

TECHNICAL UNIVERSITY OF CRETE

DEPARTMENT OF ELECTRONICS AND
COMPUTER ENGINEERING

Multimodal Interfaces for Web
Information Retrieval

BY

NIKOLAOS PALLAS

SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DIPLOMA IN

ELECTRONICS AND COMPUTER ENGINEERING
AT

TECHNICAL UNIVERSITY OF CRETE
CHANIA, GREECE

OCTOBER 2005

© Copyright by Nikolaos Pallas 2005

 1

 2

TECHNICAL UNIVERSITY OF CRETE

DEPARTMENT OF
ELECTRONICS AND COMPUTER ENGINEERING

The undersigned herby certify that they have read and recommend to the

Faculty of Graduate Studies for acceptance a thesis entitled “Multimodal

interfaces for web information retrieval” by Nikolaos Pallas in partial

fulfillment of the requirements for the degree of Diploma in Electronics

and Computer Engineering.

Supervisor:

Prof. Alexandros Potamianos

Board Members:

Prof. Vasilis Digalakis

Prof. Euripides Petrakis

 3

 4

TECHNICAL UNIVERSITY OF CRETE

Date: October 2005

Author: Nikolaos Pallas
Title: Multimodal interfaces for web information retrieval
Department: Electronics and Computer Engineering
Degree: Diploma
Submitted: October 2005

Signature of Author

 5

 6

Table of Contents

 TABLE OF CONTENTS.. 7
 TABLE OF FIGURES.. 9
 ABSTRACT... 11
 ACKNOWLEDGEMENTS.. 13

1. INTRODUCTION... 15
1.1 INTRO... 15
1.2 FIRST APPROACH ... 17

1.2.1 Dealing with Constraints .. 19
1.2.3 Use Cases .. 23

1.2 RELATED WORK .. 27
1.4 SUMMING UP ... 28

2. INDEXING .. 33
2.1 INTRO... 33
2.2 CREATING THE REPOSITORY... 35
2.3 CREATING THE INDEX .. 37
2.4 IMPLEMENTING SEARCH FUNCTIONALITY ... 38

2.4.1 Vector Space Model .. 39
2.4.2 The HITS Algorithm... 41
2.4.3 Our Approach ... 44

3. CLUSTERING .. 49
3.1 INTRO... 49
3.2 THE CLUSTERING ENGINE.. 50

3.2.1 Hierarchical Spherical K-Means Algorithm.. 54
3.3 BUILDING THE STRUCTURES .. 56

4. SUMMARIZATION... 61
4.1 INTRO... 61
4.2 SINGLE PAGE SUMMARIZATION ... 61
4.2 CLUSTER SUMMARIZATION.. 64

4.2.1 MEAD Summarization Toolkit... 66
4.3 CLUSTER DESCRIPTION.. 69
4.3 WHERE WE STAND ... 72

5. UI SPECIFICATION ... 75
5.1 INTRO... 75
5.2 UI ARCHITECTURE... 75

5.2.1 System Specifications.. 76
5.2.2 UI Functional Blocks ... 78
5.2.3 Modality Tracking... 80

5.3 UI IN USE... 82
5.3.1 Activity Diagrams.. 82
5.3.2 Use cases Revisited.. 87

6. UI IMPLEMENTATION ... 89

 7

6.1 INTRO... 89
6.2 BUILDING THE UI... 89

6.2.2 Parsing the Input .. 93
6.3 VOICESEARCH IN ACTION.. 94

6.3.1 User Studies .. 94
6.4 CONCLUSIONS.. 96

7. FUTURE WORK .. 97
7.1 INTRO... 97
7.2 EXTENDING VOICESEARCH.. 97

 REFERENCES.. 101
 APPENDIX A.. 103
 APPENDIX B .. 119

 8

Table of Figures

FIGURE 1.1: APPLICATION ARCHITECTURE IN GENERAL... 19
FIGURE 1.2: CLUSTERING BENEFITS.. 22
FIGURE 1.3: SUMMARIZATION BENEFITS .. 22
FIGURE 1.4: EXAMPLE USE CASE 1 ... 24
FIGURE 1.5: EXAMPLE USE CASE 2 ... 25
FIGURE 1.6: EXAMPLE USE CASE 3 ... 27
FIGURE 1.7: RELATED WORK EXAMPLES.. 29
FIGURE 2.1: EXISTING/OWN SEARCH ENGINE PROS AND CONS .. 34
FIGURE 2.2: ARCHITECTURE OF A SEARCH ENGINE. ... 35
FIGURE 2.3: EXAMPLE OF LINKAGE BETWEEN RESULTS. ... 42
FIGURE 2.4: HITS ALGORITHM LINK ANALYSIS STEPS .. 43
FIGURE 2.5: EXAMPLE SEARCH RESULTS.. 47
FIGURE 3.1: TREE STRUCTURE OF CLUSTERS.. 52
FIGURE 3.2: SAMPLE SPKMEANS PROGRAM OUTPUT .. 53
FIGURE 3.3: SAMPLE SPKMEANS PROGRAM OUTPUT FILE .. 54
FIGURE 3.4: SPHERICAL K-MEANS ALGORITHM ... 55
FIGURE 3.5: TREE STRUCTURE USING LISTS.. 58
FIGURE 3.6: DOCUMENTLIST FOR A RESULT CLUSTER ... 59
FIGURE 3.7: SAMPLE XML FILE FORMAT ... 60
FIGURE 4.1: SINGLE PAGE SUMMARIZATION .. 64
FIGURE 4.2: DOCSENT FORMAT.. 67
FIGURE 4.3: MEAD ARCHITECTURE... 68
FIGURE 4.4: CLUSTER SUMMARIZATION ... 68
FIGURE 4.5: CLUSTER DESCRIPTION EXTRACTION.. 71
FIGURE 5.1: COMPLETE SYSTEM ARCHITECTURE ... 76
FIGURE 5.2: MODALITY TRACKING... 81
FIGURE 5.3: APPLICATION START-UP ACTIVITY DIAGRAM ... 84
FIGURE 5.4: CLUSTER DISPLAY ACTIVITY DIAGRAM.. 85
FIGURE 5.5: RESULT CLUSTER DISPLAY ACTIVITY DIAGRAM .. 86
FIGURE 5.6: MORE APPLICATION ACTIVITY DIAGRAM ... 87
FIGURE 5.7: EXAMPLE USE CASE 2 ... 88
FIGURE 6.1: INFORMATION EXTRACTION ALGORITHM.. 92

 9

 10

Abstract

 The use of devices such as mobile phones and PDAs, for

applications formerly hosted only on a classic computer, has introduced

the issue of multimodality. A multimodal application is an application that

combines different types of input/output (mouse/keyboard action, text,

voice, etc.). Search engines have proven to be the most important tool for

users to navigate and exploit the content available in the World Wide

Web. In this thesis we implemented a multimodal search engine.

 Our search engine has features of 3rd generation search engines.

Those features are clustering and summarization support. Clustering is the

categorization of the search results in groups. Summarization is the

creation of a summary for a result or a set of results.

 In general, this thesis deals with the creation of a search engine, the

implementation of the clustering and summarization mechanisms and the

design of a functional user interface that supports multimodal input/output.

The algorithms we used are analyzed, the design constraints demonstrated

and the choices we made explained.

 11

 12

Acknowledgements

I would like to thank Alexandros Potamianos, my supervisor for

his guidance and patience during the elaboration of this thesis. Special

thanks, to all post-graduate students of the Telecommunications

Laboratory of the Technical University of Crete for providing support and

help relevant to this work. I also would like to thank everyone, troubled or

not regarding this thesis.

 Great thanks to all friends I’ve made in Chania; George, Fanouris,

Stavros, John, Dimitris (Mitsos), Dimitris (Kyb), Akis and Chris. You

made things a whole lot easier…

 Above all I want to thank my family; my father Kostas, my mother

Froso, my brother George, my sister Katerina and my aunt Antonia for

their love, support and patience (double thanks for that).

Finally, thanks to anyone who, at some point, thought of waking

me up before 11 a.m. but never did.

 13

 14

Chapter 1

INTRODUCTION

1.1 Intro

During the past few years, more and more devices support

applications, formerly suitable only for home computers. The nature of

these devices, being usually mobile, and used for other reasons as well,

has introduced the issue of multimodality for their applications.

Multimodality is about not narrowing input/output capabilities to a

specific form, but being able to use different forms of it in parallel. Thus,

multimodality offers easier and more handy ways of human-computer

interaction. Some of the most common types of input are: mouse/keyboard

action, voice, text, touch-screen; while for output, graphic display, text,

speech and video are the most common. A combination of two or more of

the above is the foundation of a multimodal application.

Our goal in this thesis is to develop a multimodal application and

specifically a multimodal search engine. A search engine is probably the

most important tool a user has, in order to browse the endless amount of

information available in the web, and it would be useful for him to handle

it in different ways, using alternative devices. Along with the features of

multimodality, our purpose is to embody features of 3rd generation search

engines so that our application can be considered relatively modern. The

features we use are those of clustering and summarization of results.

Clustering is about grouping results into clusters, while summarization is

extracting summaries out of them. As we will see in this thesis, those

 15

features not only offer more information to the user but help us both to

build a better user interface and to overcome specific problems that arise.

In general, this document contains: all the issues we had to take in

mind for creating the application, the design procedure, the algorithms we

implemented, the tools we used in our implementation and an analysis of

the user interface and how it works.

Later in this chapter we present a first approach to creating the

application focusing on the implementation we shall follow, the arising

problems and how we are going to solve them, and the related work on the

fields of interest. Moreover we supply some use cases of how the desired

application should be.

Chapters 2, 3 and 4 are about the back-end of the application. In

particular, chapter 2 presents all steps we had to take in order to get results

after a user query; that includes creating a database of web pages, storing

their attributes in an index and using search and ranking algorithms to

retrieve the most relevant results of a query. Chapter 3 is about the

clustering mechanism and the creation of a structure that acts as a link

between the back-end and the front-end. The procedure of creating the

clusters is presented and after that, the implementation of the structure is

explained. Finally chapter 4 shows what algorithms we use to extract

summaries from single web pages or groups of web pages.

Chapters 5 and 6 offer an analysis of the front-end. In Chapter five

we discuss matters concerning the specification of the multimodal user

interface, the whole application architecture and the design concessions

we made. Chapter 6 shows the implementation of the final application,

and usage examples concerning it.

Finally Chapter 7 presents future work based on our designed

application and the field of research in general. Appendix A shows a

sample use of the application, while Appendix B, acting more like a guide,

shows the steps we took in order to set up the application.

In general, the work done during the elaboration of this thesis is

briefly described below:

 16

 We analyzed all aspects of creating a multimodal

application and took the necessary decisions.

 We created a repository of web pages and indexed some of

their attributes.

 We used searching and ranking algorithms (contributed by

Epimenides Voutsakis) in order to retrieve query relevant

web pages from the repository.

 We used spkmeans program (slightly changing its source

code) in order to create cluster and assign the documents

into them.

 We created the structures withholding information

regarding cluster formation and result data.

 We implemented algorithms for extracting summary out of

a web page and a description out of a cluster of web pages.

 We used MEAD summarization toolkit to extract summary

out of a cluster of web pages.

 We developed a web user interface with multimodal

support features.

 We created the links between the user interface and the

back-end.

 We tested the user interface for different usage scenarios.

1.2 First Approach

Before starting to implement our application, it is vital that we first

analyze it and make all necessary decisions regarding the desired result

and the arising issues. In general, the use of a multimodal search engine

can be described by the following paragraph: “The user sends a query to

the system, which retrieves all relevant results and presents them back to

the user in a browsable way. The user can navigate through results and

retrieve additional information about them. The communication between

the user and the system is done in varying ways”.

 17

In order for all this to happen, a lot of processing is required. The

biggest part of this processing will take place at the back-end. It will be

responsible for retrieving search results, organizing them in a structure and

handling additional search engine functionality available by the front-end.

As for the front-end, its job will be to offer the multimodal user interface

and coordinate the operation of the back-end.

Regarding the target host devices for our application, we focus on

mobile devices like mobile phones and palms. This comes as a result of

the continuously increasing use of such devices; this makes our

application even more efficient. Our application having multimodal

support means that the implementation should reflect the handling of

different types of input/output. In particular we will follow a design

according to the requirements of both telephone and palm devices, lighting

up each case whenever there is a diversification between them.

Figure 1.1 shows a general idea of the architecture that will be

followed to create the application. The user with his device interacts with

the system, which sends the query to a search engine. The search engine

retrieves relevant results and sends them to a clustering engine to

distribute them into groups. Then they are forwarded back to the system.

The system runs some more processing and the final result is presented to

the user.

 18

Figure 1.1: Application Architecture in General

1.2.1 Dealing with Constraints

 The most important thing to determine our design is to deal with

all critical issues arising when building such an application. The

bandwidth and space limitations, the necessity of quick response to the

user, the quality of provided functionalities and the way the results should

be displayed designate what we have to face:

1. Bandwidth: The main problem for a mobile device is the

bandwidth available by its network. Contrary to home computers,

the bandwidth is severely limited. This makes extremely necessary

to provide results in such way, that information reduced in size but

not in content is transmitted.

 19

2. Speed of response: This is usually required in every case, but in

our case it is vital. Imagine someone waiting a long time over the

phone for the query results. Or someone using his palm’s/mobile’s

network access, waiting for response under high charging rates.

Probably he would stop the interaction after a while cursing the

money it cost. Thus, we have to minimize the time concerning the

retrieval and display of the results. This can be done by reducing

pre-processing time, which means we need quick algorithms in our

back-end.

3. Quality of results: This is needed so that we can produce a decent

reply to the user, driven by what he asked for. It is a measure of

quality for the whole application, therefore the better the results,

the better our application is. It is achieved by using efficient

algorithms for searching and clustering and good summarizers for

the result and cluster summaries.

4. Space Limitations: This has to do with the presentation of the

results. A speech output device (e.g. phone) has to use short

prompts and replies. A display device (palm, mobile phone) has a

limited size screen, which again means we need short prompts and

replies. Moreover it means that we have to output the results in

parts, not the whole list all at once.

5. Simple User Interface: In combination with the previous issue, it

is obvious that a device specific user interface has to be designed.

It has to be simple for the user to use and it should emphasize on

available functionality and the synergies between modalities.

The solution of the above matters is a gnomon for our future

implementation and thereby we have them constantly in mind.

 20

1.2.2 Our Approach

 Now, let’s take a deeper look into the application we are going to

build, explain what the features of clustering and summarization offer and

how they are used. This will be done by explaining the basic procedure of

searching using the system.

 The User Interface asks the user for the search query, and once it

gets it, it initiates a search, which takes place in the back-end: The query is

submitted to the search engine which retrieves from the available web

page repository all relevant results, ranked in terms of relevancy. Instead

of instantly presenting the results to the user via the UI, the clustering

engine barges in. Its purpose is to create clusters from the results and

distribute them into those clusters. In fact, that is done iteratively

(hierarchical clustering) so that we get a tree structure of clusters and

results. We should note that those clusters don’t pre-exist but are created

based on the content of the result set.

 Now the UI presents clusters instead of results to the user. In order

to get to the results, the user has to navigate through cluster hierarchy. But

to do so, a certain naming for the clusters has to be done; that is done by

the summarization module. The summarization module is responsible for

extracting various summaries, and cluster description is one of them.

Cluster description is actually a few-word phrase descriptive to the

clusters contents. Additional to this, a cluster summary is created too,

should the user ask for it. This summary is a few sentences long, again

having to do with the clusters contents. Navigating through the hierarchy,

the user finally reaches the selected cluster’s results. For every result, the

summarization module provides a summary too. As it is obvious,

clustering and summarization play an integral part in our application. The

following figures (1.2 and 1.3) present in what way clustering and

summarization respectively benefit both our implementation and the user

interaction. (No need to include the effect of application benefits into user

benefits, since it’s obvious that their effect is of high importance).

 21

CLUSTERING

Application benefits User benefits

1) Separates the results and their

display in parts, which reduces
bandwidth needs

2) Clusters need less space and
time to display than results

3) Helps us create a cluster based
User interface, which is rather
simple and effective.

1) User doesn’t have to browse

through a long list of results.
They just have to follow the easy
to navigate cluster hierarchy.

2) Instead of browsing a wide in
topic list of results, users can
select the cluster that is more
nearer to what they really search
for, and get only its results.

 Figure 1.2: Clustering Benefits

SUMMARIZATION
Application benefits User benefits

1) A summary in general reduces

the corresponding information,
therefore it reduces space and
bandwidth needs.

2) It helps us build a simpler and
more functional user interface

1) User can get a glimpse of a

cluster’s topic by its description.
2) By listening to a cluster’s

summary, the user knows what
the cluster’s results are about;
this can save him time.

3) A webpage’s summary provides
him with the most important
content of the webpage, so he
doesn’t need to read/listen to the
whole of it.

Figure 1.3: Summarization Benefits

Bearing in mind the limitations previously discussed, another issue

arises. It has to do with the structure of clusters we create. As we already

mentioned, our target is to create a tree structure, but we have to define

how deep this structure should be and how much it should expand. This

must derive from the expected time it takes to display a cluster or a result.

We estimate that a cluster having up to 5 sub-clusters or results is good

enough to present. Moreover the results shouldn’t be deep below the initial

 22

clusters; a hierarchy of 3 levels of clusters is more than enough. So, our

tree structure should have 3 levels of clusters with branching factor 5.

Regarding the user interface, we need just a limited functionality

interface (the only thing the user can do is search after a query). A support

system offering context-sensitive help to the user is however a necessary

addition. Moreover, it has to support multimodal input/output and to

communicate with the mechanisms we’ve just discussed. The next topic

presents sample use cases for an application similar to what we’re trying

to implement.

1.2.3 Use Cases

 The following use cases show the example use of a system offering

search functionality with clustering and summarization features.

 The first use case we present is about a voice interface for our

application. During this scenario, the user enters a query and

navigates through the results. It also shows the help system in

action. It is presented for speech input/output.

 23

(S) Welcome to the voice search engine. For any help during the procedure say
Help.
(S) Please enter the search string for your query.
(U) “Maradona”
(S) There are 12123 results for this search string. Please choose desired category for
your query about “Maradona”. Available categories are: 1) Diego Armando
Maradona, 2) Argentina, 3) Football, 4) Greatest Players, 5) Fidel Castro.
(U) Help!
(S) In order to choose a category, say the name of the category or press the number
of the category.
(U) “Football”
(S) You have selected “Football”. Please choose desired subcategory. Available
subcategories are: 1) Naples FC, 2) Boca Juniors FC, 3) Campionato, 4) World Cup.
Say ‘Back’ to return to the previous level.
(U) “World Cup”
(S) You have selected “World Cup”. Please choose desired subcategory. Available
subcategories are: 1) World Cup Stars, 2) Mexico 1986, 3) Buenos Aires 1978, 4)
Hand of God. Say ‘Back’ to return to the previous level.
(U)Back.
(S) You have selected “Football”. Please choose desired subcategory. Available
subcategories are: 1) Naples FC, 2) Boca Juniors FC, 3) Campionato, 4) World Cup.
Say ‘Back’ to return to the previous level.
(U) “Naples FC”
(S) There are 3 results for this subcategory. To browse between results say next or
previous. To exit, say Exit.
(S) 1) Naples FC Official site. ‘www.napolefc.com’
(U) Next.
(S) 2) Naples FC fans site. ‘www.napolefcfans.com.’
(U) Next.
(S) 3) Naples FC greatest players. ‘www.napolefcstars.com’.
(U) Previous.
(S) 2) Naples FC fans site. ‘www.napolefcfans.com.’
(U) Exit.
(S) Would you like to start a new search?
(U) No.
(S) Thank you for using the voice search engine.

Figure 1.4: Example Use Case 1

 The second use case is similar to the previous one, but it

emphasizes on the summarization feature. It still is speech I/O

specific.

 24

(S) Welcome to the voice search engine. For any help during the procedure say
Help.
(S) Please enter the search string for your query.
(U) “Chania Holidays”
(S) Chania is located in Crete, an island in the southern Greece. Chania is well
known as a tourist resort both for the summer and winter because of its mild
climate. Select appropriate category to find out more about 1) Prefecture of Chania,
2) Greek Islands, 3) Winter Holidays.
(U) “Chania”
(S) The capital of the prefecture of Chania is the city of Chania. For further
information you could visit the official website of the municipality of Chania at
www.chania.gr. In summer many waterfronts like Platanias, Paleochora and Sfakia
attract thousands of tourists every year. Available subcategories to narrow your
search are 1) City of Chania, 2) Travel Guides of Chania, 3) Platanias, 4)
Paleochora, 5) Sfakia
(U) “Platanias”
(S) Platanias lies 16 km to the west of the city of Chania. By its long sandy beach
stand big hotel units, restaurants, beach bars and night clubs. For more information
visit www.platanias.gr or select one of the following subcategories: 1) Accessibility,
2) Hotels in Platanias, 3) Restaurants in Platanias, 4) Nightlife in Platanias.
(U)”Hotels”
(S) There are 3 websites that matched your query. To browse between results say
next or previous. To exit, say Exit. Ask for “More Info” in order to get more
information on a specific result.
(S) 1) Apladas Hotel. A first rate hotel complex, offering a special experience for
your summer holidays. ‘www.apladas.gr’
(U) “More Info”.
(S) Brand new and imposing APLADAS BEACH is located directly on the sandy
beach of Platanias village in Chania-Crete. APLADAS BEACH with its' simple and
chic design, high quality services, the relaxing atmosphere and the high standard
facilities, focuses on making summer holidays an unforgettable experience.
(U) Exit.
(S) Would you like to start a new search?
(U) No.
(S) Thank you for using the voice search engine.

Figure 1.5: Example Use Case 2

 The final use case (fig 1.6) concerns a similar interface as the

previous one, but designed for using a palm this time.

 25

 26

Figure 1.6: Example Use Case 3

1.2 Related Work

Within the fields of interest surrounding our application, a lot of

related work can be found. Regarding the multimodal part, it is a

continuously developing part of both research and business. That is due to

the shifting of the purchasing public into more flexible devices that

usually promote their multimodal support. Narrowing it to search engines,

apart from the traditional ways of I/O, there are examples of alternate I/O

 27

applications such as Google’s “Google SMS” (using text input and output

– figure 1.7) or Conversay’s VoiceSurfer (for voice input/output).

Search engines and their characteristics is an even more focalized

field. It’s the fact that search engines have proven to be the most important

tool for browsing the web and finding specific information that makes it so

“hot” a field. Focusing on to the clustering feature, it seemingly becomes a

characteristic of more and more search engines. Many examples are

available on the web of such search engines either using pre-defined

clusters or result content created. Some of them include Vivisimo,

iBoogie, Exalead and Carrot2. Figure 1.7 also shows the clusters created

for some of the above engines, following a query (“charisteas euro 2004

final”). As for summarization, it is more or less used in every search

engine at some point. However, standalone summarizers can offer this

functionality over search engines as well. An example of the Pertiner’s

Summarizer over Google results is also shown in figure 1.7.

1.4 Summing Up

 After we’ve seen the related work on the topics of our interest, and

set the base of the design for our own application, we can start

implementing the back-end, namely all modules of the system that stay

hidden to the user. Our implementation is a constituent of the desired

outcome and the concessions we had to take due to the critical issues

discussed in topic 1.2.1.

 28

Figure 1.7: Related Work Examples

 29

 30

PART I

THE BACK-END

In this part we deal with the back-end of our application. This

includes the indexing procedure, the clustering mechanism and the

summarization techniques.

Chapter 2: Regarding the indexing procedure, we explain how we

gathered our repository of web pages as well as the way that all necessary

attributes were extracted in order to create the index (database). Finally we

present a combination of HITS algorithm with the Vector Space Model,

which we used in order to implement the search and ranking mechanism.

Chapter 3: The presentation of the clustering engine shows our

use of a hierarchical K-Means algorithm so that we create a tree structure

of all the relevant results (that a search action has returned) and their

container clusters.

Chapter 4: In this chapter, we bring forward all the summarization

techniques that were developed based on our needs of different types of

summaries and demonstrate how they deal with our application

constraints.

 31

 32

Chapter 2

INDEXING

2.1 Intro

The first step in order to create our application is to have the basic

functionality of a search engine. To do so we can either retrieve all query-

relevant documents from an existing search engine or build our own. The

first case may offer more quality in the retrieved results due to its huge

amount of cached websites, but it produces a bandwidth load as well as

time delay to the application server. On the other hand, creating our own

search engine we no longer have those problems but the quality of results

is significantly lower (figure 2.1). However, after taking under

consideration the following facts:

1. Bandwidth and system load is a more crucial factor.

2. The cost of implementation is low since we don’t need more

than the essential functionality.

3. For creating a test application, a small webpage repository

would not be that big a drawback.

we have selected to include a search engine in our system and not use an

external one.

 33

 In general the architecture of a search engine is the one showed in

the following picture (figure 2.2). However, we can divide the process of

creating a search engine in the following 3 steps:

a) Retrieving a number of web pages and storing them locally.

b) Extract information from those web pages and create a database.

c) Implement a search mechanism in order to extract query-relevant

documents from the database.

Existing Search Engine Own Search Engine

1) Better result quality (and quantity)

→ Better QoS

1) Pre-processing of results available

(since they are locally stored)

2) Lightweight application (we can

implement only the features we need)

3) No bandwidth load (except when

creating the database)

1) Bandwidth load in order to

retrieve relevant web pages

2) Time delay for on-the-fly

processing of retrieved results

3) System load – I/O load on the

application server when many

parallel searches.

1) Smaller database results in less

‘good’ results which decrease the

quality of the service

2) Cost of implementation

Figure 2.1: Existing/Own Search Engine Pros and Cons

 34

Figure 2.2: Architecture of a Search Engine.

2.2 Creating the repository

 Before starting crawling websites to create our repository we must

define what kind of web pages we want. Since the amount of web pages

can’t be really big we have to choose characteristic websites for the whole

internet. Therefore we have selected the following two sites:

“www.cam.ac.uk” and “www.thefa.com”.

The first one is the University of Cambridge web site. Including

web pages of numerous different departments, plus user home pages, this

website can be regarded as a miniature of the whole web with both well

structured and random content. Moreover its content is more or less

 35

distributed in relatively few topics (having to do with academic issues),

which means one can find similarities and so clustering has a meaning.

The second website is the official English Football Association

website. Contrary to the Cambridge website, this has a specific news site

structure, with its pages being in fact articles. This makes evaluating our

summarization techniques more easy and accurate.

As for the number of web pages, we have stored about 10000 from

the first website and another 10000 from the second. This makes a total of

20000 web pages, which can be considered enough for our demo

application.

Having selected which websites to crawl, we used Larbin [23], an

open source crawler, in order to get them. A crawler is a small program

that retrieves pages from the web following the links between them. Its

operation can be shortly described like this:

1. The crawler starts with an initial set of URLs which it

places in a queue

2. Prioritizes queue items according to the crawler control

module.

3. Gets the next queue URL, and downloads it into the page

repository.

4. Puts all new URLs, the just downloaded page pointed to, in

the queue.

5. Continues this procedure until it reaches its stop condition.

In particular we configured Larbin to download only web pages

(*.html, *.htm files) just from the sites mentioned above and not to follow

external links. We also adjusted Larbin so that it would descend up to 10

levels down each site.

After our crawler has selected the desired amount of web pages,

those pages were stored in an internet-address-like directory structure and

with no further processing we were able to extract information from them

and create our index.

 36

2.3 Creating the index

 The need to create a database, for the amount of the web pages we

have in our repository, lies to the fact that a certain pre-processing is

necessary in order to extract and rank query relevant results. Moreover it

offers a quicker response and significantly less I/O for each query.

 Both the algorithms and the source code we used for indexing,

searching and ranking are based on the academic work of Epimenides

Voutsakis [5]. Our contribution was to make all the necessary adjustments

in so that it would be fit for our application. The source code is written in

Perl programming language and a BerkleyDB database is used as our

index.

The search-ranking algorithm (which we explain in the following

topic) is a combination of classic information retrieval methods and link

analysis methods. Therefore it is required that we extract both link related

information and term counts. We use the word ‘term’ instead of ‘word’ to

emphasize the use of a stemmer so that we keep stems, not words.

Moreover a list of stop-words (commonly occurred words, unlikely to give

useful information) is excluded from our index in means of optimization.

In particular, the attributes that we store in our index are the following:

 Filename (internet address), File ID, Title

 Forward links, Backward links (1)

 An inverted file for every term (2)

 A normalized term frequency for each web page (3)

Finally an inverse document frequency (4) index is created after all the

other indexes have been created. Regarding (1), (2), (3), (4) and how they

are used, a detailed analysis follows in the next topic.

 37

 We must note that this whole procedure needs to be done only

once at the beginning since whenever a new set of pages is inserted in the

repository; an ‘add’ function can index just the newly added pages. The

only exception is the creation of the inverted file which must be

regenerated.

2.4 Implementing Search Functionality

 As we have mentioned before, we only need our search engine to

have basic functionality. In other words, all we want it to do is to return

ranked relevant results following a query. Therefore, there should be a

searching function that finds relevant results and a ranking function that

sorts them by terms of relevancy.

 For the searching function all that is used is the inverted file index.

The inverted file is responsible for keeping track of all the web pages a

term appears in. The algorithm we introduce to do this job is actually very

simple. Specifically, after defining that a relevant result is a web page that

includes all terms of the query, we just have to find which web pages

satisfy that rule.

 The algorithm below shows the steps of the searching procedure:

1. Break query in its terms.

2. For every term search the inverted file to find all the web pages

it is in.

3. Export a web page as an accepted result if it includes all terms

of the query.

 38

 After we gather all these results we have to sort them using the

ranking algorithm. The ranking algorithm combines Vector Space Model

features as well as the HITS ranking method. Before we analyze the steps

of our algorithm, a short presentation of their theoretical background is

presented.

2.4.1 Vector Space Model

 The Vector Space Model (introduced by Salton and associates [4])

is a way of representing documents through the words that they contain. It

is considered a classic information retrieval (IR) method and it is used

mostly for ranking (or measure similarity between) offline documents. By

the word “classic” we mean IR that is based solely on the words in the

documents, without taking in mind the information such as the one that

links between web pages provide.

 The Vector Space Model’s main characteristics are enlisted

bellow:

 The VMS considers a high-dimensional vector space with one

dimension per term.

 Each document or query is represented as a term vector in this

vector space.

 Entries of terms occurring in the document are positive, else they

are zero.

 The similarity between a document and a query (or another

document) is usually computed by the dot-product (cosine

measure) of their term vectors.

 The ranking of documents is based on the similarity score of each

document for the given query.

 39

However, some features have been gradually added in order to deal with

the following matters:

a) Not all words are equally useful. A word is more likely to be

highly relevant in a document A if i) it is frequent in document A

and ii) infrequent in other documents.

Instead of using the exact number of times a term appears in a

document, this value is normalized by dividing it by the

maximum frequency of any term in the document. This

attribute is called “normalized term frequency” and defined by

the next assignment:

frequency of a term in a documet
maximum frequency of any term in the document

tf =

In fact tf could be considered as a measure of how well a term

describes a document. By using tf, it also stops the event of

larger documents scoring higher.

b) Generally rare words are usually more important than frequent

words.

In order to make rare terms more important than the common

ones, the use of Inverse Document Frequency (idf) of a term is

proposed. The idf of a term i, is given by the following rule:

logi
i

Nidf
n

= ,

 40

where N is the number of documents and ni is the number that

contain term i.

The tf-idf weighting scheme arises by a further multiplication of the

values of tf and idf to create the new ranking score.

 To sum up, the Vector Space Model processes term frequencies in

documents in order to calculate similarity and to rank relevant documents,

producing better results for small and coherent collections like digital

libraries, journal articles, newspapers. However, the absence of handling

the information derived from web related attributes such as links between

pages makes it less useful for internet content. Thus, a link analysis

ranking method such as HITS can be complemental to it, in search for

better ranking techniques.

2.4.2 The HITS Algorithm

 Internet is a massive, distributed, incoherent, continuously

updating information collection; therefore classic information retrieval

methods are insufficient. The solution rises from exploiting linkage among

web pages, and this lead to the development of algorithms like HITS and

PageRank [3]. The main idea behind them is that a link from page A to

page B can be considered a recommendation of page B by the author of

page A

HITS (Hyperlink-Induced Topic Search) [7] is a query dependent

ranking technique. For every webpage, two scores are calculated: an

authority score and a hub score. The authority score tells us how likely it

is that the webpage is relevant to the query. The hub score informs us if

the webpage points (has links) to many authorities. This separates web

 41

pages into authorities and hubs but not distinctly since hubs may be

authorities too. In practice, the ranking algorithm invokes the following

two conclusions:

a) Good authorities are pointed to by many hubs.

b) Good hubs point to many authorities.

In the following picture (figure 2.3) we demonstrate an example of how

result web pages are linked together. As we can see, web pages C and F

can be considered “good” hubs as they are pointing to many of the results.

Moreover, pages A, H and C are rather good authorities being pointed by

many hubs. The HITS algorithm shall produce a higher score for those

web pages.

Figure 2.3: Example of linkage between results.

In order to calculate HITS scores of the results, firstly the focused

subgraph S of the query is generated. The focused subgraph is the

expanded set of results and their forward and backward links. This process

is done in the steps below:

1. A set R of relevant to the query results is created.

2. S is currently the set R (alternatively only t pages from R, where t

is a designer defined parameter)

3. For every page p∈ R:

a. Include all pages that p points to (forward links) in S.

 42

b. Include, up to d, pages that point to p (backward links) in S

(where d is a designer defined parameter)

4. The graph induced by S is now the focused subgraph of the query.

 After the focused subgraph is created, the Link Analysis phase of

HITS takes place. Every page p in S is associated two scores. A hub score

h(p) and an authority score α(p) which are initially set to the value of 1.

Defining that p→q means that “page p has a hyperlink to page q”, the

authority and hub scores are calculated by the following rules:

() ()
q p

p h qα
→

= ∑

() ()
p q

h p a q
→

= ∑

This operation is repeated until it converges to a stable set of scores.

Moreover, after each iteration, the scores are normalized. Figure 2.4 below

shows the steps of the algorithm.

1) Initialize α(p), h(p) to 1 for every page p.

2) For every page p, repeat until convergence:

a. Set () ()
q p

p hα
→

= q∑

b. Set () ()
p q

h p a q
→

= ∑

c. Normalize α(p) and h(p) values.

3) End
Figure 2.4: HITS algorithm link analysis steps

 43

2.4.3 Our Approach

 The ranking function we use takes advantage of both classic IR

and link analysis features. A variation of the Vector Space model is used

as the classic IR method. This offers us additional weight in the score

produced by the HITS algorithm we used as our link analysis method.

 The reasons we chose HITS as our link analysis methods have to

do with the nature of our application and are presented below:

 For broad topics, HITS produces stable, robust communities

despite starting from a very small sample of relevant pages in the

initial root set. This helps our soon to create clusters to be distinct

from each other.

 On narrowly focused topics, HITS often returns good resources for

a more general topic. This ‘topic generalization’ allows the

automatic characterization of certain topics; witch is also helpful

both to the clustering engine and the end user receiving the results.

 It is hard to mislead by spamming.

 Going on to explain our version of the ranking algorithm we must

firstly remind that the searching algorithm has already given us a set of

results (those who contain all terms from the query). This set forms the

initial set R used by HITS in order to create the focused subgraph. Then

all forward and backward links are added to create the focused subgraph.

 The link analysis phase is the exact one of HITS. We have selected

a total of 20 iterations; at witch convergence of the authority and hub

scores of each page has been achieved. The normalization function is the

typical one, so what we do is apply the following rules after each iteration:

 44

2(()) 1
p

a p =∑ and
2(()) 1

p
h p =∑

The authority score of each page is one of the factors in the product that

produces the final score of each page. The other factors emerge from the

Vector Space Model. In particular, they are the tf and idf values of the

terms in the query. Instead of the original tf and idf rules, we declare those

values in a slightly different way. The term frequency value of a term i in

a document is given by the rule:

()
()

log 1
log

i
i

n
tf

n
+

=

where tfi is the term frequency, ni is the number of times that term i

appears in the document and n is the length of the document in terms.

The idf value idfi of a term i is given by the rule:

logi
i

Nidf
N

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

where N is the total number of pages and Ni the number of pages that term

i appears in.

The way they contribute to the final score goes like this:

a) Firstly, the query Q is broken into its terms

b) For every term t a product is calculated *ttf idft

c) All these products are summed together and this makes the

other factor of our final score.

 45

Summing up, the final rule that creates the score for each result is the

following one:

()

()
()

()

() * *

log 1 *log
() *

log

t t
t Q

i
i

t Q

S p a p tf idf

Nn
N

S p a p
n

∈

∈

= ⇒

⎛ ⎞
+ ⎜ ⎟

⎝ ⎠⇒ =

∑

∑

 After every result webpage is assigned its score, the list is sorted in

decreasing order. Along with the score for each page, we extract its title

(why we do that at this point will be explained in the next chapter). Since

there is no need for further functionality in our search engine, we are ready

to proceed with creating the cluster hierarchy of the results. Figure 2.5

shows an example list of web pages returned by our search engine for the

query “charisteas euro 2004 final”.

 46

1.36631768703335 http://www.thefa.com/Euro2004/NewsAndFeatures/Postings/2004/06/MinbyMin_GreeceCzech.htm
 TheFA.com - Dellas heads Greece through
1.26777082661733 http://www.thefa.com/Euro2004/Teams/Postings/2004/04/TeamProfile_Greece.htm TheFA.com - Greece
1.14618186557254 http://www.thefa.com/Euro2004/NewsAndFeatures/Postings/2004/06/MatchReport_GreeceCzech.htm
 TheFA.com - Greek tragedy for Czechs
0.984129452227208 http://www.thefa.com/Euro2004/NewsAndFeatures/Postings/2004/07/MR_PortugalGreeceFinal.htm
 TheFA.com - Greece kings of Europe
0.952574253357013 http://www.thefa.com/Euro2004/NewsAndFeatures/Postings/2004/07/Reaction_SteliosDelight.htm
 TheFA.com - Stelios' Euro delight
0.86085287919561 http://www.thefa.com/Euro2004/NewsAndFeatures/Postings/2004/07/MinByMin_PortGreeceFinal.htm
 TheFA.com - Angelos the Greek god
0.766396711595953 http://www.thefa.com/Euro2004/NewsAndFeatures/Postings/2004/07/Euro2004_AllStarSquad.htm
 TheFA.com - Four All-Star Lions
0.566970605296713 http://www.thefa.com/Euro2004/NewsAndFeatures/Postings/2004/07/Final_preview.htm TheFA.com -
Moment of truth
0.556232072426952 http://www.thefa.com/Euro2004/NewsAndFeatures/Postings/2004/07/ReactionGreeceCamaraderie.htm
 TheFA.com - Greece upset the odds

Figure 2.5: Example Search Results

 47

 48

Chapter 3

CLUSTERING

3.1 Intro

 Clustering is the process of grouping similar documents together to

expedite information retrieval. It can be categorized as hierarchical and

non-hierarchical clustering. Hierarchical clustering distributes documents

iteratively into categories and subcategories, while non-hierarchical

clustering distributes them in just one level of categories. It is crucial to

highlight the fact that, in comparison to document classification, these

categories don’t preexist, but are created by the context of the documents

to cluster.

The ability to identify which documents belong to what group

derives from calculating the similarity between documents. Many

algorithms apply to this, usually by identifying relevant attributes of

documents, determining appropriate weights for those attributes and

calculating distances. Applying clustering to the web search context

actually means organizing web pages into groups, so that different groups

correspond to different user needs. In contrast to document clustering, web

page clustering has to deal with issues like the vast amount of web pages

and their constantly changing heterogeneous structure. Some of the most

important clustering algorithms are: K-Means, Agglomerative

Hierarchical Clustering (AHC), Suffix Tree Clustering and Self organizing

Maps. The algorithm we use is a hierarchical variation of the K-Means

Clustering algorithm.

 49

The presence of clustering in the application we design is of great

importance. In general, clustering web pages is a good way of making

relationships between them obvious, which aids the user-application

interaction. In our case, it helps us create a structure of the result pages

that will 1) give the user an organized self explanatory browsing

framework and 2) partition the amount of information transmitted to the

user and therefore reduce bandwidth needs.

Further in this chapter, follows a deeper analysis of the clustering

engine we created and the way we built our structure of web pages.

3.2 The Clustering Engine

In a few words, what a clustering engine should do in our

application is, given a set of result web pages, to create a predefined

number of clusters, distribute the pages into them and then distribute

clusters into super-clusters to create a tree structure.

In order to do so, we used spkmeans [8], a clustering and

dimension reduction toolkit. In particular we used h-spkmeans which is a

hierarchical version of spkmeans. Spkmeans is written in C++ and as

foretold it uses the Spherical K-Means clustering algorithm, enhanced by a

technique for significantly reducing the amount of similarity computations

required. This tool works, like this: it gets a word-document matrix in

CCS format as input, and outputs the clusters of web pages. In order to use

it, the following steps took place:

1) Firstly we built the executable programs from the corresponding

source code provided.

2) We created the word-document matrix in CCS format.

 50

3) We used the CCS matrix as input to the executable and got a file

showing which page or cluster belongs to which cluster.

A closer examination of the above steps follows:

Step 1: The source code of h-spkmeans was available on the designer’s

website. Before building the executables, certain alterations were made to

the source files. In particular, we changed the way the output is displayed

into something easier to handle later when we create the structure. Then

we compiled the source under the g++ compiler and got the executable

program.

Step 2: Before we explain how we created the word-document matrix, we

should indicate that it actually is a numerical representation of the web

pages (obviously of the words they include). In order to build it we used a

tool called mctester, also provided at the spkmeans webpage, written in

C++ and compiled under g++. This tool takes a set of documents (web

pages in our case) and creates their word-document matrix in CCS format.

We used its default parameters, and a typical command would be:

./mctester -t tfn ./docdir ./outputdir

where the parameter “-t tfn” declares that the scaling of values is that of

the inverse global term frequency with certain normalization. Path

“docdir” is the directory of the result web pages, while “outputdir” is

where the output files, defining the word-document matrix, will be

extracted.

Step 3: Since we have both the executable and the word-document matrix,

all we have to do before running the appropriate command is to specify all

other necessary parameters. Those would be the branching factor and the

depth of the desired hierarchical structure. The branching factor will

 51

define how many children cluster each parent cluster is allows to have,

whereas the depth parameter will determine at what level of clusters the

results should be assigned. According to our primal design for the

application we set the rule that a maximum of 5 sub-clusters in each

cluster should be available. Moreover, the user shouldn’t have to descend

more than three levels. Therefore, we set the branching factor to be 5 and

the level parameter to be 3 (figure 3.1). This results to the following

clustering command:

./spkmeans -l 3 -c 5 -O ./outputdir/ ./mc_outputdir

where the ‘-l’ parameter is the level, ‘–c’ the branching factor, -O the

outputdir and the final parameter is the matrix path. All other parameters

available by the program are set to their default values.

Figure 3.1: Tree Structure of Clusters

Figure 3.2 shows an example output of the spkmeans program, while

figure 3.3 is an example of the output files we later use in order to create

the tree structure.

 52

Reading the _dim file...
Reading the _col file...
Reading the _row file...
Reading the _nz file...
Reading file time: 0.01 seconds.
Now clustering...
3-level hierarchical clustering

Level 0 ...
Original Size: 20

Level 1 ...
h_ClusterSize[0]=2

.

.
h_ClusterSize[4]=3

Branch 0 ...

.

.
Branch 4 ...

Level 2 ...
h_ClusterSize[0]=1

.

.
h_ClusterSize[24]=0

Branch 0 ...

.

.
Branch 23 ...

Level 3 ...
h_ClusterSize[0]=0

.

.
h_ClusterSize[124]=0
Hierarchical spherical k means algorithm
Final number of clusters: 125
Number of documents: 20
Number of words: 3166
epsilon: 0.001
initialization method: random perturbation
perturbation magnitude: 0.1
encoding scheme: normalized term frequency inverse document
frequency
objective function: nonweighted
computation time:
CPU Usage: user = 0 seconds 56991 ms, system = 0 seconds 3000ms
Time per iteration = 0.0284955
ELAPSED Time: 0 seconds 76264 ms
Output matrix file is:./mc_outputdir/documents
Memory consumed :250593

Figure 3.2: Sample Spkmeans Program Output

 53

0 0 1 2 3 4

0 0 1 2 3 4
1 5 6 7 8 9
2 10 11 12 13 14
3 15 16 17 18 19
4 20 21 22 23 24

0 0 1 2 3 4
1 5 6 7 8 9
2
3
4
5 25 26 27 28 29
6 30 31 32 33 34
7 35 36 37 38 39
8
9 45 46 47 48 49
10 50 51 52 53 54
11
12
13
14 70 71 72 73 74
15
16 80 81 82 83 84
17 85 86 87 88 89
18
19 95 96 97 98 99
20 100 101 102 103 104
21 105 106 107 108 109
22
23 115 116 117 118 119
24

Figure 3.3: Sample Spkmeans Program Output File

Previous to proceeding with creating a structure of the clustered results,

we adduce a short theoretical analysis regarding the clustering algorithm

used by spkmeans.

3.2.1 Hierarchical Spherical K-Means Algorithm

 Spherical K-Means [9] is an algorithm that exploits the sparsity of

the data while giving meaningful results at the same time. The documents

 54

are represented as vectors in the vector space. Then, clustering is the

partitioning of the document collection into the disjoined subsets π1, π2...

πk. The decision of which cluster a document belongs to or how “good” or

“coherent” a cluster is, derives from cosine similarity measures and the

creation of concept vectors for a cluster (its normalized centroid). Figure

3.4 shows the steps of the Spherical K-Means algorithm:

Figure 3.4: Spherical K-Means Algorithm

portant Features

Im

on of initial partitions is important A careful selecti

 55

 The total time complexity for τ iterations is ()* *nz k τΟ , where nz is

the number of non-zero entries in the sparse matrix and k the number

of clusters.

 The similarity estimation variation used by spkmeans (step 2 of the

algorithm) reduces the computational bottleneck of the dot product

computations between all document vectors and concept vectors.

 The hierarchical tag points to the fact that this procedure is done not

only for documents, but for clusters as well.

Since Spherical K-Means algorithm was just used and not implemented or

changed in our work, we reckon that a deeper analysis wouldn’t be

necessary at this point. Anyone, interested in a more in depth presentation

should follow the given references.

3.3 Building the Structures

Now that we have the clusters and the web page they contain, it is

necessary to create a structure containing this information so that it can be

accessible from our front-end. We have decided that an easy way to do so

is to store it in an xml file. Besides that, this xml file could contain

webpage related information such as its score and title (both of which are

available from the search engine) and that would be of help as well.

In fact, the xml file will be a depth first traversal of the tree

structure of clusters. Thus, it is vital that we transform the webpage-cluster

correspondence, which the clustering engine has extracted, into an actual

tree structure. The source code of the program we developed for doing so

is written in C++ programming language. In this topic we exhibit the

implementation and analyze its features.

 56

 Firstly, we must indicate that in order to create the tree structure

we use lists. The main classes we implement are those of a Document and

a Cluster. Moreover DocumentList and ClusterList classes are defined as

the lists for the previous classes.

 Class Document contains information about each webpage. In

particular, it contains its name, its score and the cluster it belongs to. It

also contains a potential pointer to another Document, which is needed

when it is inserted in a DocumentList. Available methods provide nothing

more than the basic functionality of extracting the Document’s attribute

values.

 Class Cluster contains information such as its name, its score, the

level it belongs to, the number of results it contains and again a pointer to

another Cluster in order to act as a ClusterList node. Again the basic

methods are implemented, to retrieve its attributes’ values.

 Class DocumentList is the implementation of a list of Documents.

It contains the number of elements in the list plus two pointers at the first

and last element of its method use. The methods it has are those of

insertion and removal. Insertion is always done by putting the new

element at the end of the list. The deletion depends on a Document’s

name, so a ‘seek’ method is also added in order to find that Document.

Finally, a method that keeps just the five highest scoring Documents is

implemented. This method is necessary when a DocumentList has more

than five elements, so in order to present them later to the user we have to

reduce its number; that is done by removing the “worse” Documents.

 Our final class, ClusterList is similar to the previous class. It has as

well a number of elements attribute and pointers to the first and last

Cluster element. Apart from the basic methods, only an insert method is

needed and this is done again by adding the new element at the end.

 After we explained the implemented classes, we can now show

how by using them the structure is created. Firstly a Document instance is

created for every web page in the search engine output. All those

Documents are inserted in a DocumentList, which now contains all results.

Then, a Cluster instance is created for every cluster the clustering engine

 57

output contains. Every level of our tree structure is created as a ClusterList

of those Clusters that have the corresponding level attribute value. This

final structure is shown in figure 3.5 below:

Figure 3.5: Tree Structure using Lists

The creation of the whole structure was implemented by applying

the necessary functions on the classes we have defined. After that, the only

thing we have to do in order to create the desired xml file, is print this

structure in a specific format. However, during the printing procedure,

certain actions must take place, and therefore some additional functions

are as well implemented. The most important of those actions involve the

calculation of a cluster’s score, and the selection of the best results for a

level 3 Cluster.

In the first case, what we did in order to get a score for a cluster

was to sum up the scores of all web pages (hierarchically) belonging to the

specific cluster and then divide that sum with the total number of pages in

that cluster:

 58

wp
wp C

C

wp C

Score
Score

wp
∈

∈

=
∑
∑ ,

where C the cluster, ScoreC its score, wp a webpage and Scorewp its score

 As for selecting the best results, we first create a DocumentList of

all Documents belonging to that cluster and then we take advantage of the

method that keeps the five highest scoring Documents, which is available

for DocumentList elements (figure 3.6).

Figure 3.6: DocumentList for a Result Cluster

Regarding the printing to an xml file procedure, we just dump all

the above information in the format shown in figure 3.7 below. To do so

we iteratively traverse the tree starting from the root Cluster and

descending using a depth first display function.

 59

<?xml version="1.0"?>

<Root name="root">
 <Level1 name="1Level_Cluster0">
 <Results> 111 </Results>
 <ClusterScore> 2.542988 </ClusterScore>
 <Level2 name="2Level_Cluster0">
 <Results> 11 </Results>
 <ClusterScore> 1.242591 </ClusterScore>
 <Level3 name="3Level_Cluster0">
 <Results> 3 </Results>
 <ClusterScore> 0.395571 </ClusterScore>
 <Result name="A result">
 <Title>The Result's Title</Title>
 <Score> 0.611093 </Score>
 </Result>
 .
 .
 .
 </Level3>
 .
 .
 .
 </Level2>
 .
 .
 .
 <Description> To be added by the summarization module </Description>
 </Level1>
 .
 .
 .
</Root>

Figure 3.7: Sample XML File Format

Summing up, we now have an almost final version of the xml file

we use in our front-end. Having information about the structure of

clusters, the scores and titles of web pages and the scores of clusters, the

only thing missing is a really short description of the first level clusters;

this description is added by the summarization module, that we discuss in

the next chapter.

 60

Chapter 4

SUMMARIZATION

4.1 Intro

 In this chapter we shall explain why we need different kinds of

summaries and how we build them. We analyze the algorithms and the

tools used and how the resulting summaries get to be presented to the final

user.

 First of all, as we have already mentioned, we produce three kinds

of summaries. The first one is a summary of a single web page. It is

obvious that it is about the contents of a web page, from which the most

important is extracted. The second kind of summary is that of a cluster.

Contrary to the first one, except from extracting the most important

content, it is necessary to extract content that is similar within the web

pages of the specific cluster. Finally the third summary is also about a

cluster. It is not exactly a summary; more like a few words describing it.

The following topics, using a similar formation, present a detailed

analysis of all the above.

4.2 Single Page Summarization

 The first thing to discuss is why there is a need for such

summarization and the reason derives from the functionality of our

 61

application. After the user reaches, via the user interface, the level

containing the results, once he finds a result he is interested in, he should

be able to find out more about it. However, since the whole page content is

rather unsuitable to display, due to its large size for such an application

(bandwidth and space problems), the best way to inform the user, is

extracting a summary out of it.

 The nature of the application determines as well some

characteristics of the summary. Specifically, it should be fast to extract,

therefore our mechanism can’t be really complex which leads us to an

extract form of summary (representative sentences/phrases) instead of an

abstract form of summary (a selected and processed summary around the

basic subject). Since its purpose is to give the user an idea of what the

page is about and not how it is related to his query, it should be query-

independent too.

 The implementation we followed is based on the title and location

methods of Edmundson’s proposal [16], modified to apply on web page

content. Therefore, its main idea is to assign a score to each sentence of

the web page and select those with the higher scores. The title method was

to assign a higher score to sentences in title or headings. The location

method was to assign higher score to sentences at the beginning of

paragraphs or just under headings. Crossing over to web pages, this

converts to assigning scores based on the html tags surrounding each

sentence.

 The source code of the implementation was written in Perl

programming language. That was due to the convenience Perl provides

when dealing with text and pattern matching. The steps we took in order to

implement the algorithm an extract the summary are the following:

Step 1: Firstly we parse the webpage using the TreeBuilder Perl module.

This reads the html code of the webpage and transforms it into an HTML

syntax tree. The HTML syntax tree is used in order to find out under

which tag each sentence belongs.

 62

Step 2: Now we have to assign a score to the different html tags available.

We assign different values from 100 down to 70 among important tags

such as headers and paragraphs (the score goes to the first sentence. The

rest sentences get the default score 0). We also give negative values to tags

containing useless information regarding our summary (such as the

<option> tag, which is used to enumerate items of a list). The final score

of a sentence is the highest score of its surrounding tags.

Step 3: In order to define what we mean by saying ‘sentence’ we use the

Text::Sentence Perl module. Still though, not every sentence is good

enough to be in our summary. Really short sentences offer little

information to the summary and very long sentences may take over the

whole summary. So, we set a rule not allowing sentences of less than 30

characters or less than 3 words neither sentences with more than 250

characters to be in our summary.

Step 4: The final step is to define how long a summary will be. We set

that limit to 400 characters as (by observation) it seems to be enough to

produce a decent summary, taking under concern that a longer summary

wouldn’t be appropriate for our application.

 The whole process of extracting a webpage summary is triggered

by a user request to get more details about that webpage. Thus, nothing

needs to be done before that. All that is necessary is the user to supply

which page he wants the summary for and the designed implementation

returns the summary. All that is shown in figure 4.1 below.

 63

Figure 4.1: Single Page Summarization

Judging the results of this summarization technique, we notice that

indeed the summary is representative of the contents; this is expected

since a) headings in html tend to withhold the most important information,

and b) the first sentence of paragraphs is an introduction of what follows.

4.2 Cluster Summarization

 The summary of a cluster is another important feature in our

application. It can save the user time as he can have an idea of what the

results of that cluster are, without having to descend hierarchy to reach

them. Contrary to the previous case, now we don’t have to deal with just

one webpage but all the web pages of that cluster. This means that we

have to follow a different approach. However, some issues remain the

same. For example, we still have limitations in space and bandwidth so it

must be short again.

 To extract this multi-document summary, we took advantage of the

MEAD summarization toolkit. As it will be explained later in this topic,

 64

MEAD can create a summary out of many documents using multiple

algorithms. But, before using MEAD, some specific actions took place so

that we transform the cluster web pages into an accepted by MEAD input

form. The steps before using MEAD are presented below:

Step 1: The first thing to do is find out which pages belong to the specific

cluster. Our clustering mechanism has already produced that, so we create

a list of them and proceed to step 2.

Step 2: After we get the list of web pages from which we have to extract a

summary, we extract textual data from them. This is done like that: Using

Perl, we parse each html page and extract all text under title and heading

tags. Then we proceed with the main text of the page which undergoes

some further processing. We have to export not the full text but its

sentences, so we once again define what a sentence is (in fact what a good

summary sentence is – at least two words, starting with a capital and

ending with a punctuation mark). At last, we have a list of all ‘good’

sentences of pages in the specified cluster.

Step 3: We have observed that phrases like “All rights reserved.”, tend to

appear in many web pages. The fact that such sentences have many

appearances may reflect in our summary, so it would be wise to remove

duplicate sentences in general. So, again using Perl, we remove all

duplicate sentences from our list, and after that we have the final ‘text’ to

summarize. We must notice that MEAD supports handling duplicate

phrases but that feature is not fully developed; that’s why we did this

manually.

Step 4: The final step before using MEAD, is to transform the sentence

list into a format that MEAD understands. This is the DocSent format

presented later at the MEAD presentation. The transformation algorithm,

since we already have the sentences extracted, was relatively simple and

implemented once again in Perl.

 65

Step 5: We use the created DocSent as input to MEAD and extract the

summary. The respective command was:

./mead.pl -s -a 4 -cluster_dir ../ClusterDir ClusterName;

The ‘-s’ parameter means we want the output in sentences and the ‘-a 4’

parameter means that the absolute number of sentences should be four.

This number (four) is regarded as a good number of sentences in our

application-oriented summary. Of course some more length limitations

have been applied to the source code of MEAD. Specifically, we reckon

that the total length of the summary should not by any chance be more

than 800 characters.

4.2.1 MEAD Summarization Toolkit

 Now, let’s see a few more things of what MEAD is and how it

extracts a multi-document summary. MEAD is a free toolkit for

multilingual summarization and evaluation implementing numerous

summarization algorithms such as position based, centroid, tf*idf, query

based. It is written in Perl programming language, and uses additional

external Perl modules.

 It produces both lead based (selecting the first sentence of

documents, then the second, etc.) and random summaries given a

document or a cluster in DocSent format (figure 4.2).

 66

Figure 4.2: DocSent Format

Using the default parameters (for classifier, reranker) like we did,

the scoring of a sentence s is a result (linear combination) of its features

which are basically Position P(s), Centroid C(s) and Length L(s):

Score() () () ()P C Ls w P s w C s w L s= + + ,

where w is the corresponding weight in the linear function. However

additional sentence features can be used to calculate their score. The

extract summary can be either absolute (exact number of sentences) or

relative (percentage of the original text).

In general, the MEAD architecture is that of figure 4.3.

Specifically there are the following steps:

a) Sentences become feature vectors.

b) Feature vectors become sentence scores.

c) Sentence score contribute to other sentence scores.

 67

Figure 4.3: MEAD Architecture

It is important to note that MEAD could be used to extract the

single webpage summary as well. However the algorithm we use is

simpler, therefore faster and it has good results so we preferred it to

MEAD.

 Figure 4.4 shows the whole process of creating the multi-document

summary for a cluster. As one can see, such an action is again triggered by

the user’s desire to get the cluster summary.

Figure 4.4: Cluster Summarization

 68

 An evaluation of the extracted summary of a cluster would show

that it actually is representative of its results. However, the limited

sentence number is negative factor in our attempt to be as precise as

possible. This means that for large clusters, it fails to be as representative

it is for shorter clusters.

4.3 Cluster Description

 Contrary to the other summaries, the creation of a short description

for every cluster does not derive from the user asking for it, but is

necessary in order to present the available clusters to the user. This means

it has to be extremely short and as precise as possible. Moreover it has to

be fast to create since this may be done many times during a user’s search.

 Our approach was to use the sentences belonging to the cluster in

order to find sequences of words and use the most frequent as the cluster

description. Prior to that, some steps similar to those of cluster

summarization were followed. A detailed analysis of those steps follows

(with the final step being our main algorithm):

Step 1: Again we firstly have to find all pages belonging to the specified

cluster and create a list.

Step 2: Like in the previous case all sentences were extracted from the

cluster web pages using the same algorithm.

Step 3: Removing duplicate sentences is even more important than before

since they contribute largely to the score of a word sequence. This may

seem to be against our cause for the sentence redundancy is characteristic

of the content, but in fact it is more important to find the same sequences

in different sentences and not the replica of the same one. Thus, we use the

previous algorithm so that we create a set of unique sentences.

 69

Step 4: This step is about the use of our algorithm for finding sequences

and their occurrences and assigning a score to them. The implementation

is based on the N-gram theory and is written in Perl. An N-gram is a

sequence of N words: w1w2w3w4…wN and in our implementation N values

we use vary between 7 down to 2. The algorithm we introduce is the

following:

1. Create a list of stop-words. Those are words usually of

great frequency but offering little or nothing information.

Words from that list will be used in a cluster’s description

only if some certain rules get satisfied.

2. Calculate the occurrences of 7-grams, 6-grams and 5-grams

appearing in the sentence list. Stop-words may appear in

them.

3. Calculate the occurrences of trigrams and bigrams and

unigrams appearing in sentence list as long as no stop-

words are included. (Both in steps 2 and 3 we exclude

numeric values and words 1 or 2 characters long).

4. We export the 7-gram, 6-gram or 5-gram with the most

appearances, as long as it is appearing a fixed number of

times (we selected 6, 7, 10 times accordingly) and we have

not used it before.

5. If no higher N-gram is appropriate, we export a trigram but

not that with the most appearances; a score is primarily

calculated and that with the highest score extracted. The

score is based on the appearance of its containing bigrams

and unigrams. The rule giving that score is the

following:

2-gram 3-gram

count(3-gram)* count(2-gram)
score(3-gram)=

div
∈
∑

where div is given by the following rule:

 70

This rule by observation gives more accurate results, taking

in mind that the more the occurrences of the containing

bigrams are, while the containing unigrams are not that

much, the higher the score for a trigram.

2-gram 3-gram

1-gram 3-gram

div= 2* count(2-gram)

 count(1-gram)

∈

∈

⎛ ⎞
− +⎜ ⎟
⎝ ⎠
⎛ ⎞

+ ⎜ ⎟
⎝ ⎠

∑

∑

The following figure (4.5) is a schematic representation of the above

procedure.

Figure 4.5: Cluster Description Extraction

 71

The description of a cluster is being presented to the user when his

parent cluster is displayed. Therefore, this procedure takes place just

before showing the parent cluster. This means that prior to displaying the

root cluster we have to extract description from all level 1 clusters. These

descriptions are stored in our xml file; that finalizes its back-end produced

content.

4.3 Where we stand

 Now that we have all necessary back-end mechanisms, let’s

overview what we have achieved so far and what the next action should

be.

 First of all we have created an xml file which contains all

necessary information in order to start displaying the results. This

information regards both content and cluster structure. Moreover, we have

all the procedures needed to extract more information from the back-end

such as cluster and webpage summary – in order to be able to use them we

just created the corresponding interfaces (executable programs that extract

the desired summary) - that the user interface can call.

 The clustering and summarization mechanism produce the desired

results, so the next step is to implement the user interface for our

application.

 72

PART II

THE FRONT-END

In this part we deal with the front-end of our application; the user

interface and the final application.

Chapter 5: In this chapter we demonstrate our user interface

specifications, the handling of modalities and the design decisions we had

to take.

Chapter 6: This chapter contains the implementation of the user

interface and shows an example of use of the final application we have

developed.

Chapter 7: Here we propose some future work that could be done

both regarding our application and the surrounding fields of interest in

general.

 73

 74

Chapter 5

UI SPECIFICATION

5.1 Intro

This part is about designing a user interface for the functionality

offered by our back-end. The first step is to finalize all aspects regarding

the final application; then to take the necessary design decisions

concerning the multimodality issues of the user interface and finally

implement it.

Regarding the final application, its purpose is more to act in means

of showing the multimodal-driven platform that the back-end implements

rather than to be a professional application. Thus, we decided that a web

interface with a palm-like display, which however shows the synergies

between modalities (keyboard-mouse input/text output and pseudo-speech

input/output), will be enough. Before analyzing these modality issues, we

should firstly demonstrate the final architecture of both the system and the

user interface.

5.2 UI Architecture

 Figure 1.1 displayed a general overview of the system architecture.

A more detailed presentation can be seen in figure 5.1. As we can see it is

more analytical of the system’s modules and displays how the user

 75

interface positions between the user and the back-end. So, in order to

understand what the user interface should offer, we have to define what

actions the user can request and how they can be forwarded to the back-

end. To do so we present the system specifications witch will allow us to

partition the UI into functional blocks.

Figure 5.1: Complete System Architecture

5.2.1 System Specifications

System specifications are the following:

 76

1. Connecting to the system: Users will connect to the system through

the application and will be greeted by a prompt and a potential tutorial of

how to use it.

2. Starting a Search: This is the basic functionality of the system. Users

will submit a query and the system retrieves clustered results

3. Accessing clusters: Once the search engine has returned the query-

related results, and they have been processed in the way we wanted them

to be, the user will be told how many results have been found and the

available options.

4. Navigation through the categories: To navigate through the clusters

of each level, the user has only to say the name of the category (either

select the appropriate category using his graphical interface). Moreover,

the user is able to go to the parent category.

5. Requesting summary: For every cluster, the user will be able to

request a summary of its results.

6. Getting top results: While in a non-result cluster (root or level 1, 2

cluster) the user can ask the system directly for the highest scoring results

of the cluster

7. Display & Navigation through the results: Once the cluster results are

retrieved, they are displayed in order of relevancy to the query. The

system provides a title of each one to the users by which the user can ask

for more details.

8. Asking for more information on a result: The user might find a result

interesting and want to find out more about it. The system provides a more

detailed summary on a result, should the user ask for it (and potentially

additional information).

 77

9. Additional Commands: The user may request to terminate current

search and start another. The system has a main menu where the user

selects the desired action.

10. Prompts and Help Messages: Different prompts will be given to the

user according to the state hi is in. Help will be associated with the actions

of the user. Repeated help requests will provide longer and more detailed

help to the user.

5.2.2 UI Functional Blocks

 The above system specification acts as the basis for the partitioning

of the user interface into functional blocks. By saying functional blocks,

we mean the different states of the application. The functional blocks will

be used later to create the finite state machine of a user’s flow in the

system.

 The blocks into which we separate the application are the

following:

1. Initialization: The system greets the user and offers to him a

tutorial of how to use it. The user can decide whether he wants the

tutorial or not.

2. Tutorial: This is the block where the tutorial is displayed. The user

can stop the tutorial whenever he wants. Both in this case and in

case the tutorial ends, the user is lead to the main menu.

3. Main Menu: This block is the one that informs the user of the

available functionality. At this moment the available functionality

is limited to starting a search, listening to the tutorial and exiting

the system. This block is the destination of every finished search.

4. Search: In this block the system asks the user for the search query.

The system recognizes search string and initiates a query in the

back-end. After the results are retrieved the user goes to the Cluster

block.

 78

5. Cluster: The system has retrieved the cluster’s result (initial or

lower level) and displays them to the user. In case of no results the

user is informed about it and returns to main menu block. During

this block a list of the cluster’s sub-clusters is presented (using

their description) and the user can select either one of them, or a

cluster summary or a list of the top results for the cluster.

Moreover he can ask the system to repeat available sub-clusters or

he can select to return to a previous cluster. Selecting a sub-cluster

or the parent cluster brings him back to a Cluster block.

6. Summary: The block that presents a cluster summary to the user

following his request.

7. Results: It is like the Cluster block but for 3rd level clusters

containing results. The list of result is presented and the user can

get more details on a result by selecting the appropriate title.

8. Details: The block where a summary along with additional

information about a result demonstrated.

9. Waiting Block: It’s a block that has to do with waiting states

within the application. Those states are produced when back-end

processing is required. They inform the user of what is happening

and offer him the ability to stop the running process

10. Help: This block is about providing context sensitive help. That is

done after a user request for help, taking in mind what state he is

in. When the help prompts are finished, the user returns to his

previous state.

11. Confirmation: Block in which the system awaits for user

confirmation of an action

12. Exit: User reaches this block when he chooses to exit the

application. The system waves him with a goodbye prompt.

A further understanding of the UI functional blocks and how they

interact with each other will come in chapter 5.3.1 where we display the

activity diagrams for our application. Before that however we deal with

 79

the modalities of the final application and input/output of each block in

general.

5.2.3 Modality Tracking

 As we have mentioned in the beginning of this chapter, we will

create a web interface for our application. It will follow a palm-like

design, characteristic of the nature of application we designed.

Specifically, we will use short prompts, and a limited Graphical User

Interface focused on the available options for each state. Since it is a web

interface, input will be keyboard/mouse actions over the html GUI and

output will be an html page (text). However, in order to consider this

application multimodal, it is necessary to import another type of

input/output. That would be voice. We didn’t use a voice recognition

engine, so that is done by using pseudo-speech input prompts and by

considering the text output as speech. To be more explanatory:

 We created a form for text input that follows the structure of

natural language. It shall act as an equivalent of using voice. When

the user uses that form, what he said (typed) is parsed to extract a

command that the system recognizes. This form can be used only

when the system allows “speech” input. That is when a)the GUI is

not in use and b)the state the user is in allows speech input (every

state does, but some of them not before finishing a prompt)

 In order to emulate speech output, we don’t accept user input until

specific prompts are spoken (time delay). Moreover we follow the

techniques applying to voice applications; short prompts, constant

disposal of the available actions to the user.

Figure 5.2 shows the modality tracking procedure used.

 80

Modality
Selection

GET NATURAL
LANGUAGE

TEXT
GUI

PARSE
INPUT

PRODUCE
OUTPUT

User chooses Voice
(by using specific text box)User chooses GUI action

Command is extracted

P
re

se
nt

 a
s

V
oi

ce

P
re

se
nt

 u
si

ng
 G

U
I

Check if input enabled Check if Voice input enabledCheck if GUI input enabled

Figure 5.2: Modality Tracking

In case the user uses the GUI, the next action of the system is obvious; it’s

what the user selected. However, when using natural language input, the

system is unable to understand the user unless some parsing is primarily

done. Thus, we use various input grammars to parse user input. The

grammars and their inputs we use are the following:

1. System created input grammars: Based on the cluster descriptions

and result titles.

2. Search input grammars: Grammar based on words one can find in

the web pages that constitute our repository.

3. Confirmation grammars: "that's correct", "that's right", "yes",

4. Rejection grammars: “no”, “not really”, “negative”.

 81

5. Summary grammars: "summary", "details", "more information"

6. Exit input grammars: "exit", "cancel", "stop", “skip”

7. Help inputs: "help", "tutorial".

8. Cluster related input grammars: "repeat", "top results"

9. Back grammars: “back”, “return”

10. Jump grammars: “go to the initial cluster”, “go to third result”

Apparently, the inputs shown above are just a subset of the whole

grammars. The grammars we created support a much larger number of

requests whether they are imperative or polite.

We should finally note that while the user is at one state, the

available pseudo-voice input he can submit comes to total correspondence

with the action provided by the GUI.

5.3 UI in Use

Before presenting use cases of the final application, we shortly

demonstrate what kinds of input are accepted in each state and show the

activity diagrams of the Finite State Machine that simulates a user’s route

in the system.

5.3.1 Activity Diagrams

 Here follows a description of the relation between inputs and

states. The definition of this relation is the step prior to creating the FSM.

Starting from the initial state, the user can either accept or reject the

tutorial. If he accepts, the tutorial is offered but he can skip anytime. The

next state, the main menu, accepts input regarding search, help or exit

procedures. In case of ‘exit’ input, a confirmation is necessary. However

the user can’t reply until the system prompt is over. That is done due to the

 82

importance of his answer. When he selects to search, he can either enter a

search string or cancel. As soon as the results return to him, being in a

cluster block, he can either ask for a repeat, for a summary, for top results

or to navigate to a previous cluster. No voice input, until the basic options

are explained, allowed. Result level clusters have the same options,

instead that of a summary. Moreover the selection of the result leads the

user to a result’s details instead of a cluster. Top details state is similar to

that of a result level cluster. Finally summary states are similar to detail

states; user can only return back or cancel the search.

 The following activity diagrams show the user flow, according to

his inputs and the connection with the back-end.

 83

1

2

10

5

11

13

12

1: User connects to the system. System
Initialization

2: System greets the user - Offers a tutorial
3: User replies if he wants tutorial.
4: System decides next action
5: Main Menu - System shows the available

functionalities to the user
6: Tutorial State.
7: Exit Confirmation
8: User exits system. Goodbye prompt.
9: Search State: System asks for the query.
10: User gives in the search string
11: System performs all the necessary

operations to get the search results
12: Back-End Operation: Results are retrieved

from the database, Cluster Hierarchy is
created and stored in an XML file. First level
is ready to be shown to the User

13: System displays search results

Thursday, 29 September 2005

Page 1

Application Startup

3

4

6

7 8

9

User Wants Tutorial

User Wants Tutorial

User Wants to Exit

User Rejects Tutorial

User Wants to Search

User Confirms

User doesn’t Confirm

Waiting State for the user

Figure 5.3: Application Start-up Activity Diagram

 84

Thursday, 29 September 2005

Page 1

Display Clusters

1

9

2

3

No results

4

5

6

8

R
ep

ea
t C

lu
st

er
 D

is
pl

ay

7

S
el

ec
t u

pp
er

 o
r l

ow
er

 le
ve

l
(n

ot
 re

su
lt

cl
us

te
r)

10

Select top results
or Result Cluster

12

11

User requested summary

1: Initialization of display procedure
2: System checks if there are any results
3: System informs user that there were no

results
4: System displays level sub-clusters and

presents available options.
5: User input defining next action
6: System proceeds user input and decides next

condition
7: In case of no results system goes to main

menu
8: User selected lower or higher cluster.
9: Back-End Operation: New cluster results are

created.
10: User selected a result cluster or top results

for current cluster. System transfers to the
Display Results procedure.

11: A cluster summary is shown to the user
12: Back-End Operation: Creation of summary

from cluster documents.

XML FILE

Figure 5.4: Cluster Display Activity Diagram

 85

Thursday, 29 September 2005

Page 1

Display Results

1

3

4

7

U
se

r a
sk

s
fo

r a
 re

pe
at

 o
f r

es
ul

ts

6

User requested more details

1: Initialization of display results procedure
2: System displays results and available options.
3: User input defying nest action
4: System proceeds user input and decides next

condition
5: More details for a result are being displayed
6: Back-End Operation: Creation of summary for

selected document.
7: User selected upper or previous cluster.
8: System goes to display cluster procedure.

2

10

5

XML FILE

Figure 5.5: Result Cluster Display Activity Diagram

 86

Thursday, 29 September 2005

Page 1

Help & Other Cases

1

2

1: Anywhere in the application
2: User requests help
3: System displays context-sensitive help
4: Application resumes its execution.

==================================

A: User in summary or details state.
B: User selects next action
C: System checks user input
D: System checks if summary or details
E: System goes to cluster display
F: System goes to result display
G: System goes to main menu 3

4

A

G

B

U
se

r w
an

ts
 to

 e
xi

tC

D

E F

S
um

m
ar

y

D
et

ai
ls

U
se

r w
an

ts
 to

 g
o

ba
ck

Figure 5.6: More Application Activity Diagram

5.3.2 Use cases Revisited

 Now that we have built the back-end and made the necessary

decisions for the user interface we can go on with its implementation.

Before doing that, let’s see how one of the previously presented use cases

transforms taking in mind what we’ve done so far. (Additional interaction

added in order to show more features of the application)

 87

(S) Welcome to the voice search engine. Would you like to listen to a tutorial of how
to use the system?
(U) Yes I do.
(S) The Voice Search engine is… [Tutorial continues]
(S) You are at the main menu. You can either start a new search or exit the system.
You also can listen to the system tutorial. What would you like to do?
(U) Help!
(S) In order to start a new search say SEARCH. To listen to a tutorial say
TUTORIAL. To exit, just say EXIT.
(U) I would like to start a new search please.
(S) Please enter the search string for your query.
(U) “Chania Holidays”
(S) Please wait until the system retrieves all relevant documents. This process may
take a while.
(S) There are 123 results in 3 sub-clusters. In order to select a sub-cluster say its
name. By saying SUMMARY a summary of the cluster is presented, while TOP
RESULTS returns a list of the highest scoring results, Available sub-clusters are: 1)
Prefecture of Chania, 2) Greek Islands, 3) Winter Holidays.
(U) Give me a summary.
(S) Here is a short summary of the selected cluster: Chania is located in Crete, an
island in the southern Greece. Chania is well known as a tourist resort both for the
summer and winter because of its mild climate. This is the end of the summary. You
can either go BACK or CANCEL this search.
(U) User selects to go back using the GUI
(S) There are 123 results in 3 sub-clusters. In order to select a sub-cluster say its
name. By saying SUMMARY a summary of the cluster is presented, while TOP
RESULTS returns a list of the highest scoring results, Available sub-clusters are: 1)
Prefecture of Chania, 2) Greek Islands, 3) Winter Holidays.
(U) “Chania”
(S) You have selected “Chania”. There are 81 results in 5 sub-clusters. In order to
select a sub-cluster say its name. By saying SUMMARY a summary of the cluster is
presented, while TOP RESULTS returns a list of the highest scoring results,
Available sub-clusters are: 1) City of Chania, 2) Travel Guides of Chania, 3)
Platanias, 4) Paleochora, 5) Sfakia
(U) “Platanias”
(S) You have selected “Platanias”. There are 12 results in 4 sub-clusters. In order to
select a sub-cluster say its name. By saying SUMMARY a summary of the cluster is
presented, while TOP RESULTS returns a list of the highest scoring results,
Available sub-clusters are: 1) Accessibility, 2) Hotels in Platanias, 3) Restaurants in
Platanias, 4) Nightlife in Platanias.
(U)”Hotels”
(S) You have selected “Hotels”. There are 3 websites that matched your query. Ask
for “More Details” in order to get more information on a specific result. Available
results are:
(S) 1) Apladas Hotel. A first rate hotel complex, offering a special experience for
your summer holidays. ‘www.apladas.gr’
(U) User selects more details for the given result using the GUI
(S) Here follows a summary of selected result. Brand new and imposing APLADAS
BEACH is located directly on the sandy beach of Platanias village in Chania-Crete.
APLADAS BEACH with its relaxing atmosphere and the high standard facilities
focuses on making summer holidays an unforgettable experience. This is the end of
the summary. You can either go BACK or CANCEL this search.
(U) Quit.
(S) You are at the main menu. You can either start a new search or exit the system.
You also can listen to the system tutorial. What would you like to do?
(U) Exit please.
(S) You have selected to exit the application. Is that correct?
(U) Yes that’s right.
(S) Thank you for using the voice search engine.

Figure 5.7: Example Use Case 2

 88

Chapter 6

UI IMPLEMENTATION

6.1 Intro

 This chapter starts with the procedure followed in order to

implement the user interface presented in the previous chapter. After it is

implemented, the application will have reached its final stage. All that

remains is to test it and evaluate it. Later in this chapter a real use of the

application is presented and the results are analyzed.

6.2 Building the UI

We mentioned before that we shall build a web user interface. In

fact, we will design the user interface using a combination of Java servlets

and JSPs (Java Server Pages). Servlets and JSPs are part of the Enterprise

Java and a very commonly used tool to create web services. Concerning

our case, we use them in order to accommodate a possible future

transformation into a standalone application, since the only thing to

change will be to change the ways of getting the input and displaying the

output.

The basic issues that the user interface implementation has to

support are the following three:

 89

1. The creation of a user interface (GUI and pseudo-voice UI)

according to the FSM discussed in the previous chapter,

with the required input/output capabilities.

2. The ability tie change information with the back-end and

activate its mechanisms.

3. The ability to parse pseudo-voice input according to the

given grammar and understand what the user meant.

Starting with the first issue, we implement the UI with a series of

servlets and JSPs that correspond to the FSM’s states. Specifically we use

JSP pages to implement the graphical and pseudo-voice UI of states that

offer some information to the user (e.g. prompts, replies, etc.). In general,

they contain simple html code for the display of the output and the

creation of GUI forms. Servlets are used to handle transitions between

states and to communicate with the back-end. A transition from one state

to the other is therefore a transition from one JSP to another. Which will

be this second JSP, depends on the user input.

However user input is not enough to make some transitions. For

example when having a ‘back’ command, we have to know what the

previous state was. Thus, using Java programming language, we

implement a Record class that supports the handling of additional

information during a user’s rambling through the application. In specific a

Record contains information regarding the state one is in, the level of the

cluster hierarchy he has reached, the cluster he is in and the initial query.

A Record is constantly updated whenever some of its containing

information changes.

In order to use this Record object, it is attached to a Session

Object. The Session Object is offered by the Servlet API and its purpose is

to withhold information of a user connected to the application server. It

initializes every time the user connects to our application, and we

deactivate it when he disconnects. A Session supports the attachment of

other objects onto it, which it carries until deactivated. So, by accessing a

user’s Session we are able to handle the information his Record holds.

Example uses of the Record object one can find while navigating

through the clusters (we know what cluster he came from and what level

 90

he’s reached) or asking for help (in that case the help system shows

context sensitive help which derives from the state the user is in as shown

by his Record).

So far we have explained how the display and the transitions are

implemented. Regarding the drafting of information from the back-end we

haven’t said much. This is done using the XML file that has been created

and the additional interfaces that our back-end provides.

 Taking things sequentially, until the user sends a search query,

there is no communication with the back-end. When our front-end gets

that query, it uses one of the available interfaces of the back-end to start a

search. To be more specific, this interface is in fact a batch executable that

handles the search engine, the clustering and summarization engines and

finally exports the desired XML file. In order to run that executable we

use the specific API that Java provides. After the query-related XML file

is exported from the back-end, our front-end communicates only with it,

except for the case of getting additional summaries (then it uses an

interface to communicate just with the summarization engine).

 In order to communicate with the XML file we use the dDom4j

API. Dom4j uses the Document Object Model (DOM) to read and write to

an XML file. Both DOM and the dom4j API are presented a little later.

For the moment, let’s see how we use the information from that file.

 The first thing the user interface does is to display the sub-clusters

of the root cluster. All the necessary information (which are the sub-

clusters and their description) is already in the XML file. So, using the

dom4j API we read that and present them to the user via the corresponding

JSP. When a sub-cluster is selected, a similar procedure is done. However,

there is some information missing in this case. This is the descriptions of

the new cluster’s sun-clusters. To extract them, we use summarization

engine interfaces. Apart from using the extracted description just to

display it to the user, we also store it in the XML file; that way we can

have it available for future use without having to include the

summarization engine in that process.

 91

 A similar procedure is followed when the user requests summary

for a cluster or for a result. Since this information is not available until

needed, we use the rest summarization interfaces to extract it. Again this

information is stored in the xml file.

 Summing up, it is clear that the XML file storing all this

information makes it easier for us to handle from the UI. Moreover, it acts

like a cache, reducing time when a summary is already extracted. In

general, the algorithm determining the user interface – back-end

interaction can be seen in figure 6.1

1) Activate back-end procedures that create the XML file for

a given query

2) Use XML file to retrieve information regarding the

display of Root Cluster.

3) For every request for a sub-cluster, a summary or a

result’s details, check the XML file.

 If all information available, present it to the user

 If not available, extract it from the back-end and

a)store it to the XML file and b) present it to the user

Figure 6.1: Information Extraction Algorithm

6.2.1 DOM and dom4j

The DOM (Document Object Model) is a platform- and language-

neutral interface which allows programs and scripts to dynamically access

and update the content, structure and style of (HTML and XML)

documents. Along with SAX (Simple API for XML - An event-driven,

serial-access mechanism for accessing XML documents), they are

currently the two most popular APIs for manipulating XML documents.

Using DOM, the document can be further processed and the results of that

processing can be incorporated back into the presented page. Behind the

 92

interface the document is represented with an object-oriented model. By

supporting the DOM API, a program not only allows its data to be

manipulated by other routines, but does so in a way that allows those

manipulations to be reused with other DOMs, or to take advantage of

solutions already written for those DOMs. In general, the DOM API

provides a standardized, versatile view of a document's contents.

Dom4j is an easy to use, open source library for working with

XML, XPath and XSLT on the Java platform using the Java Collections

Framework and with full support for DOM, SAX and JAXP.

In our implementation, dom4j provided the DOM platform; all the

necessary APIs to access, read, traverse and write an XML file.

Specifically, it created a structure of all elements and their attributes

available in the XML file. In order to access the value of an element’s

attribute, we only had to provide the attribute’s XPath (unique address in

XML file). Any manipulations made to these values could be stored by

transforming the altered structure again into an XML file.

Moreover dom4j supports the creation of new elements. This is

helpful when we extract a summary and we want to store it in the XML

file.

6.2.2 Parsing the Input

 The final issue we have to take in mind following our

implementation is that of parsing the pseudo-speech input. As we have

mentioned that is done using specific grammars. The parsing is based on a

simple Perl program that matches the input with a given grammar file.

This parser returns what kind of request it was (as long as it was a valid

request) and potentially some additionally information provided in the

input (for example when the user wants to go back N steps, we have to

know the value of N). According to the kind of request that was, the

servlet handling the input decides the next action.

 93

The first step to set up the parsing module is to assign a grammar

for every state. A BNF grammar format is used to describe our grammars.

What our Perl script does, is to find if the user input is accepted by the

state grammar and under which rule. The rule is what determines the

command. This is done using pattern matching techniques. Moreover, the

understanding of the value of certain inputs is also supported. To do so,

we use the pattern matching wildcard and store the recognized part of the

input, so that we can use it later. This happens for example when the user

enters the query, or when he selects to go N steps back and we have to

know the value of N.

In most states grammars are static. That means that we know from

the beginning the accepted inputs. However, when clusters are displayed

the grammar of those states must contain a cluster’s description or a

result’s title. This is how we deal with it: First of all we create the static

part of the grammar. While the descriptions or titles are displayed, they are

added to our grammar. This, beyond others, means that the user can’t

select something that hasn’t been displayed (or ‘said’ for the speech-

output consideration).

6.3 VoiceSearch in Action

Putting together all modules, the application (VoiceSearch) is

ready to run. In order to do that, we hosted the JSPs and the compiled

servlets under a Tomcat web server. By giving the specified address of the

initial state JSP to any browser, we were able to run and test the created

application. The figures of Appendix A display the application in a usage

scenario.

6.3.1 User Studies

 94

 Here we present the usage scenario for the figures in Appendix A

that show a use case of the final application system. This usage scenario

goes like this:

1. The user enters the system and accepts to listen to the tutorial (1)

2. The system displays the tutorial (2)

3. The system goes to the main menu. User selects to start a new

search (3)

4. The system asks the user for the search query. User enters

“charisteas euro 2004 final” (4)

5. The system asks the user to wait for the results (5)

6. As soon as the results are retrieved the system displays the root

cluster. User selects one of the available sub-clusters (6)

7. The new cluster is being displayed. User asks for summary (7)

8. The cluster’s summary is presented to the user (8)

9. The user returns to previous cluster and now he asks for its top

results (9).

10. The top results for the cluster are being displayed (10)

11. The selected result's details are displayed to the user (11)

12. The user follows the necessary actions to return to the root level

cluster

13. at the root level cluster, the user selects a different sub-cluster (12)

14. Selecting one of the available sub-clusters each time, the user

descends to a result level cluster.

15. The cluster's results are being displayed. User selects the only

result (13)

16. The selected result's details are displayed to the user (14)

17. User selects to cancel the search.

18. User goes to main menu. He selects to exit the application.

19. The system needs a confirmation (15)

20. After the user confirms, the system goodbyes the user and clears

his session (16).

 95

6.4 Conclusions

 We tested the application we created using multiple scenarios and

search queries. Concerning the flow of the user into the system, we can

see that at any given time, the available options are obvious to him by the

user interface. Testing the help and error systems (the error system is in

fact a prompt informing the user that the system couldn’t understand him

and what he should do) we are assured of their good operation. Moreover

the navigation through states is exactly like we designed it. The FSM

transitions are absolutely followed.

 Regarding the results of the queries we tested, it became obvious

that we had good results only for queries related somehow with the

content of the stored websites (sports and academic issues). Irrelevant

queries produced few results and sometimes without clear connection

between them. However that was expected at some point, due to the

relatively small in size repository.

 We could say that the clustering mechanism worked quite well.

Specifically we could realize that by testing “university of Cambridge”

related queries which produced clusters based on the various departments

of it. Summaries of web pages and clusters, as mentioned before, also

produce decent results. The only summary of less quality was that of the

cluster description. That was when the results, although similar in words

were not similar in word sequences (which is the key in our algorithm

extracting cluster descriptions).

 The user interface presents the results in n acceptable manner,

while the modality selection doesn’t produce any problems (due to the

way it was implemented).

 Summing up, the application we have design fulfills its initial

purpose of using features like clustering and summarization with a

positive outcome. It also provides a simple user interface with multimodal

support and based on a platform specifically focused low bandwidth/space

devices.

 96

Chapter 7

FUTURE WORK

7.1 Intro

 Finally we shall discuss how we can extend the application we

have implemented and the future work on the fields of interest. As we

have mentioned before, those fields are under heavy research so at any

time new features develop and can become a part of a multimodal search

engine. We will focus on both back-end and front-end extensions, so that

we improve the basis of the application as ell as the human-system

interaction.

7.2 Extending VoiceSearch

 The first thing we have to look upon is the further improvement of

the algorithms we use. This has to be done in a way that no heavy

processing (that will increase the response time) is required. Specifically

for clustering, the use of links between pages (that is already used by the

HITS based search engine) could make clusters even more distinct. Apart

from that, cluster merging techniques can be applied so that clusters

similar to each other with few results can be merged together in a more

general cluster.

 97

 Regarding the summarization techniques, a good addition would

be to use query-based summarization for cluster summaries. In particular,

the cluster’s summary will contain information based on the cluster’s

description. The cluster’s description algorithm can be improved as well.

This can be done by extending the list of stop-words, and using only nouns

(which usually withhold the most important information) to create the

description. Finally, link analysis could be again of help to create a

summary [17].

Many improvements can be applied to the front-end. Probably the

closest addition shall be the creation of a real Voice Interface. That can be

easily done (since the modality tracking algorithm has been introduced) by

attaching a Speech Recognition system to the input and a TTS (Text to

Speech) system to the output of the application. Also, DTMF support

could be easily added (especially for cluster and result selection – they are

already displayed as a numbered list). GUI integration could also take

place.

 However, the most important extension that can be done is the

extension of the functionality offered. Possible additional functionalities

could be the following:

 Personalisation of service

The users will be able to create their own accounts, so

that the system understands them. They will be able to define

some personal settings (like the way the results are displayed,

if a cluster summary is required for every cluster without

asking for it, what would be the systems initial state, etc).

This would mean a signup and login procedure prior to using

the system.

 98

 Search Filtering

This is about filtering the already retrieved results using

a new search query. For example, after an initial query Q1

returns N results, the user will be able to search between

those N results using a new query Q2.

 Additional Search Features

The user can search the system for web pages

containing an exact phrase. Also the query could contain

binary operators that define the user’s needs.

 Taking advantage of the Summarization Engine

The user could ask directly for a web page summary

that already exists in our repository. The only thing to

provide would be its internet address. Another possible

functionality would be to get the summary of the initial

cluster produced by a query. This is similar to an electronic

encyclopaedia’s functionality (for example, a summary

created of the results of a “Diego Maradona” query, would

return who was Diego Maradona).

 Taking advantage of the Clustering Engine

The user could ask directly for topics related to the

content of a web page. Again, the only thing to provide

would be its internet address.

 99

 Multilingual Support

Currently only the English language is supported. Using

the appropriate stemmers, this application could apply to

other languages as well.

Regardless to everything else, an evaluation of the application is

necessary to take place. This means that it should be tested by many users

so that its good operation is confirmed. Such tests can extract useful

information (and therefore any weak points that need improving will come

to the surface) about the following:

1) How accurate is the clustering.

2) How accurate is the summary of a cluster or a result.

3) What changes should take place on the UI.

4) To what point is multimodality better than using just one

type of input.

 Finally, the fact that our design is based on low bandwidth/space

devices makes it easy to transform the application for any kind of such

devices or even for classic computers.

 100

References

[1] A. Arasu et al, “Searching the Web”, ACM Trans. on Internet
Technology, Vol. 1, No. 1, Aug. 2001, pp. 2-4

[2] L. Page, S. Brinn, R. Motwanni, T. Winograd, “The PageRank citation
ranking: Bringing order to the Web”, Computer Systems Laboratory,
Stanford University, Stanford CA, 1998

[3] S. Brinn, L. Page, “The Anatomy of a Large-Scale Hyper-Textual Web
Search Engine”, Computer Science Department, Stanford University,
Stanford, CA 94305, 1998

[4] G. Salton et al., “The SMART System-Experiments in Automatic
Document Processing”, Prentice-Hall, Englewood Cliffs, N.J., 1971

[5] E. Voutsakis, “Image Retrieval on the World Wide Web”, Thesis
Proposal, Technical University of Crete, 2004

[6] Monica R Henzinger, “Hyperlink Analysis for the Web”, IEEE
Internet Computing vol. 5, 2001

[7] J. Kleinberg, “Authoritative sources in a hyperlink environment”. J.
ACM 46, 6 (Nov.), 1999

[8] I. Dhillon, J. Fan and Y. Guan, “Efficient Clustering of very large
Document Collections”, Kluwer Academic Publishers, 2001

[9] http://www.cs.utexas.edu/users/yguan/datamining/spkmeans.html

[10] Dawid Weiss, “A Clustering Interface for Web Search Results in
Polish and English”, Thesis Proposal, Poznan University of Technology,
2001

[11] R. Osdinn, I. Ounis and R. White, “Using Hierarchical Clustering and
Summarization approaches for Web Retrieval”, TREC 2002 Interactive
Track, Glasgow

[12] O. Zamir and O. Etzioni, “Grouper: A Dynamic Clustering Interface
to Web Search Results”, Computer Networks Journal, Amsterdam,
Netherlands, 1999

[13] Iwona Białynicka-Birula, “Clustering Web Search Results”,
Department of Informatics of University of Pisa

[14] D. Cutting, D. Karger, J. Pedersen, J. Tukey, “Scatter/Gather: A
Cluster-based Approach to Browsing Large Document Collections”,

 101

Proceedings of the Fifteenth Annual International {ACM} {SIGIR}
Conference on Research and Development in Information Retrieval, 1992

[15] Andrew W. Moore, “K-means and Hierarchical Clustering”,
Computer Science Department, Carnegie Mellon University, 2001

[16] H. P. Edmundson, “New Methods in Automatic Extracting Full text”,
Source Journal of the ACM (JACM) Volume 16, Issue 2, April 1969

[17] J. Delort, M. Rifky, B. Bouchon-Meunier, “Enhanced Web Document
Summarization Using Hyperlinks”, University of Paris, 2003

[18] J Goldstein, “Automatic Text Summarization of multiple
Documents”, Thesis Proposal, Carnegie Mellon University, 1999

[19] H. Saggion, R. Gaizauskas, “Multi-Document Summarization by
Cluster/Profile Relevance and Redundancy Removal” University of
Sheffield, 2004

[20] www.summarization.com/mead

[21] Dragomir R. Radev and Simone Teufel and Horacio Saggion and Wai
Lam and John Blitzer and Hong Qi and Arda Celebi and Danyu Liu and
Elliott Drabek, “Evaluation challenges in large-scale multi-document
summarization: the MEAD project”, Proceedings of ACL 2003

[22] http://www.cre.canon.co.uk/_texts/csweb.html

[23] http://larbin.sourcefourge.net/

[24] T. V. Raman, “User Interface Principles For Multimodal Interaction”,
http://www.almaden.ibm.com/cs/people/tvraman/chi-2003/mmi-position.html

[25] Sharon Oviatt, Phil Cohen, Lizhong Wu, John Vergo, T. J. Watson,
Lisbeth Duncan, Bernhard Suhm, Josh Bers, Thomas Holzman, Terry
Winograd, James Landay, Jim Larson & David Ferro, “Designing the User
Interface for Multimodal Speech and Pen-based Gesture Applications:
State-of-the-Art Systems and Future Research Directions”, 2000

[26] Anoop K. Sinha and James A. Landay, “Embarking on Multimodal
Interface Design”, Group for User Interface Research, Computer Science
Department, University of California at Berkeley,

 102

Appendix A

 Here is the application output following the scenario presented in

6.3.1.

1

 103

2

 104

3

 105

4

 106

5

 107

6

 108

7

 109

8

 110

9

 111

10

 112

11

 113

12

 114

13

 115

14

 116

15

 117

16

 118

Appendix B

 Here we present all the necessary steps one has to take in order to

set up the application. We explain how to use the different parts of the

source code and how to tune different external applications used.

1) The first thing one should do is to create the repository. To retrieve the

web pages any crawler would do. The retrieved pages should be stored

under the “repository” directory of our application structure.

2) Having Perl installed is necessary for the back-end to operate.

Application tested under Perl 5.8.0

3) After the repository has been created, the web page attributes have to be

exported to an index. This is done by the index.sh shell script under the

“/back-end/app/bin/interface” directory of the application.

4) Since the back-end is based in relative links, there is nothing else to be

done in order to work. However, in order the front-end to be able to see

the back-end, the static links of the files in the “/back-

end/app/bin/interface” directory should be corrected.

5) The front-end requires Java (tested with java 1.3.1) to be installed. The

links in the JSP and servlet source files (regarding the back-end interfaces)

have to be corrected. Servlets have to be compiled prior to being used.

6) The dom4j classes have to be included in the CLASSPATH

environmental variable.

 119

6) A web server (e.g. Jacarta Tomcat) has to be installed and the JSP and

servlet files be placed somewhere the web server can access.

7) The application is accessible, as long the web server is running by

calling the corresponding web address through a browser.

 120

	Intro
	1.2 First Approach
	Related Work
	1.4 Summing Up
	2.1 Intro
	2.2 Creating the repository
	2.3 Creating the index
	2.4 Implementing Search Functionality
	3.1 Intro
	3.2 The Clustering Engine
	3.3 Building the Structures
	4.1 Intro
	4.2 Single Page Summarization
	4.2 Cluster Summarization
	4.3 Cluster Description
	4.3 Where we stand
	5.1 Intro
	5.2 UI Architecture
	5.3 UI in Use
	6.1 Intro
	6.2 Building the UI
	VoiceSearch in Action
	6.4 Conclusions
	7.1 Intro
	7.2 Extending VoiceSearch

