
Microprocessor & Hardware Laboratory

Technical University of Crete

Department of Electronic and Computer Engineering

Diploma Thesis

Programming of Reconfigurable Logic Using the

Bluetooth Protocol

Konstantinos Kazakos

Supervising Professor: Professor Apostolos Dollas

Thesis Committee: Professor Michalis Paterakis

 Assistant Professor Dionysios Pnevmatikatos

 June 2006

Microprocessor & Hardware Laboratory

“The reasonable man adapts

himself to the world; the

unreasonable persists in trying to

adapt the world to him.

Therefore all progress depends

on the unreasonable.”

Unknown

 Dedicated to my family

Microprocessor & Hardware Laboratory

I would like to thank

Professor Apostolos Dollas for his invaluable support throughout the whole duration of

this thesis, for the knowledge he has offered me all these years, for his guidance and

toleration and for giving me the opportunity to be a member of Microprocessor and

Hardware Laboratory (MHL).

The thesis committee, Professor Michalis Paterakis and Assistant Professor Dionysios

Pnevmatikatos for their contribution to this thesis.

Dionysios Efstathiou for his unbelievable help and Elias Politarhos as well as Christos

Strydis for their guidance.

Markos Kimionis, member of the Technical Staff of the MHL for his support regarding

technical matters, for the unparalleled patience he has shown and for the many hours he

has spent helping me.

Dr. Brian von Herzen of Rapid Prototypes Inc. (www.FPGA.com) for his useful

suggestions and contributions to this thesis (including the Parrotfish project name).

All the undergraduate and graduate students for their valuable help.

The Teleca Comtec Company for its kind donation of the new Bluetooth modules

(www.teleca.com).

The Crinno Unistep program for their help on matters of financial support.

And last, but not least, I would like to thank my parents and my friends for being there to

support me.

http://www.teleca.com/

Microprocessor & Hardware Laboratory

Contents

Contents ...

1. Introduction ..

1.1. The BlueTooth® System and the Parrotfish Project ...

1.2. Thesis Stimulus, Scope & Results..

1.3. Thesis organization ..

2. Relative Research ...

2.1. Bluetooth Introduction...

2.2. Other wireless technologies..

2.2.1. RF wireless communication...

2.2.2. IR wireless communication..

2.3. The Bluetooth Protocol ...

2.3.1. Bluetooth Radio...

2.3.2 Baseband...

 2.3.2.1 Bluetooth Topology……………………………………………………………..

 2.3.2.2 Master-Slave roles ……………………………………………………………..

 2.3.2.3 Time Division Duplex in Bluetooth ……………………………………………

 2.3.2.4 Bluetooth connections………………………………………………………….

 2.3.2.5 Packet Types …….……………………………………………………………..

2.3.3. Link Manager Protocol...

2.3.3.1. Sniff mode ..

2.3.3.2. Hold mode..

2.3.3.3. Park state ...

 2.3.4. Host Controller Interface…………………………………………………………

 2.4. Bluetooth Products………………………………………………………………...

 2.4.1 Devices that support multiple connections……………………………………..

 2.4.2 Simple devices for serial communications……………………………………..

3. Existent & New Architecture ..

3.1. BlueApplE – BlueBridge system...

Microprocessor & Hardware Laboratory

 3.1.1 Software of BlueApplE – BluBridge……………………………………..............

 3.1.1.1 BlueApplE software architecture……………………………………………

 3.1.1.2 BlueBridge software architecture…………………………………………...

 3.2 Bluetooth Multi-UART system…………………………………………………………

 3.2.1 BluMiu Software Architecture……………………………………………………..

 3.3 The Hardware Programmer and Tester………………………………………………

 3.3.1 HPT Architecture in general……………………………………………………….

 3.3.2 FPGA History and Architecture in General………………………………………

 3.4 The New System: BlueReRun…………………………………………………………

4. BluReRun Architecture………………………………………………………………………

 4.1 BluReRun data transfer protocol………………………………………………………

4.1.1. The Bluetooth protocol approach………..

 4.1.2 The BlueReRun Protocol Approach…………………………………………….

 4.1.2.1 Architecture of the Parrotfish Node……………………………………….

 4.1.2.2 The BluReRun protocol in the Parrotfish project………………………..

4.2. BluReRun hardware ...

4.2.1. The Host..

4.2.2. The Bluetooth Module ...

4.2.3. HCI & COM ...

4.2.4. LEDs..

4.2.5. The external device ...

4.2.6. BluReRun hardware cost...

4.3. BluReRun software...

4.3.1. USART Receive and transmit Control Modules...

4.3.1.1. USART reception decoders..

 4.3.1.1.1 USART receiver from the Bluetooth Module……………………….

 4.3.1.1.2 USART receiver from the External device…………………………

4.3.2. Master-Slave Integration in the BluReRun Host ..

4.3.3. Dynamic Command Initialization ...

 4.3.4 Addressing Protocol Algorithms…………………………………………………

 4.3.4.1 Point to point addressing protocol………………………………………….

Microprocessor & Hardware Laboratory

 4.3.4.2 Point to multipoint addressing protocol…………………………………….

 4.3.5 Error Handling Algorithm………………………………………………………….

5. BluReRun Validation & Testing..

5.1. Bluetooth module validation..

5.2. BluReRun Software validation ..

5.2.1. USART Transmitter validation ...

5.2.2. USART Decoder validation..

5.2.3. BluReRun validation ..

 5.2.3.1 BluReRun pre Connection setup…………………………………………..

 5.2.3.2 BluReRun discovery of other Bluetooth nodes…………………………..

 5.2.3.3 BluReRun master to slave connection……………………………………

 5.2.3.4 BluReRun nodes data exchange………………………………………….

 5.3. Parrotfish Project Experiments………………………………………………………….

6. Conclusions and Future Work..

6.1. Conclusions ..

6.2. Future work...

Appendix A ...

Glossary, Commands, manual ..

Appendix B ...

ATMEGA 162 ..

Appendix C………………………………………………………………………………………...

 The Bluetooth Module………………………………………………………………………….

References ...

Literature ...

Internet Resources ..

Microprocessor & Hardware Laboratory

1. Introduction

1.1. The Bluetooth® System and the Parrotfish project
Wireless connectivity is a very desirable feature of nowadays’ electronic devices.

Radio was the first wireless technology and still is the fundamental element of

virtually all modern wireless technologies. Lately, wireless communications

between handheld, battery-operated devices and/or computers are thriving, since

they contribute to reduce the amount of cables in the personal area. Though, the

most important factor in wireless communications’ popularity increase is probably

the significant decrease in the cost of developing and obtaining devices that

contain these technologies. Wireless personal communication adopts

technologies that use the radio and the non visible light areas of the

electromagnetic spectrum. One of the most recently developed personal

networking technologies, which became quickly very popular, is Bluetooth

technology. It initially began as a project to study the feasibility of a low-power

and low-cost radio interface by Ericsson in 1994.

In early 1998, the Bluetooth Special Interest Group (SIG) was formed by

Ericsson, IBM, Intel, Nokia and Toshiba. Now (June 2006) Bluetooth SIG is

formed by 3com, Agere, Ericsson, IBM, Intel, Microsoft, Motorola, Nokia and

Toshiba, which are Bluetooth SIG promoter members, and a total of 3357

member companies (promoters, associates1 & adopters2). Bluetooth SIG

developed Bluetooth wireless technology, which is a short range wireless

communication system, intended to replace cables in the personal area. It has a

maximum range of 100m and creates a small wireless network connecting

1 Associate members have the opportunity to work with other Associate and Promoter companies

on enhancements to the Bluetooth specification
2 Adopter members just make use of Bluetooth technology

Microprocessor & Hardware Laboratory

portable and/or fixed Bluetooth enabled devices that exist in this range (Personal

Area Network, PAN). Key features of Bluetooth are robustness, low cost, low

power and small size.

Today, 8 years later, Bluetooth system is one of the most popular systems for

voice and/or data in every application where short range communication is

needed (there is, however, a bandwidth limitation, 720Κbps). Widespread

acceptance of the technology was helped by the truly open specification of

Bluetooth (BTspec), which has been a fundamental objective of the Bluetooth

SIG since its formation, and is promoted through the Bluetooth Specification

Book (First stable version: 1.0b, latest: 2). That way every part of a Bluetooth

enabled device should be qualified with the Bluetooth Specification; its hardware,

the way it functions, its software and the way this device communicates with

other Bluetooth enabled devices. When a device is BTspec qualified, it will be

able to exchange data and/or voice worldwide with every other Bluetooth enabled

device.

Concisely, BTspec defines a short (10m) or, optionally, medium (100m) range

radio link capable for a data and/or voice communication. Its maximum data rate

is defined to 720kbps3 (kilobits per second), while every voice channel has a

64kbps data rate. The Bluetooth RF (physical layer) operates in the unlicensed

ISM band, which is reserved for Industrial, Scientific & Medical purposes, at

2.4GHz. The system employs a transceiver with the following characteristics:

• Spread spectrum (2.402 to 2.48GHz)

• Full duplex transmission effect is provided through the use of a Time-

Division Duplex (TDD) scheme

• Frequency hopping in a rate of 1600 hops per second

3 With the addition of the new EDR (Enhanced Data Rate) technology, Bluetooth

transfer rates will reach a maximum of 2.1Mbps, three times the current rate. EDR is

expected to become a mainstream standard by mid 2005

Microprocessor & Hardware Laboratory

Connected Bluetooth devices in a Bluetooth network, which is called a piconet,

use a specific frequency hopping pattern, which is algorithmically determined by

characteristics of a Bluetooth device that acts as the Master of the piconet. The

basic hopping pattern is a pseudo-random ordering of the 79 frequencies in the

ISM band. The adaptive hopping technique improves Bluetooth co-existence with

static (non-hopping) ISM systems when they are co-located. The output power of

the Bluetooth device is 0dBm (1mW) for communication up to 10m (class 2

device) and +20dBm (100mW) for communication up to 100m (class 1 device).

At the same time, reconfigurable resources can provide substantial field

programmable capability in the wireless autonomous nodes of an ad-hoc sensor

network. The driving problem arises from the necessity to have exchange of

(re)configuration and partial reconfiguration bit streams as well as data in a

network that is inherently unstable (even with respect to its topology). The

problems are compounded by the need for low cost solutions and support for

multi-vendor systems. Thus, there is a need to reconfigure or partially reconfigure

individual nodes in order to alter system behavior, or circumvent non-fatal errors.

The Parrotfish project (named so due to individual Parrotfish changing gender

under group dynamics) is a low cost, distributed environment for (partial)

reconfiguration of distributed field programmable systems, e.g. sensor networks.

This thesis’ main target is to integrate the Bluetooth protocol with the

Reconfigurable hardware through the Parrotfish project. It proposes a system

that can work as an errorless and efficient data communication medium in a

Parrotfish node for low cost re/configuration of an FPGA in an ad hoc network.

1.2. Thesis Stimulus, Scope & Contributions
One of the most important and interesting capabilities of Bluetooth, which makes

it stand out from other communication technologies in the PAN area, is that it

Microprocessor & Hardware Laboratory

enables multiple devices to connect simultaneously4. This fact in conjunction with

the kind donation of Teleca Comtec of the three point to multipoint Bluetooth

modules that were used in this thesis and the development of an embedded

applications platform of Bluetooth in the MHL by Christos Strydis [7] and Elias

Politarhos [8], as well as the creation of an vendor-independent universal FPGA

programmer by Dionysios Efstathiou [9], gave the inspiration for this thesis. In

this thesis a third generation embedded application platform (Bluetooth

Reconfigurable Run Time Environment) has been developed. This platform

works as a subsystem in the Parrotfish project providing efficient data

communication between a master and two or more slaves and also an effective

packet exchanging protocol suitable for very low processing power

microcontrollers (microcontroller used: Atmel AVR ATmega162). The ultimate

goal of this thesis is to wirelessly program an FPGA through the Parrotfish

project, but the specific design can be used wherever wireless transfer of data is

needed and resources are truly limited.

The following contributions were made in this thesis’ context:

1) Piconet-based master-slave architecture.

2) Point to multipoint connections

3) Addressing protocol implemented and point to multipoint algorithm

executed

4) Dynamic HCI command configuration is supported.

5) Error handling for efficient data transport implemented.

6) The upgrade of commands

7) Merging of master and slave in one device

8) Payload data packets are big enough to support the data send to the

FPGA.

9) software-interrupt based multiprogramming

10) efficient Connectionless data transport used for FPGA re/configuration

4 7 active slaves & 255 parked slaves are supported by BTspec 2 and all versions of BTspec

before it

Microprocessor & Hardware Laboratory

1.3. Thesis organization
Chapter 2: The relative research on the Bluetooth protocol. The Bluetooth

protocol is analyzed and thoroughly examined.

Chapter 3: It reviews the existing design pros and cons and gives an overview of

the new architecture. It, also, examines briefly the HPT architecture.

Chapter 4: In this chapter the system designed is described in detail; the

system’s architecture, its hardware and software are analyzed.

Chapter 5: The test procedures of the components of the system and the

validation of the overall system are presented.

Chapter 6: In this final chapter the conclusions that can be extracted from this

thesis are covered. The thesis ends with possible improvements on the system

developed and proposes applications where it can be useful.

Appendix A, B, C: These three appendixes include the description of the Host

used in this thesis (ATMEGA162), of the Bluetooth Module and a manual as well

as the PCBs of the BluReRun nodes and functions.

Microprocessor & Hardware Laboratory

2. Relative Research

2.1 Bluetooth Introduction

During the last couple of years the Bluetooth devices and those that support the

Bluetooth protocol have entered the true mainstream and have become

widespread. With Mobile phones, Personal Digital Assistants (PDAs), and

headsets making significant progression over the last years, the wireless market

beginning to make an impact, and Personal Mobile Gateway5 products emerging,

shipments of Bluetooth-enabled manufactured equipment will experience a 40%

growth rate of between 2006 and 2008[1] (Figure 2-1).

Figure 2-1: Bluetooth modules forecast (Units in millions) (In-Stat/MDR, 4/05, [1])

There is an unlimited number of Bluetooth enabled devices and Bluetooth

applications, which intend to cover the communication needs of people around

the globe. Every company targeting to the simple market and wanting to be in the

5 Personal Mobile Gateway: It is the point of connection between the wireless network and

the new category of affordable and best-of-breed mobile devices (e.g. watches, pens, phones,

messaging terminals, gaming devices, cameras) (http://www.ixi.com/)

Microprocessor & Hardware Laboratory

cutting edge of technology, as far as communications are concerned, is using the

Bluetooth technology, because of the Bluetooth popularity, thanks to the hard

work of the Bluetooth Special Interest Group on marketing [2]. It is essential for

products targeting to a mainstream market to be easy to use and to have a user

friendly interface. Hence worth, these products tend to waste resources on

various services that the Bluetooth protocol offers, something which must be

taken under consideration from the designer as well as the software developer.

Figure 2-2: The importance of Serial Port Profile (BTspec 2 [3])

The most important and fundamental profile that the Bluetooth protocol offers is

definitely the Serial Port Profile (SPP), that provides serial transfer of data

between two Bluetooth enabled devices. Actually the SPP is nothing more other

than an emulation of the connection between two or more Bluetooth devices.

This is the profile on which almost every other service provided by the Bluetooth

protocol is based. [3] (Figure 2-2). As it will be thoroughly examined in the

subsequent chapters, the main scope of this thesis interferes with the Serial

Profile Protocol of Bluetooth.

Microprocessor & Hardware Laboratory

2.2 Other wireless technologies
Bluetooth was not the first attempt to develop a wireless technology for the

personal area. There are some other technologies, which have the same scope

with Bluetooth and are, until now, equally -and in some cases even more

popular. These technologies are communicating through electromagnetic waves

in the infrared light (IR) and radio frequency (RF) areas --RF is the technology

that Bluetooth uses as it will be seen in section 2.3. A brief overview of these two

technologies will be presented in the following sections, along with a comparison

to Bluetooth, where applicable.

2.2.1 RF wireless communication

Technologies using Radio waves employ transceivers that can transmit and

receive radio waves of a specific radio frequency. For communication in personal

areas, low power transceivers are used so that they can only cover a distance of

few meters; this means that they can cover as much space as it is needed for a

Personal Area Network (PAN).

Due to the fact that the radio waves spectrum is limited and that most of the

existing wireless technologies use them to function, governments around the

world have legislated limitations and regulations to the use of the RF spectrum6

and a license is needed for a technology to use a band of the RF spectrum.

These limitations also define the power of the signal that this technology will use.

All PAN networking technologies use bands of the RF spectrum that is agreed for

them -in a worldwide basis- that their use will not require license, as long as

these technologies’ specifications cover some limitations, especially for the

power of the signal they use. For instance, in Europe and in the United States the

900MHz, 2.4GHz (ISM) and 5GHz bands do not require license for a technology

to use them and, thus, it can be easily presumed that all RF technologies for

6 NTIA Manual of Regulations & Procedures for Federal Radio Frequency Management:

http://www.ntia.doc.gov/osmhome/redbook/redbook.html

Microprocessor & Hardware Laboratory

Personal Area Networks use one of these bands to function (the 5GHz band has

been proposed for the Institute of Electrical & Electronics Engineers (IEEE)

HIPERPAN standard [5]). The unlicensed bands mentioned above are:

 The 5GHz band is divided in band A, which covers the area between 5.15 and

5.35GHz, and band B, which is between 5.47 and 5.725GHz

 The 2.4GHz band: 2.4 - 2.48GHz (Until 2004, France and Spain were an

exception in Europe, because they had narrower bands in the 2.4GHz band)

and

 The 900MHz band: 902 - 928MHz

These bands are used by cordless telephones, microwave ovens, some remote

controls and some wireless human interface devices for computers.

The 2.4GHz band is used by the really popular IEEE Wireless Local Area

Network (WLAN) protocols: IEEE 802.11, 802.11b and 802.11g (a.k.a. WiFi). [3]

Bluetooth also uses this RF band. Because the 2.4GHz RF band is really

overcrowded by wireless protocols, some limitations for its use have been set, so

that collisions between the signals of these protocols would be avoided and

secure communication could be achieved. Bluetooth responded to these

limitations by using a frequency hopping spread spectrum (FHSS) signal7. The

rapid change in the transmit frequency reduces the chance of Bluetooth signals

interfering with each other or with signals from other wireless networks. If a

Bluetooth signal collides, the next time it will be transmitted it will be in a different

frequency, so the probability to collide again is very small. Security is also

enhanced by the frequency hopping because, if the Bluetooth transmission is

intercepted, the next frequency that the Bluetooth system will use won’t be

known, thing that will probably confuse the interceptor.

Bluetooth and WiFi are two very well documented and specified protocols that

have many similarities. Although, they have basic differences that will allow

7 Bluetooth FHSS is explained in chapter 2.3.1

Microprocessor & Hardware Laboratory

neither of them to replace the other, as happened with WiFi, which prevailed over

HomeRF (a WLAN targeted home environments and users) in the beginnings of

2003:

• Bluetooth has low power transmitters because it was designed for small

battery operated devices like cell phones, PDAs, headsets and so on, that

communicate in a radius of few meters. WiFi, on the other hand, was

designed for computer networking in a maximum distance of 45m

(802.11a) or 90m (802.11b and g). So, it does need stronger and bigger

transmitters than Bluetooth to meet these requirements.

• WiFi is far more complex than Bluetooth. WiFi is designed to hook up an

entire network, while Bluetooth is a cable replacement technology. This

makes service discovery a simple task for Bluetooth, while WiFi requires

the same degree of network management as any comparable wired

network. It is this complexity of the protocol that makes WiFi unsuitable for

use in devices like these that Bluetooth was designed for, that were

mentioned earlier.

• Bluetooth is much slower than WiFi. Bluetooth has a maximum speed of

720Kbps, while WiFi can reach 100Mbps in 802.11g. This does not allow

the use of Bluetooth as a Local Area Network. [4]

Figure 2-3. IEEE wireless networking standards

Bluetooth (as IEEE 802.15.1™) was approved in 15 April 2002 from Institute of

Electrical & Electronic Engineers Standards Association (IEEE-SA) as a standard

Microprocessor & Hardware Laboratory

and it became an IEEE working group for wireless personal area networks

(WPANs). According to IEEE wireless networking standards, the following status

quo has been established: 802.16 is the standard for Metropolitan Area networks

(WMANs), 802.11 for Local Area Networks (WLANs) and 802.15 (Bluetooth) for

Personal Area Networks (Figure 2-3).

2.2.2 IR wireless communication

Short range wireless communication through infrared technology is probably the

most common wireless technology for use in the personal space, since the vast

majority of the remote controls used for home appliances, such as TVs, videos,

air conditioners and HiFi systems -appliances that are somewhat essential in

modern life-, use infrared technology. But infrared technology is also very popular

in computers, computer peripherals, mobile phones and PDAs which use it for

data exchange, in a way very similar to Bluetooth. Communication between

these devices is specified by the Infrared Data Association (IrDA)8, which defines

the hardware and software protocols for wireless communication intended to

promote interoperable applications, just like the Bluetooth SIG.

Bluetooth and IrDA are very similar, since they were developed with the same

scope, that is a short range, low power, low cost and unlicensed wireless

communication, and are specified by very well documented standards that have

a worldwide acceptance. Most manufacturers provide both of them with their

products, allowing the costumer to select the technology that fits his needs. The

two technologies have their pros and cons, which help the costumer to choose

one of them:

• Bluetooth uses radio waves, while IrDA infrared light

• IrDA (16Mbps) is faster than Bluetooth (720Kbps)

• Bluetooth allows connections in a range of 100m in Class 1 Bluetooth

devices, which is bigger than the range of IrDA (about 1m)

8 http://www.irda.org

Microprocessor & Hardware Laboratory

• IrDA is cheaper (1$) than Bluetooth (estimated to reach 5$)

• Bluetooth supports point to point and point to multipoint connections, while

IrDA supports only point to point

• IrDA needs the two transceivers to be aligned and be in the other’s line of

sight, while Bluetooth can penetrate objects and doesn’t need alignment []

Figure 2-4. IrDA OBEX how it is reused in Bluetooth (BTspec 2 [5])

IrDA and Bluetooth wireless applications share similar application domains, even

though the underlying technology used to achieve usage scenarios is inherently

different. Feature differences may cause one technology to be preferred over the

other in certain environments and applications, although both have merit and

both are likely to be deployed in pervasive computing devices. Thus the IrDA

interoperability provisions of the Bluetooth specification can help to enable the

best use of either or both technologies. The reuse of IrDA protocols9 and

specifically the infrared Object Exchange Protocol (OBEX) was identified as the

design direction of the Bluetooth SIG early in the specification’s development.

9 IrDA had been already developed when Bluetooth research started

Microprocessor & Hardware Laboratory

The purpose of the OBEX protocol is to enable the exchange of data objects and

files. (Figure 2-4).

At the following section the Bluetooth Protocol and the protocol’s levels and

functionalities are examined thoroughly.

2.3 The Bluetooth protocol

The Bluetooth module used in this thesis is a point to multipoint device (further

information are given to Appendix C) and can be considered as a black box that

can be “manipulated” by a central microcontroller unit (HOST) for each node.

Figure 2-5: Bluetooth Protocol Stack version 2 (BT spec 2 [4])

If the parts of the Bluetooth protocol that are embedded in the Bluetooth module

were known, understanding the functions of the software and hardware parts of

this thesis would be rather easier and a wider knowledge on the thesis’ matter

Microprocessor & Hardware Laboratory

would be gained. The explanation of the Bluetooth protocols is based on

Bluetooth specification 2 which is the last specification hyper-protocol introduced

by the Bluetooth SIG (Special Interest Group). The Bluetooth module used is a

Bluetooth Controller, Bluetooth spec 2 compliant, which specifies the protocol

stack illustrated in Figure 2-5. The layers of the Bluetooth protocol stack that are

embedded in the lower levels of the Bluetooth module that is used are:

 The Radio, where the physical channel resides and data is transmitted

between Bluetooth devices [5]

 The Baseband, a link controller which carries out the Baseband protocols and

other low-level link routines [5]

 The Link Manager Protocol (LMP), which is used for link set-up and control [5]

and

 The Host Controller Interface (HCI), which provides a command interface to

the Baseband controller and link manager, and access to configuration

parameters [5]

Bluetooth protocol stack layers above HCI are embedded in the microcontroller

used. No SCO (Synchronous Connection Oriented) channels are used since

such a function is not in this thesis’ scopes. The lower layers significant for this

thesis completion and proper function are thoroughly examined in the following

sections.

2.3.1 Bluetooth Radio

Bluetooth operates in the 2.4GHz ISM band in the radio spectrum and makes

use of a frequency hopping spread spectrum (FHSS) transceiver. The 2.4GHz

frequency band is 2.4-2.4835GHz and RF channels are spaced 1MHz and are

ordered in channel number k [5] as shown in the following formula: [Frequency
(MHz)] = 2402+k, where k = {0, 1 …, m-1} and m=79 (until 2004 Spain, France

and Japan had m=23, because their ISM band was narrower; but this has

changed in 2006 or is in the progress of changing). BT spec defines a frequency

hopping rate of 1600 changes per second. A new frequency is selected by the

Microprocessor & Hardware Laboratory

Baseband in a pseudo-random manner every 625μs and it is used until a next

frequency is selected. The time of 625μs between the change is called a time-

slot. By the use of frequency hopping Bluetooth ensures that interference from

other devices and protocols will be kept to a minimum because the signals

spread in the ISM band and it is very unlikely for two devices to interfere again

after they have interfered once in a time-slot, because they probably won’t jump

to the same frequency during the next hop. The receiver sensitivity must be

below or equal to –70dBm. The minimum output power of the Bluetooth

transmitter is defined to 0dBm (1mW) for communication in a range of 10m (class

3 devices), while the maximum is between -30 and +20dBm (100mW) for 100m

(class 1 devices). [5]

Symbol rate is 1Mbps with the use of a GFSK10 modulator. The maximum data

rate that can be achieved though is lower, because of the overhead of different

protocol layers over the radio. This is 723.2Kbps for transmission, when

reception is 57.6Kbps, while for a symmetric transmission-reception the

maximum data rate is defined to 433.9Kbps. For full duplex transmission, a Time

Division Duplex (TDD) is used. TDD is the application of Time Division Multiple

Access, where the communication channel is divided into numbered time-slots

and signals can only be received or transmitted in certain time-slots [5]. TDD is

explained in more detail in section 2.3.2.3.

2.3.2 Baseband

2.3.2.1 Bluetooth topology

The Bluetooth system supports point to point connections or point to multipoint.

In a point to point connection the communication channel is separated through

the TDD between two Bluetooth devices. In a point to multipoint connection the

same communication channel is separated through the TDD between many

10 The signal passes through a Gaussian filter and then goes through an FSK modulator

(Frequency-Shift Keying)

Microprocessor & Hardware Laboratory

devices. Two or more devices that share the same communication channel form

a piconet. Only one device can be the Master of a piconet, while all the other

devices that are in the same piconet are the Master’s slaves. (Figure 2-6). The

maximum number of devices that can be active in a piconet is 7 [5]. More than 7

devices can exist in a piconet in various sleep modes, mostly for power saving

purposes. They are not active, but remain synchronized with the piconet hoping

scheme and can become active without restarting the connection process. The

access of the active devices in a piconet is determined only by the Master.

Figure 2-6: Point to point and point to multipoint connections

Figure 2-7: Scatternet

Piconets that have common devices are called a scatternet. (Figure 2-7). Each

piconet has only one Master; however, slaves can participate in different piconets

Microprocessor & Hardware Laboratory

on a time-division basis, but the Bluetooth core protocols do not, and are not

intended to offer such functionality, which is the responsibility of higher level

protocols [5]. In addition, a Master in one piconet can be a slave in other

piconets. Piconets in a scatternet are not frequency synchronized and each

piconet has its own hopping sequence.

2.3.2.2 Master-slave roles

As seen in the previous section, in a piconet one and only one device is the

Master and the rest of them are slaves. The basic piconet physical channel is

defined by the Master of the piconet and the Master is the device that initiates a

connection by paging. The frequency hopping in the piconet physical channel is

determined by the Master’s clock and BD ADDR11. When the piconet is

established, the Master clock is communicated to the slaves. Then each slave

adds an offset to its native clock to synchronize with the Master clock. Since the

clocks are independent, the offsets must be updated regularly. All devices

participating in the piconet are time-synchronized and hop-synchronized to the

channel. Once a piconet has been established, Master-slave roles may be

exchanged [5].

2.3.2.3 Time Division Duplex in Bluetooth

The Master controls the traffic on the piconet physical channel by a polling

scheme. The basic piconet physical channel is characterized by a pseudo-

random hopping through all 79 RF channels. The basic piconet physical channel

is divided into time slots, each 625 µs in length. The time slots are numbered

according to the most significant 27 bits of the clock CLK28-1 of the piconet

Master. The slot numbering ranges from 0 to 227-1 and is cyclic with a cycle

length of 227. The time slot number is denoted as k. The TDD scheme is used

where master and slave alternatively transmit, as seen in Figure 2-8 below. The

11 Each Bluetooth device is characterized by this unique 48-bit device address, which is

like the IP address or the MAC address, and has a 28bit clock

Microprocessor & Hardware Laboratory

packet start shall be aligned with the slot start and one can extend over up to five

time slots [5].

Figure 2-8: TDD in Bluetooth

2.3.2.4 Bluetooth connections

For a piconet (or a scatternet) to be formed, a device (each piconet’s Master)

must connect to the devices that will form it. A Bluetooth device has the following

operational modes (states): standby, inquiry, page and connected, according to

Figure 2-9. More specifically, the modes are:

• Standby is the default operational mode of a Bluetooth device. When a

device is in this operational mode, it typically idles with only its native clock

operating in a low-power mode [5]. From the Standby state the device can

move to Page or Inquiry state.

• Inquiry is the operational mode where the device that it is in this mode

learns about the identity of other devices in its vicinity; these other devices

must be in an inquiry scan state to listen for and subsequently respond to

inquiries [5].

Microprocessor & Hardware Laboratory

Figure 2-9: Bluetooth operational modes (states)

• Page is the operational mode where a Bluetooth device (1) explicitly

invites another Bluetooth device (2) to join the piconet whose master is

(1); device (2) must be in the page scan state to listen for and

subsequently respond to pages [5]. As Figure 2-9 shows, an inquiry by a

device is not explicitly needed by a device to page another, because the

identity of the device to be paged can be known to the paging device.

• Connected is the operational mode where a Bluetooth device is a member

or the Master of a piconet. In this operational mode the device can

Microprocessor & Hardware Laboratory

exchange data (or voice) with the devices connected to it, disconnect with

any one of them (if no devices are left connected to it, it returns to the

standby operational mode) or perform inquiries and pages for additional

devices to join this or some other piconet. In the latter case, a scatternet

eventually would probably be created.

2.3.2.5 Packet types

The general packet type is shown in Figure 2-10. Each packet consists of 3

entities: the access code, the header and the payload. In the figure, the number

of bits per entity is indicated.

Figure 2-10: Bluetooth Baseband generic packet (Bluetooth spec 2 [5])

 Different packet types have been defined. Thus, a packet may consist of the

following elements:

• A shortened (68 instead of 72 bits) access code only

• The access code and the packet header (72 and 54 bits. 126bits totally)

• The access code, the packet header and the payload (minimum

72+54+1=127bits, maximum 72+54+2745=2871bits)

The first two types are reserved for common packets, which are control packets

essential for the Bluetooth protocol to function. Analysis of these packets is out of

the scope of this thesis. The latter packet type includes the Asynchronous

Connection-less (ACL) packets and the Synchronous Connection-oriented (SCO)

packets.

The SCO packets are typically used for 64kbps speech transmission and this

thesis does not deal with them.

The ACL packets are used for asynchronous logical transport and the payload

can be user or control data [5]. They can cover from 1, 3 or 5 time slots and they

Microprocessor & Hardware Laboratory

provide a 16bit Cyclic Redundancy Check (CRC) code. There are Data - Medium

Rate (DM) and Data - High Rate (DH) ACL packets. Thus, there are DM1, DH1,

DM3, DH3, DM5 and DH5 packets, with the number denoting how many time

slots they occupy. The only difference between them DM and DH is that DM ACL

packets provide the information plus the CRC code coded with a rate 2/3

Forward Error Correction (FEC).

2.3.3 Link Manager Protocol

The Link Manager Protocol (LMP) is used to control and negotiate all aspects of

the operation of the Bluetooth connection between two devices. This includes the

set-up and control of logical transports and logical links, and the control of

physical links [5]. It is used to communicate between the Link Managers (LM) on

two devices which are connected for ACL logical transport. The LM provides

1. Security Management, which provides device authentication and

encryption

2. Power Management, which regulates the device’s association with the

piconet it’s connected, so that it would preserve power. [6] There are three

modes that can be used to reduce power consumption: sniff, hold and

park (examined below)

3. Quality of Service Management, which regulates the bandwidth used in

connections

4. Connection Management, which manages the paging parameters, the

Master-slave roles, the clock of the Bluetooth devices and the connection

establishment and link detachment

These services are provided by the LM by the use of LMP, which exchanges

LMP messages on connected Bluetooth devices. All LMP messages apply solely

to the physical link and associated logical links and logical transports between

the sending and receiving devices. The protocol is made up of a series of

messages which are transferred over the ACL-C logical link, which is a control

link used by the LM, resides on the default ACL logical transport between two

devices, uses DM1 packets and has a higher priority than other traffic [5]. LMP

Microprocessor & Hardware Laboratory

messages are interpreted and acted-upon by the LM and are not directly

propagated to higher protocol layers.

The most common and flexible methods for reducing power consumption are the

use of sniff and park. Hold can also be used by repeated negotiation of hold

periods [5].

 2.3.3.1 Sniff mode

In sniff mode, the duty cycle of the slave’s activity in the piconet may be reduced.

If a slave is in active mode on an ACL logical transport, it must listen in every

ACL slot to the Master traffic, unless that link is being treated as a scatternet link

or is absent due to hold mode (explained below). With sniff mode, the time slots

when a slave is listening are reduced, so the Master only transmits to a slave in

specified time slots. The slave listens in Master-to-slave transmission slots

starting at the sniff anchor point. The sniff anchor points are spaced regularly

with an interval of Tsniff. (Figure 2-11). To enter sniff mode, the Master or slave

issue a sniff command via the LM protocol. This message includes the sniff

interval Tsniff [5].

Figure 2-11: Sniff Anchor Points (Bluetooth spec 2[5])

2.3.3.2 Hold mode

During the connection state, the ACL logical transport to a slave can be put in a

hold mode. In hold mode the slave temporarily doesn’t accept ACL packets on

the channel. With the hold mode, the device is free to do other things like

scanning, paging, inquiring, attending another piconet, or entering a low-power

Microprocessor & Hardware Laboratory

sleep mode. Prior to entering hold mode, Master and slave agree on the time

duration the slave remains in hold mode. After the end of the agreed time, the

slave wakes up, synchronizes to the traffic on the channel and waits for further

Master transmissions.

2.3.3.3 Park state

When a slave does not need to participate on the piconet channel, but still needs

to remain synchronized to the channel, it can enter park state. Park state is a

state with very little activity in the slave. All messages sent to the parked slaves

are carried by broadcast packets (packets broadcasted to multiple devices). The

parked slave wakes up at regular intervals to listen to the channel in order to re-

synchronize and to check for broadcast messages. With this method, the

maximum reduction in the device’s power-consumption can be achieved.

2.3.4 Host Controller Interface

A Bluetooth Controller contains the Bluetooth Radio, the Baseband, the LM, a

resource controller and a device manager. These parts of the Bluetooth protocol

are used by a Bluetooth Host which executes other higher level protocols. The

Bluetooth Controller and the Bluetooth Host communicate through the Host

Controller Interface (HCI), which is defined by the Bluetooth SIG as the physical

interface along with a transaction-style communication protocol to carry

information between the Host and the Controller (Figure 2-12). The main goal of

this transport layer is transparency. The Host Controller driver (which interfaces

with the Controller) is independent of the underlying transport technology. This

allows the HCI to be upgraded without affecting the transport layer.

The traffic crossing the HCI is: the command packets, the event packets and the

data packets.

Microprocessor & Hardware Laboratory

Figure 2-12: The HCI transport layer (Bluetooth spec 2 [5])

The Host issues the HCI commands and can access through them all functions

of the Bluetooth Controller such as setting operational parameters, configuring

the module’s operational status, reading and writing specific low-level registers.

The format of HCI commands is shown in Figure 2-13. The HCI portion of the BT

spec is the largest one, since only by the use of HCI commands a device can

communicate with the lower layers of the Bluetooth protocol in the Bluetooth

Controller. Each command is assigned a 2 byte Opcode used to uniquely identify

different types of commands. The Opcode parameter is divided into two fields,

called the Opcode Group Field (OGF) and Opcode Command Field (OCF). The

OGF occupies the upper 6 bits of the Opcode, while the OCF occupies the

Microprocessor & Hardware Laboratory

remaining 10 bits [5]. Then a byte indicating the length of the parameters that will

follow, as well as their number, must exist since every parameter is one byte long

and after that all the parameters follow.

Figure 2-13: HCI command format

The Controller notifies the Bluetooth Host of the outcome of a command or of an

event that took place in a device connected to the Controller with an HCI event.

The format of the HCI event packets is shown in Figure 2-14. Each event is

assigned a one byte event code used to uniquely identify different types of

events. Then parameters follow in the same way as in HCI commands.

Data between Bluetooth devices is exchanged through the HCI layer by the use

of ACL data packets. Their format is shown in Figure 2-15. In the beginning of

the ACL packet, there are 12bits for the connection handle of the device to which

the data will be sent to. The two bits that follow indicate if this packet is the first

packet of a higher layer message (0b10) or a continuing fragment packet of a

higher level message (0b01). Then two more bits are next that indicate if the

packet is a point-to-point packet (0b00), a packet that will be sent or was sent to

all the slaves (0b01) or a packet that will be sent or was sent to all the slaves that

are in the park, sniff or hold mode (0b10). Then 2 bytes indicating the length of

the data that is contained in this ACL packet will follow and, finally, the data itself.

Microprocessor & Hardware Laboratory

 Figure 2-14: HCI event format

Figure 2-15: ACL data packet format

The Host transmits to the Bluetooth Controller an ACL data packet through the

HCI and then the Controller wirelessly transmits the ACL packet to the target

Bluetooth Controller. Then by the reverse course the ACL packet arrives to the

other end’s Host.

The supported by BT spec 2 HCI transports are 3-wire, SD-transport (Secure

Digital), UART and USB. In this thesis the UART transport is used for

Microprocessor & Hardware Laboratory

communication with the Bluetooth Host, which in this case is the microcontroller.

In the Host that was designed, the Bluetooth Logical Link Control and Adaptation

Protocol (L2CAP) is implemented and higher level protocol multiplexing, packet

segmentation and reassembly is supported through the very effective Serial Port

Profile [3] (SPP) that was designed.

2.4 Bluetooth Products
There are man Bluetooth devices that exist in the mainstream market. They offer

a huge amount of services, but -in general- waste resources, something that in

many cases is not acceptable, especially when a large amount of services

means more expensive equipment. There are, however, devices that provide

valuable services, (even though their hardware resources are very low) which are

targeted for the industrial market. Some stimulated interest devices will be

presented next. They work under limited resources, in a hardware and software

level, and provide serial connections to one or more devices.

2.4.1 Devices that support multiple connections

Only a few devices that provide multiple connections have been discovered,

since most BlueTooth enabled devices are designed for the mainstream market,

where multiple connections would just be something really complicated for the

users. Some of the next devices can function as a network bridge between

various kinds of networks. (LAN Access Profile) Their characteristics are

presented below:

Manufacturer

Device
Bluenext Company

PROMI-MSP
connectBlue

SPA12i
Stollmann

BlueRS+E

Connections 1 to 7 or 1 to 3512 1 to 3 1 to 3

Data Rate 723Kbps 300-921.6Kbps 2.4-230.4Kbps

12 Depends on the model of the PROMI-MSP

Microprocessor & Hardware Laboratory

Profiles SPP, LAP, DUN SPP, LAP, DUN GAP, SDP, SPP

Range 10m~100m (w/ antenna) 10m 15m

Others 4USB ports, Networking

support

- Server mode,

controllable by AT

commands

There is also the Teleca Comtec Bluetooth module which was used in this thesis.

Further information and more thorough specifications of this module are given to

the Appendix C, Chapter 9 of this thesis.

2.4.2 Simple devices for serial communication

Some simple devices that provide serial connection to a BlueTooth enabled

device without installing any additional software are presented next. They provide

maximum security and are the optimal solution for serial cable replacement.

Multiple-UART communication can be implemented in higher levels, as with

normal serial cables.

Manufacturer

Device
Connection Data Rate Profiles Range

AIRcable

Serial-to-Serial
2 predefined

devices

4.8-115.2Kbps SPP, LAP, DUN 10m

Socket Com

Serial Adapter
1 BT device,

Accepts AT

commands

9.6-230Kbps GAP, SDP, SPP 10m

Wireless Futures

BlueWave

2 predefined

devices

2.4-115.2Kbps SPP 100m

Brainboxes

RS232 BT

1 BT device,

Accepts AT

commands

2.4-115.2Kbps SPP, DUN, FTP,

OPP, FAX, LAN

100m

TDK

blu2i RS232

1 BT device,

Accepts AT

commands

2.4-230Kbps SPP, SDP 10m

Microprocessor & Hardware Laboratory

The profiles mentioned are the following:

 GAP: Generic Access Profile

 SDP: Service Discovery Profile

 SPP: Serial Port Profile

 LAP: LAN Access Profile

In Chapter 3 an overview of the existing systems architecture will be presented.

The existing systems that were developed in the Microprocessor and Hardware

Laboratory of the Technical University of Crete will be analyzed so that in the

following chapters the importance of the contributions of the Bluetooth

Reconfigurable Run Time environment will be thoroughly examined.

Microprocessor & Hardware Laboratory

3. Existent & New Architecture

The basic motivation and incentive for this thesis was a project that started

in the Microprocessor and Hardware Laboratory of the Technical University of

Crete in late 2005. The project was given the name of Parrotfish which is a small

fish found in Florida waters that can change gender as needed under group

dynamics [6]. The basic idea of the Parrotfish project is to create an environment

where a Field Programmable Gate Array (FPGA) will be (partially) reconfigured

through a wireless medium (in this case Bluetooth) in a distributed ad-hoc

community. The Bluetooth Reconfigurable Run Time Environment thesis’ target

is to transfer efficiently and wirelessly the data needed for the configuration of an

FPGA in a large community of nodes. The existence of two previous theses that

were focused in peer to peer communication with the use of the Bluetooth

protocol was vital for the success of the present one.

The first thesis was involved with the implementation of a simple Bluetooth

host controller and it was developed in the Microprocessor and Hardware

Laboratory of the Technical University of Crete by Christos Strydis (BlueApplE-

BlueBridge, 2003) [7]. That thesis gave a big thrust to the continuance of the

research on the Bluetooth protocol. In 2004 Politarhos Elias developed the

Bluetooth Multi UART system in the Microprocessor and Hardware Laboratory of

the Technical University of Crete (2003) [8]. The structure of the embedded

system that had been developed in the Bluetooth Multi-UART (BluMiu) thesis

was based on the initial foundation that was set by the architecture of the

previous application platform that was then developed (BlueApplE-BlueBridge by

Christos Strydis), but its architecture had evolved into an entirely different than

that of BlueApplE-BlueBridge. Finally, it must be noted that the present thesis is

a subsystem of the Parrotfish project (as it is described in chapter 4) and as far

as the FPGA configuration is concerned it interacts with the thesis developed by

Dionysios Efstathiou in 2002. Efstathiou’s diploma thesis was developed in the

Microprocessor and Hardware Laboratory of the Technical University of Crete in

Microprocessor & Hardware Laboratory

2002 (Design and Implementation of a Vendor-Independent Universal

Programmer for FPGA Technology, [9]). In the following sections the architecture

of the previous theses (BlueApplE-BlueBridge and Bluetooth Multi-UART) will be

described, their disadvantages will be shown (in order to understand the mere

contribution of the BluReRun), and the architecture of Bluetooth Reconfigurable

Run Time (BluReRun) environment will be described in general. Also, in section

3.3 some general characteristics of the Efstathiou’s thesis [9] will be given so that

the BluReRun’s architecture will be better understood. BluReRun’s architecture

as well as validation and implementations will be specified in detail in chapter 4

and 5.

3.1 BlueApplE-BlueBridge system
BlueApplE-BlueBridge is an applications environment, developed at the

Microprocessor and Hardware Laboratory (MHL), as part of the diploma thesis by

Christos Strydis [7]. The most important component of this system is a

microcontroller (HOST) that is used to control all the other components that

BlueApplE-BlueBridge consists of.

Figure 3-1 BlueApplE – BlueBridge

These components are the user input (INPUT), the communication (HCI) with the

BT module, the communication (UART) with the external devices (EXT DEV) and

Microprocessor & Hardware Laboratory

the output led matrix (LEDs) (Figure 3-1). Through the BlueApplE-BluBridge

description its advantages and disadvantages will be stressed out.

3.1.1 Software of BlueApplE - BlueBridge

BlueApplE-BlueBridge software architecture was divided in two parts. The

BlueApplE which, as seen previously, is a Bluetooth application environment,

that controls the BT module’s functions through the UART HCI layer, and the

BlueBridge which is an application for the BlueApplE that provides wireless

UART communication. The main task of the BlueApplE-BlueBridge design is to

issue Bluetooth HCI commands to the BT module and correctly decode the

events they return after they have been executed by the module.

3.1.1.1 BlueApplE software architecture

A generalized flow chart of Blue Apple’s software architecture and operation can

be seen in Figure 3-2 and an explanation of its functions follows.

Figure 3-2. BlueApplE operation flow chart

The idle process puts the μC in a power saving mode until an interrupt is

triggered. When the software detects a supported interrupt, it leads the μC to

execute the appropriate module. After the end of each of the modules’ jobs, the

μC returns to the idle process. Interrupts originate from the input, from internal

UART or from the external UART. The modules dedicated to every one are:

Microprocessor & Hardware Laboratory

 The input decoder takes actions depending on the button pushed. A flow chart

of the input decoder and the command sending module is depicted in Figure

3-2. There are 3 kinds of input interrupts:

1. Making a selection. They change various pointers of the system,

which point on certain locations of the μC’s RAM. These pointers

either select a command that the user will later transmit to the BT

module, or a remote device that the selected command will be

targeted to. The selections are shown on the LEDs, following a

binary count.

2. Commanding the μC to transmit a command to the BT module. In

this case, the number of the command and all the selections made

are forwarded to the command sending process.

3. Running the BlueBridge application. The appropriate module,

specified in the following section, is executed. This allows data

transfers between 2 connected BlueBridge devices.

 The tasks of the command sending process (Figure 3-2) are to transmit HCI

commands or ACL packets to the BT module and to properly prepare the

event decoder for accepting incoming event packets from the BT module.

When it is executed, it reads from the memory the byte stream of the selected

command and the characteristics of the selected device (if they are needed)

and then uses the μC’s internal UART to transmit the bytes read. After

commands are executed by the BT module, a Bluetooth event is usually

returned to the μC. Depending on the command sent, the command sending

module notifies the event decoder of the byte sequence of the expected event

and, thus, prepares the event decoder so that it will function correctly.

 The previously mentioned event decoder idles until a byte is received from the

μC’s UART. The data flow chart of the decoder is depicted in Figure 3-3.

When a byte arrives:

Microprocessor & Hardware Laboratory

1. If flags have been set the byte is compared with the expected bytes

generated by the command sending module in the decoding preparation

module. More flags are set, LEDs are lit and data is written to the memory.

Then the decoder waits for more bytes to arrive from the UART until the

packet has been fully decoded.

2. If flags have not been set and the decoder is prepared to receive an event,

the header of the packet being received is checked if it matches the

expected event. If it is the one expected, the appropriate flags are set and

more bytes received are decoded normally according to scheme (1). If it is

not the expected event the decoder checks if it matches one of the known

remotely triggered events (data packets, create connection request

packets, disconnection packets). In case the packet being received is a

known packet, its byte stream will be compared according to scheme (1)

with a template of this packet stored in the memory.

3. If the header cannot be recognized to be a known packet and nothing is

being expected, the received packet is ignored.

Figure 3-3 BlueApplE event decoding module

Microprocessor & Hardware Laboratory

Bluetooth commands implemented in BlueApplE are stored in the μC’s memory

in two copies: one in the RAM of the μC and one in the non-volatile flash memory

(FLASH) it has for storing the program code. When the μC is powered up, the

commands stored in the FLASH are transferred to the RAM. This method cannot

be, by any means, characterized as memory efficient, since the μC used has only

512Bytes of memory.

As a conclusion, the BlueApplE has some disadvantages, which were quite

serious:

• No buffering mechanism was implemented

• The command sending module was not memory efficient

• The event decoding module was not memory efficient, and depended on

the last command that was sent by the BlueApplE

• The decoding preparation module would be useless, if a better event

decoding module was implemented

3.1.1.2 BlueBridge software architecture

The BlueBridge application provides a way for two devices connected to the

external UARTs of two BlueApplE-BlueBridge platforms to exchange data. This

application uses the command sending and event decoding modules of the

BlueApplE to function. It keeps in the μC’s memory the byte sequence of a data

packet’s template.

For the BlueBridge to work both ends of two connected BlueApplE devices must

start the BlueBridge application. The handshaking process used is depicted in

Figure 3-4. Through the input the user requests a data bridge to be initiated. If

another bridge is running, it is stopped. If a bridge is not running and a

connection is present, the BlueBridge application sends a control signal to the

remote device, informing it that it will start a data bridge with it. If the remote

device accepts, data received from the external UART of the BlueApplE will be

encapsulated to data packets and transmitted to the remote device. Of course

Microprocessor & Hardware Laboratory

data packets received by that device will be decoded, the data they contain will

be de-capsulated and then transmitted via the external UART.

Only the two devices that started the BlueBridge can exchange data after the

handshaking that has been committed by the initiation of the application, making

BlueBridge a connection-oriented service. Connection-oriented services are used

for complex systems which require control messages to be exchanged, in order

to prepare for an onslaught of packets, and may demand reliable data transfer

(through an unreliable communication channel) and/or flow and congestion

control. [1] Reliable data transfer is when the application can rely on the

connection to deliver all its data without error and in the proper order. Flow

control makes sure neither side of a connection overwhelms the other side by

sending too many packets too fast, while congestion control helps preventing the

network from entering a state of gridlock, which causes loss of packets. Though,

the mechanism for data transfers provided by the Bluetooth protocol (ACL) is

reliable, simple and targets point-to-point (or multipoint) transfers. There is no

need to design a connection-oriented service when dealing with a simple cable

replacement protocol, such as Bluetooth.

Figure 3-4 BlueBridge Initiation

Microprocessor & Hardware Laboratory

The decoding of data packets is done using the same mechanism that BlueApplE

uses to decode events. (Figure 3-5). The expected byte stream will be a data

packet template. After the expected bytes are checked for validity, the payload

byte is forwarded to the higher level application through the external UART. This

means that the header bytes (9 bytes) are practically ignored13 and the payload

byte is forwarded to a higher level application through the external UART. If a

data bridge is active, every byte received from the external UART will be

forwarded to the command sending module that will encapsulate it into a data

packet (by adding to it the 9 byte header) and then transmit it to the BT module.

Figure 3-5. BlueBridge data exchange through the BlueApplE

As seen, in every 10 bytes sent over the air by the BlueBridge application, only

one is useful. This automatically reduces the effective data rate from 57.6kbps14

to 5760bps, a significant reduction in the bandwidth that is further reduced by the

fact that the UART is external. Concluding the description of the existing

13 They are not completely ignored; the header is checked to determine if the source BlueTooth

device is the one with which the BlueBridge application has started, if the all its elements are

correct and if the payload byte is only one
14 The default data rate of the BT module

Microprocessor & Hardware Laboratory

system’s architecture and functionality, the BlueBridge application also has

certain disadvantages, in addition to those of BlueApplE:

• Too low data rate (1200bps)

• Connection oriented operation, when it’s not needed

• Only one byte data payload in every 10 bytes transmitted over the air

• Supports only one ACL connection

So in general the basic disadvantages of the BlueApplE – BlueBridge system

were:

• No buffering mechanism was implemented

• The command sending module was not memory efficient

• The event decoding module was not memory efficient, and depended on

the last command that was sent by the BlueApplE

• The decoding preparation module would be useless, if a better event

decoding module was implemented

• Too low data rate (1200bps)

• Connection oriented operation, when it’s not needed

• Only one byte data payload in every 10 bytes transmitted over the air

• Supports only one ACL connection

3.2 Bluetooth Multi-UART system

Bluetooth Multi-UART (BluMiu), developed at the Microprocessor and Hardware

Laboratory and designed by Elias Politarhos in 2004 [8], had some basic goals to

achieve. These were:

 To improve the performance of BlueBridge,

 Overcome its disadvantages (noted in the previous section) and

Microprocessor & Hardware Laboratory

 Transform it to a reliable and robust data exchange Bluetooth enabled system

Once these requirements were met, new services would be added. These

requirements, as was found in a project to study BlueBridge and improve its data

transfer rate, could only be achieved by:

 Changing the μC that was used, so that it could cover the requirements. The

AT80S8515 was changed by the ATmega161 AVR.

 Implementing a buffering mechanism in its UARTs, so that efficient data

exchange and multiprogramming could be achieved.

 Replacing every software module that was embedded in the AVR, because

more efficient modules were needed.

 Adopting a client - server architecture, so that true point-to-point connections

could be achieved.

BlueApplE didn’t have an exact focus. It was more like an attempt to discover the

capabilities of the Bluetooth protocol and the BT modules by issuing to it simple

commands and correctly decoding their replies, so that further research could be

conducted later on. From the beginning of BluMiu development, the primary

focus of the work was given on data transfers between BluMiu devices. So, μC

specific functions and/or Bluetooth services that could enhance data transfers

were exploited. This fact implied that the implemented Bluetooth commands and

Bluetooth services contained in the BlueApplE had to be reviewed (and new

should be found) so that only the necessary elements for achieving data

transfers between Bluetooth devices would remain in BluMiu. The implemented

Bluetooth commands were reduced from 27 to 9 in the server; 11 in the client.

The commands necessary for the discovery, the identification, the connection

and disconnection of Bluetooth enabled devices in the vicinity of the BT module

were the commands that remained in the BluMiu. The implementation of a

buffering mechanism in the data transports. This gave the major boost in the

evolution of BluMiu; relatively large amounts of data could be stacked in the

Microprocessor & Hardware Laboratory

buffer, waiting to be transmitted, allowing the BluMiu control unit to attend to

other tasks.

1. The differentiated decoding of incoming events. BlueApplE loaded the

pattern of the expected packet to be received into the memory and then

waited until this packet was received. BluMiu decodes whatever,

whenever it is being received without unnecessary memory transfers,

since all the possible packets that can be received have been included in

the event decoder’s piece of code. This is a fair solution since the μC

doesn’t have a quantity of RAM available to be wasted for the decoding of

events and it is generally faster to read directly from the program code

than from the RAM.

2. The design of a packet exchange mechanism. In BlueBridge every byte

received was transmitted to the remote device. This, as seen, limits the

effective data rate to the 1/10 of the available. The BluMiu design provides

data packets of variable payloads that contain (except from the data

payload) information for the source remote device of the packet, in order

to support multiple connections. The payload of data is limited only by the

BT modules used, the Bluetooth protocol itself and the number 65536.

Having in mind the limitations in resources and the complexity of the work that

the μC would have in dealing with so many things simultaneously, even in trivial

tasks, great attention was given to the software parts of the system. Every

module of the system was written in AVR assembly. Software architecture is

based on interrupts that, when triggered, cause the appropriate Interrupt Service

Routines (ISRs) to be executed. In these ISRs the modules of the system have

been built. Whenever the μC is executing an ISR and a subsequent interrupt is

triggered, data vital for the ISR running is stored in the μC’s RAM, so that the μC

can execute the ISR for the new interrupt and when it ends the first ISR will be

resumed. This fact allows the μC to execute all the interrupts that occur, internal

Microprocessor & Hardware Laboratory

and external, without losing any data or missing any interrupts and, thus,

decreasing the Host’s (AVR) reliability to the external device.

 3.2.1 The BluMiu software Architecture

The development of the software that was embedded in the BluMiu host was the

most complicated and time consuming task throughout this thesis’ development.

Meeting the initial requirements that were set in the beginning of the

development needed very sophisticated software architecture with very carefully

written source code that would be able to deal with multiple events (interrupts)

almost simultaneously and serve all of them in real time. The software

architecture of the client and the server is shown in Figure 3-6.

The idle process makes the μC to enter a power saving mode until an interrupt is

triggered. When that happens, the μC will execute the appropriate software

module. After each of the modules completes its jobs, the control is returned to

the idle state, where it waits for other interrupts.

Figure 3-6 BluMiu software architecture

Microprocessor & Hardware Laboratory

The UART0 as well as the UART1 were the most important modules of the

BluMiu architecture. In the BluMiu the Host which is the AVR supports the

differentiated decoding of packets. However, this is not done efficiently. For

example in order to send data through one Bluetooth module to another it is

essential to add a large number of header bytes to the actual data packet. This

has been eliminated in the BluReRun, by creating optimized UART decoder

modules; thus improving the whole system’s performance. This will be thoroughly

examined in the next chapter.

However, the Bluetooth Multi UART environment had some basic disadvantages

that were important and were resolved in this thesis:

• The format of the packets accepted from and transmitted to the Bluetooth

controller and external device had to be changed, as far as the interaction

between the BluMiu and the top levels of the architecture is concerned, in

order to support efficient FPGA re/configuration even in point to point

connections.

• No true point to multipoint environment was supported by the BluMiu due

to hardware limitations

• The merging of a master and a slave in one host was not supported.

• No addressing protocol was implemented

• The Bluetooth module used in previous theses was specified by the

Bluetooth spec 1.0b therefore it was not up to date with current

specifications (Bluetooth spec 2.0)

• No dynamic initialization and configuration of commands were supported.

In BluMiu everything must be done by a terminal window or through the

button input

Microprocessor & Hardware Laboratory

3.3 The Hardware Programmer and Tester (HPT)
The purpose of the thesis that was developed in the Microprocessor and

Hardware Laboratory of the Technical University of Crete by Dionysios Efstathiou

in 2002 [9], was to develop of a vendor – independent universal programmer for

FPGAs (this programmer was named HPT). The Hardware Programmer and

Tester (HPT) is the core of the thesis. It is a space-efficient, pre-engineered high-

density configuration solution for programming testing and upgrading FPGA

based systems. It can offer adequate solution to the above problems as an

inexpensive and generic programmer. The HPT can be utilized for system

prototyping and testing, or as intelligent host responsible for configuring multi-

FPGA systems. The architecture of the HPT will be described in general in

section 3.3.1 since it is vital to understand the way it works due to its interaction

with the present thesis. Finally a general comment on FPGAs will be given in

section 3.3.2 since one of this thesis’ purposes is the programming of an FPGA

through the interaction with the HPT.

3.3.1 HPT Architecture in general
The HPT has an RS232 link to the PC and an on-board flash memory both

controlled by an intelligent host (either a microprocessor or an FPGA). The Run-

Time Environment in the PC is responsible for downloading the appropriate CDF

file (configuration bit-streams along with the necessary HPT instructions) to the

HPT board either for immediate usage or for long-term storage in the flash

memory. A detailed diagram of the HPT is shown in Figure 3-7, where

configuration data and HPT instruction are transferred through the RS 232

interface to the HPT core module. The Run Time Environment is responsible for

the data transfer to the HPT. Upon reset, the HPT system is in an idle mode.

Depending on the incoming instructions the HPT core module decides whether to

proceed in data store, in the flash storage media, or to operate directly through

the RS 232 interface and configure (or test) the connected FPGA(s) based

system. The instructions can be divided in “protocol” instructions and

Microprocessor & Hardware Laboratory

“Programming” instructions. For example, the command that stores data in the

Flash media is categorized as a protocol instruction. The microcontroller unit

(Figure 3-8) of the HPT core “parses” the incoming instructions and acts

accordingly by issuing commands to the various HPT interfaces. The fact that the

timing requirements of some FPGAs are demanding and the whole configuration

process may be complicated makes the need for branching instructions

mandatory.

Figure 3-7: The HPT

UART
Interface

(RS232_IF)

HPT core module

RESET

clk

START

CONF CLK

CNTRL_PORT A (7:0) PROG & TEST
Interface
PROG_IF

DATA PORT (7:0)

CNTRL_PORT B (7:0)

SO

SI

SCK

FLASH
Interface

(RAM_IF)

CS

mem_data(7:0)

TxD

RxD

Figure 3-8. The HPT microcontroller

Consequently, the HPT core module must be equipped with a cache memory in

order to store portions of instructions for branching. The reason for implementing

Microprocessor & Hardware Laboratory

a caching policy in a memory block different from the flash storage media is the

need for accelerated time response and instruction-exclusive storage media.

 3.3.2 FPGA history and architecture in general
 There are two types of programmable ASICs including programmable

logic devices (PLDs) and field-programmable gate arrays (FPGAs). This text will

be focused exclusively on FPGAs.

In the mid 1980s a new technology for implementing digital logic was

introduced, the field-programmable gate array (FPGA) [5]. These devices could

either be viewed as small, slow mask programmable gate arrays (MPGAs) or

large, expensive programmable logic devices (PLDs). FPGAs were capable of

implementing significantly more logic than PLDs, especially because they could

implement multi-level logic, while most PLDs were optimized for two-level logic.

Although they did not have the capacity of MPGAs, they also did not have to be

custom fabricated, greatly lowering the costs for low-volume parts, and avoiding

long fabrication delays. While many of the FPGAs were configured by static RAM

cells in arrays, (SRAM), this was at first viewed as a liability by potential

customers who worried over the chip’s volatility. Antifuse-based FPGAs were

also developed, and for many applications were much more attractive, both

because they tended to be smaller and faster due to less programming overhead

and also because there was no volatility to the configuration. The major

disadvantage to Antifuse technology FPGAs is that once they are programmed

the process cannot be reversed. They are not re-programmable.

In the early 1990s there was a growing realization that the volatility of

SRAM-based FPGAs was not a liability, but was in fact the key to many new

types of applications. Since a completely electrical process could change the

programming of such an FPGA, much as a standard processor can be

configured to run many programs, SRAM-based FPGAs have become the

workhorse of many new re-programmable applications. An IC foundry produces

FPGAs with some connections missing. The user can perform design entry and

simulation. Next, special software creates a string of bits describing the extra

Microprocessor & Hardware Laboratory

connections required to make the design—the configuration file. There is no

customization of any mask level for an FPGA, allowing the FPGA to be

manufactured as a standard part in high volume.

FPGAs are popular with Microsystems designers because they fill a gap

between TTL and PLD design and modern, complex, and often expensive

ASICs. FPGAs are ideal for prototyping systems or for low-volume production.

FPGA vendors do not need an IC fabrication facility to produce the chips;

instead, they contract IC foundries to produce their parts. All FPGAs have certain

key elements in common. All FPGAs have a regular array of basic logic cells that

are configured using a programming technology [10]. The chip inputs and outputs

use special I/O logic cells that are different from the basic logic cells. A

programmable interconnect scheme forms the wiring between the two types of

logic cells. Finally, the designer uses custom software, tailored to each

programming technology, and FPGA architecture, to design and implement the

programmable connections. The programming technology in an FPGA

determines the type of basic logic cell and the interconnect scheme. The logic

cells and interconnection scheme, in turn, determine the design of the input and

output circuits as well as the programming scheme. The programming

technology may or may not be permanent. The permanent programming in one-

time programmable (OTP) FPGAs cannot be undone. Re-programmable or

erasable devices may be reused many times.

3.4 The New System: BlueReRun
As it was noted in the introduction of this chapter the Bluetooth Reconfigurable

Run Time Environment (BlueReRun) which was developed in the Microprocessor

and Hardware Laboratory of the Technical University of Crete and designed in

this thesis is part of a larger project. The Parrotfish’s (the project name) target is

to create a run time environment where a Field Programmable Gate Array

(FPGA) will be (partially) reconfigured through a wireless medium (in this case

Bluetooth) in a distributed ad-hoc community.

Microprocessor & Hardware Laboratory

The basic targets of the BlueReRun are the following:

 To improve the performance of the BluMiu system,

 To create a system that will interact correctly with the Hardware Programmer

and Tester so that efficient FPGA re/configuration would be guaranteed,

 To create an addressing protocol that would forward correctly and efficiently

the data required for the re/configuration of an FPGA, in an ad-hoc community

 To merge in one device the master-slave characteristics so that every node in

an ad-hoc community (piconet in Bluetooth) would be able to change from

master to slave when requested by the Hardware Programmer and Tester or

by other factors (such as an external device other than the HPT)

 To create at the same time a system that can also stand alone apart from the

interaction with the HPT. This system must support any data or command

exchange within an ad-hoc community of nodes in an efficient and errorless

way.

In order to understand the importance of the contributions of the BluReRun it is

necessary to understand the mode of communication between the different levels

of the Parrotfish project. A Parrotfish community is a community that has a

number of nodes which have the format shown in Figure 3-9. In this figure 3

levels can be clearly noted. The first one is the Bluetooth layer (layer 1) followed

by the HPT layer (layer 2) and finally the top level layer is the FPGA Layer (layer

3). All the nodes noted in the figure, have this format. The BluReRun’s target is to

create an efficient layer 1 so that the data (meaning the .bit file that the FPGA

requires for the re/configuration) would be ideally and efficiently forwarded to

different nodes.

The first layer must interact correctly with the second layer, which is the leader of

the Parrotfish system. The BluReRun is capable of making decisions only as far

as the way that the data could be distributed among the different nodes. The

Microprocessor & Hardware Laboratory

target of the data (where the data would be sent) is determined only by the HPT.

Also, an HPT and BluReRun command interaction must be supported.

Figure 3-9: The Parrotfish community and the different layers

The BluReRun’s software and hardware specifications must be the same in all

the nodes that form the ad hoc community. The BluReRun must overcome the

disadvantages created by the previous systems as well.

At this section a general and precise description of the BluReRun system was

presented. In Chapter 4, a thorough and detailed study of the system as well as

its parts will be given in order to understand its contributions to FPGA

programming and wireless data configuration.

Microprocessor & Hardware Laboratory

4. BluReRun Architecture

In chapters 2 and 3, an overview of the lower levels of the Bluetooth stack and

the existing Bluetooth enabled system developed in MHL in the context of

Christos Strydis’ thesis (BlueApplE-BlueBridge) [7] as well as the research that

Elias Politarhos did for his own diploma thesis (BluMiu) [8] were presented. We

explored some of the disadvantages that the BlueApplE-BlueBridge and BluMiu

systems possessed and saw what needed to be improved. The new system

(Bluetooth Reconfigurable Run Time Environment) reduces and in some cases it

even eliminates the flaws of the existing systems. At the same time, the

BluReRun system introduces an integral system of re/configuring FPGAs in a

wireless ad hoc community.

BluReRun offers the following characteristics that make it better than the existing

one and at the same time ideal for FPGA wireless re/configuration:

1. Piconet-based master-slave architecture. In BluReRun we have three (3)

platforms (three because we have only three point to multipoint BT

modules) where the host (AVR) communicates with the Bluetooth module

through USART 0 and with the HPT through the USART 1. Effectively,

through the USART 1 and through the HPT the data can be sent to an

FPGA. As stated in chapter 3 and in the introductory chapter of this thesis,

the BluReRun’s major target is to be able to send the data (bit stream file)

efficiently to an FPGA (through the HPT) in a Bluetooth ad hoc community

which is comprised of three nodes. Therefore, the BluReRun must act as

an efficient data transporter between different nodes of an ad hoc network.

2. Point to multipoint connections supported and most importantly

implemented.

3. Addressing protocol implemented since we have more than two Bluetooth

devices in the vicinity area. Also the data must be forwarded correctly

Microprocessor & Hardware Laboratory

according to the rules stressed by the master of the piconet and the ones

imposed by the Bluetooth specification version 2.0.

4. New Bluetooth Modules have been used. The new Bluetooth modules

that have been acquired support point to multipoint connections according

to Bluetooth specification version 1.2 and 2.0 (Appendix C).

5. Dynamic HCI command configuration is supported.

6. Error handling for efficient data transport implemented.

7. A better AVR microcontroller has been used. The new microcontroller

which has new Universal Receiver/Transmitters is the ATMEGA162. It has

two UARTs which were updated by ATMEL in USARTs (in Appendix B as

well as in the section named BlueReRun hardware). They are called

Universal Synchronous/Asynchronous Receiver/Transmitters instead of

Universal Asynchronous Receiver/Transmitters. Specific information on

the use of USARTs is given in Appendix B.

8. One of the trickiest parts and contributions of the BluReRun system is the

merging of master and slave in one device. Every device (node in the ad

hoc network) can be used as a master or a slave through the usage of

certain commands issued by the leader of the Parrotfish project which is

the HPT or by another external device.

9. The upgrade of commands implemented in either the master or the slave

of the ad hoc network, from Bluetooth version 1.2 to Bluetooth version 2.0

has been achieved.

10. The 57600kbps transmission rate has been secured. Also the 115200 and

460 kbps transmission rates have been used.

11. software-interrupt based multiprogramming

12. No push-buttons have been used. Everything in a BluReRun node is done

in a dynamic manner either with or without the use of the PC.

13. the host can be fully controlled from the device connected to the platform

14. the device connected to the platform can give commands to the BT

module

15. improved data and command sending mechanism to the BT module,

Microprocessor & Hardware Laboratory

16. improved decoding of incoming event and data packets from the BT

module mechanism

17. improved mechanism of data exchange between a device connected to

the platform and the platform itself

18. the platform reports the connected device of the addresses, the handles

and the user friendly names of connected and inquired devices

19. the platform notifies the connected device whenever a disconnection

occurs

20. Connectionless data transport

21. Payload data packets are big enough to support the data send to the

FPGA.

22. Multiprocessing of the commands/events that are coming from the upper

layer of the Parrot Fish system (HPT) and from the Bluetooth module.

23. Less cost for the implementation of the BluReRun design than BluMiu.

In this chapter, we will present the BluReRun hardware and software design,

which was developed in this thesis and which features:

 The whole software design that contains the upper layers of the BlueTooth

protocol stack and the data exchange protocol

 The hardware that is used to control the Bluetooth module, communicate with

it and provide Bluetooth connection to the external device which can be either

the terminal window or the HPT

In the thesis’ context, three BluReRun platforms have been implemented; each

one can be dynamically serve as the master or the slave regarding the status of

the upper Parrotfish protocols. Firstly, the BluReRun data transfer protocol will be

examined. Then, all the contributions of this thesis will be presented and

analyzed.

4.1 BluReRun data transfer protocol
It is important for an ad hoc community to have efficient and errorless data

transport between each node. The exact protocol, which enables BluReRun

Microprocessor & Hardware Laboratory

systems to exchange data between each other, will be specified in the following

sections. The next section explains why the specified by the BlueTooth SIG

Serial Port Profile (SPP) was not implemented.

4.1.1. The Bluetooth protocol approach

As seen in previous chapters, the BlueTooth SIG has specified a standard for the

serial data transfers between BlueTooth enabled devices, the SPP (Serial Port

Profile). This profile covers the scenario of setting up virtual serial ports (or

equivalent) on two devices (e.g. PCs) and connecting these with Bluetooth, to

emulate a serial cable between the two devices.

Any application may be run on either device, using the virtual serial port as if

there was a real serial cable connecting the two devices (with RS232 control

signaling). The profile assumes that the applications on both sides are typically

legacy applications, able and wanting to communicate over a serial cable (which

in this case is emulated). But typical applications cannot know about Bluetooth

procedures for setting up emulated serial cables, which is why they need help

from some sort of Bluetooth-aware helper application on both sides. Of course,

according to the BlueTooth Profiles Book version 2.0, only one connection at a

time is dealt within this profile [3]. Hence worth, only point-to-point configurations

are considered at a time (even at point to multipoint connections). This means

that (as seen in section 2.3.2.4) in each timing slot, only two Bluetooth devices

can exchange data (master in even time slots and slave in odd slots).

4.1.2. The BlueReRun protocol approach

The BlueReRun protocol had, from the beginning of this thesis, to be efficient

enough and very meticulously specified in order to support not even point to point

but also point to multipoint errorless packet exchange. Before examining the

BlueReRun protocol approach it is essential to understand the structure that a

node in the Parrotfish project has.

Microprocessor & Hardware Laboratory

 4.1.2.1 Architecture of the Parrotfish Node
As described, in chapter 3 the Parrotfish Project’s targets is to efficiently

re/configure any FPGA device wirelessly in an ad-hoc environment. The

Parrotfish is, therefore, comprised of many nodes which have the same structure.

The structure of a node is depicted in figure 4-1.

Figure 4-1: The Parrotfish node

The Parrotfish node is partitioned into three inner-communication layers. The

“lower” layer (layer1) is the physical and data-link layer (this is the layer where

the BluReRun thesis is focused). It consists of the Bluetooth module and its Host.

The “middle” layer (layer2) is the control medium and the “upper” layer (layer3) is

the reconfigurable section of the sensor node. The “middle” layer acts as the

intermediate between the reconfigurable layer and the rest of the network. It

consists of the HPT (Hardware Programmer & Tester), an 8-bit microcontroller

and a memory storage unit [9]. All incoming data from the network that reach the

node are collected by layer1. After they have been “stripped” from any Bluetooth

related data, they are forwarded to layer2. In turn, the middle layer “parses” the

received data and according to their use, they are forwarded to the

reconfigurable section (layer3) or kept as needed. Vice-versa, layer2 collects

processed data and requests from layer3 and either redirects them to the upper

layer for transmittance to the network or processes them. It also has the ability to

dynamically (re)program or read back the configuration bit stream of the node’s

reconfigurable section (layer3). The architecture of the Parrotfish node offers a

Microprocessor & Hardware Laboratory

level of transparency between the different layers. Each layer only communicates

with its adjacent layer. The Bluetooth layer (layer1) interfaces only with the

control medium (layer2), inside the node. The existence of the reconfigurable

section, its functionality and even its presence, is completely hidden from layer1.

The communication layer, on the other hand, communicates with both layers.

 Figure 4-2: Layers of transparency

The “middle” layer communicates with the “lower” layer (layer1: Bluetooth) in a

fixed serial manner. It forwards “raw” data to layer1 (in the form of HPT packets),

which in turn converts them in the Bluetooth compatible packets, and transmits

them to the network. In reverse, layer1 receives ACL data packets from the

network and after they have been converted to HPT packets, they are sent,

serially, to the middle layer. Thus the hardware and software of the wireless link

layer is completely transparent to the medium layer [12]. The above

communication restrictions apply also to the reconfigurable layer of the node.

The “line of sight” (“outside world”) of the 3rd layer is the “middle” layer (layer 2).

It receives requests only from it and responds accordingly. The third layer

communicates with the “middle” layer through a serial link. This is mainly due to

the limited resources of the microcontroller plus the need for a unified

communication link in all nodes.

Microprocessor & Hardware Laboratory

In Figure 4-2 the different layers of transparency and what they are comprised of

is depicted.

The ultimate purpose of the BluReRun is to create an efficient and low cost Data

Link Layer in the Parrotfish node. This layer must function as the transporter of

the data required by the HPT (Intermediate Layer) to re/configure dynamically an

FPGA. At the same time, as stated in the beginning of this chapter, the

BluReRun must also act “alone” in an ad hoc environment.

 4.1.2.2 The BluReRun protocol in the Parrotfish project
The BluReRun protocol is very methodically specified in order to secure efficient

and errorless data/command transport in a point to multipoint environment such

as the environment that the Parrotfish project demands. It needs the external

devices connected to the BluReRun (either the HPT or any other device such as

a PC) to know that special packets can only be received by the Host (the AVR

ATMEGA162 that controls all the functions of the data link layer as it will be

studied in section 2.3). These packets are called HPT packets (the name given

by the HPT who is the control medium of the Parrotfish project). The format of

the HPT packets is shown in Figure 4-3.

 Figure 4-3: HPT packet format

In the above format the following fields can be noted:

a) Handle [2 bytes]: This is the ID of the target device. It is 2 bytes

long and all the handles of the targeted devices are reported

through the Host to the external device or the HPT. The Handle is

two bytes long since that is required the Bluetooth specification

profile v2.0 [4]. The Handle is returned to the Bluetooth Host by a

Microprocessor & Hardware Laboratory

connection complete event. The form of the handle is created in

such a way that supports point to multipoint connections.

b) Length: This is the total Length of the Data of the HPT packet. It

complies fully with the data payload that the HPT (which is the

control medium of the Parrotfish project) sends. It is 1 byte long

since the HPT sends data of no more 256 bytes to the FPGA (layer

3 in Figure 4-1).

c) Data: This is the actual data that one HPT sends to another HPT in

a node of the ad hoc system, through the BluReRun. The

BluReRun is not interested at all in the contents of this data. It is

interested only in the efficient transport of ALL the contents of the

data in the ad hoc system.

The handle format is in big endian order, since the HPT sends the HPT packets

to the BluReRun Host in such an order. However, the Bluetooth firmware

supports only bytes in little endian order. Therefore, in the software decoding (as

it will be studied in the Software Architecture section) the essential

transformations are made in order to ensure little endian transfer of data.

When such an HPT packet is received from the host (AVR ATMEGA162) the

validity of the handle will be checked by the BT module. If the handle is valid, a

decoder will transcribe the packet received to an ACL data packet (its format is

depicted in 4-4, which is the format of the ACL packet that the BT module uses).

The ACL packet that this BT module uses has the following fields in its header:

1. The ACL data packet indicator. [1 byte] This is a byte with the

hexadecimal value 0x02.

2. Handle. [2 bytes] This is the handle indicating the device to which the data

packet will be sent to. The two last bits of the handle (15 and 16)

determine whether that packet will be broadcast to all the active and/or

parked slaves, or was broadcasted by the Master to all its active and/or

parked slaves.

Microprocessor & Hardware Laboratory

3. Total Length (L2CAP length). [2 bytes] It is the Logical Link Control &

Adaptation Protocol (L2CAP) specific length, which includes the data

payload length and some other L2CAP header fields’ length. The BT

module used does not implement the L2CAP layer (which is an upper

level BlueTooth protocol stack layer), but it uses its headers to promote

interoperability. The total length is found by adding 4 to the initial length.

4. Length. [2 bytes] This is the initial length of the data included in the

packet.

5. Channel ID (CID). [2 bytes] The CID identifies the destination channel

endpoint of the packet. Different applications use different CIDs to retrieve

data from the BlueTooth device. CIDs are something like the port numbers

in the TCP/IP. In the BluReRun the CID 0x0040 is used, which is not

reserved for any BlueTooth profile.

Figure 4-4 BT module acceptable ACL data packet used by BluReRun

Every number used in the header is in a little endian byte order. After the

BluReRun data packet has started to be transcribed into an ACL packet, the BT

module will send it to the device indicated by the handle in it, if that device is

connected to the BT module. The above procedure will occur every time that a

data exchange between two or more BluReRun platforms shall happen either in

point to point or point to multipoint environments.

As explained in the contributions of the BluReRun thesis, each Host (and

therefore each node of the ad hoc network) can function as a master or a slave.

More about this BluReRun’s characteristic will be explained in section 4.3. When

a master/slave of the BluReRun platform, transmits an ACL data packet to

another master/slave of the ad-hoc network, then the BT module receives the

Microprocessor & Hardware Laboratory

packet and forwards it to the host. Finally each node shall transcribe the ACL

data packet received, to a HPT data packet (Figure 4-3) and transmit it to the

HPT or another external device. Certain receive and transmit control modules

were implemented. These modules shall be explained in section 4.3.

The following sections describe in detail the core of the BluReRun’s system

hardware and software architectures.

4.2 BluReRun Hardware
The BluReRun hardware architecture was one of the most difficult sections of the

BluReRun thesis. From the beginning of this thesis, the hardware had to coincide

with the software architecture in order to guarantee an efficient transporter of

data and commands in an ad hoc network. In the following sections the hardware

components of BluReRun will be described.

4.2.1 HOST

The most fundamental component of the BlueReRun system is the HOST. The

Host, which is an ATMEGA162 AVR from ATMEL [11], offers the necessary

processing power to execute the upper Bluetooth protocol layers as well as the

essential software and hardware processing for the efficient data transport

between many nodes of an ad hoc system. In Figure 4-5 the HPT hardware

architecture is depicted. In this thesis three BluReRun nodes with three Hosts

were implemented. The analytical schematic and PCB design of each one of

those nodes is given in Appendix A.

Each BluReRun node in the Parrotfish ad hoc network has one Host. Each host

has the Bluetooth master and slave characteristics embedded in its architecture.

All the hosts have the same characteristics and the same capabilities.

Microprocessor & Hardware Laboratory

Figure 4-5: BlueReRun Hardware Architecture

The Host must successfully accomplish, every time it is asked, the following

tasks:

a) to communicate correctly with the BT module via USART 0

b) to communicate efficiently with the HPT and any other external device via

USART 1

c) to execute different commands issued by the HPT or by the host itself in a

dynamic way

d) to secure the safe migration from master to slave or vice versa when

requested by the HPT or by another external device

e) to discover Bluetooth enabled devices in its vicinity dynamically or when

requested by the HPT

f) to connect to them or disconnect from them in a dynamic way

g) to exchange data or command packets with any one of them guaranteeing

the efficient data transport between the other nodes of the ad hoc network,

h) to manage the data flow between the BT module and the HPT,

i) to correctly decode the incoming command and/or data packets, either

they are being received from the BT module or the HPT,

Microprocessor & Hardware Laboratory

j) to transform the HPT packets to ACL data packets, compatible with the

Bluetooth protocol, and vice versa, and

k) to present in the board leds the correct decoding of packets and events

The Host of any BluReRun node, since it is the core of the system, should be

powerful enough to support multiprogramming modes and also to guarantee:

 Availability
 Reliability

 Low cost
 Pin compatible with ATMEGA161
 Fulfillment of the hardware requirements set by the BluReRun

design

Microcontroller Needed AT90S8515 ATmega161 ATmega162

SRAM 900bytes15 512bytes 1024bytes 1024bytes

UARTs or
USARTs

2 1 2 2 USART

Program
memory

12Kbytes 8Kbytes 16Kbytes 16Kbytes

Multiplier 1 0 1 1

I/O lines 28 32 35 35

Registers 32 32 32 32

8 - 16 bit timers 2 2 3 5

Figure 4-6: The Host Resources

The upgrade of the Host from ATMEGA161 (which was used in BluMiu [13]) to

ATMEGA162 was fulfilled. The basic reason was the hardware and software

capabilities that the ATMEGA162 could offer on the grounds of Timer/Counters

15 At least 2x256bytes for USART Transmit buffers, 10x10bytes for inquiries, 7x8bytes for

connections, 10x10 bytes for connection/disconnection purposes

Microprocessor & Hardware Laboratory

and USARTs. The ATMEGA162 offers up to 5 different Timer/Counter modules

for 8 and 16 bit timing modes. In the BluReRun design only 2 are used for error

handling purposes. Also, as far as the interaction with the HPT (the external

device) and the BT module is concerned, the ATMEGA162 is using the USARTs.

In the table 4-6 all the necessary resources for the BluReRun design and all the

different hosts implemented in all the previous designs (BluAppiE and BluMiu) is

depicted in Figure 4-6.

As it can be seen from the above figure the ATMEGA161 and the ATMEGA162

fulfill the necessary resources for the function of the BluReRun design. However,

the usage of USARTs was the one reason that led to the migration from

ATMEGA161 to ATMEGA162. The USART stands for Universal

Synchronous/Asynchronous serial Receiver and Transmitter. The USARTs are

embedded in the microcontroller used (ATMEGA162 [11]). The basic difference

between the UARTs and the USARTs is the use of two different receive buffers

corresponding to USART0 and USART1. This function was important for the

BluReRun design since the possibility of having a packet missed was decreased;

thereby, the efficiency of the whole system was increased. Also, the USART with

the use of a flag in UCSRA Register (UMSEL) can have different modes of clock

generation. Another USART-UART difference is that the first one can support

synchronous or asynchronous operation. Further information on USART is given

in chapter 8 (Appendix B).

4.2.2 BT module

The other essential component of the BluReRun system couldn’t be other than

the one that provides the system with Bluetooth connectivity, which is the BT

module. The BT modules were a kind donation of Teleca Comtec AB in 2006.

They support point to multipoint protocols and are described in detail in Appendix

C. As seen in the chapter 2, they embed the BlueTooth Radio, the Baseband, the

Link Manager, a UART and a USB HCI [14] [15]. This means that the BT

modules used accept Bluetooth commands, execute them and return their

Microprocessor & Hardware Laboratory

outcome. All the connectivity between the Bluetooth modules and the Host is

embedded in the Host core and done through the USART 0 which is the Host

Controller Interface.

4.2.3 HCI & COM

The Host makes use of the HCI and COM interfaces to communicate with the BT

module and the HPT (or any other external device). The internal USARTs of the

ATmega162 are used to communicate with both of them. A default baud rate of

57.6Kbps is used and 256byte buffers are associated with the Host’s USARTs,

implemented in software and supported by the SRAM memory. Each BluReRun

hosts supports also Baud Rate of up to 460.8 Kbps but such high speeds are not

used since there is no efficient error algorithm that can support efficient data

transmission over those Baud rates.

4.2.4 LEDs

Two groups of Leds have been created in the BluReRun design. The one group

is used for decoding and debugging purposes, in a binary scale, while the other

is used for command and status messages. The importance of the LEDs in the

whole system is crucial since if every BluReRun node is considered as a black

box then the user of the system can understand or debug the system by looking

at the diodes.

4.2.5 EXT DEV

The efficient data transmission/reception through the HPT packets, between the

HOST and the HPT (or any other external device) is a very important task of the

BlueReRun node. A device can be connected on the HOST, so that it can either

acquire Bluetooth connectivity, or control the HOST so that it will issue BlueTooth

commands to the BT module implemented in the HOST, or use the provided by

BluReRun data transfer protocol so that it can exchange data with other devices

that support the BluReRun data transfer protocol. This connection is achieved

through the COM interface. The COM interface is the USART 1 module of the

Microprocessor & Hardware Laboratory

Host. Especially, on the boundaries of the Parrotfish Project each external device

(which is the HPT, layer 2, Figure 4-1) must be able to communicate with any

other HPT of the ad hoc network (through the BluReRun system, thereby

securing transparency) in order to re/configure any FPGA.

4.2.6 BluReRun hardware cost

The following hardware components were used for the development of each one

of the BluReRun nodes:

Parts Cost

ATMEL ATMEGA162 $5

TELECA COMTEC BT Module $30

ADM202EAN RS-232 $1.5

Various components (leds etc) $2

PCB Construction $10

Total Cost

$48.5 ~ $50 (about 44 euros)

Table 1: Cost of BlueReRun design

By using these components the cost of the platform’s hardware would be about

50$. In BluMiu and BluAppiE design the cost was more than 90$ for

implementation. Since a low-cost BlueTooth design is a primary objective of this

thesis, the cost could be further reduced by replacing the Bluetooth module by a

BlueTooth RF IC and a BlueTooth Baseband controller. The minimum cost for a

BlueTooth Baseband controller was found to be $0.87 for the Xemics SA XE1402

BlueTooth Baseband Controller, while the minimum cost for a BlueTooth RF IC is

$0.5 for the Skyworks Solutions Inc.16 SKY73001 BlueTooth RF Transceiver.

The XE1402 is a BlueTooth Baseband controller that supports only data transfers

16 Skyworks Solutions Inc. was created by Conexant Systems Inc. in a merger with Alpha

Industries Inc as a wireless semiconductor company [http://www.conexant.com]

Microprocessor & Hardware Laboratory

(not voice) and is BT spec 1.2 compliant, while the SKY73001 is a full featured

BlueTooth RF IC. Both ICs are targeted for low cost, low power and small size

designs. Using these, instead of a BlueTooth evaluation kit, would make the

hardware components of the design cost more than $20 less.

A protocol definition and some hardware components would never be enough for

a complete system to be constructed. The software enables the protocol to run

on the hardware components, making it a very important element of the system.

The following sections specify the software architecture of the BluReRun system.

4.3 BluReRun software
The development of the software that was embedded in the BluReRun host was

the most complicated and time consuming task throughout this thesis’

development. Meeting the initial requirements that were set in the beginning of

the development needed very sophisticated software architecture with very

carefully written source code that would be able to deal with multiple events

(software interrupts) almost simultaneously and serve all of them in real time and

in dynamic way. The software architecture is depicted in Figure 4-7.

The BluReRun software architecture is the same for ALL the BluReRun nodes of

the Parrotfish project. Upon powering up the Host enters in the idle process. That

process makes the μC to enter a power saving mode until a software interrupt is

triggered. Any software interrupt can be triggered either by incoming information

from USART 1 (meaning the HPT module, layer 2 of the Parrotfish project) or

from USART 0 (the Bluetooth module). When that happens, the entire necessary

software modules are executed depending on the case.

Microprocessor & Hardware Laboratory

Figure 4-7. BluReRun software Architecture

If the software interrupt was triggered from the USART 1 then the HOST must

check whether it must follow the Master or the Slave module routine. This

information is given by the HPT through USART 1. Also the HOST might be

necessary to alter its status and migrate from master to slave or vice versa. In

any case the necessary commands are implemented through the HCI Command

Module. Finally in the case of an HPT packet it is necessary either in master or

slave mode for the transcription module to be called. If the software interrupt was

triggered by the USART 0 then the HOST is checking for either the HCI event or

an ACL data packet. After each of the modules completes its jobs, the control is

returned to the idle state, where it waits for other interrupts.

Microprocessor & Hardware Laboratory

In the following sections each software module will be thoroughly described and

all its exact characteristics will be presented. The most important software

modules that enable the BluReRun system to function are the USART Transmit

and Receive control modules (USART0 and USART1). They will be specified in

the following section.

4.3.1 USART Transmit and Receive control modules

The USART control modules undertake the most important task in the

BlueReRun design; they must receive, decode and transmit packets to the BT

module or the External device which in the case is the HPT. Errorless and

efficient function of these modules is necessary because the design’s credibility

relies almost solely to these. The system has 2 USARTs, one dedicated to the

communication between the μC and the BT module and the other between the

μC and an external device which is the HPT. Every USART can receive and

transmit bytes. Four software modules, one module for each of the two receivers

(USRX) and two transmitters (USTX) have been implemented. (Figure 4-8)

Figure 4-8. USART software modules

In Figure 4-9 the basic idea on the USART Receive and Transmit modules of a

certain node is depicted. The HOST (as it will be examined in the next sections)

communicates with the HPT and the BT module through USART 1 and USART 0

respectively.

Microprocessor & Hardware Laboratory

Figure 4-9. The USART architecture

The two USART reception decoders will be described in the next sections. At first

their common elements will be examined, and then their functionality will be

specified.

4.3.1.1 USART reception decoders

The USART reception decoders (US0RX, US1RX) are the highest level software

modules included in the BluReRun system. They run all the Bluetooth protocol

layers that are embedded in the system, give Bluetooth interoperability and

functionality to the BlueReRun system and enable the essential information

exchange (through the HPT packets) between the lowest level of the Parrotfish

Project and the upper layers (HPT and FPGA) in an ad hoc network.

All the USART decoders implemented in the BluReRun design have the same

binary tree with states structure. The decoders implemented are:

 The US0RX: It decodes packets being received from the BT module

 The US1RX: It decodes packets being received from the EXT DEV.

Microprocessor & Hardware Laboratory

Their states are held until the whole packet has been received. Every received

byte that belongs to a packet changes the state of the decoder. Registers are

used to hold the decoding states. They count the number of bytes that have been

received (COUNTER), the number of bytes remaining to complete the packet

(LENGTH) and hold flags. A generalized flow diagram of the decoders is

depicted in Figure 4-10.

Figure 4-10. USART decoder state diagram

The basic steps of the decoder algorithm follow:

Microprocessor & Hardware Laboratory

I. The decoder starts in an idle state, where no flags are set, LENGTH and COUNTER are zero.
When a byte is received it is checked whether it is the packet indicator of a known packet.

II. If the byte is a known packet indicator, a special flag is set and the COUNTER is increased

so that the decoder will decode the next byte correctly, since it will know that it will be the
2nd byte of this specific packet type.

III. If the byte cannot be recognized as a valid indicator, nothing happens and the decoder

returns to the idle state.

IV. As bytes arrive, the COUNTER is further increased and the LENGTH is decreased. This
phase of the decoding is the most important one, since it is the one where received data is
analyzed and appropriate actions are taken (e.g. data essential for the connection creation
is written in the SRAM or packets are transcribed between the Bluetooth and BluReRun
formats). These actions depend on the byte received and the flags set.

V. When LENGTH reaches 0 the packet reception has completed, so the COUNTER is set to 0

too, all the flags are cleared and the decoder returns to the idle state. Bytes received after
the decoder finishes decoding of a whole packet and has returned to the idle state, will be
considered as the packet indicator of a new packet and will be checked appropriately.

The basic decoding algorithm that was used is efficient and errorless since every

packet received from either the USART0 or USART1 is correctly transcribed and

decoded. Of course, the structure of the decoders is far more complicated than

that depicted in Figure 4-10. In the following sub-sections we will see the tasks

that each of the USART decoders undertake.

4.3.1.1.1 USART receiver from the BT module [US0RX]

One of the most important tasks that BluReRun undertakes is the reception of

packets from the BT module and its capability to decode the bytes forming them,

since Bluetooth connections can only be established by correctly decoding the

appropriate Bluetooth packets.

The purpose of the US0RX is:

1. To decode the incoming events that the BT module transmits to the Host

Microprocessor & Hardware Laboratory

2. To transcribe the ACL data packets, which are targeted for the EXT DEV

(the HPT or another external device), to the HPT packet format and

retransmit them (through USART1) to the HPT.

Decoding of incoming events
By decoding the events, US0RX collects and stores to the HOST SRAM the

information about the devices in the Bluetooth module’s vicinity and the

connected to it devices. It also notifies the EXT DEV (meaning the HPT) for the

disconnections or character (master to slave or vice versa) migrations or HPT

command packet events, as they happen. Furthermore, US0RX uses the display

system to output the success or not of a command issued to the BT module

(debugging purposes).

All the events supported in BluReRun are implemented according to the BT spec

2 and as a consequence BT spec 1.2 [3]. For each event decoded, the US0RX

takes different actions. Usually, when an event is decoded, the US0RX indicates,

on the LEDs of the display system, the event’s status (where applicable) and the

event that has happened. The one group of 8 LEDs that are driven by the HOST

is used. The upper 4 LEDs indicate the event’s identity and the lower 4 show the

event’s status or other significant event parameters. Not all the events are

transmitted through the USART1 to the HPT (or any other external device). The

ones that are transmitted to the HPT are transcribed to HPT packets.

The US0RX decoder supports the following events:

Event Event code (hex) Length Parameters

Inquiry complete 0x01 4 bytes Status

Inquiry result 0x02 18 bytes # of Responses, BD ADDR,

Page Scan Repetition Mode,

Page Scan Period Mode,

Reserved, Class of Device,

Clock Offset

Remote name

request complete

0x07 258 bytes Status, BD ADDR,

Remote Name

Microprocessor & Hardware Laboratory

Connection

complete

0x03 14 bytes Status, Connection Handle,

BD ADDR, Link Type,

Encryption Mode

Disconnection

complete

0x05 7 bytes Status, Connection Handle, Reason

Command complete 0x0e (6+n) bytes # of HCI Command Packets,

Command Opcode, n bytes of

Return Parameters

Command status 0x0f 7 bytes Status, # of HCI Command

Packets, Command Opcode

of Completed

Packets

0x13 8 bytes # of Handles, Connection Handle,

HC # Of Completed Packets

The following output actions are taken for every event supported:

Event Output (Upper 4) Output (Lower 4)

Inquiry complete 2nd LED # of devices

Inquiry result 2nd LED # of devices

Connection complete 3rd LED 2nd LED

Disconnection complete 3rd LED 1st & 2nd LED

Remote name request complete 3rd LED 1st LED

Command complete 1st LED Status byte

Command status 3rd LED Status byte

of Completed Packets 4th LED number

Connection related information retrieved from the events supported is stored in

the memory (or removed from the memory in the case of a disconnection). The

stored in the memory connection related information is accessible to the EXT

DEV or the HPT.

ACL Data packets
The US0RX decoder is the software module that undertakes the task to

communicate with the necessary transcription module in order to transcribe the

Microprocessor & Hardware Laboratory

BlueTooth data (ACL) packets received from the BT module to HPT packet

format. After that it retransmits them through the USART1 to the HPT or any

other external device.

In all the BluReRun hosts, the ACL data packets received from USART 0 are

transcribed to HPT packets (Figure 4-7). Through this method, the transparency

and efficiency of the system is secured. The transparency to the upper layers of

the Parrotfish system is secured since the only mode of communication between

the HPT (layer 2) and the BluReRun platform (layer 1) are the HPT packets.

Therefore, each HPT understands that it communicates solemnly with another

HPT. The system with this method is more efficient since the only transcription

made is from ACL data packets HPT packets; thereby no large HOST

resources are being used. The identity of each received ACL data packet is

again checked for validity; if it is not the expected, the ACL packet is ignored or

can be stored in an external memory if such is used(in this thesis this was not

necessary since the bytes send from one HPT to another were no more that 256)

.

4.3.1.1.2 USART receiver from the EXT DEV [US1RX]

Another very important software module of BluReRun is the decoder of the

packets coming from the HPT or any other (for example PC) EXT DEV (US1RX).

The importance of the US1RX module lies to the fact that it is responsible for

securing efficient data reception and transmission between the BluReRun node

and the HPT, thus guaranteeing correct FPGA re/configuration.

The USART 1 of the HOST of any BluReRun node can receive the following

types of information:

 HPT Data packets to transmit them wirelessly to any BluReRun node through

transcription to ACL data packets.

Microprocessor & Hardware Laboratory

 Non Dynamic Bluetooth commands from the HPT or any other EXT device to

the BT module

 HPT-BluReRun Command Interaction. The Flash command interaction

describes a control and command protocol between the HPT and the

BluReRun.

 BluReRun emulation. Packets indicating a Bluetooth command implemented

in the μC to be issued to the BT module. The communication is carried out in

57.6Kbps by default (but also 115.2kbps and 256kbps are also supported), as

also happens with the BT module.

HPT Data packets
HPT data packets that are transmitted to the BluReRun by the HPT or any EXT

DEV must have the format described in Figure 4-3. After the US1RX detects that

a HPT data packet is being received, the following steps will be executed:

a) Transcribe the packet to a Bluetooth protocol compatible ACL data packet

of the form of figure 4-4

b) The above procedure will be executed in the Transcription module of the

USART 1 through correctly positioning the handle, length and data to the

essential ACL format

c) Upon completion of the transcription, the ACL data packet is transmitted

through the USART 0 to the Bluetooth module, so that it will wirelessly

transmit it to the target BluReRun device (if it exists).

The validity of the handle that has been received, which indicates the target

BluReRun node, will be checked by the BT module. Only data packets in the

HPT data packet format are accepted by the USART 1. This secures

transparency between the different layers of the Parrotfish project.

Microprocessor & Hardware Laboratory

Non Dynamic Bluetooth commands
One characteristic of BluReRun that makes it more efficient than its

predecessors is the dynamic command initialization. This BluReRun trait will be

examined in section 4.3.4. At the same time since every BluReRun node can

function as an immediate Bluetooth command transmitter, the USART 1 of the

HOST accepts non dynamic Bluetooth commands from the EXT device or

dynamic Bluetooth commands from the HPT. In the case of any other EXT

device these commands have the format of figure 4-11. In the case of the HPT

the control and command protocol (HPT-BluReRun command Interaction) is

implemented. After the US1RX detects the Non Dynamic Bluetooth Command

packet, it forwards the command contained in the packet to the BT module

without checking the command itself. By using this service, the EXT DEV can

issue to the BT module virtually every command specified in the BlueTooth

protocol, allowing the EXT DEV to gain almost full control of the BT module.

Figure 4-11. Non Dynamic Bluetooth commands from EXT device other than HPT

HPT-BluReRun Command Interaction (Flash Command Interaction)
Another characteristic of the BluReRun communication protocol is the HPT–

BluReRun Command Interaction. This command protocol between the HPT

(layer 2 of the Parrotfish system) and the BluReRun (layer 1) is based on the

idea of dynamic Bluetooth commands. The basic idea of this protocol is that the

master HPT, since it is the leader of the whole system, must have a command

interaction mode between it and the BluReRun in order to proceed to inquiries,

connections, disconnections or master to slave migrations. This protocol states

that whenever the master HPT transmits to the BluReRun host an HPT packet in

the form of Figure 4-12, then the BlueReRun host US1RX module understands

that the data that follows must be read from him as it is a command.

Microprocessor & Hardware Laboratory

Figure 4-12: HPT command Packet

In Figure 4-12 the HPT command packet is depicted. The HPT command Packet

has the following components:

a) The Handle: This is always 0x00FF. It is the code that states to the HOST

that what follows is a command for the Bluetooth module. This handle is

unique for the HPT and the BluReRun.

b) The Length: It is always 0x01 since the data that follows describes a

command that is embedded in the flash of the Host and the HPT.

c) The Data: The data is 0, 1, 2, 3. These numbers correlate to the position

of the command in the flash memory. The HPT as well as the HOST have

those four commands in the same Flash memory position, as depicted in

the following table. This characteristic makes the whole command protocol

dynamic. The HPT does not need to send a command in the Non Dynamic

Bluetooth commands format.
HCI command Details

 0) Inquiry command

Data: $00

 Command format:

$01$01$04$05$33$8b$9e$05$00

Searches for active Bluetooth devices in the

vicinity and returns relative information

 1) Create Connection command

Data:$01

Command format:

$01$05$04$0D$(6 bytes of BD_ADDR)

18cc$(page scan repetition mode)$(Page

scan mode)$(Clock offset) $(Clock offset)

$01(role switch enabled)

Microprocessor & Hardware Laboratory

Attempts to establish an ACL connection to

another device based on the remote device’s

BD ADDR (other information found by an

inquiry command are helpful). On success, a

Connection Handle is assigned to the ACL link

 2) Disconnection command

Data: $02

Command format:

$01$06$04$03$ $$(connection handle of the

device we want to disconnect) $13 (reason)

Terminates an existing ACL connection based

on the connected device’s Connection Handle
 3) Master Slave Switch command

Data: $03

Command format:

 $01$0b08 (BD_ADDR)$00 from master to

slave

 $01$0b08 (BD_ADDR)$01 from slave to

master

Used to switch role of the BT module from

master to slave or vice versa.
In order to understand the HPT – BluReRun command interaction module it is

essential to describe an example. Let’s assume that the HPT would like to know

the number and the names of other HPTs that are in its vicinity. In order to do so

it must issue an inquiry command through the Bluetooth module. Thus, through

HPT – BluReRun Command Interaction it transmits to the BluReRun Host the

HPT command packet: 00FF$01$00. The USART 1 decodes the HPT

command packet received, and transmits to the Bluetooth module through

USART 0 the command in flash position #0. This command is the inquiry. The

event returned is transmitted in the format of HPT data packets to the HPT. The

same procedure happens with the other two commands. This command

communication protocol is very efficient for the following reasons:

Microprocessor & Hardware Laboratory

a) The HPT does not need to know all the commands of the Bluetooth

protocol. Only those three that are necessary for the HPT are

implemented.

b) The resources of the HPT are very limited. If all 11 commands of the

BluReRun Bluetooth protocol were implemented then the FPGA

programming (which is the HPT task) would be in high risk.

c) The transparency of the whole Parrotfish project is secured since the

communication between the HPT and the BluReRun is done in HPT

packet format.

BluReRun Emulation
The BluReRun emulation is a BluReRun characteristic that does not apply to the

HPT layer. It applies, however to any other external device such as a PC. The

BluReRun emulation packet is depicted in figure 4-13. It consists of a packet

indicator and 3 more bytes.

Figure 4-13: BluReRun emulation packet

These bytes have the following function:

 The inq# and conn# fields select a remote device that has been found in the

vicinity (or is connected) to the system.

 The comm# field selects a command implemented in BluReRun to be

executed by it.

This module has been designed in order to help any BluReRun node to be able

to function without the explicit need for a human user. It is based on the HPT-

BluReRun command interaction.

4.3.1.2 USART Transmission Module
The Bluetooth module communicates with the HOST through the USART 0. The

HPT or any other external device also uses this way to exchange data with the

Microprocessor & Hardware Laboratory

HOST and/or control it through USART 1. The predecessors of BluReRun did not

have an efficient buffering mechanism (actually only the BluMiu had one, but was

rather inefficient). Therefore, the creation and implementation of an efficient

buffering mechanism was essential. In Figure 4-14 the buffering mechanism and

algorithm is depicted.

Figure 4-14: BluReRun transmit buffer and mechanism

Two 256byte buffers are allocated in the HOST’s SRAM, one for every USART.

The size of 256 bytes was chosen since the HPT forwards through the BluReRun

data of 256 bytes (in the form of bit stream files) for the configuration of the

FPGA. By using the buffering mechanism depicted in Figure 4-13, when an

application requests to transmit a byte from a USART, the mechanism first

checks to see if this USART is in the process of transmitting another byte.

 If the USART is not transmitting, the byte is given to the transmitter, so that it

will be transmitted at once. It takes some time for the transmitter to transmit a

byte, so it is very probable that another request to transmit a byte will be

made while the transmitter is working.

 If the USART is currently in the process of transmitting another byte, the new

byte cannot be transmitted immediately and shall be handled according to the

buffer’s state.

Microprocessor & Hardware Laboratory

o If the buffer is not full, the new byte is stored in the buffer so that the

USART will transmit it when it has finished transmitting all the bytes that

are stored in the buffer before that byte.

o If the buffer is full, the USART mechanism will be stalled until a byte from

the buffer has been transmitted. Until then, the new byte is stored in the

HOST’s memory along with other data essential to the USART

mechanism. When a byte has been transmitted, the new byte will be

written in the buffer and the mechanism will resume its normal function.

At the time the USART finishes transmitting a byte, a USART transmit complete

interrupt is triggered (TX). In the TX interrupt service routine (ISR), the USART

mechanism checks if the buffer is empty.

 If it is not empty, the oldest byte stored in the buffer is transmitted (FIFO).

 If the buffer is empty, the USART mechanism stops the transmitter. The next

byte that will arrive to the USART will be transmitted at once.

The USART buffering mechanism was implemented only for the transmission

modules. Buffering did not need to be implemented in the receivers because the

HOST is fast enough so that it can process a received byte completely before the

next byte arrives in the USART receiver, even if the system is manipulating byte

streams belonging to two different packets at the same time (for example an HPT

packet and an ACL data packet). The maximum CPU time for a decoder to fully

decode a byte that has just been received is 23.6usec17 (the last byte of the

header of an incoming BluReRun data packet from the HPT, which needs to be

transcribed to a Bluetooth ACL data packet, so that it will be transmitted by the

BT module to a connected device). Multiple interrupts can be processed by the

HOST, while the decoders process a byte. Though, all the ISRs implemented in

17 Most of the commands implemented in the AVR need a single clock cycle to execute [11] (even

for SRAM transfers) and an 11.0592MHz clock is used, so the AVR’s throughput is approximately

one command every 9nsec

Microprocessor & Hardware Laboratory

BluReRun complete in a maximum time of 23.6usec and a nominal time of

4usec. Two consecutive bytes are received from the HOST’s USART in

0.13msec (with a data rate of 57600Kbps), making the existence of a buffering

mechanism in the receiver meaningless, since, even with a maximum system

load, the decoders are faster than the USART. The HOST, either way, can wait

with one byte in its data reception register for some μsec, until the decoders end

their jobs.

4.3.2 Master – Slave Integration in the BluReRun HOST

One very important contribution of this thesis is the integration of master and

slave Bluetooth characteristics in the BluReRun host. In the Bluetooth network

topology there is one master and many slaves (section 2.3.2). What differentiates

the master with the slave modules is its ability to send inquiries, create

connections and adjust the disconnection process. In every Bluetooth piconet or

scatternet there is a master that controls the communication between it and the

slaves, as well as creates the addressing protocol which is vital for efficient data

exchange [2]. Every BluReRun node must be able to act as a master or a slave

module. When we have the trivial case of only two nodes in the ad-hoc network

or when we have 256 nodes then one of them will be the master and the others

the slave. In the Parrotfish project each node has the format of figure 4-1. The

HPT (layer 2) is the leader of the system and thus the one that states whether

the node is a master or a slave. If the Parrotfish node is a master then the

BluReRun Host must execute the master software module. If the Parrotfish node

is a slave then the BluReRun Host must adapt accordingly. In any case the

BluReRun host waits for this software interrupt that will trigger the execution of

either the master or slave module.

Microprocessor & Hardware Laboratory

In the following table and in Figure 4-15 the algorithm steps and the flowchart are

depicted.
Step 1: Idle mode

Step 2: Software interrupt

 HPT master-slave switch command packet is received from USART 1

Step 3: If (master == true) then

 {Execute the master module

 Inform the HPT through HPT command packets when necessary

 When terminated return to idle mode}

 If (slave == true) then

 {Execute the slave module

 Inform the HPT through HPT command packets when necessary

 When terminated return to idle mode}

 Else

 Ignore and return the HPT packet back to the HPT

 Return to idle mode

Figure 4-15: The Master to Slave migration and vice versa

Microprocessor & Hardware Laboratory

The BluReRun HOST has all the Master and Slave modules embedded in its

software architecture. When the Master Slave switch command is received from

USART 1 then some basic functions are taking place. This simple algorithm

guarantees the efficient master to slave or vice versa migration in a piconet or

scatternet.

4.3.3 Dynamic Command Initialization
Another important BluReRun contribution is the dynamic command initialization.

The purpose of this characteristic is to improve the performance of each

BluReRun node over the existent architectures and to create an efficient dynamic

BluReRun node. The basic idea is to create an algorithm where every node

either a master or a slave would be able to execute certain steps that would lead

to dynamic command initialization and configuration. These steps correlate to

specific commands that are essential for the existence of the Bluetooth Protocol.

Thereby, 4 commands that are of importance to the function of the Bluetooth

protocol in either point to point or point to multipoint architectures were

implemented in the Dynamic Command initialization method.

a) Inquiry command for the master node
b) Create Connection command for the master node
c) Set event filter command for the slave node
d) Write Scan Enable for the slave node

With the use of Dynamic Command Initialization (DCI) each BluReRun node

does not need to be issued any command necessary for discovery, or

connection. Everything is done in a dynamic way. The commands described in

the above table were not selected randomly. The first two commands are

essential for the Bluetooth master node, and they are those commands that

differentiate the master from the slave. They are important for discovering other

nodes in the vicinity and connect to them. The last two commands are necessary

for each Bluetooth slave. They activate the Bluetooth module mechanisms that

Microprocessor & Hardware Laboratory

are responsible for making the slave BluReRun node visible from the master one.

In the following table the basic steps of the algorithm follow:

STEP 1: BluReRun host powers up and the main routine initiates in both the master and the slave

STEP 2: In the Main routine the issue of the command Reset is executed. The issue of this command is

 necessary for the powering up of the Bluetooth module

STEP 3: If (master ==true) then

{If (reset event == true) then

 {execute the Inquiry command

 When Inquiry result event is returned from the Bluetooth module

 Then call from the Flash memory the Create Connection command.}

 }

 Elsif (slave==true) then

 {If (reset event ==true) then

 {execute the set event filter command

 When command status event is returned from the Bluetooth module

 Then call from the Flash memory the write scan enable command}

 }

STEP 4: Terminate the algorithm and return to idle mode.

The BluReRun host is using the indexes of the commands that are embedded in

the Flash memory of the microcontroller. The idea is the same as the BluReRun

emulation and the HPT-BluReRun command Interaction.

4.3.4 Addressing Protocol Algorithms
The BluReRun system, as it is so far understood, can work either on its own or

as a sub-system in the Parrotfish project. Of course, its ultimate target is to

provide an errorless and transparent communication medium for wireless FPGA

Re/configuration. Every Bluetooth system must support either point to point or

point to multipoint addressing protocols. The importance of the addressing

protocols in piconets or a scatternet is large, since this protocol will guarantee an

efficient packet transport from the destination node to the target one. At the next

two sections the addressing protocols for point to point as well as point to

multipoint architectures will be examined.

Microprocessor & Hardware Laboratory

4.3.4.1 Point to point addressing protocol
In the case of point to point communication the addressing protocol is of trivial

importance. Since in the ad hoc network there are two nodes, one master and

one slave, no significant addressing protocol is required. In the case of the

Parrotfish system the HPT packet communication protocol is sufficient. Let’s

assume that we have a system of two Parrotfish nodes as depicted in Figure 4-

16:

Figure 4-16: The Parrotfish point to point architecture

In the case of Figure 4-16 the master node is the NODE 1 and the slave node the

NODE 2. The HPT packet format and the ACL data packet format secure the

efficient data or control packet exchange between those two nodes. Also, since

we have only two nodes the handles will be fixed and do not need to alter at any

circumstances. Even if the HPT who is the leader of the system, decides to

migrate from master to slave or vice versa the master-slave migration algorithm

will be implemented and all the modules will be executed accordingly.

Microprocessor & Hardware Laboratory

4.3.4.2 Point to multipoint addressing protocol
The creation of a point to multipoint addressing protocol that will coincide with the

Bluetooth specification version 2.0 and the Parrotfish’s project requirements was

the most difficult task in the BluReRun thesis. The point to multipoint addressing

protocol must be able to:

a) support an efficient and errorless data and command packet exchange

between the different nodes of the ad hoc network

b) adjust to any potential difficulties or changes that the ad hoc network

might face (for example low data rate due to high trafficking, high error

rates, master to slave migration) and,

c) retain the transparency mode between all the levels of the Parrotfish

In order to fulfill the above three requirements an efficient algorithm was created.

This algorithm is based on the fact that the HPT is the leader of the Parrotfish

project and on the fact that the transparency between all the levels of the node is

secured. Before examining the algorithm it is vital to understand the use of the

Read HPT name command.

Read HPT Name Command
This command is a unique command between the HPT and the BluReRun levels

of the Parrotfish project. This command was introduced from the need for the

BluReRun level to correlate correctly the handle of the HPT packet with the HPT

name. The handle of the HPT packet is not given by the HPT. It is given from the

Bluetooth module firmware. When a create connection command is issued, a

create connection complete event is returned [4]. In there lies the handle of the

BluReRun nodes that lie in the vicinity. At the same time, each HPT has a unique

name (HPT01, HPT02 etc). Therefore, in order for the BluReRun host to

correlate correctly the HPT name to the handle of the HPT packet the Read HPT

command was created. The format of the command is based on the HPT-

BluReRun command Interaction and it is depicted in Figure 4-17.

Microprocessor & Hardware Laboratory

Figure 4-17: Read HPT Name Command

The COMM# field is 0x04. This number correlates to the position of the Read

HPT Name Command in the Flash memory of the BluReRun HOST. When the

Read HPT Name command is issued from the BluReRun HOST to the HPT then

the HPT transmits to the BluReRun host’s USART 1 its name. The HPT’s name

may be HPT01, HPT02 etc. After that the following point to multipoint algorithm is

executed:

 Point to multipoint algorithm.
Step A:
The BluReRun HOST sends to the HPT the Read HPT name command, which the HPT

understands that it is a command for him. In this command the HPT immediately sends its name in

the form of ’H’’P’’T’’-‘’0’’0’1’. The 1 maybe will change to 2 etc. (meaning’H’’P’’T’’-‘’0’’0’2’). When the

BluReRun host receives that packet then it decodes it, and saves to a memory address that is

created for that purpose the name (HPT-001, HPT-002 etc).

Step B:

Inquiry command issued by Master BlueReRun node after such a command is requested by the

HPT (through HPT-BluReRun command interaction). For example the HPT master would like to

know the status of other HPTs in the Parrotfish ad hoc network, their names in order to move to

connection, disconnection and other data transactions.

Step C:
Inquiry result received by the master node. In there lies one or more of the BD_ADDR of the BT

modules. The BlueReRun host stores all the BD_ADDR. When an inquiry result event is received

then the BlueReRun host sends a create connection command. Then he receives the connection

complete event where the handles lie. The BlueReRun host stores all the handles in the same

memory directory as the BD_ADDR that correspond to those handles.

Step D:
For every BD_ADDR the BluReRun host does Remote Name Request so that it will know the exact

correspondence between BD_ADDR and the name of the HPT where from step A the other

Microprocessor & Hardware Laboratory

BluReRun host already knows. Therefore, in every transaction the BlueReRun host will know

exactly the BD_ADDR, handle of the BT module and the name of the HPT.

Step E:
The BluReRun host transmits to the HPT the whole list of Handles and HPT names in the order of:

$00$01 HPT01, $00$02 HPT02 etc. This is done through HPT packets and it does not affect

transparency since the HPT packet communication format is kept.

Step F:
The master HPT will then know which other HPTs are in its vicinity and send the appropriate HPT

packet for the BluReRun to forward to every slave it needs.

Figure 4-17: The point to multipoint implementation

Microprocessor & Hardware Laboratory

In order to understand the above algorithm it is imperative to examine thoroughly

its implementation in an example. Let’s take the Parrotfish nodes of Figure 4-17

for example. In that figure there are three nodes that have the format of the

Parrotfish project. Let’s assume that the node 1 is the master and the others the

slaves. This case study will be examined from the BluReRun point since

implementation of layers 2 and 3 of the Parrotfish node are not in this thesis’

scopes. At first, upon initialization, the BluReRun host transmits a Read HPT

Name Command to the layer 2 (HPT). Then the HPT transmits its name in the

format of STEP A of the algorithm. Afterwards, the layer 2 (HPT) of master node

(Node 1) would like to know the other HPTs that in its vicinity and their status.

Thus through HPT-BluReRun command Interaction it issues an Inquiry command

to the BluReRun (STEP B). The BluReRun HOST will execute the necessary

command and a response will be returned. When the response is received then

the BluReRun HOST will issue a create connection command. The BD_ADDR

and the handles of the Bluetooth modules will be stored in the HOST SRAM

(STEP C). The next step is for the master BluReRun host to issue the remote

name request command. The remote name request event is received and the

BluReRun host saves to its SRAM the Handle, BD_ADDR and the HPT names

(STEP D). In STEP E the BluReRun HOST transmits in the form of the HPT

packets the handles and the correlating HPT names. Therefore, in STEP F the

master HPT (and therefore the master node) knows the HPT names and the

handles of the HPTs that are in its vicinity. After that, all the functions that the

BluReRun system accepts can be executed.

After the through examination of the BluReRun addressing protocol, it is

important to study the error handling routines that were implemented in the

BluReRun thesis.

4.3.5 Error handling Algorithm
When a system is being developed it is vital to create some methods that will

guarantee the effective system response to any error or bug related phenomena.

Microprocessor & Hardware Laboratory

STEP 1: The first byte of the handle is received

If (first header byte == valid)

 Then execute the US1RX or US0RX routine and go to STEP 2

Else

{Discard or send back the byte to the HPT or the BT module. And do not execute any routines or

set any flags or increase any counter; just wait for a valid header to come(timer counter).

If (valid header does not come)

 {Then exit to idle mode}

}

STEP 2: The second byte of the handle is received

If (second header byte==valid)

 Then continue execution of US1RX routine and go to STEP 3

Else

{Reset all flags and counters. Discard the whole packet. Wait for the first byte of the handle to

come again (timer counter). Go to Step 2}

STEP 3: The Length byte is received
When the Length byte is received, the initial length is stored in a register. For every byte that comes the

length is decremented by 1.

If (length ==0)

Then the HPT packet is finished. The data will be transcribed and forwarded. Return to idle mode

Else

Then timer/ counter initiated and wait. If the length is not received then exit, discard the packet, reset

all the flags and return to idle mode

Thus, in the BluReRun system an error handling algorithm was created to

guarantee efficient data transport that would aim to errorless FPGA

re/configuration. This algorithm is executed in the USRX routines of the

BluReRun HOST. The idea is that the possibility of an error is far higher in the

HPT to BluReRun communication than the Node to Node communication with

the Bluetooth protocol. The Bluetooth protocol has many CRC algorithms that are

executed whenever the ACL data packets are transmitted from one BluReRun

node to the other. The transmission routines are not vulnerable to errors since

the transmit buffer is working in a specific mode. Therefore, it is essential to

create an error handling algorithm in the US1RX and US0RX module of the

BluReRun Host. It is vital to note that the US1RX module as explained in section

4.3.1, accepts HPT packets. The HPT packets are in the format of: Handle (2

bytes) – Length (1 byte) – Data (256 bytes). The ACL data packets are depicted

Microprocessor & Hardware Laboratory

in Figure 4-4. The error handling algorithm is concentrated in the Handle and the

Length bytes. The highest possibility of error is done during the transcription from

HPT data packets to ACL data packets and vice versa. Thus, the same algorithm

is used in the US0RX routine. The Flowchart of the Error Handling Algorithm

follows:

Figure 4-18: The Error Handling Algorithm flowchart

Microprocessor & Hardware Laboratory

The Error Handling algorithm that is depicted in Figure 4-18 is embedded in both

the US0RX and US1RX routines. At the same time, any hardware errors that

might be created can be detected with the use of the LEDs system. Finally, in the

case where a BluReRun HOST is not powered up correctly or if for any reason is

damaged then the BT module will not be functioning correctly or not at all (since

the BT module powers up from the BluReRun HOST). If this occurs then the BT

protocol will initiate a series of “are you alive” commands. If the Bluetooth module

does not respond and a timeout happens, then this BluReRun node is

considered to be inactive and will be omitted from the ad hoc network.

Having examined the hardware and software parts of BluReRun in detail, the

testing procedures used to validate the BluReRun hardware and software design

will follow.

Microprocessor & Hardware Laboratory

5. BluReRun Testing & Validation

When the construction of a system has been completed, it is imperative that a

well defined set of tasks is used to validate the system and demonstrate that it

works properly. Also, during the construction of a complex system, such as

BluReRun, after the completion of every subsystem’s design and

implementation, tests are also necessary because:

 The majority of its bugs must be found before including it in the system

 Its correct function on the boundaries of the Parrotfish project must be

examined and its purpose must be secured

 Verification of the whole BluReRun design on the grounds of wireless FPGA

re/configuration in an ad hoc network must be, if possible, completed.

The system constructed in the present thesis is formed by a number of hardware

and software subsystems, which were specified in detail in the previous chapter.

Their test and validation procedures during the implementation of BluReRun, as

well as the validation of the whole system will be presented in this chapter.

Testing procedures that took place before the total design was constructed were

the most important tests of the system. Making extended tests to each

subsystem during the implementation provided the designer of the BluReRun

system the ability to use each subsystem as a component, without any doubts if

its function was correct or not. Finally, since the BluReRun system is a system

that can work on its own and at the same time function as a subsystem in the

Parrotfish project, this chapter studies both the experiments that were executed

on the BluReRun (alone with the use of a PC) and the experiment that were a

combination of BluReRun and all the upper Parrotfish layers (BluReRun and HPT

and FPGA) that led to the wireless FPGA re/configuration.

Microprocessor & Hardware Laboratory

5.1 BT module validation
Most of the components forming the hardware around the HOST (the BT module,

the LEDs and the HCI interface) were inherited from the BluMiu system and,

thus, did not need extensive tests, except a simple verification that they do

function as expected. However, the BT module and its HCI interface were

fundamental for the correct operation of the system. In order to reassure their

correct operation and make sure that the requirements of BluReRun by them

would be fulfilled, they were exhaustively tested before starting the

implementation of the system. The tests for the BT modules were necessary

because it was the only component that could provide Bluetooth connectivity and

doubts whether its operation was infallible had emerged during the BluMiu

development. Another issue that was also tested was if it could offer the services

introduced by BluReRun, during the development of the latter.

The BT module, as well as its USART interface to the HOST (HCI), was put

under trial in the context of the following test procedures:

 By connecting a computer and the BT module through the USART (HCI)

interface, simple HCI commands (these were the Reset, Read BD ADDR,

Read Local Name, Write Scan Enable, Read Scan Enable, Read Local

Supported Features and Read Buffer Size HCI commands) were transmitted

to it from the computer, by a terminal application, and the module’s replies

(HCI events) were checked for validity, according to the BT spec 2.

 Using the same computer-BT module connection as before, the module’s

ability to locate other Bluetooth devices and connect to them was tested, by

using the following HCI commands:

1. Set Event Filter

2. Write Scan Enable

3. Inquiry

4. Create Connection

5. Disconnect

Microprocessor & Hardware Laboratory

These commands were used to establish a connection with a PDA (HP7010)

as well as a Laptop (DELL Latitude D810) that supports the Bluetooth

protocol. The module’s ability to request a Bluetooth connection from the

mobile phone and accept a connection request made by the mobile phone,

were validated.

 The speed of 460.8kbps data rate that the BT module specifications claim to

support was validated using its USB interface and through the connection of

the PC and an ADM202EAN with the Bluetooth module. In the case of the

USB interface, the BT module was connected via a USB cable with a

computer. Then the module exchanged large files with another USB Bluetooth

module provided by TELECA COMTEC.

These preliminary tests on the BT module certified that it could be used in the

BluReRun design.

Figure 5-1: The Bluetooth module and HOST communication

Then, the Bluetooth module and HOST communication had to be monitored. This

test was accomplished by connecting a serial cable’s RX and GND signals to the

Microprocessor & Hardware Laboratory

RXD0 and GND line of the HOST. The other end of the serial cable was

connected to a computer running a terminal application that could display the

received by the UART bytes in a hexadecimal format. This way, the events that

the module would transmit to the HOST in reply to the HCI commands it sent,

were checked for correctness and compliance with BT spec 2 (Figure 5-1). In the

above figure the RESET command ($01$03$0C$00) is sent from the PC terminal

to the HOST and from there to the Bluetooth module. The HCI event that we are

expecting to see is the same as specified in Bluetooth specification protocol v2.0

[3].

The software architecture validation is examined thoroughly in section 5.2.

5.2 BluReRun Software Validations
The software design of the BluReRun system is very complex and modular. That

way, every module could be tested independently from the others before being

used in the system. The test and validation procedures followed a hierarchical

manner. The simpler and more fundamental software modules were tested first.

Thus, the first modules under trial were the UART transmitters, because every

other module uses that.

5.2.1 USART Transmitter Validation
The ultimate purpose of the BluReRun thesis is to create an efficient data

communication medium that can work alone in an ad hoc network (BluReRun

node) or as a part of the Parrotfish system for wireless FPGA re/configuration.

The USART Transmitter is one of the most important modules. The buffering

mechanism that was implemented underwent many changes and needed

constant debugging throughout this thesis’ implementation.

In order to debug the USART mechanism a USART connection between the

HOST and a computer was used. The HOST transmitted HCI commands to the

Microprocessor & Hardware Laboratory

computer through a serial cable. The data arriving to the computer (in a terminal

application, same as before) should be the same as that supposedly transmitted

from the HOST.

Later in the development, tests for the correct transmission of data from the

HOST to the BT module, through the USART mechanism were needed. To

accomplish that, a serial cable’s RX and GND signals were connected to the

TXD0 and GND line of the HOST, in the same way as in the BT module

monitoring that was described above and depicted in Figure 5-1, except that the

TXD0 line of the HOST is connected with the computer, not the RXD0. In this

way, the packets sent by the HOST to the BT module could be monitored.

USART 1 (that transmits data to the EXT DEV and the HPT) has an identical

mechanism with USART0, so monitoring on it was not explicitly needed. After the

USART transmitters’ operation was verified, the next most frequently module

used was the USART Decoder module.

5.2.2 USART Decoder Validation
The incoming packets from the BT module and the EXT DEV (HPT or PC) are

decoded by US0RX and US1RX decoders respectively. The tests to validate the

correct function of these decoders used the LEDs and the USART connection to

the PC or the HPT to report the results of the decoding procedures, along with

the monitoring of the incoming packets to the decoders.

This test procedure can be better explained through an example: The BT

module’s replies are monitored by the system of Figure 5-1 and a Connection

Complete event is being transmitted to the HOST, either after accepting a

Connection Request from a remote Bluetooth device or after a remote Bluetooth

device accepted a Connection Request by the local HOST. The Connection

Complete event indicates to both of the Hosts forming the connection that a new

connection has been established. This event also indicates to the Host, which

Microprocessor & Hardware Laboratory

issued the Create Connection, or Accept Connection Request or Reject

Connection Request command and then received a Command Status event, if

the issued command failed or was successful. [3] The Connection Complete

event format that is expected by BluReRun (according to BT spec 2) is depicted

in Figure 5-2. After verifying that the Connection Complete event has been

transmitted by the BT module to the HOST, the correct decoding by the US0RX

decoder in the HOST should be verified. This is accomplished by lighting various

LEDs indicating that fields received had the expected values and by transmitting

to the computer connected to the EXT DEV BluReRun port the Connection

Handle and the BD ADDR of the device connected to the BluReRun.

Figure 5-2: Connection Complete Event

The same test procedure was used for the US1RX and the US0RX decoders

implemented in BluReRun. Of course, the ultimate test for the transmitters and

the decoders would be the successful data exchange between two or more

connected BluReRun nodes. This would also be the validation of the whole

BluReRun protocol and system that was designed. The test methods that were

used to validate the BluReRun protocol were based on the test procedures

mentioned in the previous sections and will be presented in the next section.

5.2.3 BluReRun Validation
Through validating the subsystems composing BluReRun, the system itself was

tested. The validation procedure of the integral BluReRun system and protocol

was far more complicated than the validation of each of the subsystems (though,

the same mechanisms as in the subsystems’ tests were used) and consisted of

testing all the functions supported by BluReRun. This final test procedure was

very important for the BluReRun software and hardware architecture. The

Microprocessor & Hardware Laboratory

BluReRun validation was initially executed in two nodes (master and slave) and

then in a point to multipoint environment (three nodes). More specifically the

following capabilities of the system were validated:

1. The pre-connection setup of the BluReRun master and slave node using

dynamic command Initialization

2. The discovery of various Bluetooth devices by the master and the

identification of the slave(s) to the EXT device (PC) or the HPT (upper

layer of the Parrotfish project)

3. The establishment of a Bluetooth connection between the master and the

slave in either point to multipoint or point to point environments

4. The efficient exchange of data between BluReRun nodes using the

BluReRun protocol. Here in the beginning a point to point architecture

was tested and afterwards, a point to multipoint. Also an evaluation of its

efficiency and comments on possible improvements on the protocol itself

were made.

5. The migration from master to slave when requested by the HPT was also

validated

The test procedure of each of the mentioned tests will be presented in the

following sections.

5.2.3.1 BluReRun Pre-Connection setup
Before establishing a connection between a master and a slave, certain actions

should be taken for both of the sides involving in the connection.

The power-up of the BluReRun slave and master node should be followed by no

other events than the lighting of the HOST’s idle LED and the one indicating that

the first implemented command will be executed when commanded to. When

these LEDs are lit, the HOST will be ready to receive commands from the EXT

DEV (HPT-BluReRun command Interaction, HPT Data packets, Non Dynamic

Bluetooth commands and BluReRun emulation). The BT module is powered up

along with the HOST, since it is powered by the BluReRun platform, and

Microprocessor & Hardware Laboratory

according to its datasheet there is no need for a power up sequence [14]. After

the power up of the BluReRun platform, configuring of the BT module should

take place.

 A user friendly name can be given to the modules by executing the

appropriate command implemented in the HOST (the names are: BluReRun-

001 to the slave and BluReRun-002 to the master)

 The slave should be visible in an inquiry scan. This is done by executing the

Write Scan Enable command implemented in the BluReRun HOST using

dynamic command initialization

 The slave should set the auto-accept connection parameter of the BT module

for every device, so that it would be able to connect with any master or

another Bluetooth device automatically. This is accomplished by executing the

Set Event Filter command implemented in the BluReRun HOST using

dynamic command initialization.

The commands used above should be able to be replaced (another name can be

given, the master too can be scanned in an inquiry and different event filters can

be set for both the master and the slave18) and/or other (not implemented in the

HOST) HCI commands can be issued to the BT module by using the Non

Dynamic Bluetooth command mode from the EXT DEV. Finally, the HOST

shouldn’t get confused by the event of Number of Completed Packets that the BT

module sends to the HOST every time the BT module receives successfully 5

packets.

The design in the pre-connection setup would be validated if the BluReRun slave

could be scanned in an inquiry scan, its name could be seen correctly and if it

could accept the connection request from a Bluetooth enabled device. This was

18 For information on the functions of the Write Scan Enable and Set Event Filter HCI commands,

refer to the BT spec 2. [3]

Microprocessor & Hardware Laboratory

accomplished using some Bluetooth enabled PDAs and laptops (DELL Latitude

D810, HP4010).

Validation of the Non Dynamic Bluetooth commands and BluReRun emulation

modes was achieved by enabling the master to be scanned in an inquiry, by

executing the commands through the BluReRun emulation and by executing the

Read Supported Features and Read Buffer Size commands to the slave. These

commands’ successful execution was validated through the USART monitoring

of the Command Complete events that were returned for each one of them.

Finally, validation of the HPT data packets and the HPT BluReRun command

Interaction was executed by the lighting of the correct LEDs when the HPT data

packet was received by the BluReRun Host and also through the terminal of the

PC that supported Bluetooth interface.

5.2.3.2 BluReRun Discovery of other Bluetooth nodes
After correctly starting-up the BluReRun system either in dynamic or non

dynamic mode, the master should be able to search its vicinity for Bluetooth

devices, identify and connect to them.

By issuing the Inquiry command to the BT module from the BluReRun host, the

BT module will report the Bluetooth devices it found to the HOST with an Inquiry

Result event for every device19 it found. The master HOST should decode every

Inquiry Result event correctly and store the required for establishing a data

connection fields to its SRAM. After at least one Inquiry Result has been

received, each discovered device’s characteristics can be requested through the

Buttons or the Button emulation, after having selected the device. The HOST

should be then able to report that inquired device’s BD ADDR as well as handle

19 BT spec 2 specifies that multiple devices can be reported in a single Inquiry Result event, but in

the specific BT module only one device per Inquiry Result is reported.

Microprocessor & Hardware Laboratory

through implementation of the point to multipoint algorithm to the EXT DEV or the

HPT through the USART1. The user friendly name of an inquired device would

be requested by issuing a Remote Name Request to that device. The Remote

Name Request Complete event should return the target inquired device’s name

and the master HOST should store this name in its SRAM and forward necessary

information regarding other BluReRun nodes in the ad hoc network either in point

to point or point to multipoint environments.

The BluReRun master’s ability to locate Bluetooth devices and identify them was

validated by finding any slave and reporting its characteristics through the EXT

DEV. The master’s ability to support many inquired devices and report the

selected device characteristics was validated by locating the other two BluReRun

slave nodes and retrieving their BD ADDR, as well as reporting their user friendly

names when they are requested for each device.

5.2.3.3 BluReRun master to slave connection
After the master locates the Bluetooth devices in its vicinity and identifies them it

should be able to connect with any one of them. The same should happen for the

slave, though the slave can’t be able to request a connection from a Bluetooth

device, only accept connection requests. The master BluReRun node functions

also a lower level of the Parrotfish project (data communication medium). The

connection between a master and a slave initiates upon receipt of the HPT DATA

packet to the US1RX routine of the master BluReRun host.

By issuing the Create Connection command to the BT module the master should

be able to establish a Bluetooth connection with any inquired device selected.

After the connection has been completed, the BT module will return a Connection

Complete event (Figure 5-). The HOST should be able to decode that event

correctly, store the connected device’s connection handle and BD ADDR to the

SRAM and report the selected connected device’s characteristics to the HPT or

the EXT device (through point to multipoint algorithm implementation) .

Microprocessor & Hardware Laboratory

This time, correct function of the BluReRun was validated by establishing a

connection between the master and the slave in a point to multipoint network.

The layer 2 of the Parrotfish Project (by HPT BluReRun command interaction)

issues the Inquiry command. In a point to multipoint network with the use of the

point to multipoint algorithm the master HPT (and thus the master BluReRun)

knows the handle and the name of the other HPTs or Parrotfish nodes in the

vicinity. Therefore, all the necessary data transactions between the master and

the slaves can be made.

5.2.3.4 BluReRun nodes data exchange
In the requirements and the specifications set for the BluReRun, the system

should be able to function as an efficient data “transporter” so that errorless and

effective FPGA re/configuration could be achieved.

The BluReRun master or slave should have the ability, after they connect to each

other, to exchange data that is received from the external device (HPT) in a full

duplex manner. This data is in the form of ACL data packets and HPT data

packets.

During the test processes in this stage, packets were formed and transmitted to

the BluReRun slave or master by the HPT so that the BluReRun master or slave

could forward these packets to the node indicated by the handle. The payloads of

the packets ranged from 1 to 256 bytes, which is the maximum payload of the

HPT data packet (in the form of bit streams for FPGA configuration). Validation of

the BluReRun in this point meant that the HPT data packets would be transcribed

correctly to ACL data packets, then they would be delivered correctly to the

target BluReRun device (if the device was not valid they would not be delivered

at all) and the decoding of data packets in the other end should transcribe the

received ACL packets to HPT ones and transmit them correctly to the EXT DEV

or the HPT in case we are referring to the Parrotfish architecture.

Microprocessor & Hardware Laboratory

The same methods of testing and validating all the subsystems that were seen in

the previous sections were used here as well. The LEDs and USART monitoring

were used to validate that the HPT data packets are transcribed correctly to ACL

ones and that the other end received the (correct) packets. In the place of EXT

DEV were computers as well as three Parrotfish nodes.

Figure 5-3: The master to slave and slave to master HPT data packet transfer

In the screenshot of Figure 5-3 12 packets that have been transmitted by the

BluReRun master are shown, after they have been received by the slave. The

slave transmits HPT data packets to the HPT or the external device, thing that

can be seen on the screenshot, where the headers can be seen as boxes [the

payloads are either non printable characters for small (0x01, 0x02…) and bigger

than 255 payloads (0x100, 0x200…) or printable characters for payloads that

correspond with them in the normal or extended ASCII table (@ for 0x40 (64), €

for 0x80 (128) and ‘ for 0x55 (255)]. This way the master’s data packet

transmission mechanism and the slave’s reception one were validated.

The same exactly screenshot describes the HPT data packet transfer from slave

to master BluReRun node.

Microprocessor & Hardware Laboratory

Efficiency

Since the BluReRun nodes have been able to exchange data the efficiency of the

BluReRun protocol should be tested.

The data transfer mechanism efficiency is determined mainly by the data rate

that it can achieve in both directions. BluReRun supports speeds of up to

460.8kbps. The default data rate of 57.6kbps can be considered good for a serial

transfer, since the maximum available data rate that mainstream computers

support for their COM ports (even in the HPT case of the external device the

serial cable was used) is 128kbps and 56kbps is the most common one for dial-

up modems.

The BluReRun protocol uses HPT data packets with a 3 byte header. In spite

that it seems to achieve data rates of 57.24kbps with a 57.6kbps connection and

256bytes of data payload in the packet, it doesn’t. This is because the Bluetooth

protocol, which is involved in the BluReRun data transferring process, needs a

9byte overhead for every data packet. With a speed of 57.6kbps (7200bytes/sec)

it achieves a data rate of 56.00 kbps (7118.75bytes/sec) for Bluetooth ACL data

packets with payloads of 256bytes. Thus, since the slower part of the protocol

defines its speed, the data rate that BluReRun can achieve is 56.00kbps.

5.3 Parrotfish Project Experiments

IN HERE THE TWO BASIC EXPERIMENTS WHERE THE

LAYERS INTERACTION WILL BE ADDED. I AM WAITING

FOR THE SIMULATIONS FROM EFSTATHIOU….I AM

GONNA WAIT FOR ANOTHER FOUR DAYS..AFTER

THAT PROBLEMS WILL ARISE!!!

Microprocessor & Hardware Laboratory

Conclusions and Future Work

Conclusions
A system capable of efficient and errorless wireless data transfer in an ad hoc

environment for FPGA re/configuration on the boundaries of the Parrotfish

project was introduced designed and implemented in the BluReRun thesis. The

whole design has been embedded in a low-cost and low-power microcontroller

that lacked large memory (1KB of SRAM) and rich hardware resources.

Bluetooth technology has been explored in the areas where data transfer was

concerned and, since the Serial Port Profile (SPP) that has been specified by the

Bluetooth Special Interest Group (SIG) in the Bluetooth specification (BT spec) 2

proved to be resource demanding and couldn’t cover the requirements of the

system, a differentiated protocol that supports point-to-multipoint connections has

been designed, implemented and tested. The protocol that was designed proved

through the tests to be highly efficient, in spite the memory limitations of the

system. The whole design was based on BT spec 2 and can support every

Bluetooth module that complies with that BT spec.

A Bluetooth device is usually able to find devices and accept connection requests

from remote devices. The system implemented in this thesis adopted master to

many slaves (point to multipoint) architecture. The slave BluReRun node retained

the Bluetooth functions that enable it to be found, respond correctly to connection

requests from multiple Bluetooth devices and exchange data with every one of

them. Correspondingly, the master BluReRun node retained the Bluetooth

functions that enable it to find and identify Bluetooth devices. The characteristics

of both the master and the slave BluReRun nodes have been integrated in every

BluReRun node so that, when requested, each BluReRun node can act as a

master or a slave. It also has the capability to establish a connection with one of

Microprocessor & Hardware Laboratory

the devices it found and finally exchange data with it. By sharing the Bluetooth

characteristics, the microcontrollers used were relieved from about half the load

in hardware resources they had.

The applications that were developed showed the errorless and efficient wireless

data transfer for FPGA re/configuration is a reality. However, there were some

certain issues that could be introduced as future work for the BluReRun system.

Future work

BluReRun is a complete data exchange system that can work on its own or as a

subsystem (low layer) of the Parrotfish node. The improvements that could be

made to the design deal with increasing its speed and adding services in a higher

level, since the system works infallibly. Some improvements to the existing

design and some new applications that this design would be useful would be the

following:

I. The most obvious improvement in the design would be to improve its data

rate. The BT module and the microcontroller used both support high baud

rates. The highest possible the specific BT module can achieve is

460.8kbps, while the microcontroller can achieve 912.6kbps. In such high

speeds the BT module’s UART buffers might fill before the packets in

them will be sent over the air, so flow and congestion control must also be

implemented. It is possible that data rates above 128kbps may need

another interface protocol (than USART) for the connection between

computers and BluReRun, because computers do not easily support

higher USART speeds. The implementation of a USB core seems to be a

viable solution. Though, the HPT does not support higher data rates.

II. Most Bluetooth profiles can be implemented through the BluReRun data

exchange protocol. Profiles than can be implemented are:

1. LAN Access (LAP)

2. Generic Object Exchange (GOEP)

3. Object Push (OPP)

Microprocessor & Hardware Laboratory

4. Synchronization (SP)

5. File Transfer (FTP)

A demonstration application that resembles the File Transfer Profile has

been developed in the context of this thesis.

III. The use of a BluReRun HOST with more resources will boost the

performance of the BluReRun protocol

IV. The integration of the three layers of the Parrotfish nodes in one PCB

design will give a “black” box where everything from the top layer to the

bottom one is embedded.

V. Most Bluetooth profiles can be implemented through the BluReRun data

exchange protocol. Profiles than can be implemented are:

1. LAN Access (LAP)

2. Generic Object Exchange (GOEP)

3. Object Push (OPP)

4. Synchronization (SP)

5. File Transfer (FTP)

Microprocessor & Hardware Laboratory

Appendix A

In the APPENDIX A, four basic sections are examined:

a) The commands implemented and embedded in the BluReRun Host

b) The Glossary and terminology on Bluetooth and on the code used

c) The schematic and PCB of the BluReRun nodes

Commands Implemented
The Commands implemented and embedded in the BluReRun HOST are the

following:
HCI command Details

Inquiry
Searches for active Bluetooth devices in the

vicinity and returns relative information

Create Connection

Attempts to establish an ACL connection to

another device based on the remote device’s

BD ADDR (other information found by an

inquiry command are helpful). On success, a

Connection Handle is assigned to the ACL link

Disconnect
Terminates an existing ACL connection based

on the connected device’s Connection Handle

Switch Role Used to switch role of the BT module from

master to slave or vice versa

Read Local Name
Reads the user-friendly name of the local

Bluetooth device

Reset
Resets the HC & the LM. The local BlueTooth

device enters stand-by mode

Read Buffer Size

Reads the max size of the ACL & SCO packet

payload that the HC can receive from the

HOST

Set Event Filter
Specifies different event filters (the Host

receives only events that interest it)

Write Scan Enable
Writes the parameter deciding whether a

device will perform periodic inquiry and/or page

Microprocessor & Hardware Laboratory

scans so as to be visible by remote devices, or

not

Change Local Name
Gives a user-friendly name to the local

Bluetooth device

Remote Name Request
Obtains the user-friendly name of a remote

device based on its BD_ADDR

Read BD ADDR Reads the BD ADDR of the local device

Every Bluetooth command is specified in Bluetooth protocol version 2.0 [3].

Before moving on to the Bluetooth terminology it is vital for the

Bluetooth Acronyms and Terminology

A
ACL: Asynchronous Connection-Less

ACL-C: ACL-Control

ALU: Arithmetic Logic Unit

API: Application Program(ming) Interface

B
BD ADDR: BlueTooth Device Address

BlueApplE: BlueTooth Applications Environment

BlueBridge: BlueTooth Data Bridge
BluReRun: Bluetooth Reconfigurable Run Time Environment

BT module: BlueTooth module
BTspec: BlueTooth specification

BufLen: Buffer Length (BluReRun flag indicating the number of stored bytes in

the buffer)

BUFOVF: Buffer Overflow (BluReRun flag indicating that the buffer is full)

C

Microprocessor & Hardware Laboratory

CAGR: Compound Annual Growth Rate

CID: Channel Identity

CLK: Clock
CMOS: Complementary Metal Oxide Semiconductor

COM: Communication

CPU: Central Processing Unit

CRC: Cyclic Redundancy Check

D
DH: Data - High Rate

DM: Data - Medium Rate

E
ECED: Electronics & Computer Engineering Department

EDR: Enhanced Data Rate

EEPROM: Electrically Erasable Programmable Read-Only Memory

EI: Enable Input

EXT DEV: External Device

F
FEC: Forward Error Correction

FHSS: Frequency Hopping Spread Spectrum

FIFO: First In, First Out

FLAGREG: Flag Register (BluReRun register containing various flags)

FPGA: Field-Programmable Gate Array

FTP: File Transfer Profile

G
GFSK: Gaussian Frequency-Shift Keying

Microprocessor & Hardware Laboratory

GND: Ground

GOEP: Generic Object Exchange Profile

GS: Group Signal

H
HCI: Host Controller Interface

HPT: Hardware Programmer & Tester

I
I/F: Interface

I/O: Input/Output

IC: Intergraded Circuit

IEEE: Institute of Electrical & Electronic Engineers

IEEE-SA: IEEE - Standards Association

INT: Interrupt

IP: Internet Protocol

IR: InfraRed

IrDA: Infrared Data Association

ISM: Industrial, Scientific & Medical

ISR: Interrupt Service Routine

L
L2CAP: Logical Link Control & Adaptation Protocol

LAN: Local Area Network

LAP: LAN Access Profile

LED: Light Emitting Diode

LM: Link Manager

LMP: Link Manager Protocol

Microprocessor & Hardware Laboratory

M
MAC: Media Access Control

μC: microcontroller

MHL: Microprocessor & Hardware Laboratory

O
OBEX: Object Exchange Protocol

OCF: Opcode Command Field

OGF: Opcode Group Field

Opcode: Operation code
OPP: Object Push Profile

P
PAN: Personal Area Network

PCM: Pulse Code Modulation

PDA: Personal Digital Assistant

Q
QoS: Quality of Service

R
RAM: Random Access Memory

RdBuf: Read Buffer (BluReRun flag indicating where the next byte will be read

from)

RF: Radio Frequency

RISC: Reduced Instruction Set Computer

RS232: Recommended Standard 232

Microprocessor & Hardware Laboratory

RX: Receive

RXD: Received Data

S
SCO: Synchronous Connection-Oriented

SD: Secure Digital

SIG: Special Interest Group

SP: Synchronization Profile

SPI: Serial Peripheral Interface

SPP: Serial Port Profile

SRAM: Static RAM

T
TDD: Time Division Duplex

TTL: Transistor-Transistor Logic

TUC: Technical University of Crete

TX: Transmit

TXD: Transmit Data

U
USART: Universal Asynchronous Syncronous Receiver-Transmitter (also serves

as a BluReRun flag indicating that the USART is not in the process of sending a

byte)

UCR: UART Control Register

USB: Universal Serial Bus

USR: UART Status Register

USxRX: USART x (x can be 0 or 1) Receive Complete ISRs in BluReRun

USxTX: USART x (x can be 0 or 1) Transmit Complete ISRs in BluReRun

Microprocessor & Hardware Laboratory

W
WiFi: Wireless Fidelity

WLAN: Wireless LAN
WMAN: Wireless Metropolitan Area Network

WrBuf: Write Buffer (flag indicating the buffer location to store the next byte)

X
XTAL: Crystal

Schematic and PCB of BluReRun nodes

The PCB of the BluReRun nodes follows:

The Schematic of all three BluReRun nodes is the same. It is as depicted in the

following picture:

Microprocessor & Hardware Laboratory

Appendix B

ATmega162 AVR
The microcontroller (μC) used as the HOST (controls all the hardware

components and synchronizes their operation) in BluReRun is the ATmega162

AVR by Atmel. The ATmega162 is pin compatible with ATMEGA161, which was

Microprocessor & Hardware Laboratory

used in the BluMiu architecture, thing that helped the transition from that

architecture to BluReRun by making the latter a direct evolution of the packet

mechanism and the transparency. The ATmega162 pin configuration and

architecture are depicted in Figure 0-1. The ATmega161 is a low-power CMOS

8-bit microcontroller based on the AVR RISC architecture. By executing

instructions in a single clock cycle, the ATmega161 achieves throughputs

approaching 1 MIPS per MHz. The AVR core combines an instruction set, which

contains 131 instructions, with 32 general purpose working registers. All the 32

registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two

independent registers to be accessed in one single instruction executed in one

clock cycle. The proposed frequency of operation for the μC is 8MHz. Although

an XTAL with a frequency of 11.0592MHz is used in BluReRun. This frequency

has certain advantages over all the others: (1) It is one of the highest permitted

by the ATMEGA162’s datasheet (providing a higher performance) and (2) by

using that frequency a 0% error rate can be achieved with the microcontroller’s

UART. [11]. he ATmega162 provides the following features:

 16K bytes of In-System or Self-programmable Flash

 512 bytes EEPROM

 1K byte of SRAM

 35 general purpose I/O lines (4x8bit and 1x3bit)

 32 general purpose working registers

 Real-time Counter

 4 flexible Timer/Counters with separate Prescalers and Compare modes

(2x8bit and 2x16bit)

Microprocessor & Hardware Laboratory

Figure 0-1 ATmega162 PIN configuration and architecture

 Real Time Counter with separate Oscillator

 18 internal and 3 external interrupts

 2 programmable serial USARTs

 1 programmable Watchdog Timer with separate On-Chip Oscillator

 1 SPI serial port

Microprocessor & Hardware Laboratory

 1 2-cycle multiplier

 5 software-selectable power saving modes:

I. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters,

SPI port and interrupt system to continue functioning

II. The Power-down mode saves the register and SRAM contents but freezes

the Oscillator, disabling all other chip functions until the next External

Interrupt or Hardware Reset

III. In Power-save mode, the timer Oscillator continues to run, allowing the

user to maintain a timer base while the rest of the device is sleeping

Also there are the Standby and Extensive Standby modes which are not used in

the BluReRun design.

The On-chip Flash Program memory can be reprogrammed using the self-

programming capability through the Boot Block and an ISP through the SPI port,

or by using a conventional non-volatile Memory programmer.

Microcontroller resources used by BluReRun:

 10.6KB of the Flash for the BluReRun Host

 (671+n*10)Bytes and (571+n*10)Bytes of the 1KB SRAM for the client and

server respectively (n*10Bytes are stored in the RAM for n interrupts

triggering one after the other because every interrupt needs 10Bytes to be

stacked in the RAM, so that a previous interrupt can be resumed)

 28 of the 35 I/O lines. 22 are used for output and 6 for input

 All the general purpose registers of the HOST for the master-slave

 2 of the 2 8 bit timers

 0 of the 3 external interrupts

 Both USARTs

 Idle power saving mode is used

USART

Microprocessor & Hardware Laboratory

The UART in ATmega161 has been replaced by a USART in ATmega162. The ATmega162
USART is compatible with the ATmega161 UART with one exception: The two-level Receive
Register acts as a FIFO. The FIFO is disabled when the M161C Fuse is programmed. Still the
following must be kept in mind when the M161C Fuse is programmed:
• The UDR must only be read once for each incoming data.
• The Error Flags (FE and DOR) and the ninth data bit (RXB8) are buffered with the data in the
receive buffer. Therefore the status bits must always be read before the UDR Register is read.
Otherwise, the error status will be lost. ATmega161 contains the baud-rate high-bytes for both
UARTs in a common register – UBRRHI. ATmega162 has separate registers for the high-bytes of
the two USARTs; UBRR0H and UBRR1H, implying a modification to the code when porting the
design to ATmega162. Another minor difference is the initial value of RXB8, which is “1” in the
UART in ATmega161 and “0” in the USART in ATmega162.

AVR USART vs. AVR UART –
Compatibility

The USART is fully compatible with the AVR UART regarding:

• Bit locations inside all USART Registers
• Baud Rate Generation
• Transmitter Operation
• Transmit Buffer Functionality
• Receiver Operation

However, the receive buffering has two improvements that will affect the compatibility in some
special cases:
• A second Buffer Register has been added. The two buffer registers operate as a circular FIFO
buffer. Therefore the UDR must only be read once for each incoming data! More important is the
fact that the Error Flags (FE and DOR) and the ninth data bit (RXB8) are buffered with the data in
the receive buffer. Therefore the status bits must always be read before the UDR Register is
read. Otherwise the error status will be lost since the buffer state is lost.
• The Receiver Shift Register can now act as a third buffer level. This is done by allowing the
received data to remain in the serial Shift Register if the Buffer Registers are full, until a new start
bit is detected. The USART is therefore more resistant to Data OverRun (DOR) error conditions.

The following control bits have changed name, but have same functionality and register
location:
• CHR9 is changed to UCSZ2.
• OR is changed to DOR.

Appendix C

The Bluetooth module
The Bluetooth modules used are a kind donation of the Teleca Comtec Company

to the Microprocessor and Hardware Laboratory. The hardware consists of a two-

Microprocessor & Hardware Laboratory

layer printed circuit board equipped with a UART buffer, a voltage regulator, a

USB connector, an inverted-F antenna, a few other passive components and the

Bluetooth ROK101 007 module of Ericsson (Figure 0-1). This BT Module

includes the Ericsson Baseband device, a Flash Memory and the Ericsson Radio

Module device. Qualification for the Tool Kit is based upon a declaration of

compliance with the Bluetooth Specification 1.2 as well as 2. [15]

The BT module in the BlueApplE design had as a power source a USB cable that

connected it with a computer. Using up a USB port just to provide power is

clearly a waste of resources. In the BluReRun design (as was done in the

BluMiu) the board that includes the HOST and all the hardware components is

the one that provides power to the module. The USB power supply can be

changed by a power source that is connected to the jumper area of the board

(Figure 0-1) in connectors 1(VIN 5V nominal) and 10(GND) that fulfills the

following requirements:

 Supply voltage: min +4.4 V, max +5.25 V connected to Jumper area pin 1

(relative GND pin 10)

 Minimum supply current: 100 mA [11]

A description of the ROK 101 007 and its functions will follow.

Figure 0-1 LZT 107 4123 R2A

ROK 101 007 is a short-range module for implementing BlueTooth functionality

into various electronic devices. It is a type of Bluetooth module that supports the

point to multipoint transfer of voice and data thus allowing the full function of the

Microprocessor & Hardware Laboratory

BluReRun system and the form of Scatternets and piconets. It is compliant with

BT spec 1.2, is a Class 2 BlueTooth Module (0 dBm) and is type-approved. The

module consists of three major parts; a Baseband controller, a flash memory,

and a radio that operates in the globally available 2.4–2.5 GHz free ISM band.

The Baseband controller is an ARM7-Thumb based chip that controls the

operation of the radio transceiver via the UART interface. The module’s flash

memory includes firmware for the HCI and the LM, which were discussed in

chapter 2.3. Both data and voice transmission is supported by the module.

Communication between the module and the Host is carried out via UART and/or

PCM interface. The UART implemented on the module is an industry standard

16C450 and supports the following baud rates: 300, 600, 900, 1200, 1800, 2400,

4800, 9600, 19200, 38400, 57600, 115200, 230400 and 460800 bits/s. 128 byte

FIFOs are associated with the UART. [15] The default setting for the UART

speed is 57.6Kbps and can be changed by sending to it an Ericsson specific HCI

command. HCI command packets sent to it should have 0x01 as packet indicator

(a byte that must be transmitted immediately before any HCI packet), events

transmitted by it have 0x04 as packet indicator and HCI ACL packets are

interchanged with the packet indicator 0x02.

References

Internet Resources
[2] Bluetooth Special Interest Group 2006, http://www.bluetooth.com/Bluetooth/SIG/

[6] The official Bluetooth Membership site, www.bluetooth.org

Literature

[1] Bluetooth 2004: Poised for the mainstream, In-Stat/MDR, 2004.

[3] Specification of the Bluetooth System, Profile Book version 2

[4] Specification of the Bluetooth System, version 2

[5] Specification of the Bluetooth System, Covered Core Package Version 2

http://www.bluetooth.org/

Microprocessor & Hardware Laboratory

[6] Pradeep Puri, “The Parrot Fish community in Florida Everglades”, MIT Marine Biology, MIT,

2005

[7] Christos Strydis, Diploma Thesis, “Interface and Wireless Embedded Applications οf

Bluetooth, based on Microcontrollers”, Technical University of Crete, Electronics & Computer

Engineering Department, Microprocessor & Hardware Laboratory, 2003.

[8] Elias Politarhos, Diploma Thesis, “Wireless Communication and Applications of BlueTooth

based on Microcontrollers”, Technical University of Crete, Electronics & Computer Engineering

Department, Microprocessor & Hardware Laboratory, 2004.

[9] Dionysios Efstathiou, Diploma Thesis, “Design and Implementation of a Vendor-Independent

Universal Programmer for FPGA Technology”, Technical University of Crete, Electronics &

Computer Engineering Department, Microprocessor & Hardware Laboratory, 2002.

[10] Alison Carter, ‘Using Dynamically Reconfigurable Hardware in Real-Time Communication

Systems”, Literature Survey, University of York, 2005.

[11] Atmel ATmega162(L) AVR datasheet, Rev. 1228C-AVR-08/02, 2002 Atmel Corporation

[12] A.Dollas, D.Efstathiou, G.Vernardos, E. Polytarchos, K.Kazakos, “On Distributed

Reconfigurable Systems: Open Problems and Some Initial Solutions”, Proceedings of the Annual

IEEE Symposium on Field Programmable Custom Computing Machines (FCCM), April 17 - 20,

2005, Napa, California, USA, (poster)

[13] Atmel ATmega161(L) AVR datasheet, Rev. 1228C-AVR-08/01, 2001 Atmel Corporation

[14] Getting Started - Bluetooth Application and Training Tool Kit, Ericsson Technology Licensing

AB, 2005

[15] Ericsson ROK 101 007 Bluetooth PtmultiP Module datasheet

[16] D.Efstathiou, K.Kazakos, A.Dollas, ‘Parrotfish: Task Distribution in a Low Cost Autonomous

ad hoc Sensor Network through Dynamic Runtime Reconfiguration’, Proceedings of the Annual

IEEE Symposium on Field Programmable Custom Computing Machines (FCCM), April 16 - 19,

2006, Napa, California, USA, (poster)

	Contents
	1. Introduction
	1.1. The Bluetooth® System and the Parrotfish project
	1.2. Thesis Stimulus, Scope & Contributions
	1.3. Thesis organization

	2. Relative Research
	2.1 Bluetooth Introduction
	2.2 Other wireless technologies
	2.2.1 RF wireless communication
	2.2.2 IR wireless communication

	2.3 The Bluetooth protocol
	2.3.1 Bluetooth Radio
	2.3.2 Baseband
	2.3.2.1 Bluetooth topology
	2.3.2.2 Master-slave roles
	2.3.2.3 Time Division Duplex in Bluetooth
	2.3.2.4 Bluetooth connections
	2.3.2.5 Packet types

	2.3.3 Link Manager Protocol
	 2.3.3.1 Sniff mode
	2.3.3.2 Hold mode
	2.3.3.3 Park state

	2.3.4 Host Controller Interface
	2.4.1 Devices that support multiple connections
	There is also the Teleca Comtec Bluetooth module which was used in this thesis. Further information and more thorough specifications of this module are given to the Appendix C, Chapter 9 of this thesis.
	2.4.2 Simple devices for serial communication

	3. Existent & New Architecture
	3.1 BlueApplE-BlueBridge system
	3.1.1 Software of BlueApplE - BlueBridge
	3.1.1.1 BlueApplE software architecture
	3.1.1.2 BlueBridge software architecture

	3.2 Bluetooth Multi-UART system
	3.3 The Hardware Programmer and Tester (HPT)

	4. BluReRun Architecture
	4.1 BluReRun data transfer protocol
	4.1.1. The Bluetooth protocol approach
	4.1.2. The BlueReRun protocol approach
	4.2.1 HOST
	4.2.2 BT module
	4.2.3 HCI & COM
	4.2.4 LEDs
	4.2.5 EXT DEV
	4.2.6 BluReRun hardware cost
	4.3.1 USART Transmit and Receive control modules
	
	4.3.1.1 USART reception decoders
	4.3.1.1.1 USART receiver from the BT module [US0RX]
	4.3.1.1.2 USART receiver from the EXT DEV [US1RX]

	5. BluReRun Testing & Validation
	5.1 BT module validation
	Efficiency

	Conclusions and Future Work
	Future work

	Appendix A
	Appendix B
	ATmega162 AVR

	Appendix C
	The Bluetooth module

	References
	Internet Resources

