of radiation exchange 
between different solid control angles; this interaction is usually a result of the combination of purely 
scattering media, fully reflecting surfaces, and symmetry boundary conditions [Lyg14g]. Unlike them, for 
simulations concerning only absorbing media and black walls, the spatial agglomeration multigrid scheme 
should be the preferred choice. Independently of the employed solver (flow or radiative heat transfer), the 
acceleration obtained by the developed multigrid methodology increases with the corresponding increase 
to the mesh size; the greater the number of DoF's, the greater is the acceleration gained [Lyg14g]. As the 
spatial agglomeration is performed separately in each partition (in which the initial grid is divided for 
parallel processing), the acceleration coefficients derived by the proposed multigrid scheme vary for 
different numbers of sub-domains, for the same test case. Based on the radiative heat transfer cases 
encountered in this study, an acceleration was observed with the increase of the number of sub-grids, 
instead of an expected decceleration due to a processor load imbalance; this improvement is assumed to 
be a result of the effective treatment of ghost nodes at overlapping regions during fusion procedure, 
deriving actually virtual ghost supernodes [Lyg14f].  

To conclude, the obtained results by the developed numerical approach (Galatea code) against three- 
and quasi-three-dimensional benchmark test cases revealed its capability for both compressible fluid flow 
and radiative heat transfer simulations in terms of accuracy, geometric flexibility and computational 
efficiency. 
 
9.2. Contributions 

Considering similar studies available in open literature, the following original contributions have 
been introduced in this thesis: 
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• A combination of a parallel node-centered finite-volume method with three-dimensional 
unstructured hybrid grids for radiative heat transfer prediction. In three-dimensional runs, a 
priori greater numerical diffusion exists, comparing to two-dimensional ones; a remedy to this 
shortcoming appears to be the utilization of highly stretched elements at the region of interest, e.g., 
at boundary surfaces from which the desired distribution of incident radiative heat flux is obtained 
[Lyg12b]. Unlike CFD, cell-centered discretized tetrahedral grids are usually employed in a serial 
way for radiation simulations [Kim88, Bae98b, Mur98c, Kim01, Sal04, Kim10]; nevertheless, the 
proposed methodology derives equally accurate results in an acceptable computational time due to 
parallelization [Lyg12a, Lyg12b]. 

• A second-order accurate spatial scheme jointed or not with the slope limiter of Van Albada-
Van Leer or Min-mod, improving accuracy of radiative heat transfer finite-volume solutions, 
especially at boundary surfaces' regions with large radiative intensity gradients. Unlike CFD, 
such methods aren't frequently employed in radiation simulations, except for a few similar studies 
concerning though unlimited second-order schemes with a cell-centered finite-volume method 
[Cap10] or bounded ones with DOM [Coe02]. Among the developed higher-order schemes (simple 
or coupled with Van Albada-Van Leer or Min-mod limiter), the unlimited first one appears to 
produce a flux over- or under-estimation (depending on the test case) due to the unbounded 
reconstructed values of radiative intensity, while no significant differences are observed between 
the other two more accurate ones incorporating limiting functions [Lyg13b, Lyg13c]. 

• Implicit treatment of diffusively and specularly reflecting surfaces' boundary conditions. 
According to the common practice, the wall boundary conditions of a general enclosure are 
imposed explicitly, setting radiative intensity of boundary nodes equal to the sum of their 
blackbody intensity, due to their temperature and the reflected one by the incoming rays [Bae98b, 
Rai99, Kim01, Kim05]; nevertheless, implicit approach developed in this study, besides resembling 
corresponding CFD techniques for free-slip, inlet and outlet surfaces, contributing to flux balances 
of boundary nodes, it avoids the requirement of the explicit one for a priori finer computational 
grids at these areas, resulting in significant computational savings [Lyg13b, Lyg13c]. Based on this 
approach, mirroring boundary conditions, resembling specularly reflecting walls, can be 
implemented as well. Unlike CFD, such boundaries aren't commonly applied in radiative heat 
transfer computations, except for a few studies, such as this of Liu et al. [Liu00], although in that 
way even coarser spatial resolutions can be used. For example, in axisymmetric test cases only the 
half computational field can be discretized [Lyg13c]. 

• A grid adaptation method, employing h-refinement technique to improve accuracy of 
radiative heat transfer solution at specific regions of the examined mesh. Although such 
methodologies, adapting grids with the addition of more DoF's [Kal96, Lyg13c, Lyg14a, Lyg15] or 
with their redistribution [Loh92, Kha00], are commonly applied in flow computations, they aren't 
frequently met in radiation ones. However, h-refinement approach developed in this study is 
revealed to be a viable tool alleviating significantly false scattering and consequently increasing 
accuracy of the final radiation prediction; it enriches automatically selected or user defined regions 
of the grid with more DoF's (nodes). Besides accuracy improvement, it results in significant 
computational savings, as it is implemented during the solution procedure, avoiding the 
construction of a locally or globally finer mesh from the begining [Lyg13a]. 

• A parallel spatial agglomeration multigrid method enhancing both flow and radiative heat 
transfer algorithms with improved computational performance. Although such a methodology 
is frequently incorporated in CFD algorithms [Mav94, Mav96, Mav97, Mav98, Car00, Bla01, 
Sor03, Nis10, Nis11, Nis13, Lyg14b, Lyg14c, Lyg14d, Lyg14f, Lyg14g], this is not the case for 
radiative heat transfer ones; according to the presented results in Chapters 7 and 8 their efficiency 
can be considerably improved with its implementation. The proposed scheme considers the 
implementation of FAS (nested in FMG procedure) on successively coarser spatial resolutions, 
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derived from the finest initial sub-grids (in which the whole initial mesh has been decomposed for 
parallel processing) through the isotropic or directional (full- or semi-coarsening) fusion of their 
adjacent control volumes in a way similar to advancing front technique [Lyg14f]. The merging 
strategy is based on the methodology reported by Nishikawa et al. [Nis11], which allows for full-
coarsening directional agglomeration of adjacent control cells on hybrid grids, preserving 
simultaneously the topology of the initial finest mesh; therefore, it is assumed to be more 
computationally efficient than the semi-coarsening approach introduced by Mavriplis [Mav97], 
which limits the fusion of implicit lines bottom nodes [Mav97, Lam04]. The previous state is 
confirmed by the speed-up results obtained for the CRM test case, encountered in this study. 
Further features have been included to the proposed algorithm, differentiating it from this of 
Nishikawa et al. [Nis10, Nis11, Nis13] as follows [Lyg14c, Lyg14f]: a) Agglomeration is extended 
across partition boundaries creating virtual ghost supernodes at overlapping regions according to 
the fusion of their corresponding core nodes at neighbouring sub-domains. b) Considering the 
previous characteristic, an implicit line can belong to different sub-grids, allowing for the 
utilization of a general partitioning application, such as METIS. c) Another limitation is imposed to 
preserve the topology of the initial mesh up to the coarsest generated one; after the first 
agglomeration process the nodes of the lowest prismatic layer are not allowed to be merged with 
the nodes of the next layer, while the same constraint is applied to the nodes of the second 
prismatic layer after the second process, and so forth. d) Since the line-agglomeration is 
accomplished, the isotropic fusion is performed similarly to the advancing front technique concept, 
assuming as initial seed nodes not the rest boundary ones, but those touched by the agglomeration 
front, which are actually the adjacent to the prismatic region tetrahedral nodes. e) In case of laminar 
or turbulent viscous flow, a distance-based scheme is employed for the prolongation of variables' 
corrections from the coarser to the finer grid; unlike other sophisticated types of prolongation (not 
simple point injected), it requires no more topological information than the edge-based data 
structure employed for flux computation on coarse resolutions.  

• A parallel angular agglomeration multigrid scheme for radiative heat transfer simulations. A 
noticable contribution of this thesis concerns the extension of spatial agglomeration multigrid 
method in angular direction for radiation computations. In the same to spatial scheme way, the RTE 
is approximated with FAS on successively coarser angular resolutions, derived from the initial 
finest one via the fusion of neighbouring solid control angles [Lyg14b, Lyg14f, Lyg14g]. Besides 
similarities, angular agglomeration appears to be much simpler, mainly due to the absence of the 
large number of limitations of the spatial scheme. Based on the performed simulations' results, the 
acceleration derived by this method is revealed to become higher with the increase of radiation 
exchange between different solid control angles; this interaction is usually a result of the 
combination of purely scattering media, fully reflecting surfaces, and symmetry boundary 
conditions [Lyg14f]. Although this methodology doesn't contribute in general so significantly to 
algorithm's efficiency, depending on the examined problem it can derive equally accelerated to the 
spatial one solutions; in the encountered test case considering radiative heat transfer in a cubic 
enclosure with reflecting walls (εw=0.1), and an absorbing, emitting and anisotropically scattering 
gray medium (ka=0 m-1, σs=1 m-1) almost the same speed-up coefficient was obtained by a three-
level angular and a three-level spatial scheme [Lyg14g]. 

• An extension of previous methods in a combined (nested) spatial/angular agglomeration 
multigrid scheme for radiation problems. The last novelty developed in this study concerns a 
nested combination of the aforementioned (spatial and angular) agglomeration multigrid schemes, 
according to which a complete angular FAS cycle is accomplished at each level of the spatial 
multigrid methodology [Lyg14b, Lyg14f, Lyg14g]. Similarly to the angular multigrid version, it 
achieves better acceleration rates in test cases with increased radiation exchange between different 
solid control angles. Considering the simulations' results, it is revealed to be capable to succeed 
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even two or three times higher acceleration, comparing to only spatial or only angular multigrid 
method respectively [Lyg14g]. 

 
9.3. Ongoing work 

Ongoing work concerns the incorporation of the developed spatial agglomeration procedure (slightly 
modified) in a mesh deformation algorithm using Radial Basis Functions (RBF's), in order to improve its 
computational performance by a reduced surface point selection. Although RBF-based mesh motion is 
assumed in general to be a very robust method producing high quality deformed grids, it appears to call 
for excessive computational effort and memory storage, especially in large-scale problems including 
meshes with millions or tens of millions nodes, as it requires the solution of an equation system with 
dimensions S VN N× , where SN  denotes the number of surface nodes, while VN  the number of volume 
mesh nodes to be moved [Ren10]. A remedy to this shortcoming is revealed to be the proposed 
agglomeration method, employed though only to boundary surfaces, in order to reduce successively the 
number of their nodes; in the work of Rendall and Allen [Ren10] an error function is utilized for this 
point selection instead. In that way the dimensions of the aforementioned equation system are reduced 
and the volume mesh motion depends on a smaller number of surface points; as a result, efficiency of the 
algorithm is considerably improved. The new positions of the surface nodes of the initial (non-
agglomerated) grid are finally obtained implementing RBF's interpolation. Figure 9.1 includes an 
example of the described methodology, concerning parabolic movement of the CRM (WB) aircraft wing 
in upper direction; more specifically the agglomerated surface nodes (yellow coloured) and 
aircraft/symmetry surface grid (black coloured) prior and after mesh deformation respectively are 
illustrated. 

 

 
Figure 9.1: Agglomerated surface nodes (coloured yellow) and CRM aircraft/symmetry surface grid (coloured 

black) prior and after mesh deformation respectively. 
 

9.4. Future developments 
Besides the previously described ongoing work, future extensions of the presented numerical 

methodology include the following: 
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• Incorporation of the developed radiative heat transfer algorithm to the corresponding compressible 
fluid flow one, in order coupled compressible fluid flow/radiative heat transfer simulations to be 
encountered [Kim96, Ko08]. 

• Implementation of Arbitrary Lagrangian-Eulerian (ALE) approach to allow for the solution of fluid 
dynamics problems with moving mesh and boundaries [Koo00, Zha03, Ahn06]; combining this 
method with the aforementioned mesh deformation algorithm using RBF's, aeroelasticity analysis 
and Fluid-Structure Interaction (FSI) simulations can be performed [Bra09]. 

• Modelling of turbulence with the LES approach; according to this method the contributions of 
large, energy-carrying, eddies are computed straightforward with the numerical scheme, while the 
small ones are obtained with a Sub-Grid Scale (SGS) model [Sma63, Dea70, Bla01]. 

• Implementation of preconditioning methodology for test cases involving low Mach number flows, 
in order the stiff attitude of convective terms to be overcome [Bla01]. 

• Enhancement of flow and radiative heat transfer solvers with the capability of unsteady/transient 
simulations [Koo00, Tan02, Cha03, Tai03]. 

• Coupling of the developed radiative heat transfer algorithm with an appropriate model, e.g., 
WSGGM (Weighted Sum of Gray Gases Model) or SLW (Spectral Line-based Weighted sum of 
gray gases model), to account for non-gray media [Tri04b]. 

• Incorporation of a more sophisticated and accurate scheme than Legendre polynomials to compute 
scattering phase functions, e.g., Mie theory [Tri04a, Tri08]. 

• Examination of different combinations of the proposed spatial and angular agglomeration multigrid 
schemes, besides the nested one presented in this study [Lyg14b, Lyg14f, Lyg14g]. 
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Appendix A: Jacobian matrix decomposition 
 

For the implementation of the Roe’s approximate Riemann problem solver the Jacobian matrix of the 
convective flux vector invH



 has to be computed; it is analyzed via the eigenvalue decomposition as 
follows [Hir90, Lan98] 

   
1A T T −= Λ  (A.1) 

  
where Λ  is a 5x5 diagonal matrix, whose entries are the eigenvalues of the Jacobian matrix A , defined 
as [Hir90] 

   

{ }ˆ ˆ ˆ ˆ ˆ, , , ( ) ,( )n n n n nd ia gV n V n V n V c n V c nΛ = + −
      (A.2) 

  
while T  is a matrix, including the eigenvectors of the Jacobian matrix A [Hir90] 
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and 
1T −
 is its inverse matrix [Hir90] 
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where u, v and w are the components of velocity V



, ( )ˆ ˆ ˆ ˆ, ,x y zn n n n=


 is the unit normal vector and ˆ ˆnV V n= ⋅




is the value of corresponding velocity. The terms C, H, X, Y, Z and B are auxiliary values defined as: 
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Depending on the eigenvalue λ, the Jacobian matrix for the Roe’s approximate Riemann solver is 

calculated as [Hir90] 
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while the eigenvalues λ as: 
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Appendix B: Newton linearization of the viscous fluxes 
 
B.1. Flow model 

The flow model's viscous fluxes at the midpoint of an edge PQ with a vector ( ), , ,, ,PQ PQ x PQ y PQ zn n n n=
  

of the interface area of adjacent control volumes of P and Q are defined as 
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    Tvis vis vis vis

PQ PQ x PQ x PQ y PQ y PQ z PQ zn n n  (B.1) 
  

where 1 2 3 4 5, , , ,Φ Φ Φ Φ Φ  are described as follows  
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while their coefficients αij, bij, cij, dij and ei are computed as: 
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B.1.1. Linearization based on the edge-dual volume method 

In case of employing the edge-dual volume-based methodology for the computation of the required 
derivatives, equations (B.3) - (B.6) are transformed as [Kal96, Lyg14a, Lyg15] 

  

( ) ( ) ( )

2 11 12 13

21 22 23

31 32 33

3 3 3

1 2 3
1 1 1

3

1
1

1 1 1

1 1 1

1 1 1

1 1 1

1

j j j

x y z

e e e

x y z

e e e

x y z

e e e

x x xj j j
j j je e e

j
je

a un ds a un ds a un ds
V V V

a vn ds a vn ds a vn ds
V V V

a wn ds a wn ds a wn ds
V V V

a un ds a vn ds a wn ds
V V V

a
V

= = =

=

Φ = + +

+ + +

+ + +

= + +

=

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫

∑ ∑ ∑∫ ∫ ∫

∑

  

  

  

  

3 3

, 2 , 3 ,
1 1 1 1 1

3 3 3

1 , 2 , 3 ,
1 1 1 1 1 1 1 1 1

1 1

1 1 1

j j j

k k k

j j j

m m m

x k k j x k k j x k k
k j k j ke e

L L Lm m m
l l l

j x k j x k j x k
j k l j k l j k le k e k e k

n u a n v a n w
V V

u v w
a n a n a n

V L V L V L

= = = = =

= = = = = = = = =

+ +

= + +

∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

 (B.8) 

  
3 3

3 1 , 2 ,
1 1 1 1 1 1

3

3 ,
1 1 1

1 1

1

k k

j j

k

j

L Lm m
l l

j x k j x k
j k l j k le k e k

Lm
l

j x k
j k le k

u v
b n b n

V L V L

w
b n

V L

= = = = = =

= = =

Φ = +

+

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑
 (B.9) 



Appendix B 
 

B-3 
 

  
  
  

3 3

4 1 , 2 ,
1 1 1 1 1 1

3

3 ,
1 1 1

1 1

1

k k

j j

k

j

L Lm m
l l

j x k j x k
j k l j k le k e k

Lm
l

j x k
j k le k

u v
c n c n

V L V L

w
c n

V L

= = = = = =

= = =

Φ = +

+

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑
 (B.10) 

  
3 3

5 1 , 2 ,
1 1 1 1 1 1

3 3

3 , ,
1 1 1 1 1 1

1 1

1 1

k k

j j

k k

j j

L Lm m
l l

j x k j x k
j k l j k le k e k

L Lm m
l l

j x k j x k
j k l j k le k e k

u v
d n d n

V L V L

w T
d n e n

V L V L

= = = = = =

= = = = = =

Φ = +

+ +

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑ ∑
 (B.11) 

  
where 

jxn accounts for the components of the normal vector to each face k with nodes Lk of the PQ edge-

dual volume. Based on these transformations, equation (B.1) is redefined as: 
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(B.12) 

  

Considering the new variables’ vector V


, the viscous flux at the midpoint of an edge PQ at the time step 
n+1 is written as: 

   
, 1 ,

,
1 1

1 kLm
vis n vis n
PQ PQ k l l

k le

M V
V

δ+

= =

Φ = Φ + ∑∑
  

 (B.13) 

  
The last equation has to be further analyzed to include the conservative variables’ vector of the flow 

equations W


; utilizing the following equations (B.14) and (B.15), which derive the appropriate 
transformation vector Q



, the final equation (B.16) is obtained: 
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Thus, equation (B.13) for the examined edge PQ is written in the following formulation, deriving the 

required per Newton linearized matrices 
n
dC , 

n
oC , n

adjC , based on the values of conservative variables at 
the end-points P and Q, and the rest nodes R of the corresponding edge-dual volume as well: 

   

, 1 ,
,

1 1

1 kLm
vis n vis n
PQ PQ k l l l

k le

M Q W
V

δ+

= =

Φ = Φ + ∑∑
  

 (B.17) 

  
B.1.2. Linearization based on the nodal-averaging scheme 

If the nodal-averaging method (equations (2.104)-(2.106)) is selected, the gradients at the middle of 
an edge PQ of the grid are evaluated as follows [Bla01, Lyg14a, Lyg15] 

   

( ) ( ) ( ) ˆ ˆPQ PQPQ PQ PQ
PQ

U
U U U r r

l
∂
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∂

  
    

 

 (B.18) 

  
while omitting the directional derivative, the previous equation becomes: 

   

( ) ( ) ( ) ( )( )1
2PQ P QPQ

U U U U∇ ≈ ∇ = ∇ + ∇  (B.19) 

  
Utilizing equation (2.91), according to which the gradients of the flow variables are obtained at each 
computational node, the previous relation for a variable ui is further transformed as  
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where P and Q are the end-points of the examined edge PQ, while R and T are their neighbouring nodes, 
connected with an edge, respectively. Considering the previous expression, equations (B.3) - (B.6) are 
described as 
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while equation (B.1) is per Newton linearized as: 
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Finally, the transformation matrix Q



 is utilized similarly to the previous section, in order equation (B.25) 
to include conservative variables’ vector as 

   
3 3 3
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 (B.26) 

  
where the matrix PQE δ′



 includes also the transformation matrix Q


.  
 
B.2. Turbulence models 

For the diffusive terms of the incorporated turbulence models, the same procedure is followed; the 
viscous fluxes at the midpoint of an edge PQ are defined similarly to these of the flow PDE's (equations 
(B.2)-(B.6)) as 
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 (B.27) 

  
where the variable φ corresponds to ε if k-ε model is employed and to ω if k-ω or SST model is 
implemented instead. The coefficients in the previous equation 

jxa  and 
jxb  are computed for k-ε model 

as 
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while for k-ω and SST models as: 
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B.2.1. Linearization based on the edge-dual volume method 

If the edge-dual volume-based methodology is implemented for the computation of the required 
derivatives, equation (B.27) is defined similarly to equations (B.8)-(B.11) as 
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while considering additionally the corresponding transformation vector, its final linearized formulation is 
the following: 
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B.2.2. Linearization based on the nodal-averaging scheme 

In case the nodal-averaging method is used for the evaluation of gradients, the diffusive fluxes of the 
incorporated turbulence models are linearized in the same way to equation (B.25) as: 
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Appendix C 
 

C-1 
 

Appendix C: Newton linearization of the free-slip convective fluxes 
 

The free-slip convective flux vector, required at inviscid solid wall or symmetry boundary surfaces, 
is computed as follows 
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while its diagonal contribution for the point-implicit scheme is defined by implementing the chain rule as 
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where W



 is the conservative variables’ vector and U


 is the primitive variables’ vector. Thus, the free-
slip contribution becomes as 
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where ( ), , ,, ,out out x out y out zn n n n=

  is the normal to the boundary face vector. Considering equation (2.10) 
transformed in the following formulation (C.4) 
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the final free-slip diagonal contribution can be calculated as: 
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