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1. Introduction 
 

1.1. The Bluetooth® System and the Parrotfish project 
Wireless connectivity is a very desirable feature of nowadays’ electronic devices. 

Radio was the first wireless technology and still is the fundamental element of 

virtually all modern wireless technologies. Lately, wireless communications 

between handheld, battery-operated devices and/or computers are thriving, since 

they contribute to reduce the amount of cables in the personal area. Though, the 

most important factor in wireless communications’ popularity increase is probably 

the significant decrease in the cost of developing and obtaining devices that 

contain these technologies. Wireless personal communication adopts 

technologies that use the radio and the non visible light areas of the 

electromagnetic spectrum. One of the most recently developed personal 

networking technologies, which became quickly very popular, is Bluetooth 

technology. It initially began as a project to study the feasibility of a low-power 

and low-cost radio interface by Ericsson in 1994.  

 

In early 1998, the Bluetooth Special Interest Group (SIG) was formed by 

Ericsson, IBM, Intel, Nokia and Toshiba. Now (June 2006) Bluetooth SIG is 

formed by 3com, Agere, Ericsson, IBM, Intel, Microsoft, Motorola, Nokia and 

Toshiba, which are Bluetooth SIG promoter members, and a total of 3357 

member companies (promoters, associates1 & adopters2). Bluetooth SIG 

developed Bluetooth wireless technology, which is a short range wireless 

communication system, intended to replace cables in the personal area. It has a 

maximum range of 100m and creates a small wireless network connecting 

                                            
1 Associate members have the opportunity to work with other Associate and Promoter companies 

on enhancements to the Bluetooth specification 
2 Adopter members just make use of Bluetooth technology 
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portable and/or fixed Bluetooth enabled devices that exist in this range (Personal 

Area Network, PAN). Key features of Bluetooth are robustness, low cost, low 

power and small size.  

 

Today, 8 years later, Bluetooth system is one of the most popular systems for 

voice and/or data in every application where short range communication is 

needed (there is, however, a bandwidth limitation, 720Κbps). Widespread 

acceptance of the technology was helped by the truly open specification of 

Bluetooth (BTspec), which has been a fundamental objective of the Bluetooth 

SIG since its formation, and is promoted through the Bluetooth Specification 

Book (First stable version: 1.0b, latest: 2). That way every part of a Bluetooth 

enabled device should be qualified with the Bluetooth Specification; its hardware, 

the way it functions, its software and the way this device communicates with 

other Bluetooth enabled devices. When a device is BTspec qualified, it will be 

able to exchange data and/or voice worldwide with every other Bluetooth enabled 

device. 

 

Concisely, BTspec defines a short (10m) or, optionally, medium (100m) range 

radio link capable for a data and/or voice communication. Its maximum data rate 

is defined to 720kbps3 (kilobits per second), while every voice channel has a 

64kbps data rate. The Bluetooth RF (physical layer) operates in the unlicensed 

ISM band, which is reserved for Industrial, Scientific & Medical purposes, at 

2.4GHz. The system employs a transceiver with the following characteristics: 

• Spread spectrum (2.402 to 2.48GHz) 

• Full duplex transmission effect is provided through the use of a Time-

Division Duplex (TDD) scheme 

• Frequency hopping in a rate of 1600 hops per second 

 
3 With the addition of the new EDR (Enhanced Data Rate) technology, Bluetooth 

transfer rates will reach a maximum of 2.1Mbps, three times the current rate. EDR is 

expected to become a mainstream standard by mid 2005 
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Connected Bluetooth devices in a Bluetooth network, which is called a piconet, 

use a specific frequency hopping pattern, which is algorithmically determined by 

characteristics of a Bluetooth device that acts as the Master of the piconet. The 

basic hopping pattern is a pseudo-random ordering of the 79 frequencies in the 

ISM band. The adaptive hopping technique improves Bluetooth co-existence with 

static (non-hopping) ISM systems when they are co-located. The output power of 

the Bluetooth device is 0dBm (1mW) for communication up to 10m (class 2 

device) and +20dBm (100mW) for communication up to 100m (class 1 device).  

 

At the same time, reconfigurable resources can provide substantial field 

programmable capability in the wireless autonomous nodes of an ad-hoc sensor 

network. The driving problem arises from the necessity to have exchange of 

(re)configuration and partial reconfiguration bit streams as well as data in a 

network that is inherently unstable (even with respect to its topology). The 

problems are compounded by the need for low cost solutions and support for 

multi-vendor systems. Thus, there is a need to reconfigure or partially reconfigure 

individual nodes in order to alter system behavior, or circumvent non-fatal errors. 

The Parrotfish project (named so due to individual Parrotfish changing gender 

under group dynamics) is a low cost, distributed environment for (partial) 

reconfiguration of distributed field programmable systems, e.g. sensor networks. 

 

This thesis’ main target is to integrate the Bluetooth protocol with the 

Reconfigurable hardware through the Parrotfish project. It proposes a system 

that can work as an errorless and efficient data communication medium in a 

Parrotfish node for low cost re/configuration of an FPGA in an ad hoc network.  

1.2. Thesis Stimulus, Scope & Contributions 
One of the most important and interesting capabilities of Bluetooth, which makes 

it stand out from other communication technologies in the PAN area, is that it 
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enables multiple devices to connect simultaneously4. This fact in conjunction with 

the kind donation of Teleca Comtec of the three point to multipoint Bluetooth 

modules that were used in this thesis and the development of an embedded 

applications platform of Bluetooth in the MHL by Christos Strydis [7] and Elias 

Politarhos [8], as well as the creation of an vendor-independent universal FPGA 

programmer by Dionysios Efstathiou [9], gave the inspiration for this thesis. In 

this thesis a third generation embedded application platform (Bluetooth 

Reconfigurable Run Time Environment) has been developed. This platform 

works as a subsystem in the Parrotfish project providing efficient data 

communication between a master and two or more slaves and also an effective 

packet exchanging protocol suitable for very low processing power 

microcontrollers (microcontroller used: Atmel AVR ATmega162). The ultimate 

goal of this thesis is to wirelessly program an FPGA through the Parrotfish 

project, but the specific design can be used wherever wireless transfer of data is 

needed and resources are truly limited. 

The following contributions were made in this thesis’ context: 

1) Piconet-based master-slave architecture. 

2) Point to multipoint connections 

3) Addressing protocol implemented and point to multipoint algorithm 

executed 

4) Dynamic HCI command configuration is supported.  

5) Error handling for efficient data transport implemented. 

6) The upgrade of commands 

7) Merging of master and slave in one device 

8) Payload data packets are big enough to support the data send to the 

FPGA. 

9) software-interrupt based multiprogramming 

10)  efficient Connectionless data transport used for FPGA re/configuration 

 
4 7 active slaves & 255 parked slaves are supported by BTspec 2 and all versions of BTspec 

before it 
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1.3. Thesis organization 
Chapter 2: The relative research on the Bluetooth protocol. The Bluetooth 

protocol is analyzed and thoroughly examined. 

  

Chapter 3: It reviews the existing design pros and cons and gives an overview of 

the new architecture. It, also, examines briefly the HPT architecture. 

 

Chapter 4: In this chapter the system designed is described in detail; the 

system’s architecture, its hardware and software are analyzed. 

 

Chapter 5: The test procedures of the components of the system and the 

validation of the overall system are presented.  

 

Chapter 6: In this final chapter the conclusions that can be extracted from this 

thesis are covered. The thesis ends with possible improvements on the system 

developed and proposes applications where it can be useful. 

 

Appendix A, B, C: These three appendixes include the description of the Host 

used in this thesis (ATMEGA162), of the Bluetooth Module and a manual as well 

as the PCBs of the BluReRun nodes and functions. 
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2. Relative Research 
 

2.1 Bluetooth Introduction   

During the last couple of years the Bluetooth devices and those that support the 

Bluetooth protocol have entered the true mainstream and have become 

widespread. With Mobile phones, Personal Digital Assistants (PDAs), and 

headsets making significant progression over the last years, the wireless market 

beginning to make an impact, and Personal Mobile Gateway5 products emerging, 

shipments of Bluetooth-enabled manufactured equipment will experience a 40% 

growth rate of between 2006 and 2008[1] (Figure 2-1). 

 

Figure 2-1: Bluetooth modules forecast (Units in millions) (In-Stat/MDR, 4/05, [1])  

There is an unlimited number of Bluetooth enabled devices and Bluetooth 

applications, which intend to cover the communication needs of people around 

the globe. Every company targeting to the simple market and wanting to be in the 

                                            
5  Personal Mobile Gateway: It is the point of connection between the wireless network and 

the new category of affordable and best-of-breed mobile devices (e.g. watches, pens, phones, 

messaging terminals, gaming devices, cameras) (http://www.ixi.com/) 
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cutting edge of technology, as far as communications are concerned, is using the 

Bluetooth technology, because of the Bluetooth popularity, thanks to the hard 

work of the Bluetooth Special Interest Group on marketing [2]. It is essential for 

products targeting to a mainstream market to be easy to use and to have a user 

friendly interface. Hence worth, these products tend to waste resources on 

various services that the Bluetooth protocol offers, something which must be 

taken under consideration from the designer as well as the software developer.  

 

Figure 2-2: The importance of Serial Port Profile (BTspec 2 [3]) 

The most important and fundamental profile that the Bluetooth protocol offers is 

definitely the Serial Port Profile (SPP), that provides serial transfer of data 

between two Bluetooth enabled devices. Actually the SPP is nothing more other 

than an emulation of the connection between two or more Bluetooth devices. 

This is the profile on which almost every other service provided by the Bluetooth 

protocol is based. [3] (Figure 2-2). As it will be thoroughly examined in the 

subsequent chapters, the main scope of this thesis interferes with the Serial 

Profile Protocol of Bluetooth.  
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2.2 Other wireless technologies 
Bluetooth was not the first attempt to develop a wireless technology for the 

personal area. There are some other technologies, which have the same scope 

with Bluetooth and are, until now, equally -and in some cases even more 

popular. These technologies are communicating through electromagnetic waves 

in the infrared light (IR) and radio frequency (RF) areas --RF is the technology 

that Bluetooth uses as it will be seen in section 2.3. A brief overview of these two 

technologies will be presented in the following sections, along with a comparison 

to Bluetooth, where applicable. 

2.2.1 RF wireless communication 

Technologies using Radio waves employ transceivers that can transmit and 

receive radio waves of a specific radio frequency. For communication in personal 

areas, low power transceivers are used so that they can only cover a distance of 

few meters; this means that they can cover as much space as it is needed for a 

Personal Area Network (PAN).  

 

Due to the fact that the radio waves spectrum is limited and that most of the 

existing wireless technologies use them to function, governments around the 

world have legislated limitations and regulations to the use of the RF spectrum6 

and a license is needed for a technology to use a band of the RF spectrum. 

These limitations also define the power of the signal that this technology will use. 

All PAN networking technologies use bands of the RF spectrum that is agreed for 

them -in a worldwide basis- that their use will not require license, as long as 

these technologies’ specifications cover some limitations, especially for the 

power of the signal they use. For instance, in Europe and in the United States the 

900MHz, 2.4GHz (ISM) and 5GHz bands do not require license for a technology 

to use them and, thus, it can be easily presumed that all RF technologies for 
 

6 NTIA Manual of Regulations & Procedures for Federal Radio Frequency Management: 

http://www.ntia.doc.gov/osmhome/redbook/redbook.html 
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Personal Area Networks use one of these bands to function (the 5GHz band has 

been proposed for the Institute of Electrical & Electronics Engineers (IEEE) 

HIPERPAN standard [5]). The unlicensed bands mentioned above are: 

 The 5GHz band is divided in band A, which covers the area between 5.15 and 

5.35GHz, and band B, which is between 5.47 and 5.725GHz 

 The 2.4GHz band: 2.4 - 2.48GHz (Until 2004, France and Spain were an 

exception in Europe, because they had narrower bands in the 2.4GHz band) 

and 

 The 900MHz band: 902 - 928MHz 

These bands are used by cordless telephones, microwave ovens, some remote 

controls and some wireless human interface devices for computers. 

 

The 2.4GHz band is used by the really popular IEEE Wireless Local Area 

Network (WLAN) protocols: IEEE 802.11, 802.11b and 802.11g (a.k.a. WiFi). [3] 

Bluetooth also uses this RF band. Because the 2.4GHz RF band is really 

overcrowded by wireless protocols, some limitations for its use have been set, so 

that collisions between the signals of these protocols would be avoided and 

secure communication could be achieved. Bluetooth responded to these 

limitations by using a frequency hopping spread spectrum (FHSS) signal7. The 

rapid change in the transmit frequency reduces the chance of Bluetooth signals 

interfering with each other or with signals from other wireless networks. If a 

Bluetooth signal collides, the next time it will be transmitted it will be in a different 

frequency, so the probability to collide again is very small. Security is also 

enhanced by the frequency hopping because, if the Bluetooth transmission is 

intercepted, the next frequency that the Bluetooth system will use won’t be 

known, thing that will probably confuse the interceptor. 

 

Bluetooth and WiFi are two very well documented and specified protocols that 

have many similarities. Although, they have basic differences that will allow 

 
7 Bluetooth FHSS is explained in chapter 2.3.1  
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neither of them to replace the other, as happened with WiFi, which prevailed over 

HomeRF (a WLAN targeted home environments and users) in the beginnings of 

2003: 

• Bluetooth has low power transmitters because it was designed for small 

battery operated devices like cell phones, PDAs, headsets and so on, that 

communicate in a radius of few meters. WiFi, on the other hand, was 

designed for computer networking in a maximum distance of 45m 

(802.11a) or 90m (802.11b and g). So, it does need stronger and bigger 

transmitters than Bluetooth to meet these requirements. 

• WiFi is far more complex than Bluetooth. WiFi is designed to hook up an 

entire network, while Bluetooth is a cable replacement technology. This 

makes service discovery a simple task for Bluetooth, while WiFi requires 

the same degree of network management as any comparable wired 

network. It is this complexity of the protocol that makes WiFi unsuitable for 

use in devices like these that Bluetooth was designed for, that were 

mentioned earlier. 

• Bluetooth is much slower than WiFi. Bluetooth has a maximum speed of 

720Kbps, while WiFi can reach 100Mbps in 802.11g. This does not allow 

the use of Bluetooth as a Local Area Network. [4] 

 

Figure 2-3. IEEE wireless networking standards 

Bluetooth (as IEEE 802.15.1™) was approved  in 15 April 2002 from Institute of 

Electrical & Electronic Engineers Standards Association (IEEE-SA) as a standard 
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and it became an IEEE working group for wireless personal area networks 

(WPANs). According to IEEE wireless networking standards, the following status 

quo has been established: 802.16 is the standard for Metropolitan Area networks 

(WMANs), 802.11 for Local Area Networks (WLANs) and 802.15 (Bluetooth) for 

Personal Area Networks (Figure 2-3). 

2.2.2 IR wireless communication 

Short range wireless communication through infrared technology is probably the 

most common wireless technology for use in the personal space, since the vast 

majority of the remote controls used for home appliances, such as TVs, videos, 

air conditioners and HiFi  systems -appliances that are somewhat essential in 

modern life-, use infrared technology. But infrared technology is also very popular 

in computers, computer peripherals, mobile phones and PDAs which use it for 

data exchange, in a way very similar to Bluetooth. Communication between 

these devices is specified by the Infrared Data Association (IrDA)8, which defines 

the hardware and software protocols for wireless communication intended to 

promote interoperable applications, just like the Bluetooth SIG. 

 

Bluetooth and IrDA are very similar, since they were developed with the same 

scope, that is a short range, low power, low cost and unlicensed wireless 

communication, and are specified by very well documented standards that have 

a worldwide acceptance. Most manufacturers provide both of them with their 

products, allowing the costumer to select the technology that fits his needs. The 

two technologies have their pros and cons, which help the costumer to choose 

one of them: 

• Bluetooth uses radio waves, while IrDA infrared light 

• IrDA (16Mbps) is faster than Bluetooth (720Kbps) 

• Bluetooth allows connections in a range of 100m in Class 1 Bluetooth 

devices, which is bigger than the range of IrDA (about 1m) 

 
8 http://www.irda.org 
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• IrDA is cheaper (1$) than Bluetooth (estimated to reach 5$) 

• Bluetooth supports point to point and point to multipoint connections, while 

IrDA supports only point to point 

• IrDA needs the two transceivers to be aligned and be in the other’s line of 

sight, while Bluetooth can penetrate objects and doesn’t need alignment [] 

 

Figure 2-4. IrDA OBEX how it is reused in Bluetooth (BTspec 2 [5]) 

IrDA and Bluetooth wireless applications share similar application domains, even 

though the underlying technology used to achieve usage scenarios is inherently 

different. Feature differences may cause one technology to be preferred over the 

other in certain environments and applications, although both have merit and 

both are likely to be deployed in pervasive computing devices. Thus the IrDA 

interoperability provisions of the Bluetooth specification can help to enable the 

best use of either or both technologies. The reuse of IrDA protocols9 and 

specifically the infrared Object Exchange Protocol (OBEX) was identified as the 

design direction of the Bluetooth SIG early in the specification’s development. 

                                            
9 IrDA had been already developed when Bluetooth research started  
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The purpose of the OBEX protocol is to enable the exchange of data objects and 

files. (Figure 2-4). 

 

At the following section the Bluetooth Protocol and the protocol’s levels and 

functionalities are examined thoroughly.  

2.3 The Bluetooth protocol 

The Bluetooth module used in this thesis is a point to multipoint device (further 

information are given to Appendix C) and can be considered as a black box that 

can be “manipulated” by a central microcontroller unit (HOST) for each node.  

 

Figure 2-5: Bluetooth Protocol Stack version 2 (BT spec 2 [4]) 

If the parts of the Bluetooth protocol that are embedded in the Bluetooth module 

were known, understanding the functions of the software and hardware parts of 

this thesis would be rather easier and a wider knowledge on the thesis’ matter 
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would be gained. The explanation of the Bluetooth protocols is based on 

Bluetooth specification 2 which is the last specification hyper-protocol introduced 

by the Bluetooth SIG (Special Interest Group).  The Bluetooth module used is a 

Bluetooth Controller, Bluetooth spec 2 compliant, which specifies the protocol 

stack illustrated in Figure 2-5. The layers of the Bluetooth protocol stack that are 

embedded in the lower levels of the Bluetooth module that is used are: 

 

 The Radio, where the physical channel resides and data is transmitted 

between Bluetooth devices [5] 

 The Baseband, a link controller which carries out the Baseband protocols and 

other low-level link routines [5] 

 The Link Manager Protocol (LMP), which is used for link set-up and control [5] 

and 

 The Host Controller Interface (HCI), which provides a command interface to 

the Baseband controller and link manager, and access to configuration 

parameters [5] 

Bluetooth protocol stack layers above HCI are embedded in the microcontroller 

used. No SCO (Synchronous Connection Oriented) channels are used since 

such a function is not in this thesis’ scopes. The lower layers significant for this 

thesis completion and proper function are thoroughly examined in the following 

sections. 

2.3.1    Bluetooth Radio 

Bluetooth operates in the 2.4GHz ISM band in the radio spectrum and makes 

use of a frequency hopping spread spectrum (FHSS) transceiver. The 2.4GHz 

frequency band is 2.4-2.4835GHz and RF channels are spaced 1MHz and are 

ordered in channel number k [5] as shown in the following formula: [Frequency 
(MHz)] = 2402+k, where k = {0, 1 …, m-1} and m=79 (until 2004 Spain, France 

and Japan had m=23, because their ISM band was narrower; but this has 

changed in 2006 or is in the progress of changing). BT spec defines a frequency 

hopping rate of 1600 changes per second. A new frequency is selected by the 
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Baseband in a pseudo-random manner every 625μs and it is used until a next 

frequency is selected. The time of 625μs between the change is called a time-

slot. By the use of frequency hopping Bluetooth ensures that interference from 

other devices and protocols will be kept to a minimum because the signals 

spread in the ISM band and it is very unlikely for two devices to interfere again 

after they have interfered once in a time-slot, because they probably won’t jump 

to the same frequency during the next hop. The receiver sensitivity must be 

below or equal to –70dBm. The minimum output power of the Bluetooth 

transmitter is defined to 0dBm (1mW) for communication in a range of 10m (class 

3 devices), while the maximum is between -30 and +20dBm (100mW) for 100m 

(class 1 devices). [5] 

 

Symbol rate is 1Mbps with the use of a GFSK10 modulator. The maximum data 

rate that can be achieved though is lower, because of the overhead of different 

protocol layers over the radio. This is 723.2Kbps for transmission, when 

reception is 57.6Kbps, while for a symmetric transmission-reception the 

maximum data rate is defined to 433.9Kbps. For full duplex transmission, a Time 

Division Duplex (TDD) is used. TDD is the application of Time Division Multiple 

Access, where the communication channel is divided into numbered time-slots 

and signals can only be received or transmitted in certain time-slots [5]. TDD is 

explained in more detail in section 2.3.2.3. 

2.3.2 Baseband 

2.3.2.1 Bluetooth topology 

The Bluetooth system supports point to point connections or point to multipoint. 

In a point to point connection the communication channel is separated through 

the TDD between two Bluetooth devices. In a point to multipoint connection the 

same communication channel is separated through the TDD between many 
 

10  The signal passes through a Gaussian filter and then goes through an FSK modulator 

(Frequency-Shift Keying) 



Microprocessor & Hardware Laboratory 
 

devices. Two or more devices that share the same communication channel form 

a piconet. Only one device can be the Master of a piconet, while all the other 

devices that are in the same piconet are the Master’s slaves. (Figure 2-6). The 

maximum number of devices that can be active in a piconet is 7 [5]. More than 7 

devices can exist in a piconet in various sleep modes, mostly for power saving 

purposes. They are not active, but remain synchronized with the piconet hoping 

scheme and can become active without restarting the connection process. The 

access of the active devices in a piconet is determined only by the Master. 

 

Figure 2-6: Point to point and point to multipoint connections 

 

Figure 2-7: Scatternet 

Piconets that have common devices are called a scatternet. (Figure 2-7). Each 

piconet has only one Master; however, slaves can participate in different piconets 
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on a time-division basis, but the Bluetooth core protocols do not, and are not 

intended to offer such functionality, which is the responsibility of higher level 

protocols [5]. In addition, a Master in one piconet can be a slave in other 

piconets. Piconets in a scatternet are not frequency synchronized and each 

piconet has its own hopping sequence.  

2.3.2.2 Master-slave roles 

As seen in the previous section, in a piconet one and only one device is the 

Master and the rest of them are slaves. The basic piconet physical channel is 

defined by the Master of the piconet and the Master is the device that initiates a 

connection by paging. The frequency hopping in the piconet physical channel is 

determined by the Master’s clock and BD ADDR11. When the piconet is 

established, the Master clock is communicated to the slaves. Then each slave 

adds an offset to its native clock to synchronize with the Master clock. Since the 

clocks are independent, the offsets must be updated regularly. All devices 

participating in the piconet are time-synchronized and hop-synchronized to the 

channel. Once a piconet has been established, Master-slave roles may be 

exchanged [5]. 

2.3.2.3 Time Division Duplex in Bluetooth 

The Master controls the traffic on the piconet physical channel by a polling 

scheme. The basic piconet physical channel is characterized by a pseudo-

random hopping through all 79 RF channels. The basic piconet physical channel 

is divided into time slots, each 625 µs in length. The time slots are numbered 

according to the most significant 27 bits of the clock CLK28-1 of the piconet 

Master. The slot numbering ranges from 0 to 227-1 and is cyclic with a cycle 

length of 227. The time slot number is denoted as k. The TDD scheme is used 

where master and slave alternatively transmit, as seen in Figure 2-8 below. The 

 
11  Each Bluetooth device is characterized by this unique 48-bit device address, which is 

like the IP address or the MAC address, and has a 28bit clock 



Microprocessor & Hardware Laboratory 
 

packet start shall be aligned with the slot start and one can extend over up to five 

time slots [5]. 

 

Figure 2-8: TDD in Bluetooth 

2.3.2.4 Bluetooth connections 

For a piconet (or a scatternet) to be formed, a device (each piconet’s Master) 

must connect to the devices that will form it. A Bluetooth device has the following 

operational modes (states): standby, inquiry, page and connected, according to 

Figure 2-9. More specifically, the modes are: 

• Standby is the default operational mode of a Bluetooth device. When a 

device is in this operational mode, it typically idles with only its native clock 

operating in a low-power mode [5]. From the Standby state the device can 

move to Page or Inquiry state. 

• Inquiry is the operational mode where the device that it is in this mode 

learns about the identity of other devices in its vicinity; these other devices 

must be in an inquiry scan state to listen for and subsequently respond to 

inquiries [5]. 
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Figure 2-9: Bluetooth operational modes (states) 

• Page is the operational mode where a Bluetooth device (1) explicitly 

invites another Bluetooth device (2) to join the piconet whose master is 

(1); device (2) must be in the page scan state to listen for and 

subsequently respond to pages [5]. As Figure 2-9 shows, an inquiry by a 

device is not explicitly needed by a device to page another, because the 

identity of the device to be paged can be known to the paging device. 

• Connected is the operational mode where a Bluetooth device is a member 

or the Master of a piconet. In this operational mode the device can 
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exchange data (or voice) with the devices connected to it, disconnect with 

any one of them (if no devices are left connected to it, it returns to the 

standby operational mode) or perform inquiries and pages for additional 

devices to join this or some other piconet. In the latter case, a scatternet 

eventually would probably be created. 

2.3.2.5 Packet types 

The general packet type is shown in Figure 2-10. Each packet consists of 3 

entities: the access code, the header and the payload. In the figure, the number 

of bits per entity is indicated. 

 

 

Figure 2-10: Bluetooth Baseband generic packet (Bluetooth spec 2 [5]) 

 Different packet types have been defined. Thus, a packet may consist of the 

following elements: 

• A shortened (68 instead of 72 bits) access code only 

• The access code and the packet header (72 and 54 bits. 126bits totally) 

• The access code, the packet header and the payload (minimum 

72+54+1=127bits, maximum 72+54+2745=2871bits) 

 

The first two types are reserved for common packets, which are control packets 

essential for the Bluetooth protocol to function. Analysis of these packets is out of 

the scope of this thesis. The latter packet type includes the Asynchronous 

Connection-less (ACL) packets and the Synchronous Connection-oriented (SCO) 

packets. 

The SCO packets are typically used for 64kbps speech transmission and this 

thesis does not deal with them. 

The ACL packets are used for asynchronous logical transport and the payload 

can be user or control data [5]. They can cover from 1, 3 or 5 time slots and they 
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provide a 16bit Cyclic Redundancy Check (CRC) code. There are Data - Medium 

Rate (DM) and Data - High Rate (DH) ACL packets. Thus, there are DM1, DH1, 

DM3, DH3, DM5 and DH5 packets, with the number denoting how many time 

slots they occupy. The only difference between them DM and DH is that DM ACL 

packets provide the information plus the CRC code coded with a rate 2/3 

Forward Error Correction (FEC). 

2.3.3 Link Manager Protocol 

The Link Manager Protocol (LMP) is used to control and negotiate all aspects of 

the operation of the Bluetooth connection between two devices. This includes the 

set-up and control of logical transports and logical links, and the control of 

physical links [5]. It is used to communicate between the Link Managers (LM) on 

two devices which are connected for ACL logical transport. The LM provides 

1. Security Management, which provides device authentication and 

encryption 

2. Power Management, which regulates the device’s association with the 

piconet it’s connected, so that it would preserve power. [6] There are three 

modes that can be used to reduce power consumption: sniff, hold and 

park (examined below) 

3. Quality of Service Management, which regulates the bandwidth used in 

connections 

4. Connection Management, which manages the paging parameters, the 

Master-slave roles, the clock of the Bluetooth devices and the connection 

establishment and link detachment 

These services are provided by the LM by the use of LMP, which exchanges 

LMP messages on connected Bluetooth devices. All LMP messages apply solely 

to the physical link and associated logical links and logical transports between 

the sending and receiving devices. The protocol is made up of a series of 

messages which are transferred over the ACL-C logical link, which is a control 

link used by the LM, resides on the default ACL logical transport between two 

devices, uses DM1 packets and has a higher priority than other traffic [5]. LMP 
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messages are interpreted and acted-upon by the LM and are not directly 

propagated to higher protocol layers. 

 

The most common and flexible methods for reducing power consumption are the 

use of sniff and park. Hold can also be used by repeated negotiation of hold 

periods [5]. 

              2.3.3.1 Sniff mode 

In sniff mode, the duty cycle of the slave’s activity in the piconet may be reduced. 

If a slave is in active mode on an ACL logical transport, it must listen in every 

ACL slot to the Master traffic, unless that link is being treated as a scatternet link 

or is absent due to hold mode (explained below). With sniff mode, the time slots 

when a slave is listening are reduced, so the Master only transmits to a slave in 

specified time slots. The slave listens in Master-to-slave transmission slots 

starting at the sniff anchor point. The sniff anchor points are spaced regularly 

with an interval of Tsniff. (Figure 2-11). To enter sniff mode, the Master or slave 

issue a sniff command via the LM protocol. This message includes the sniff 

interval Tsniff [5]. 

 

Figure 2-11: Sniff Anchor Points (Bluetooth spec 2[5]) 

2.3.3.2 Hold mode 

During the connection state, the ACL logical transport to a slave can be put in a 

hold mode. In hold mode the slave temporarily doesn’t accept ACL packets on 

the channel. With the hold mode, the device is free to do other things like 

scanning, paging, inquiring, attending another piconet, or entering a low-power 
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sleep mode. Prior to entering hold mode, Master and slave agree on the time 

duration the slave remains in hold mode. After the end of the agreed time, the 

slave wakes up, synchronizes to the traffic on the channel and waits for further 

Master transmissions. 

2.3.3.3 Park state 

When a slave does not need to participate on the piconet channel, but still needs 

to remain synchronized to the channel, it can enter park state. Park state is a 

state with very little activity in the slave. All messages sent to the parked slaves 

are carried by broadcast packets (packets broadcasted to multiple devices). The 

parked slave wakes up at regular intervals to listen to the channel in order to re-

synchronize and to check for broadcast messages. With this method, the 

maximum reduction in the device’s power-consumption can be achieved. 

2.3.4 Host Controller Interface 

A Bluetooth Controller contains the Bluetooth Radio, the Baseband, the LM, a 

resource controller and a device manager. These parts of the Bluetooth protocol 

are used by a Bluetooth Host which executes other higher level protocols. The 

Bluetooth Controller and the Bluetooth Host communicate through the Host 

Controller Interface (HCI), which is defined by the Bluetooth SIG as the physical 

interface along with a transaction-style communication protocol to carry 

information between the Host and the Controller (Figure 2-12). The main goal of 

this transport layer is transparency. The Host Controller driver (which interfaces 

with the Controller) is independent of the underlying transport technology. This 

allows the HCI to be upgraded without affecting the transport layer. 

 

The traffic crossing the HCI is: the command packets, the event packets and the 

data packets. 
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Figure 2-12: The HCI transport layer (Bluetooth spec 2 [5]) 

The Host issues the HCI commands and can access through them all functions 

of the Bluetooth Controller such as setting operational parameters, configuring 

the module’s operational status, reading and writing specific low-level registers. 

The format of HCI commands is shown in Figure 2-13. The HCI portion of the BT 

spec is the largest one, since only by the use of HCI commands a device can 

communicate with the lower layers of the Bluetooth protocol in the Bluetooth 

Controller. Each command is assigned a 2 byte Opcode used to uniquely identify 

different types of commands. The Opcode parameter is divided into two fields, 

called the Opcode Group Field (OGF) and Opcode Command Field (OCF). The 

OGF occupies the upper 6 bits of the Opcode, while the OCF occupies the 
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remaining 10 bits [5]. Then a byte indicating the length of the parameters that will 

follow, as well as their number, must exist since every parameter is one byte long 

and after that all the parameters follow. 

 

Figure 2-13: HCI command format 

The Controller notifies the Bluetooth Host of the outcome of a command or of an 

event that took place in a device connected to the Controller with an HCI event. 

The format of the HCI event packets is shown in  Figure 2-14. Each event is 

assigned a one byte event code used to uniquely identify different types of 

events. Then parameters follow in the same way as in HCI commands. 

 

Data between Bluetooth devices is exchanged through the HCI layer by the use 

of ACL data packets. Their format is shown in Figure 2-15. In the beginning of 

the ACL packet, there are 12bits for the connection handle of the device to which 

the data will be sent to. The two bits that follow indicate if this packet is the first 

packet of a higher layer message (0b10) or a continuing fragment packet of a 

higher level message (0b01). Then two more bits are next that indicate if the 

packet is a point-to-point packet (0b00), a packet that will be sent or was sent to 

all the slaves (0b01) or a packet that will be sent or was sent to all the slaves that 

are in the park, sniff or hold mode (0b10). Then 2 bytes indicating the length of 

the data that is contained in this ACL packet will follow and, finally, the data itself. 
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 Figure 2-14: HCI event format 

 

Figure 2-15: ACL data packet format 

The Host transmits to the Bluetooth Controller an ACL data packet through the 

HCI and then the Controller wirelessly transmits the ACL packet to the target 

 

Bluetooth Controller. Then by the reverse course the ACL packet arrives to the 

other end’s Host.  

 

The supported by BT spec 2 HCI transports are 3-wire, SD-transport (Secure 

Digital), UART and USB. In this thesis the UART transport is used for 
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communication with the Bluetooth Host, which in this case is the microcontroller. 

In the Host that was designed, the Bluetooth Logical Link Control and Adaptation 

Protocol (L2CAP) is implemented and higher level protocol multiplexing, packet 

segmentation and reassembly is supported through the very effective Serial Port 

Profile [3] (SPP) that was designed. 

 

 

2.4 Bluetooth Products 
There are man Bluetooth devices that exist in the mainstream market. They offer 

a huge amount of services, but -in general- waste resources, something that in 

many cases is not acceptable, especially when a large amount of services 

means more expensive equipment. There are, however, devices that provide 

valuable services, (even though their hardware resources are very low) which are 

targeted for the industrial market. Some stimulated interest devices will be 

presented next. They work under limited resources, in a hardware and software 

level, and provide serial connections to one or more devices.  

2.4.1 Devices that support multiple connections 

Only a few devices that provide multiple connections have been discovered, 

since most BlueTooth enabled devices are designed for the mainstream market, 

where multiple connections would just be something really complicated for the 

users. Some of the next devices can function as a network bridge between 

various kinds of networks. (LAN Access Profile) Their characteristics are 

presented below: 

Manufacturer 

Device 
Bluenext Company 

PROMI-MSP 
connectBlue  

SPA12i 
Stollmann 

BlueRS+E  

Connections 1 to 7 or 1 to 3512 1 to 3 1 to 3 

Data Rate 723Kbps 300-921.6Kbps 2.4-230.4Kbps 

                                            
12 Depends on the model of the PROMI-MSP 
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Profiles SPP, LAP, DUN SPP, LAP, DUN GAP, SDP, SPP 

Range 10m~100m (w/ antenna) 10m 15m 

Others 4USB ports, Networking 

support 

- Server mode, 

controllable by AT 

commands 

There is also the Teleca Comtec Bluetooth module which was used in this thesis. 

Further information and more thorough specifications of this module are given to 

the Appendix C, Chapter 9 of this thesis. 

2.4.2 Simple devices for serial communication 

Some simple devices that provide serial connection to a BlueTooth enabled 

device without installing any additional software are presented next. They provide 

maximum security and are the optimal solution for serial cable replacement. 

Multiple-UART communication can be implemented in higher levels, as with 

normal serial cables.  

Manufacturer 

Device 
Connection Data Rate  Profiles Range 

AIRcable 

Serial-to-Serial 
2 predefined 

devices 

4.8-115.2Kbps SPP, LAP, DUN 10m 

Socket Com 

Serial Adapter 
1 BT device, 

Accepts AT 

commands  

9.6-230Kbps GAP, SDP, SPP  10m 

Wireless Futures 

BlueWave 

2 predefined 

devices 

2.4-115.2Kbps SPP 100m 

Brainboxes 

RS232 BT 

1 BT device, 

Accepts AT 

commands 

2.4-115.2Kbps SPP, DUN, FTP, 

OPP, FAX, LAN 

100m 

TDK 

blu2i RS232 

1 BT device, 

Accepts AT 

commands 

2.4-230Kbps SPP, SDP 10m 
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The profiles mentioned are the following: 

 GAP: Generic Access Profile  

 SDP: Service Discovery Profile 

 SPP: Serial Port Profile 

 LAP: LAN Access Profile 

 

 
 

In Chapter 3 an overview of the existing systems architecture will be presented. 

The existing systems that were developed in the Microprocessor and Hardware 

Laboratory of the Technical University of Crete will be analyzed so that in the 

following chapters the importance of the contributions of the Bluetooth 

Reconfigurable Run Time environment will be thoroughly examined.  
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3. Existent & New Architecture  
 

The basic motivation and incentive for this thesis was a project that started 

in the Microprocessor and Hardware Laboratory of the Technical University of 

Crete in late 2005. The project was given the name of Parrotfish which is a small 

fish found in Florida waters that can change gender as needed under group 

dynamics [6]. The basic idea of the Parrotfish project is to create an environment 

where a Field Programmable Gate Array (FPGA) will be (partially) reconfigured 

through a wireless medium (in this case Bluetooth) in a distributed ad-hoc 

community. The Bluetooth Reconfigurable Run Time Environment thesis’ target 

is to transfer efficiently and wirelessly the data needed for the configuration of an 

FPGA in a large community of nodes. The existence of two previous theses that 

were focused in peer to peer communication with the use of the Bluetooth 

protocol was vital for the success of the present one.   

The first thesis was involved with the implementation of a simple Bluetooth 

host controller and it was developed in the Microprocessor and Hardware 

Laboratory of the Technical University of Crete by Christos Strydis (BlueApplE-

BlueBridge, 2003) [7]. That thesis gave a big thrust to the continuance of the 

research on the Bluetooth protocol. In 2004 Politarhos Elias developed the 

Bluetooth Multi UART system in the Microprocessor and Hardware Laboratory of 

the Technical University of Crete (2003) [8]. The structure of the embedded 

system that had been developed in the Bluetooth Multi-UART (BluMiu) thesis 

was based on the initial foundation that was set by the architecture of the 

previous application platform that was then developed (BlueApplE-BlueBridge by 

Christos Strydis), but its architecture had evolved into an entirely different than 

that of BlueApplE-BlueBridge. Finally, it must be noted that the present thesis is 

a subsystem of the Parrotfish project (as it is described in chapter 4) and as far 

as the FPGA configuration is concerned it interacts with the thesis developed by 

Dionysios Efstathiou in 2002. Efstathiou’s diploma thesis was developed in the 

Microprocessor and Hardware Laboratory of the Technical University of Crete in 
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2002 (Design and Implementation of a Vendor-Independent Universal 

Programmer for FPGA Technology, [9]). In the following sections the architecture 

of the previous theses (BlueApplE-BlueBridge and Bluetooth Multi-UART) will be 

described, their disadvantages will be shown (in order to understand the mere 

contribution of the BluReRun), and the architecture of Bluetooth Reconfigurable 

Run Time (BluReRun) environment will be described in general. Also, in section 

3.3 some general characteristics of the Efstathiou’s thesis [9] will be given so that 

the BluReRun’s architecture will be better understood. BluReRun’s architecture 

as well as validation and implementations will be specified in detail in chapter 4 

and 5.     

 

3.1 BlueApplE-BlueBridge system 
BlueApplE-BlueBridge is an applications environment, developed at the 

Microprocessor and Hardware Laboratory (MHL), as part of the diploma thesis by 

Christos Strydis [7]. The most important component of this system is a 

microcontroller (HOST) that is used to control all the other components that 

BlueApplE-BlueBridge consists of.  

 

Figure 3-1 BlueApplE – BlueBridge 

These components are the user input (INPUT), the communication (HCI) with the 

BT module, the communication (UART) with the external devices (EXT DEV) and 
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the output led matrix (LEDs) (Figure 3-1). Through the BlueApplE-BluBridge 

description its advantages and disadvantages will be stressed out. 

 

3.1.1 Software of BlueApplE - BlueBridge 

BlueApplE-BlueBridge software architecture was divided in two parts. The 

BlueApplE which, as seen previously, is a Bluetooth application environment, 

that controls the BT module’s functions through the UART HCI layer, and the 

BlueBridge which is an application for the BlueApplE that provides wireless 

UART communication. The main task of the BlueApplE-BlueBridge design is to 

issue Bluetooth HCI commands to the BT module and correctly decode the 

events they return after they have been executed by the module. 

3.1.1.1 BlueApplE software architecture 

A generalized flow chart of Blue Apple’s software architecture and operation can 

be seen in Figure 3-2 and an explanation of its functions follows. 

 

Figure 3-2. BlueApplE operation flow chart 

The idle process puts the μC in a power saving mode until an interrupt is 

triggered. When the software detects a supported interrupt, it leads the μC to 

execute the appropriate module. After the end of each of the modules’ jobs, the 

μC returns to the idle process. Interrupts originate from the input, from internal 

UART or from the external UART. The modules dedicated to every one are: 
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 The input decoder takes actions depending on the button pushed. A flow chart 

of the input decoder and the command sending module is depicted in Figure 

3-2. There are 3 kinds of input interrupts: 

1. Making a selection. They change various pointers of the system, 

which point on certain locations of the μC’s RAM. These pointers 

either select a command that the user will later transmit to the BT 

module, or a remote device that the selected command will be 

targeted to. The selections are shown on the LEDs, following a 

binary count. 

2. Commanding the μC to transmit a command to the BT module. In 

this case, the number of the command and all the selections made 

are forwarded to the command sending process. 

3. Running the BlueBridge application. The appropriate module, 

specified in the following section, is executed. This allows data 

transfers between 2 connected BlueBridge devices. 

 

 The tasks of the command sending process (Figure 3-2) are to transmit HCI 

commands or ACL packets to the BT module and to properly prepare the 

event decoder for accepting incoming event packets from the BT module. 

When it is executed, it reads from the memory the byte stream of the selected 

command and the characteristics of the selected device (if they are needed) 

and then uses the μC’s internal UART to transmit the bytes read. After 

commands are executed by the BT module, a Bluetooth event is usually 

returned to the μC. Depending on the command sent, the command sending 

module notifies the event decoder of the byte sequence of the expected event 

and, thus, prepares the event decoder so that it will function correctly. 

 

 The previously mentioned event decoder idles until a byte is received from the 

μC’s UART. The data flow chart of the decoder is depicted in Figure 3-3. 

When a byte arrives: 
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1. If flags have been set the byte is compared with the expected bytes 

generated by the command sending module in the decoding preparation 

module. More flags are set, LEDs are lit and data is written to the memory. 

Then the decoder waits for more bytes to arrive from the UART until the 

packet has been fully decoded. 

 

2. If flags have not been set and the decoder is prepared to receive an event, 

the header of the packet being received is checked if it matches the 

expected event. If it is the one expected, the appropriate flags are set and 

more bytes received are decoded normally according to scheme (1). If it is 

not the expected event the decoder checks if it matches one of the known 

remotely triggered events (data packets, create connection request 

packets, disconnection packets). In case the packet being received is a 

known packet, its byte stream will be compared according to scheme (1) 

with a template of this packet stored in the memory. 

 

3. If the header cannot be recognized to be a known packet and nothing is 

being expected, the received packet is ignored. 

 

Figure 3-3 BlueApplE event decoding module 
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Bluetooth commands implemented in BlueApplE are stored in the μC’s memory 

in two copies: one in the RAM of the μC and one in the non-volatile flash memory 

(FLASH) it has for storing the program code. When the μC is powered up, the 

commands stored in the FLASH are transferred to the RAM. This method cannot 

be, by any means, characterized as memory efficient, since the μC used has only 

512Bytes of memory. 

 

As a conclusion, the BlueApplE has some disadvantages, which were quite 

serious: 

• No buffering mechanism was implemented 

• The command sending module was not memory efficient 

• The event decoding module was not memory efficient, and depended on 

the last command that was sent by the BlueApplE 

• The decoding preparation module would be useless, if a better event 

decoding module was implemented 

3.1.1.2 BlueBridge software architecture 

The BlueBridge application provides a way for two devices connected to the 

external UARTs of two BlueApplE-BlueBridge platforms to exchange data. This 

application uses the command sending and event decoding modules of the 

BlueApplE to function. It keeps in the μC’s memory the byte sequence of a data 

packet’s template. 
 

For the BlueBridge to work both ends of two connected BlueApplE devices must 

start the BlueBridge application. The handshaking process used is depicted in 

Figure 3-4. Through the input the user requests a data bridge to be initiated. If 

another bridge is running, it is stopped. If a bridge is not running and a 

connection is present, the BlueBridge application sends a control signal to the 

remote device, informing it that it will start a data bridge with it. If the remote 

device accepts, data received from the external UART of the BlueApplE will be 

encapsulated to data packets and transmitted to the remote device. Of course 
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data packets received by that device will be decoded, the data they contain will 

be de-capsulated and then transmitted via the external UART. 

 

Only the two devices that started the BlueBridge can exchange data after the 

handshaking that has been committed by the initiation of the application, making 

BlueBridge a connection-oriented service. Connection-oriented services are used 

for complex systems which require control messages to be exchanged, in order 

to prepare for an onslaught of packets, and may demand reliable data transfer 

(through an unreliable communication channel) and/or flow and congestion 

control. [1] Reliable data transfer is when the application can rely on the 

connection to deliver all its data without error and in the proper order. Flow 

control makes sure neither side of a connection overwhelms the other side by 

sending too many packets too fast, while congestion control helps preventing the 

network from entering a state of gridlock, which causes loss of packets. Though, 

the mechanism for data transfers provided by the Bluetooth protocol (ACL) is 

reliable, simple and targets point-to-point (or multipoint) transfers. There is no 

need to design a connection-oriented service when dealing with a simple cable 

replacement protocol, such as Bluetooth. 

 

Figure 3-4 BlueBridge Initiation 
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The decoding of data packets is done using the same mechanism that BlueApplE 

uses to decode events. (Figure 3-5). The expected byte stream will be a data 

packet template. After the expected bytes are checked for validity, the payload 

byte is forwarded to the higher level application through the external UART. This 

means that the header bytes (9 bytes) are practically ignored13 and the payload 

byte is forwarded to a higher level application through the external UART. If a 

data bridge is active, every byte received from the external UART will be 

forwarded to the command sending module that will encapsulate it into a data 

packet (by adding to it the 9 byte header) and then transmit it to the BT module. 

 

Figure 3-5. BlueBridge data exchange through the BlueApplE 

As seen, in every 10 bytes sent over the air by the BlueBridge application, only 

one is useful. This automatically reduces the effective data rate from 57.6kbps14 

to 5760bps, a significant reduction in the bandwidth that is further reduced by the 

fact that the UART is external. Concluding the description of the existing 
                                            
13 They are not completely ignored; the header is checked to determine if the source BlueTooth 

device is the one with which the BlueBridge application has started, if the all its elements are 

correct and if the payload byte is only one 
14 The default data rate of the BT module 
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system’s architecture and functionality, the BlueBridge application also has 

certain disadvantages, in addition to those of BlueApplE: 

 

• Too low data rate (1200bps) 

• Connection oriented operation, when it’s not needed 

• Only one byte data payload in every 10 bytes transmitted over the air 

• Supports only one ACL connection 

 

So in general the basic disadvantages of the BlueApplE – BlueBridge system 

were: 

• No buffering mechanism was implemented 

• The command sending module was not memory efficient 

• The event decoding module was not memory efficient, and depended on 

the last command that was sent by the BlueApplE 

• The decoding preparation module would be useless, if a better event 

decoding module was implemented 

• Too low data rate (1200bps) 

• Connection oriented operation, when it’s not needed 

• Only one byte data payload in every 10 bytes transmitted over the air 

• Supports only one ACL connection 

 

3.2 Bluetooth Multi-UART system  
 

Bluetooth Multi-UART (BluMiu), developed at the Microprocessor and Hardware 

Laboratory and designed by Elias Politarhos in 2004 [8], had some basic goals to 

achieve. These were: 

 

 To improve the performance of BlueBridge, 

 Overcome its disadvantages (noted in the previous section) and 
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 Transform it to a reliable and robust data exchange Bluetooth enabled system 

 

Once these requirements were met, new services would be added. These 

requirements, as was found in a project to study BlueBridge and improve its data 

transfer rate, could only be achieved by: 

 Changing the μC that was used, so that it could cover the requirements. The 

AT80S8515 was changed by the ATmega161 AVR.  

 Implementing a buffering mechanism in its UARTs, so that efficient data 

exchange and multiprogramming could be achieved. 

 Replacing every software module that was embedded in the AVR, because 

more efficient modules were needed. 

 Adopting a client - server architecture, so that true point-to-point connections 

could be achieved. 

 

BlueApplE didn’t have an exact focus. It was more like an attempt to discover the 

capabilities of the Bluetooth protocol and the BT modules by issuing to it simple 

commands and correctly decoding their replies, so that further research could be 

conducted later on. From the beginning of BluMiu development, the primary 

focus of the work was given on data transfers between BluMiu devices. So, μC 

specific functions and/or Bluetooth services that could enhance data transfers 

were exploited. This fact implied that the implemented Bluetooth commands and 

Bluetooth services contained in the BlueApplE had to be reviewed (and new 

should be found) so that only the necessary elements for achieving data 

transfers between Bluetooth devices would remain in BluMiu. The implemented 

Bluetooth commands were reduced from 27 to 9 in the server; 11 in the client. 

The commands necessary for the discovery, the identification, the connection 

and disconnection of Bluetooth enabled devices in the vicinity of the BT module 

were the commands that remained in the BluMiu. The implementation of a 

buffering mechanism in the data transports. This gave the major boost in the 

evolution of BluMiu; relatively large amounts of data could be stacked in the 
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buffer, waiting to be transmitted, allowing the BluMiu control unit to attend to 

other tasks.  

1. The differentiated decoding of incoming events. BlueApplE loaded the 

pattern of the expected packet to be received into the memory and then 

waited until this packet was received. BluMiu decodes whatever, 

whenever it is being received without unnecessary memory transfers, 

since all the possible packets that can be received have been included in 

the event decoder’s piece of code. This is a fair solution since the μC 

doesn’t have a quantity of RAM available to be wasted for the decoding of 

events and it is generally faster to read directly from the program code 

than from the RAM. 

 

2. The design of a packet exchange mechanism. In BlueBridge every byte 

received was transmitted to the remote device. This, as seen, limits the 

effective data rate to the 1/10 of the available. The BluMiu design provides 

data packets of variable payloads that contain (except from the data 

payload) information for the source remote device of the packet, in order 

to support multiple connections. The payload of data is limited only by the 

BT modules used, the Bluetooth protocol itself and the number 65536. 

 

Having in mind the limitations in resources and the complexity of the work that 

the μC would have in dealing with so many things simultaneously, even in trivial 

tasks, great attention was given to the software parts of the system. Every 

module of the system was written in AVR assembly. Software architecture is 

based on interrupts that, when triggered, cause the appropriate Interrupt Service 

Routines (ISRs) to be executed. In these ISRs the modules of the system have 

been built. Whenever the μC is executing an ISR and a subsequent interrupt is 

triggered, data vital for the ISR running is stored in the μC’s RAM, so that the μC 

can execute the ISR for the new interrupt and when it ends the first ISR will be 

resumed. This fact allows the μC to execute all the interrupts that occur, internal 
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and external, without losing any data or missing any interrupts and, thus, 

decreasing the Host’s (AVR) reliability to the external device. 

 

     3.2.1 The BluMiu software Architecture 
 
The development of the software that was embedded in the BluMiu host was the 

most complicated and time consuming task throughout this thesis’ development. 

Meeting the initial requirements that were set in the beginning of the 

development needed very sophisticated software architecture with very carefully 

written source code that would be able to deal with multiple events (interrupts) 

almost simultaneously and serve all of them in real time. The software 

architecture of the client and the server is shown in Figure 3-6. 

 

The idle process makes the μC to enter a power saving mode until an interrupt is 

triggered. When that happens, the μC will execute the appropriate software 

module. After each of the modules completes its jobs, the control is returned to 

the idle state, where it waits for other interrupts.  

 

 

Figure 3-6 BluMiu software architecture 
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The UART0 as well as the UART1 were the most important modules of the 

BluMiu architecture. In the BluMiu the Host which is the AVR supports the 

differentiated decoding of packets. However, this is not done efficiently. For 

example in order to send data through one Bluetooth module to another it is 

essential to add a large number of header bytes to the actual data packet. This 

has been eliminated in the BluReRun, by creating optimized UART decoder 

modules; thus improving the whole system’s performance. This will be thoroughly 

examined in the next chapter. 

 

    

However, the Bluetooth Multi UART environment had some basic disadvantages 

that were important and were resolved in this thesis: 

• The format of the packets accepted from and transmitted to the Bluetooth 

controller and external device had to be changed, as far as the interaction 

between the BluMiu and the top levels of the architecture is concerned, in 

order to support efficient FPGA re/configuration even in point to point 

connections. 

• No true point to multipoint environment was supported by the BluMiu due 

to hardware limitations 

• The merging of a master and a slave in one host was not supported. 

•  No addressing protocol was implemented 

• The Bluetooth module used in previous theses was specified by the 

Bluetooth spec 1.0b therefore it was not up to date with current 

specifications (Bluetooth spec 2.0) 

• No dynamic initialization and configuration of commands were supported. 

In BluMiu everything must be done by a terminal window or through the 

button input 
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3.3 The Hardware Programmer and Tester (HPT) 
The purpose of the thesis that was developed in the Microprocessor and 

Hardware Laboratory of the Technical University of Crete by Dionysios Efstathiou 

in 2002 [9], was to develop of a vendor – independent universal programmer for 

FPGAs (this programmer was named HPT). The Hardware Programmer and 

Tester (HPT) is the core of the thesis. It is a space-efficient, pre-engineered high-

density configuration solution for programming testing and upgrading FPGA 

based systems. It can offer adequate solution to the above problems as an 

inexpensive and generic programmer. The HPT can be utilized for system 

prototyping and testing, or as intelligent host responsible for configuring multi-

FPGA systems. The architecture of the HPT will be described in general in 

section 3.3.1 since it is vital to understand the way it works due to its interaction 

with the present thesis. Finally a general comment on FPGAs will be given in 

section 3.3.2 since one of this thesis’ purposes is the programming of an FPGA 

through the interaction with the HPT. 

    

3.3.1 HPT Architecture in general 
The HPT has an RS232 link to the PC and an on-board flash memory both 

controlled by an intelligent host (either a microprocessor or an FPGA). The Run-

Time Environment in the PC is responsible for downloading the appropriate CDF 

file (configuration bit-streams along with the necessary HPT instructions) to the 

HPT board either for immediate usage or for long-term storage in the flash 

memory.  A detailed diagram of the HPT is shown in Figure 3-7, where 

configuration data and HPT instruction are transferred through the RS 232 

interface to the HPT core module. The Run Time Environment is responsible for 

the data transfer to the HPT.  Upon reset, the HPT system is in an idle mode. 

Depending on the incoming instructions the HPT core module decides whether to 

proceed in data store, in the flash storage media, or to operate directly through 

the RS 232 interface and configure (or test) the connected FPGA(s) based 

system. The instructions can be divided in “protocol” instructions and 
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“Programming” instructions. For example, the command that stores data in the 

Flash media is categorized as a protocol instruction. The microcontroller unit 

(Figure 3-8) of the HPT core “parses” the incoming instructions and acts 

accordingly by issuing commands to the various HPT interfaces. The fact that the 

timing requirements of some FPGAs are demanding and the whole configuration 

process may be complicated makes the need for branching instructions 

mandatory. 

 
Figure 3-7: The HPT 
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Figure 3-8. The HPT microcontroller 

Consequently, the HPT core module must be equipped with a cache memory in 

order to store portions of instructions for branching. The reason for implementing 
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a caching policy in a memory block different from the flash storage media is the 

need for accelerated time response and instruction-exclusive storage media. 
 

    3.3.2 FPGA history and architecture in general 
 There are two types of programmable ASICs including programmable 

logic devices (PLDs) and field-programmable gate arrays (FPGAs). This text will 

be focused exclusively on FPGAs. 

In the mid 1980s a new technology for implementing digital logic was 

introduced, the field-programmable gate array (FPGA) [5]. These devices could 

either be viewed as small, slow mask programmable gate arrays (MPGAs) or 

large, expensive programmable logic devices (PLDs). FPGAs were capable of 

implementing significantly more logic than PLDs, especially because they could 

implement multi-level logic, while most PLDs were optimized for two-level logic. 

Although they did not have the capacity of MPGAs, they also did not have to be 

custom fabricated, greatly lowering the costs for low-volume parts, and avoiding 

long fabrication delays. While many of the FPGAs were configured by static RAM 

cells in arrays, (SRAM), this was at first viewed as a liability by potential 

customers who worried over the chip’s volatility. Antifuse-based FPGAs were 

also developed, and for many applications were much more attractive, both 

because they tended to be smaller and faster due to less programming overhead 

and also because there was no volatility to the configuration. The major 

disadvantage to Antifuse technology FPGAs is that once they are programmed 

the process cannot be reversed. They are not re-programmable. 

In the early 1990s there was a growing realization that the volatility of 

SRAM-based FPGAs was not a liability, but was in fact the key to many new 

types of applications. Since a completely electrical process could change the 

programming of such an FPGA, much as a standard processor can be 

configured to run many programs, SRAM-based FPGAs have become the 

workhorse of many new re-programmable applications. An IC foundry produces 

FPGAs with some connections missing. The user can perform design entry and 

simulation. Next, special software creates a string of bits describing the extra 
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connections required to make the design—the configuration file. There is no 

customization of any mask level for an FPGA, allowing the FPGA to be 

manufactured as a standard part in high volume. 

FPGAs are popular with Microsystems designers because they fill a gap 

between TTL and PLD design and modern, complex, and often expensive 

ASICs. FPGAs are ideal for prototyping systems or for low-volume production. 

FPGA vendors do not need an IC fabrication facility to produce the chips; 

instead, they contract IC foundries to produce their parts. All FPGAs have certain 

key elements in common. All FPGAs have a regular array of basic logic cells that 

are configured using a programming technology [10]. The chip inputs and outputs 

use special I/O logic cells that are different from the basic logic cells. A 

programmable interconnect scheme forms the wiring between the two types of 

logic cells. Finally, the designer uses custom software, tailored to each 

programming technology, and FPGA architecture, to design and implement the 

programmable connections. The programming technology in an FPGA 

determines the type of basic logic cell and the interconnect scheme. The logic 

cells and interconnection scheme, in turn, determine the design of the input and 

output circuits as well as the programming scheme. The programming 

technology may or may not be permanent. The permanent programming in one-

time programmable (OTP) FPGAs cannot be undone. Re-programmable or 

erasable devices may be reused many times.  

 

3.4 The New System: BlueReRun 
As it was noted in the introduction of this chapter the Bluetooth Reconfigurable 

Run Time Environment (BlueReRun) which was developed in the Microprocessor 

and Hardware Laboratory of the Technical University of Crete and designed in 

this thesis is part of a larger project. The Parrotfish’s (the project name) target is 

to create a run time environment where a Field Programmable Gate Array 

(FPGA) will be (partially) reconfigured through a wireless medium (in this case 

Bluetooth) in a distributed ad-hoc community. 
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The basic targets of the BlueReRun are the following: 

 To improve the performance of the BluMiu system, 

 To create a system that will interact correctly with the Hardware Programmer 

and Tester so that efficient FPGA re/configuration would be guaranteed, 

 To create an addressing protocol that would forward correctly and efficiently 

the data required for the re/configuration of an FPGA, in an ad-hoc community 

 To merge in one device the master-slave characteristics so that every node in 

an ad-hoc community (piconet in Bluetooth) would be able to change from 

master to slave when requested by the Hardware Programmer and Tester or 

by other factors (such as an external device other than the HPT) 

 To create at the same time a system that can also stand alone apart from the 

interaction with the HPT. This system must support any data or command 

exchange within an ad-hoc community of nodes in an efficient and errorless 

way. 

 

In order to understand the importance of the contributions of the BluReRun it is 

necessary to understand the mode of communication between the different levels 

of the Parrotfish project. A Parrotfish community is a community that has a 

number of nodes which have the format shown in Figure 3-9. In this figure 3 

levels can be clearly noted. The first one is the Bluetooth layer (layer 1) followed 

by the HPT layer (layer 2) and finally the top level layer is the FPGA Layer (layer 

3). All the nodes noted in the figure, have this format. The BluReRun’s target is to 

create an efficient layer 1 so that the data (meaning the .bit file that the FPGA 

requires for the re/configuration) would be ideally and efficiently forwarded to 

different nodes.   

 

The first layer must interact correctly with the second layer, which is the leader of 

the Parrotfish system. The BluReRun is capable of making decisions only as far 

as the way that the data could be distributed among the different nodes. The 
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target of the data (where the data would be sent) is determined only by the HPT. 

Also, an HPT and BluReRun command interaction must be supported.  

 

 
Figure 3-9: The Parrotfish community and the different layers 

 

The BluReRun’s software and hardware specifications must be the same in all 

the nodes that form the ad hoc community. The BluReRun must overcome the 

disadvantages created by the previous systems as well.  

 

At this section a general and precise description of the BluReRun system was 

presented. In Chapter 4, a thorough and detailed study of the system as well as 

its parts will be given in order to understand its contributions to FPGA 

programming and wireless data configuration.  
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4. BluReRun Architecture 
 

In chapters 2 and 3, an overview of the lower levels of the Bluetooth stack and 

the existing Bluetooth enabled system developed in MHL in the context of 

Christos Strydis’ thesis (BlueApplE-BlueBridge) [7] as well as the research that 

Elias Politarhos did for his own diploma thesis (BluMiu) [8] were presented. We 

explored some of the disadvantages that the BlueApplE-BlueBridge and BluMiu 

systems possessed and saw what needed to be improved. The new system 

(Bluetooth Reconfigurable Run Time Environment) reduces and in some cases it 

even eliminates the flaws of the existing systems. At the same time, the 

BluReRun system introduces an integral system of re/configuring FPGAs in a 

wireless ad hoc community.  

 

BluReRun offers the following characteristics that make it better than the existing 

one and at the same time ideal for FPGA wireless re/configuration: 

1. Piconet-based master-slave architecture. In BluReRun we have three (3) 

platforms (three because we have only three point to multipoint BT 

modules) where the host (AVR) communicates with the Bluetooth module 

through USART 0 and with the HPT through the USART 1. Effectively, 

through the USART 1 and through the HPT the data can be sent to an 

FPGA. As stated in chapter 3 and in the introductory chapter of this thesis, 

the BluReRun’s major target is to be able to send the data (bit stream file) 

efficiently to an FPGA (through the HPT) in a Bluetooth ad hoc community 

which is comprised of three nodes. Therefore, the BluReRun must act as 

an efficient data transporter between different nodes of an ad hoc network. 

2. Point to multipoint connections supported and most importantly 

implemented. 

3. Addressing protocol implemented since we have more than two Bluetooth 

devices in the vicinity area. Also the data must be forwarded correctly 
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according to the rules stressed by the master of the piconet and the ones 

imposed by the Bluetooth specification version 2.0. 

4.  New Bluetooth Modules have been used. The new Bluetooth modules 

that have been acquired support point to multipoint connections according 

to Bluetooth specification version 1.2 and 2.0 (Appendix C). 

5. Dynamic HCI command configuration is supported.  

6. Error handling for efficient data transport implemented. 

7. A better AVR microcontroller has been used. The new microcontroller 

which has new Universal Receiver/Transmitters is the ATMEGA162. It has 

two UARTs which were updated by ATMEL in USARTs (in Appendix B as 

well as in the section named BlueReRun hardware). They are called 

Universal Synchronous/Asynchronous Receiver/Transmitters instead of 

Universal Asynchronous Receiver/Transmitters. Specific information on 

the use of USARTs is given in Appendix B.    

8. One of the trickiest parts and contributions of the BluReRun system is the 

merging of master and slave in one device. Every device (node in the ad 

hoc network) can be used as a master or a slave through the usage of 

certain commands issued by the leader of the Parrotfish project which is 

the HPT or by another external device. 

9. The upgrade of commands implemented in either the master or the slave 

of the ad hoc network, from Bluetooth version 1.2 to Bluetooth version 2.0 

has been achieved. 

10. The 57600kbps transmission rate has been secured. Also the 115200 and 

460 kbps transmission rates have been used. 

11. software-interrupt based multiprogramming 

12. No push-buttons have been used. Everything in a BluReRun node is done 

in a dynamic manner either with or without the use of the PC.  

13. the host can be fully controlled from the device connected to the platform 

14. the device connected to the platform can give commands to the BT 

module 

15. improved data and command sending mechanism to the BT module, 
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16. improved decoding of incoming event and data packets from the BT 

module mechanism 

17. improved mechanism of data exchange between a device connected to 

the platform and the platform itself 

18. the platform reports the connected device of the addresses, the handles 

and the user friendly names of connected and inquired devices  

19. the platform notifies the connected device whenever a disconnection 

occurs 

20. Connectionless data transport 

21. Payload data packets are big enough to support the data send to the 

FPGA. 

22. Multiprocessing of the commands/events that are coming from the upper 

layer of the Parrot Fish system (HPT) and from the Bluetooth module. 

23. Less cost for the implementation of the BluReRun design than BluMiu. 

 

In this chapter, we will present the BluReRun hardware and software design, 

which was developed in this thesis and which features: 

 The whole software design that contains the upper layers of the BlueTooth 

protocol stack and the data exchange protocol 

 The hardware that is used to control the Bluetooth module, communicate with 

it and provide Bluetooth connection to the external device which can be either 

the terminal window or the HPT 

In the thesis’ context, three BluReRun platforms have been implemented; each 

one can be dynamically serve as the master or the slave regarding the status of 

the upper Parrotfish protocols. Firstly, the BluReRun data transfer protocol will be 

examined. Then, all the contributions of this thesis will be presented and 

analyzed. 

4.1 BluReRun data transfer protocol 
It is important for an ad hoc community to have efficient and errorless data 

transport between each node. The exact protocol, which enables BluReRun 
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systems to exchange data between each other, will be specified in the following 

sections. The next section explains why the specified by the BlueTooth SIG 

Serial Port Profile (SPP) was not implemented. 

4.1.1. The Bluetooth protocol approach 

As seen in previous chapters, the BlueTooth SIG has specified a standard for the 

serial data transfers between BlueTooth enabled devices, the SPP (Serial Port 

Profile). This profile covers the scenario of setting up virtual serial ports (or 

equivalent) on two devices (e.g. PCs) and connecting these with Bluetooth, to 

emulate a serial cable between the two devices. 

 

Any application may be run on either device, using the virtual serial port as if 

there was a real serial cable connecting the two devices (with RS232 control 

signaling). The profile assumes that the applications on both sides are typically 

legacy applications, able and wanting to communicate over a serial cable (which 

in this case is emulated). But typical applications cannot know about Bluetooth 

procedures for setting up emulated serial cables, which is why they need help 

from some sort of Bluetooth-aware helper application on both sides. Of course, 

according to the BlueTooth Profiles Book version 2.0, only one connection at a 

time is dealt within this profile [3]. Hence worth, only point-to-point configurations 

are considered at a time (even at point to multipoint connections). This means 

that (as seen in section 2.3.2.4) in each timing slot, only two Bluetooth devices 

can exchange data (master in even time slots and slave in odd slots). 

4.1.2. The BlueReRun protocol approach  

The BlueReRun protocol had, from the beginning of this thesis, to be efficient 

enough and very meticulously specified in order to support not even point to point 

but also point to multipoint errorless packet exchange. Before examining the 

BlueReRun protocol approach it is essential to understand the structure that a 

node in the Parrotfish project has. 
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     4.1.2.1 Architecture of the Parrotfish Node 
As described, in chapter 3 the Parrotfish Project’s targets is to efficiently 

re/configure any FPGA device wirelessly in an ad-hoc environment. The 

Parrotfish is, therefore, comprised of many nodes which have the same structure. 

The structure of a node is depicted in figure 4-1.  

 
Figure 4-1: The Parrotfish node 

The Parrotfish node is partitioned into three inner-communication layers. The 

“lower” layer (layer1) is the physical and data-link layer (this is the layer where 

the BluReRun thesis is focused). It consists of the Bluetooth module and its Host. 

The “middle” layer (layer2) is the control medium and the “upper” layer (layer3) is 

the reconfigurable section of the sensor node. The “middle” layer acts as the 

intermediate between the reconfigurable layer and the rest of the network. It 

consists of the HPT (Hardware Programmer & Tester), an 8-bit microcontroller 

and a memory storage unit [9]. All incoming data from the network that reach the 

node are collected by layer1. After they have been “stripped” from any Bluetooth 

related data, they are forwarded to layer2. In turn, the middle layer “parses” the 

received data and according to their use, they are forwarded to the 

reconfigurable section (layer3) or kept as needed. Vice-versa, layer2 collects 

processed data and requests from layer3 and either redirects them to the upper 

layer for transmittance to the network or processes them. It also has the ability to 

dynamically (re)program or read back the configuration bit stream of the node’s 

reconfigurable section (layer3). The architecture of the Parrotfish node offers a 
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level of transparency between the different layers. Each layer only communicates 

with its adjacent layer. The Bluetooth layer (layer1) interfaces only with the 

control medium (layer2), inside the node. The existence of the reconfigurable 

section, its functionality and even its presence, is completely hidden from layer1. 

The communication layer, on the other hand, communicates with both layers.  

 
                       Figure 4-2: Layers of transparency 

The “middle” layer communicates with the “lower” layer (layer1: Bluetooth) in a 

fixed serial manner. It forwards “raw” data to layer1 (in the form of HPT packets), 

which in turn converts them in the Bluetooth compatible packets, and transmits 

them to the network. In reverse, layer1 receives ACL data packets from the 

network and after they have been converted to HPT packets, they are sent, 

serially, to the middle layer. Thus the hardware and software of the wireless link 

layer is completely transparent to the medium layer [12]. The above 

communication restrictions apply also to the reconfigurable layer of the node. 

The “line of sight” (“outside world”) of the 3rd layer is the “middle” layer (layer 2). 

It receives requests only from it and responds accordingly. The third layer 

communicates with the “middle” layer through a serial link. This is mainly due to 

the limited resources of the microcontroller plus the need for a unified 

communication link in all nodes. 
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In Figure 4-2 the different layers of transparency and what they are comprised of 

is depicted.  

 

The ultimate purpose of the BluReRun is to create an efficient and low cost Data 

Link Layer in the Parrotfish node. This layer must function as the transporter of 

the data required by the HPT (Intermediate Layer) to re/configure dynamically an 

FPGA.  At the same time, as stated in the beginning of this chapter, the 

BluReRun must also act “alone” in an ad hoc environment.  

 

   4.1.2.2 The BluReRun protocol in the Parrotfish project 
The BluReRun protocol is very methodically specified in order to secure efficient 

and errorless data/command transport in a point to multipoint environment such 

as the environment that the Parrotfish project demands. It needs the external 

devices connected to the BluReRun (either the HPT or any other device such as 

a PC) to know that special packets can only be received by the Host (the AVR 

ATMEGA162 that controls all the functions of the data link layer as it will be 

studied in section 2.3). These packets are called HPT packets (the name given 

by the HPT who is the control medium of the Parrotfish project).  The format of 

the HPT packets is shown in Figure 4-3.  

 

 
                              Figure 4-3: HPT packet format 

In the above format the following fields can be noted: 

a) Handle [2 bytes]: This is the ID of the target device. It is 2 bytes 

long and all the handles of the targeted devices are reported 

through the Host to the external device or the HPT. The Handle is 

two bytes long since that is required the Bluetooth specification 

profile v2.0 [4]. The Handle is returned to the Bluetooth Host by a 
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connection complete event. The form of the handle is created in 

such a way that supports point to multipoint connections. 

b)  Length: This is the total Length of the Data of the HPT packet. It 

complies fully with the data payload that the HPT (which is the 

control medium of the Parrotfish project) sends. It is 1 byte long 

since the HPT sends data of no more 256 bytes to the FPGA (layer 

3 in Figure 4-1).  

c) Data:  This is the actual data that one HPT sends to another HPT in 

a node of the ad hoc system, through the BluReRun. The 

BluReRun is not interested at all in the contents of this data. It is 

interested only in the efficient transport of ALL the contents of the 

data in the ad hoc system. 

The handle format is in big endian order, since the HPT sends the HPT packets 

to the BluReRun Host in such an order. However, the Bluetooth firmware 

supports only bytes in little endian order. Therefore, in the software decoding (as 

it will be studied in the Software Architecture section) the essential 

transformations are made in order to ensure little endian transfer of data.  

 

When such an HPT packet is received from the host (AVR ATMEGA162) the 

validity of the handle will be checked by the BT module. If the handle is valid, a 

decoder will transcribe the packet received to an ACL data packet (its format is 

depicted in 4-4, which is the format of the ACL packet that the BT module uses). 

The ACL packet that this BT module uses has the following fields in its header: 

1. The ACL data packet indicator. [1 byte] This is a byte with the 

hexadecimal value 0x02. 

2. Handle. [2 bytes] This is the handle indicating the device to which the data 

packet will be sent to. The two last bits of the handle (15 and 16) 

determine whether that packet will be broadcast to all the active and/or 

parked slaves, or was broadcasted by the Master to all its active and/or 

parked slaves. 
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3. Total Length (L2CAP length). [2 bytes] It is the Logical Link Control & 

Adaptation Protocol (L2CAP) specific length, which includes the data 

payload length and some other L2CAP header fields’ length. The BT 

module used does not implement the L2CAP layer (which is an upper 

level BlueTooth protocol stack layer), but it uses its headers to promote 

interoperability. The total length is found by adding 4 to the initial length. 

4. Length. [2 bytes] This is the initial length of the data included in the 

packet. 

5. Channel ID (CID). [2 bytes] The CID identifies the destination channel 

endpoint of the packet. Different applications use different CIDs to retrieve 

data from the BlueTooth device. CIDs are something like the port numbers 

in the TCP/IP. In the BluReRun the CID 0x0040 is used, which is not 

reserved for any BlueTooth profile. 

 

 

Figure 4-4 BT module acceptable ACL data packet used by BluReRun 

Every number used in the header is in a little endian byte order. After the 

BluReRun data packet has started to be transcribed into an ACL packet, the BT 

module will send it to the device indicated by the handle in it, if that device is 

connected to the BT module. The above procedure will occur every time that a 

data exchange between two or more BluReRun platforms shall happen either in 

point to point or point to multipoint environments.  

 

As explained in the contributions of the BluReRun thesis, each Host (and 

therefore each node of the ad hoc network) can function as a master or a slave. 

More about this BluReRun’s characteristic will be explained in section 4.3. When 

a master/slave of the BluReRun platform, transmits an ACL data packet to 

another master/slave of the ad-hoc network, then the BT module receives the 
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packet and forwards it to the host. Finally each node shall transcribe the ACL 

data packet received, to a HPT data packet (Figure 4-3) and transmit it to the 

HPT or another external device. Certain receive and transmit control modules 

were implemented. These modules shall be explained in section 4.3. 

 

The following sections describe in detail the core of the BluReRun’s system 

hardware and software architectures. 

  

 

4.2 BluReRun Hardware 
The BluReRun hardware architecture was one of the most difficult sections of the 

BluReRun thesis. From the beginning of this thesis, the hardware had to coincide 

with the software architecture in order to guarantee an efficient transporter of 

data and commands in an ad hoc network. In the following sections the hardware 

components of BluReRun will be described. 

4.2.1 HOST 

The most fundamental component of the BlueReRun system is the HOST. The 

Host, which is an ATMEGA162 AVR from ATMEL [11], offers the necessary 

processing power to execute the upper Bluetooth protocol layers as well as the 

essential software and hardware processing for the efficient data transport 

between many nodes of an ad hoc system. In Figure 4-5 the HPT hardware 

architecture is depicted. In this thesis three BluReRun nodes with three Hosts 

were implemented. The analytical schematic and PCB design of each one of 

those nodes is given in Appendix A.   

 

Each BluReRun node in the Parrotfish ad hoc network has one Host. Each host 

has the Bluetooth master and slave characteristics embedded in its architecture. 

All the hosts have the same characteristics and the same capabilities. 
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Figure 4-5: BlueReRun Hardware Architecture 

 

The Host must successfully accomplish, every time it is asked, the following 

tasks: 

a) to communicate correctly with the BT module via USART 0 

b) to communicate efficiently with the HPT and any other external device via 

USART 1 

c) to execute different commands issued by the HPT or by the host itself in a 

dynamic way 

d) to secure the safe migration from master to slave or vice versa when 

requested by the HPT or by another external device 

e) to discover Bluetooth enabled devices in its vicinity dynamically or when 

requested by the HPT 

f) to connect to them or disconnect from them in a dynamic way 

g) to exchange data or command packets with any one of them guaranteeing 

the efficient data transport between the other nodes of the ad hoc network, 

h) to manage the data flow between the BT module and the HPT, 

i) to correctly decode the incoming command and/or data packets, either 

they are being received from the BT module or the HPT, 



Microprocessor & Hardware Laboratory 
 

j) to transform the HPT packets to ACL data packets, compatible with the 

Bluetooth protocol, and vice versa, and 

k) to present in the board leds the correct decoding of packets and events  

 

The Host of any BluReRun node, since it is the core of the system, should be 

powerful enough to support multiprogramming modes and also to guarantee: 

 Availability 
 Reliability 

 Low cost 
 Pin compatible with ATMEGA161 
 Fulfillment of the hardware requirements set by the BluReRun 

design 

Microcontroller  Needed  AT90S8515  ATmega161  ATmega162  

SRAM 900bytes15  512bytes  1024bytes  1024bytes

UARTs or 
USARTs 

2  1  2  2 USART 

Program 
memory 

12Kbytes  8Kbytes  16Kbytes  16Kbytes 

Multiplier 1  0  1  1 

I/O lines 28  32  35  35 

Registers 32  32  32  32 

8 - 16 bit timers 2  2  3  5 

Figure 4-6: The Host Resources  

The upgrade of the Host from ATMEGA161 (which was used in BluMiu [13]) to 

ATMEGA162 was fulfilled. The basic reason was the hardware and software 

capabilities that the ATMEGA162 could offer on the grounds of Timer/Counters 

                                            
15 At least 2x256bytes for USART Transmit buffers, 10x10bytes for inquiries, 7x8bytes for 

connections, 10x10 bytes for connection/disconnection purposes 
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and USARTs. The ATMEGA162 offers up to 5 different Timer/Counter modules 

for 8 and 16 bit timing modes. In the BluReRun design only 2 are used for error 

handling purposes. Also, as far as the interaction with the HPT (the external 

device) and the BT module is concerned, the ATMEGA162 is using the USARTs.  

In the table 4-6 all the necessary resources for the BluReRun design and all the 

different hosts implemented in all the previous designs (BluAppiE and BluMiu) is 

depicted in Figure 4-6.      
 

As it can be seen from the above figure the ATMEGA161 and the ATMEGA162 

fulfill the necessary resources for the function of the BluReRun design. However, 

the usage of USARTs was the one reason that led to the migration from 

ATMEGA161 to ATMEGA162. The USART stands for Universal 

Synchronous/Asynchronous serial Receiver and Transmitter. The USARTs are 

embedded in the microcontroller used (ATMEGA162 [11]). The basic difference 

between the UARTs and the USARTs is the use of two different receive buffers 

corresponding to USART0 and USART1. This function was important for the 

BluReRun design since the possibility of having a packet missed was decreased; 

thereby, the efficiency of the whole system was increased.  Also, the USART with 

the use of a flag in UCSRA Register (UMSEL) can have different modes of clock 

generation. Another USART-UART difference is that the first one can support 

synchronous or asynchronous operation. Further information on USART is given 

in chapter 8 (Appendix B).                                                                             

4.2.2 BT module 

The other essential component of the BluReRun system couldn’t be other than 

the one that provides the system with Bluetooth connectivity, which is the BT 

module. The BT modules were a kind donation of Teleca Comtec AB in 2006. 

They support point to multipoint protocols and are described in detail in Appendix 

C. As seen in the chapter 2, they embed the BlueTooth Radio, the Baseband, the 

Link Manager, a UART and a USB HCI [14] [15]. This means that the BT 

modules used accept Bluetooth commands, execute them and return their 
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outcome. All the connectivity between the Bluetooth modules and the Host is 

embedded in the Host core and done through the USART 0 which is the Host 

Controller Interface.  

4.2.3 HCI & COM 

The Host makes use of the HCI and COM interfaces to communicate with the BT 

module and the HPT (or any other external device). The internal USARTs of the 

ATmega162 are used to communicate with both of them. A default baud rate of 

57.6Kbps is used and 256byte buffers are associated with the Host’s USARTs, 

implemented in software and supported by the SRAM memory. Each BluReRun 

hosts supports also Baud Rate of up to 460.8 Kbps but such high speeds are not 

used since there is no efficient error algorithm that can support efficient data 

transmission over those Baud rates. 

4.2.4 LEDs 

Two groups of Leds have been created in the BluReRun design. The one group 

is used for decoding and debugging purposes, in a binary scale, while the other 

is used for command and status messages. The importance of the LEDs in the 

whole system is crucial since if every BluReRun node is considered as a black 

box then the user of the system can understand or debug the system by looking 

at the diodes. 

4.2.5 EXT DEV 

The efficient data transmission/reception through the HPT packets, between the 

HOST and the HPT (or any other external device) is a very important task of the 

BlueReRun node. A device can be connected on the HOST, so that it can either 

acquire Bluetooth connectivity, or control the HOST so that it will issue BlueTooth 

commands to the BT module implemented in the HOST, or use the provided by 

BluReRun data transfer protocol so that it can exchange data with other devices 

that support the BluReRun data transfer protocol. This connection is achieved 

through the COM interface. The COM interface is the USART 1 module of the 
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Host. Especially, on the boundaries of the Parrotfish Project each external device 

(which is the HPT, layer 2, Figure 4-1) must be able to communicate with any 

other HPT of the ad hoc network (through the BluReRun system, thereby 

securing transparency) in order to re/configure any FPGA.  

4.2.6 BluReRun hardware cost 

The following hardware components were used for the development of each one 

of the BluReRun nodes: 

Parts Cost

ATMEL ATMEGA162 $5 

TELECA COMTEC BT Module $30 

ADM202EAN RS-232 $1.5 

Various components (leds etc) $2 

PCB Construction $10 

 
Total Cost 

 

 
$48.5 ~ $50 (about 44 euros) 

 
Table 1: Cost of BlueReRun design 

 

By using these components the cost of the platform’s hardware would be about 

50$. In BluMiu and BluAppiE design the cost was more than 90$ for 

implementation. Since a low-cost BlueTooth design is a primary objective of this 

thesis, the cost could be further reduced by replacing the Bluetooth module by a 

BlueTooth RF IC and a BlueTooth Baseband controller. The minimum cost for a 

BlueTooth Baseband controller was found to be $0.87 for the Xemics SA XE1402 

BlueTooth Baseband Controller, while the minimum cost for a BlueTooth RF IC is 

$0.5 for the Skyworks Solutions Inc.16 SKY73001 BlueTooth RF Transceiver. 

The XE1402 is a BlueTooth Baseband controller that supports only data transfers 

                                            
16 Skyworks Solutions Inc. was created by Conexant Systems Inc. in a merger with Alpha 

Industries Inc  as a wireless semiconductor company [http://www.conexant.com] 
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(not voice) and is BT spec 1.2 compliant, while the SKY73001 is a full featured 

BlueTooth RF IC. Both ICs are targeted for low cost, low power and small size 

designs. Using these, instead of a BlueTooth evaluation kit, would make the 

hardware components of the design cost more than $20 less. 

 

A protocol definition and some hardware components would never be enough for 

a complete system to be constructed. The software enables the protocol to run 

on the hardware components, making it a very important element of the system. 

The following sections specify the software architecture of the BluReRun system. 

 

 

4.3 BluReRun software 
The development of the software that was embedded in the BluReRun host was 

the most complicated and time consuming task throughout this thesis’ 

development. Meeting the initial requirements that were set in the beginning of 

the development needed very sophisticated software architecture with very 

carefully written source code that would be able to deal with multiple events 

(software interrupts) almost simultaneously and serve all of them in real time and 

in dynamic way. The software architecture is depicted in Figure 4-7.  

 

The BluReRun software architecture is the same for ALL the BluReRun nodes of 

the Parrotfish project. Upon powering up the Host enters in the idle process. That 

process makes the μC to enter a power saving mode until a software interrupt is 

triggered. Any software interrupt can be triggered either by incoming information 

from USART 1 (meaning the HPT module, layer 2 of the Parrotfish project) or 

from USART 0 (the Bluetooth module). When that happens, the entire necessary 

software modules are executed depending on the case. 
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Figure 4-7. BluReRun software Architecture  

If the software interrupt was triggered from the USART 1 then the HOST must 

check whether it must follow the Master or the Slave module routine. This 

information is given by the HPT through USART 1. Also the HOST might be 

necessary to alter its status and migrate from master to slave or vice versa. In 

any case the necessary commands are implemented through the HCI Command 

Module. Finally in the case of an HPT packet it is necessary either in master or 

slave mode for the transcription module to be called. If the software interrupt was 

triggered by the USART 0 then the HOST is checking for either the HCI event or 

an ACL data packet. After each of the modules completes its jobs, the control is 

returned to the idle state, where it waits for other interrupts.    
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In the following sections each software module will be thoroughly described and 

all its exact characteristics will be presented. The most important software 

modules that enable the BluReRun system to function are the USART Transmit 

and Receive control modules (USART0 and USART1). They will be specified in 

the following section. 

4.3.1 USART Transmit and Receive control modules 

The USART control modules undertake the most important task in the 

BlueReRun design; they must receive, decode and transmit packets to the BT 

module or the External device which in the case is the HPT. Errorless and 

efficient function of these modules is necessary because the design’s credibility 

relies almost solely to these. The system has 2 USARTs, one dedicated to the 

communication between the μC and the BT module and the other between the 

μC and an external device which is the HPT. Every USART can receive and 

transmit bytes.  Four software modules, one module for each of the two receivers 

(USRX) and two transmitters (USTX) have been implemented. (Figure 4-8) 

 

Figure 4-8. USART software modules 

In Figure 4-9 the basic idea on the USART Receive and Transmit modules of a 

certain node is depicted. The HOST (as it will be examined in the next sections) 

communicates with the HPT and the BT module through USART 1 and USART 0 

respectively.  
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Figure 4-9. The USART architecture 

The two USART reception decoders will be described in the next sections. At first 

their common elements will be examined, and then their functionality will be 

specified. 

 

4.3.1.1 USART reception decoders 

The USART reception decoders (US0RX, US1RX) are the highest level software 

modules included in the BluReRun system. They run all the Bluetooth protocol 

layers that are embedded in the system, give Bluetooth interoperability and 

functionality to the BlueReRun system and enable the essential information 

exchange (through the HPT packets) between the lowest level of the Parrotfish 

Project and the upper layers (HPT and FPGA) in an ad hoc network. 

 

All the USART decoders implemented in the BluReRun design have the same 

binary tree with states structure. The decoders implemented are: 

 The US0RX: It decodes packets being received from the BT module 

 The US1RX: It decodes packets being received from the EXT DEV. 
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Their states are held until the whole packet has been received. Every received 

byte that belongs to a packet changes the state of the decoder. Registers are 

used to hold the decoding states. They count the number of bytes that have been 

received (COUNTER), the number of bytes remaining to complete the packet 

(LENGTH) and hold flags. A generalized flow diagram of the decoders is 

depicted in Figure 4-10. 

 

Figure 4-10. USART decoder state diagram 

 

 

The basic steps of the decoder algorithm follow: 

 



Microprocessor & Hardware Laboratory 
 

I. The decoder starts in an idle state, where no flags are set, LENGTH and COUNTER are zero. 
When a byte is received it is checked whether it is the packet indicator of a known packet. 

 
II. If the byte is a known packet indicator, a special flag is set and the COUNTER is increased 

so that the decoder will decode the next byte correctly, since it will know that it will be the 
2nd byte of this specific packet type. 

 
III. If the byte cannot be recognized as a valid indicator, nothing happens and the decoder 

returns to the idle state. 
 

IV. As bytes arrive, the COUNTER is further increased and the LENGTH is decreased. This 
phase of the decoding is the most important one, since it is the one where received data is 
analyzed and appropriate actions are taken (e.g. data essential for the connection creation 
is written in the SRAM or packets are transcribed between the Bluetooth and BluReRun 
formats). These actions depend on the byte received and the flags set. 

 
V. When LENGTH reaches 0 the packet reception has completed, so the COUNTER is set to 0 

too, all the flags are cleared and the decoder returns to the idle state. Bytes received after 
the decoder finishes decoding of a whole packet and has returned to the idle state, will be 
considered as the packet indicator of a new packet and will be checked appropriately. 

The basic decoding algorithm that was used is efficient and errorless since every 

packet received from either the USART0 or USART1 is correctly transcribed and 

decoded.  Of course, the structure of the decoders is far more complicated than 

that depicted in Figure 4-10. In the following sub-sections we will see the tasks 

that each of the USART decoders undertake. 

 

4.3.1.1.1 USART receiver from the BT module [US0RX] 

One of the most important tasks that BluReRun undertakes is the reception of 

packets from the BT module and its capability to decode the bytes forming them, 

since Bluetooth connections can only be established by correctly decoding the 

appropriate Bluetooth packets. 

 

The purpose of the US0RX is: 

1. To decode the incoming events that the BT module transmits to the Host 
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2. To transcribe the ACL data packets, which are targeted for the EXT DEV 

(the HPT or another external device), to the HPT packet format and 

retransmit them (through USART1) to the HPT. 

 

Decoding of incoming events 
By decoding the events, US0RX collects and stores to the HOST SRAM the 

information about the devices in the Bluetooth module’s vicinity and the 

connected to it devices. It also notifies the EXT DEV (meaning the HPT) for the 

disconnections or character (master to slave or vice versa) migrations or HPT 

command packet events, as they happen. Furthermore, US0RX uses the display 

system to output the success or not of a command issued to the BT module 

(debugging purposes).  

 

All the events supported in BluReRun are implemented according to the BT spec 

2 and as a consequence BT spec 1.2 [3]. For each event decoded, the US0RX 

takes different actions. Usually, when an event is decoded, the US0RX indicates, 

on the LEDs of the display system, the event’s status (where applicable) and the 

event that has happened. The one group of 8 LEDs that are driven by the HOST 

is used. The upper 4 LEDs indicate the event’s identity and the lower 4 show the 

event’s status or other significant event parameters. Not all the events are 

transmitted through the USART1 to the HPT (or any other external device). The 

ones that are transmitted to the HPT are transcribed to HPT packets. 

The US0RX decoder supports the following events: 

Event Event code (hex) Length Parameters

Inquiry complete 0x01 4  bytes Status 

Inquiry result 0x02 18 bytes # of Responses, BD ADDR, 

Page Scan Repetition Mode, 

Page Scan Period Mode, 

Reserved, Class of Device, 

Clock Offset 

Remote name 

request complete 

0x07 258 bytes Status, BD ADDR, 

Remote Name 
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Connection 

complete 

0x03 14 bytes Status, Connection Handle, 

BD ADDR, Link Type, 

Encryption Mode 

Disconnection 

complete 

0x05 7 bytes Status, Connection Handle, Reason 

Command complete 0x0e (6+n) bytes # of HCI Command Packets, 

Command Opcode, n bytes of 

Return Parameters  

Command status 0x0f 7 bytes Status, # of HCI Command 

Packets, Command Opcode 

# of Completed 

Packets 

0x13 8 bytes # of Handles, Connection Handle, 

HC # Of Completed Packets 

 

The following output actions are taken for every event supported: 

Event Output (Upper 4) Output (Lower 4) 

Inquiry complete 2nd LED # of devices 

Inquiry result 2nd LED # of devices 

Connection complete 3rd LED 2nd LED 

Disconnection complete 3rd LED 1st & 2nd LED 

Remote name request complete 3rd LED 1st LED 

Command complete 1st LED Status byte 

Command status 3rd LED Status byte 

# of Completed Packets 4th LED number 

 

Connection related information retrieved from the events supported is stored in 

the memory (or removed from the memory in the case of a disconnection). The 

stored in the memory connection related information is accessible to the EXT 

DEV or the HPT. 

 

ACL Data packets 
The US0RX decoder is the software module that undertakes the task to 

communicate with the necessary transcription module in order to transcribe the 
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BlueTooth data (ACL) packets received from the BT module to HPT packet 

format. After that it retransmits them through the USART1 to the HPT or any 

other external device.  

 

In all the BluReRun hosts, the ACL data packets received from USART 0 are 

transcribed to HPT packets (Figure 4-7). Through this method, the transparency 

and efficiency of the system is secured. The transparency to the upper layers of 

the Parrotfish system is secured since the only mode of communication between 

the HPT (layer 2) and the BluReRun platform (layer 1) are the HPT packets. 

Therefore, each HPT understands that it communicates solemnly with another 

HPT. The system with this method is more efficient since the only transcription 

made is from ACL data packets  HPT packets; thereby no large HOST 

resources are being used.    The identity of each received ACL data packet is 

again checked for validity; if it is not the expected, the ACL packet is ignored or 

can be stored in an external memory if such is used(in this thesis this was not 

necessary since the bytes send from one HPT to another were no more that 256) 

. 

 

4.3.1.1.2 USART receiver from the EXT DEV [US1RX] 

Another very important software module of BluReRun is the decoder of the 

packets coming from the HPT or any other (for example PC) EXT DEV (US1RX). 

The importance of the US1RX module lies to the fact that it is responsible for 

securing efficient data reception and transmission between the BluReRun node 

and the HPT, thus guaranteeing correct FPGA re/configuration. 

 

The USART 1 of the HOST of any BluReRun node can receive the following 

types of information: 

 HPT Data packets to transmit them wirelessly to any BluReRun node through 

transcription to ACL data packets.  
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 Non Dynamic Bluetooth commands from the HPT or any other EXT device to 

the BT module 

 HPT-BluReRun Command Interaction. The Flash command interaction 

describes a control and command protocol between the HPT and the 

BluReRun.  

 BluReRun emulation. Packets indicating a Bluetooth command implemented 

in the μC to be issued to the BT module. The communication is carried out in 

57.6Kbps by default (but also 115.2kbps and 256kbps are also supported), as 

also happens with the BT module. 

 

HPT Data packets 
HPT data packets that are transmitted to the BluReRun by the HPT or any EXT 

DEV must have the format described in Figure 4-3. After the US1RX detects that 

a HPT data packet is being received, the following steps will be executed: 

  

a) Transcribe the packet to a Bluetooth protocol compatible ACL data packet 

of the form of figure 4-4 

b) The above procedure will be executed in the Transcription module of the 

USART 1 through correctly positioning the handle, length and data to the 

essential ACL format 

c) Upon completion of the transcription, the ACL data packet is transmitted 

through the USART 0 to the Bluetooth module, so that it will wirelessly 

transmit it to the target BluReRun device (if it exists).   

 

The validity of the handle that has been received, which indicates the target 

BluReRun node, will be checked by the BT module. Only data packets in the 

HPT data packet format are accepted by the USART 1. This secures 

transparency between the different layers of the Parrotfish project. 
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Non Dynamic Bluetooth commands 
One characteristic of BluReRun that makes it more efficient than its 

predecessors is the dynamic command initialization. This BluReRun trait will be 

examined in section 4.3.4. At the same time since every BluReRun node can 

function as an immediate Bluetooth command transmitter, the USART 1 of the 

HOST accepts non dynamic Bluetooth commands from the EXT device or 

dynamic Bluetooth commands from the HPT. In the case of any other EXT 

device these commands have the format of figure 4-11. In the case of the HPT 

the control and command protocol (HPT-BluReRun command Interaction) is 

implemented. After the US1RX detects the Non Dynamic Bluetooth Command 

packet, it forwards the command contained in the packet to the BT module 

without checking the command itself. By using this service, the EXT DEV can 

issue to the BT module virtually every command specified in the BlueTooth 

protocol, allowing the EXT DEV to gain almost full control of the BT module. 

 
Figure 4-11. Non Dynamic Bluetooth commands from EXT device other than HPT 

 

HPT-BluReRun Command Interaction (Flash Command Interaction) 
Another characteristic of the BluReRun communication protocol is the HPT– 

BluReRun Command Interaction. This command protocol between the HPT 

(layer 2 of the Parrotfish system) and the BluReRun (layer 1) is based on the 

idea of dynamic Bluetooth commands. The basic idea of this protocol is that the 

master HPT, since it is the leader of the whole system, must have a command 

interaction mode between it and the BluReRun in order to proceed to inquiries, 

connections, disconnections or master to slave migrations. This protocol states 

that whenever the master HPT transmits to the BluReRun host an HPT packet in 

the form of Figure 4-12, then the BlueReRun host US1RX module understands 

that the data that follows must be read from him as it is a command.   
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Figure 4-12: HPT command Packet 

In Figure 4-12 the HPT command packet is depicted. The HPT command Packet 

has the following components:  

a) The Handle: This is always 0x00FF. It is the code that states to the HOST 

that what follows is a command for the Bluetooth module. This handle is 

unique for the HPT and the BluReRun. 

b) The Length: It is always 0x01 since the data that follows describes a 

command that is embedded in the flash of the Host and the HPT.  

c) The Data: The data is 0, 1, 2, 3. These numbers correlate to the position 

of the command in the flash memory. The HPT as well as the HOST have 

those four commands in the same Flash memory position, as depicted in 

the following table. This characteristic makes the whole command protocol 

dynamic. The HPT does not need to send a command in the Non Dynamic 

Bluetooth commands format. 
HCI command Details 

                    0 )  Inquiry command 

 

Data: $00 

            Command format:    

 

$01$01$04$05$33$8b$9e$05$00 

 

Searches for active Bluetooth devices in the 

vicinity and returns relative information 

 
       1) Create Connection command 

 

Data:$01 

Command format: 

 

$01$05$04$0D$(6 bytes of BD_ADDR) 

$18$cc$(page scan repetition mode)$(Page 

scan mode)$(Clock offset) $(Clock offset) 

$01(role switch enabled) 
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Attempts to establish an ACL connection to 

another device based on the remote device’s 

BD ADDR (other information found by an 

inquiry command are helpful). On success, a 

Connection Handle is assigned to the ACL link

 
 2 ) Disconnection command 

 

Data: $02 

Command format: 

 

$01$06$04$03$ $$(connection handle of the 

device we want to disconnect) $13 (reason) 

 
Terminates an existing ACL connection based 

on the connected device’s Connection Handle 
      3) Master Slave Switch command 

 
Data: $03 

Command format: 

 

 $01$0b$08$ (BD_ADDR)$00 from master to 

slave 

 $01$0b$08$ (BD_ADDR)$01 from slave to 

master  

Used to switch role of the BT module from 

master to slave or vice versa. 
In order to understand the HPT – BluReRun command interaction module it is 

essential to describe an example. Let’s assume that the HPT would like to know 

the number and the names of other HPTs that are in its vicinity. In order to do so 

it must issue an inquiry command through the Bluetooth module. Thus, through 

HPT – BluReRun Command Interaction it transmits to the BluReRun Host the 

HPT command packet: $00$FF$01$00. The USART 1 decodes the HPT 

command packet received, and transmits to the Bluetooth module through 

USART 0 the command in flash position #0. This command is the inquiry. The 

event returned is transmitted in the format of HPT data packets to the HPT.  The 

same procedure happens with the other two commands. This command 

communication protocol is very efficient for the following reasons: 
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a) The HPT does not need to know all the commands of the Bluetooth 

protocol. Only those three that are necessary for the HPT are 

implemented.  

b) The resources of the HPT are very limited. If all 11 commands of the 

BluReRun Bluetooth protocol were implemented then the FPGA 

programming (which is the HPT task) would be in high risk. 

c) The transparency of the whole Parrotfish project is secured since the 

communication between the HPT and the BluReRun is done in HPT 

packet format. 

 

BluReRun Emulation 
The BluReRun emulation is a BluReRun characteristic that does not apply to the 

HPT layer. It applies, however to any other external device such as a PC. The 

BluReRun emulation packet is depicted in figure 4-13. It consists of a packet 

indicator and 3 more bytes. 

 
Figure 4-13: BluReRun emulation packet 

These bytes have the following function: 

 The inq# and conn# fields select a remote device that has been found in the 

vicinity (or is connected) to the system. 

 The comm# field selects a command implemented in BluReRun to be 

executed by it. 

This module has been designed in order to help any BluReRun node to be able 

to function without the explicit need for a human user. It is based on the HPT-

BluReRun command interaction. 

 

4.3.1.2 USART Transmission Module 
The Bluetooth module communicates with the HOST through the USART 0. The 

HPT or any other external device also uses this way to exchange data with the 
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HOST and/or control it through USART 1. The predecessors of BluReRun did not 

have an efficient buffering mechanism (actually only the BluMiu had one, but was 

rather inefficient). Therefore, the creation and implementation of an efficient 

buffering mechanism was essential. In Figure 4-14 the buffering mechanism and 

algorithm is depicted.  

 
Figure 4-14: BluReRun transmit buffer and mechanism 

Two 256byte buffers are allocated in the HOST’s SRAM, one for every USART. 

The size of 256 bytes was chosen since the HPT forwards through the BluReRun 

data of 256 bytes (in the form of bit stream files) for the configuration of the 

FPGA. By using the buffering mechanism depicted in Figure 4-13, when an 

application requests to transmit a byte from a USART, the mechanism first 

checks to see if this USART is in the process of transmitting another byte. 

 If the USART is not transmitting, the byte is given to the transmitter, so that it 

will be transmitted at once. It takes some time for the transmitter to transmit a 

byte, so it is very probable that another request to transmit a byte will be 

made while the transmitter is working. 

 If the USART is currently in the process of transmitting another byte, the new 

byte cannot be transmitted immediately and shall be handled according to the 

buffer’s state. 
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o If the buffer is not full, the new byte is stored in the buffer so that the 

USART will transmit it when it has finished transmitting all the bytes that 

are stored in the buffer before that byte. 

o If the buffer is full, the USART mechanism will be stalled until a byte from 

the buffer has been transmitted. Until then, the new byte is stored in the 

HOST’s memory along with other data essential to the USART 

mechanism. When a byte has been transmitted, the new byte will be 

written in the buffer and the mechanism will resume its normal function. 

 

At the time the USART finishes transmitting a byte, a USART transmit complete 

interrupt is triggered (TX). In the TX interrupt service routine (ISR), the USART 

mechanism checks if the buffer is empty. 

 If it is not empty, the oldest byte stored in the buffer is transmitted (FIFO). 

 If the buffer is empty, the USART mechanism stops the transmitter. The next 

byte that will arrive to the USART will be transmitted at once. 

 

The USART buffering mechanism was implemented only for the transmission 

modules. Buffering did not need to be implemented in the receivers because the 

HOST is fast enough so that it can process a received byte completely before the 

next byte arrives in the USART receiver, even if the system is manipulating byte 

streams belonging to two different packets at the same time (for example an HPT 

packet and an ACL data packet). The maximum CPU time for a decoder to fully 

decode a byte that has just been received is 23.6usec17 (the last byte of the 

header of an incoming BluReRun data packet from the HPT, which needs to be 

transcribed to a Bluetooth ACL data packet, so that it will be transmitted by the 

BT module to a connected device). Multiple interrupts can be processed by the 

HOST, while the decoders process a byte. Though, all the ISRs implemented in 

 
17 Most of the commands implemented in the AVR need a single clock cycle to execute [11] (even 

for SRAM transfers) and an 11.0592MHz clock is used, so the AVR’s throughput is approximately 

one command every 9nsec 
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BluReRun complete in a maximum time of 23.6usec and a nominal time of 

4usec. Two consecutive bytes are received from the HOST’s USART in 

0.13msec (with a data rate of 57600Kbps), making the existence of a buffering 

mechanism in the receiver meaningless, since, even with a maximum system 

load, the decoders are faster than the USART. The HOST, either way, can wait 

with one byte in its data reception register for some μsec, until the decoders end 

their jobs.  

 

  

4.3.2 Master – Slave Integration in the BluReRun HOST 
 

One very important contribution of this thesis is the integration of master and 

slave Bluetooth characteristics in the BluReRun host. In the Bluetooth network 

topology there is one master and many slaves (section 2.3.2). What differentiates 

the master with the slave modules is its ability to send inquiries, create 

connections and adjust the disconnection process. In every Bluetooth piconet or 

scatternet there is a master that controls the communication between it and the 

slaves, as well as creates the addressing protocol which is vital for efficient data 

exchange [2]. Every BluReRun node must be able to act as a master or a slave 

module. When we have the trivial case of only two nodes in the ad-hoc network 

or when we have 256 nodes then one of them will be the master and the others 

the slave. In the Parrotfish project each node has the format of figure 4-1. The 

HPT (layer 2) is the leader of the system and thus the one that states whether 

the node is a master or a slave. If the Parrotfish node is a master then the 

BluReRun Host must execute the master software module. If the Parrotfish node 

is a slave then the BluReRun Host must adapt accordingly. In any case the 

BluReRun host waits for this software interrupt that will trigger the execution of 

either the master or slave module. 
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In the following table and in Figure 4-15 the algorithm steps and the flowchart are 

depicted. 
Step 1: Idle mode 

Step 2: Software interrupt 

 HPT master-slave switch command packet is received from USART 1 

  

Step 3: If (master == true) then  

  {Execute the master module 

       Inform the HPT through HPT command packets when necessary 

   When terminated  return to idle mode} 

 If (slave == true) then  

  {Execute the slave module 

       Inform the HPT through HPT command packets when necessary 

   When terminated  return to idle mode} 

 Else 

  Ignore and return the HPT packet back to the HPT  

  Return to idle mode 

 

 
Figure 4-15: The Master to Slave migration and vice versa 
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The BluReRun HOST has all the Master and Slave modules embedded in its 

software architecture. When the Master Slave switch command is received from 

USART 1 then some basic functions are taking place. This simple algorithm 

guarantees the efficient master to slave or vice versa migration in a piconet or 

scatternet. 

 

4.3.3 Dynamic Command Initialization 
Another important BluReRun contribution is the dynamic command initialization. 

The purpose of this characteristic is to improve the performance of each 

BluReRun node over the existent architectures and to create an efficient dynamic 

BluReRun node. The basic idea is to create an algorithm where every node 

either a master or a slave would be able to execute certain steps that would lead 

to dynamic command initialization and configuration. These steps correlate to 

specific commands that are essential for the existence of the Bluetooth Protocol. 

Thereby, 4 commands that are of importance to the function of the Bluetooth 

protocol in either point to point or point to multipoint architectures were 

implemented in the Dynamic Command initialization method.  

a) Inquiry command for the master node 
b) Create Connection command for the master node 
c) Set event filter command for the slave node 
d) Write Scan Enable for the slave node 

 

With the use of Dynamic Command Initialization (DCI) each BluReRun node 

does not need to be issued any command necessary for discovery, or 

connection. Everything is done in a dynamic way. The commands described in 

the above table were not selected randomly. The first two commands are 

essential for the Bluetooth master node, and they are those commands that 

differentiate the master from the slave. They are important for discovering other 

nodes in the vicinity and connect to them. The last two commands are necessary 

for each Bluetooth slave. They activate the Bluetooth module mechanisms that 
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are responsible for making the slave BluReRun node visible from the master one. 

In the following table the basic steps of the algorithm follow: 
 

STEP 1: BluReRun host powers up and the main routine initiates in both the master and the slave 

STEP 2: In the Main routine the issue of the command Reset is executed. The issue of this command is      

              necessary for the powering up of the Bluetooth module 

STEP 3: If (master ==true) then 

{If (reset event == true) then 

  {execute the Inquiry command 

   When Inquiry result event is returned from the Bluetooth module  

     Then call from the Flash memory the Create Connection command.} 

    } 

         Elsif (slave==true) then 

    {If (reset event ==true) then 

  {execute the set event filter command 

  When command status event is returned from the Bluetooth module 

  Then call from the Flash memory the write scan enable command} 

                  } 

STEP 4: Terminate the algorithm and return to idle mode.  

The BluReRun host is using the indexes of the commands that are embedded in 

the Flash memory of the microcontroller. The idea is the same as the BluReRun 

emulation and the HPT-BluReRun command Interaction. 

 
4.3.4 Addressing Protocol Algorithms 
The BluReRun system, as it is so far understood, can work either on its own or 

as a sub-system in the Parrotfish project. Of course, its ultimate target is to 

provide an errorless and transparent communication medium for wireless FPGA 

Re/configuration. Every Bluetooth system must support either point to point or 

point to multipoint addressing protocols. The importance of the addressing 

protocols in piconets or a scatternet is large, since this protocol will guarantee an 

efficient packet transport from the destination node to the target one. At the next 

two sections the addressing protocols for point to point as well as point to 

multipoint architectures will be examined. 
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4.3.4.1 Point to point addressing protocol 
In the case of point to point communication the addressing protocol is of trivial 

importance. Since in the ad hoc network there are two nodes, one master and 

one slave, no significant addressing protocol is required. In the case of the 

Parrotfish system the HPT packet communication protocol is sufficient. Let’s 

assume that we have a system of two Parrotfish nodes as depicted in Figure 4-

16: 

 
Figure 4-16: The Parrotfish point to point architecture 

In the case of Figure 4-16 the master node is the NODE 1 and the slave node the 

NODE 2. The HPT packet format and the ACL data packet format secure the 

efficient data or control packet exchange between those two nodes. Also, since 

we have only two nodes the handles will be fixed and do not need to alter at any 

circumstances. Even if the HPT who is the leader of the system, decides to 

migrate from master to slave or vice versa the master-slave migration algorithm 

will be implemented and all the modules will be executed accordingly. 
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4.3.4.2 Point to multipoint addressing protocol 
The creation of a point to multipoint addressing protocol that will coincide with the 

Bluetooth specification version 2.0 and the Parrotfish’s project requirements was 

the most difficult task in the BluReRun thesis. The point to multipoint addressing 

protocol must be able to: 

a) support an efficient and errorless data and command packet exchange 

between the different nodes of the ad hoc network 

b) adjust to any potential difficulties or changes that the ad hoc network 

might face (for example low data rate due to high trafficking, high error 

rates, master to slave migration) and, 

c) retain the transparency mode between all the levels of the Parrotfish 

In order to fulfill the above three requirements an efficient algorithm was created. 

This algorithm is based on the fact that the HPT is the leader of the Parrotfish 

project and on the fact that the transparency between all the levels of the node is 

secured. Before examining the algorithm it is vital to understand the use of the 

Read HPT name command. 

 
Read HPT Name Command 
This command is a unique command between the HPT and the BluReRun levels 

of the Parrotfish project. This command was introduced from the need for the 

BluReRun level to correlate correctly the handle of the HPT packet with the HPT 

name. The handle of the HPT packet is not given by the HPT. It is given from the 

Bluetooth module firmware. When a create connection command is issued, a 

create connection complete event is returned [4]. In there lies the handle of the 

BluReRun nodes that lie in the vicinity. At the same time, each HPT has a unique 

name (HPT01, HPT02 etc). Therefore, in order for the BluReRun host to 

correlate correctly the HPT name to the handle of the HPT packet the Read HPT 

command was created. The format of the command is based on the HPT-

BluReRun command Interaction and it is depicted in Figure 4-17. 
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Figure 4-17: Read HPT Name Command  

The COMM# field is 0x04. This number correlates to the position of the Read 

HPT Name Command in the Flash memory of the BluReRun HOST. When the 

Read HPT Name command is issued from the BluReRun HOST to the HPT then 

the HPT transmits to the BluReRun host’s USART 1 its name. The HPT’s name 

may be HPT01, HPT02 etc. After that the following point to multipoint algorithm is 

executed: 

  Point to multipoint algorithm.
Step A: 
The BluReRun HOST sends to the HPT the Read HPT name command, which the HPT 

understands that it is a command for him. In this command the HPT immediately sends its name in 

the form of ’H’’P’’T’’-‘’0’’0’1’. The 1 maybe will change to 2 etc. (meaning’H’’P’’T’’-‘’0’’0’2’). When the 

BluReRun host receives that packet then it decodes it, and saves to a memory address that is 

created for that purpose the name (HPT-001, HPT-002 etc).   

 

Step B: 

Inquiry command issued by Master BlueReRun node after such a command is requested by the 

HPT (through HPT-BluReRun command interaction). For example the HPT master would like to 

know the status of other HPTs in the Parrotfish ad hoc network, their names in order to move to 

connection, disconnection and other data transactions.   

 

Step C: 
Inquiry result received by the master node. In there lies one or more of the BD_ADDR of the BT 

modules. The BlueReRun host stores all the BD_ADDR. When an inquiry result event is received 

then the BlueReRun host sends a create connection command. Then he receives the connection 

complete event where the handles lie. The BlueReRun host stores all the handles in the same 

memory directory as the BD_ADDR that correspond to those handles.   

 

Step D: 
For every BD_ADDR the BluReRun host does Remote Name Request so that it will know the exact 

correspondence between BD_ADDR and the name of the HPT where from step A the other 
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BluReRun host already knows. Therefore, in every transaction the BlueReRun host will know 

exactly the BD_ADDR, handle of the BT module and the name of the HPT. 

 

Step E: 
The BluReRun host transmits to the HPT the whole list of Handles and HPT names in the order of: 

$00$01  HPT01, $00$02  HPT02 etc. This is done through HPT packets and it does not affect 

transparency since the HPT packet communication format is kept. 

 

Step F: 
The master HPT will then know which other HPTs are in its vicinity and send the appropriate HPT 

packet for the BluReRun to forward to every slave it needs. 

 

 
Figure 4-17: The point to multipoint implementation 
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In order to understand the above algorithm it is imperative to examine thoroughly 

its implementation in an example. Let’s take the Parrotfish nodes of Figure 4-17 

for example. In that figure there are three nodes that have the format of the 

Parrotfish project. Let’s assume that the node 1 is the master and the others the 

slaves. This case study will be examined from the BluReRun point since 

implementation of layers 2 and 3 of the Parrotfish node are not in this thesis’ 

scopes. At first, upon initialization, the BluReRun host transmits a Read HPT 

Name Command to the layer 2 (HPT). Then the HPT transmits its name in the 

format of STEP A of the algorithm. Afterwards, the layer 2 (HPT) of master node 

(Node 1) would like to know the other HPTs that in its vicinity and their status. 

Thus through HPT-BluReRun command Interaction it issues an Inquiry command 

to the BluReRun (STEP B). The BluReRun HOST will execute the necessary 

command and a response will be returned. When the response is received then 

the BluReRun HOST will issue a create connection command.  The BD_ADDR 

and the handles of the Bluetooth modules will be stored in the HOST SRAM 

(STEP C). The next step is for the master BluReRun host to issue the remote 

name request command. The remote name request event is received and the 

BluReRun host saves to its SRAM the Handle, BD_ADDR and the HPT names 

(STEP D). In STEP E the BluReRun HOST transmits in the form of the HPT 

packets the handles and the correlating HPT names. Therefore, in STEP F the 

master HPT (and therefore the master node) knows the HPT names and the 

handles of the HPTs that are in its vicinity. After that, all the functions that the 

BluReRun system accepts can be executed.  

 

After the through examination of the BluReRun addressing protocol, it is 

important to study the error handling routines that were implemented in the 

BluReRun thesis. 

 

4.3.5 Error handling Algorithm 
When a system is being developed it is vital to create some methods that will 

guarantee the effective system response to any error or bug related phenomena.  
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STEP 1: The first byte of the handle is received 

If (first header byte == valid) 

 Then execute the US1RX or US0RX routine and go to STEP 2 

Else 

{Discard or send back the byte to the HPT or the BT module. And do not execute any routines or 

set any flags or increase any counter; just wait for a valid header to come( timer counter). 

If (valid header does not come) 

 {Then exit to idle mode} 

} 

STEP 2: The second byte of the handle is received 

If (second header byte==valid) 

 Then continue execution of US1RX routine and go to STEP 3 

Else  

{Reset all flags and counters. Discard the whole packet. Wait for the first byte of the handle to 

come again (timer counter). Go to Step 2} 

STEP 3: The Length byte is received 
When the Length byte is received, the initial length is stored in a register.  For every byte that comes the 

length is decremented by 1. 

If (length ==0)  

Then the HPT packet is finished. The data will be transcribed and forwarded. Return to idle mode 

Else 

Then timer/ counter initiated and wait. If the length is not received then exit, discard the packet, reset 

all the flags and return to idle mode    

 

Thus, in the BluReRun system an error handling algorithm was created to 

guarantee efficient data transport that would aim to errorless FPGA 

re/configuration. This algorithm is executed in the USRX routines of the 

BluReRun HOST. The idea is that the possibility of an error is far higher in the 

HPT to BluReRun communication than the Node to Node communication with 

the Bluetooth protocol. The Bluetooth protocol has many CRC algorithms that are 

executed whenever the ACL data packets are transmitted from one BluReRun 

node to the other. The transmission routines are not vulnerable to errors since 

the transmit buffer is working in a specific mode. Therefore, it is essential to 

create an error handling algorithm in the US1RX and US0RX module of the 

BluReRun Host. It is vital to note that the US1RX module as explained in section 

4.3.1, accepts HPT packets. The HPT packets are in the format of: Handle (2 

bytes) – Length (1 byte) – Data (256 bytes). The ACL data packets are depicted 
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in Figure 4-4. The error handling algorithm is concentrated in the Handle and the 

Length bytes. The highest possibility of error is done during the transcription from 

HPT data packets to ACL data packets and vice versa. Thus, the same algorithm 

is used in the US0RX routine. The Flowchart of the Error Handling Algorithm 

follows: 

 
Figure 4-18: The Error Handling Algorithm flowchart 
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The Error Handling algorithm that is depicted in Figure 4-18 is embedded in both 

the US0RX and US1RX routines. At the same time, any hardware errors that 

might be created can be detected with the use of the LEDs system. Finally, in the 

case where a BluReRun HOST is not powered up correctly or if for any reason is 

damaged then the BT module will not be functioning correctly or not at all (since 

the BT module powers up from the BluReRun HOST). If this occurs then the BT 

protocol will initiate a series of “are you alive” commands. If the Bluetooth module 

does not respond and a timeout happens, then this BluReRun node is 

considered to be inactive and will be omitted from the ad hoc network.  

 

Having examined the hardware and software parts of BluReRun in detail, the 

testing procedures used to validate the BluReRun hardware and software design 

will follow. 
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5. BluReRun Testing & Validation 
 

When the construction of a system has been completed, it is imperative that a 

well defined set of tasks is used to validate the system and demonstrate that it 

works properly. Also, during the construction of a complex system, such as 

BluReRun, after the completion of every subsystem’s design and 

implementation, tests are also necessary because: 

 

 The majority of its bugs must be found before including it in the system 

 Its correct function on the boundaries of the Parrotfish project must be 

examined and its purpose must be secured 

 Verification of the whole BluReRun design on the grounds of wireless FPGA 

re/configuration in an ad hoc network must be, if possible, completed. 

 

The system constructed in the present thesis is formed by a number of hardware 

and software subsystems, which were specified in detail in the previous chapter. 

Their test and validation procedures during the implementation of BluReRun, as 

well as the validation of the whole system will be presented in this chapter. 

 

Testing procedures that took place before the total design was constructed were 

the most important tests of the system. Making extended tests to each 

subsystem during the implementation provided the designer of the BluReRun 

system the ability to use each subsystem as a component, without any doubts if 

its function was correct or not. Finally, since the BluReRun system is a system 

that can work on its own and at the same time function as a subsystem in the 

Parrotfish project, this chapter studies both the experiments that were executed 

on the BluReRun (alone with the use of a PC) and the experiment that were a 

combination of BluReRun and all the upper Parrotfish layers (BluReRun and HPT 

and FPGA) that led to the wireless FPGA re/configuration. 
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5.1 BT module validation 
Most of the components forming the hardware around the HOST (the BT module, 

the LEDs and the HCI interface) were inherited from the BluMiu system and, 

thus, did not need extensive tests, except a simple verification that they do 

function as expected. However, the BT module and its HCI interface were 

fundamental for the correct operation of the system. In order to reassure their 

correct operation and make sure that the requirements of BluReRun by them 

would be fulfilled, they were exhaustively tested before starting the 

implementation of the system. The tests for the BT modules were necessary 

because it was the only component that could provide Bluetooth connectivity and 

doubts whether its operation was infallible had emerged during the BluMiu 

development. Another issue that was also tested was if it could offer the services 

introduced by BluReRun, during the development of the latter. 

 

The BT module, as well as its USART interface to the HOST (HCI), was put 

under trial in the context of the following test procedures: 

 By connecting a computer and the BT module through the USART (HCI) 

interface, simple HCI commands (these were the Reset, Read BD ADDR, 

Read Local Name, Write Scan Enable, Read Scan Enable, Read Local 

Supported Features and Read Buffer Size HCI commands) were transmitted 

to it from the computer, by a terminal application, and the module’s replies 

(HCI events) were checked for validity, according to the BT spec 2.  

 Using the same computer-BT module connection as before, the module’s 

ability to locate other Bluetooth devices and connect to them was tested, by 

using the following HCI commands: 

1. Set Event Filter 

2. Write Scan Enable 

3. Inquiry 

4. Create Connection 

5. Disconnect 
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These commands were used to establish a connection with a PDA (HP7010) 

as well as a Laptop (DELL Latitude D810) that supports the Bluetooth 

protocol. The module’s ability to request a Bluetooth connection from the 

mobile phone and accept a connection request made by the mobile phone, 

were validated. 

 The speed of 460.8kbps data rate that the BT module specifications claim to 

support was validated using its USB interface and through the connection of 

the PC and an ADM202EAN with the Bluetooth module. In the case of the 

USB interface, the BT module was connected via a USB cable with a 

computer. Then the module exchanged large files with another USB Bluetooth 

module provided by TELECA COMTEC.  

 

These preliminary tests on the BT module certified that it could be used in the 

BluReRun design. 

 
Figure 5-1: The Bluetooth module and HOST communication  

Then, the Bluetooth module and HOST communication had to be monitored. This 

test was accomplished by connecting a serial cable’s RX and GND signals to the 
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RXD0 and GND line of the HOST. The other end of the serial cable was 

connected to a computer running a terminal application that could display the 

received by the UART bytes in a hexadecimal format. This way, the events that 

the module would transmit to the HOST in reply to the HCI commands it sent, 

were checked for correctness and compliance with BT spec 2 (Figure 5-1). In the 

above figure the RESET command ($01$03$0C$00) is sent from the PC terminal 

to the HOST and from there to the Bluetooth module. The HCI event that we are 

expecting to see is the same as specified in Bluetooth specification protocol v2.0 

[3]. 

 

The software architecture validation is examined thoroughly in section 5.2.   

 

5.2 BluReRun Software Validations 
The software design of the BluReRun system is very complex and modular. That 

way, every module could be tested independently from the others before being 

used in the system. The test and validation procedures followed a hierarchical 

manner. The simpler and more fundamental software modules were tested first. 

Thus, the first modules under trial were the UART transmitters, because every 

other module uses that. 

 

5.2.1 USART Transmitter Validation 
The ultimate purpose of the BluReRun thesis is to create an efficient data 

communication medium that can work alone in an ad hoc network (BluReRun 

node) or as a part of the Parrotfish system for wireless FPGA re/configuration. 

The USART Transmitter is one of the most important modules. The buffering 

mechanism that was implemented underwent many changes and needed 

constant debugging throughout this thesis’ implementation. 

 

In order to debug the USART mechanism a USART connection between the 

HOST and a computer was used. The HOST transmitted HCI commands to the 
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computer through a serial cable. The data arriving to the computer (in a terminal 

application, same as before) should be the same as that supposedly transmitted 

from the HOST. 

 

Later in the development, tests for the correct transmission of data from the 

HOST to the BT module, through the USART mechanism were needed. To 

accomplish that, a serial cable’s RX and GND signals were connected to the 

TXD0 and GND line of the HOST, in the same way as in the BT module 

monitoring that was described above and depicted in Figure 5-1, except that the 

TXD0 line of the HOST is connected with the computer, not the RXD0. In this 

way, the packets sent by the HOST to the BT module could be monitored. 

 

USART 1 (that transmits data to the EXT DEV and the HPT) has an identical 

mechanism with USART0, so monitoring on it was not explicitly needed. After the 

USART transmitters’ operation was verified, the next most frequently module 

used was the USART Decoder module. 

 

5.2.2 USART Decoder Validation 
The incoming packets from the BT module and the EXT DEV (HPT or PC) are 

decoded by US0RX and US1RX decoders respectively. The tests to validate the 

correct function of these decoders used the LEDs and the USART connection to 

the PC or the HPT to report the results of the decoding procedures, along with 

the monitoring of the incoming packets to the decoders. 

 

This test procedure can be better explained through an example: The BT 

module’s replies are monitored by the system of Figure 5-1 and a Connection 

Complete event is being transmitted to the HOST, either after accepting a 

Connection Request from a remote Bluetooth device or after a remote Bluetooth 

device accepted a Connection Request by the local HOST. The Connection 

Complete event indicates to both of the Hosts forming the connection that a new 

connection has been established. This event also indicates to the Host, which 
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issued the Create Connection, or Accept Connection Request or Reject 

Connection Request command and then received a Command Status event, if 

the issued command failed or was successful. [3] The Connection Complete 

event format that is expected by BluReRun (according to BT spec 2) is depicted 

in Figure 5-2. After verifying that the Connection Complete event has been 

transmitted by the BT module to the HOST, the correct decoding by the US0RX 

decoder in the HOST should be verified. This is accomplished by lighting various 

LEDs indicating that fields received had the expected values and by transmitting 

to the computer connected to the EXT DEV BluReRun port the Connection 

Handle and the BD ADDR of the device connected to the BluReRun. 

 

Figure 5-2: Connection Complete Event 

The same test procedure was used for the US1RX and the US0RX decoders 

implemented in BluReRun. Of course, the ultimate test for the transmitters and 

the decoders would be the successful data exchange between two or more 

connected BluReRun nodes. This would also be the validation of the whole 

BluReRun protocol and system that was designed. The test methods that were 

used to validate the BluReRun protocol were based on the test procedures 

mentioned in the previous sections and will be presented in the next section. 

 

5.2.3 BluReRun Validation 
Through validating the subsystems composing BluReRun, the system itself was 

tested. The validation procedure of the integral BluReRun system and protocol 

was far more complicated than the validation of each of the subsystems (though, 

the same mechanisms as in the subsystems’ tests were used) and consisted of 

testing all the functions supported by BluReRun. This final test procedure was 

very important for the BluReRun software and hardware architecture. The 
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BluReRun validation was initially executed in two nodes (master and slave) and 

then in a point to multipoint environment (three nodes). More specifically the 

following capabilities of the system were validated: 

1. The pre-connection setup of the BluReRun master and slave node using 

dynamic command Initialization 

2. The discovery of various Bluetooth devices by the master and the 

identification of the slave(s) to the EXT device (PC) or the HPT (upper 

layer of the Parrotfish project) 

3. The establishment of a Bluetooth connection between the master and the 

slave in either point to multipoint or point to point environments 

4. The efficient exchange of data between BluReRun nodes using the 

BluReRun protocol.  Here in the beginning a point to point architecture 

was tested and afterwards, a point to multipoint. Also an evaluation of its 

efficiency and comments on possible improvements on the protocol itself 

were made. 

5. The migration from master to slave when requested by the HPT was also 

validated 

The test procedure of each of the mentioned tests will be presented in the 

following sections. 

 

5.2.3.1 BluReRun Pre-Connection setup 
Before establishing a connection between a master and a slave, certain actions 

should be taken for both of the sides involving in the connection. 

 

The power-up of the BluReRun slave and master node should be followed by no 

other events than the lighting of the HOST’s idle LED and the one indicating that 

the first implemented command will be executed when commanded to. When 

these LEDs are lit, the HOST will be ready to receive commands from the EXT 

DEV (HPT-BluReRun command Interaction, HPT Data packets, Non Dynamic 

Bluetooth commands and BluReRun emulation). The BT module is powered up 

along with the HOST, since it is powered by the BluReRun platform, and 
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according to its datasheet there is no need for a power up sequence [14]. After 

the power up of the BluReRun platform, configuring of the BT module should 

take place. 

 A user friendly name can be given to the modules by executing the 

appropriate command implemented in the HOST (the names are: BluReRun-

001 to the slave and BluReRun-002  to the master) 

 The slave should be visible in an inquiry scan. This is done by executing the 

Write Scan Enable command implemented in the BluReRun HOST using 

dynamic command initialization 

 The slave should set the auto-accept connection parameter of the BT module 

for every device, so that it would be able to connect with any master or 

another Bluetooth device automatically. This is accomplished by executing the 

Set Event Filter command implemented in the BluReRun HOST using 

dynamic command initialization. 

 

The commands used above should be able to be replaced (another name can be 

given, the master too can be scanned in an inquiry and different event filters can 

be set for both the master and the slave18) and/or other (not implemented in the 

HOST) HCI commands can be issued to the BT module by using the Non 

Dynamic Bluetooth command mode from the EXT DEV. Finally, the HOST 

shouldn’t get confused by the event of Number of Completed Packets that the BT 

module sends to the HOST every time the BT module receives successfully 5 

packets. 

 

The design in the pre-connection setup would be validated if the BluReRun slave 

could be scanned in an inquiry scan, its name could be seen correctly and if it 

could accept the connection request from a Bluetooth enabled device. This was 

 
18 For information on the functions of the Write Scan Enable and Set Event Filter HCI commands, 

refer to the BT spec 2. [3] 
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accomplished using some Bluetooth enabled PDAs and laptops (DELL Latitude 

D810, HP4010). 

 

Validation of the Non Dynamic Bluetooth commands and BluReRun emulation 

modes was achieved by enabling the master to be scanned in an inquiry, by 

executing the commands through the BluReRun emulation and by executing the 

Read Supported Features and Read Buffer Size commands to the slave. These 

commands’ successful execution was validated through the USART monitoring 

of the Command Complete events that were returned for each one of them. 

 

Finally, validation of the HPT data packets and the HPT BluReRun command 

Interaction was executed by the lighting of the correct LEDs when the HPT data 

packet was received by the BluReRun Host and also through the terminal of the 

PC that supported Bluetooth interface. 

 

5.2.3.2 BluReRun Discovery of other Bluetooth nodes 
After correctly starting-up the BluReRun system either in dynamic or non 

dynamic mode, the master should be able to search its vicinity for Bluetooth 

devices, identify and connect to them. 

 

By issuing the Inquiry command to the BT module from the BluReRun host, the 

BT module will report the Bluetooth devices it found to the HOST with an Inquiry 

Result event for every device19 it found. The master HOST should decode every 

Inquiry Result event correctly and store the required for establishing a data 

connection fields to its SRAM. After at least one Inquiry Result has been 

received, each discovered device’s characteristics can be requested through the 

Buttons or the Button emulation, after having selected the device. The HOST 

should be then able to report that inquired device’s BD ADDR as well as handle 

 
19 BT spec 2 specifies that multiple devices can be reported in a single Inquiry Result event, but in 

the specific BT module only one device per Inquiry Result is reported. 
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through implementation of the point to multipoint algorithm to the EXT DEV or the 

HPT through the USART1. The user friendly name of an inquired device would 

be requested by issuing a Remote Name Request to that device. The Remote 

Name Request Complete event should return the target inquired device’s name 

and the master HOST should store this name in its SRAM and forward necessary 

information regarding other BluReRun nodes in the ad hoc network either in point 

to point or point to multipoint environments. 

 

The BluReRun master’s ability to locate Bluetooth devices and identify them was 

validated by finding any slave and reporting its characteristics through the EXT 

DEV. The master’s ability to support many inquired devices and report the 

selected device characteristics was validated by locating the other two BluReRun 

slave nodes and retrieving their BD ADDR, as well as reporting their user friendly 

names when they are requested for each device. 

 

5.2.3.3 BluReRun master to slave connection 
After the master locates the Bluetooth devices in its vicinity and identifies them it 

should be able to connect with any one of them. The same should happen for the 

slave, though the slave can’t be able to request a connection from a Bluetooth 

device, only accept connection requests. The master BluReRun node functions 

also a lower level of the Parrotfish project (data communication medium). The 

connection between a master and a slave initiates upon receipt of the HPT DATA 

packet to the US1RX routine of the master BluReRun host.  

 

By issuing the Create Connection command to the BT module the master should 

be able to establish a Bluetooth connection with any inquired device selected. 

After the connection has been completed, the BT module will return a Connection 

Complete event (Figure 5-). The HOST should be able to decode that event 

correctly, store the connected device’s connection handle and BD ADDR to the 

SRAM and report the selected connected device’s characteristics to the HPT or 

the EXT device (through point to multipoint algorithm implementation) .  
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This time, correct function of the BluReRun was validated by establishing a 

connection between the master and the slave in a point to multipoint network. 

The layer 2 of the Parrotfish Project (by HPT BluReRun command interaction) 

issues the Inquiry command. In a point to multipoint network with the use of the 

point to multipoint algorithm the master HPT (and thus the master BluReRun) 

knows the handle and the name of the other HPTs or Parrotfish nodes in the 

vicinity. Therefore, all the necessary data transactions between the master and 

the slaves can be made. 

  

5.2.3.4 BluReRun nodes data exchange 
In the requirements and the specifications set for the BluReRun, the system 

should be able to function as an efficient data “transporter” so that errorless and 

effective FPGA re/configuration could be achieved.  

 

The BluReRun master or slave should have the ability, after they connect to each 

other, to exchange data that is received from the external device (HPT) in a full 

duplex manner. This data is in the form of ACL data packets and HPT data 

packets. 

 

During the test processes in this stage, packets were formed and transmitted to 

the BluReRun slave or master by the HPT so that the BluReRun master or slave 

could forward these packets to the node indicated by the handle. The payloads of 

the packets ranged from 1 to 256 bytes, which is the maximum payload of the 

HPT data packet (in the form of bit streams for FPGA configuration). Validation of 

the BluReRun in this point meant that the HPT data packets would be transcribed 

correctly to ACL data packets, then they would be delivered correctly to the 

target BluReRun device (if the device was not valid they would not be delivered 

at all) and the decoding of data packets in the other end should transcribe the 

received ACL packets to HPT ones and transmit them correctly to the EXT DEV 

or the HPT in case we are referring to the Parrotfish architecture. 
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The same methods of testing and validating all the subsystems that were seen in 

the previous sections were used here as well. The LEDs and USART monitoring 

were used to validate that the HPT data packets are transcribed correctly to ACL 

ones and that the other end received the (correct) packets. In the place of EXT 

DEV were computers as well as three Parrotfish nodes. 

 

 
Figure 5-3: The master to slave and slave to master HPT data packet transfer  

In the screenshot of Figure 5-3 12 packets that have been transmitted by the 

BluReRun master are shown, after they have been received by the slave. The 

slave transmits HPT data packets to the HPT or the external device, thing that 

can be seen on the screenshot, where the headers can be seen as boxes [the 

payloads are either non printable characters for small (0x01, 0x02…) and bigger 

than 255 payloads (0x100, 0x200…) or printable characters for payloads that 

correspond with them in the normal or extended ASCII table (@ for 0x40 (64), € 

for 0x80 (128) and ‘ for 0x55 (255)]. This way the master’s data packet 

transmission mechanism and the slave’s reception one were validated. 

 

The same exactly screenshot describes the HPT data packet transfer from slave 

to master BluReRun node. 
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Efficiency 

Since the BluReRun nodes have been able to exchange data the efficiency of the 

BluReRun protocol should be tested. 

 

The data transfer mechanism efficiency is determined mainly by the data rate 

that it can achieve in both directions. BluReRun supports speeds of up to 

460.8kbps. The default data rate of 57.6kbps can be considered good for a serial 

transfer, since the maximum available data rate that mainstream computers 

support for their COM ports (even in the HPT case of the external device the 

serial cable was used) is 128kbps and 56kbps is the most common one for dial-

up modems. 

 

The BluReRun protocol uses HPT data packets with a 3 byte header. In spite 

that it seems to achieve data rates of 57.24kbps with a 57.6kbps connection and 

256bytes of data payload in the packet, it doesn’t. This is because the Bluetooth 

protocol, which is involved in the BluReRun data transferring process, needs a 

9byte overhead for every data packet. With a speed of 57.6kbps (7200bytes/sec) 

it achieves a data rate of 56.00 kbps (7118.75bytes/sec) for Bluetooth ACL data 

packets with payloads of 256bytes. Thus, since the slower part of the protocol 

defines its speed, the data rate that BluReRun can achieve is 56.00kbps. 

 

5.3 Parrotfish Project Experiments 

IN HERE THE TWO BASIC EXPERIMENTS WHERE THE  

LAYERS INTERACTION WILL BE ADDED.  I AM WAITING 

FOR THE SIMULATIONS FROM EFSTATHIOU….I AM 

GONNA WAIT FOR ANOTHER FOUR DAYS..AFTER 

THAT PROBLEMS WILL ARISE!!! 
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Conclusions and Future Work  
 

Conclusions 
A system capable of efficient and errorless wireless data transfer in an ad hoc 

environment for FPGA re/configuration on the boundaries of the Parrotfish 

project was introduced designed and implemented in the BluReRun thesis. The 

whole design has been embedded in a low-cost and low-power microcontroller 

that lacked large memory (1KB of SRAM) and rich hardware resources. 

 

Bluetooth technology has been explored in the areas where data transfer was 

concerned and, since the Serial Port Profile (SPP) that has been specified by the 

Bluetooth Special Interest Group (SIG) in the Bluetooth specification (BT spec) 2 

proved to be resource demanding and couldn’t cover the requirements of the 

system, a differentiated protocol that supports point-to-multipoint connections has 

been designed, implemented and tested. The protocol that was designed proved 

through the tests to be highly efficient, in spite the memory limitations of the 

system. The whole design was based on BT spec 2 and can support every 

Bluetooth module that complies with that BT spec. 

 

A Bluetooth device is usually able to find devices and accept connection requests 

from remote devices. The system implemented in this thesis adopted master to 

many slaves (point to multipoint) architecture. The slave BluReRun node retained 

the Bluetooth functions that enable it to be found, respond correctly to connection 

requests from multiple Bluetooth devices and exchange data with every one of 

them. Correspondingly, the master BluReRun node retained the Bluetooth 

functions that enable it to find and identify Bluetooth devices. The characteristics 

of both the master and the slave BluReRun nodes have been integrated in every 

BluReRun node so that, when requested, each BluReRun node can act as a 

master or a slave. It also has the capability to establish a connection with one of 
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the devices it found and finally exchange data with it. By sharing the Bluetooth 

characteristics, the microcontrollers used were relieved from about half the load 

in hardware resources they had. 

 

The applications that were developed showed the errorless and efficient wireless 

data transfer for FPGA re/configuration is a reality. However, there were some 

certain issues that could be introduced as future work for the BluReRun system. 

Future work 

BluReRun is a complete data exchange system that can work on its own or as a 

subsystem (low layer) of the Parrotfish node. The improvements that could be 

made to the design deal with increasing its speed and adding services in a higher 

level, since the system works infallibly. Some improvements to the existing 

design and some new applications that this design would be useful would be the 

following: 

I. The most obvious improvement in the design would be to improve its data 

rate. The BT module and the microcontroller used both support high baud 

rates. The highest possible the specific BT module can achieve is 

460.8kbps, while the microcontroller can achieve 912.6kbps. In such high 

speeds the BT module’s UART buffers might fill before the packets in 

them will be sent over the air, so flow and congestion control must also be 

implemented. It is possible that data rates above 128kbps may need 

another interface protocol (than USART) for the connection between 

computers and BluReRun, because computers do not easily support 

higher USART speeds. The implementation of a USB core seems to be a 

viable solution. Though, the HPT does not support higher data rates. 

II. Most Bluetooth profiles can be implemented through the BluReRun data 

exchange protocol. Profiles than can be implemented are: 

1. LAN Access (LAP) 

2. Generic Object Exchange (GOEP) 

3. Object Push (OPP) 



Microprocessor & Hardware Laboratory 
 

4. Synchronization (SP) 

5. File Transfer (FTP) 

A demonstration application that resembles the File Transfer Profile has 

been developed in the context of this thesis. 

III. The use of a BluReRun HOST with more resources will boost the 

performance of the BluReRun protocol 

IV. The integration of the three layers of the Parrotfish nodes in one PCB 

design will give a “black” box where everything from the top layer to the 

bottom one is embedded.  

V. Most Bluetooth profiles can be implemented through the BluReRun data 

exchange protocol. Profiles than can be implemented are: 

1. LAN Access (LAP) 

2. Generic Object Exchange (GOEP) 

3. Object Push (OPP) 

4. Synchronization (SP) 

5. File Transfer (FTP) 
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Appendix A 
 

In the APPENDIX A, four basic sections are examined: 

a) The commands implemented and embedded in the BluReRun Host 

b) The Glossary and terminology on Bluetooth and on the code used 

c) The schematic and PCB of the BluReRun nodes  

 

Commands Implemented 
The Commands implemented and embedded in the BluReRun HOST are the 

following: 
HCI command Details 

Inquiry 
Searches for active Bluetooth devices in the 

vicinity and returns relative information 

Create Connection 

Attempts to establish an ACL connection to 

another device based on the remote device’s 

BD ADDR (other information found by an 

inquiry command are helpful). On success, a 

Connection Handle is assigned to the ACL link 

Disconnect 
Terminates an existing ACL connection based 

on the connected device’s Connection Handle 

Switch Role Used to switch role of the BT module from 

master to slave or vice versa 

Read Local Name 
Reads the user-friendly name of the local 

Bluetooth device 

Reset 
Resets the HC & the LM. The local BlueTooth 

device enters stand-by mode 

Read Buffer Size 

Reads the max size of the ACL & SCO packet 

payload that the HC can receive from the 

HOST 

Set Event Filter 
Specifies different event filters (the Host 

receives only events that interest it) 

Write Scan Enable 
Writes the parameter deciding whether a 

device will perform periodic inquiry and/or page 
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scans so as to be visible by remote devices, or 

not 

Change Local Name 
Gives a user-friendly name to the local 

Bluetooth device 

Remote Name Request 
Obtains the user-friendly name of a remote 

device based on its BD_ADDR 

Read BD ADDR Reads the BD ADDR of the local device 

 

Every Bluetooth command is specified in Bluetooth protocol version 2.0 [3]. 

Before moving on to the Bluetooth terminology it is vital for the  

Bluetooth Acronyms and Terminology 
 

A 
ACL: Asynchronous Connection-Less 

ACL-C: ACL-Control 

ALU: Arithmetic Logic Unit 

API: Application Program(ming) Interface 

 

B 
BD ADDR: BlueTooth Device Address 

BlueApplE: BlueTooth Applications Environment 

BlueBridge: BlueTooth Data Bridge 
BluReRun: Bluetooth Reconfigurable Run Time Environment 

BT module: BlueTooth module 
BTspec: BlueTooth specification 

BufLen: Buffer Length (BluReRun flag indicating the number of stored bytes in 

the buffer) 

BUFOVF: Buffer Overflow (BluReRun flag indicating that the buffer is full) 

 

C 
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CAGR: Compound Annual Growth Rate 

CID: Channel Identity 

CLK: Clock 
CMOS: Complementary Metal Oxide Semiconductor 

COM: Communication 

CPU: Central Processing Unit 

CRC: Cyclic Redundancy Check 

 

D 
DH: Data - High Rate 

DM: Data - Medium Rate 

 

E 
ECED: Electronics & Computer Engineering Department 

EDR: Enhanced Data Rate 

EEPROM: Electrically Erasable Programmable Read-Only Memory 

EI: Enable Input 

EXT DEV: External Device 

 

F 
FEC: Forward Error Correction 

FHSS: Frequency Hopping Spread Spectrum 

FIFO: First In, First Out 

FLAGREG: Flag Register (BluReRun register containing various flags) 

FPGA: Field-Programmable Gate Array 

FTP: File Transfer Profile 

 

G 
GFSK: Gaussian Frequency-Shift Keying 
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GND: Ground 

GOEP: Generic Object Exchange Profile 

GS: Group Signal 

 

H 
HCI: Host Controller Interface 

HPT: Hardware Programmer & Tester 

 

I 
I/F: Interface 

I/O: Input/Output 

IC: Intergraded Circuit 

IEEE: Institute of Electrical & Electronic Engineers 

IEEE-SA: IEEE - Standards Association 

INT: Interrupt 

IP: Internet Protocol 

IR: InfraRed 

IrDA: Infrared Data Association 

ISM: Industrial, Scientific & Medical 

ISR: Interrupt Service Routine 

 

L 
L2CAP: Logical Link Control & Adaptation Protocol 

LAN: Local Area Network 

LAP: LAN Access Profile 

LED: Light Emitting Diode 

LM: Link Manager 

LMP: Link Manager Protocol 
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M 
MAC: Media Access Control 

μC: microcontroller 

MHL: Microprocessor & Hardware Laboratory 

 

O 
OBEX: Object Exchange Protocol 

OCF: Opcode Command Field 

OGF: Opcode Group Field 

Opcode: Operation code 
OPP: Object Push Profile 

 

P 
PAN: Personal Area Network 

PCM: Pulse Code Modulation 

PDA: Personal Digital Assistant 

 

Q 
QoS: Quality of Service 

 

R 
RAM: Random Access Memory 

RdBuf: Read Buffer (BluReRun flag indicating where the next byte will be read 

from) 

RF: Radio Frequency 

RISC: Reduced Instruction Set Computer 

RS232: Recommended Standard 232 
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RX: Receive 

RXD: Received Data 

 

S 
SCO: Synchronous Connection-Oriented 

SD: Secure Digital 

SIG: Special Interest Group 

SP: Synchronization Profile 

SPI: Serial Peripheral Interface 

SPP: Serial Port Profile 

SRAM: Static RAM 
 

T 
TDD: Time Division Duplex 

TTL: Transistor-Transistor Logic 

TUC: Technical University of Crete 

TX: Transmit 

TXD: Transmit Data 

 

U 
USART: Universal Asynchronous Syncronous Receiver-Transmitter (also serves 

as a BluReRun flag indicating that the USART is not in the process of sending a 

byte) 

UCR: UART Control Register 

USB: Universal Serial Bus 

USR: UART Status Register 

USxRX: USART x (x can be 0 or 1) Receive Complete ISRs in BluReRun 

USxTX: USART x (x can be 0 or 1) Transmit Complete ISRs in BluReRun 
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W 
WiFi: Wireless Fidelity 

WLAN: Wireless LAN 
WMAN: Wireless Metropolitan Area Network 

WrBuf: Write Buffer (flag indicating the buffer location to store the next byte) 

 

X 
XTAL: Crystal 

 

Schematic and PCB of BluReRun nodes 
 

The PCB of the BluReRun nodes follows: 

 

 
 

The Schematic of all three BluReRun nodes is the same. It is as depicted in the 

following picture: 
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Appendix B 

ATmega162 AVR 
The microcontroller (μC) used as the HOST (controls all the hardware 

components and synchronizes their operation) in BluReRun is the ATmega162 

AVR by Atmel. The ATmega162 is pin compatible with ATMEGA161, which was 
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used in the BluMiu architecture, thing that helped the transition from that 

architecture to BluReRun by making the latter a direct evolution of the packet 

mechanism and the transparency. The ATmega162 pin configuration and 

architecture are depicted in Figure 0-1. The ATmega161 is a low-power CMOS 

8-bit microcontroller based on the AVR RISC architecture. By executing 

instructions in a single clock cycle, the ATmega161 achieves throughputs 

approaching 1 MIPS per MHz. The AVR core combines an instruction set, which 

contains 131 instructions, with 32 general purpose working registers. All the 32 

registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two 

independent registers to be accessed in one single instruction executed in one 

clock cycle. The proposed frequency of operation for the μC is 8MHz. Although 

an XTAL with a frequency of 11.0592MHz is used in BluReRun. This frequency 

has certain advantages over all the others: (1) It is one of the highest permitted 

by the ATMEGA162’s datasheet (providing a higher performance) and (2) by 

using that frequency a 0% error rate can be achieved with the microcontroller’s 

UART. [11]. he ATmega162 provides the following features: 

 

 16K bytes of In-System or Self-programmable Flash 

 512 bytes EEPROM 

 1K byte of SRAM 

 35 general purpose I/O lines (4x8bit and 1x3bit) 

 32 general purpose working registers 

 Real-time Counter 

 4 flexible Timer/Counters with separate Prescalers and Compare modes 

(2x8bit and 2x16bit) 
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Figure 0-1 ATmega162 PIN configuration and architecture 

 Real Time Counter with separate Oscillator 

 18 internal and 3 external interrupts 

 2 programmable serial USARTs 

 1 programmable Watchdog Timer with separate On-Chip Oscillator 

 1 SPI serial port 
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 1 2-cycle multiplier 

 5 software-selectable power saving modes: 

I. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, 

SPI port and interrupt system to continue functioning 

II. The Power-down mode saves the register and SRAM contents but freezes 

the Oscillator, disabling all other chip functions until the next External 

Interrupt or Hardware Reset 

III. In Power-save mode, the timer Oscillator continues to run, allowing the 

user to maintain a timer base while the rest of the device is sleeping 

Also there are the Standby and Extensive Standby modes which are not used in 

the BluReRun design. 

The On-chip Flash Program memory can be reprogrammed using the self-

programming capability through the Boot Block and an ISP through the SPI port, 

or by using a conventional non-volatile Memory programmer. 

 

 

Microcontroller resources used by BluReRun: 

 10.6KB of the Flash for the BluReRun Host 

 (671+n*10)Bytes and (571+n*10)Bytes of the 1KB SRAM for the client and 

server respectively (n*10Bytes are stored in the RAM for n interrupts 

triggering one after the other because every interrupt needs 10Bytes to be 

stacked in the RAM, so that a previous interrupt can be resumed) 

 28 of the 35 I/O lines. 22 are used for output and 6 for input 

 All the general purpose registers of the HOST for the master-slave 

 2 of the 2 8 bit timers 

 0 of the 3 external interrupts 

 Both USARTs 

 Idle power saving mode is used 

 

USART  
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The UART in ATmega161 has been replaced by a USART in ATmega162. The ATmega162 
USART is compatible with the ATmega161 UART with one exception: The two-level Receive 
Register acts as a FIFO. The FIFO is disabled when the M161C Fuse is programmed. Still the 
following must be kept in mind when the M161C Fuse is programmed: 
• The UDR must only be read once for each incoming data. 
• The Error Flags (FE and DOR) and the ninth data bit (RXB8) are buffered with the data in the 
receive buffer. Therefore the status bits must always be read before the UDR Register is read. 
Otherwise, the error status will be lost. ATmega161 contains the baud-rate high-bytes for both 
UARTs in a common register – UBRRHI. ATmega162 has separate registers for the high-bytes of 
the two USARTs; UBRR0H and UBRR1H, implying a modification to the code when porting the 
design to ATmega162. Another minor difference is the initial value of RXB8, which is “1” in the 
UART in ATmega161 and “0” in the USART in ATmega162. 
 
AVR USART vs. AVR UART – 
Compatibility 
 
The USART is fully compatible with the AVR UART regarding: 
 
• Bit locations inside all USART Registers 
• Baud Rate Generation 
• Transmitter Operation 
• Transmit Buffer Functionality 
• Receiver Operation 
 
However, the receive buffering has two improvements that will affect the compatibility in some 
special cases: 
• A second Buffer Register has been added. The two buffer registers operate as a circular FIFO 
buffer. Therefore the UDR must only be read once for each incoming data! More important is the 
fact that the Error Flags (FE and DOR) and the ninth data bit (RXB8) are buffered with the data in 
the receive buffer. Therefore the status bits must always be read before the UDR Register is 
read. Otherwise the error status will be lost since the buffer state is lost. 
• The Receiver Shift Register can now act as a third buffer level. This is done by allowing the 
received data to remain in the serial Shift Register if the Buffer Registers are full, until a new start 
bit is detected. The USART is therefore more resistant to Data OverRun (DOR) error conditions. 
 
The following control bits have changed name, but have same functionality and register 
location: 
• CHR9 is changed to UCSZ2. 
• OR is changed to DOR. 
 
 

Appendix C 
 

The Bluetooth module 
The Bluetooth modules used are a kind donation of the Teleca Comtec Company 

to the Microprocessor and Hardware Laboratory. The hardware consists of a two-
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layer printed circuit board equipped with a UART buffer, a voltage regulator, a 

USB connector, an inverted-F antenna, a few other passive components and the 

Bluetooth ROK101 007 module of Ericsson (Figure 0-1). This BT Module 

includes the Ericsson Baseband device, a Flash Memory and the Ericsson Radio 

Module device. Qualification for the Tool Kit is based upon a declaration of 

compliance with the Bluetooth Specification 1.2 as well as 2. [15] 

 

The BT module in the BlueApplE design had as a power source a USB cable that 

connected it with a computer. Using up a USB port just to provide power is 

clearly a waste of resources.  In the BluReRun design (as was done in the 

BluMiu) the board that includes the HOST and all the hardware components is 

the one that provides power to the module. The USB power supply can be 

changed by a power source that is connected to the jumper area of the board 

(Figure 0-1) in connectors 1(VIN 5V nominal) and 10(GND) that fulfills the 

following requirements: 

 Supply voltage: min +4.4 V, max +5.25 V connected to Jumper area pin 1 

(relative GND pin 10) 

 Minimum supply current: 100 mA [11] 

 

A description of the ROK 101 007 and its functions will follow. 

  

Figure 0-1 LZT 107 4123 R2A 

ROK 101 007 is a short-range module for implementing BlueTooth functionality 

into various electronic devices. It is a type of Bluetooth module that supports the 

point to multipoint transfer of voice and data thus allowing the full function of the 
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BluReRun system and the form of Scatternets and piconets. It is compliant with 

BT spec 1.2, is a Class 2 BlueTooth Module (0 dBm) and is type-approved. The 

module consists of three major parts; a Baseband controller, a flash memory, 

and a radio that operates in the globally available 2.4–2.5 GHz free ISM band. 

The Baseband controller is an ARM7-Thumb based chip that controls the 

operation of the radio transceiver via the UART interface. The module’s flash 

memory includes firmware for the HCI and the LM, which were discussed in 

chapter 2.3. Both data and voice transmission is supported by the module. 

Communication between the module and the Host is carried out via UART and/or 

PCM interface. The UART implemented on the module is an industry standard 

16C450 and supports the following baud rates: 300, 600, 900, 1200, 1800, 2400, 

4800, 9600, 19200, 38400, 57600, 115200, 230400 and 460800 bits/s. 128 byte 

FIFOs are associated with the UART. [15] The default setting for the UART 

speed is 57.6Kbps and can be changed by sending to it an Ericsson specific HCI 

command. HCI command packets sent to it should have 0x01 as packet indicator 

(a byte that must be transmitted immediately before any HCI packet), events 

transmitted by it have 0x04 as packet indicator and HCI ACL packets are 

interchanged with the packet indicator 0x02. 
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