
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ 

 

ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ Η/Υ 

 

Αλγόριθμοι κατάτμησης συνόλου προτύπων για αποδοτική υλοποίηση 

αναγνώρισης προτύπων σε υλικό 
 

Χαράλαμπος Χαραλάμπους  

 

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ 

 

 

 

 

 

 

 

 

Επιβλέπων καθηγητής::   Διονύσιος Πνευματικάτος 

 

 

 
 
 
 
 
 
 



 
 
 
 
 
 

Acknowledges 
 
 

I would like to thank my advisor Mr. Dionisios Pnevmatikatos for motivating me to enter 

this research area. His guidance, understanding, and above all his patience throughout the 

course of this work, from topic selection to the final experiments, were invaluable. I am 

also very grateful to Ioannis Sourdis for the help I received throughout my work, especially 

for the Xilinx simulations and the evaluation of the results. 

 

I would like to especially thank my family for their love and support over the years. Also I 

would like to thank my friends and fellow students Kostas Harizakis, John Stathopoulos, 

Fanouris Moraitis, Jim Kybizis, George Dementis, Jim Kontokostas, Nick Pallas, Akis 

Kloutsiniotis, Tasos Moraitis for the entertaining conversations over lunch or coffee in all 

these years in Chania and to wish them all the best for their future.  

 

Last but not least I would like to thank the single most important person in my life, my 

wife Sasa. Only the two of us know how difficult it was for us coming to Chania and 

studying at TUC. I could have never done it without her. 

 



ABSTRACT 

 

Nowadays, always on, high speed internet connections are becoming popular due to 

technologies like DSL and Cable making network security a critical factor for the success 

of many applications. Network Intrusion Detection Systems (NIDS) are based on 

pattern matching techniques applied to the incoming packets. These systems can check 

both the header and the body of the packet for better results in detecting security threats. 

Of course, checking the body of the packet against known attacks requires great deal of 

processing power and if it’s not done fast enough it can introduce a bottleneck to the 

system’s performance. 

 

NIDS can be implemented in hardware or software. Both ways have advantages and 

disadvantages. Hardware based solutions use ASICs or FPGAs. They generally 

outperform software systems in terms of pattern matching speed. FPGAs are more 

flexible than ASICs since it’s easier to be reprogrammed and thus allowing updates of the 

rule set, while ASICs use integrated processors with large memories allowing the 

development of more complex code. On the other hand, software systems offer even 

greater flexibility since they can be extended in any possible way, in order to efficiently 

face new kinds of attacks, such as rule set update and addition of new pattern matching 

techniques. 

 

This diploma thesis studies the use of hardware NIDS. Based on the work of Sourdis & 

Pnevmatikatos on pre-decoded CAMs, we explore the use of minimum cut (min-cut) 

algorithms to further increase the speed and reduce the complexity of pattern matching 

in the body of the packet. 

 

 

 

 

 

 1



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

 

 2



Table Of Contents 
 
Abstract ………………………………………………………………………...1 
 
Chapter 1………………………………………………………………………..5 
  1.1 Introduction ……………………………………………………………….5 

    1.1.1 Scope of this thesis……………………………………………………...5 

    1.1.2 Outline of this thesis………………………………………………….....6 

  1.2 Intrusions and Detection………………………………………………........6 

  1.3 What is Intrusion Detection? …………………………………………........7 

  1.4 Why Use Intrusion Detection?................................................................................9 

    1.4.1. Preventing problems by increasing the perceived risk of discovery  

              and  punishment of attackers………………………………………….10 

    1.4.2. Detecting problems that are not prevented by other security measures....11 

    1.4.3. Detecting the preambles to attacks (often experienced as network  

              probes and other tests for existing vulnerabilities)……………………..11 

    1.4.4. Documenting the existing threat……………………………………….12 

    1.4.5. Quality control for security design and administration…………………12 

    1.4.6. Providing useful information about actual intrusions…………………..12 

 1.5 Some definitions…………………………………………………………....13 

   1.5.1 IDS……………………………………………………………………...13 

   1.5.2 NIDS……………………………………………………………………13 

   1.5.3 HIDS…………………………………………………………………... 15 

   1.5.4 SIDS…………………………………………………………………….16 

 1.6 Strengths and Limitations of IDSs………………………………………….17 

   1.6.1 Strengths of Intrusion Detection Systems……………………………….18 

   1.6.2. Limitations of Intrusion Detection Systems…………………………….18 

 

Chapter 2 

  2.1 Introduction……………………………………………………………….19 

  2.2 CAM (Content Addressable Memories)……………………………………20 

  2 3 DCAM Implementation…………………………………………………....23 

  2.4 Practices to increase performance………………………………………….25 

  2.5 Pattern partitioning algorithms…………………………………………….27 

  2.6 Cost model………………………………………………………………...27 

 

 3



Chapter 3 

  3.1 Pattern Partitioning Algorithms……………………………………………30 

  3.2 Graph Partitioning Algorithm……………………………………………...31 

    3.2.1 Problem Formulation…………………………………………………...31 

  3.3 Previous work on Graph Partitioning………………………………………32 

   3.3.1 P-way Partition…………………………………………………………...35 

   3.3.2 Recursive Bisection………………………………………………………36 

   3.3.3 Multilevel Techniques……………………………………………………37 

 3.4 Our Approach……………………………………………………………….40 

 3.5 Example: How to coarsen a graph…………………………………………...42 

 3.6 Example: How to partition a graph………………………………………….44 

 3.7 Example: How to uncoarsen a graph………………………………………..45 

 

Chapter 4 

  4.1 Introduction………………………………………………………………..47 

  4.2 What is METIS…………………………………………………………….47 

  4.3 METIS’s Stand-Alone Programs…………………………………………...48 

  4.4 Graph Partitioning Programs………………………………………………48 

  4.5 Graph Checker……………………………………………………………..50 

  4.6 Input File Formats…………………………………………………………50 

    4.6.1 Graph File………………………………………………………………50 

    4.6.2 Output File Formats…………………………………………………….53 

  4.7 Graph visualization…………………………………………………………55 

 

Chapter 5 

5.1 Results and Evaluation………………………………………………………60 

  5.1.1 Introduction……………………………………………………………...60 

5.2 Results…………………………………………………………………….....61 

5.3 Conclusions………………………………………………………………….64 

5.4 Discussion and future work………………………………………………….65 

 

References……………………………………………………………….............68 

 

Appendix  A……………………………………………………………………..71 

 4



 
 

 

 

Chapter 1 

 

1.1 Introduction 

 

Intrusion detection systems are an important component of defensive measures 

protecting computer systems and networks from abuse. Although intrusion detection 

technology is still and should not be considered as a complete defence, we believe it can 

play a significant role in an overall security architecture. If an organization chooses to 

deploy an IDS, a range of commercial and public domain products are available that 

offer varying deployment costs and potential to be effective. When an IDS is properly 

deployed, it can provide warnings indicating that a system is under attack, even if the 

system is not vulnerable to the specific attack. These warnings can help users alter their 

installation’s defensive posture to increase resistance to attack. In addition, an IDS can 

serve to confirm secure configuration and operation of other security mechanisms such 

as firewalls. 

 

1.1.1 Scope of this thesis 

 

Network Intrusion Detection Systems (NIDS) perform deep packet inspection. 

They scan packet’s payload looking for patterns that would indicate security threats. 

Matching every incoming byte, though, against thousands of pattern characters at wire 

rates is a complicated task. So, string matching can be considered as one of the most 

computationally intensive parts of a NIDS. Many different algorithms or combination of 

algorithms have been introduced and implemented in general purpose processors (GPP) 

for fast string matching using as datasets rulesets from the SNORT NIDS [29]. 
 

This thesis is based on the work of Sourdis and Pnevmatikatos ([19], [20]) where 

they exploited the fact that FPGAs are flexible, reconfigurable devices, fast enough for 

implementing such systems. One of the main drawbacks in FPGA’s is that the matching 

 5



of a large number of patterns has high area cost, so sharing logic is critical, since it could 

save a significant amount of resources, and make designs smaller and faster. 

 

Since string matching is the most computationally intensive part of an NIDS, our 

proposed solution maintains high performance and minimizes area cost. Partitioning the 

entire ruleset of search patterns in smaller groups, we can implement the entire match 

logic for each of these groups in a much smaller area reducing the average length of the 

wires. 

 

1.1.2 Outline of this thesis 

 

The rest of this thesis is organized as follows: the rest of this chapter gives a 

thorough description of Network Intrusion Detection Systems. In Chapter 2 we present 

the background work of a hardware-based NIDS developed by Sourdis and 

Pnevmatikatos, presenting also its performance and cost and discuss its advantages and 

disadvantages. Next we introduce graph partitioning algorithms in detail and present our 

solution in the partitioning of the SNORT rule set, aiming at the sharing of logic for each 

of these groups for reducing the area cost in the implementation. Finally we present the 

conclusions of this work and discuss future extensions.    

 
 

1.2 Intrusions and Detection 

 

As e-commerce sites become attractive targets and the emphasis turns from 

break-ins to denials of service (DoS), the situation will likely worsen. Many early 

attackers simply wanted to prove that they could break into systems; increasingly 

nowadays, the trend is toward intrusions motivated by financial, political, and military 

objectives. In the 1980s, most intruders were experts, with high levels of expertise and 

individually developed methods for breaking into systems. They rarely used automated 

tools and exploit scripts. Today, anyone can attack Internet sites using readily available 

intrusion tools and exploit scripts that capitalize on widely known vulnerabilities. Figure 

1, taken from Washington Post, which describes the attacks, illustrates the relationship 

between the relative sophistications of attacks and attackers from the 1980s to the 

present. 

 

 6



 
Figure 1.1.: Attack sophistication versus intruder technical knowledge. 

 

Today, damaging intrusions can occur in a matter of seconds. Intruders hide their 

presence by installing modified versions of system monitoring and administration 

commands and by erasing their tracks in audit and log files. In the 1980s and early 1990s, 

denial-of-service (DoS) attacks were infrequent and not considered serious. Today, 

successful denial-of-service attacks can put e-commerce-based organizations such as 

online stockbrokers and retail sites out of business. Successful IDSs can recognize both 

intrusions and denial-of-service activities and invoke countermeasures against them in 

real time. To realize this potential, we’ll need more accurate detection and reduced false-

alarm rates. 

 

 

1.3 What is Intrusion Detection? 

 

Intrusion Detection is a set of techniques and methods that are used to detect 

suspicious activity both at the network and host level. Intrusion detection systems fall 

into two basic categories: signature-based intrusion detection systems and anomaly 

 7



detection systems. Intruders are recognized by signatures like computer viruses that can 

be detected using software. You try to find data packets that contain any known 

intrusion related signatures or anomalies related to internet protocols.  

 

Based upon a set of signatures and rules, the detection systems are able to find 

and log suspicious activity and generate alerts. Anomaly based detection systems usually 

depends on packet anomalies present in protocol header parts. In some cases these 

methods produce better results compares to signature based IDS. Usually an intrusion 

detection system captures data from the network and applies its rules to that data or 

detects anomalies in it. Snort is primarily rule based IDS, however input plug-ins 

are present to detect anomalies in protocol headers. 

 

 
Figure 1-2: Block diagram of a complete network intrusion detection system consisting of Snort, 

MySQL, Apache, ACID, PHP, PHPLOT, GD Library. 

 

Snort uses rules in text files that can be modified by a text editor. Rules are 

grouped into categories. Rules that belong to each category are stored in separate files. 

These files are then included into a main configuration file called snort.conf. Snort reads 

 8



these rules at the start-up time and builds internal data structures or chains to apply these 

rules to captured data. Finding signatures and using them as rules is a tricky job, since the 

more rules you use, the more processing power is required to process captured data at 

real time. It is important to implement as many signatures as you can using as few rules 

as possible. Snort comes with a rich set of predefined rules to detect intrusion activity 

and the user is free to add its own rules at will. Some of the built-in rules can also be 

removed to avoid false alarms.     

 

 

 

 

 

1.4 Why Use Intrusion Detection? 

Intrusion detection devices are an integral part of any network. The Internet is 

constantly evolving, and new vulnerabilities and exploits are found regularly. Network 

monitoring tools, worms and viruses, scripts and more are constantly probing the 

machines and the network. Intrusion systems provide an additional level of protection to 

detect the presence of an intruder, and help to provide accountability for the 

attacker's actions. 

 

Intrusion detection allows organizations to protect their systems from the threats 

that come with increasing network connectivity and reliance on information systems. 

Given the level and nature of modern network security threats, the question for security 

professionals should not be whether to use intrusion detection, but which intrusion 

detection features and capabilities to use. 

 

IDSs have gained acceptance as a necessary addition to every organization’s 

security infrastructure. Despite the documented contributions intrusion detection 

technologies make to system security, in many organizations one must still justify the 

acquisition of IDSs. There are several compelling reasons to acquire and use IDSs: 

 

1. To prevent problem behaviours by increasing the perceived risk of discovery and 

punishment for those who would attack or otherwise abuse the system 

 9



 

2. To detect attacks and other security violations that are not prevented by other security 

measures 

 

3. To detect and deal with the preambles to attacks (commonly experienced as network 

probes and other “doorknob rattling” activities) 

 

4. To document the existing threat to an organization 

 

5. To act as quality control for security design and administration, especially of large and 

complex enterprises 

 

6. To provide useful information about intrusions that do take place, allowing improved 

diagnosis, recovery, and correction of causative factors. 

 

 

1.4.1. Preventing problems by increasing the perceived risk of discovery and 

punishment of attackers 

 

A fundamental goal of computer security management is to affect the behaviour 

of individual users in a way that protects information systems from security problems. 

Intrusion detection systems help organizations accomplish this goal by increasing the 

perceived risk of discovery and punishment of attackers. This serves as a significant 

prohibitive to those who would violate security policy. 

 

1.4.2. Detecting problems that are not prevented by other security measures 

 

Attackers, using widely publicized techniques, can gain unauthorized access 

to many, if not most systems, especially those connected to public networks. 

This often happens when known vulnerabilities in the systems are not 

corrected. Although vendors and administrators are encouraged to address 

vulnerabilities, (e.g. through public services such as ICAT, http://icat.nist.gov) there are 

many situations in which this is not possible: 

• In many legacy systems, the operating systems cannot be patched or 

 10



updated. 

• Even in systems in which patches can be applied, administrators 

sometimes have neither sufficient time nor resource to track and install all the necessary 

patches. This is a common problem, especially in environments that include a large 

number of hosts or a wide range of different hardware or software environments. 

• Users can have compelling operational requirements for network 

services and protocols that are known to be vulnerable to attack. 

• Both users and administrators make errors in configuring and using 

systems. 

• In configuring system access control mechanisms to reflect an 

organization’s procedural computer use policy, incompatibilities almost always occur. 

These differences allow legitimate users to perform actions that are ill advised or that 

overstep their authorization. 

 

1.4.3. Detecting the preambles to attacks (often experienced as network probes 

and other tests for existing vulnerabilities) 

 

When crackers attack a system, they typically do so in predictable stages. 

The first stage of an attack is usually probing or examining a system or network, 

searching for an optimal point of entry. In systems with no IDS, the attacker is free to 

thoroughly examine the system with little risk of discovery or retribution. Given this 

unfettered access, a determined attacker will eventually find vulnerability in such a 

network and exploit it to gain entry to various systems. 

 

The same network with an IDS monitoring its operations presents a much 

more difficult challenge to that attacker. Although the attacker may probe the network 

for weaknesses, the IDS will observe the probes, will identify them as suspicious, may 

actively block the attacker’s access to the target system, and will alert security personnel 

who can then take appropriate actions to block subsequent access by the attacker. Even 

the presence of a reaction to the attacker’s probing of the network will elevate the level 

of risk the attacker perceives, discouraging further attempts to target the network. 

 

 

 

 11



1.4.4. Documenting the existing threat 

 

When you are drawing up a budget for network security, it often helps to 

substantiate claims that the network is likely to be attacked or is even currently under 

attack. Furthermore, understanding the frequency and characteristics of attacks allows 

you to understand what security measures are appropriate to protect the network against 

those attacks. IDSs verify, itemize, and characterize the threat from both outside and 

inside your organization’s network, assisting you in making sound decisions regarding 

your allocation of computer security resources. Using IDSs in this manner is important, 

as many people mistakenly deny that anyone (outsider or insider) would be interested in 

breaking into their networks. Furthermore, the information that IDSs give you regarding 

the source and nature of attacks allows you to make decisions regarding security strategy 

driven by demonstrated need, not guesswork. 

 

1.4.5. Quality control for security design and administration 

 

When IDSs run over a period of time, patterns of system usage and detected 

problems can become apparent. These can highlight flaws in the design and the security 

for the system, so administrators can correct those deficiencies before they cause an 

incident. 

 

 

 

1.4.6. Providing useful information about actual intrusions 

 

Even when IDSs are not able to block attacks, they can still collect relevant, 

detailed and trustworthy information about the attack that supports incident handling 

and recovery efforts. Ultimately, such information can identify problem areas in the 

organization’s security configuration or policy. 

 

 

 

 

 

 12



1.5 Some definitions 

 

Before we go into details of intrusion detection we need to present some 

definitions related to security.  

 

 

1.5.1 IDS  

 

Intrusion Detection System (IDS) is software, hardware or combination of both used 

to detect intruder activity. Snort is an open source IDS available to the general public. An 

IDS may have different capabilities depending upon how complex and sophisticated the 

components are.  

 

 

1.5.2 NIDS 

 

Network Intrusion detection systems (NIDS) are systems that capture data 

packets traveling on the network media (cables, wireless) and match them to a database 

of signatures. Depending on whether a packet is matched with an intrusion signature an 

alert is generated or the packet is logged into a file or a database. One major use of Snort 

is as a NIDS. Firewalls, on the other hand, are configured to allow or deny access to a 

particular service or host based on a set of rules. If the traffic matches an acceptable 

pattern, it is permitted regardless of what the packet contains. However, a NIDS 

captures and inspects all traffic regardless of whether it's permitted or not. Based on the 

contents, at either the IP or application level, an alert is generated.  

 

One question that arises when deploying NIDSs is where to locate the system “sensors”. 

There are many options for placing a NIDS with different advantages associated with 

each location: 

 

Location: Behind each external firewall (See Figure 1.4 – Location 1) 

 

 

 

 13



Advantages: 

• Sees attacks, originating from the outside world, that penetrate the network’s 

perimeter defences. 

• Highlights problems with the network firewall policy or performance 

• Sees attacks that might target the web server or ftp server 

• Even if the incoming attack is not recognized, the IDS can sometimes recognize 

the outgoing traffic that results from the compromised server 

 

 

 
Figure 1.4: Location: Behind each external firewall 

 

 

 

Location: Outside an external firewall (See Figure 1.4 – Location 2) 

 

Advantages: 

• Documents number of attacks originating on the Internet that target the 

network. 

• Documents types of attacks originating on the Internet that target the network 

 14



 

Location: On major network backbones (See Figure 4 – Location 3) 

 

Advantages: 

• Monitors a large amount of a network’s traffic, thus increasing the possibility of 

spotting attacks. 

• Detects unauthorized activity by authorized users within the organization’s 

security perimeter. 

 

Location: On critical subnets (See Figure 4 – Location 4) 

 

Advantages: 

• Detects attacks targeting critical systems and resources. 

• Allows focusing of limited resources to the network assets considered of greatest 

value. 

 

 

1.5.3 HIDS 

 

Host-based Intrusion detection systems (HIDS) are installed as agents in a 

host. These intrusion detection systems can look into system and application files to 

detect any intruder activity. Some of these systems are reactive, meaning that they inform 

you only when something has happened. Some HIDS are proactive, they can sniff the 

network traffic coming to a particular host on which the HIDS is installed and alert you 

in real time. Some HIDS can also listen to port activity and alert when specific ports are 

accessed, this allows for some network type attack detection. The HIDS does not require 

additional hardware to do intrusion detection. Is easily resides on existing network 

resources (File Servers, Web Servers).  

 

Another consideration when using HIDS is that of allowing operators to become 

familiar with the IDS in a sheltered, but active environment. Much of the effectiveness of 

any IDS, but particularly a host-based IDS depends on the operator’s ability to 

distinguish between true and false alarms. Over a period of time, an operator, working 

with an IDS in a particular environment, will gain a sense of what is normal for that 

 15



environment, as monitored by the IDS. It is also important (as HIDS are often not 

continuously attended by operators) to establish a schedule for checking the results of 

the IDS. If this is not done, the risk that a cracker will tamper with the IDS during an 

attack increases. 

 

 

1.5.4 SIDS 

 

Stack-based Intrusion detection systems (SIDS) are the newest technology 

and vary from vendor to vendor. SIDS works by integrating closely with the TCP/IP 

stack, allowing packets to be watched as they traverse their way up the OSI layers. 

Watching the packets in this way allows the IDS to pull the packets from the stack before 

the OS or the application has a chance to process the packets. To be complete, a SIDS 

should watch both incoming and outgoing network traffic on a system. By monitoring 

network packets destined only for a simple host, makes the IDS have sufficiently low 

overhead so that every system on the network can run SIDS. 

  

 16



 
Figure 1-5: Multiple Snort sensors in the enterprise, logging to a centralized database server 

 

 

 

 

1.6 Strengths and Limitations of IDSs 

 

Although IDSs are a valuable addition to an organization’s security infrastructure, 

there are things they do well, and other things they do not do well. As an administrator 

plans the security strategy for his organization’s systems, it is important to understand 

what IDSs should be trusted to do and what goals might be better served by other types 

of security mechanisms. 

 

 

 

 

 17



1.6.1 Strengths of Intrusion Detection Systems 

 

IDSs perform the following functions well: 

• Monitoring and analysis of system events and user behaviours 

• ·Testing the security states of system configurations 

• Base-lining the security state of a system, then tracking any changes to that 

baseline 

• Recognizing patterns of system events that correspond to known attacks 

• Recognizing patterns of activity that statistically vary from normal activity 

• Managing operating system audit and logging mechanisms and the data they 

generate 

• Alerting appropriate staff by appropriate means when attacks are detected. 

• Measuring enforcement of security policies encoded in the analysis engine 

• Providing default information security policies 

• Allowing non-security experts to perform important security monitoring 

functions. 

 

 

 

1.6.2. Limitations of Intrusion Detection Systems 

 

IDSs cannot perform the following functions: 

• Compensating for weak or missing security mechanisms in the protection 

infrastructure. Such mechanisms include firewalls, identification and 

authentication, link encryption, access control mechanisms, and virus detection 

and eradication. Instantaneously detecting, reporting, and responding to an 

attack, when there is a heavy network or processing load. 

• Detecting newly published attacks or variants of existing attacks. 

• Effectively responding to attacks launched by sophisticated attackers 

• Automatically investigating attacks without human intervention. 

• Resisting attacks that are intended to defeat or circumvent them 

• Compensating for problems with the fidelity of information sources 

• Dealing effectively with switched networks. 

 18



Chapter 2 

Background on Decoded CAM (DCAM) architecture 

2.1 Introduction 

 

High speed and always-on network access is becoming commonplace around the 

world, creating a demand for increased network security. Network Intrusion Detection 

Systems (NIDS) such as Snort attempt to detect and prevent attacks from the network 

using pattern-matching rules in a way similar to anti-virus software. These systems must 

operate at line (wire) speed so that they do not become a bottleneck to the system’s 

performance Network Intrusion Detection Systems running in general purpose 

processors can only serve up to a few hundred Mbps throughput. Measurements on 

Snort show that 31% of total processing and 80% in the case of web-intensive traffic is 

due to string matching. Therefore, string matching can be considered as the most 

computational intensive part of a NIDS. 

 

Many different algorithms or combinations of algorithms have been introduced 

and tested on Snort’s ruleset but many of these solutions can only serve up to a few 

hundred Mbps throughput. Until now several hardware based solutions have given 

very promising results, from ASIC commercial products to FPGA-based string matching 

or finite automata string matching techniques, but not all implementations have achieved 

high throughput and reasonable area cost like the FPGA-based implementation in 

earlier work of Sourdis and Pnevmatikatos ([19], [20]).   

 

FPGA-based platforms presented so far provide higher flexibility compared to 

ASIC implementations. FPGA can exploit the fact that the NIDS rules change (relatively 

infrequently of course) and use reconfiguration to reduce implementation cost. In 

addition, FPGA-based systems can exploit parallelism in order to achieve satisfactory 

processing throughput. The use of parallelism (processing multiple bytes or characters 

per cycle) in general is difficult in finite-automata implementations which are built with 

the implicit assumption that the input is checked one byte at a time.  

 

In this section we will provide a description of the background work in CAM and 

DCAM architectures, in order to give a better insight on how our work in this thesis has 

influenced the performance in the proposed architectures by Sourdis and Pnevmatikatos 

 19



([19],[20]). All figures presented in this chapter are borrowed from [19],[20 ]. We will 

discuss the basic CAM architecture and how this idea was extended to the DCAM 

architecture. 

 

 

2.2 CAM (Content Addressable Memory)  

 

A CAM (content-addressable memory) is a memory device that accelerates any 

application requiring fast searches of a database, list or pattern, such as in database 

machines, image or voice recognition, or computer and communication networks. CAMs 

supply the performance advantage over  other memory search algorithms, such as binary 

or tree-based searches or look-aside tag buffers, by comparing the desired information 

against the entire list of pre-stored entries simultaneously, giving an order-of-magnitude 

reduction in the search time.  

 

Thus the term associative memory tends to denote forms of association 

different from familiar ones-forms that presumably have less sharp constraints imposed 

by the structure of memory (as opposed to the structure of the information in the 

memory). 

 

In a CAM, data is stored in locations in a somewhat random fashion. The 

locations can be selected by an address bus or the data can be written directly into the 

first empty location, because every location has a pair of special status bits that keep track 

of whether the location has valid information in it or is empty and available for 

overwriting.  

 

Once information is stored in a memory location, it is found by comparing every 

bit in memory with data placed in a special comparator register. If there is a match for 

every bit in a location with every corresponding bit in the comparand, a match flag is 

asserted to let the user know that the data in the comparand was found in memory. A 

priority encoder sorts out which matching location has the top priority, if there is more 

than one, and makes the address of the matching location available to the user. Thus, 

with a CAM, the user supplies the data and gets back the address. 

 

 20



CAMs are based on memory cells that have been modified by the addition of 

extra transistors that compare the state of the bit stored with the state stored in a 

comparand register. Logically, CAMs perform an exclusive-NOR function, so that a 

match is only indicated if both the stored bit and the corresponding comparand bit are 

the same state.  

CAMs can accelerate any application requiring fast searches of databases, lists, or 

patterns, such as in image or voice recognition, or computer and communication designs. 

For this reason, CAMs are used in applications where search time is critical and 

must be very short. In each one of these applications the user may not know the 

addresses of words that have particular pieces of information stored within a specific 

portion of the word length. For example, the search key could be the IP address of a 

network user, and the associated information could be a user’s access privileges and 

location on the network. If the search key presented to the CAM is present in the CAM’s 

table, the CAM indicates a match and returns the associated information, which consists 

of the user’s privileges. A CAM can thus operate as a data-parallel or single 

instruction/multiple data (SIMD) processor.  

 

In [19] Sourdis and Pnevmatikatos have shown that a CAM implemented using 

discrete comparators for pattern matching has several advantages:  

(i) it is simple and regular  

(ii) it allows for fine grain pipelining and high operating frequencies 

(iii) it is straightforward to use multiple comparators in order to process multiple 

input bytes per cycle (parallelism) 

 

The main idea behind the CAM comparator structure is that the pattern matching 

system is organized as a single input that supplies the input stream of characters and an 

output that is simply an indicator showing if a match occurred, plus an identifier of the 

matching rule. 

 

The main drawback of this approach is its area cost which is around 4-5 logic cells 

per search pattern character including all overheads. To reduce the cost they have 

proposed sharing the result of comparators when the same character was searched for in 

 21



two different patterns but at the same location. For example in search strings “AB” and 

“AC” one could use only one comparator for “A” instead of two (Figure 2.1). 

 

 
Figure 2.1 (taken from paper [20]): Basic CAM comparator structure and optimization.  
Part (a) shows the straightforward implementation where a shift register holds the last N 
characters of the input stream. Each character is compared against the desired value (in two 
nibbles to fit in FPGA LUTs) and all the partial matches are combined with an AND gate to 
produce the final match result. Part (b) on the other hand illustrates the proposed optimization 
where the match “A” signals are shared across the two search strings “AB” and “AC” to reduce 
area cost 
 
 

In this approach, the input stream is inserted in a shift register and the individual 

entries are fanout to the pattern comparators. So, to search for strings “AB” and “AC”, 

we have two comparators fed from the first two position of the shift register. Figure 

2.1(a) reflects the FPGA implementation where each 8-bit comparator is broken down to 

two 4-bit comparators each of which fits in one LUT. This implementation is simple and 

regular and with proper use of pipelining can achieve very high operating frequencies. As 

we have already mentioned, its drawback is the high area cost. To improve this cost, the 

solution suggested was sharing the character comparators for strings with 

“similarities”. This is shown in Figure 2.1(b) where the result of a single comparator for 

character A is shared between the two search strings “AB” and “AC”.    

 

A complete Intrusion Detection Systems (IDS) based on the Snort rules requires 

a system optimized for hundreds of rules, many of which require string matching against 

the entire data segment of a packet. Highly parallel hardware backend technology has 

been developed in the past, to dramatically increase the speed of string matching, 

specifically directed toward intrusion detection and response applications. The high level 

 22



of performance that they provide is necessary to provide real-time string matching at 

Internet speeds.  

 

Snort has thousands of content-based rules. Each of these rules requires that a 

packet be searched in its entirety for the occurrence of some “fingerprint" string. Using 

naive methods, this is unworkable. Using more sophisticated algorithms or higher levels 

of parallelism, it becomes tenable. 

 

Sourdis and Pnevmatikatos [20]  have developed a pattern-matching co-processor 

that supports all pattern matching functions of the Snort rule language. In order to 

achieve maximum pattern capacity and throughput, the design focuses on minimizing 

circuit area while maintaining high clock speed. 

 

2.3 DCAM (pre-Decoded Content Addressable Memory) 
 

The next work by Sourdis and Pnevmatikatos extends the idea of CAM further: 

instead of keeping a window of input characters in the shift register each of which is 

compared against search patterns, equality of the input for the desired characters can be 

tested firstly, and then delay the partial matching signals.  

 

These two approaches (sharing the character comparison and delaying partial 

matching) are compared in Figure 2.2. In this Figure, part (a) corresponds to the earlier 

design with the LUT details abstracted away in the equality boxes and part (b) showing 

how the equality is tested primary for the three distinct characters followed by a 

postponement in the matching of character A to obtain the complete match for strings 

“AB” and “AC”. This approach achieves not only the sharing of the equality logic for 

character A, but also transforms the 8-bit wide shift register used in part (a) into possibly 

multiple single bit shift register for the equality result. Hence, if we can exploit this 

advantage, the potential for area savings is significant. This architecture design is called 

DCAM. 

 
 

 23



 
Figure 2.2 (taken from paper [ 20 ]) : Comparator Optimization: starting from the shared 
comparator implementation of Figure 1 the comparators are placed before the shift register, and 
the matching of signal is delayed to achieve the correct result. Note that the shift register is 8-bit 
wide in part (a), and 1-bit wide part (b). 
 
 

One thing that was taken into consideration in this DCAM implementation is 

that the number of single bit shift registers is proportional to the length of the search 

patterns. In Figure 3.3 we can see how shift registers affect the architecture design. 

 

 
Figure 2.3 (taken from paper [20] ) : To match the string “ABCD” we have to remember the 
matching of character A 3 cycles ago, the matching of B two cycles ago, etc, until the final 
character is matched in the current cycle. 
 
 

Τo match a string of length four characters, we ( i ) need to test equality for these 

four characters (in the dashed “decoder” block), and (ii) to delay the matching of the first 

character by three cycles, the matching of the second character by two cycles, and so on, 

for the width of the search pattern. In total, the number of storage elements required in 

this approach is L ∗ (L − 1)/2 for a string of length L. To overcome this disadvantage, 

the number of shift registers was reduced by sharing their outputs whenever the same 

character is used in the same position in multiple search patterns, and secondly an 

 24



optimized implementation of a shift register was used with a device (Xilinx) that uses a 

single logic cell for a shift register. 

 
 
2.4 Practices to increase performance 
 

In order to achieve better performance, two basic techniques were used to 

improve the operating speed as well as the throughput of the DCAM implementation. 

To achieve high operating frequency, parallelism was used and to achieve better 

performance and area density, partitioning was used. 

 

We will only discuss the partitioning technique here since this is the 

purpose of this thesis. The main idea on how the partitioning method influences 

performance was introduced in [20] and will be discussed in the following section. This 

thesis focuses on a software implementation (METIS) of a multilevel recursive 

bisection algorithm to achieve the partitioning of the entire search pattern rule set 

into smaller groups.  

   

In terms of performance, a limiting factor to the scaling of an implementation to 

a large number of search patterns is the fanout and the length of the interconnections. 

For example, if we consider a set of search patterns with 10,000 uniformly distributed 

characters, we have an average fanout of 40 for each of the decoders’ outputs. 

Furthermore, the distance between all the decoders outputs and the equality checking 

AND gates will be significant. 

 

If we partition the entire set of search patterns in smaller groups, we can 

implement the entire fanout-decode-match logic for each of these groups in a much 

smaller area, reducing the average length of the wires. This reduction in the wire length 

though comes at the cost of multiple decoders. With grouping, we need to decode a 

character for each of the group in which they appear, increasing the area cost. On the 

other hand, the smaller groups may require smaller decoders, if the number of distinct 

characters in the group is small. Hence, if we group together search patterns with more 

similarities we can reclaim some of the multi-decoder overhead.  

 
In the partitioned design, each of the partitions will have a structure similar to the 

one depicted in Figure 2.4. The multiple groups will be fed data through a fanout tree, 

 25



and all the individual matching results will be combined to produce the final matching 

output. Each of the partitions will be relatively small, and hence can operate at a high 

frequency. However, for large designs, the fanout of the input stream much traverse long 

distances. 

 

In their designs Sourdis and Pnevmatikatos observe that these long wires 

sometimes limit the frequency for the entire design. To tackle this bottleneck they used 

multiple clocks: one slow clock to distribute the data across long distances over wide 

busses, and a fast clock for the smaller and faster partitioned matching function. 

Experimenting with various partition sizes and slow-to fast clock speed ratios they 

observed that reasonable sizes for groups is between 64 and 256 search patterns, while a 

slow clock of twice the period is slow enough for their designs. 

 

 
Figure 2.4 (taken from paper [ 20 ] ). The structure of a N-search pattern module with 
parallelism P = 4. Each of the P copies of the decoder generates the equality signals for C 
characters, where C is the number of distinct characters that appear in the N search strings. A 
shared network of SRL16 shift registers provides the results in the desired timing, and P AND 
gates provide the match signals for each search pattern. 
 
 

 

 

 

 

 

 

 

 

 26



2.5 Pattern partitioning algorithms 
 

To identify which search patterns should be included in a group we have to 

determine the relative cost of the various different possible groupings. The goal of the 

partitioning algorithm is (i) to minimize the total number of distinct characters that need 

to be decoded for each group, and (ii) to maximize the number of characters that appear 

in the same position in multiple of search patterns of the group (in order to share the 

shift registers).  

 

The proposed algorithm by Sourdis and Pnevmatikatos implements a simple 

heuristic and does not guarantee an optimal partitioning of the search patterns. In the 

next chapter we will discuss this pattern partitioning algorithm in more detail. The main 

idea behind this thesis method is that a more “sophisticated” algorithm can be 

used to achieve a better partitioning of the entire rules set. A method called graph 

partitioning is proposed, in which a better partition criterion seeks a small cut that 

partitions the vertices into roughly equal-sized pieces. 

 

Unfortunately, our data sets are not so regular in structure, thereby necessitating 

more sophisticated partitioning methods. Our problem is to identify which search 

patterns should be included within a group. Since patterns should be divided evenly 

across a group set while minimizing the total number of distinct characters that need to 

be decoded for each group (edges that straddle two subsets), it can be phrased as a graph 

partitioning problem in which the number of partitions is equal to the number of groups. 

 

2.6 Cost model 
 

We will first present the evaluation on the basic performance and cost of 

DCAMs. Area cost is calculated in terms of occupied logic cells needed for a design that 

stores a certain number of matching characters (area cost = logic cells/character) . 

 
Figure 2.5 plots the performance both in terms of operating frequency, as well as 

in processing throughput (Gbps) for the three group sizes (64, 128, 256 rules per group) 

and for rule sets with sizes between 4,000 and 18,000 total characters. We present these 

results to show the performance improvement that is achieved by the partitioning 

technique and not to do a straightforward comparison with the current work. In the next 

 27



sections of this thesis an overall comparison between DCAM with the greedy algorithm 

partitioning and our approach with the graph partitioning technique will be presented.  

   
We can see that all the different designs achieve operating frequencies between 335 

and 385MHz. This corresponds to a processing bandwidth between 2.7 and 3.1 Gbps. 

From these results we can draw two general conclusions for the group size.  

(i) smaller group sizes are more insensitive to the total design size  

(ii) when the group size approaches 256 the performance deteriorates, indicating that 

optimal group sizes will be in the 64-128 range. 

 
 
 

 
Figure 2.5 (taken from [20]) . DCAM Performance of previous work in terms of operating 
frequency and throughput for the group sizes of 64, 128, and 256 rules and for rule sets with 
sizes 4.000 and 18.000 characters. 
 
 
 

The area cost was also measured and the number of logic cells needed for each 

search pattern character was plotted in Figure 2.6. As expected, larger group sizes result 

in smaller area cost due to the smaller replication of comparators in the different groups. 

Similar to performance, the area cost sensitivity to total rule set size increases with group 

size. In all, the area cost for the entire Snort ruleset is about 1.28, 1.1 and 0.97 logic cells 

per search pattern character for group sizes of 64, 128 and 256 rules respectively. While 

smaller group sizes offer the best performance, it appeared that if the area cost is also 

taken into account, the medium group size (128) can be considered optimal. 

 28



 
Figure 2.6. (taken from [20])DCAM Area cost of previous work, in terms of operating 
frequency and throughput for the group sizes of 64, 128, and 256 rules. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 29



Chapter 3 

 

3.1 Pattern Partitioning Algorithms 

 

To identify which search patterns should be included in a group we have to 

determine the relative cost of the various different possible groupings. A simple 

algorithm was proposed by Sourdis and Pnevmatikatos that implements a simple 

heuristic and does not guarantee an optimal partitioning of the search patterns. The cost 

was computed by finding the set difference between the set of characters used already by 

the group and the set of characters in the search pattern under consideration. They 

iterated among all groups and all search patterns until all the patterns have been assigned 

to a group. This algorithm is described in three steps :  

 

1. First an array is created with one entry for each search pattern. Each array entry 

contains the set of distinct characters in the search string.  

 

2. Starting with a number of empty partitions or groups, a step of initial assignment of 

search patterns is performed, to obtain a “seed” pattern in each group of the different 

groups. 

 

3. Then an iterative method is used: for each group they select an unassigned search 

pattern so that the cost of adding it to the group is the least among the unassigned 

patterns. The cost is computed by finding the set difference between the set of characters 

used already by the group and the set of characters in the search pattern under 

consideration. Iteration is made among all groups and all search patterns until all the 

patterns have been assigned to a group. 

 

 

The algorithm was also compared with a straightforward approach of just sorting 

the search patterns, and it was observed that using the group identified by their algorithm 

the area cost was about 5% smaller and 5% faster than the one using partitioning based 

on sorted search patterns. This algorithm was more efficient in minimizing the number 

of shift registers requiring 9% fewer shift registers than the sorting the search patterns. 

For the entire SNORT rule set and using 24 groups, the algorithm produced groups that 

 30



contain an average of 54 distinct search characters each. Therefore each of the decoders 

is significantly smaller that a full 8-to-256 decoder. 

 

This work proposes a partitioning alternative. The partitioning algorithm of 

Sourdis & Pnevmatikatos is greedy, and hence may leave room for further 

improvements. A more sophisticated algorithm could take into account the exact 

location of the similarities between search patterns (in order to increase the degree of 

shift register sharing), and would use a global instead of local approach to cost 

minimization. 

 

3.2 Graph Partitioning Algorithms 

 

      3.2.1 Problem Formulation 

 

A complete NIDS based on Snort’s rules requires a system optimized for 

hundreds of rules, many of which require string matching against the entire data segment 

of a packet. Snort, the open-source IDS has thousands of content-based rules. Each of 

these rules require that a packet be searched in its entirety for the occurrence of some 

“fingerprint" string. Using naive methods, this is unworkable. Using more sophisticated 

algorithms or higher levels of parallelism it becomes tenable. Most research in this area 

has achieved to develope hardware architectures that can handle more than a few 

hundred rules at reasonable speeds. 

                  

The goal is to partition the entire set of search patterns in smaller groups. Some 

data are easy to distribute. For example, dense array-based problems typically have a high 

degree of regularity, allowing the array elements to be distributed using straightforward 

blocked, cyclic, or block-cyclic schemes. These distributions are advantageous due to 

their simplicity and their ability to take advantage of an array’s regular structure. 

Unfortunately, our data sets are not so regular in structure, thereby necessitating 

more sophisticated partitioning methods. Our problem is to identify which search 

patterns should be included within a group. 

 

Since patterns should be divided evenly across a group set while minimizing the 

total number of distinct characters that need to be decoded for each group (edges that 

 31



straddle two subsets), it can be phrased as a graph partitioning problem in which the 

number of partitions is equal to the number of groups. 

   

 

 

3.3 Previous work on Graph Partitioning 

 

Graph Partitioning is a very common problem and has a large number of 

applications such as circuit layout, compiler design, and load balancing. 

 

A graph partitioning problem in its most general form, requires dividing the set 

of nodes of a weighted graph into k disjoint subsets or partitions such that the sum of 

weights of nodes in each subset is nearly the same (within a user-supplied tolerance) and 

the total weight of all of the edges connecting nodes in different partitions is minimized.   

 

 

 
Figure 3.1: Graph partitioning example 

 

Several different flavours of graph partitioning arise depending on the desired 

objective function:  

 32



• Minimum cut  - The smallest set of edges to cut that will disconnect a graph can 

be efficiently found using network flow methods. 

• Graph partitioning - A better partition criterion seeks a small cut that partitions 

the vertices into roughly equal-sized pieces. Unfortunately, this problem is NP-

complete.   Fortunately, heuristics discussed below work well in practice. These 

heuristics often can handle rather large graphs with more than a million vertices 

and deliver good solutions. In contrast to the development of heuristics only a 

little expense has been done in the development of exact algorithms. From the 

NP-hardness fact it is clear that generally only relatively small graphs can be 

solved exactly. Nevertheless, exact solutions are of interest for applications and 

for the validation of heuristics. 

 
Maximum cut  - Given an electronic circuit specified by a graph, the maximum 

cut defines the largest amount of data communication that can simultaneously 

take place in the circuit.   The highest-speed communications channel should 

thus span the vertex partition defined by the maximum edge cut. Finding the 

maximum cut in a graph is NP-complete, despite the existence of algorithms for 

minimum cut. However, heuristics similar to those of graph partitioning can 

work well. 

 

 

Unfortunately, graph partitioning is a NP-hard problem, and therefore all known 

algorithms for generating partitions merely return approximations to the optimal 

solution. In spite of this theoretical limitation, numerous algorithms for graph 

partitioning have been developed that generate high-quality partitions in very little time.  

 

Spectral partitioning methods (Figure 3.2) are known to produce good partitions 

for a wide class of problems, and they are used quite extensively [12]. However, these 

methods are very expensive since they require the computation of the eigenvector 

corresponding to the second smallest eigenvalue (Fiedler vector). Another class of graph 

partitioning techniques uses the geometric information of the graph to find a good 

partition. 

 

 33



 

 
Figure 3.2: Spectral Methods. (1) The Laplacian matrix LG of the graph is = A –D (the 

adjacency matrix – the degree matrix) (2) Compute the second eigenvector (Fiedler vector) of 

LG. (3)  The Fiedler vector associates a value with each vertex, this value is used to order the 

vertices and the list is split in half. 

 

 
Geometric partitioning algorithms [13,14,15] tend to be fast but often yield 

partitions that are worse than those obtained by spectral methods. Among the most 

prominent of these schemes is the algorithm described in [13,14]. This algorithm 

produces partitions that are provably within the bounds that exist for some special 

classes of graphs (that includes graphs arising in finite element applications). However, 

due to the randomized nature of these algorithms, multiple trials are often required (5 to 

50) to obtain solutions that are comparable in quality to spectral methods. Geometric 

graph partitioning algorithms are applicable only if coordinates are available for the 

vertices of the graph. In many problem areas (e.g. linear programming, VLSI), there is no 

geometry associated with the graph. 

 

Another class of graph partitioning algorithms reduces the size of the graph (i.e. 

coarsen the graph) by collapsing vertices and edges, partition the smaller graph, and then 

uncoarsen it to construct a partition for the original graph. These are called multilevel 

graph partitioning schemes. Some researchers investigated multilevel schemes 

primarily to decrease the partitioning time at the cost of somewhat worse partition 

quality [43]. Recently, a number of multilevel algorithms have been proposed [16,17,18,] 

that further refine the partition during the uncoarsening phase. These schemes tend to 

give good partitions at a reasonable cost. Bui and Jones [16] use random maximal 

matching to successively coarsen the graph down to a few hundred vertices, they 

 34



partition the smallest graph and then uncoarsen the graph level by level, applying 

Kernighan-Lin to refine the partition (see Figure 3.3). 

 

 
Figure 3.3: Given a graph that has been partitioned (sub-optimally), improve the partition 

maintaining load balance, repeatedly find a pair of vertices, one from each subdomain and swap 

their subdomains. At each iteration the algorithm swaps subsets consisting of equal number of 

vertices between the two sets to reduce the number of edges joining the two sets. The algorithm 

terminates when it is no longer possible to reduce the number of edges by swapping subsets, or 

when a specified number of swaps have been made. 
 

Hendrickson and Leland [5] enhance this approach by using edge and vertex 

weights to capture the collapsing of the vertex and edges. In particular, this latter work 

showed that multilevel schemes can provide better partitions than spectral methods at 

lower cost for a variety of finite element problems. In this thesis the tool used for the 

implementation is based on the work of Hendrickson and Leland. The algorithm 

studied here is called multilevel recursive bisection [8], which we will describe latter in 

this chapter. 

 

 

3.3.1 P-way Partition 

 
In a graph-based form, each node represents a search pattern while each edge 

represents a data dependence between two vertices. In this thesis, a graph G=(V,E) is 

 35



defined in terms of a set of vertices V , and a set of edges E. Edges connect 

vertices from V pair-wise and are undirected. Self-loops are not permitted.  

 
A p-way partition of a graph is a mapping P : V  [1…p]  of its vertices into p 

subsets  . Every partition generates a set of cut edges SSS p,...,, 21 Ec  defined as the 

subset of E whose endpoints lie in distinct partitions. The weight of each subset, |  | 

is defined to be the number of vertices mapped to that subset by P .  

Si

 

 

The efficient implementation of many parallel algorithms usually requires the 

solution to a graph partitioning problem, where vertices represent computational tasks 

and edges represent data exchanges. Depending on the amount of the computation 

performed by each task, the vertices are assigned a proportional weight. Similarly, the 

edges are assigned weights that reflect the amount of data that needs to be exchanged. A 

k-way partitioning of this computation graph can be used to assign patterns to k groups. 

Since the partitioning assigns to each patterns tasks whose total weight is the same, the 

work is balanced among k groups. Furthermore, since the algorithm minimizes the edge-

cut (subject to the balanced load requirements), the communication overhead is also 

minimized.  

 

3.3.2 Recursive Bisection 

 
An instance of graph partitioning that deserves special attention is the graph 

bisection problem. This is simply a variation on graph partitioning in which the graph 

G must be divided into two subsets. Although bisection seems considerably easier than 

general p-way partitioning, it is still NP-hard. 
 

Most p-way partitioning algorithms utilize a divide-and-conquer approach known 

as recursive bisection. This technique generates a p-way partition by performing a 

bisection on the original graph and then recursively considering the resulting subgraphs 

(Figure 3.5). It has been shown that even if recursive bisection is performed using an 

optimal bisection algorithm, it can still result in a suboptimal p-way partition [11]. In 

spite of this theoretical limitation, recursive bisection remains the primary graph 

 36



partitioning strategy due to its simplicity compared to computing p-way partitions 

directly.  

 

 

 
Figure 3.4: An example demonstrating the use of recursive bisection to compute an eight-way 

partition for an abstract graph. 

 

 

 

3.3.3 Multilevel Techniques 

 
One recent approach that has greatly accelerated the partitioning of graphs is the 

use of multilevel techniques. These techniques are analogous to multigrid methods for 

solving numerical problems. Both approaches construct a hierarchy of approximations to 

the original problem so that a coarse solution can quickly be generated. This solution is 

then progressively refined at the more detailed levels of the hierarchy until a solution for 

the original problem is reached. In the context of graph partitioning, this translates 

into creating a simplified graph that approximates the input graph, finding a 

partition for it, and then refining that partition to create a partition for the original 

graph. 
 

 

 

 37



 
 

Figure 3.5: A schematic of the multilevel technique. The original graph (bottom left) undergoes 

a series of coarsening steps that reduce it to a smaller graph. This coarsest graph is partitioned 

using a standard algorithm. The partition is then propagated down to the finer graphs, potentially 

refining it at each level to account for the additional degrees of freedom. The result is a partition 

for the original graph. 

 
All multilevel techniques for graph partitioning share the same general computational 

structure, though the details may vary: 

 

• Coarsen: Given the input graph ),( 000 EVG =  construct a series of 

increasingly smaller graphs ),( EVG iii = consisting of GGG m
,...,,

21  graphs, 

such that VVV m〉〉〉 ...10
. During the coarsening phase, a sequence of 

smaller graphs, each with fewer vertices, is constructed. Graph coarsening can be 

achieved in various ways. Some possibilities are shown in Figure 3.6. 

 
 

 

 38



 
 

Figure 3.6: Different ways to coarsen a graph 

 

• Partition: A two-way partition of the graph Gm  is computed, that partitions 

V m  into two parts, each containing half the vertices of G0 , using a standard 

algorithm. 

 

 

• Uncoarsen: Propagate the solution for Gm down to the finer graphs, potentially 

refining it at each level. In other words, the partition Pm of Gm  is is projected 

back to G  by going through intermediate partitions 0 PPPP mm 0121 ,,...,,
−−

.  

 

 
This process results in a partition for the original graph (Figure 3.5). The hope is 

that multilevel techniques will reduce the time required to compute partitions without 

sacrificing quality. In practice, the use of multilevel techniques has proven not only to 

accelerate partition generation, but also to produce better partitions than traditional 

single level techniques [5]. 

 

 39



3.4 Our Approach 

 
Our problem is to identify which search patterns should be included in a group. 

In our approach a node represents a string. Our strings are a sequence of 

hexadecimal characters like the ones presented below:  
 
00010003000100 
00012f 
000143 
000186A0 
202F2525 
202f485454502f312e 
2041555448454e544943415445207b 
 

 
  These strings derived from a typical Snort’s ruleset after converting the text 

characters to their ASCII code. All characters are in a single text file, one string per line. 

We construct a graph that each node represents a single string. So if a file consists of 100 

lines, our graph will have 100 nodes. 

 

An edge (weighted) exists between two nodes in this graph, whenever the 

following rule applies : the first and the second digits of two strings are the same. This is 

because the characters in the rule set are given in hexadecimal notation, where a 

character is represented by two digits. 

  So in the next example in Figure 3.7 we see a match in the first and the second 

string and this is the “00” digits, also the next characters form a match, the “01” digits.  

 

 
 
 “match”
 
 
             0 0 0 1 0 0 0 3 0 0 0 1 0 0 
 
             0 0 0 1 2 f 

 “match” 

 
 

Figure 3.7 : Two matching rules 
 
There is no other match in this example. So the two strings were “matched” two times, 

so 2 will be the weight in our graph construction algorithm.  

 40



 

Our simple graph construction algorithm, builds the graph according to this 

“matching” rule. It takes the first line of the rule’s file and compares it to all the other 

lines. Whenever a rule-match between two strings (nodes) is found, an edge is added to 

the graph between the two matching nodes. The weight of each edge is also included. 

Then the next line is compared with all the other lines, and so on until the entire file is 

processed. The graph is written in file in the format that is required by the software 

partitioning software (METIS), which will be described in more detail in the next 

chapter.   

 

 We used multilevel recursive bisection, an algorithm implemented in the METIS 

software package for partitioning our graph. The result we get after we apply the 

partitioning algorithm is a simple file with :  

 

• number of lines=number of nodes (=number of strings of the input file) 

• each lines has a single number in the range 0-5 (for a 6-way partition) 

• each line in the resulted file indicates in which partition each node (string) belongs, 

like the example we show in the next table. The first column is the result of METIS 

while the second column shows the associated string in the partition number if we 

check the original rule’s file. 
 

Partition number 
that rule belongs to 
(METIS file) 

String (rule) assigned 

3 0A0000018504000080726F6F7400 
5 0A2020202020 
4 0a433a6461656d6f6e0a52 
5 0a43726f6f740a4d70726f67 
5 0a43726f6f740d0a4d70726f67 
5 0a442f 
0 0A68656c700A71756974650A 

Table 3.1  : This is a simple METIS output file example 

 

 

 

 

 

 41



3.5 Example: How to coarsen a Graph 

 

In most coarsening schemes, a set of vertices of Gi  is combined to form a single 

vertex of the next level coarser graph G . This edge collapsing idea can be formally 

defined in terms of matchings. A matching of a graph is a set of edges, no two of which 

are incident on the same vertex. Thus, the next level coarser graph 

i 1+

Gi 1+ is constructed 

from by finding a matching of and collapsing the vertices being matched into 

multinodes. The edges in this set (matching set) are removed, and the two nodes 

connected by an edge in the matching are collapsed into a single node whose weight is 

the sum of the weights of the component nodes. The unmatched vertices are simply 

copied over to 

Gi Gi

Gi 1+ . Since the goal of collapsing vertices using matchings is to decrease 

the size of the Graph Gi the matching should be maximal. A matching is called 

maximal matching if it is not possible to add any other edge to it without making two 

edges become incident on the same vertex. Note that depending on how matchings are 

computed, the size of the maximal matching may be different. The coarsening phase 

ends when the coarsest graph G has a small number of vertices or if the reduction in 

the size of successively coarser graphs becomes too small. An example of the coarsening 

phase in detail is given in Figure 3.8 (a,b,c,d). 

m

 

Given a weighted graph after any stage of coarsening, there are several choices of 

matchings for the next coarsening step. A simple matching scheme [5] known as 

random matching (RM) randomly chooses pairs of connected unmatched nodes to 

include in the matching. In [7], Karypis and Kumar describe a heuristic known as heavy-

edge matching (HEM) to aid in the selection of a matching that not only reduces the 

run time of the refinement component of graph partitioning, but also tends to generate 

partitions with small separators. The strategy is to randomly pick an unmatched node, 

select the edge with the highest weight among the edges incident on this vertex that 

connect it to other unmatched vertices, and mark both vertices connected by this edge as 

matched. Note that the weight of an edge connecting two nodes in a coarsened version 

of the graph is the number of edges in the original graph that connect the two sets of 

original nodes collapsed into the two coarse nodes. HEM, by absorbing the heavier 

edges, generates coarse graphs whose nodes are loosely connected (by the lighter 

 42



remaining edges), thus ensuring that a partition of the coarse graph corresponds to a 

good partition of the original graph. 

 

 

 
Figure 3.8.a : Original Graph and a matching (a set of edges, no two of which are incident on 

the same vertex). We assume node-edges weights equal to 1 at this example for simplicity. 

 

 

 

 

2 

2 

2

2

1

2
1

1
1

1 1

Figure 3.8.b: Graph after one step of coarsening. The edges in the matching set are removed, 

and the two nodes connected by an edge in the matching are collapsed into a single node whose 

weight is the sum of the weights of the component nodes. (Big nodes represent the connected 

nodes from the previous coarsening phase). Taking into account edge weights also, the weight of 

the new edge is the sum of the weights of the edges “collapsed” into it.  

 

 43



 
Figure 3.8.c: Next step is the matching in the coarse graph 

 

 

 

2

2
4

2

3

Figure 3.8.d: Graph after the two steps of coarsening. 

 

 

 

3.6 Example: How to Partition a Graph 

 

One way to get the initial k-way partitioninig is to keep coarsening the graph until it 

contains exactly k nodes. This coarse k-node graph serves as a good initial partitioning. 

There are two problems with this approach. First, for many graphs, the reduction in the 

size of the graph in each coarsening step becomes very small after some coarsening steps, 

making it very expensive to continue with the coarsening process. Second, even if we are 

able to coarsen the graph down to only k nodes, the weights of these nodes are likely to 

be quite different, making the initial partitioning highly unbalanced. In METIS the 

partitioning phase is done using the multilevel bisection algorithm. 

 

In this second phase of the multilevel partitioning algorithm computes a high quality 

bisection Pm  of the coarse graph Gm
, that partitions V  (vertices) into two parts, 

m

 44



such that each part contains roughly half of the vertex weight of the original graphG , 

using a standard algorithm (like spectral partitioning methods, geometric methods, 

multilevel bisection, p-way partition, already discussed before in this chapter). Since 

during coarsening the weights of the vertices and edges of the coarser graph were set to 

reflect the weights of the vertices and edges of the finer graph, 

0

Gm
contains sufficient 

information to intelligently enforce the balanced partition and the small edge-cut 

requirements. 

 

We will not get into details on this phase since there are many algorithms that 

compute the multilevel bisection, most of them are combinations of other algorithms 

and are not useful in this thesis. Here we will take the simplest rule to find an initial 

partition and this is the small edge-cut , that is to minimize the number of edges 

crossing the cut. 

 

 

 

3.7 Example: How to Uncoarsen a Graph 

  

In this third phase of the multilevel partitioning algorithm the goal is to “redraw” the 

original graph. In other words the partition Pm of the coarser graph  is projected 

back to G  by going through the graphs . 

Gm

0 GGG mm 121 ,...,,
−−

 

After projecting a partition, a refinement algorithm is used to select two subsets of 

vertices, one from each part such that when swapped the resulting partition has a smaller 

edge-cut. Here we will continue our example with no refinement procedure. In Figure 

3.9  we give an example of the uncoarsening technique. 

 

 

 

 

 

 

 45



2

2
4

2

3

 

 

2 

2

2

2

1

2
1

1
1

1 1

 

 

 

 
Figure 3.9: The uncoarsening phase of the graph. Note that is just a simple example, no 

heuristics were taken into the initial graph partition and no refinement procedure is made at this 

point. 

 

 

 

 

 

 46



Chapter 4 

 

METIS: A Software Package for Partitioning Unstructured Graphs 

.1 Introduction 

Algorithms that find a good partitioning of highly unstructured graphs are critical 

for dev

The goal of the first condition is to balance the computations among the 

process

.2 What is METIS 

METIS [ 30 ] is a software package for partitioning large irregular graphs, partitioning 

 

 

4

 

eloping efficient solutions for a wide range of problems in many application areas 

on both serial and parallel computers. For example, large-scale numerical simulations on 

parallel computers, such as those based on finite element methods, require the 

distribution of the finite element mesh to the processors. This distribution must be done 

(i) so that the number of elements assigned to each processor is the same, and (ii) the 

number of adjacent elements assigned to different processors is minimized.  

 

ors. The goal of the second condition is to minimize the communication resulting 

from the placement of adjacent elements to different processors. Graph partitioning can 

be used to successfully satisfy these conditions by first modeling the finite element mesh 

by a graph, and then partitioning it into equal parts. 

 
4

 

large meshes, and computing fill reducing orderings of sparse matrices. The algorithms in 

METIS are based on multilevel graph partitioning described in [6], [7], [8]. The 

advantages of METIS is that it’s very fast and it provides good quality partitions 

compared to other similar software packages. 

 

 

 

 

 47



 

4.3 METIS’s Stand-Alone Programs 

METIS provides a variety of programs that can be used to partition graphs, 

partitio

The rest of this section provides detailed descriptions about the functionality of 

these p

4.4 Graph Partitioning Programs provided by METIS 

METIS provides two programs pmetis and kmetis for partitioning an 

unstruc

On the other hand, pmetis is preferable for partitioning a graph into a small 

number

The first argument, GraphFile, is the name of the file that stores the graph, while 

the seco

 

n meshes, compute fill-reducing orderings of sparse matrices, as well as programs 

to convert meshes into graphs appropriate for METIS’s graph partitioning programs. 

 

rograms, how to use them, the format of the input files required by them, and the 

format of the produced output files. 

 

 

tured graph into k equal size parts. The partitioning algorithm used by pmetis is 

based on multilevel recursive bisection, whereas the partitioning algorithm used by 

kmetis is based on multilevel k-way partitioning. Both of these programs are able to 

produce high quality partitions. However, depending on the application, one program 

may be preferable than the other. In general as concluded from METIS documentation, 

kmetis is preferred when it is necessary to partition graphs into more than eight 

partitions. For such cases, kmetis is considerably faster than pmetis.  

 

 of partitions. Both pmetis and kmetis are invoked by providing two arguments at 

the command line as follows: 
pmetis GraphFile Nparts 

kmetis GraphFile Nparts 

 

nd argument, Nparts, is the number of partitions that is desired. Both pmetis and 

kmetis can partition a graph into an arbitrary number of partitions. Upon successful 

execution, both programs display statistics regarding the quality of the computed 

partitioning and the amount of time taken to perform the partitioning. The actual 

 48



partitioning is stored in a file named GraphFile.part.Nparts, whose format is described 

later in this section. 

 

Figure 4.1 taken from METIS documentation, shows the output of pmetis and 

kmetis for partitioning a graph into 100 parts. From this figure we see that both 

programs initially print information about the graph, such as its name, the number of 

vertices (#Vertices), the number of edges (#Edges), and also the number of desired 

partitions (#Parts). Next, they print some information regarding the quality of the 

partitioning. Specifically, they report the number of edges being cut (Edge-Cut) by the 

partitioning, as well as the balance of the partitioning1. Finally, both pmetis and kmetis 

show the time taken by the various phases of the algorithm. All times are in seconds.  

 

 
Figure 4.1: Output of pmetis and kmetis for 100-way partition (taken from METIS 

documentation [30] ) 

 

 

 49



4.5 Graph Checker 

METIS provides a program called graphchk to check whether or not the format 

of a gra

raphchk GraphFile 

here GraphFile is the name of the file that stores the graph. After creating the graph file 

.6 Input File Formats 

The various programs in METIS require as input a file storing a graph. The 

format 

.6.1 Graph File 

The primary input of the partitioning programs in METIS is the graph to be 

partitio

The first line contains either two (n, m), three (n, m, fmt), or four (n, m, fmt, ncon) 

integers

 

ph is appropriate for use with METIS. This program should be used whenever 

there is any doubt about the format of any graph file. It is invoked by providing one 

argument at the command line as follows: 
 
g

 
w

in the format required by METIS, we used graphchk command to verify that the graph is 

consistent with the required format.  

 
4

 

of such a file is described in the following sections. 

 

4

 

ned or ordered. This graph is stored in a file and is supplied to the various 

programs as one of the command line parameters. A graph G = (V, E) with n vertices 

and m edges is stored in a plain text file that contains n + 1 lines (excluding comment 

lines). The first line contains information about the size and the type of the graph, while 

the remaining n lines contain information for each vertex of G. Any line that starts with 

‘%’ is a comment line and is skipped. 

 

. The first two integers (n, m) are the number of vertices and the number of 

edges, respectively. Note that in determining the number of edges m, an edge between 

any pair of vertices v and u is counted only once and not twice (i.e., we do not count the 

 50



edge (v, u) separately from (u, v)). For example, the graph in Figure 4.4 contains 11 

vertices. The third integer (fmt) is used to specify whether or not the graph has weights 

associated with its vertices, its edges, or both.  

 

 Table 4.1 describes the possible values of fmt and their meaning. Note that if the 

graph is unweighted (i.e., all vertices and edges have the same weight), then the fmt 

parameter can be omitted. Finally, the fourth integer (ncon) is used to specify the number 

of weights associated with each vertex of the graph but this is not used in our work.  
 

fmt Meaning 

0  has no weights associated with either the edges or The graph
the vertices 

1 The graph has weights associated with the edges 
10 s The graph has weights associated with the vertice
11 The graph has weights associated with both the edges & vertices
 

Table 4.1: The various possible values for the fmt parameter and their meanings 

The remaining n lines in the file store information about the actual structure of 

the grap

This format is illustrated in Figure 4.4(a). Note, the optional fmt parameter is 

skipped

 
 

h. In particular, the i th line (excluding comment lines) contains information that 

is relevant to the i th vertex. In the remaining of this section we illustrate this format by a 

sequence of examples. Note that the vertices are numbered starting from 1. Furthermore, 

the vertex-weights must be integers greater or equal to 0, whereas the edge-weights must 

be strictly greater than 0. The simplest format for a graph G is when the weight of all 

vertices and the weight of all the edges is the same.  

 

 in this case. However, there are cases in which the edges in G have different 

weights. This is accommodated as shown in Figure 4.4(b). Now, the adjacency list of 

each vertex contains the weight of the edges in addition to the vertices that is connected 

with. If v has k vertices adjacent to it, then the line for v in the graph file contains 2 ∗ k 

numbers, each pair of numbers stores the vertex that v is connected to, and the weight of 

 51



the edge. Note that the fmt parameter is equal to 1, indicating the fact that G has weights 

on the edges. 

 

 

 

 
Figure 4.4: Storage format for various type of graphs (figure taken from METIS documentation 

[30] ) 
 

 
Let’s explain these file formats shown in the above figure in more detail. A graph 

must be stored in an adjacency matrix representation as stated above. So if we look at the 

graph file of graph (a) in Figure 4.4, we see that the first line contains the number of 

nodes (7) and the number of edges (11 , and then the file goes like this :  

• node number 1 is connected with nodes  5  3  2   

• node number 2 is connected with nodes  1  3  4  

 and so on .   

 

If the graph has weights associated with edges, then the file should be interpreted 

like this:  

node 1 is connected  

• with node 5 with weight 1 

 52



• with node 3 with weight 2 

•  with node 2  with weight 1 

 so if we put all this in one line we get the line of the graph file for node 1 which is  

 5 1 3 2 2 1.     

 

 Our simple graph composition algorithm first counts the number of the nodes 

and also initializes a variable to count the total number of the edges in the graph. The 

algorithm builds the graph according to the “matching” rule. A match, as we have already 

mentioned, is encountered whenever the first and the next character of the two strings 

are the same. So this simple algorithm takes the first line of the rule’s file and compares it 

to all the other lines.  

 

Whenever a rule-match between two strings (nodes) is found, the line number of 

the matching node is added to the line of the node examined, a number indicating the 

weight of that match and also the number that holds the edges totality is updated. Then 

the next line is compared with all the other lines, and so on until the entire rule’s file is 

progressed. 

 
4.6.2 Output File Formats 

 
The output of METIS is either a partition or an ordering file, depending on 

whether METIS is used for graph/mesh partitioning or for sparse matrix ordering. For 

our graph partitioning the output is a partition file. 

 

 The partition file of a graph with n vertices in METIS, consists of n lines with a 

single number per line. The i th line of the file contains the partition number that the i th 

vertex belongs to. Partition numbers start from 0 up to the number of partitions minus 

one. 

 

After constructing the file that represents our graph in the adjacency list 

representation required by METIS, we run the graphchk utility to verify that our graph 

is in the correct format. This is a simple output we got: 

 

 53



Program graphchk 

 ********************************************************************** 

  METIS 4.0.1 Copyright 1998, Regents of the University of Minnesota 

 

Graph Information --------------------------------------------------- 

  Name: graph_all, #Vertices: 1474, #Edges: 297009 

 

Checking Graph... --------------------------------------------------- 

   The format of the graph is correct! 

 

********************************************************************** 

 

This utility notifies you if the format of the graph is not correct , especially if the number 

of edges specified is not correct. The program tells you the number of edges it 

encountered so that you can correct your graph file. 

 

Then we used pmetis program to partition our graph into 6 groups . This is the output 

we got by this procedure. 

 

./pmetis graph_all 6 

********************************************************************** 

  METIS 4.0.1 Copyright 1998, Regents of the University of Minnesota 

 

Graph Information --------------------------------------------------- 

  Name: graph_all, #Vertices: 1474, #Edges: 297009, #Parts: 6 

 

Recursive Partitioning... ------------------------------------------- 

  6-way Edge-Cut:  258510, Balance:  1.01 

 

Timing Information -------------------------------------------------- 

  I/O:                             0.100 

  Partitioning:                    0.110   (PMETIS time) 

  Total:                           0.210 

 

 54



The next step was to partition the graph into 12 groups. 

 
./pmetis graph_all 12 

********************************************************************** 

  METIS 4.0.1 Copyright 1998, Regents of the University of Minnesota 

 

Graph Information --------------------------------------------------- 

  Name: graph_all, #Vertices: 1474, #Edges: 297009, #Parts: 12 

 

Recursive Partitioning... ------------------------------------------- 

  12-way Edge-Cut:  314328, Balance:  1.01 

 

Timing Information -------------------------------------------------- 

  I/O:                             0.090 

  Partitioning:                    0.140   (PMETIS time) 

  Total:                           0.230 

 

 
As we can see from the above print-outs of the program, the main advantage of using 

METIS software package is that is it very quick and straightforward to obtain the 

required partitions.   

 

 

4.7 Graph visualization   

 
We tried several tools in order to visualize our initial graph (as explained in 

section 3.4). These were Dotty, Pajek and Tulip. Unfortunately, due to the fact that our 

graph contains 1475 nodes and 297024 edges, it is very difficult to see how the graph 

actually is represented. Tulip was the only program that could handle such a graph since 

both Dotty and Pajek resulted in errors. Tulip input file format is a little bit complex, but 

the main advantage of this tool is that it can accept other input file formats too. The 

most simple file format acceptable by Tulip is the “dot” format required by the Dotty 

 55



software tool, which is presented in a simple example below. So we created a file that 

described our graph in the dot format and then gave this file as import file in Tulip. 

 

 

 
digraph G { 

edge [arrowhead="none" , arrowtail="none"] 

  a -> b [label="5", style=dashed]; 

  a -> c [label="7",]; 

  c -> d; b -> c; d -> a;  

 }   

 
Figure 4.5 A simple dot file 

 

 

 
Figure 4.6: The corresponding graph from the above dot file 

 

  

 56



In the next figures we can see how the graph actually looks like. As we have 

already said, our graph has too many edges and nodes, so we cannot actually distinguish 

in Figure 4.7 the nodes from the edges. We zoom with the tool in various areas of the 

graph to take a better look (Figures 4.8, 4.9 ,4.10). 
 

 
Figure 4.7: Graph from Tulip 

 

 57



 
Figure 4.8 : A zoom on an area of the graph 

 

 
Figure 4.9: Another zoom 

 

 

 58



 
Figure 4.10: Nodes have too many edges 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 59



Chapter 5 

5.1 Results and Evaluation 

 

5.1.1 Introduction 

 
This thesis explores partitioning algorithms to increase the character’s sharing 

in a DCAM architecture in order to reduce the area cost of character matching. 

 

To identify which search patterns should be included in a group we have to 

determine the relative cost of the various different possible groupings. The goal of the 

partitioning algorithm is  

 

(i) to minimize the total number of distinct characters that need to be 

decoded for each group (edges that straddle two subsets) 

(ii) to maximize the number of characters that appear in the same 

position in multiple copies of search patterns of the group (in order to 

share the shift registers) 

 

We used the official SNORT rule set [38] which consists of a total of 

about 1,500 rules and a corresponding 18,000 characters. The proposed partitioning 

algorithms by Sourdis & Pnevmatikatos, take into account the exact location of the 

similarities between search patterns (in order to increase the degree of shift register 

sharing) and uses a global instead of local approach to cost minimization. 

 

In the previous work of Sourdis, for the evaluation of the impact of partitioning 

on his proposed architecture, he considered three different group sizes: 64,128 and 256 

rules per group. Experimentally he observed that groups smaller than 64 or larger than 

256 rules are inefficient and that the range 64-256 is sufficient to explore grouping 

efficiency. 

 

 

 

 

 60



5.2 Results  

 

Our partitioning scheme, which is based in graph partitioning techniques 

described in chapter 3, partitions the rule set into 6 and 12 groups. The number of rules 

in each group is shown in the following tables. 

 

Part. 
number 

Distinct 
Chars 
/per 
partition

Total 
number 
of 
strings 

Size of 
max 
string 
(chars) 

1 86 244 39 
2 67 244 37 
3 68 244 39 
4 202 243 34 
5 92 245 32 
6 152 243 38 

Table 5.1 : Number of distinct characters per partition, if we partition into 6 groups 

 

Part. 
number 

Distinct 
Chars 
/per 
partition

Total 
number 
of 
strings 

Size of 
max 
string 
(chars) 

1 59 122 34 
2 61 122 31 
3 50 123 37 
4 77 121 39 
5 65 122 39 
6 64 122 37 
7 143 121 34 
8 157 122 26 
9 122 122 38 
10 103 122 25 
11 81 123 31 
12 77 121 32 

Table 5.2 Number of distinct characters per partition, if we partition into 12 groups 

 

We measured performance in terms of operating frequency, and throughput 

(throughput = frequency x  input bits) and compared our results with the ones that were 

generinted  the former work of Sourdis. In our case the input bit per cycle is 8. We also 

 61



measured area cost and calculated the number of logic cells needed for each search 

pattern character and we present the total number of Flip-Flops, the number of LUTs 

and the number of SRL16s in Tables 5.3 and 5.4.  Logic cells are the fundamental 

element of both Altera’s and Xilinx’s devices (A logic cell consists of a 4-input LUT and 

a flip-flop (plus carry chain logic etc.) Two Logic Cells form one Slice, and therefore, it is 

the most proper measure for evaluating the area cost of a design. 

 

For the 6-group partition (average number of rules in each group is 244) in Xilinx 

Virtex2 we achieved operating frequency of 366MHz. Sourdis has reported an operating 

frequency of 331MHz for his 6 partition. For the 12-group partition (average number of 

rules in each group is 122) in the Virtex2 device,   we achieved operating frequency of 

310MHZ , while Sourdis has reported  317MHz frequency for his 12 partition. These 

results are better seen in the following tables 

 

6-way partition Our Work Sourdis Work 
SLOW Clock 2.767ns =361Mhz 2.812ns=355MHz 
FAST Clock 2.732ns= 366MHz 3.014ns=331Mhz 

 

12-way partition Our Work Sourdis Work 
SLOW Clock 2.205ns =453Mhz 2.451ns=407MHz 
FAST Clock 3.219ns= 310MHz 3.149ns=317Mhz 

 
In terms of performance, after giving our partitions for simulation in Virtex2 

machine (Xilinx’s device), we can see that all the different partitions achieve operating 

frequencies between 310 and 453MHz for Virtex2. The results show that while for the 

smallest rule set (12 partitions) both implementations operate at similar frequencies with 

our method giving 2480 Gbps and Sourdis method  with 2536 Gbps, when the rule set 

size increases (6 partitions) , the scalability of the our approach is better and achieves 

about 10% better frequency. 

 

 

Unlike performance, the effect of group size on the area cost is more 

pronounced. As expected, larger group sizes result in smaller area cost due to the smaller 

replication of comparators in the different groups. Therefore, designs that are partitioned 

 62



in many groups have higher area cost as compared to with fewer partitions Similar to 

performance, the area cost sensitivity to total rule set size increases with group size.  

 

The results present next are all calculated into the Virtex2 device. The number of 

logic cells is calculated form the number of slices. Each slice is 2 logic cells and this is 

what we call "Number of occupied Slices". The number of LUTs is the "Total Number 4 

input LUTs". The Flip-Flops are "Number of Slice Flip Flops". The SRL16 are the shift 

registers that delay the decoded data. This is basically what states the number of unique 

characters per position, and we call this "Number used as Shift registers". 

 

By comparing our results with the ones generated by Sourdis, we can see that 

there are slight differences, especially in the number of shift registers. Our partitioning 

did a better work in terms of grouping (number of different characters per position). As 

for the other differences encountered, these are more or less around 1%. Our 

partitioning into 6 groups (average number of rules 245) demands more logic cells than 

the one of Sourdis. On the contrary when we partition with an average number of rules 

of 122-124 we get a smaller number of logic cells. 

 

6-group 
partition 

slices Logic cells 
(slices*2) 

LUTs Flip-Flops SRL16s 

Our 
partition 

8616 17232 13816 15552 4218 

Sourdis 
partition 

8567 17134 13946 15677 4309 
Table 5.3 : Comparison in the 6 partition groups 

 

12-group 
partition 

slices Logic cells 
(slices*2) 

LUTs Flip-Flops SRL16s 

Our 
partition 

9458 18916 15828 17808 5301 

Sourdis 
partition 

9577 19154 15735 17866 5391 
Table 5.4: Comparison in the 12 partition groups 

 

 

 63



From the above Tables (5.3 and 5.4) we see some peculiar results. In the 6 

partitioning case Sourdis has reported less Slices while the number of Flip-Flops and 

LUTs are bigger. This is a weird situation, probably has to do with the tool used to get 

these results. 

 

Finally we collect the results for area cost and put them all in a comparison chart 

shown in the next figure. 

 

AREA COST COMPARISON

17000

17500

18000

18500

19000

19500

0 2 4 6 8 10 12 14

NUMBER OF PARTITIONS

LO
G

IC
 C

EL
L

Our Work DCAM by Sourdis

 
Figure 5.1 :  A comparison in the area cost of both implementations ( 1 ) From both graphs and 

both implementation we can see that partitioning designs in smaller groups increases 

performance, but also increases area cost. ( 2 ) Comparing the two approaches , we managed to 

lower the area cost in smaller groups(that is in 12 partitions) , but in the increased group size (6 

partitions) our area cost is increased 

 

 

5.3 Conclusions 

 

Throughout this work we discussed string matching as the major performance 

bottleneck in intrusion detection systems. We investigated the background work in new 

string matching micro-architectures and investigated the efficiency of FPGA-based 

solutions. We first accented the role of string matching in intrusion detection systems. 

 64



String matching is the most computational intensive part of such systems and limits their 

performance. Further, we analyzed the set of NIDS patterns, and grouped them with a 

software-based solution in order to improve the FPGA’s performance. Intrusion 

detection systems running on general purpose processors have limited performance, 

while on the contrary, ASIC and FPGA-based systems can achieve better performance. 

In particular, FPGAs offer the flexibility needed in such systems for fast ruleset update. 

 

The preceding work in which this thesis was build on, has shows that FPGAs are 

well suited for implementing intrusion detection systems, achieving high speed 

processing in reasonable cost. Our results offer a distinct step forward in the pre-

processing needed in the prior work of the DCAM architecture as we implemented the 

partitioning step (a method to improve the performance of this architecture) with a crisp 

and complete algorithm-based solution. Finally, our implementation offers simplicity and 

regularity, and hence it is straightforward to test it with more rulesets and then 

experiment with the results on the DCAM module in order to design a  complete and 

sophisticated intrusion detection system. 

 

Our partitioning did a better work in terms of grouping (number of different characters 

per position). As for the other differences encountered, these are more or less around 

1%. Our partitioning into 6 groups (average number of rules 245) demands more logic 

cells than the one of Sourdis while it achieves about 10% better frequency. On the 

contrary when we partition into 12 groups (smaller rule set) we have a small drop in 

frequency but the number of logic cells is smaller compared to the ones of Sourdis 

implementation. This is what we expected since in general we have stated that systems 

with high performance are costly and systems that have lower cost are at the expense of 

low performance.  
 
 

5.4 Discussion and future work 

 
New partition algorithms that rely on combinational, algebraic and geometric 

ideas have been created and carefully implemented the last years. These contributions 

make it possible to compute high quality partitions of large graphs in a few minutes on a 

workstation. Much progress has been made to date and continues to be made at this time 

 65



in the designing of new algorithms and understanding their behaviour. Graph 

partitioning has an important role to play in the design of many serial algorithms by 

means of the divide and conquer paradigm. Some applications include circuit partitioning 

and layout, VLSI design and Computer-aided design.  

 
Karypis and Kumar, in METIS, build on the multilevel approach with the goal of 

finding a “best” algorithmic choice for each of the coarsening, partitioning, and 

refinement stages [6]. Although an exhaustive cross-product of all techniques would be 

infeasible, their study does an excellent job of examining each stage independently and 

measuring its impact on the overall partitioning time. Their goal is to find algorithms that 

represent a good tradeoff between running time and quality. For instance, rather than 

using a randomized technique for generating maximal matchings, they suggest a strategy 

called heavy edge matching in which edges with higher weight are given priority for inclusion 

in the matching. The intuition behind this heuristic is that heavier edges will typically be 

disadvantageous to cut, and therefore collapsing them into a multi-node will remove 

them from consideration in coarser graphs. 

 

Another interesting result of the Karypis-Kumar study is that using spectral 

partitioning on the coarsest graph proves not only to be slower than greedier algorithms 

(as expected), but also results in partitions of significantly worse quality. This indicates 

that while spectral methods work well on large graphs whose complexity may foil 

greedier algorithms, their use on smaller graphs may be overkill. 

 

The multilevel suite of choice according to Karypis and Kumar consists of: heavy 

edge matching for the contraction phase; the greedy graph growing algorithm for the 

partitioning phase; and a variation of Kernighan-Lin called BKL(*,1) for the refinement 

phase. BKL(*,1) only considers moving the boundary vertices and uses just a single 

iteration when the graph becomes sufficiently large (contains more than 2% of the 

vertices in the original graph). Further work by Karypis and Kumar accelerates the 

running time of multilevel recursive bisection by developing a multilevel p-way 

partitioning algorithm in which coarsening and refinement are performed a single time 

rather than at every step of the bisection.  

 

 66



Recent progress in graph partitioning has been very impressive. Large graphs are 

being partitioned faster and better than ever before. Graphs with millions of edges can 

be partitioned well in seconds.  

 

Future work would be well-served by an evaluation of the partitioning 

alternatives which would also be very interesting. There are many packages available. 

Jostle supports parallel partitioning, with Walshaw's emphasis on minimizing vertex 

movement [24 ]. Chaco [23] is Hendrickson and Leland's package that contains 

implementations of their 4-way/8-way spectral algorithms, multilevel algorithms, and 

refinements to KL/FM. Other online packages worth investigating are Scotch [22] and 

Party [21]. These partitioning alternatives will result in new partition to be checked within 

the Virtex2 device and may give better results than the ones we presented here so that 

the partitions can be further used to improve the work done by Sourdis and 

Pnevmatikatos. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 67



References 

 
[1] Stephen T. Barnard and Horst D. Simon. A fast multilevel implementation of 
recursive spectral bisection for partitioning unstructured problems. In Proceedings of the 
sixth SIAM conference on Parallel Processing for Scientific Computing, pages 711–718, 1993. 
 
[2] A. George and J. W.-H. Liu. Computer Solution of Large Sparse Positive Definite 
Systems. Prentice-Hall, Englewood Cliffs, NJ, 1981. 
 
[3] Anshul Gupta, George Karypis, and Vipin Kumar. Highly scalable parallel algorithms 
for sparse matrix factorization. IEEE Transactions on Parallel and Distributed Systems, 
8(5):502–520, May 1997. Available on WWW at URL http://www.cs.umn.edu/˜karypis.  
 
[4] Bruce Hendrickson and Robert Leland. The chaco user’s guide, version 1.0. Technical 
Report SAND93-2339, Sandia National Laboratories, 1993.  
 
[5] Bruce Hendrickson and Robert Leland. A multilevel algorithm for partitioning 
graphs. Technical Report SAND93-1301, Sandia National Laboratories, 1993. 
 
[6] G. Karypis and V. Kumar. Multilevel algorithms for multi-constraint graph 
partitioning. Technical Report TR 98-019, Department of Computer Science, University 
of Minnesota, 1998. 
 
[7] G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for irregular graphs. 
Journal of Parallel and Distributed Computing, 48(1):96–129, 1998. Also available on WWWat 
URL http://www.cs.umn.edu/˜karypis. 
 
[8] G. Karypis and V. Kumar. A fast and highly quality multilevel scheme for partitioning 
irregular graphs. SIAM Journal on Scientific Computing, 1998 (to appear). Also available on 
WWW at URL http://www.cs.umn.edu/˜karypis. A short version appears in Intl. Conf. 
on Parallel Processing 1995. 
 
[9] George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar. Multilevel 
hypergraph partitioning: Application in vlsi domain. In Proceedings of the Design and 
Automation Conference, 1997. 
 
[10] Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis. Introduction to 
Parallel Computing: Design and Analysis of Algorithms. Benjamin/Cummings Publishing 
Company, Redwood City, CA, 1994. 
 
[11] Horst D. Simon and Shang-Hua Teng. How good is recursive bisection? SIAM 
Journal on Scientific Computing, 18(5):1436–1445, September 1997. 
 
[12] Alex Pothen, H. D. Simon, Lie Wang, and Stephen T. Bernard. Towards a fast 
implementation of spectral nested dissection. In Supercomputing ’92 Proceedings, pages 42–
51, 1992. 
 
[13] Gary L. Miller, Shang-Hua Teng, W. Thurston, and Stephen A. Vavasis. Automatic 
mesh partitioning. In A. George, John R. Gilbert, and J. W.-H. Liu, editors, Sparse Matrix 

 68



Computations: Graph Theory Issues and Algorithms. (An IMA Workshop Volume). Springer-
Verlag, New York, NY, 1993. 
 
[14] Gary L. Miller, Shang-Hua Teng, and Stephen A. Vavasis. A unified geometric 
approach to graph separators. In Proceedings of 31st Annual Symposium on Foundations of 
Computer Science, pages 538–547, 1991. 
 
[15] P. Raghavan. Line and plane separators. Technical Report UIUCDCS-R-93-1794, 
Department of Computer Science, University of Illinois, Urbana, IL 61801, February 
1993. 
 
[16] T. Bui and C. Jones. A heuristic for reducing fill in sparse matrix factorization. In 6th 
SIAM Conf. Parallel Processing for Scientific Computing, pages 445–452, 1993. 
 
[17] Chung-Kuan Cheng and Yen-Chuen A. Wei. An improved two-way partitioning 
algorithm with stable performance. IEEE Transactions on Computer Aided Design, 
10(12):1502–1511, December 1991. 
 
[18] Lars Hagen and Andrew Kahng. A new approach to effective circuit clustering. In 
Proceedings of IEEE International Conference on Computer Aided Design, pages 422–427, 1992. 
 
[19] I. Sourdis and D. Pnevmatikatos. Fast, large-scale string match for a network 
intrusion detection system. In Proceedings of 13th International Conference on Field Programmable 
Logic and Applications, Lisbon, Portugal, 2003. 
 
[20] I. Sourdis and D. Pnevmatikatos. Pre-decoded CAMs for efficient and high-speed 
nids pattern matching. In IEEE Symposium on Field-Programmable Custom Computing 
Machines, April 2004. Napa, CA, USA. 
 
[21] Robert Preis and Ralf Dickmann. The party partitioning–library, user guide—version 
1.1. Technical Report tr-rsfb-96-024, University of Paderborn, September 1996. (the 
Party homepage is at http://www.unipaderborn. 
de/fachbereich/AG/monien/RESEARCH/PART/party.html). 
 
[22] Francois Pellegrini. Scotch 3.1 user's guide. Technical Report 1137-96, University of 
Bordeaux, June 1997. (the Scotch homepage is at  
www.labri.u-bordeaux.fr/Equipe/ALiENor/membre/pelegrin/scotch/). 
 
[23] Bruce Hendrickson and Robert Leland. The chaco user's guide: Version 2.0. 
Technical Report SAND95–2344, Sandia National Laboratories, July 1995. (information 
about obtaining Chaco is available at 
http://www.cs.sandia.gov/é bahendr/partitioning.html). 
 
[24] ChrisWalshaw. The Jostle User Manual: Version 2.0. University of Greenwich, July 
1997. (the Jostle homepage is at http://www.gre.ac.uk/ê c.walshaw/jostle/). 
 
[25] C. Walshaw, M. Cross, and M. Everett. Mesh partitioning and load-balancing for 
distributed memory parallel systems. In B. H. V. Topping, editor, Advances in 
Computational Mechanics with Parallel and Distributed 
Processing, pages 97–103, Edinburgh, April/May 1997. Civil-Comp Press. 
 

 69



[26] Dotty at http://www.graphviz.org/ 
 
[27] Pajek at http://vlado.fmf.uni-lj.si/pub/networks/pajek/ 
 
[28] Tulip at http://www.tulip-software.org/
 
[29] SNORT official web site. http://www.snort.org. 
 
[30] METIS http://www-users.cs.umn.edu/~karypis/metis/ 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 70

http://www.tulip-software.org/
http://www.snort.org/


Appendix A 

Here we include the results for our partitions on Virtex2 machine  

Sourdis 6-partitions 

 

 

 71



 

 
 

 

 72



Our 6-partition 

 

 

 73



 

 
 

 

 

 

 

 74



Sourdis 12-partition 

 

 

 

 75



 

 
 

 

 

 

 

 

 

 

 

 76



Our 12-partition 

 

 

 

 77



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 78


	xtra pages.doc
	corrected_thesis.doc
	1.4 Why Use Intrusion Detection? 


