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Technical University of Crete 

Abstract 

SPEECH SYNTHESIS BY WORD 
CONCATENATION 

by Christos C. Vosnidis 

Chairperson of the Supervisory Committee: 
Professor Vassilios Digalakis 

Department of Electronics and Computer Engineering 

The Weather Report Synthesizer is a speech synthesis system for weather forecasts in 

Greek. Instead of trying to improve the synthesis quality of PSOLA based 

concatenative speech synthesizers, we have chosen to use words as the synthesis unit for 

our system. This approach has the advantage of low complexity and quick 

implementation, while at the same time it achieves better speech quality due to the fact 

that the synthesis units inherently possess the necessary prosodic feature diversity. The 

selection of the optimal sequence of words that form the synthesized speech, however, 

presents the greatest challenge in the synthesis process. Several features are taken into 

consideration during the selection, but we have identified Coarticulation at the edges of 

consecutive words to have the greatest effect on the quality of the synthesized 

utterance. In this thesis we have developed a novel method for evaluating a measure on 

the coarticulation effects among pairs of words, based on feature clustering information 

as obtained from a current Speech Recognition System. The synthesizer’s output was 

subject to a quality assessment procedure, the results of which are also presented. 
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GLOSSARY 

Corpus. The set of sentences to be recorded and later segmented into the words that 
they contain.  

Concordance (of a file). A listing that contains all the words of that file, along with the 
line number on which the word occurs. 

Reduction Property. A phonological word is reduced if it deviates from a canonical 
form a native speaker would judge as an acceptable version if the word were spoken in 
isolation. 

Representative Sentence. A sentence that, when added to the collection of sentences 
already chosen to form the Corpus, introduces as much new information, in the form 
of words, either new or ones found in a context that has not yet been observed, as 
possible. 

Shortest Path. The path with minimal cost is called shortest path. 

Word (see also word class). A specific orthographic, case sensitive, word instance taking 
into consideration its association with any punctuation marks. 

Word Class. The orthographic form of a word and its associated description.  

Word Instance. A recorded word and its concrete description.  

Word Layer. All word instances that belong to the same word class. 
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OVERVIEW 

Chapter 1 provides a definition of the field of Computer Speech Synthesis, as well as a 

categorization based on the types of input to speech synthesizers, and on the basic 

methods used for the synthesis procedure. 

Chapter 2 outlines the parts of a speech synthesizer, and provides insight to the current 

approaches in the construction of speech synthesizers. 

Chapter 3 explains the basic idea of our approach to the subject, and outlines the 

strategy that our application uses to synthesize speech.  

Chapter 4 provides explanation on the technical issues that have arisen during the 

implementation of the synthesizer, and exposes the inner workings of our speech 

synthesis system. 

Finally, Chapter 5 outlines our approach towards the definition of an evaluation 

procedure for the results of our application, and presents the findings of this overview. 

The Appendices at the end of the thesis provide information on certain technical 

issues that may prove useful for some readers. 
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C h a p t e r  1  

COMPUTER SPEECH SYNTHESIS 

Computer speech synthesis has reached a high level of performance, with increasingly 

sophisticated models of linguistic structure, low error rates in text analysis, and high 

intelligibility in synthesis from phonemic input. Mass-market applications have already 

been introduced, although the results are still not good enough for the ubiquitous 

application that such technology will eventually have. 

A number of alternative directions of current research aim at the ultimate goal of fully 

natural synthetic speech. One especially promising trend is the systematic 

optimization of large synthesis systems, with respect to formal criteria of evaluation. 

Speech recognition has advanced rapidly in late ‘80s and early ‘90s through such 

approaches, and it seems likely that their application in synthesis will produce similar 

improvements. 

1. WHAT IS COMPUTER SPEECH SYNTHESIS? 

Let us begin this short review of Computer Speech Synthesis by first exploring what 

is meant by this term. 

Obviously, this term refers to the creation by computer of human-like speech, but 

that only tells us what the output of the process is. Synthesized speech output may 

come from a wide range of processes that differ enormously in the nature of their 

inputs and the nature of their internal structures and calculations.  

1.1. Types of Input 

The input to a speech synthesizer may be 

1. an uninterpreted reference to a previously recorded utterance 
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2. a message drawn from a small finite class of texts, such as telephone numbers 

3. a message drawn from a larger, or even infinite, but still restricted, class of texts, 

such as names and addresses 

4. a message drawn from unrestricted digital text, including anything from electronic 

mail to online newspapers to patent or legal texts, novels, or cookbooks 

5. a message composed automatically from non-textual computer data structures 

(which we might thing of as analogous to “concepts” or “meanings” 

6. a specification of the phonological content of a message, which for most 

applications must be produced from one of these types of input given previously 

Most commercial applications so far have been of type 1 or 2. Classical “text-to-

speech” systems are of type 4 and/or 6. Ultimate human computer interaction 

systems are likely to be of type 5, with a bit of 4.  

A large number of the people involved in applying speech synthesis technology think 

that the most promising current opportunities are of type 3. Note that choosing such 

restricted domain applications has been crucial to the success of computer speech 

recognition. Most practical speech synthesis implementations, including our 

application, belong to this category.  

1.2. Basic Methods 

The system internal structures and processes of “speech synthesis” may involve 

1. reproduction of digitally stored human voice, perhaps with 

compression/expansion 

2. construction of messages by concatenation of digitally stored voice fragments 

3. construction of messages by concatenation of digitally stored voice fragments, 

with modifications of the original timing and pitch 

4. construction of messages by concatenation of digitally stored voice fragments, 

with rule-generated synthetic speech contours and rule generated segmental 

timing values 

5. construction of messages using rule-generated synthetic time functions of 

acoustic parameters 
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6. construction of messages using rule-generated controls for the kinematics of 

simplified analogs of human vocal tract 

7. construction of messages by realistic modeling of the physiological and physical 

processes of human speech production, including dynamic control of articulation 

and models of the airflow dynamics in the vocal tract 

The largest scale of commercial activity has been of types 1 and 2, which might be 

called stored voice. This includes telecommunication intercepts, voice-mail prompts, 

and so forth. Much classical speech synthesis research has been of type 5 or 6, using 

techniques called formant synthesis. Several of the best current systems, and the most 

active areas of research, are of types 3 and 4, techniques that are called concatenative 

synthesis. 

2. SPEECH SYNTHESIS BY WORD CONCATENATION 

2.1. Overview 

This thesis describes the concept and provides information on the implementation of 

a text-to-speech synthesizer that synthesizes sentences in the domain of whether 

forecasts by concatenating digitally stored voice fragments. 

Each fragment corresponds to a specific word, and there is at least one fragment – 

usually three or more – corresponding to any given word. Our application uses a 

combination of criteria in order to select the optimal sequence of fragments to be 

used, applies, whenever necessary, basic energy smoothing at the borders of the 

fragments and concatenates them into the final synthetic utterance, in 

correspondence to the input text. 

2.2. Categorization 

Using the categorization described previously, and with respect to the type of input, 

our application can be assigned to the third category. We believe that there are certain 

applications for which speech synthesis is needed and where the implementation of a 

speech synthesizer with good speech quality is more important than that of a general-
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purpose, open vocabulary synthesizer, with significant deterioration in speech quality. 

After all, most commercial applications of speech synthesis technologies involve the 

generation of speech from restricted, even though large enough, classes of text. 

With respect to the basic methods used for the synthesis of the output speech, our 

application bares most resemblance to the second category, while using some new 

approaches to the selection process. It is certainly a concatenative synthesizer, where 

digitally stored words are used as the synthesis units, but which also uses techniques 

such as coarticulation matching and prominence in order to achieve better speech 

quality. 
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C h a p t e r  2  

TEXT-TO-SPEECH SYNTHESIS 

1. INTRODUCTION 

A Text-To-Speech (TTS) synthesizer is a computer-based system that should be able 

to read any text aloud, whether it was directly introduced in the computer by an 

operator or scanned and submitted to an Optical Character Recognition (OCR) 

system. Let us try to be clear. There is a fundamental difference between the system 

we are about to discuss here and any other talking machine (as a cassette-player for 

example) in the sense that we are interested in the automatic production of new 

sentences.  

At first sight, this task does not look too hard to perform. After all, is not the human 

being potentially able to correctly pronounce an unknown sentence, even from his 

childhood? We all have, mainly unconsciously, a deep knowledge of the reading rules 

of our mother tongue. They were transmitted to us, in a simplified form, at primary 

school, and we improved them year after year. However, it would be a bold claim 

indeed to say that it is only a short step before the computer is likely to equal the 

human being in that respect. Despite the present state of our knowledge and 

techniques and the progress recently accomplished in the fields of Signal Processing 

and Artificial Intelligence, we would have to express some reservations. As a matter 

of fact, the reading process draws from the furthest depths, often unthought-of, of 

the human intelligence. 

2. AUTOMATIC READING: WHAT FOR? 

Each and every synthesizer is the result of a particular and original imitation of the 

human reading capability, submitted to technological and imaginative constraints that 
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are characteristic of the time of its creation. The concept of high quality TTS synthesis 

appeared in the mid eighties, as a result of important developments in speech 

synthesis and natural language processing techniques, mostly due to the emergence of 

new technologies (Digital Signal and Logical Inference Processors). It is now a must 

for the speech products family expansion. 

Potential applications of High Quality TTS Systems are indeed numerous. Here are 

some examples: 

• Telecommunications services.  

TTS systems make it possible to access textual information over the telephone. 

Knowing that about 70% of the telephone calls actually require very little 

interactivity, such a prospect is worth being considered. Texts might range from 

simple messages, such as local cultural events not to miss (cinemas, theatres, ...) , 

to huge databases which can hardly be read and stored as digitized speech. 

Queries to such information retrieval systems could be put through the user's 

voice (with the help of a speech recognition system), or through the telephone 

keyboard (with DTMF systems). One could even imagine that our (artificially) 

intelligent machines could speed up the query when needed, by providing lists of 

keywords, or even summaries. VoiceXML™ is a programming language designed 

for creating applications that enable access over the phone to information already 

available through a classic web browser. Using a server resident Voice Browser, 

voice and/or the telephone keypad as the method of data input, and server side 

speech synthesis as the method of data output, information services already 

offered on the Web could easily be modified to support mobile users. Given the 

continuously expanding number of mobile phones (more than 1B mobile phones 

worldwide) and the current trend in mobile Personal Digital Assistants, it seems 

that voice could easily be the medium of choice to address the needs of this new 

type of information services’ users. 

• Language education.  
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High Quality TTS synthesis can be coupled with a Computer Aided Learning 

system, and provide a helpful tool to learn a new language. To our knowledge, 

this has not been done yet, given the relatively poor quality available with 

commercial systems, as opposed to the critical requirements of such tasks.  

• Aid to handicapped persons.  

Voice handicaps originate in mental or motor/sensation disorders. Machines can 

be an invaluable support in the latter case: with the help of an especially designed 

keyboard and a fast sentence assembling program, synthetic speech can be 

produced in a few seconds to remedy these impediments. Astrophysician Stephen 

Hawking gives all his lectures in this way. The aforementioned Telephone Relay 

Service is another example. Blind people also widely benefit from TTS systems, 

when coupled with Optical Recognition Systems (OCR), which give them access 

to written information. Mass-market synthesizers bundled with sound cards will 

soon invade the market for speech synthesis for blind users of personal 

computers. DECtalk™ is already available with the latest SoundBlaster™ cards 

now, although not yet in a form useful for blind people. 

• Talking books and toys.  

The toy market has already been touched by speech synthesis. Many speaking 

toys have appeared, under the impulse of the innovative 'Magic Spell' from Texas 

Instruments. The poor quality available inevitably restrains the educational 

ambition of such products. High Quality synthesis at affordable prices might well 

change this. 

• Vocal Monitoring.  

In some cases, oral information is more efficient than written messages. The 

appeal is stronger, while the attention may still focus on other visual sources of 

information. Hence the idea of incorporating speech synthesizers in measurement 

or control systems. 

• Multimedia, man-machine communication.  
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In the long run, the development of high quality TTS systems is a necessary step 

(as is the enhancement of speech recognizers) towards more complete means of 

communication between men and computers. Multimedia is a first but promising 

move in this direction.  

• Fundamental and applied research.  

TTS synthesizers possess a very peculiar feature, which makes them wonderful 

laboratory tools for linguists: they are completely under control, so that repeated 

experiences provide identical results (as is hardly the case with human beings). 

Consequently, they allow investigating the efficiency of intonative and rhythmic 

models. A particular type of TTS systems, which are based on a description of the 

vocal tract through its resonant frequencies (its formants) and denoted as formant 

synthesizers, has also been extensively used by phoneticians to study speech in 

terms of acoustical rules. In this manner, for instance, articulatory constraints 

have been enlightened and formally described. 

3. HOW DOES A MACHINE READ? 

It is tempting to think of the problem of converting written text into speech as 

“speech recognition in reverse”. Current speech recognition systems are generally 

deemed successful if they can convert speech input into the sequence of words that 

was uttered by the speaker, so one might imagine that a TTS synthesizer would start 

with the words in the text, convert each word one into speech (being careful to 

pronounce each word correctly) and concatenate that result together.  

However, when one considers what literate native speakers of a language must do 

when they read a text aloud, it quickly becomes clear that things are much more 

complicated than this simplistic approach suggests. Pronouncing words correctly is 

only part of the problem faced by human readers: in order to sound natural and to 

sound as if they understand what they are reading, they must also appropriately 

emphasize (accent) some words, and de-emphasize others; they must “chunk” the 

sentence into meaningful (intonational) phrases; they must pick an appropriate F0 
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(fundamental frequency) contour; they must control certain aspects of their voice 

quality; they must know that a word should be pronounced longer if it appears in 

some positions in the sentence, than if it appears in others, since segmental durations are 

affected by various factors, including phrasal positions. 

What makes reading such a difficult task, is that all writing systems systematically fail 

to specify many kinds of information that are important in speech. While the written 

form of a sentence (usually) completely specifies the words that are present, it will 

only partly specify the intonational phrases (typically with some form of punctuation), 

will usually not indicate which words to accent or de-accent, and hardly ever gives 

information on segmental duration, voice quality or intonation. One might think that 

a question mark ‘?’ indicates that a sentence should be pronounced with a rising 

intonation: generally though a question mark merely indicates that a sentence is a 

question, leaving it up to the reader to judge whether this question should be 

rendered with a rising intonation. The orthographies of some languages – for instance 

Chinese, Japanese, and Thai – fail to give information on where word boundaries are, 

so that even this needs to be figured out by the reader.  

The task of a TTS system is thus a complex one that involves mimicking what human 

readers do. But a machine is hobbled by the fact that it generally “knows” the 

grammatical facts of the language only imperfectly, and generally can be said to 

“understand” nothing of what it is reading. TTS algorithms thus have to do the best 

they can, making use, whenever possible, of purely grammatical information to decide 

on such things as accentuation, phrasing, and intonation, and coming up with a 

reasonable “middle ground” analysis for aspects of the output that are more 

dependent on actual understanding. 

It is natural to divide the TTS problem into two broad sub-problems. The first of 

these is the conversion of text – an imperfect representation of language, as we have 

seen – into some form of linguistic representation, which includes information on the 

phonemes (sounds) to be produced, their duration, the locations and durations of any 

pauses and the F0 contour to be used. The second – the actual synthesis of speech – 

takes this information and converts it into a speech waveform. 
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Figure 1 introduces the functional diagram of a very general TTS synthesizer. As for 

human reading, it comprises a Natural Language Processing module (NLP), capable 

of producing a phonetic transcription of the text read, together with the desired 

intonation and rhythm (often termed as prosody), and a Digital Signal Processing 

module (DSP), which transforms the symbolic information it receives into speech.  

 

Text-to-Speech Synthesizer 

Natural Language 
Processing 

 
Linguistic Formalisms 

Inference Engines 
Logical Inferences 

Digital Signal 
Processing 

 
Mathematical Models 

Algorithms 
Computations 

Phonemes 

Prosody 

Speech Text 

 
Figure 1 Functional Diagram of a TTS System 

3.1. The NLP component 

The Natural Language Processing block of a synthesizer is used to perform text and 

linguistic analysis on the input text, and can be broken down to the following parts: 

• Text Preprocessing: including end-of-sentence detection, “text normalization” 

(expansion of numerals and abbreviations), and limited grammatical analysis, such 

as grammatical part-of-speech assignment. 

• Word Pronunciation: including the pronunciation of names and the disambiguation 

of homographs. 

• Accent Assignment: the assignment of levels of prominence to various words in the 

sentence. 

• Intonational Phrasing: the breaking of (usually long) stretches of text into one or 

more intonational units. 

• Segmental Durations: the determination, on the basis of linguistic information 

computed thus far, of appropriate durations for phonemes in the input. 
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• F0 contour computation. 

3.1.1. Text Preprocessing 

The text preprocessing step performs the following tasks: 

• It organizes the input sentences into manageable lists of words. It identifies 

numbers, abbreviations, acronyms and idiomatics and transforms them into full 

text when needed. An important problem is encountered as soon as the character 

level: that of punctuation ambiguity1 (including the critical case of sentence end 

detection). It can be solved, to some extent, with elementary regular grammars. 

• It performs a morphological analysis on the input text, in order to propose all 

possible part of speech categories for each word taken individually, on the basis 

of their spelling. Inflected, derived, and compound words are decomposed into 

their elementary graphemic units (their morphs) by simple regular grammars 

exploiting lexicons of stems and affixes. 

• Finally words are considered in their context, which allows for the reduction of 

the list of their possible part of speech categories to a very restricted number of 

highly probable hypotheses, given the corresponding possible parts of speech of 

neighboring words. This can be achieved either with n-grams, which describe local 

syntactic dependences in the form of probabilistic finite state automata (i.e. as a 

Markov model), to a lesser extent with multi-layer perceptrons (i.e., neural networks) 

trained to uncover contextual rewrite rules, or with local, non-stochastic grammars 

provided by expert linguists or automatically inferred from a training data set with 

classification and regression tree (CART) techniques. 

• Finally, a syntactic-prosodic parser, which examines the remaining search space 

and finds the text structure (i.e. its organization into clause and phrase-like 

constituents) which more closely relates to its expected prosodic realization (see 

below). 

                                                 
1 A period ‘.’ may usually used as a sentence delimiter, may also be used for instance to mark abbreviations. 
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3.1.2. Word Pronunciation 

The Word Pronunciation module is responsible for the automatic determination of 

the phonetic transcription of the incoming text. It thus seems, at first sight, that its 

task is as simple as performing the equivalent of a dictionary look-up! From a deeper 

examination, however, one quickly realizes that most words appear in genuine speech 

with several phonetic transcriptions, many of which are not even mentioned in 

pronunciation dictionaries. Namely:  

1. Pronunciation dictionaries refer to word roots only. They do not explicitly 

account for morphological variations (i.e. plural, feminine, conjugations, especially 

for highly inflected languages, such as French), which therefore have to be dealt 

with by a specific component of phonology, called morphophonology.  

2. Some words actually correspond to several entries in the dictionary, or more 

generally to several morphological analyses, generally with different 

pronunciations. This is typically the case of heterophonic homographs, i.e. words 

that are pronounced differently even though they have the same spelling, as for 

'record' (/rek•ùd/ or /rIk•ùd/), constitute by far the most tedious class of 

pronunciation ambiguities. Their correct pronunciation generally depends on their 

part-of-speech and most frequently contrasts verbs and non-verbs, as for 

'contrast' (verb/noun) or 'intimate' (verb/adjective), although it may also be based 

on syntactic features, as for 'read' (present/past)  

3. Pronunciation dictionaries merely provide something that is closer to a phonemic 

transcription than from a phonetic one (i.e. they refer to phonemes rather than to 

phones). Consonants, for example, may reduce or delete in clusters, a 

phenomenon termed as consonant cluster simplification, as in 'softness' [s•fnIs] 

in which [t] fuses in a single gesture with the following [n].  

4. Words embedded into sentences are not pronounced as if they were isolated. 

Surprisingly enough, the difference does not only originate in variations at word 

boundaries (as with phonetic liaisons), but also on alternations based on the 

organization of the sentence into non-lexical units, that is whether into groups of 

words (as for phonetic lengthening) or into non-lexical parts thereof (many 

phonological processes, for instance, are sensitive to syllable structure).  
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5. Finally, not all words can be found in a phonetic dictionary: the pronunciation of 

new words and of many proper names has to be deduced from the one of already 

known words.  

Clearly, points 1 and 2 heavily rely on a preliminary morphosyntactic (and possibly 

semantic) analysis of the sentences to read. To a lesser extent, it also happens to be 

the case for point 3 as well, since reduction processes are not only a matter of 

context -sensitive phonation, but they also rely on morphological structure and on 

word grouping, that is on morphosyntax. Point 4 puts a strong demand on sentence 

analysis, whether syntactic or metrical, and point 5 can be partially solved by 

addressing morphology and/or by finding graphemic analogies between words.  

3.1.3. Prosody Generation 

The term prosody refers to certain properties of the speech signal, which are related to 

audible changes in pitch, loudness, and syllable length. Prosodic features have specific 

functions in speech communication (see Figure 2). The most apparent effect of 

prosody is that of focus. For instance, there are certain pitch events which make a 

syllable stand out within the utterance, and indirectly the word or syntactic group it 

belongs to will be highlighted as an important or new component in the meaning of 

that utterance. The presence of a focus marking may have various effects, such as 

contrast, depending on the place where it occurs, or the semantic context of the 

utterance. 
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Figure 2 Different kinds of information provided by 
intonation (lines indicate pitch movements; solid lines 
indicate stress).  
a. Focus or given/new information;  
b. Relationships between words (saw -yesterday; I-
yesterday; I-him)  
c. Finality (top) or continuation (bottom), as it appears 
on the last syllable;  
d. Segmentation of the sentence into groups of syllables.  

Although maybe less obvious, there are other, more systematic or general functions.  

Prosodic features create a segmentation of the speech chain into groups of syllables, 

or, put the other way round, they give rise to the grouping of syllables and words into 

larger chunks. Moreover, there are prosodic features, which indicate relationships 

between such groups, indicating that two or more groups of syllables are linked in 

some way. This grouping effect is hierarchical, although not necessarily identical to 

the syntactic structuring of the utterance. 

Accentuation 

Various words in a sentence are associated with accents, which are usually manifested 

as upward or downward movements of fundamental frequency. Accentuation, along 

with intonational phrasing and F0 contour computation is part of the large problem of 

prosody generation.  



 

 15 

Back to accentuation, words are typically distinguished into three groups with regard 

to their prominence. Two are accented and unaccented, and the third is cliticized. Cliticized 

words are unaccented but in addition have lost their word stress, so that they tend to 

be short in duration: in effect they behave like unstressed affixes, even though they 

are written as separate words. 

Accents are assigned primarily on the basis of broad lexical categories or parts of 

speech. Content words – nouns, verbs, and adjectives tend in general to be accented; 

function words, including auxiliary verbs and propositions tend to be unaccented; 

short function words tend to be cliticized. However, more complex accentuation 

schemes based on syntactic and semantic analysis have also been used, providing 

better results.  

Intonational Phrasing 

Most commercially developed TTS system have emphasized coverage rather than 

linguistic sophistication, by concentrating their efforts on text analysis strategies 

aimed to segment the surface structure of incoming sentences, as opposed to their 

syntactically, semantically, and pragmatically related deep structure. The resulting 

syntactic-prosodic descriptions organize sentences in terms of prosodic groups 

strongly related to phrases (and therefore also termed as minor or intermediate phrases), 

but with a very limited amount of embedding, typically a single level for these minor 

phrases as parts of higher-order prosodic phrases (also termed as major or intonational 

phrases, which can be seen as a prosodic-syntactic equivalent for clauses) and a second 

one for these major phrases as parts of sentences, to the extent that the related major 

phrase boundaries can be safely obtained from relatively simple text analysis methods. 

In other words, they focus on obtaining an acceptable segmentation and translate it 

into the continuation or finality marks of Figure 2.c , but ignore the relationships or 

contrastive meaning of Figure 2.a and b.  

Liberman and Church, for instance, have reported on such a very crude algorithm, 

termed as the chinks 'n chunks algorithm, in which prosodic phrases (which they call f-

groups) are accounted for by the simple regular rule:  
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a (minor) prosodic phrase = a sequence of chinks followed by a sequence of chunks 

in which chinks and chunks belong to sets of words which basically correspond to 

function and content words, respectively, with the difference that objective pronouns 

(like 'him' or 'them') are seen as chunks and that tensed verb forms (such as 'produced') 

are considered as chinks. They show that this approach produces efficient grouping in 

most cases, slightly better actually than the simpler decomposition into sequences of 

function and content words, as shown in the example below:  

function words / content words chinks / chunks 

I asked I asked them  

them if they were going home if they were going home 

to Idaho to Idaho 

and they said yes and they said yes 

and anticipated and anticipated one more stop 

one more stop before getting home  

before getting home    
  

Other, more sophisticated approaches include syntax-based expert systems, and 

automatic, corpus-based methods as with the classification and regression tree (CART) 

techniques. 

Segmental Durations 

Once the phonemes to be produced by the synthesizer have been computed, it is 

necessary to decide how long to make each one. What duration to assign to a 

phonemic segment depends upon many factors, including:  

• The identity of the segment in question.  

• The stress of the syllable of which the segment is a member 

• Whether the syllable of which the segment is a member bears an accent. 

• The quality of the surrounding segments. 

• The position of the segment in the phrase. 



 

 17 

Some methods involve the use of duration rules, which are rules of the form “if the 

segment is X and it is in phrase-final position, then lengthen X by n msec”. These 

rules can be formalized explicitly in terms of duration models, which are mathematical 

expressions prescribing how the various conditioning factors are to be used in 

computing the durations of segments. We could even use exploratory data analysis, to 

arrive to models whose predictions show a good fit to durations from a corpus of 

labeled speech.  

Sentence Intonation 

Information such as: 

• The syllables in the utterance to be stressed, as computed by the accentuation 

and the pronunciation module.  

• The type of accents to be used, as well as the types of initial and final 

boundary tones and phrase accents.  

• The duration of the segments in the utterance. 

Sentence intonation is implemented by the F0 contour of the phrase. However, its 

generation is not straightforward either. It requires formalizing a lot of phonetic or 

phonological knowledge, either obtained from experts or automatically acquired from 

data with statistical methods. More information on this can be found in [Dutoit]. 

3.2. The DSP component 

Once the text has been transformed into phonemes, and their associated durations 

and a fundamental frequency contour have been computed, the system is ready to 

compute the speech parameters for synthesis. 

Intuitively, the operations involved in the DSP module are the computer analogue of 

dynamically controlling the articulatory muscles and the vibratory frequency of the 

vocal folds so that the output signal matches the input requirements. In order to do it 

properly, the DSP module should obviously, in some way, take articulatory 

constraints into account, since it has been known for a long time that phonetic 
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transitions are more important than stable states for the understanding of speech. 

This, in turn, can be basically achieved in two ways: 

• Explicitly, in the form of a series of rules which formally describe the influence of 

phonemes on one another;  

• Implicitly, by storing examples of phonetic transitions and co-articulations into a 

speech segment database, and using them just as they are, as ultimate acoustic 

units (i.e. in place of phonemes).  

Two main classes of TTS systems have emerged from this alternative, which quickly 

turned into synthesis philosophies given the divergences they present in their means 

and objectives: synthesis-by-rule and synthesis-by-concatenation. 

3.2.1. Rule-based synthesizers 

Rule-based synthesizers are mostly in favor with phoneticians and phonologists, as 

they constitute a cognitive, generative approach of the phonation mechanism. Rule-

based approaches are space-efficient, since they eliminate the need to store speech 

segments, and they also make it easier in principle to implement new speaker 

characteristics for different voices, as well as different phone inventories for new 

dialects and languages.  

These systems are also restrictive regarding the choice of the parametric 

representation of speech, since such schemes rely both on our understanding of the 

relation between the parameters and the acoustic signals they represent, and on our 

ability to compute the dynamics of the parameters as they move from one sound to 

another. Thus far only articulation parameters and formants have been used in rule-

based systems. 

Most such systems describe speech as the dynamic evolution of up to 60 parameters, 

mostly related to formant and anti-formant frequencies and bandwidths together with 

glottal waveforms. Clearly, the large number of (coupled) parameters complicates the 

analysis stage and tends to produce analysis errors. What is more, formant frequencies 

and bandwidths are inherently difficult to estimate from speech data. The need for 



 

 19 

intensive trials and errors, in order to cope with analysis errors, makes them time-

consuming systems to develop (several years are commonplace). Yet, the synthesis 

quality achieved up to now reveals typical buzzyness problems, which originate from 

the rules themselves: introducing a high degree of naturalness is theoretically possible, 

but the rules to do so are still to be discovered.  

Rule-based synthesizers remain, however, a potentially powerful approach to speech 

synthesis. They allow, for instance, to study speaker-dependent voice features so that 

switching from one synthetic voice into another can be achieved with the help of 

specialized rules in the rule database. Following the same idea, synthesis-by-rule 

seems to be a natural way of handling the articulatory aspects of changes in speaking 

styles (as opposed to their prosodic counterpart, which can be accounted for by 

concatenation-based synthesizers as well). No wonder then that it has been widely 

integrated into TTS systems (MITalk™ and the JSRU synthesizer for English). 

3.2.2. Concatenative synthesizers 

As opposed to rule-based ones, concatenative synthesizers possess a very limited 

knowledge of the data they handle: most of it is embedded in the segments to be 

chained up. This clearly appears in Figure 3, where all the operations that could 

indifferently be used in the context of a music synthesizer (i.e. without any explicit 

reference to the inner nature of the sounds to be processed) have been grouped into a 

sound processing block, as opposed to the upper speech processing block whose design 

requires at least some understanding of phonetics. 

Database preparation 

A series of preliminary stages have to be fulfilled before the synthesizer can produce 

its first utterance. At first, segments are chosen so as to minimize future 

concatenation problems. A combination of diphones (i.e. units that begin in the 

middle of the stable state of a phone and end in the middle of the following one), 

half-syllables, and triphones (which differ from diphones in that they include a 

complete central phone) are often chosen as speech units, since they involve most of 

the transitions and coarticulations while requiring an affordable amount of memory. 
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When a complete list of segments has emerged, a corresponding list of words is 

carefully completed, in such a way that each segment appears at least once (twice is 

better, for security). Unfavorable positions like inside stressed syllables or in strongly 

reduced (i.e. over-coarticulated) contexts, are excluded. A corpus is then digitally 

recorded and stored, and the elected segments are spotted, either manually with the 

help of signal visualization tools, or automatically thanks to segmentation algorithms, 

the decisions of which are checked and corrected interactively. A segment database 

finally centralizes the results, in the form of the segment names, waveforms, 

durations, and internal sub-splittings. In the case of diphones, for example, the 

position of the border between phones should be stored, so as to be able to modify 

the duration of one half-phone without affecting the length of the other one. 
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Figure 3 A general concatenation-based synthesizer. The 
upper left hatched block corresponds to the 
development of the synthesizer (i.e. it is processed once 
for all). Other blocks correspond to run-time operations. 
A flag indicates language-dependent operations and data. 

Segments are then often given a parametric form, in the form of a temporal sequence 

of vectors of parameters collected at the output of a speech analyzer and stored in a 
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parametric segment database. The advantage of using a speech model originates in the 

fact that: 

• Well chosen speech models allow data size reduction, an advantage which is 

hardly negligible in the context of concatenation-based synthesis given the 

amount of data to be stored. Consequently, a parametric speech coder often 

follows the analyzer.  

• A number of models explicitly separate the contributions of respectively the 

source and the vocal tract, an operation that remains helpful for the pre-synthesis 

operations: prosody matching and segments concatenation.  

Indeed, the actual task of the synthesizer is to produce, in real-time, an adequate 

sequence of concatenated segments, extracted from its parametric segment database 

and the prosody of which has been adjusted from their stored value, i.e. the 

intonation and the duration they appeared with in the original speech corpus, to the 

one imposed by the language processing module. Consequently, the respective parts 

played by the prosody matching and segments concatenation modules are 

considerably alleviated when input segments are presented in a form that allows easy 

modification of their pitch, duration, and spectral envelope, as is hardly the case with 

crude waveform samples.  

Since segments to be chained up have generally been extracted from different words, 

i.e. in different phonetic contexts, they often present amplitude and timbre 

mismatches. Even in the case of stationary vocalic sounds, for instance, a rough 

sequencing of parameters typically leads to audible discontinuities. These can be 

coped with during the constitution of the synthesis segments database, thanks to an 

equalization in which related endings of segments are imposed similar amplitude 

spectra, the difference being distributed on their neighborhood. In practice, however, 

this operation is restricted to amplitude parameters: the equalization stage smoothly 

modifies the energy levels at the beginning and at the end of segments, in such a way 

as to eliminate amplitude mismatches (by setting the energy of all the phones of a 

given phoneme to their average value). In contrast, timbre conflicts are better tackled 

at run-time, by smoothing individual couples of segments when necessary rather than 



 

 22 

equalizing them once for all, so that some of the phonetic variability naturally 

introduced by co-articulation is still maintained. In practice, amplitude equalization 

can be performed either before or after speech analysis (i.e. on crude samples or on 

speech parameters). 

Once the parametric segment database has been completed, synthesis itself can begin.  

Speech synthesis 

A sequence of segments is first deduced from the phonemic input of the synthesizer, 

in a block termed as segment list generation in Figure 3, which interfaces the NLP and 

DSP modules. Once prosodic events have been correctly assigned to individual 

segments, the prosody matching module queries the synthesis segment database for the 

actual parameters, adequately encoded, of the elementary sounds to be used, and 

adapts them one by one to the required prosody. The segment concatenation block is 

then in charge of dynamically matching segments to one another, by smoothing 

discontinuities. Here again, an adequate modeling of speech is highly profitable, 

provided simple interpolation schemes performed on its parameters approximately 

correspond to smooth acoustical transitions between sounds. The resulting stream of 

parameters is finally presented at the input of a synthesis block, the exact counterpart 

of the analysis one. Its task is to produce speech.  

Segmental quality 

The efficiency of concatenative synthesizers to produce high quality speech is mainly 

subordinated to:  

1. The type of segments chosen.  

Segments should obviously exhibit some basic properties:  

• They should account for as many co-articulatory effects as possible.  

• Given the restricted smoothing capabilities of the concatenation block, 

they should be easily connectable.  

• Their number and length should be kept as small as possible.  
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• On the other hand, longer units decrease the density of concatenation 

points, therefore providing better speech quality. Similarly, an obvious 

way of accounting for articulatory phenomena is to provide many variants 

for each phoneme. This is clearly in contradiction with the limited 

memory constraint. Some trade-off is necessary. Diphones are often 

chosen. They are not too numerous (about 1200 for French, including 

lots of phoneme sequences that a re only encountered at word boundaries, 

for 3 minutes of speech, i.e. approximately 5 Mbytes of 16 bits samples at 

16 kHz) and they do incorporate most phonetic transitions. No wonder 

then that they have been extensively used. They imply, however, a high 

density of concatenation points (one per phoneme), which reinforces the 

importance of an efficient concatenation algorithm. Besides, they can only 

partially account for the many co-articulatory effects of a spoken 

language, since these often affect a whole phone rather than just its right 

or left halves independently. Such effects are especially patent when 

somewhat transient phones, such as liquids and (worst of all) semi-

vowels, are to be connected to each other. Hence the use of some larger 

units as well, such as triphones.  

2. The model of speech signal, to which the analysis and synthesis algorithms refer.  

 

The models used in the context of concatenative synthesis can be roughly classified 

into two groups, depending on their relationship with the actual phonation process. 

Production models provide mathematical substitutes for the part respectively played by 

vocal folds, nasal and vocal tracts, and by the lips radiation. Their most representative 

members are Linear Prediction Coding (LPC) synthesizers, and the formant 

synthesizers we mentioned in Section 3.2.1. Rule-based synthesizers. On the contrary, 

phenomenological models intentionally discard any reference to the human production 

mechanism. Among these pure digital signal processing tools, spectral and time-

domain approaches are increasingly encountered in TTS systems. Two leading such 

models exist: the hybrid Harmonic/Stochastic (H/S) model of [Abrantes] and the 

Time-Domain Pitch-Synchronous-OveraLap-Add (TD-PSOLA) one [Moulines & 
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Charpentier]. The latter is a time-domain algorithm: it virtually uses no speech explicit 

speech model. It exhibits very interesting practical features: a very high speech quality 

(the best currently available) combined with a very low computational cost (7 

operations per sample on the average). The hybrid Harmonic/stochastic model is 

intrinsically more powerful than the TD-PSOLA one, but it is also about ten times 

more computationally intensive. PSOLA synthesizers are now widely used in the 

speech synthesis community. The recently developed MBROLA algorithm [Dutoit] 

even provides a time-domain algorithm which exhibits the very efficient smoothing 

capabilities of the H/S model (for the spectral envelope mismatches that cannot be 

avoided at concatenation points) as well as its very high data compression ratios (up 

to 10 with almost no additional computational cost) while keeping the computational 

complexity of PSOLA. 
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C h a p t e r  3  

SYNTHESIS BY WORD CONCATENATION 

1. INTRODUCTION 

Common speech synthesis systems are based on predefined units, whose 

concatenation is obligatory. Small speech units such as diphones or demisyllables 

recorded from a human speaker are concatenated to build the synthetic utterance. 

The prosodic structure is modeled on the basis of artificial F0-, energy-, and duration 

parameters, which are applied to the synthesis units in order to build the synthetic 

utterance. This results in synthetic speech for unrestricted domains, but the 

synthesized speech has a machine-like quality. However, in many cases, synthesis for 

unrestricted domains is not necessary, because those speech-synthesis applications 

operate on restricted domains.  

Recent synthesis approaches are also based on the concatenation of recorded units, 

but the concatenation is not obligatory. In addition, instead of modeling prosodic 

parameters explicitly, the inherent prosodic structure of the recorded speech signals is 

used. This implies that the speech corpus contains each synthesis unit in different 

prosodic settings. Furthermore, a method to select the appropriate unit sequence to 

be synthesized is necessary. Usually the synthetic speech generated with these 

approaches is judged to be more natural than that from diphone synthesis.  

Our method is based on the observation that an utterance sounds more natural when 

it is completely stored in the corpus. In that case, no concatenation of units is 

necessary, just a simple playback of the recorded utterance is sufficient. From this 

observation follows the fact that larger units yield better synthetic speech. But of 

course it is impossible to record all possible utterances for a specific task. For this, we 

have decided to use words as our basic synthesis units. 
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 The Weather Forecast domain features approximately 400 words. The recording of 

each word in the domain in only one instance would have resulted in poor synthesis 

quality, because the pronunciation variations of words depending of their context are 

not modeled. To obtain words in their natural surroundings, a number of sentences 

are chosen from actual weather forecast transcriptions, where all needed words are 

included with sufficient variations. Those sentences are spoken by a human speaker 

and comprise our speech corpus.  

At first sight, our method looks simple. But our problem is the following:  

When is a recorded unit appropriate to be used at a given place in the 
synthetic utterance? 

We have observed that few criteria are sufficient to achieve close to naturally 

sounding speech synthesis. Additionally, the time for creating and annotating the 

corpus as well as computing cost for the selection algorithm is smaller than in 

approaches that use phonemes or other small synthesis units. 

2. CORPUS CONSTRUCTION 

2.1. Corpus Definition 

The success of the speech synthesis schema outlined above, crucially depends on an 

effective corpus design, such that instances of all necessary units can be found in 

matching prosodic context. 

The domain that the application is built to cover is limited, but still quite large when 

compared to the domains of other closed-vocabulary tasks, such as the synthesis of 

telephone numbers. Its difficulty lies in the fact that it involves the synthesis of whole 

sentences, rather than certain words within a sentence. However, there is some form 

of syntactic uniformity within that domain, since the definition of the domain was 

based on weather forecast reports produced by the National Meteorological Agency 

(EMY).  
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The majority of print- and electronic media use these forecasts, almost without any 

modification, to report on the near future’s weather conditions. Having been 

produced by a single government agency, these reports follow common guidelines, 

regarding their syntax.  

We will explain how we took advantage of this observation during the task of the 

corpus definition.  

2.1.1. The Weather Forecast Report 

The Weather Forecast, published daily by EMY, and used by the majority of print 

and electronic media with almost no modification at all, has the following form: 

Ge????? pa?at???se??, p??e?d?p???se??. 

    <Ge???? ? a?a?t???st???> 

Ge???? p?????s? ??a s?µe?a <? µ??a> 

    <?a????? F a ???µe?a> 

    <??tas? ??e????s? ???µ??> 

Ge???? p?????s? ??a a???? <? µ??a> 

    <?a????? F a ???µe?a> 

    <??tas? ??e????s? ???µ??> 

    <Te?µ???as?a> 

    <? ?at?t?ta> 

??p???? p?????se??. 

    ????a. 

    G?a s?µe?a <? µ??a>  

        <?a????? F a ???µe?a> 

        <??tas? ??e????s? ???µ??> 
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    G?a a???? <? µ??a>  

        <?a????? F a ???µe?a> 

        <??tas? ??e????s? ???µ??> 

        <Te?µ???as?a> 

    Tessa??????. 

    G?a s?µe?a <? µ??a>  

        <?a????? F a ???µe?a> 

        <??tas? ??e????s? ???µ??> 

    G?a a???? <? µ??a>  

        <?a????? F a ???µe?a> 

        <??tas? ??e????s? ???µ??> 

        <Te?µ???as?a > 

It is obvious that the report has an inherent structure, containing fields of common 

meaning and syntax that are found in several parts of the report. For example, the 

<Temperature> field can be found both in the <General Forecast> and the <Local 

Forecast> part of the report, and within the later, both in the <Athens Forecast> and 

the <Thessalonica Forecast> sub-parts. The syntax of the <Temperature> field is 

common to all its instances within the report. This means that we can use any of the 

four sentences describing the temperature and rearrange them randomly in their 

positions in the report, and still get a meaningful weather forecast. 

From the schema that we are presenting above, we can associate the information that 

lies within the forecast with one of the following categories: 

• General Characteristics 

• Weather Phenomena 

• Wind Direction – Intensity 
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• Temperature 

• Visibility 

We have used this observation in the selection process of the sentences that were to 

be used for the creation of the Corpus.  

We began by assigning the sentences of the original data set into one of the 

aforementioned categories. Then, we used the sentences belonging to each category 

in order to determine that category’s dictionary. For instance, the sentences that lie 

within the temperature category were extracted from the original data set and used to 

determine the vocabulary used to describe a day’s temperature variations. 

2.1.2. Selection of Sentences 

The creation of the corpus, the set of sentences to be recorded and later segmented 

into the words that they contain, is crucial to the performance of our application. 

After all, the fragments extracted from this process are the basic units used to 

synthesize the output of our TTS system. It is the efficiency and the quality of the 

Corpus Creation procedure that largely defines the success of our application.  

The sentences that were finally selected were chosen from a set of transcribed 

weather forecast reports, covering a week of each month during the period October 

1999 – September 2000. These reports were kindly provided by the National 

Meteorological Agency (EMY). For these data, the following information is given:  

Total Number of Sentences 1676 
Total Number of Word Instances 19138 
Total Number of Distinct Words 389 

Table 1 Statistics for the Original Data Set 

Corpus Characteristics 

The following requirements were to be met by the corpus: 

1. The corpus should not contain an excessive number of sentences. 
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Since only one human operator performs the segmentation and the phonetic 

annotation, the size of the corpus should be contained, as much as the quality of 

the output is not severely deteriorated. 

2. The corpus must contain all the words that are used in our application. 

We need at least one recorded instance of all words that may be found in the 

application.  

3. The corpus should contain these words in as many contexts as possible. 

Multiple recorded instances of commonly used words should be available to the 

application, in order to incorporate into the corpus as many prosodic features as 

possible. 

Selection Strategy  

In practice, we were facing the following problem: 

Define a procedure for the selection of the most representative sentences 
to be used for the creation of the Corpus. 

With the term representative we wish to describe a sentence that, when added to the 

collection of sentences already chosen, introduces as much new information, in the 

form of words, either new or ones found in a context that has not yet been observed, 

as possible.  

The strategy used for the selection procedure was simple: 

Given the list of all distinct words that comprise the vocabulary of the 
Weather Reports, add into the Corpus the sentence that contains most 
of these words. After that, delete these words from the list, repeating the 
above procedure until the list is empty. 

Optimizations 

The purpose for this procedure is the creation of a corpus of sentences that contain 

the same set of words as the original data set, and at the same time the instances of 
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these words exhibit such diversity that account for as many prosodic phenomena as 

possible. 

We chose the sentences to add into the corpus rather not from the whole data set, 

but from the context specific subsets that we have identified during the analysis of the 

weather forecast reports (see also Section 2.1.1. The Weather Forecast Report). There are 

two reasons that have led us to this decision:  

1. The dictionary size of each subset is considerably smaller than that of the whole 

data set. 

2. Each subset has a different syntax, and the context in which a certain word can be 

observed, varies according to this syntax. 

This splicing of the selection procedure further expands the size of the final corpus. 

However, since more intra -sentence phenomena are taken into account, we will 

finally be getting better quality for the synthesized speech.  

Finally, we wanted every word to be available in the corpus in all its forms. This 

means that we consider each orthographic representation of the same word, to be a 

different word, e.g. “µ??a?” and “µ??a”. In addition to that we also take into 

consideration both the relative position of the word in the sentence, and any 

punctuation marks. We do that since the pronunciation of that same word is different 

in each of the cases described above. 

Word Word Instances 
xyz 
xyz, 
xyz. xyz 
Xyz 

Table 2 Words and "Words" 

From now on, when referring to a word (and later word class) we will be referring to a 

specific orthographic, case sensitive word instance, taking into consideration its 

association with any punctuation marks. Using that definition, the four word 

instances found in the second column of Table 2 are considered as distinct words. 
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This categorization has the effect of further expanding the corpus’s size, but with the 

effect of achieving better quality of the synthetic speech.  

2.1.3. The final Corpus 

As we have already stated, the original data set contained almost 20,000 words and 

some 1,700 sentences. 

The selection procedure that we have described produced a corpus of sentences that 

were used for the extraction of the basic synthesis units of our application, and that 

has the following statistical characteristics. 

 Original Data Set Corpus Sentences 

Distinct Words 521 521 

Total Words 19138 2494 

Instances/Word 36.73 4.79 

Total Sentences 1676 163 

Words/Sentence 11.42 15.30 
Table 3 Statistical Analysis of the Corpus 

An analysis of the words found in the corpus’s sentences shows that each word has at 

least two instances. The majority of words (98%) have at least three instances, while 

there exist certain words, such as articles, conjunctions and key words that can be 

found at least 50 times. 

2.2. Recording Phase  

The speaker was instructed to read the sentences well articulated but as naturally as 

possible thus resulting in context -specific phonetic assimilation.  

The sentences were recorded in laboratory environment, with low levels of noise, and 

were stored digitally using PCM coding at 16,000Hz with 16bits/sample. The corpus 

had a size of 34,066,196 bytes, equal to 1064.5 sec of speech.  
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2.3. Post-Recording Phase  

The post-recording phase can be divided into the following four stages:  

1. Quality check 

2. Energy Normalization 

3. Segmentation 

4. Prosodic Labeling 

Quality Check 

In the post-recording phase, the material was object to auditive- and acoustic quality 

checks. Some sentences were recorded again, as they did not meet our quality 

standards regarding noise, articulation clarity, and sentence intonation.  

Energy Normalization 

Although the speaker had been instructed to read the Corpus’s sentences without 

alterations in the volume of his voice among these sentences, early quality checks had 

shown that the volume among certain sentences had some fluctuation. Thus, all 

sentences where subjected to mean energy normalization. Using the wavdynanorm 

utility of the Nuance® v.7.0.2 Speech Recognition System, all the recorded sentences 

were submitted to DC offset removal and average energy normalization, with a target 

output level of -17.6 dBm.  

Segmentation 

After that, the corpus was segmented into words, both manually and automatically. 

The automatic segmentation was made possible by using the batchrec utility of the 

Nuance® v.7.0.2 Speech Recognition System, in the force-align mode. batchrec 

was used to perform recognition on the set of the Corpus’s Sentences, given the 

transcriptions of these sentences. Thus, an output file was produced, containing, 

among others, information on the exact locations of words and pauses in the 

recorded sentences. Using this alignment information, the sentences were segmented 

into the words they contain.  
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Prosodic Labeling 

In the last stage of corpus construction, the material had to be labeled according to 

the prosodic criteria, which are later taken into account by the unit selection (see 

Section 3.3. Selection Criteria). Preliminary tests showed that the following labels 

influencing the prosodic and segmental form are necessary for a naturally sounding 

synthesis based upon word concatenation.  

1. Utterance position (initial / rnedial / final) 

2. Sentence modality (interrogative / declarative) 

3. Reduction 

4. Coarticulatory effects 

Utterance Position 

It has been found that words that are used in a position different than the position 

they are originally found in the corpus greatly deteriorate the quality of the 

synthesized sentence. This information was utilized to make sure that, whenever 

possible, a word should be used in the position that was originally found. 

Position labeling is performed automatically by using the information provided in the 

name of each fragment (see Segment Naming Policy in Section 3.1.1. Word Segment 

Database). 

Sentence Modality 

Modality labeling, although supported by our application, was not necessary in the 

domain of Weather Forecasts, since all the sentences in the domain are declarative. 

Reduction 

For reduction labeling the following definition was used:  

A phonological word is reduced if it deviates from a canonical form a 
native speaker would judge as an acceptable version if the word were 
spoken in isolation.  



 

 35 

This – certainly debatable – definition applies to the phenomena of both reduction, 

marked as some kind of target undershoot, and contextual assimilation.  

In order to guarantee the comprehensibility of the synthesized utterance unreduced 

words are preferred by unit selection. An exception to this rule is only given if the 

word to be synthesized is available in a matching context. It is obvious that the 

reduction property for each word needed to be determined auditively, something 

that was actually done for all segments in the Corpus. 

Coarticulatory Effects 

Coarticulatory phenomena are due to the fact that each articulator moves 

continuously from the realization of one phone to the next. They appear even in the 

most careful speech. In our case we were interested only to the coarticulatory 

phenomena observed at the edges of words, since they affect the smoothness of the 

transitions from one word to the next, and thus need to be taken into account during 

the selection procedure.  

Coarticulatory labeling consists of keeping, for each segment in the Corpus, the 

phonemes that are found at the edges of the word. This means that we are keeping 

the first and last phoneme of the considered word and the last and first phoneme of 

the words preceding and following it, respectively, in the considered sentence of the 

Corpus (for more information see Section 3.3.1. Cost Functions) 

3. UNIT SELECTION 

Our corpus contains identical words in different lexical or prosodic contexts. As in 

object oriented programming languages we will call the orthographic form of a word 

and its associated description a class, a recorded word and its concrete description an 

instance.  

For each unit class given by the utterance description there exist several unit 

instances. All possible combinations of these instances, which will form the correct 

synthetic utterance, are potential solutions to our problem. We have to decide which 
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combination of unit instances is the best. We do this by evaluating a cost function for 

each unit combination. The solution we take is that sequence of units whose value of 

the cost function is minimal.  

3.1. Using Graphs for Unit Selection 

A formal way of minimizing the value of the cost function over all possible sequences 

of word instances for a given sentence is given by graph theory. After a short 

introduction to graphs, we will show that the problem of finding the best sequence of 

word instances to be used for the synthesis of a given sentence can be viewed as the 

problem of identifying the shortest path in a directed, weighted graph.  

3.1.1. Definitions 

A graph G = (V, E) consists of a set of vertices V and edges E. 

Each edge is a pair (v, w), where v, w ∈ V. If the pair is ordered, then the graph is 

called directed.  

 

3 

2 

6 7 

1 

5 4 

 

Figure 4 A directed graph 

Vertex w is adjacent to v, if and only if v, w ∈ E. In an undirected graph with edge (v,w) 

and hence (w, v), v is adjacent to w and vice versa. 

A path in a graph is a sequence of vertices w1, w2, …, wN such that (w i, w i+1) ∈ E for 1 

≤ I < N. The length of such a path is the number of edges on the path, which is equal 
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to N – 1. We allow a path from a vertex to itself; if this path contains no edges, then 

the path length is 0.  

A simple path is a path such that all the vertices are distinct, except that the first and the 

last could be the same. 

A cycle in a directed graph is a path of length at least 1, such that w1 = wN; this cycle is 

simple if the path is simple. For an undirected graph we require that the edges be 

distinct. Graphs that have no cycles are called acyclic. 

An undirected graph is connected if there is a path from every vertex to every other 

vertex. A directed graph with this property is called strongly connected. If a directed 

graph is not strongly connected, but the underlying undirected graph is connected, is 

called weakly connected. 

A complete graph is a graph in which there is an edge between every pair of vertices. 

3.1.2. Representation of Graphs 

We are only interested in directed graphs, since we will be using them in this 

application. Suppose that we have the graph of Figure 4, which represents 7 vertices 

and 12 edges. 

A simple way to represent a graph is to use a two-dimensional array. This is known as 

adjacency matrix representation. For each edge (u, v) we set A[u][v] to true; otherwise 

the entry in the array is false. If the edge has a weight associated with it, then we can 

set A[u][v] equal to the weight and use either a very large or a very small weight as a 

sentinel to indicate non-existent edges. 

Although this has the merit of extreme simplicity, the space requirement is T(|V|2), 

which can be prohibitive if the graph does not have many edges. An adjacency matrix 

is an appropriate representation if the graph is dense: 

( )2
VE Θ=  
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In most of the applications that we may find, this is not true. If the graph is not 

dense, in other words, if the graph is sparse, a better solution is an adjacency list 

representation. For each vertex, we keep a list of all adjacent vertices. The space 

requirement is then  

O(|E|+|V|) 

which is linear in the size of the graph.  

 2 4 3 

4 3 

6 

6 7 3 

4 7 

6 

1 

2 

3 

4 

5 

6 

7 
 

Figure 5 Adjacency List representation for the Graph in 
Figure 4 

Adjacency lists are the standard way to represent graphs. A common requirement in 

graph algorithms is to find all vertices adjacent to some given vertex v, and this can be 

done, in time proportional to the number of such vertices found, by a simple scan 

down the appropriate adjacency list. 

3.2. Applying Graph Theory to the Unit Selection Problem 

To apply graph theory to our problem we regard all word instances as nodes of a 

graph. The edges of the graph then define the possible concatenations of the units. 

Because this graph looks very similar to a multi-layer perceptron network, we call all 

instances that belong to the same unit class a layer. It is easy to see that edges are 

only possible between subsequent layers and have a direction, which corresponds to 
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the order of time in the utterance. Each node in the first layer can be viewed as a 

possible start of the utterance. The same will happen in the last layer where each node 

is a possible end of the utterance. Because such a large number of start and end 

points are not practical we add two dummy nodes called start and end node to the 

graph. Then the start node is connected to each node of the first layer, and the each 

node of the last layer is connected to the end node no.  

Supposing that we want to create the sentence “WordClass_1 WordClass_2”, the 

graph shown in Figure 6 needs to be constructed.  

 

Word_1_1 
Word_1_2 
Word_1_3 

WordClass_1 WordClass_2 

Word_2_1 
Word_2_2 
Word_2_3 

Word_1_1 

Word_1_2 

Word_1_3 

Word_2_1 

Word_2_2

Word_2_3 

Start End 

Layer 2 Layer 1 
 

Figure 6 Graph of a Two-Word Sentence 

Now we are able to define a path as a set of nodes connected by edges. The set of 

the highlighted nodes and edges in Figure 6 is a valid path.  

Next we add a number to each edge in the graph. This number is the weighted sum 

given from a set of cost functions, and is called edge cost. The cost of a path is the 

sum of the values associated to the edges. Out aim is to find, among all paths 

containing the start and end node, the one that has the minimal cost. The path with 

minimal cost is called shortest path.  
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The reader may also want to check Section 1.1. Background in the Appendices, for a 

more formal definition of the problem.  

3.2.1. Types of Costs 

In our synthesis problem we have to distinguish between two types of costs. The first 

type, called unit costs, describes the usability of units without consideration of the 

unit instances in the neighboring layers. This might consist of values like the deviation 

between predicted and real duration of a unit instance. The second cost type, called 

transition costs, describes the transition between successive unit instances, like 

smoothness criteria for energy or F0, or the consideration of the co-articulation 

between units in different layers.  

There exist a lot of ways to apply the unit costs to the graph. In the Graph Creation 

file (see also Section 3.3.2. Graph Creation Unit), primarily for debugging reasons, we 

keep five cost fields for each edge in the input file used for the creation of the graph, 

each one representing one of the unit- and the transition costs described below. 

However, only the sum of these costs for each edge is finally stored in the Graph, as 

it is the sum that actually determines the weight of the edge. 

3.3. Selection Criteria  

Our knowledge about the construction of the synthetic utterance is associated with 

numerical values. For this reason we tend to use very simple functions to translate a 

property of a unit instance into a numerical value. A simple form of such a function is 

to do differentiation by cases: Assign cost 0, if the unit has the property, else assign 

cost 1. A set of those simple functions in conjunction with the determination of a 

shortest path forms a very complex rule system. It turns out that we need not 

understand all the complex dependencies implied by the cost functions. In most cases 

it is only necessary to add facts as new cost functions.  

3.3.1. Cost Functions 

On the word level the following cost functions are used:  
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• Concatenation Cost 

• Coarticulation Cost 

• Word Reduction Cost 

• Word Position Cost 

• Sentence Modality Cost 

Concatenation Cost  

If two units connected by an edge are not spoken consecutively in the corpus, 1 is 

added to the edge cost. Otherwise, no costs are assigned.  

Coarticulation Cost  

Modeling coarticulation for a given sequence of two words is done by comparing the 

last phoneme of the first word with the first phoneme of the second word.  

We have to distinguish between the word sequence in the corpus and the word 

sequence we will synthesize. For each word in the corpus four phonemes (p, s, e, n) 

are additionally stored in our corpus description 

p denotes the last phoneme of the previous word, 

s the first phoneme of the considered word,  

e the last phoneme of the considered word, and  

n the first phoneme of next word.  

For two unit classes u l, u2 connected by an edge, the expression  

0.5·Req(ul.e, u2.p) + 0.5·Req(ul.n, u2.s) 

bound by the interval (0, 1) is evaluated. The function Req() defines a similarity 

relation for coarticulation between phonemes. The value of this expression is added 

to the edge.  

The method that we use for the evaluation of the coarticulation cost function is based 

on the evaluation of the co-occurrence level of a given combination of phonemes. 

Suppose that we want to synthesize the following sentence fragment: 
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“e??a? ?a???” 

Suppose that we cannot find this fragment in the Weather Forecast Database. 

However, we do have the following two words recorded consecutively: 

“e??a? ????a ” 

We also have “e??a?” recorded in sequence with other words. The problem that we 

are facing is which instance of “e??a?” to use to form the sentence fragment “e??a? 

?a???”. 

We can make this decision by determining the level of similarity of the word “e??a?” 

when recorded before “?a???” and “????a ”. We can the compare it to the similarity 

of the other instances of “e??a?”, and use the one that matches, phonetically, best with 

“?a???”. 

The problem of the similarity of the edges of those previous two words can be 

reduced to the evaluation of the similarity of the following biphones: 

e??a? ?a??? e??a? ????a  
[?]k [E]x 

Using the clustering information for the triphones observed in Greek, we may get an 

indication of the similarity of these biphones by examining the statistics for the 

following classes of triphones: 

*[?]x-2 and *[E]k-2 

where “-2” denotes the final state of the HMMs describing each class of triphones. 

Thus, by computing the quantity: 

( ) [ ]( ) [ ]( )∑
∀

− −⋅−=
icluster  

2 2*#2*#, iiE kExEkxc  
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we can get an indication of the level of co-occurrence for the classes of triphones 

*[E]x and *[E]c. These are the triphones with [E] as the central phoneme, followed by 

x and c respectively, regardless of the phoneme preceding [E].  

By computing the sum: 

( ) ( )∑
≠

−− =

2
2,

222 ,

px
px

EE pxcxC  

we get the co-occurrences’ sum of all the combinations between the *[E]x class of 

triphones and all the other triphones, that have E as their central phoneme. 

Therefore, a metric for the co-occurrence of the two phonemes can be obtained by 

dividing these two quantities, yielding a value ranging from 0 to 1. 

( ) ( ) ( )
( )xC

kxc
kxRsunuR

E

E

2

2
21

,
,.,.

−

−==  

The equations used to calculate the coarticulation cost for any given pair of word 

instances, have the following general form:  

( ) ( )sunuRpueuRCost eqeq .,.5.0.,.5.0 2121 +=  

where: 
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and 

( )
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( )
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  ( ) ( )∑
≠

=
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1

11
,..  

Word Reduction Cost  

If a word instance has the property reduction (see also Section 2.3. Post-Recording Phase) a 

cost of 1.9 is added to the interconnecting edge of the unit. Otherwise no cost is 

assigned.  

In conjunction with the Concatenation Cost this will lead to the selection of a reduced 

word only if the left and right words are the left and right neighbors of the reduced 

word in the corpus.  

Word Position Cost 

The position of a word in an utterance may influence its prosodic structure. At least 

three different word positions have to be differentiated for spoken Greek. These are:  

1. initial 

2. final 

3. neither 1) nor 2).  

Normally we add 1 to the interconnecting edge of the unit if the requested word 

position is not equal to the denoted word position of the word instance. However, 

the quality of the synthetic speech decreases dramatically if a word instance with word 

position 2) is selected for a wrong position in the synthetic utterance. To avoid this 

case we add 3 to such an edge instead of 1.  
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Sentence Modality Cost  

The sentence modality cost should distinguish between interrogative and declarative 

utterances. The F0 curve is the most important perceptual cue for this distinction. A 

final fall of the F0-curve will lead to a declarative intonation a final rise to an 

interrogative one. In our experience the F0 curve of the last word is the primary 

indicator for the impression of sentence modality. For that reason each word in our 

corpus is labeled with a sentence modality attribute out of the set [i, d, u], where i 

denotes an interrogative, d denotes a declarative and u denotes an unknown F0 curve. 

The synthesis input contains the sentence modality information so that a simple 

comparison between the requested and instance inherent modality will lead to the 

necessary cost function. Therefore, 0 is assigned to an interconnecting edge if the 

modalities match, otherwise 1.  

The cost terms 1) and 2) belong to the transition costs, and 3) to 5) belong to the 

unit costs.  

The following table summarizes the usage and the punitive costs assigned by the cost 

functions used for the unit selection problem.  

Cost Function Punitive Cost Comment 

Concatenation 1 Words not found consecutively in corpus 

Coarticulation c ∈ [0, 1] Evaluated by expression  
Req(ul.e, u2.p)+Req(ul.n, u2.s) 

Word Reduction 1.9 Word has the reduction property 

Word Position 1 or 3 Applied to words found in different position. 

Sentence Modality 1 Word modalities do not match.  
Table 4 Cost Functions for the Unit Selection Problem 

3.4. Shortest path algorithm  

Selecting a path between two nodes of a weighted graph where the sum of weights 

assigned to the edges is minimal under all paths is a common problem in graph 

theory.  
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The input to a weighted shortest path algorithm is a weighted directed graph: 

associated with each edge (v i, v j) is a cost ci,j to traverse the edge. The cost of a path p 

= {v1v2…vN} is 

( ) ∑
−

=
+=

1

1
1,

N

i
iicpC  

This is referred to as the weighted path length.  

The shortest path weight from u to v is  

( ) ( ){ }




∞
→

=
otherwise

  to frompath  a is  thereif:min
,

vuvupw
vu

p

δ  

The shortest path from vertex u to vertex v is then defined as any path p with weight 

( ) ( )vupw ,δ=  

The identification of the shortest-path in the graph representing the possible 

concatenation options, given the initial vertex, is a classic single source shortest-

path problem.  

Single Source Shortest-Path Problem 

Given as input a weighted graph, G = (V, E), and a distinguished 
vertex, s, find the shortest weighted path from s to every other vertex in 
G. 

By considering only the shortest paths initiating at Start node of the graph, the 

algorithm would provide us with the solution to the problem of finding the shortest 

weighted path from the Start node to every other vertex in the Graph, including the 

End node.  
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We have chosen to use Dijkstra’s algorithm in order to solve the weighted shortest-

path problem. This algorithm assumes that there are no negative edges. In our graph, 

all edges have costs equal to or greater than zero, so the algorithm can be used.  

The running time for this algorithm is O(|E|log|V|) when implemented with 

reasonable data structures. More information of the idea behind the algorithm and its 

efficiency analysis can be found in Section 1. Single-Source Shortest Paths in the 

Appendices. 

4. SIGNAL MANIPULATION  

The average energy of the words in our corpus is considered during the recording 

process. But depending of the word context in the corpus there might be energy 

deviations at the concatenation points in the synthetic utterance. These deviations 

sound like plosives and disturb the natural sound of the synthetic utterance. To avoid 

this we do a simple energy smoothing operation on all words except the ones that are 

consecutively spoken in the corpus. Depending on the context just the left or right 

half of a 640-point Hamming window (thus applied to 20msec of speech signal) is 

multiplied with the samples near the left or right boundary of a word unit before 

concatenation is done.  
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C h a p t e r  4  

IMPLEMENTATION ISSUES 

1. INTRODUCTION 

In the previous chapter, we have presented the general guidelines of our approach to 

the problem of speech synthesis by word concatenation. However, we have neither 

analyzed most of the details of the procedure, nor explained our reasoning for most 

of our decisions at the technical level.  

In this chapter we are going to provide insight to these technical aspects of our work, 

aiding the reader to understand our line of thinking that has lead us to this approach 

of the synthesis by concatenation problem.  

2. CORPUS PREPARATION 

2.1. Corpus Selection 

The selection process of the sentences to form the corpus of the Weather Report 

Database, among those available to us in the material provided by EMY, can be 

described as follows: 

Define a procedure for the selection of the most representative sentences 
to be used for the creation of the Corpus. 

The term representative is used to describe a sentence that, when added to the collection 

of sentences already chosen, introduces as much new information, in the form of 

words, either new or ones found in a context that has not yet been observed, as 

possible. 
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2.1.1. Corpus Selection Tools 

In selecting these sentences, we were greatly assisted by the use of an implementation 

of a Concordance. A concordance of a file is a listing that contains all the words of 

that file, along with the line number on which the word occurs. So, for example, the 

following file: 

Line No  

1 This is a line. 

2 Another line follows the previous one. 

3 One line. 
Table 5 Sample File 

has the following concordance: 

a 1 

Another 2 
follows 2 

is 1 

line 1,3 
line. 2 

One 3 
one. 2 

previous 2 

the 2 
This 1 

Table 6 Concordance of the sample file 

We can use the concordance as an indication of the level of information of each 

sentence. Getting the concordance of the concordance of a given file does this. We 

will refer to the concordance of the original file as a first level concordance, and to the 

concordance of a first level concordance as a second level concordance. 

First we alter the utility to be able to print the number of instances of a word in a file, 

rather than the lines where the word is found on. As we have already stated, the 
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concordance of the file contains all words in the file, along with the line numbers 

where they are found. Therefore, the second level concordance contains the line 

numbers of the original file and the line numbers where they are found in the 

concordance. By using the previous example, and by printing the counts rather than 

the line numbers, we get this listing:  

1 4 

2 6 
3 2 

a 1 
Another 1 

follows 1 

is 1 
line 1 

line. 1 

One 1 
one. 1 

previous 1 
the 1 

This 1 
Table 7 Second Level Concordance of the Sample File 

We just ignore the words – there is no use for them, since there is obviously only one 

occurrence of each word in the first level concordance – and concentrate on the first 

three lines. Each line contains two numbers. The first one is the number of a line 

from the original file. The second one is the count of the instances of that number 

(line) in the first level concordance, i.e. the number of words found in that line 

(sentence). Therefore, by inspection of the second level concordance we can get an 

indication of the line (sentence) that contains most new words. 
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2.1.2. Corpus Selection Algorithm 

Suppose that we have a file with all the available sentences, and that we wish to select 

the most representative ones. Using the first and second level concordances, we can 

achieve that by following this procedure: 

1. Find the line with the most occurrences. 

2. Add this line to the Corpus and delete the words that it contains from the first 

level concordance. 

3. Get the updated second level concordance, based on the new first level one, and 

repeat the procedure, until there are no more words left. 

This procedure, simple though it is, works and produces adequate results. It can be 

seen as an entropy maximization procedure, since we always add to the corpus the 

sentence that will increase the entropy as much as possible. 

However, this is a standard example of a greedy algorithm and several problems arise 

from the nature common to such a type of algorithms. 

1. Each time, we are adding into the corpus the sentence with the most new words. 

This means that we will start by adding into the corpus the largest sentences, 

which usually include the most common words, leaving less common ones to be 

later included into the corpus. It’s usually the case that after the first 5 – 10 

sentences, where at least 80% of their words are new to the corpus, we will be 

adding 10 – 15 word sentences, in order to add 3 – 5 new words to the corpus. 

2. We treat common and rare words in the same way.  

We should have given rare words a greater weight factor, leading to their selection 

in the beginning, ra ther than at the end of the procedure. By doing that, we would 

also be adding more common words along with the rare ones, eliminating the 

need to add them per se in another sentence. 

These seem to be severe problems of the procedure, but only if we see the procedure 

without bearing in mind the actual task that we are performing. Although the corpus 

produced in this manner is not the smallest possible, we actually want this to happen. 

We need words with relative higher occurrence rate in the original data set to have a 
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high occurrence rate in the corpus too. We have observed that even though sub-

optimal, with concern to the number of the corpus’s words, this selection procedure 

preserves the statistical characteristics of the original data set. 

3. GENERAL OVERVIEW 

The final application is actually a linear application of several procedures to different 

data, leading to the desired result. This proved to be very useful since we could 

develop each stage of the procedure independently of the others, knowing only the 

type and form of messages that were to be passed down from one stage to the next. It 

also allowed us to tweak the performance of each stage, improving the overall quality 

of the synthesized speech, without the need for extensive changes in the architecture 

of the application. 

There are also some procedures that had to be applied only once on certain sets of 

data, creating new data that are needed by the final application. These data were 

needed by all stages of the application and had to be created before the synthesizer 

could work. Data such as the Word Segment Database and the Coarticulation 

Database belong to this category. 

This section will be providing insight into the works of our synthesizer, explaining 

each stage of the synthesis procedure. 
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Figure 7 Components of Speech Synthesizer 

3.1. Internal Data 

The basic function of our Text-to-Speech synthesizer is to transform a given 

sequence of words into their associated spoken representation. Thus, the input file, 

containing that very sequence of words, forms the starting point of the speech 

creation process. 

However, the system cannot function without the presence of the Coarticulation and 

the Word Segment Databases. These parts of the system need to be present before 

the input sentence file can be parsed and processed. 
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3.1.1. Word Segment Database 

The Word Segment Database forms an easy to use and quick in response medium 

that serves both as storage of the recorded instances of the words found in the 

corpus, and as a retrieval mechanism for those instances. 

We designed the database to support the following two services: 

store a specific recorded instance and associate it with the word it represents 

retrieve a specific recorded instance 

The performance of our synthesizer relies heavily on access to these recorded 

instances that are added to the database during the start-up period of our application. 

Thus both the “store” and “retrieve” operations needed to take as little time as 

possible. 

Words 

Each entry to the database represents a certain recorded instance of a word and 

contains all information associated with that instance. Table 8 summarizes the data 

stored along with each word instance. 

Field Use 

wordName Name of Recorded Instance 

uttName Name of Utterance containing that Word Instance 

uttPosition Position of Word Instance in Utterance 

maxPosition Number of Words in Utterance 

p Last phoneme of previous Word in Utterance 

s First phoneme of Word 

e Last phoneme of Word 

n First phoneme of next Word in Utterance 

reduced Word has the reduction property 

position Relative position (initial, final, medial) in Utterance 
Table 8 Word Instance Data 
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The wordName is the key attribute and identifies each Recorded Word Instance 

uniquely. The uttName and the uttPosition attributes are used during the selection 

process to determine their Concatenation Cost. If the two instances share the same 

uttName and have consecutive uttPositions then they can be concatenated with no 

cost. The uttPosition and the maxPosition attributes are used to determine the 

position attribute, labeling the instance as found at the start of the utterance, at its 

end, or neither at the start or at the end. The reduced attribute has the use discussed 

in Section 2.3. Post-Recording Phase in Chapter 3. The attributes p, s, e, n are used as 

stated in the description of Coarticulation Cost in Section 3.3.1. Cost Functions also in 

Chapter 3. 

One notices that there is no reference to the Word Class to which the Recorded 

Word Instance belongs. The reference exists but is not immediate, since we have 

given a hierarchical structure to the corpus database. This can be visualized in Figure 

8. 

 
Corpus 

Word1 Word2 Word3 

Word2_1 

Word2_2 

Word2_3 

Word1_1 Word3_1 

Word 
Classes 

Words  

 

Figure 8 The Hierarchical Structure of the Recorded 
Segments Database 

WordClasses 
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Each recorded word instance is inserted into the database under the Word Class 

whose orthographic form is the same as that of the current recorded instance. If no 

such Word Class exists, a new one is created and the Word instance is inserted under 

that. 

In each WordClass object, the information shown in Table 9 is kept: 

Field Use 

className Name of Word Class 

wordMap Mapping structure for all Word Instances of Class 

allWords List with Word Instances belonging to Class 

numWords Number of Word Instanced belonging to Class 
Table 9 Word Class Data 

The className is a unique identifier of a WordClass object and serves as the key 

attribute. The numWords attribute is used to get the number of word instances 

belonging to a certain word class, without needing to access the allWords list, where 

they are stored. Finally, wordMap provides a quick access to the recorded word 

instances of this Word Class, using the wordName attribute of each Word as the key. 

Corpus 

Finally, all WordClasses belong to a single Corpus. The function of the Corpus 

object for WordClasses is similar to the function of WordClasses for Words. It 

encapsulates all the WordClasses and provides the means to access them quickly by 

using their className as the key. 

A Corpus object contains the information shown in Table 10: 

Field Use 

wordClassMap Mapping structure for all Word Classes in Corpus 

allWordClasses List with Word Classes belonging to Corpus 

numWordClasses Number of Word Classes belonging to Corpus 
Table 10 Corpus Data 
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Maps 

The maps used to provide access to the WordClasses of the Corpus and the Words of 

each WordClass actually consist of a collection of pairs of attributes tied together in a 

single construct. For instance, the wordMap of any WordClass is a collection of the 

following pairs: 

Field Use 

wordName Name of Word Instance 

Word* Pointer to that Word 
Table 11 wordMap Data 

This map allows the retrieval of the Word associated with a given wordName from 

the pool of Word instances of that WordClass. However, this implies that there exists 

a method that allows us to find that specific wordName among the other wordNames 

as quickly as possible. This is achieved by implementing the map as a Hash Table . 

Hashing  

There are several reasons for choosing the map to be implemented as a Hash Table. 

The most important is the fact that hashing allows insertions, deletions and finds to 

be performed in constant average time. We have discussed the speed factor above 

and presented our reasoning on why the retrieval and storage operations for the 

Word Segment Database need to be as quick as possible. Hashing, as implemented 

through Separate Chaining is consistent with the requirements presented above. 

The efficiency of hashing is based both on the data structure used to implement the 

hash table and on the hashing function used to determine the place where each 

element is to be stored in this table. Collision resolution, i.e. the strategy to be 

followed when two keys hash to the same value, and the hash table size also play a 

significant role on the speed of a certain hash table implementation.  

We chose the separate chaining method, since it provides an easy way to resolve 

collisions, by keeping a list of all elements that hash to the same value, while at the 
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same time the correct selection of the hash table’s size allows for a constant average 

time for the insertion and retrieval operations on the hash table. This can be achieved 

by setting the size of the table at least equal to the average number of elements that 

are to be stored in the hash table. Thus, the load factor ? of the hash table, that is the 

ratio of the number of elements in the table to the table size, would be equal to ? = 

1.0. Since the effort to perform a search is the constant time required to evaluate the 

hash function, plus the time to traverse the list. The average length of each list is ?. In 

an unsuccessful search, the number of nodes to examine is ? on the average. A 

successful search requires that about 1+(?/2) links are traversed.2  

The hash function that we have used involves all the characters in the key (the name 

of the Word or WordClass) and can generally be expected to distribute well. It 

computes 

[ ]∑
−

=

⋅−−=
1

0

371
KeySize

i

iiKeySizeKeyhash  

and brings the result into proper form. It uses Horner’s rule to compute a polynomial 

function. It also takes advantage of the fact that overflow is allowed, and that it can 

introduce a negative number, hence there is an extra test. Given the length of the keys 

that are used in our application, the hash function is both simple and reasonably fast. 

Segment Naming Policy 

We have seen that the name file containing the fragment that is inserted into the 

Word Segment Database is used as the key for both its insertion and retrieval. We 

have chosen to use the following convention regarding the naming of these files. 

uttxxx_yyy_zzz.wav 

where: 

                                                 
2 To see this, notice that the list that is being searched contains the one node that stores the match, plus zero or 

more other nodes. The expected number of “other nodes” in a table of N elements and M lists is (N-1)/M = ? – 
1/M, which is essentially ?, since M is presumed large. On average, half the “other nodes” are searched, so 
combined with the matching node, we obtain an average search of 1 + ?/2 nodes. 
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xxx: the number of the corpus utterance from where the fragment was extracted 

yyy: the position of the word instance in the utterance 

zzz: the total number of words in the utterance 

Figure 9 demonstrates our naming scheme:  

 
utt036.wav: ? ?  p ? ? ? ?  ??at?t?ta ?a e??a? ?at? d?ast?µata pe?????sµ???. 

??at?t?ta: utt036_004_008.wav 

1 2 3 4 5 6 7 8 9 

 

Figure 9 Segment Naming Example 

3.1.2. Coarticulation Database 

The inclusion of the Coarticulation Cost as a criterion for the concatenation of any 

given pair of Words was found to have notable results on the quality of the 

synthesized speech. This is attributed to the nature of the data used to support the 

cost assignment for this case. 

The Coarticulation Cost for a given pair of Words is the result of a two level similarity 

function. Costs due to the use of both the first and the second Word are added and 

normalized to a maximum value of 1.0. We have already discussed the way this cost 

function works in Section 3.3.1. Cost Functions in Chapter 3. In this section we will be 

discussing the way these costs are assigned. 

Our intention is to determine the similarity level of any two instances of a certain 

phoneme when followed or preceded by some other phoneme. For instance, we want 

to determine how much similar is the phoneme [E] in these two instances:  

“e??a? ?a???” and “e??a? ????a” 

This can be achieved by using the clustering information for all triphones as found in 

the Nuance® speech recognition system. Triphones are segments of speech 
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consisting of three phonemes. They allow for the representation of the central 

phoneme in the context of its neighboring phonemes. For instance, the “a?” in “e??a? 

?a???” has the following triphone representation: 

“e??a? ?a???” ?  n[E]c 

Triphones and HMMs 

In an HMM-based speech recognition system triphones are represented as three-state 

HMM processes. Transitions from each state to the other model the temporal change 

of the speech signal for that particular triphone. Each state has an output distribution 

that is associated with the acoustical vector of that particular segment of the triphone. 

Thus, each state represents part of the spectral features of the triphone. 

 a00 

a12 

a11 a22 

a01 a23 

b0 b1 b2 

n[E]c-0 n[E]c-1 n[E]c-2 

Start End 

 

Figure 10 HMM for triphone n[E]c 

Figure 10 shows the HMM representation of the triphone n[E]c. Each state produces 

as output a spectral feature vector. Due to the relatively large number of triphones in 

Greek (as well as in other languages) – approximately 14,000 – a clustering scheme is 

used to reduce the number of distinct spectral feature vectors.  

Clustering 
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 Clusters 

Feature-Space 

Features 

 

Figure 11 Clustering of Feature Vectors 

According to this scheme, feature vectors are clustered together according to their 

elements’ similarity. Thus, a single vector, representing the whole collection, replaces 

each collection of similar feature vectors. Figure 11 allows us to visualize the function 

of the clustering process. 

The number of clusters that are going to be formed varies according to the 

implementation of the clustering scheme that is used. We have made use of the 

clustering information for triphones for the Greek language, as used in the Nuance® 

speech recognition system, and in that case the 14,544 triphones were merged into 

986 clusters. 
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#[z]o-1  970 
i[z]o-1  970 
u[z]A-1  970 
o[z]#-1  970 
o[z]E-1  970 
o[z]A-1  970 
E[z]o-1  970 
A[z]o-1  970 
E[z]o-2  971 
#[z]o-2  971 
t[z]o-2  971 
i[z]o-2  971 
A[z]o-2  971 
E[z]i-0  972  

Figure 12 The Clustering Information File 

Since similarity of feature vectors is used as a criterion for the clustering procedure, 

we may use the Clusters Info File – an excerpt is shown in Figure 12 – to extract the 

information that may be used to obtain a notion on the phonetic similarity of any 

given set of triphones. 

This can be understood by examining the previous example that we have used in the 

Coarticulation Cost section of Chapter 3. Suppose we want to form the phrase: 

“e??a? ?a???” 

when the following speech excerpts exist in the Corpus, among others containing 

either of the two Word Classes that we want to concatenate: 

“e??a? ????a” and “p??? ?a???”.  

The former phrase may be constructed through the concatenation of the words 

“e??a?” from the first excerpt, and “?a???” from the second one. However, the two 

words are recorded in different context than the desired. This can be seen in Table 

12. “*” stands for any phoneme. 
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Word Desired Available 

e??a? *[E]k *[E]x 

?a??? E[k]* i[k]* 
Table 12 Words in Context 

We need a measure of how similar the word instance “e??a?” is when recorded before 

a word starting with [k] and another one starting with [x]. We also wish to have this 

information for the word “?a???” when recorded after a word ending in [E] and 

another one ending in [i].  

Remember that a triphone is represented by a three-state HMM. The first state of the 

HMM represents the beginning of the triphone, while its last state represents its end. 

Thus, when judging the similarity of the beginning of a triphone with another 

triphone, only the feature vectors of their first states need to be used to extract any 

information. In the case when we want to determine the similarity of the end of two 

triphones, the last states’ feature vectors need to be consulted. 

It is obvious that the decision is based on two different kinds of information, 

depending on whether the beginning or the end of the word is being considered. 

Coarticulation Matrices 

This information is found in what we call the two Coarticulation Matrices, one for each 

situation mentioned above. These matrices are constructed directly from the 

Clustering Information file. We will be presenting how the matrix used for the 

evaluation of the phonetic similarity of the first word in a pair is constructed.  

Each cluster contains feature vectors of several triphones. These feature vectors are 

phonetically equivalent, meaning that their respective triphones have similar 

pronunciations. When considering the first word in a pair, we are only interested in its 

end. Thus, we are interested only in the last feature vectors of the respective 

triphones. Those vectors are marked with a “-2” in the clustering info file. In addition 



 

 65 

to that, we do not care for the first phoneme of the triphone. Thus the vectors 

“a[E]k-2” and “b[E]k-2” are regarded as equivalent in this context. 

We will call the collection of feature vectors such as *[y]z-n and x[y]*-n as feature 

vector classes. As we have already mentioned, the phonetic similarity of the classes of 

feature vectors *[E]x-2 and *[E]k -2 can be evaluated by using the following equation 
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Equation (1) produces an indication of how probable is the substitution of the 

triphone *[E]k by the triphone *[E]x. It is based in the level of co-occurrence of the 

feature vector classes *[E]k and *[E]x in any given cluster. Equation (2) is a measure 

of the co-occurrence since it is the sum of the product of the occurrences of the two 

vectors classes in the same cluster. Finally, equation (3) provides a measure of the co-

occurrence of the vector class *[E]x-2 with any vector class with [E] as the central 

phoneme in all clusters. 

The Coarticulation Matrices provide us with the information needed to evaluate 

equation (1), thus facilitating the evaluation of the Coarticulation Cost for any given 

combination of phonemes. They are loaded at the beginning of the application, thus 

creating the Coarticulation Database. These matrices organize the information found 

in the Clustering Information file, and allow us to easily gain access to this 

information. For more information on the Coarticulation Matrices, see Section 3.2.3. 

Coarticulation Matrices. 



 

 66 

3.2. Input Data 

The basic input data for any Text-to-Speech system is the sequence of characters 

forming the sentence to be synthesized. However, we will also be considering the data 

used for the construction of the internal structures described in Section 3.1. Internal 

Data . 

3.2.1. Sentence File 

The file containing the sentence to be synthesized is simple in its syntax. It contains 

the sentence, along with any punctuation marks that are to be applied to the speech, 

enclosed in the symbols “$s” and “$f” at the beginning and the end of the sentence. 

$s <word1> <word2> ... <wordn> $f  

Figure 13 The syntax of the Sentence File 

The use of those two symbols is going to be made clear later, however we may say 

that they represent the “Start” and “End” nodes of the graph that will be created later 

on for this sentence. 

3.2.2. Word Metadata File 

This file is used during the creation of the Word Segment Database. It contains the 

metadata associated to each Recorded Word Instance extracted from the sentences of 

the Corpus. 

The metadata consists of the names of the WordClasses and their associated Words, 

and for each Word of the phonemes at the edges of the Word and the last and first 

phoneme of the previous and next word, respectively, in the corpus. Finally the 

reduced attribute for each Word is also included.  

The information in this file has the syntax shown in Figure 14. 
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<word1> 
<word_instance1> 
<p> <s> <e> <n> <reduced> 
<word_instance2> 
<p> <s> <e> <n> <reduced> 
... 
<word_instanceN> 
<p> <s> <e> <n> <reduced> 
% 
<word2> 
<word_instance1> 
<p> <s> <e> <n> <reduced> 
... 
% 
<wordN> 
<word_instance1> 
<p> <s> <e> <n> <reduced> 
... 
%  

Figure 14 Syntax of the Word Metadata File 

All information found in the Metadata file, except for the reduction characterization, 

is inserted automatically using the Segment Alignments file (see Section 2.3. Post-

Recording Phase in Chapter 3). However, the reduction property is evaluated by 

listening to each Word Instance in order to determine whether it may be 

characterized as “reduced”.  

3.2.3. Coarticulation Matrices 

These files are used for the construction of the Coarticulation Database. They are the 

dumps of the matrices. Therefore, the matrices can be easily reconstructed just by 

reading these files.  

The syntax of the files is simple. As shown in Figure 16 and Figure 18, they begin 

with the dimensions of the matrix to be constructed and are  followed by the matrix’s 

elements. The files are in ASCII format for easy inspection.  

As stated before, the coarticulation cost is evaluated as the result of the following 

equation: 
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Both factors of the fraction that results to the coarticulation cost are stored in those 

matrices rather than computed at run-time. The first matrix – shown in Figure 15 – 

may be called the Co-Occurrence matrix, since it provides a measure of the co-

occurrence of two phonemes, before or after another phoneme. 
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Figure 15 The Co-Occurrence Matrix 

In each cell of the matrix, a value indicating the number of co-occurrences of the 

triphone classes, consisting of the central phoneme and the two phonemes in 

question, in the same cluster is found. Thus, the evaluation of the c() function is 

reduced to a simple lookup to the Co-Occurrence matrix, using the three phonemes 

as indices. 



 

 69 

<opt1_num> <opt2_num> <center_num> 
 
<elm_1-1-1> <elm_1-2-1> ... <elm_1-N-1> 
<elm_2-1-1> <elm_2-2-1> ... <elm_2-N-1> 
... 
<elm_N-1-1> <elm_N-2-1> ... <elm_N-N-1> 
 
<elm_1-1-2> <elm_1-2-2> ... <elm_1-N-2> 
<elm_2-1-2> <elm_2-2-2> ... <elm_2-N-2> 
... 
<elm_N-1-2> <elm_N-2-2> ... <elm_N-N-2> 
 
... 
 
<elm_1-1-N> <elm_1-2-N> ... <elm_1-N-N> 
<elm_2-1-N> <elm_2-2-N> ... <elm_2-N-N> 
... 
<elm_N-1-N> <elm_N-2-N> ... <elm_N-N-N>  

Figure 16 The syntax of the Coarticulation Matrices 

The denominator of the R() function, representing the total co-occurrences of a 

phoneme with all other phonemes, along with the central phoneme, is also reduced to 

a simple lookup of the Total Co-Occurrence Matrix, shown in Figure 17. 
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Figure 17 The Total Co-Occurrence Matrix 

It is obvious that this is a two-dimensional matrix, since there are only two features of 

concern, the central phoneme and the phoneme whose total co-occurrence level is of 

question. However, for uniformity, we use the same syntax for the data in this matrix, 

regarding it as a three-dimensional matrix, with one dimension equal to 1. 
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<opt2_num> 1 <center_num> 
 
<elm_1-1-1> <elm_1-2-1> ... <elm_1-N-1> 
 
<elm_1-1-2> <elm_1-2-2> ... <elm_1-N-2> 
 
... 
 
<elm_1-1-N> <elm_1-2-N> ... <elm_1-N-N>  

Figure 18 The syntax of the Total Co-Occurrence Matrix 

3.3. The Synthesis Process 

We have already described the data structures needed to support the synthesizer. We 

are ready to study the process initiated by reading the Sentence File and leading to the 

synthesis of the associated speech in the form of a Waveform File. 

3.3.1. Sentence Parser 

The Sentence Parser reads the input sentence from the Sentence file and creates a List 

with the words that form this sentence. These words are actually the WordClasses 

that will be used for the creation of the Graph later on.  

 $s <Word1> <Word2> … <WordN> $f 

$s Word1 Word2 WordN $f … 
 

Figure 19 Creation of Word Class List from Sentence 
File 

3.3.2. Graph Creation Unit 

Using the list of WordClasses created by the Sentence Parser, the actual Word Graph 

is created. 

There are two basic functions for the Graph Creation unit. The first is to make sure 

that this sentence can be synthesized. It is obvious that we cannot synthesize a 



 

 71 

sentence if there is not at least one available Word Instance for every Word Class in 

the sentence. Its second function is the actual creation of the Graph.  

The first function is easily accomplished just by checking if each of the Word Classes 

in the List has a non-empty allWords list. Remember that a WordClass’s allWords list 

holds all the Word instances of that WordClass. 

The second function is actually just simulated at this step. The Graph is created later, 

by a procedure using as input a Graph Creation File created now. This file contains 

pairs of vertices, indicating the edges of the graph, and the costs associated with these 

vertices and edges. In a further stage, this file is used to create the graph as a 

collection of interconnected vertices, with a vertex ($s) serving as the start, and 

another ($f) as the end of the graph, incorporating information on the transition and 

unit costs into the vertices. 

Representation of Graphs 

In the case of our application we are working with sparse graphs. All vertices are 

connected only with the vertices of the next layer. Thus, instead of using adjacency 

matrices, a better solution is the adjacency list representation. This means that, for each 

vertex, we keep a list of all adjacent vertices. The space requirement is then  

O(|E|+|V|) 

which is linear in the size of the graph.  

In the case of weighted graphs, the weight of the edge is also included in the 

Adjacency List representing the graph.  
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Figure 20 A directed, weighted graph 

 2, 3 

1, 4 

4, 1 

4, 3 5,10 

6, 5 

3, 2 6, 8 7, 4 

7, 6 

6, 1 

1 

2 

3 

4 

5 

6 

7 

5, 2 

 

Figure 21 Adjacency List representation for the Graph in 
Figure 20 

Adjacency lists are the standard way to represent graphs. A common requirement in 

graph algorithms is to find all vertices adjacent to some given vertex v, and this can be 

done, in time proportional to the number of such vertices found, by a simple scan 

down the appropriate adjacency list. 

Information about each vertex, including a list of its adjacent vertices, is stored in an 

object of type Vertex. In most real-life applications, the vertices have names, which 

are unknown at compile time; and thus, generally, we will need to provide a mapping 

of the names to its corresponding Vertex object. The easiest way to do this is to use a 

hash table, in which we store a name (which serves as the key) and a pointer to a 
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Vertex. New Vertex objects are created as the graph is read. As each input, we check 

whether each of the two vertices has already been seen. If so, we use the Vertex 

corresponding to it. Otherwise, we create a new Vertex object and insert the name 

and Vertex object as a pair into the hash table. Each Vertex entry will also need to 

store the vertex name, since, eventually, we will need to output these names. 

Creating the Graph File 

The Graph File that we have mentioned above has a syntax shown in Figure 22. The 

‘#’ symbols act as inline comments for the aid of the user. The two Words are 

vertices of the graph and define an edge. The sum of the unit cost associated with the 

first word and the transition cost associated with that pair of words is assigned to the 

edge defined by these two Words. 

#<WordClass1> 
<Word1_1> <Word2_1> <Unit_Cost1_1> <Trans_Cost1_1-2_1> 
<Word1_1> <Word2_2> <Unit_Cost1_1> <Trans_Cost1_1-2_2> 
... 
<Word1_1> <Word2_N> <Unit_Cost1_1> <Trans_Cost1_1-2_N> 
 
#<WordClass2> 
<Word2_1> <Word3_1> <Unit_Cost2_1> <Trans_Cost2_1-3_1> 
... 
<Word2_M> <Word3_K> <Unit_Cost2_M> <Trans_Cost2_M-3_K> 
 
... 
 
#<WordClassN> 

 

Figure 22 The syntax of the Graph Creation File 

The creation of the graph file is simple in its conception. Using the WordClasses 

present in the WordList created by the Sentence Parser, we traverse the list 

considering every time the current WordClass, and the following one. Using the 

allWords list associated with each WordClass, we form all the pairs of Word Instances 

of those two WordClasses. 
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$s Word1 Word2 WordN $f … 

Word1_2 

Word2_1 Word1_1 

Word2_2 

Word1_3 Word1_1 Word2_1 u1 t1 
Word1_1 Word2_2 u2 t2 
Word1_2 Word2_1 u3 t3 
Word1_2 Word2_2 u4 t4 
Word1_3 Word2_1 u5 t5 
Word1_3 Word2_2 u6 t6 

 

Figure 23 Creation of Graph from Word Class List and 
Graph Creation File 

The unit cost of each Word Instance is the sum of these factors: 

Unit Cost = Word Reduction Cost + Word Position Cost 

The Word Reduction cost is determined by the value of the reduced field in the Word 

structure. The position field in the same structure determines the position of this Word 

Instance in the sentence it was extracted from. This is compared to the actual position 

of this WordClass in the sentence, and the Word Position cost is computed. 

The transition cost of any given pair of Word Instances is the sum:  

Transaction Cost = Concatenation Cost + Coarticulation Cost 

The Concatenation cost is determined by comparing the UttName and UttPosition 

attributes of each Word Instance. If both instances have the same UttName and 

consecutive UttPosition values, then they were recorded consecutively. Otherwise, a 

certain penalty should be applied for their concatenation. The phonemes stored with 

each Word Instance are used as input to the Phonetic Similarity function, producing 

an estimation of the Coarticulation Cost. 
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Creating the Graph 

As we have already stated, the Word Graph is formed by reading the Graph Creation 

File. The Word Graph has been implemented as a collection of Vertices connected, 

through Edges of certain cost, to other Vertices.  

Each Vertex caries the information shown in Table 13. 

Field Use 

name Name of Vertex 

adj List of Edges with adjacent Vertices in Graph 

known Set when Vertex has been selected 

dist Cost of shortest path so far 

path Previous Vertex on Shortest Path 
Table 13 Vertex Data 

The name of each Vertex is actually the name of the Word Instance being 

represented by the Vertex. However, since the possibility exists that a certain Word 

may be found more than once in the same Sentence, meaning that two different 

layers in the Graph may consist of the same Words, an additional number is 

augmented at the end of the name, indicating the layer in which this Vertex is located. 

Thus all Vertices are unique. 

The known, dist and path fields and are necessary for the function of the Shortest 

Path Algorithm. Finally, the adj list holds a list of the Edges starting from the current 

Vertex. This list actually implies the form of the Graph, and is created by reading the 

Graph Creation File. All Edges that begin with this Vertex are included in this list. 

The list also implements the directionality of the Graph. This can be seen in Figure 24 

where only the Edges originating from the current Vertex are included in the adj list. 
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Word2_2 

Word1_1 Word2_1 

Word2_3 

Word1_1 Word2_1 u1 t1 
Word1_1 Word2_2 u2 t2 
Word1_1 Word2_3 u3 t3 

Word2_1 
u1+t1 

Word2_2 
u2+t2 

Word2_3 
u3+t3 

Start 

adj List 

 

Figure 24 Use of adj  List in Graph 

Edges enclose the information shown in Table 14. 

Field Use 

pVertex Vertex at end of Edge 

cvw Edge Cost 
Table 14 Edge Data 

The pVertex attribute holds a pointer to the actual Vertex at the end of the Edge, 

and cvw the cost assigned to that Edge. 

The data used to implement the Graph is shown in Table 15. 

Field Use 

vertexMap Mapping structure for all Vertices of Graph 

allVertices List with Vertices belonging to Graph 

numVertices Number of Vertices belonging to Graph 
Table 15 Graph Data 

Like the structures used for the Word Segment Database, the Vertices forming the 

Graph are stored in the allVertices List, with the vertexMap mapping structure 
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providing quick access to any Vertex, using its name as the key. The numVertices 

attribute stores the number of individual Vertices in the Graph. 

3.3.3. Selection Mechanism 

The Selection Mechanism is implemented by applying Dijkstra’s algorithm on the 

Graph. This algorithm finds the shortest path between two Vertices. In our 

application, we are only interested in the shortest path between the “Start” and “End” 

Vertices of the Graph.  

The path can be found by tracking back to the origin (“Start”) Vertex starting at the 

destination (“End”) Vertex. This procedure produces the series of Word Instances 

that should be used for the synthesis of the input sentence. 

The DSP and Concatenation Unit however synthesizes the sentence by using this 

series of Word Instances as input. In fact, the synthesis is based on the Fragments 

File, the file containing the exact locations of each one of the waveform files 

containing these Word Instances. 

 

Word2_2 

Word1_1 Word2_1 

Word2_3 
<path>\Start.wav 
<path>\Word1_2.wav 
<path>\Word2_1.wav 
<path>\Word3_3.wav 
<path>\End.wav 

Start 

Word1_2 Word3_2 

Word3_1 

Word3_3 

End 

Shortest Path 

Fragments File 

 

Figure 25 Creation of the Fragments File 



 

 78 

3.3.4. DSP and Concatenation Unit 

The Selection process provides as input to the DSP and Concatenation Unit the 

Fragments File, containing the exact path and filename of each Segment to be used 

for the creation of the synthesized sentence. 

Digital Signal Processing 

According to the strategy that we have followed during the segment selection phase, 

the use of consecutive word segments, extracted from the same utterance of the 

corpus, is promoted over the use of isolated segments. However, only sometimes is 

this the case, so the concatenation of isolated words is necessary for the synthesis of 

the desired sentence. 

The energy levels at the edges of most words are usually different. For instance, many 

word segments start or end at a high energy level, and it has been observed that most 

segments have a great difference at their energy levels at the edges. This energy level 

mismatch has the effect of introducing annoying noises in the synthesized speech, 

reducing overall quality, thus making the speech more difficult to listen to. 

We have chosen to attack this problem by introducing a simple energy smoothing 

operation on the edges of segments that are to be concatenated with other, non-

consecutive, segments. We achieve that by applying the left or right half of a 640-

point Hamming window to the edges of the segments that are to be concatenated. 

This means that the last 20 msec of the left segment are faded out and the first 20 

msec of the right segment are faded in before being concatenated into the synthesized 

sentence. 

Concatenation 

The Segments that are used for the synthesis are simple waveform files. The 

concatenation of the waveform files produces the synthesized sentence. These 

waveform files are stored in RIFF format (See Also Section 2. Resource Interface  Format 

Files in the Appendices). The synthesized sentence is also stored in RIFF format.  
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The concatenation procedure consists of the creation of a new RIFF waveform file, 

whose data subchunk is the collection of the data subchunks of the individual files 

that form the synthesized sentence. 
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C h a p t e r  5  

QUALITY EVALUATION 

1. INTRODUCTION 

In spite of the rapid progress that is being made in the field of speech technology, any 

speech synthesis system available today can still be spotted for what it is: nonhuman, 

a machine. Although there have been significant improvements in the quality of the 

output of TTS systems, as long as synthetic speech is inferior to human speech, 

synthesis evaluation will be useful. 

Speech synthesis assessment can be important to two parties: systems designers on 

the one hand, and prospective buyers and end user on the other. Designers are intent 

on improving their TTS-systems. However, designers who have grown up with their 

systems are used to all its habits; they are likely to understand its output better than 

first-time users, and will often overrate its performance level. More meaningful quality 

assessment techniques are needed in order to determine how well a system performs 

relative to a benchmark test, or how favorably it compares with a previous edition of 

the system or with an other designer’s product. To the extend that a system performs 

less than perfect (something of which the author is aware), the designer will have to 

learn which aspect(s) and/or component(s) of his system are flawed 

The needs of buyers and end users are different than those of designers but they too 

heavily rely on assessment techniques. Prospective buyers will always have a specific 

use of their TTS system in mind. Understandably, they will want the simplest, and 

therefore cheapest, system that satisfies their needs. The buyer will therefore need an 

absolute yardstick in order to determine beforehand if the TTS system is good 

enough to get a message across in the given application.  
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1.1. Taxonomy of Evaluation Tasks and Techniques 

To justify our selections for the evaluation strategy used for the quality assessment of 

our TTS system, we will first discuss a number of distinguished parameters and 

explain the relationships between them. 

The diagram shown in Figure 26 illustrates the relationships between the various 

dichotomies in the hierarchical order in which they have been listed in this diagram. 

Any path from the root down to any terminal that does not cross a horizontal gap 

constitutes a meaningful combination of test attributes. 

 

glass box black box 

field laboratory laboratory 

acoustic acoustic linguistic 

objective subjective 

functional judgment 

analytic analytic global global 
 

Figure 26 Relationships among dimensions involved in 
taxonomy of speech output evaluation methods 

1.1.1. Black Box (Monolithic) versus Glass Box (Modular) 

TTS systems generally comprise of a range of modules that take care of specific tasks 

(e.g. concatenation, signal processing). 

End users will typically be interested in the performance of a system as a whole. They 

will consider the system as a black box that accepts text and outputs speech, a 
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monolith without any internal structure, since the quality of the output speech is the 

only thing that matters. 

However if the output is less than optimal, it is almost impossible to pinpoint a 

certain cause for this malfunction. Therefore, for diagnostic purposes, designers often 

set up their evaluations in a more experimental (glass box) way. Keeping the effects of 

all modules but one constant, while systematically varying the characteristics of the 

latter, allows for any difference in the assessment of the system to be attributed to the 

variations of the target module. 

1.1.2. Laboratory versus Field 

TTS systems are often part of a human-machine user interface in a specific 

application. Typically, the vocabulary and types of information exchanges are 

restricted and domain specific, so that situational redundancy can often make up for 

bad intelligibility. On the other hand, TTS systems will often be used in complex 

information processing tasks, so that the listener has only limited resources available 

for attending to the speech input. 

It is generally impossible to predict beforehand, on the basis of laboratory tests, exactly 

how successful a TTS-system will be in the practical application. The system needs to 

be tested in the field, i.e. in the real application, with real users. However, the use of 

field tests is limited to one system in one specific application; results of the test cannot, 

as a rule, be generalized to other systems and/or other applications. 

1.1.3. Linguistic versus Acoustic 

Complex TTS systems can roughly be divided into a linguistic interface that 

transforms spelling into an abstract phonological code and an acoustical interface that 

transduces this symbolic representation to an audible waveform. 

The quality of the intermediary representation can be tested directly at the symbolic-

linguistic level or indirectly at the level of the acoustic output. Testing the audio has the 

advantage that only errors in the symbolic representation that affect the audio output 

will affect the evaluation. However, it concerns human listeners and is therefore 
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costly and time consuming. Moreover the designer is not informed on the origin of 

any problems (linguistic or acoustic). 

As an alternative, the intermediate representations in the linguistic interface are often 

evaluated in the symbolic level. It involves the comparison of the symbolic output of 

the linguistic model to a pre-stored model representation. The non-trivial problem is 

to obtain this model representation, which will have to be compiled manually, and 

will often involve multiple correct solutions. 

1.1.4. Subjective versus Objective measurement 

When an assessment technique involves the responses of human subjects, the 

measurement is called subjective.  

It is most common that human subjects are called upon in order to evaluate the 

quality of a TTS system. This is to be expected, since the end user of a TTS system is 

a human listener. However there are certain drawbacks inherent to the use of human 

subjects. Firstly, humans are often somewhat noisy in their judgments, i.e. the results 

of tests are never perfectly reproducible. It often makes sense to use an expert listener 

as a shortcut to a preliminary evaluation, since he will be able to determine in great 

accuracy problems related to coarticulation, temporal organization and intonation. 

However he will not be able to predict in numerical terms how well the TTS system 

would perform as a communication tool with naïve listeners. Since this is what we 

need to assess, expert listeners should be used during the initial stages of 

development, as a design tool, while non-expert users should be used for the final 

evaluation of the system. In this case, a group of users may be used, and the average 

of their responses could somewhat compensate for the noisiness of their 

measurements. This is what is called inter-subjective measurement. 

In addition to yielding noisy measurements, quality tests involving human listeners are 

also time consuming and therefore expensive to run. Automatic quality assessment 

for TTS systems that automatically measure the discrepancy in acoustical terms 

between a system’s output and its human model is still a field under investigation. 

This is the type of objective evaluation technique that one would ultimately want to 
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come up with, since it avoids the use of human listeners, providing perfectly 

reproducible results in as little time as needed to run that particular test program. 

Unfortunately, these types of services are not yet available for use. 

1.1.5. Judgment versus Functional 

By judgment testing we mean a procedure whereby a group of listeners is asked to 

judge the performance of a TTS system, along a number of rating scales. The scales 

are typically bi-polar adjectives that allow the listeners to express the quality of the 

system. 

A TTS system may also be assessed in terms of how well it actually performs its 

communicative purpose. This is called functional testing. For instance, if we want to 

know to what extent the output speech is intelligible, we may measure its intelligibility 

not by asking the listener how intelligible he things it is, but by determining, for 

instance, whether the listener correctly identifies the sounds. 

1.1.6. Global versus Analytic 

Judgment test usually include one or more rating scales covering such global aspects as 

“overall quality”, “naturalness” and “acceptability”. 

On the other hand, one may be interested in determining the quality of specific 

aspects of a TTS system, in an analytic listening mode, where listeners are requested to 

pay particular attention to selected aspects of the speech output. 

2. EVALUATION OF ACOUSTIC ASPECTS 

Due to the nature of our synthesis algorithm (i.e. use of whole word units rather than 

phone segments), testing at the linguistic level is trivial, and has been used only during 

the design stage of our system. 

The quality assessment of our TTS system was solely based on the evaluation of its 

acoustic aspects. 
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2.1. Aspects of Speech to be evaluated 

There are three layers that are distinguished in speech: a segmental layer, (related to 

short-term fluctuation in the speech signal), a voice dynamics or prosodic layer 

(medium term fluctuations), and a voice quality layer (long term fluctuations). 

We will make the same distinction in the evaluation of acoustic aspects. 

2.1.1. Segments 

The primary function of segments is simply to enable listeners to identify words. The 

segments used in our system are whole word units. In addition to that, we are 

penalizing the use of abnormally pronounced words during the synthesis of a 

sentence through their characterization with the reduction property. We may claim 

that this characterization actually constitutes a method of segment quality assessment. 

Thus, the question of word identification in the domain of our TTS system has been 

addressed only as part of the system’s assessment in analytic listening mode. 

2.1.2. Prosody 

By prosody we mean the ensemble of properties of speech utterances that cannot be 

derived in a straightforward fashion from the identity of the phonemes constituting 

the words of the speech utterance. Prosody comprises the melody of the speech, 

word and phrase boundaries, word stress, sentence accent, tempo and changes in 

speaking rate. 

The more important functions of prosody are located at the linguistic levels above the 

word: 

• prosody tells the listener which words go together and should be interpreted 

as making up a coherent chunk of information; it also allows the user to 

determine whether he has come to the end of a word group, clause, sentence, 

etc. 

• prosody provides an indication for the listener which words are presented by 

the speaker as expressing important information 
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• prosody, especially melody, caries its own intonational meaning, allowing for 

instance the speaker to present a sentence as a statement or a question 

These observations suggest that prosody affects comprehension, which is what most 

functional tests of prosody try to evaluate. 

2.1.3. Voice Quality 

Voice quality can be viewed as the background against which segmental and prosodic 

variation is produced and perceived. It is used by the listener to form a (sometimes 

incorrect) idea of the speaker’s mood and personality, physical size, sex, and also to 

identify the speaker. This information may have practical consequences for the 

continuation of the communication procedure, since it may influence the listener’s 

attitude towards the speaker in a positive or negative sense, and may affect the 

listener’s interpretation of the message. 

2.1.4. Overall Output Quality 

In most situations good intelligibility of specific words is not enough for TTS output 

to be called functionally adequate. One would want to have at one’s disposal a 

functional test to evaluate the adequacy if the complete TTS output in all respects. In 

practice, the functional quality of overall TTS output has been equated with 

comprehension, based upon the integration of “bottom-up” speech signal 

information at different levels (segments, prosody, voice quality) and “top-down” 

knowledge and expectations based on previous experience, specific properties of the 

extra-linguistic context, and word internal and word combinatory redundancy. 

2.2. Test Method 

The importance of application specific test materials has been stressed by ITU-T's 

standardization sector. They developed a test specifically aimed at evaluating the 

quality of telephone speech, and which has been modified to fit our purposes. It is a 

judgment test comprising rating on eight scales, namely one 2-point scale acceptance 

and seven 5-point scales overall impression, listening effort, comprehension problems, articulation, 

pronunciation, speaking rate, and voice pleasantness. 
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Strictly speaking, only the first four scales can be captured under the heading overall 

quality; the other four scales are directed at more specific aspects of the output and 

require analytic listening. The content of the speech samples are synthesized in 

accordance with the application.  

We used the ITU-T speech quality test for the evaluation of the output of our 

application. For the purposes of the test, nine weather forecast reports, compatible 

with the syntax of the EMY weather reports, were synthesized using several 

combinations of the selection criteria.  

The synthesized utterances of these reports were organized in groups, in such a way 

that each group contained one weather report synthesized with each of these 

combinations. That means that each group consisted of nine weather reports, each 

one synthesized in a different manner, and put together in different order. Two 

people evaluated each such group. We asked the subjects to listen to a whole report, 

and then evaluate the quality of the synthetic speech using the eight scales we 

mentioned above. For the first scale (acceptance), the evaluation should determine 

whether the synthesized speech is accepted or not. For the rest seven scales, the 

evaluation was done by assigning a grade in the range of [0, 4], with 4 denoting the 

best performance. 

The evaluations for each method among all groups were averaged, providing a 

measure for the performance of the method in each of these eight scales. 

3. RESULTS 

The evaluation procedure consisted of two stages. In the first stage we wanted to 

evaluate the performance of any combination of the selection criteria. In the second 

stage, we wanted to determine the improvement of the speech quality gained by 

introducing DSP methods to the synthesis strategy that performed best in the 

previous stage. 
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3.1. First Stage 

There are four3 criteria used for the selection of the segments to be concatenated in 

forming the desired synthesized utterance: 

reduction 

concatenation 

position 

coarticulation 

The first criterion actually prevents the use of “oddly pronounced” words, and only 

occasionally does it affect the quality of the synthesized speech. So, the following 

synthesis strategies, utilizing combinations of the aforementioned criteria were used 

for the synthesis of the evaluation sentences: 

1. None (reduction) 

2. Pos (reduction + position) 

3. Concat (reduction + concatenation) 

4. Cooc (reduction + coarticulation) 

5. Pos+Concat (reduction + position + concatenation) 

6. Concat+Cooc (reduction + concatenation + coarticulation) 

7. Pos+Cooc (reduction + position + coarticulation) 

8. All (reduction + position + concatenation + coarticulation) 

9. PreRec (prerecorded Corpus sentences) 

As we can see, all strategies except 1) include Reduction in the selection criteria. 

Reduction by itself produces sentences with almost awful quality. On the other hand, 

the inclusion of prerecorded sentences, forming a meaningful Weather Report, is 

necessary in order to determine what the users believe is the optimum performance. 

A feature score of 2 may be considered average, but it is not that bad when the 

prerecorded utterances received a score of 3 for the same feature. 

                                                 
3 There is a fifth one (modality) that was not used in the context of Weather Forecast Reports. 
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Figure 27 Evaluation Results (First Stage) 

Figure 27 provides an overview of the evaluated performance for all the synthesis 

methods described above. As we may see, the forecasts that consisted of prerecorded 

utterances (PreRec) received the highest scores, followed by the combination of all 

selection criteria (All), which consistently receive the second best scores for all 

features. The worst performance, as expected, is observed for the sentences that used 

only the reduction criterion (None), since the choice of fragments used for the 

synthesis is almost random. 

We will discuss the results for each feature. 

 

 



 

 91 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

All None Pos Concat Cooc Pos+Concat Concat+Cooc Pos+Cooc PreRec

Method

E
va

lu
at

io
n

 

Figure 28 Acceptance 
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Figure 29 Overall Impression 



 

 92 

0

0.5

1

1.5

2

2.5

3

3.5

4

All None Pos Concat Cooc Pos+Concat Concat+Cooc Pos+Cooc PreRec

Method

E
va

lu
at

io
n

 

Figure 30 Listening Effort 
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Figure 31 Comprehension Problems 



 

 93 

The majority of the subjects have found it quite difficult to comprehend the message 

of the synthesized utterances. They all indicated that the greatest problems were 

erratic speech, differences in the volume of different words in the same sentence, 

inconsistent with the message of the sentence, and concatenation noises among word 

fragments. 
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Figure 32 Articulation Problems 

We may see that articulation poses the greatest challenge for the performance of our 

synthesizer. Methods utilizing co-occurrence information through the Coarticulation 

Cost, perform better than methods not using this information. However there exists a 

large gap between the best performing methods (All and Concat+Cooc) and the 

prerecorded utterances. We attribute this behavior to the absence4 of energy 

smoothing at the edges of concatenated words. 

                                                 
4 We remind the reader that the first stage does not include energy smoothing and energy averaging operations on 

the fragments used for utterance synthesis. 
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Figure 33 Pronunciation 
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Figure 34 Speaking Rate 
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The fact that the prerecorded utterances did not receive as good a score as in other 

cases indicates that the subjects did not believe that the speaker has spoken these 

sentences in a totally accepted way. This problem has propagated itself in the rest 

methods as well. 

0

0.5

1

1.5

2

2.5

3

3.5

4

All None Pos Concat Cooc Pos+Concat Concat+Cooc Pos+Cooc PreRec

Method

E
va

lu
at

io
n

 

Figure 35 Voice Pleasantness 

The same observations as for the previous feature apply here as well.  

3.2. Second Stage 

The first stage of the evaluation procedure indicated that the noises heard between 

two words, noises that may be attributed to differences in the energy levels of the 

concatenated words, as well as the difference in the volume of words in the same 

sentence are mostly responsible for most comprehension and listening effort 

problems. 

The second stage of the evaluation procedure attempts to quantify the contribution of 

DSP methods to the overall quality of the synthesized speech.  
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In order to get an objective measure of the performance of these methods, we have 

asked the subjects to listen to five weather forecasts, each synthesized with one of the 

following strategies: 

None (reduction) 

Cooc (reduction + coarticulation) 

All (reduction + position + concatenation + coarticulation) 

All+DSP (reduction + position + concatenation + coarticulation + DSP) 

PreRec (prerecorded utterances) 
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Figure 36 Evaluation Results (Second Stage) 

We can see that the synthesis strategy that combines all the selection criteria along 

with DSP methods (All+DSP) has consistently outperformed the strategy that used 

only the selection criteria (All). This has lead to the creation of synthetic utterances 

that are even closer to natural speech, as one can notice by comparing the scores of 

(All+DSP) to those of (PreRec). 
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Figure 37 Acceptance 
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Figure 38 Overall Impression 

In both of these charts, one may notice that not only has (All+DSP) outperformed 

(All), but that it has also made it less appealing to the subjects’ evaluation. 
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Figure 39 Listening Effort 
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Figure 40 Comprehension Problems 
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Figure 41 Articulation Problems 
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Figure 42 Pronunciation 

The greatest differences between the two methods ((All) and (ALL+DSP)) is found 

in the evaluation of these two features. Smoothing the edges of concatenated 

fragments has reduced the severity of articulation problems. At the same time, the use 
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of fragments that were extracted from sentences that had all been normalized to the 

same average energy level has reduced unnecessary fluctuations in the volume of the 

sentence, thus rendering the synthesized output more “natural”. The same 

observation applies to Comprehension Problems and Listening Effort. 
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Figure 43 Speaking Rate 
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Figure 44 Voice Pleasantness 
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The fact that the Speaking Rate seems to be improved may be partially attributed to 

the smoothness of the volume of the sentence, something that most subjects 

regarded to be affecting the evaluation of this feature. 

3.3 Conclusions 

The following conclusions may be extracted from the evaluation procedure: 

1. the Coarticulation cost is the single most significant feature in terms of quality 

2. the combination of all features produces better results than any combination of 

up to three features 

3. with the signal processing enhancements, the average acceptance score is 0.7, 

which compares favorably to the average score of 0.8 for the prerecorded 

sentences. 
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C h a p t e r  6  

FUTURE WORK 

1. DISCUSSION 

The talking computer HAL in the 1968 film “2001 – A Space Odyssey” had an 

almost human voice, but it was the voice of an actor, not a computer. Getting a real 

computer to talk like HAL has proven one of the toughest problems posed by 

“2001”.  

Many of the improvements in speech synthesis over the past five years have come 

from creative use of the technologies developed for speech recognition. We too have 

extensively used knowledge extracted from that field in order to improve the 

performance of our TTS system. The use of co-occurrence information for 

determining the coarticulation cost, information already used for the clustering of 

feature vectors in HMM-based SR systems, has greatly improved the quality of the 

synthesized speech. Automatic segmentation, aided by an SR system, has minimized 

the time needed to implement our system for domains other than the Weather 

Forecast domain.  

Speech synthesis by word concatenation is a cheap, fast and simple way to do speech 

synthesis in restricted domains. Frequently the achieved quality is close to that one 

produced by humans. The only problem with such an approach is that storage 

complexity steeply rises as we try to cover wider domains.  

2. FUTURE WORK 

As a matter of course it is necessary to extend our approach to unrestricted domains. 

Therefore rules have to be developed which enable us to generate syllables from 
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phonemes and words from syllables. Thus, the system should perform unit 

concatenation in three different levels: 

• diphones 

• syllables 

• words 

The unit database should be modified to support such diverse units, while the 

selection process should adapt properly, choosing the best combination of units to 

synthesize the desired utterance. 

Recent work on the creation of a language analysis for Greek in TUC, has provided 

us with the following facts: 

Word # Language Coverage 

5,000 78.91% 

10,000 85.32% 

20,000 90.65% 
Table 16 Vocabulary Size and Language Coverage for 

the Greek language 

The data presented in Table 16 indicates that by extending the vocabulary size of our 

application to 20,000 WordClasses, there would only be one word out of ten in every 

sentence that would not be found in the Word Segment Database and that would 

need to be synthesized by simpler units (syllables, diphones, etc.). However, 20,000 

WordClasses means that there would be approximately 100,000 Word Instrances, if 

the 1:5 ratio between WordClasses and Words (see also Table 3) stands for this 

application too.  

It turns out that the storage complexity is much higher than that for diphone 

synthesis but this is not a real disadvantage. With the aid of signal processing it should 

be possible to reduce the number of recorded words as well as the number of stored 

samples. The number of stored samples may be easily reduced using compression 

algorithms. To reduce the number of words, additional research is required. In our 
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opinion, the question whether non-final sounding words might be transformed by 

signal manipulation into final sounding ones or vice versa is a main question of 

further work. Another interesting question is, whether it is possible to cluster 

instances of words so that only few prototypes need to be stored.  

Our next step should extend the corpus annotation by phoneme segmentations based 

on manually corrected word boundaries. Together with automatically computed pitch 

marks, it would be possible to apply artificial F0 and duration parameters using 

PSOLA manipulation to the synthetic signal. 

Prominence is currently not explicitly considered in our selection criteria. It turns out 

to be the case that both the constrained domain of Weather Forecasts and our 

selection criteria already implicitly treat a number of prominence-related phenomena 

that need not be modeled by rule sets. Word class and prominence are highly 

correlated. This could explain the circumstance mentioned above. However, to 

respond to the necessities of Content-to-Speech (CTS), the generation of prosodic 

focus should be possible. For the planned extension of our synthesis using smaller 

units than words, prominence will play a major role. Therefore, an automatic labeling 

process should be developed which will mark the perceptual prominence of each unit.  

3. EPILOGUE 

The difference between a person and a talking computer is that the person 

understands the ideas and emotions conveyed through speech, and the computer 

doesn't. This is part of the larger problem of artificial intelligence, which is what 

"2001" author Arthur C. Clarke imagined in HAL. Our ability to replicate our own 

minds in a machine is limited by our incomplete knowledge of how our own minds 

work.  

The ultimate goal for speech synthesis, as with all AI applications, is to make it pass 

the Turing Test - a blindfolded user shouldn't be able to tell whether he is talking to a 

human or a machine. Like the voice of HAL, that's a long way away. But we believe 

that modifying speech recognition techniques could lead to better speech synthesis 



 

 106 

results. Ultimately the right model might just be the same for both synthesis and 

recognition.  
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A p p e n d i c e s  

APPENDICES 

1. SINGLE-SOURCE SHORTEST PATHS 

1.1. Background 

The input to a weighted shortest path algorithm is a weighted directed graph G = 

(V,E), with a weight function w : E → R mapping edges to real-valued weights. The 

weight of a path p = {v1v2…vN} is 

( ) ∑
−

=
+=

1

1
1,

N

i
iicpC  

This is referred to as the weighted path length.  

The shortest path weight from u to v is  

( ) ( ){ }




∞
→

=
otherwise

  to frompath  a is  thereif:min
,

vuvupw
vu

p

δ  

The shortest path from vertex u to vertex v is then defined as any path p with weight 

( ) ( )vupw ,δ=  

1.1.1. Representing Shortest Paths 

We often wish to compute not only shortest path weights, but the vertices on the 

shortest paths as well. The representation we use for shortest paths is similar to the 

one used for breadth first trees. 
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Given a graph G = (V,E), we maintain for each vertex v ∈ V a predecessor p[v] that 

is either a vertex of NIL.  

A shortest paths algorithm sets the p attributes so that the chain of predecessors 

originating at vertex v runs backwards along a shortest path from s to v. Thus given a 

vertex v for which p[v] ?  NIL, the shortest path from s to v can easily be tracked. 

1.1.2. Relaxation 

The technique of relaxation is used by Dijkstra’s algorithm. For each vertex v ∈ V, 

we maintain an attribute d[v], which is the upper bound on the weight of a shortest 

path from source s to v. We call d[v] a shortest path estimate. We initialize the 

shortest path estimates and predecessors by the following procedure. 

Initialize-Single-Source(G, s) 

1 for each vertex v ∈ V[G] 

2    do d[v] ? ∞ 

3       p[v] ? NIL 

4 d[s] ? 0 

 

After initialization, p[v] = NIL for all v ∈ V, d[v] = 0 for v = s, and  d[v] = ∞ for v ∈ 

V – {s}. 

The process of relaxing5 an edge (u, v) consists of testing whether we can improve 

the shortest path to v so far by going through u, and, if so, updating d[v] and p[v]. A 

relaxation step may decrease the value of the shortest path estimate d[v] and update v’s 

predecessor field p[v]. The following code performs a relaxation step on edge (u, v). 

Relax(u, v, w) 
1 if d[v] > d[u] + w(u,v) 

                                                 
5 It may seem strange that the term “relaxation” is used for an operation that tightens an upper bound. The use of 

the term is historical. The outcome of a relaxation step can be viewed as a relaxation of the constraint  d[v] ≤ d[u] 
+ w(u, v), which must be satisfied if d[u] = d(s, u)  and d[v] = d(s, v). That is, if d[v] ≤ d[u] + w(u, v), there is no 
“pressure” to satisfy this constraint, so the constraint is “relaxed”. 
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2    then d[v] ? d[u] + w(u,v) 

3         p[v] ? u 

1.2. Dijkstra’s Algorithm 

Dijkstra’s algorithm solves the single source shortest-paths problem on a weighted, 

directed graph G = (V,E) for the case in which all edge weights are nonnegative. In 

this section, therefore, we assume that  

( ) ( ) Evuvuw ∈≥ , edgeeach for  ,0,  

Dijkstra’s algorithm maintains a set S of vertices whose final shortest path weights 

from the source s have already been determined. That is 

[ ] ( )vsvdSv ,δ=→∈∀  

The algorithm repeatedly selects the vertex SVu −∈  with the minimum shortest 

path estimate, inserts u into S, and relaxes all edges leaving u. In the following 

implementation we maintain a priority queue Q that contains all the vertices in V – S 

keyed by their d values. The implementation assumes that graph G is represented in 

adjacency lists. 

Dijkstra(G,w,s) 
1 Initialize-Single-Source(G,s) 

2 S ? Ø 

3 Q ? V[G] 
4 while Q ? Ø 

5    do u ? Extract-Min(Q) 

6       S ? S ∪ {u} 

7       for each vertex v ∈ Adj[u] 

8           do Relax(u,v,w) 

 

Dijkstra’s algorithm relaxes edges as shown in the pseudocode seen above. Line 1 

performs the usual initialization of d and p values, and line 2 initializes the set S to the 
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empty set. Line 3 then initializes the priority queue Q to contain all the vertices in V – 

S = V – Ø = V. 

Each time through he while loop of lines 4 – 8, a vertex u is extracted from  Q = V – 

S and inserted into set S. (The first time through the loop, u = s.) Vertex u, therefore, 

has the smallest shortest-path estimate of any vertex in V – S. Then, lines 7 – 8 relax 

each edge (u, v) leaving u, thus updating the estimate d[v] and the predecessor p[v] if 

the shortest path to v can be improved by going through u. Observe that vertices are 

never inserted into Q after line 3 and that each vertex is extracted from Q and 

inserted into S exactly once, so that the while loop of lines 4 – 8 iterates exactly ¦ V¦  

times. 

Because Dijkstra’s algorithm always chooses the “lightest” or the “closest” vertex in 

V – S to insert into set S, we say that it uses a greedy strategy. Greedy strategies do 

not always yield optimal results in general, but as the following theorem and its 

corollary show, Dijkstra’s algorithm does indeed compute shortest paths. The key is 

to show that each time a vertex u is inserted into set S, we have d[u] = d(s,u). 

Theorem: Correctness of Dijkstra’s Algorithm 

If we run Dijkstra’s algorithm on a weighted, directed graph G = (V,E) with 

nonnegative weight function w and source s, then at termination,  

d[u] = d(s,u) for every vertex u ∈ V 

Corollary 

If we run Dijkstra’s algorithm on a weighted, directed graph G = (V,E) with 

nonnegative weight function w and source s, then at termination, the predecessor 

subgraph Gp is the shortest-paths tree rooted at s. 

1.2.1. Analysis 

How fast is Dijkstra’s algorithm? Consider first the case in which we maintain the 

priority queue Q = V – S as a linear array. For such an implementation, each Extract-
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Min operation takes time O(V), and there are ¦ V¦ such operations, for a total 

Extract-Min time of O(V2). Each vertex v ∈ V is inserted into set S exactly once, so 

each edge in the adjacency list Adj[v] is examined in the for loop of lines 4 – 8 exactly 

once during the course of the algorithm. Since the total number of edges in all the 

adjacency lists in ¦ E¦, there are a total of ¦ E¦ iterations of this for loop, with each 

iteration taking O(1) time. The running time of the entire algorithm is thus O(V2+E) 

= O(V2). 

If the graph is sparse, however, it is practical to implement the priority queue Q with a 

binary heap. The resulting algorithm is sometimes called the modified Dijkstra 

algorithm. Each Extract-Min operation then takes time O(logV). As before, there are 

¦ V¦ such operation. The time to build the binary heap is O(V). The assignment d[v] 

?  d[u] + w(u,v) in Relax is accomplished by the call Decrease-Key(Q,v, d[u] + w(u,v)), 

which takes time O(logV), and there are still at most ¦ E¦ such operations The total 

running time is therefore O((V+E)logV),  which is O(ElogV) if all vertices are 

reachable from the source. 

We can in fact achieve a running time of O(VlogV+E) by implementing the priority 

queue Q with a Fibbonacci heap. The amortized cost of each of the ¦ V¦  Extract-Min 

operations is O(logV), and each of the ¦ E¦  Decrease-Key calls takes only O(1) 

amortized time. Historically, the development of Fibbonacci heaps was motivated by 

the observation that in the modified Dijkstra algorithm there are potentially many 

more Decrease-Key calls than Extract-Min calls, so any method of reducing the 

amortized time of Extract-Min would yield an asymptotically faster implementation.  

Dijkstra’s algorithm bears some resemblance to both breadth-first search and Prim’s 

algorithm for computing minimum spanning trees. It is like breadth-first search in 

that S corresponds to the set of black vertices in a breadth-first search; just as vertices 

in S have their final shortest-path weights, so black vertices in a breadth-first search 

have their correct breadth first distances. Dijkstra’s algorithm is like Prim’s algorithm 

in that both algorithms use a priority queue to find the “lightest” vertex outside a 

given set (the set S in Dijkstra’s algorithm and the tree being grown in Prim’s 
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algorithm), insert this vertex into the set, and adjust the weights of the remaining 

vertices outside the set accordingly. 

2. RESOURCE INTERFACE FORMAT FILES 

The preferred format for multimedia files is resource interchange file format (RIFF). 

The RIFF file I/O functions work with the basic buffered and unbuffered file I/O 

services. RIFF files can be opened, read, and written in the same way as other file 

types. 

RIFF files use four-character codes to identify file elements. These codes are 32-bit 

quantities representing a sequence of one to four ASCII alphanumeric characters, 

padded on the right with space characters. The data type for four-character codes is 

FOURCC. The mmioFOURCC macro may be used to convert four characters into 

a four-character code. To convert  a null-terminated string into a four-character code, 

the mmioStringToFOURCC function should be used. 

The basic building block of a RIFF file is a chunk. A chunk is a logical unit of 

multimedia data, such as a single frame in a video clip. Each chunk contains the 

following fields:  

• A four-character code specifying the chunk identifier  

• A doubleword value specifying the size of the data member in the chunk  

• A data field  

The following illustration shows a "RIFF" chunk that contains two subchunks. 
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Figure 45 "RIFF" chunk containing two subchunks 

A chunk contained in another chunk is a subchunk. The only chunks allowed to 

contain subchunks are those with a chunk identifier of "RIFF" or "LIST". A chunk 

that contains another chunk is called a parent chunk. The first chunk in a RIFF file 

must be a "RIFF" chunk. All other chunks in the file are subchunks of the "RIFF" 

chunk. 

"RIFF" chunks include an additional field in the first four bytes of the data field. This 

additional field provides the form type of the field. The form type is a four-character 

code identifying the format of the data stored in the file. For example, Microsoft 

waveform-audio files have a form type of "WAVE".  

"LIST" chunks also include an additional field in the first four bytes of the data field. 

This additional field contains the list type of the field. The list type is a four-character 

code identifying the contents of the list. For example, a "LIST" chunk with a list type 

of "INFO" can contain "ICOP" and "ICRD" chunks providing copyright and 

creation date information. The following illustration shows a "RIFF" chunk that 

contains a "LIST" chunk and one other subchunk (the "LIST" chunk contains two 

subchunks). 
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Figure 46 "RIFF" chunk containing a "LIST" subchunk 

Multimedia file I/O services include two functions that can be used to navigate 

among chunks in a RIFF file: mmioAscend and mmioDescend. These functions 

can be used as high-level seek functions. When descending into a chunk, the file 

position is set to the data field of the chunk (8 bytes from the beginning of the 

chunk). For "RIFF" and "LIST" chunks, the file position is set to the location 

following the form type or list type (12 bytes from the beginning of the chunk). When 

ascending out of a chunk, the file position is set to the location following the end of 

the chunk.  

To create a new chunk, the mmioCreateChunk function can be used to write a 

chunk header at the current position in an open file. The mmioAscend, 

mmioDescend, and mmioCreateChunk functions use the MMCKINFO structure 

to specify and retrieve information about "RIFF" chunks.  
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