
SPEECH SYNTHESIS BY
WORD CONCATENATION

by

Christos C. Vosnidis

A thesis submitted in partial fulfillment
of the requirements for the degree of

B.Sc. in Electronics and Computer
Engineering

Technical University of Crete

2001

Supervisory Committee

Prof. Digalakis Vassilios (Supervisor)

Asoc. Prof. Dollas Apostolos

Prof. Paterakis Michael

Technical University of Crete

Abstract

SPEECH SYNTHESIS BY WORD
CONCATENATION

by Christos C. Vosnidis

Chairperson of the Supervisory Committee:
Professor Vassilios Digalakis

Department of Electronics and Computer Engineering

The Weather Report Synthesizer is a speech synthesis system for weather forecasts in

Greek. Instead of trying to improve the synthesis quality of PSOLA based

concatenative speech synthesizers, we have chosen to use words as the synthesis unit for

our system. This approach has the advantage of low complexity and quick

implementation, while at the same time it achieves better speech quality due to the fact

that the synthesis units inherently possess the necessary prosodic feature diversity. The

selection of the optimal sequence of words that form the synthesized speech, however,

presents the greatest challenge in the synthesis process. Several features are taken into

consideration during the selection, but we have identified Coarticulation at the edges of

consecutive words to have the greatest effect on the quality of the synthesized

utterance. In this thesis we have developed a novel method for evaluating a measure on

the coarticulation effects among pairs of words, based on feature clustering information

as obtained from a current Speech Recognition System. The synthesizer’s output was

subject to a quality assessment procedure, the results of which are also presented.

TABLE OF CONTENTS

Overview... xi
Computer Speech Synthesis .. 1

1. What is Computer Speech Synthesis? .. 1
1.1. Types of Input... 1
1.2. Basic Methods.. 2

2. Speech Synthesis by Word Concatenation ... 3
2.1. Overview... 3
2.2. Categorization.. 3

Text-To-Speech Synthesis... 5
1. Introduction ... 5
2. Automatic Reading: what for? ... 5
3. How does a machine read?.. 8

3.1. The NLP component ... 10
3.1.1. Text Preprocessing.. 11
3.1.2. Word Pronunciation.. 12
3.1.3. Prosody Generation... 13

3.2. The DSP component ... 17
3.2.1. Rule-based synthesizers ... 18
3.2.2. Concatenative synthesizers... 19

Synthesis by Word Concatenation... 25
1. Introduction ... 25
2. Corpus Construction... 26

2.1. Corpus Definition.. 26
2.1.1. The Weather Forecast Report .. 27
2.1.2. Selection of Sentences ... 29
2.1.3. The final Corpus.. 32

2.2. Recording Phase... 32
2.3. Post-Recording Phase... 33

3. Unit Selection... 35
3.1. Using Graphs for Unit Selection... 36

3.1.1. Definitions.. 36
3.1.2. Representation of Graphs.. 37

3.2. Applying Graph Theory to the Unit Selection Problem................... 38
3.2.1. Types of Costs... 40

3.3. Selection Criteria .. 40
3.3.1. Cost Functions.. 40

3.4. Shortest path algorithm.. 45
4. Signal Manipulation... 47

Implementation Issues.. 49
1. Introduction ... 49
2. Corpus Preparation... 49

 ii

2.1. Corpus Selection.. 49
2.1.1. Corpus Selection Tools.. 50
2.1.2. Corpus Selection Algorithm... 52

3. General Overview... 53
3.1. Internal Data.. 54

3.1.1. Word Segment Database ... 55
Use... 57
3.1.2. Coarticulation Database... 60

3.2. Input Data... 66
3.2.1. Sentence File... 66
3.2.2. Word Metadata File ... 66
3.2.3. Coarticulation Matrices.. 67

3.3. The Synthesis Process .. 70
3.3.1. Sentence Parser... 70
3.3.2. Graph Creation Unit.. 70
3.3.3. Selection Mechanism... 77
3.3.4. DSP and Concatenation Unit... 78

Quality Evaluation.. 81
1. Introduction ... 81

1.1. Taxonomy of Evaluation Tasks and Techniques............................. 82
1.1.1. Black Box (Monolithic) versus Glass Box (Modular) 82
1.1.2. Laboratory versus Field ... 83
1.1.3. Linguistic versus Acoustic.. 83
1.1.4. Subjective versus Objective measurement 84
1.1.5. Judgment versus Functional... 85
1.1.6. Global versus Analytic... 85

2. Evaluation of Acoustic Aspects... 85
2.1. Aspects of Speech to be evaluated.. 86

2.1.1. Segments... 86
2.1.2. Prosody... 86
2.1.3. Voice Quality .. 87
2.1.4. Overall Output Quality.. 87

2.2. Test Method .. 87
3. Results.. 88

3.1. First Stage.. 89
3.2. Second Stage.. 95
3.3 Conclusions.. 101

Future Work... 103
1. Discussion.. 103
2. Future Work... 103
3. Epilogue ... 105

Appendices .. 107
1. Single-Source Shortest Paths... 107

1.1. Background.. 107
1.1.1. Representing Shortest Paths... 107
1.1.2. Relaxation ... 108

 iii

1.2. Dijkstra’s Algorithm... 109
1.2.1. Analysis... 110

2. Resource Interface Format Files.. 112

 iv

 v

LIST OF FIGURES

Number Page
Figure 1 Functional Diagram of a TTS System.. 10
Figure 2 Different kinds of information provided by intonation (lines indicate

pitch movements; solid lines indicate stress). a. Focus or given/new
information; b. Relationships between words (saw-yesterday; I-yesterday;
I-him) c. Finality (top) or continuation (bottom), as it appears on the last
syllable; d. Segmentation of the sentence into groups of syllables. 14

Figure 3 A general concatenation-based synthesizer. The upper left hatched block
corresponds to the development of the synthesizer (i.e. it is processed
once for all). Other blocks correspond to run-time operations. A flag
indicates language-dependent operations and data. 20

Figure 4 A directed graph ... 36
Figure 5 Adjacency List representation for the Graph in Figure 4 38
Figure 6 Graph of a Two-Word Sentence.. 39
Figure 7 Components of Speech Synthesizer... 54
Figure 8 The Hierarchical Structure of the Recorded Segments Database........... 56
Figure 9 HMM for triphone n[E]c .. 61
Figure 10 Clustering of Feature Vectors.. 62
Figure 11 The Clustering Information File .. 63
Figure 12 The syntax of the Sentence File ... 66
Figure 13 Syntax of the Word Metadata File.. 67
Figure 14 The Co-Occurrence Matrix ... 68
Figure 15 The syntax of the Coarticulation Matrices.. 69
Figure 16 The Total Co-Occurrence Matrix .. 69
Figure 17 The syntax of the Total Co-Occurrence Matrix.................................. 70
Figure 18 Creation of Word Class List from Sentence File................................. 70
Figure 19 The syntax of the Graph Creation File... 73
Figure 20 Creation of Word Class List from Sentence File................................. 74
Figure 21 Use of adj List in Graph.. 76
Figure 22 Creation of the Fragments File .. 77
Figure 23 Relationships among dimensions involved in taxonomy of speech

output evaluation methods.. 82
Figure 24 "RIFF" chunk containing two subchunks .. 113
Figure 25 "RIFF" chunk containing a "LIST" subchunk 114

 vi

 vii

ACKNOWLEDGMENTS

The author wishes to express sincere appreciation to Professor Vassilis Digalakis for his

guidance during the design and implementation of this application and his assistance in

the preparation of this manuscript. In addition, special thanks to Professor Michael

Paterakis, both for his help during the data acquisition process, as he had personally

vouched for the author to the National Meteorological Agency (EMY), and for his

remarks on the subject, as he was a member of the Supervisory. Finally, I would also

like to thank Associate Professor Apostolos Dollas for the evaluation of this work, and

for participating in the Supervisory Committee.

I would also like to thank the members of the evaluation team: Alexandraki A., Diplaris

S., Giakoumis D., Georgiades I., Gorogia Th., Hajichrisafis N., Harizakis C.,

Kostoulakis C., Melessanaki E., Oikonomides D., Papadaki Z., Perakakis M., Pratsolis

D., Revithi A., Salappa A., Stellakis D. and Tsourakis N. for their valuable help with

extracting a measure on the quality of the output of this work.

And last, but not least, special thanks to Antonis Alygizakis, who has contributed his

voice for the implementation of this system.

 viii

 ix

GLOSSARY

Corpus. The set of sentences to be recorded and later segmented into the words that
they contain.

Concordance (of a file). A listing that contains all the words of that file, along with the
line number on which the word occurs.

Reduction Property. A phonological word is reduced if it deviates from a canonical
form a native speaker would judge as an acceptable version if the word were spoken in
isolation.

Representative Sentence. A sentence that, when added to the collection of sentences
already chosen to form the Corpus, introduces as much new information, in the form
of words, either new or ones found in a context that has not yet been observed, as
possible.

Shortest Path. The path with minimal cost is called shortest path.

Word (see also word class). A specific orthographic, case sensitive, word instance taking
into consideration its association with any punctuation marks.

Word Class. The orthographic form of a word and its associated description.

Word Instance. A recorded word and its concrete description.

Word Layer. All word instances that belong to the same word class.

 x

 xi

OVERVIEW

Chapter 1 provides a definition of the field of Computer Speech Synthesis, as well as a

categorization based on the types of input to speech synthesizers, and on the basic

methods used for the synthesis procedure.

Chapter 2 outlines the parts of a speech synthesizer, and provides insight to the current

approaches in the construction of speech synthesizers.

Chapter 3 explains the basic idea of our approach to the subject, and outlines the

strategy that our application uses to synthesize speech.

Chapter 4 provides explanation on the technical issues that have arisen during the

implementation of the synthesizer, and exposes the inner workings of our speech

synthesis system.

Finally, Chapter 5 outlines our approach towards the definition of an evaluation

procedure for the results of our application, and presents the findings of this overview.

The Appendices at the end of the thesis provide information on certain technical

issues that may prove useful for some readers.

 xii

C h a p t e r 1

COMPUTER SPEECH SYNTHESIS

Computer speech synthesis has reached a high level of performance, with increasingly

sophisticated models of linguistic structure, low error rates in text analysis, and high

intelligibility in synthesis from phonemic input. Mass-market applications have already

been introduced, although the results are still not good enough for the ubiquitous

application that such technology will eventually have.

A number of alternative directions of current research aim at the ultimate goal of fully

natural synthetic speech. One especially promising trend is the systematic

optimization of large synthesis systems, with respect to formal criteria of evaluation.

Speech recognition has advanced rapidly in late ‘80s and early ‘90s through such

approaches, and it seems likely that their application in synthesis will produce similar

improvements.

1. WHAT IS COMPUTER SPEECH SYNTHESIS?

Let us begin this short review of Computer Speech Synthesis by first exploring what

is meant by this term.

Obviously, this term refers to the creation by computer of human-like speech, but

that only tells us what the output of the process is. Synthesized speech output may

come from a wide range of processes that differ enormously in the nature of their

inputs and the nature of their internal structures and calculations.

1.1. Types of Input

The input to a speech synthesizer may be

1. an uninterpreted reference to a previously recorded utterance

 2

2. a message drawn from a small finite class of texts, such as telephone numbers

3. a message drawn from a larger, or even infinite, but still restricted, class of texts,

such as names and addresses

4. a message drawn from unrestricted digital text, including anything from electronic

mail to online newspapers to patent or legal texts, novels, or cookbooks

5. a message composed automatically from non-textual computer data structures

(which we might thing of as analogous to “concepts” or “meanings”

6. a specification of the phonological content of a message, which for most

applications must be produced from one of these types of input given previously

Most commercial applications so far have been of type 1 or 2. Classical “text-to-

speech” systems are of type 4 and/or 6. Ultimate human computer interaction

systems are likely to be of type 5, with a bit of 4.

A large number of the people involved in applying speech synthesis technology think

that the most promising current opportunities are of type 3. Note that choosing such

restricted domain applications has been crucial to the success of computer speech

recognition. Most practical speech synthesis implementations, including our

application, belong to this category.

1.2. Basic Methods

The system internal structures and processes of “speech synthesis” may involve

1. reproduction of digitally stored human voice, perhaps with

compression/expansion

2. construction of messages by concatenation of digitally stored voice fragments

3. construction of messages by concatenation of digitally stored voice fragments,

with modifications of the original timing and pitch

4. construction of messages by concatenation of digitally stored voice fragments,

with rule-generated synthetic speech contours and rule generated segmental

timing values

5. construction of messages using rule-generated synthetic time functions of

acoustic parameters

 3

6. construction of messages using rule-generated controls for the kinematics of

simplified analogs of human vocal tract

7. construction of messages by realistic modeling of the physiological and physical

processes of human speech production, including dynamic control of articulation

and models of the airflow dynamics in the vocal tract

The largest scale of commercial activity has been of types 1 and 2, which might be

called stored voice. This includes telecommunication intercepts, voice-mail prompts,

and so forth. Much classical speech synthesis research has been of type 5 or 6, using

techniques called formant synthesis. Several of the best current systems, and the most

active areas of research, are of types 3 and 4, techniques that are called concatenative

synthesis.

2. SPEECH SYNTHESIS BY WORD CONCATENATION

2.1. Overview

This thesis describes the concept and provides information on the implementation of

a text-to-speech synthesizer that synthesizes sentences in the domain of whether

forecasts by concatenating digitally stored voice fragments.

Each fragment corresponds to a specific word, and there is at least one fragment –

usually three or more – corresponding to any given word. Our application uses a

combination of criteria in order to select the optimal sequence of fragments to be

used, applies, whenever necessary, basic energy smoothing at the borders of the

fragments and concatenates them into the final synthetic utterance, in

correspondence to the input text.

2.2. Categorization

Using the categorization described previously, and with respect to the type of input,

our application can be assigned to the third category. We believe that there are certain

applications for which speech synthesis is needed and where the implementation of a

speech synthesizer with good speech quality is more important than that of a general-

 4

purpose, open vocabulary synthesizer, with significant deterioration in speech quality.

After all, most commercial applications of speech synthesis technologies involve the

generation of speech from restricted, even though large enough, classes of text.

With respect to the basic methods used for the synthesis of the output speech, our

application bares most resemblance to the second category, while using some new

approaches to the selection process. It is certainly a concatenative synthesizer, where

digitally stored words are used as the synthesis units, but which also uses techniques

such as coarticulation matching and prominence in order to achieve better speech

quality.

 5

C h a p t e r 2

TEXT-TO-SPEECH SYNTHESIS

1. INTRODUCTION

A Text-To-Speech (TTS) synthesizer is a computer-based system that should be able

to read any text aloud, whether it was directly introduced in the computer by an

operator or scanned and submitted to an Optical Character Recognition (OCR)

system. Let us try to be clear. There is a fundamental difference between the system

we are about to discuss here and any other talking machine (as a cassette-player for

example) in the sense that we are interested in the automatic production of new

sentences.

At first sight, this task does not look too hard to perform. After all, is not the human

being potentially able to correctly pronounce an unknown sentence, even from his

childhood? We all have, mainly unconsciously, a deep knowledge of the reading rules

of our mother tongue. They were transmitted to us, in a simplified form, at primary

school, and we improved them year after year. However, it would be a bold claim

indeed to say that it is only a short step before the computer is likely to equal the

human being in that respect. Despite the present state of our knowledge and

techniques and the progress recently accomplished in the fields of Signal Processing

and Artificial Intelligence, we would have to express some reservations. As a matter

of fact, the reading process draws from the furthest depths, often unthought-of, of

the human intelligence.

2. AUTOMATIC READING: WHAT FOR?

Each and every synthesizer is the result of a particular and original imitation of the

human reading capability, submitted to technological and imaginative constraints that

 6

are characteristic of the time of its creation. The concept of high quality TTS synthesis

appeared in the mid eighties, as a result of important developments in speech

synthesis and natural language processing techniques, mostly due to the emergence of

new technologies (Digital Signal and Logical Inference Processors). It is now a must

for the speech products family expansion.

Potential applications of High Quality TTS Systems are indeed numerous. Here are

some examples:

• Telecommunications services.

TTS systems make it possible to access textual information over the telephone.

Knowing that about 70% of the telephone calls actually require very little

interactivity, such a prospect is worth being considered. Texts might range from

simple messages, such as local cultural events not to miss (cinemas, theatres, ...) ,

to huge databases which can hardly be read and stored as digitized speech.

Queries to such information retrieval systems could be put through the user's

voice (with the help of a speech recognition system), or through the telephone

keyboard (with DTMF systems). One could even imagine that our (artificially)

intelligent machines could speed up the query when needed, by providing lists of

keywords, or even summaries. VoiceXML™ is a programming language designed

for creating applications that enable access over the phone to information already

available through a classic web browser. Using a server resident Voice Browser,

voice and/or the telephone keypad as the method of data input, and server side

speech synthesis as the method of data output, information services already

offered on the Web could easily be modified to support mobile users. Given the

continuously expanding number of mobile phones (more than 1B mobile phones

worldwide) and the current trend in mobile Personal Digital Assistants, it seems

that voice could easily be the medium of choice to address the needs of this new

type of information services’ users.

• Language education.

 7

High Quality TTS synthesis can be coupled with a Computer Aided Learning

system, and provide a helpful tool to learn a new language. To our knowledge,

this has not been done yet, given the relatively poor quality available with

commercial systems, as opposed to the critical requirements of such tasks.

• Aid to handicapped persons.

Voice handicaps originate in mental or motor/sensation disorders. Machines can

be an invaluable support in the latter case: with the help of an especially designed

keyboard and a fast sentence assembling program, synthetic speech can be

produced in a few seconds to remedy these impediments. Astrophysician Stephen

Hawking gives all his lectures in this way. The aforementioned Telephone Relay

Service is another example. Blind people also widely benefit from TTS systems,

when coupled with Optical Recognition Systems (OCR), which give them access

to written information. Mass-market synthesizers bundled with sound cards will

soon invade the market for speech synthesis for blind users of personal

computers. DECtalk™ is already available with the latest SoundBlaster™ cards

now, although not yet in a form useful for blind people.

• Talking books and toys.

The toy market has already been touched by speech synthesis. Many speaking

toys have appeared, under the impulse of the innovative 'Magic Spell' from Texas

Instruments. The poor quality available inevitably restrains the educational

ambition of such products. High Quality synthesis at affordable prices might well

change this.

• Vocal Monitoring.

In some cases, oral information is more efficient than written messages. The

appeal is stronger, while the attention may still focus on other visual sources of

information. Hence the idea of incorporating speech synthesizers in measurement

or control systems.

• Multimedia, man-machine communication.

 8

In the long run, the development of high quality TTS systems is a necessary step

(as is the enhancement of speech recognizers) towards more complete means of

communication between men and computers. Multimedia is a first but promising

move in this direction.

• Fundamental and applied research.

TTS synthesizers possess a very peculiar feature, which makes them wonderful

laboratory tools for linguists: they are completely under control, so that repeated

experiences provide identical results (as is hardly the case with human beings).

Consequently, they allow investigating the efficiency of intonative and rhythmic

models. A particular type of TTS systems, which are based on a description of the

vocal tract through its resonant frequencies (its formants) and denoted as formant

synthesizers, has also been extensively used by phoneticians to study speech in

terms of acoustical rules. In this manner, for instance, articulatory constraints

have been enlightened and formally described.

3. HOW DOES A MACHINE READ?

It is tempting to think of the problem of converting written text into speech as

“speech recognition in reverse”. Current speech recognition systems are generally

deemed successful if they can convert speech input into the sequence of words that

was uttered by the speaker, so one might imagine that a TTS synthesizer would start

with the words in the text, convert each word one into speech (being careful to

pronounce each word correctly) and concatenate that result together.

However, when one considers what literate native speakers of a language must do

when they read a text aloud, it quickly becomes clear that things are much more

complicated than this simplistic approach suggests. Pronouncing words correctly is

only part of the problem faced by human readers: in order to sound natural and to

sound as if they understand what they are reading, they must also appropriately

emphasize (accent) some words, and de-emphasize others; they must “chunk” the

sentence into meaningful (intonational) phrases; they must pick an appropriate F0

 9

(fundamental frequency) contour; they must control certain aspects of their voice

quality; they must know that a word should be pronounced longer if it appears in

some positions in the sentence, than if it appears in others, since segmental durations are

affected by various factors, including phrasal positions.

What makes reading such a difficult task, is that all writing systems systematically fail

to specify many kinds of information that are important in speech. While the written

form of a sentence (usually) completely specifies the words that are present, it will

only partly specify the intonational phrases (typically with some form of punctuation),

will usually not indicate which words to accent or de-accent, and hardly ever gives

information on segmental duration, voice quality or intonation. One might think that

a question mark ‘?’ indicates that a sentence should be pronounced with a rising

intonation: generally though a question mark merely indicates that a sentence is a

question, leaving it up to the reader to judge whether this question should be

rendered with a rising intonation. The orthographies of some languages – for instance

Chinese, Japanese, and Thai – fail to give information on where word boundaries are,

so that even this needs to be figured out by the reader.

The task of a TTS system is thus a complex one that involves mimicking what human

readers do. But a machine is hobbled by the fact that it generally “knows” the

grammatical facts of the language only imperfectly, and generally can be said to

“understand” nothing of what it is reading. TTS algorithms thus have to do the best

they can, making use, whenever possible, of purely grammatical information to decide

on such things as accentuation, phrasing, and intonation, and coming up with a

reasonable “middle ground” analysis for aspects of the output that are more

dependent on actual understanding.

It is natural to divide the TTS problem into two broad sub-problems. The first of

these is the conversion of text – an imperfect representation of language, as we have

seen – into some form of linguistic representation, which includes information on the

phonemes (sounds) to be produced, their duration, the locations and durations of any

pauses and the F0 contour to be used. The second – the actual synthesis of speech –

takes this information and converts it into a speech waveform.

 10

Figure 1 introduces the functional diagram of a very general TTS synthesizer. As for

human reading, it comprises a Natural Language Processing module (NLP), capable

of producing a phonetic transcription of the text read, together with the desired

intonation and rhythm (often termed as prosody), and a Digital Signal Processing

module (DSP), which transforms the symbolic information it receives into speech.

Text-to-Speech Synthesizer

Natural Language
Processing

Linguistic Formalisms

Inference Engines
Logical Inferences

Digital Signal
Processing

Mathematical Models

Algorithms
Computations

Phonemes

Prosody

Speech Text

Figure 1 Functional Diagram of a TTS System

3.1. The NLP component

The Natural Language Processing block of a synthesizer is used to perform text and

linguistic analysis on the input text, and can be broken down to the following parts:

• Text Preprocessing: including end-of-sentence detection, “text normalization”

(expansion of numerals and abbreviations), and limited grammatical analysis, such

as grammatical part-of-speech assignment.

• Word Pronunciation: including the pronunciation of names and the disambiguation

of homographs.

• Accent Assignment: the assignment of levels of prominence to various words in the

sentence.

• Intonational Phrasing: the breaking of (usually long) stretches of text into one or

more intonational units.

• Segmental Durations: the determination, on the basis of linguistic information

computed thus far, of appropriate durations for phonemes in the input.

 11

• F0 contour computation.

3.1.1. Text Preprocessing

The text preprocessing step performs the following tasks:

• It organizes the input sentences into manageable lists of words. It identifies

numbers, abbreviations, acronyms and idiomatics and transforms them into full

text when needed. An important problem is encountered as soon as the character

level: that of punctuation ambiguity1 (including the critical case of sentence end

detection). It can be solved, to some extent, with elementary regular grammars.

• It performs a morphological analysis on the input text, in order to propose all

possible part of speech categories for each word taken individually, on the basis

of their spelling. Inflected, derived, and compound words are decomposed into

their elementary graphemic units (their morphs) by simple regular grammars

exploiting lexicons of stems and affixes.

• Finally words are considered in their context, which allows for the reduction of

the list of their possible part of speech categories to a very restricted number of

highly probable hypotheses, given the corresponding possible parts of speech of

neighboring words. This can be achieved either with n-grams, which describe local

syntactic dependences in the form of probabilistic finite state automata (i.e. as a

Markov model), to a lesser extent with multi-layer perceptrons (i.e., neural networks)

trained to uncover contextual rewrite rules, or with local, non-stochastic grammars

provided by expert linguists or automatically inferred from a training data set with

classification and regression tree (CART) techniques.

• Finally, a syntactic-prosodic parser, which examines the remaining search space

and finds the text structure (i.e. its organization into clause and phrase-like

constituents) which more closely relates to its expected prosodic realization (see

below).

1 A period ‘.’ may usually used as a sentence delimiter, may also be used for instance to mark abbreviations.

 12

3.1.2. Word Pronunciation

The Word Pronunciation module is responsible for the automatic determination of

the phonetic transcription of the incoming text. It thus seems, at first sight, that its

task is as simple as performing the equivalent of a dictionary look-up! From a deeper

examination, however, one quickly realizes that most words appear in genuine speech

with several phonetic transcriptions, many of which are not even mentioned in

pronunciation dictionaries. Namely:

1. Pronunciation dictionaries refer to word roots only. They do not explicitly

account for morphological variations (i.e. plural, feminine, conjugations, especially

for highly inflected languages, such as French), which therefore have to be dealt

with by a specific component of phonology, called morphophonology.

2. Some words actually correspond to several entries in the dictionary, or more

generally to several morphological analyses, generally with different

pronunciations. This is typically the case of heterophonic homographs, i.e. words

that are pronounced differently even though they have the same spelling, as for

'record' (/rek•ùd/ or /rIk•ùd/), constitute by far the most tedious class of

pronunciation ambiguities. Their correct pronunciation generally depends on their

part-of-speech and most frequently contrasts verbs and non-verbs, as for

'contrast' (verb/noun) or 'intimate' (verb/adjective), although it may also be based

on syntactic features, as for 'read' (present/past)

3. Pronunciation dictionaries merely provide something that is closer to a phonemic

transcription than from a phonetic one (i.e. they refer to phonemes rather than to

phones). Consonants, for example, may reduce or delete in clusters, a

phenomenon termed as consonant cluster simplification, as in 'softness' [s•fnIs]

in which [t] fuses in a single gesture with the following [n].

4. Words embedded into sentences are not pronounced as if they were isolated.

Surprisingly enough, the difference does not only originate in variations at word

boundaries (as with phonetic liaisons), but also on alternations based on the

organization of the sentence into non-lexical units, that is whether into groups of

words (as for phonetic lengthening) or into non-lexical parts thereof (many

phonological processes, for instance, are sensitive to syllable structure).

 13

5. Finally, not all words can be found in a phonetic dictionary: the pronunciation of

new words and of many proper names has to be deduced from the one of already

known words.

Clearly, points 1 and 2 heavily rely on a preliminary morphosyntactic (and possibly

semantic) analysis of the sentences to read. To a lesser extent, it also happens to be

the case for point 3 as well, since reduction processes are not only a matter of

context -sensitive phonation, but they also rely on morphological structure and on

word grouping, that is on morphosyntax. Point 4 puts a strong demand on sentence

analysis, whether syntactic or metrical, and point 5 can be partially solved by

addressing morphology and/or by finding graphemic analogies between words.

3.1.3. Prosody Generation

The term prosody refers to certain properties of the speech signal, which are related to

audible changes in pitch, loudness, and syllable length. Prosodic features have specific

functions in speech communication (see Figure 2). The most apparent effect of

prosody is that of focus. For instance, there are certain pitch events which make a

syllable stand out within the utterance, and indirectly the word or syntactic group it

belongs to will be highlighted as an important or new component in the meaning of

that utterance. The presence of a focus marking may have various effects, such as

contrast, depending on the place where it occurs, or the semantic context of the

utterance.

 14

Figure 2 Different kinds of information provided by
intonation (lines indicate pitch movements; solid lines
indicate stress).
a. Focus or given/new information;
b. Relationships between words (saw -yesterday; I-
yesterday; I-him)
c. Finality (top) or continuation (bottom), as it appears
on the last syllable;
d. Segmentation of the sentence into groups of syllables.

Although maybe less obvious, there are other, more systematic or general functions.

Prosodic features create a segmentation of the speech chain into groups of syllables,

or, put the other way round, they give rise to the grouping of syllables and words into

larger chunks. Moreover, there are prosodic features, which indicate relationships

between such groups, indicating that two or more groups of syllables are linked in

some way. This grouping effect is hierarchical, although not necessarily identical to

the syntactic structuring of the utterance.

Accentuation

Various words in a sentence are associated with accents, which are usually manifested

as upward or downward movements of fundamental frequency. Accentuation, along

with intonational phrasing and F0 contour computation is part of the large problem of

prosody generation.

 15

Back to accentuation, words are typically distinguished into three groups with regard

to their prominence. Two are accented and unaccented, and the third is cliticized. Cliticized

words are unaccented but in addition have lost their word stress, so that they tend to

be short in duration: in effect they behave like unstressed affixes, even though they

are written as separate words.

Accents are assigned primarily on the basis of broad lexical categories or parts of

speech. Content words – nouns, verbs, and adjectives tend in general to be accented;

function words, including auxiliary verbs and propositions tend to be unaccented;

short function words tend to be cliticized. However, more complex accentuation

schemes based on syntactic and semantic analysis have also been used, providing

better results.

Intonational Phrasing

Most commercially developed TTS system have emphasized coverage rather than

linguistic sophistication, by concentrating their efforts on text analysis strategies

aimed to segment the surface structure of incoming sentences, as opposed to their

syntactically, semantically, and pragmatically related deep structure. The resulting

syntactic-prosodic descriptions organize sentences in terms of prosodic groups

strongly related to phrases (and therefore also termed as minor or intermediate phrases),

but with a very limited amount of embedding, typically a single level for these minor

phrases as parts of higher-order prosodic phrases (also termed as major or intonational

phrases, which can be seen as a prosodic-syntactic equivalent for clauses) and a second

one for these major phrases as parts of sentences, to the extent that the related major

phrase boundaries can be safely obtained from relatively simple text analysis methods.

In other words, they focus on obtaining an acceptable segmentation and translate it

into the continuation or finality marks of Figure 2.c , but ignore the relationships or

contrastive meaning of Figure 2.a and b.

Liberman and Church, for instance, have reported on such a very crude algorithm,

termed as the chinks 'n chunks algorithm, in which prosodic phrases (which they call f-

groups) are accounted for by the simple regular rule:

 16

a (minor) prosodic phrase = a sequence of chinks followed by a sequence of chunks

in which chinks and chunks belong to sets of words which basically correspond to

function and content words, respectively, with the difference that objective pronouns

(like 'him' or 'them') are seen as chunks and that tensed verb forms (such as 'produced')

are considered as chinks. They show that this approach produces efficient grouping in

most cases, slightly better actually than the simpler decomposition into sequences of

function and content words, as shown in the example below:

function words / content words chinks / chunks

I asked I asked them

them if they were going home if they were going home

to Idaho to Idaho

and they said yes and they said yes

and anticipated and anticipated one more stop

one more stop before getting home

before getting home

Other, more sophisticated approaches include syntax-based expert systems, and

automatic, corpus-based methods as with the classification and regression tree (CART)

techniques.

Segmental Durations

Once the phonemes to be produced by the synthesizer have been computed, it is

necessary to decide how long to make each one. What duration to assign to a

phonemic segment depends upon many factors, including:

• The identity of the segment in question.

• The stress of the syllable of which the segment is a member

• Whether the syllable of which the segment is a member bears an accent.

• The quality of the surrounding segments.

• The position of the segment in the phrase.

 17

Some methods involve the use of duration rules, which are rules of the form “if the

segment is X and it is in phrase-final position, then lengthen X by n msec”. These

rules can be formalized explicitly in terms of duration models, which are mathematical

expressions prescribing how the various conditioning factors are to be used in

computing the durations of segments. We could even use exploratory data analysis, to

arrive to models whose predictions show a good fit to durations from a corpus of

labeled speech.

Sentence Intonation

Information such as:

• The syllables in the utterance to be stressed, as computed by the accentuation

and the pronunciation module.

• The type of accents to be used, as well as the types of initial and final

boundary tones and phrase accents.

• The duration of the segments in the utterance.

Sentence intonation is implemented by the F0 contour of the phrase. However, its

generation is not straightforward either. It requires formalizing a lot of phonetic or

phonological knowledge, either obtained from experts or automatically acquired from

data with statistical methods. More information on this can be found in [Dutoit].

3.2. The DSP component

Once the text has been transformed into phonemes, and their associated durations

and a fundamental frequency contour have been computed, the system is ready to

compute the speech parameters for synthesis.

Intuitively, the operations involved in the DSP module are the computer analogue of

dynamically controlling the articulatory muscles and the vibratory frequency of the

vocal folds so that the output signal matches the input requirements. In order to do it

properly, the DSP module should obviously, in some way, take articulatory

constraints into account, since it has been known for a long time that phonetic

 18

transitions are more important than stable states for the understanding of speech.

This, in turn, can be basically achieved in two ways:

• Explicitly, in the form of a series of rules which formally describe the influence of

phonemes on one another;

• Implicitly, by storing examples of phonetic transitions and co-articulations into a

speech segment database, and using them just as they are, as ultimate acoustic

units (i.e. in place of phonemes).

Two main classes of TTS systems have emerged from this alternative, which quickly

turned into synthesis philosophies given the divergences they present in their means

and objectives: synthesis-by-rule and synthesis-by-concatenation.

3.2.1. Rule-based synthesizers

Rule-based synthesizers are mostly in favor with phoneticians and phonologists, as

they constitute a cognitive, generative approach of the phonation mechanism. Rule-

based approaches are space-efficient, since they eliminate the need to store speech

segments, and they also make it easier in principle to implement new speaker

characteristics for different voices, as well as different phone inventories for new

dialects and languages.

These systems are also restrictive regarding the choice of the parametric

representation of speech, since such schemes rely both on our understanding of the

relation between the parameters and the acoustic signals they represent, and on our

ability to compute the dynamics of the parameters as they move from one sound to

another. Thus far only articulation parameters and formants have been used in rule-

based systems.

Most such systems describe speech as the dynamic evolution of up to 60 parameters,

mostly related to formant and anti-formant frequencies and bandwidths together with

glottal waveforms. Clearly, the large number of (coupled) parameters complicates the

analysis stage and tends to produce analysis errors. What is more, formant frequencies

and bandwidths are inherently difficult to estimate from speech data. The need for

 19

intensive trials and errors, in order to cope with analysis errors, makes them time-

consuming systems to develop (several years are commonplace). Yet, the synthesis

quality achieved up to now reveals typical buzzyness problems, which originate from

the rules themselves: introducing a high degree of naturalness is theoretically possible,

but the rules to do so are still to be discovered.

Rule-based synthesizers remain, however, a potentially powerful approach to speech

synthesis. They allow, for instance, to study speaker-dependent voice features so that

switching from one synthetic voice into another can be achieved with the help of

specialized rules in the rule database. Following the same idea, synthesis-by-rule

seems to be a natural way of handling the articulatory aspects of changes in speaking

styles (as opposed to their prosodic counterpart, which can be accounted for by

concatenation-based synthesizers as well). No wonder then that it has been widely

integrated into TTS systems (MITalk™ and the JSRU synthesizer for English).

3.2.2. Concatenative synthesizers

As opposed to rule-based ones, concatenative synthesizers possess a very limited

knowledge of the data they handle: most of it is embedded in the segments to be

chained up. This clearly appears in Figure 3, where all the operations that could

indifferently be used in the context of a music synthesizer (i.e. without any explicit

reference to the inner nature of the sounds to be processed) have been grouped into a

sound processing block, as opposed to the upper speech processing block whose design

requires at least some understanding of phonetics.

Database preparation

A series of preliminary stages have to be fulfilled before the synthesizer can produce

its first utterance. At first, segments are chosen so as to minimize future

concatenation problems. A combination of diphones (i.e. units that begin in the

middle of the stable state of a phone and end in the middle of the following one),

half-syllables, and triphones (which differ from diphones in that they include a

complete central phone) are often chosen as speech units, since they involve most of

the transitions and coarticulations while requiring an affordable amount of memory.

 20

When a complete list of segments has emerged, a corresponding list of words is

carefully completed, in such a way that each segment appears at least once (twice is

better, for security). Unfavorable positions like inside stressed syllables or in strongly

reduced (i.e. over-coarticulated) contexts, are excluded. A corpus is then digitally

recorded and stored, and the elected segments are spotted, either manually with the

help of signal visualization tools, or automatically thanks to segmentation algorithms,

the decisions of which are checked and corrected interactively. A segment database

finally centralizes the results, in the form of the segment names, waveforms,

durations, and internal sub-splittings. In the case of diphones, for example, the

position of the border between phones should be stored, so as to be able to modify

the duration of one half-phone without affecting the length of the other one.

Selective
Segmentation

Speech
Analysis

Equalization

Speech
Coding

Speech
Uncoding

Prosody Matching

Segment Concatenation

Speech
Segments DB

Segment List
Generation

Speech
Corpus

Parametric
Segment DB

Synthesis
Segment DB

Signal Synthesis

Signal Processing

Speech Processing

Speech

Phonemes + Prosody

Figure 3 A general concatenation-based synthesizer. The
upper left hatched block corresponds to the
development of the synthesizer (i.e. it is processed once
for all). Other blocks correspond to run-time operations.
A flag indicates language-dependent operations and data.

Segments are then often given a parametric form, in the form of a temporal sequence

of vectors of parameters collected at the output of a speech analyzer and stored in a

 21

parametric segment database. The advantage of using a speech model originates in the

fact that:

• Well chosen speech models allow data size reduction, an advantage which is

hardly negligible in the context of concatenation-based synthesis given the

amount of data to be stored. Consequently, a parametric speech coder often

follows the analyzer.

• A number of models explicitly separate the contributions of respectively the

source and the vocal tract, an operation that remains helpful for the pre-synthesis

operations: prosody matching and segments concatenation.

Indeed, the actual task of the synthesizer is to produce, in real-time, an adequate

sequence of concatenated segments, extracted from its parametric segment database

and the prosody of which has been adjusted from their stored value, i.e. the

intonation and the duration they appeared with in the original speech corpus, to the

one imposed by the language processing module. Consequently, the respective parts

played by the prosody matching and segments concatenation modules are

considerably alleviated when input segments are presented in a form that allows easy

modification of their pitch, duration, and spectral envelope, as is hardly the case with

crude waveform samples.

Since segments to be chained up have generally been extracted from different words,

i.e. in different phonetic contexts, they often present amplitude and timbre

mismatches. Even in the case of stationary vocalic sounds, for instance, a rough

sequencing of parameters typically leads to audible discontinuities. These can be

coped with during the constitution of the synthesis segments database, thanks to an

equalization in which related endings of segments are imposed similar amplitude

spectra, the difference being distributed on their neighborhood. In practice, however,

this operation is restricted to amplitude parameters: the equalization stage smoothly

modifies the energy levels at the beginning and at the end of segments, in such a way

as to eliminate amplitude mismatches (by setting the energy of all the phones of a

given phoneme to their average value). In contrast, timbre conflicts are better tackled

at run-time, by smoothing individual couples of segments when necessary rather than

 22

equalizing them once for all, so that some of the phonetic variability naturally

introduced by co-articulation is still maintained. In practice, amplitude equalization

can be performed either before or after speech analysis (i.e. on crude samples or on

speech parameters).

Once the parametric segment database has been completed, synthesis itself can begin.

Speech synthesis

A sequence of segments is first deduced from the phonemic input of the synthesizer,

in a block termed as segment list generation in Figure 3, which interfaces the NLP and

DSP modules. Once prosodic events have been correctly assigned to individual

segments, the prosody matching module queries the synthesis segment database for the

actual parameters, adequately encoded, of the elementary sounds to be used, and

adapts them one by one to the required prosody. The segment concatenation block is

then in charge of dynamically matching segments to one another, by smoothing

discontinuities. Here again, an adequate modeling of speech is highly profitable,

provided simple interpolation schemes performed on its parameters approximately

correspond to smooth acoustical transitions between sounds. The resulting stream of

parameters is finally presented at the input of a synthesis block, the exact counterpart

of the analysis one. Its task is to produce speech.

Segmental quality

The efficiency of concatenative synthesizers to produce high quality speech is mainly

subordinated to:

1. The type of segments chosen.

Segments should obviously exhibit some basic properties:

• They should account for as many co-articulatory effects as possible.

• Given the restricted smoothing capabilities of the concatenation block,

they should be easily connectable.

• Their number and length should be kept as small as possible.

 23

• On the other hand, longer units decrease the density of concatenation

points, therefore providing better speech quality. Similarly, an obvious

way of accounting for articulatory phenomena is to provide many variants

for each phoneme. This is clearly in contradiction with the limited

memory constraint. Some trade-off is necessary. Diphones are often

chosen. They are not too numerous (about 1200 for French, including

lots of phoneme sequences that a re only encountered at word boundaries,

for 3 minutes of speech, i.e. approximately 5 Mbytes of 16 bits samples at

16 kHz) and they do incorporate most phonetic transitions. No wonder

then that they have been extensively used. They imply, however, a high

density of concatenation points (one per phoneme), which reinforces the

importance of an efficient concatenation algorithm. Besides, they can only

partially account for the many co-articulatory effects of a spoken

language, since these often affect a whole phone rather than just its right

or left halves independently. Such effects are especially patent when

somewhat transient phones, such as liquids and (worst of all) semi-

vowels, are to be connected to each other. Hence the use of some larger

units as well, such as triphones.

2. The model of speech signal, to which the analysis and synthesis algorithms refer.

The models used in the context of concatenative synthesis can be roughly classified

into two groups, depending on their relationship with the actual phonation process.

Production models provide mathematical substitutes for the part respectively played by

vocal folds, nasal and vocal tracts, and by the lips radiation. Their most representative

members are Linear Prediction Coding (LPC) synthesizers, and the formant

synthesizers we mentioned in Section 3.2.1. Rule-based synthesizers. On the contrary,

phenomenological models intentionally discard any reference to the human production

mechanism. Among these pure digital signal processing tools, spectral and time-

domain approaches are increasingly encountered in TTS systems. Two leading such

models exist: the hybrid Harmonic/Stochastic (H/S) model of [Abrantes] and the

Time-Domain Pitch-Synchronous-OveraLap-Add (TD-PSOLA) one [Moulines &

 24

Charpentier]. The latter is a time-domain algorithm: it virtually uses no speech explicit

speech model. It exhibits very interesting practical features: a very high speech quality

(the best currently available) combined with a very low computational cost (7

operations per sample on the average). The hybrid Harmonic/stochastic model is

intrinsically more powerful than the TD-PSOLA one, but it is also about ten times

more computationally intensive. PSOLA synthesizers are now widely used in the

speech synthesis community. The recently developed MBROLA algorithm [Dutoit]

even provides a time-domain algorithm which exhibits the very efficient smoothing

capabilities of the H/S model (for the spectral envelope mismatches that cannot be

avoided at concatenation points) as well as its very high data compression ratios (up

to 10 with almost no additional computational cost) while keeping the computational

complexity of PSOLA.

 25

C h a p t e r 3

SYNTHESIS BY WORD CONCATENATION

1. INTRODUCTION

Common speech synthesis systems are based on predefined units, whose

concatenation is obligatory. Small speech units such as diphones or demisyllables

recorded from a human speaker are concatenated to build the synthetic utterance.

The prosodic structure is modeled on the basis of artificial F0-, energy-, and duration

parameters, which are applied to the synthesis units in order to build the synthetic

utterance. This results in synthetic speech for unrestricted domains, but the

synthesized speech has a machine-like quality. However, in many cases, synthesis for

unrestricted domains is not necessary, because those speech-synthesis applications

operate on restricted domains.

Recent synthesis approaches are also based on the concatenation of recorded units,

but the concatenation is not obligatory. In addition, instead of modeling prosodic

parameters explicitly, the inherent prosodic structure of the recorded speech signals is

used. This implies that the speech corpus contains each synthesis unit in different

prosodic settings. Furthermore, a method to select the appropriate unit sequence to

be synthesized is necessary. Usually the synthetic speech generated with these

approaches is judged to be more natural than that from diphone synthesis.

Our method is based on the observation that an utterance sounds more natural when

it is completely stored in the corpus. In that case, no concatenation of units is

necessary, just a simple playback of the recorded utterance is sufficient. From this

observation follows the fact that larger units yield better synthetic speech. But of

course it is impossible to record all possible utterances for a specific task. For this, we

have decided to use words as our basic synthesis units.

 26

 The Weather Forecast domain features approximately 400 words. The recording of

each word in the domain in only one instance would have resulted in poor synthesis

quality, because the pronunciation variations of words depending of their context are

not modeled. To obtain words in their natural surroundings, a number of sentences

are chosen from actual weather forecast transcriptions, where all needed words are

included with sufficient variations. Those sentences are spoken by a human speaker

and comprise our speech corpus.

At first sight, our method looks simple. But our problem is the following:

When is a recorded unit appropriate to be used at a given place in the
synthetic utterance?

We have observed that few criteria are sufficient to achieve close to naturally

sounding speech synthesis. Additionally, the time for creating and annotating the

corpus as well as computing cost for the selection algorithm is smaller than in

approaches that use phonemes or other small synthesis units.

2. CORPUS CONSTRUCTION

2.1. Corpus Definition

The success of the speech synthesis schema outlined above, crucially depends on an

effective corpus design, such that instances of all necessary units can be found in

matching prosodic context.

The domain that the application is built to cover is limited, but still quite large when

compared to the domains of other closed-vocabulary tasks, such as the synthesis of

telephone numbers. Its difficulty lies in the fact that it involves the synthesis of whole

sentences, rather than certain words within a sentence. However, there is some form

of syntactic uniformity within that domain, since the definition of the domain was

based on weather forecast reports produced by the National Meteorological Agency

(EMY).

 27

The majority of print- and electronic media use these forecasts, almost without any

modification, to report on the near future’s weather conditions. Having been

produced by a single government agency, these reports follow common guidelines,

regarding their syntax.

We will explain how we took advantage of this observation during the task of the

corpus definition.

2.1.1. The Weather Forecast Report

The Weather Forecast, published daily by EMY, and used by the majority of print

and electronic media with almost no modification at all, has the following form:

Ge????? pa?at???se??, p??e?d?p???se??.

 <Ge???? ? a?a?t???st???>

Ge???? p?????s? ??a s?µe?a <? µ??a>

 <?a????? F a ???µe?a>

 <??tas? ??e????s? ???µ??>

Ge???? p?????s? ??a a???? <? µ??a>

 <?a????? F a ???µe?a>

 <??tas? ??e????s? ???µ??>

 <Te?µ???as?a>

 <? ?at?t?ta>

??p???? p?????se??.

 ????a.

 G?a s?µe?a <? µ??a>

 <?a????? F a ???µe?a>

 <??tas? ??e????s? ???µ??>

 28

 G?a a???? <? µ??a>

 <?a????? F a ???µe?a>

 <??tas? ??e????s? ???µ??>

 <Te?µ???as?a>

 Tessa??????.

 G?a s?µe?a <? µ??a>

 <?a????? F a ???µe?a>

 <??tas? ??e????s? ???µ??>

 G?a a???? <? µ??a>

 <?a????? F a ???µe?a>

 <??tas? ??e????s? ???µ??>

 <Te?µ???as?a >

It is obvious that the report has an inherent structure, containing fields of common

meaning and syntax that are found in several parts of the report. For example, the

<Temperature> field can be found both in the <General Forecast> and the <Local

Forecast> part of the report, and within the later, both in the <Athens Forecast> and

the <Thessalonica Forecast> sub-parts. The syntax of the <Temperature> field is

common to all its instances within the report. This means that we can use any of the

four sentences describing the temperature and rearrange them randomly in their

positions in the report, and still get a meaningful weather forecast.

From the schema that we are presenting above, we can associate the information that

lies within the forecast with one of the following categories:

• General Characteristics

• Weather Phenomena

• Wind Direction – Intensity

 29

• Temperature

• Visibility

We have used this observation in the selection process of the sentences that were to

be used for the creation of the Corpus.

We began by assigning the sentences of the original data set into one of the

aforementioned categories. Then, we used the sentences belonging to each category

in order to determine that category’s dictionary. For instance, the sentences that lie

within the temperature category were extracted from the original data set and used to

determine the vocabulary used to describe a day’s temperature variations.

2.1.2. Selection of Sentences

The creation of the corpus, the set of sentences to be recorded and later segmented

into the words that they contain, is crucial to the performance of our application.

After all, the fragments extracted from this process are the basic units used to

synthesize the output of our TTS system. It is the efficiency and the quality of the

Corpus Creation procedure that largely defines the success of our application.

The sentences that were finally selected were chosen from a set of transcribed

weather forecast reports, covering a week of each month during the period October

1999 – September 2000. These reports were kindly provided by the National

Meteorological Agency (EMY). For these data, the following information is given:

Total Number of Sentences 1676
Total Number of Word Instances 19138
Total Number of Distinct Words 389

Table 1 Statistics for the Original Data Set

Corpus Characteristics

The following requirements were to be met by the corpus:

1. The corpus should not contain an excessive number of sentences.

 30

Since only one human operator performs the segmentation and the phonetic

annotation, the size of the corpus should be contained, as much as the quality of

the output is not severely deteriorated.

2. The corpus must contain all the words that are used in our application.

We need at least one recorded instance of all words that may be found in the

application.

3. The corpus should contain these words in as many contexts as possible.

Multiple recorded instances of commonly used words should be available to the

application, in order to incorporate into the corpus as many prosodic features as

possible.

Selection Strategy

In practice, we were facing the following problem:

Define a procedure for the selection of the most representative sentences
to be used for the creation of the Corpus.

With the term representative we wish to describe a sentence that, when added to the

collection of sentences already chosen, introduces as much new information, in the

form of words, either new or ones found in a context that has not yet been observed,

as possible.

The strategy used for the selection procedure was simple:

Given the list of all distinct words that comprise the vocabulary of the
Weather Reports, add into the Corpus the sentence that contains most
of these words. After that, delete these words from the list, repeating the
above procedure until the list is empty.

Optimizations

The purpose for this procedure is the creation of a corpus of sentences that contain

the same set of words as the original data set, and at the same time the instances of

 31

these words exhibit such diversity that account for as many prosodic phenomena as

possible.

We chose the sentences to add into the corpus rather not from the whole data set,

but from the context specific subsets that we have identified during the analysis of the

weather forecast reports (see also Section 2.1.1. The Weather Forecast Report). There are

two reasons that have led us to this decision:

1. The dictionary size of each subset is considerably smaller than that of the whole

data set.

2. Each subset has a different syntax, and the context in which a certain word can be

observed, varies according to this syntax.

This splicing of the selection procedure further expands the size of the final corpus.

However, since more intra -sentence phenomena are taken into account, we will

finally be getting better quality for the synthesized speech.

Finally, we wanted every word to be available in the corpus in all its forms. This

means that we consider each orthographic representation of the same word, to be a

different word, e.g. “µ??a?” and “µ??a”. In addition to that we also take into

consideration both the relative position of the word in the sentence, and any

punctuation marks. We do that since the pronunciation of that same word is different

in each of the cases described above.

Word Word Instances
xyz
xyz,
xyz. xyz
Xyz

Table 2 Words and "Words"

From now on, when referring to a word (and later word class) we will be referring to a

specific orthographic, case sensitive word instance, taking into consideration its

association with any punctuation marks. Using that definition, the four word

instances found in the second column of Table 2 are considered as distinct words.

 32

This categorization has the effect of further expanding the corpus’s size, but with the

effect of achieving better quality of the synthetic speech.

2.1.3. The final Corpus

As we have already stated, the original data set contained almost 20,000 words and

some 1,700 sentences.

The selection procedure that we have described produced a corpus of sentences that

were used for the extraction of the basic synthesis units of our application, and that

has the following statistical characteristics.

 Original Data Set Corpus Sentences

Distinct Words 521 521

Total Words 19138 2494

Instances/Word 36.73 4.79

Total Sentences 1676 163

Words/Sentence 11.42 15.30
Table 3 Statistical Analysis of the Corpus

An analysis of the words found in the corpus’s sentences shows that each word has at

least two instances. The majority of words (98%) have at least three instances, while

there exist certain words, such as articles, conjunctions and key words that can be

found at least 50 times.

2.2. Recording Phase

The speaker was instructed to read the sentences well articulated but as naturally as

possible thus resulting in context -specific phonetic assimilation.

The sentences were recorded in laboratory environment, with low levels of noise, and

were stored digitally using PCM coding at 16,000Hz with 16bits/sample. The corpus

had a size of 34,066,196 bytes, equal to 1064.5 sec of speech.

 33

2.3. Post-Recording Phase

The post-recording phase can be divided into the following four stages:

1. Quality check

2. Energy Normalization

3. Segmentation

4. Prosodic Labeling

Quality Check

In the post-recording phase, the material was object to auditive- and acoustic quality

checks. Some sentences were recorded again, as they did not meet our quality

standards regarding noise, articulation clarity, and sentence intonation.

Energy Normalization

Although the speaker had been instructed to read the Corpus’s sentences without

alterations in the volume of his voice among these sentences, early quality checks had

shown that the volume among certain sentences had some fluctuation. Thus, all

sentences where subjected to mean energy normalization. Using the wavdynanorm

utility of the Nuance® v.7.0.2 Speech Recognition System, all the recorded sentences

were submitted to DC offset removal and average energy normalization, with a target

output level of -17.6 dBm.

Segmentation

After that, the corpus was segmented into words, both manually and automatically.

The automatic segmentation was made possible by using the batchrec utility of the

Nuance® v.7.0.2 Speech Recognition System, in the force-align mode. batchrec

was used to perform recognition on the set of the Corpus’s Sentences, given the

transcriptions of these sentences. Thus, an output file was produced, containing,

among others, information on the exact locations of words and pauses in the

recorded sentences. Using this alignment information, the sentences were segmented

into the words they contain.

 34

Prosodic Labeling

In the last stage of corpus construction, the material had to be labeled according to

the prosodic criteria, which are later taken into account by the unit selection (see

Section 3.3. Selection Criteria). Preliminary tests showed that the following labels

influencing the prosodic and segmental form are necessary for a naturally sounding

synthesis based upon word concatenation.

1. Utterance position (initial / rnedial / final)

2. Sentence modality (interrogative / declarative)

3. Reduction

4. Coarticulatory effects

Utterance Position

It has been found that words that are used in a position different than the position

they are originally found in the corpus greatly deteriorate the quality of the

synthesized sentence. This information was utilized to make sure that, whenever

possible, a word should be used in the position that was originally found.

Position labeling is performed automatically by using the information provided in the

name of each fragment (see Segment Naming Policy in Section 3.1.1. Word Segment

Database).

Sentence Modality

Modality labeling, although supported by our application, was not necessary in the

domain of Weather Forecasts, since all the sentences in the domain are declarative.

Reduction

For reduction labeling the following definition was used:

A phonological word is reduced if it deviates from a canonical form a
native speaker would judge as an acceptable version if the word were
spoken in isolation.

 35

This – certainly debatable – definition applies to the phenomena of both reduction,

marked as some kind of target undershoot, and contextual assimilation.

In order to guarantee the comprehensibility of the synthesized utterance unreduced

words are preferred by unit selection. An exception to this rule is only given if the

word to be synthesized is available in a matching context. It is obvious that the

reduction property for each word needed to be determined auditively, something

that was actually done for all segments in the Corpus.

Coarticulatory Effects

Coarticulatory phenomena are due to the fact that each articulator moves

continuously from the realization of one phone to the next. They appear even in the

most careful speech. In our case we were interested only to the coarticulatory

phenomena observed at the edges of words, since they affect the smoothness of the

transitions from one word to the next, and thus need to be taken into account during

the selection procedure.

Coarticulatory labeling consists of keeping, for each segment in the Corpus, the

phonemes that are found at the edges of the word. This means that we are keeping

the first and last phoneme of the considered word and the last and first phoneme of

the words preceding and following it, respectively, in the considered sentence of the

Corpus (for more information see Section 3.3.1. Cost Functions)

3. UNIT SELECTION

Our corpus contains identical words in different lexical or prosodic contexts. As in

object oriented programming languages we will call the orthographic form of a word

and its associated description a class, a recorded word and its concrete description an

instance.

For each unit class given by the utterance description there exist several unit

instances. All possible combinations of these instances, which will form the correct

synthetic utterance, are potential solutions to our problem. We have to decide which

 36

combination of unit instances is the best. We do this by evaluating a cost function for

each unit combination. The solution we take is that sequence of units whose value of

the cost function is minimal.

3.1. Using Graphs for Unit Selection

A formal way of minimizing the value of the cost function over all possible sequences

of word instances for a given sentence is given by graph theory. After a short

introduction to graphs, we will show that the problem of finding the best sequence of

word instances to be used for the synthesis of a given sentence can be viewed as the

problem of identifying the shortest path in a directed, weighted graph.

3.1.1. Definitions

A graph G = (V, E) consists of a set of vertices V and edges E.

Each edge is a pair (v, w), where v, w ∈ V. If the pair is ordered, then the graph is

called directed.

3

2

6 7

1

5 4

Figure 4 A directed graph

Vertex w is adjacent to v, if and only if v, w ∈ E. In an undirected graph with edge (v,w)

and hence (w, v), v is adjacent to w and vice versa.

A path in a graph is a sequence of vertices w1, w2, …, wN such that (w i, w i+1) ∈ E for 1

≤ I < N. The length of such a path is the number of edges on the path, which is equal

 37

to N – 1. We allow a path from a vertex to itself; if this path contains no edges, then

the path length is 0.

A simple path is a path such that all the vertices are distinct, except that the first and the

last could be the same.

A cycle in a directed graph is a path of length at least 1, such that w1 = wN; this cycle is

simple if the path is simple. For an undirected graph we require that the edges be

distinct. Graphs that have no cycles are called acyclic.

An undirected graph is connected if there is a path from every vertex to every other

vertex. A directed graph with this property is called strongly connected. If a directed

graph is not strongly connected, but the underlying undirected graph is connected, is

called weakly connected.

A complete graph is a graph in which there is an edge between every pair of vertices.

3.1.2. Representation of Graphs

We are only interested in directed graphs, since we will be using them in this

application. Suppose that we have the graph of Figure 4, which represents 7 vertices

and 12 edges.

A simple way to represent a graph is to use a two-dimensional array. This is known as

adjacency matrix representation. For each edge (u, v) we set A[u][v] to true; otherwise

the entry in the array is false. If the edge has a weight associated with it, then we can

set A[u][v] equal to the weight and use either a very large or a very small weight as a

sentinel to indicate non-existent edges.

Although this has the merit of extreme simplicity, the space requirement is T(|V|2),

which can be prohibitive if the graph does not have many edges. An adjacency matrix

is an appropriate representation if the graph is dense:

()2
VE Θ=

 38

In most of the applications that we may find, this is not true. If the graph is not

dense, in other words, if the graph is sparse, a better solution is an adjacency list

representation. For each vertex, we keep a list of all adjacent vertices. The space

requirement is then

O(|E|+|V|)

which is linear in the size of the graph.

 2 4 3

4 3

6

6 7 3

4 7

6

1

2

3

4

5

6

7

Figure 5 Adjacency List representation for the Graph in
Figure 4

Adjacency lists are the standard way to represent graphs. A common requirement in

graph algorithms is to find all vertices adjacent to some given vertex v, and this can be

done, in time proportional to the number of such vertices found, by a simple scan

down the appropriate adjacency list.

3.2. Applying Graph Theory to the Unit Selection Problem

To apply graph theory to our problem we regard all word instances as nodes of a

graph. The edges of the graph then define the possible concatenations of the units.

Because this graph looks very similar to a multi-layer perceptron network, we call all

instances that belong to the same unit class a layer. It is easy to see that edges are

only possible between subsequent layers and have a direction, which corresponds to

 39

the order of time in the utterance. Each node in the first layer can be viewed as a

possible start of the utterance. The same will happen in the last layer where each node

is a possible end of the utterance. Because such a large number of start and end

points are not practical we add two dummy nodes called start and end node to the

graph. Then the start node is connected to each node of the first layer, and the each

node of the last layer is connected to the end node no.

Supposing that we want to create the sentence “WordClass_1 WordClass_2”, the

graph shown in Figure 6 needs to be constructed.

Word_1_1
Word_1_2
Word_1_3

WordClass_1 WordClass_2

Word_2_1
Word_2_2
Word_2_3

Word_1_1

Word_1_2

Word_1_3

Word_2_1

Word_2_2

Word_2_3

Start End

Layer 2 Layer 1

Figure 6 Graph of a Two-Word Sentence

Now we are able to define a path as a set of nodes connected by edges. The set of

the highlighted nodes and edges in Figure 6 is a valid path.

Next we add a number to each edge in the graph. This number is the weighted sum

given from a set of cost functions, and is called edge cost. The cost of a path is the

sum of the values associated to the edges. Out aim is to find, among all paths

containing the start and end node, the one that has the minimal cost. The path with

minimal cost is called shortest path.

 40

The reader may also want to check Section 1.1. Background in the Appendices, for a

more formal definition of the problem.

3.2.1. Types of Costs

In our synthesis problem we have to distinguish between two types of costs. The first

type, called unit costs, describes the usability of units without consideration of the

unit instances in the neighboring layers. This might consist of values like the deviation

between predicted and real duration of a unit instance. The second cost type, called

transition costs, describes the transition between successive unit instances, like

smoothness criteria for energy or F0, or the consideration of the co-articulation

between units in different layers.

There exist a lot of ways to apply the unit costs to the graph. In the Graph Creation

file (see also Section 3.3.2. Graph Creation Unit), primarily for debugging reasons, we

keep five cost fields for each edge in the input file used for the creation of the graph,

each one representing one of the unit- and the transition costs described below.

However, only the sum of these costs for each edge is finally stored in the Graph, as

it is the sum that actually determines the weight of the edge.

3.3. Selection Criteria

Our knowledge about the construction of the synthetic utterance is associated with

numerical values. For this reason we tend to use very simple functions to translate a

property of a unit instance into a numerical value. A simple form of such a function is

to do differentiation by cases: Assign cost 0, if the unit has the property, else assign

cost 1. A set of those simple functions in conjunction with the determination of a

shortest path forms a very complex rule system. It turns out that we need not

understand all the complex dependencies implied by the cost functions. In most cases

it is only necessary to add facts as new cost functions.

3.3.1. Cost Functions

On the word level the following cost functions are used:

 41

• Concatenation Cost

• Coarticulation Cost

• Word Reduction Cost

• Word Position Cost

• Sentence Modality Cost

Concatenation Cost

If two units connected by an edge are not spoken consecutively in the corpus, 1 is

added to the edge cost. Otherwise, no costs are assigned.

Coarticulation Cost

Modeling coarticulation for a given sequence of two words is done by comparing the

last phoneme of the first word with the first phoneme of the second word.

We have to distinguish between the word sequence in the corpus and the word

sequence we will synthesize. For each word in the corpus four phonemes (p, s, e, n)

are additionally stored in our corpus description

p denotes the last phoneme of the previous word,

s the first phoneme of the considered word,

e the last phoneme of the considered word, and

n the first phoneme of next word.

For two unit classes u l, u2 connected by an edge, the expression

0.5·Req(ul.e, u2.p) + 0.5·Req(ul.n, u2.s)

bound by the interval (0, 1) is evaluated. The function Req() defines a similarity

relation for coarticulation between phonemes. The value of this expression is added

to the edge.

The method that we use for the evaluation of the coarticulation cost function is based

on the evaluation of the co-occurrence level of a given combination of phonemes.

Suppose that we want to synthesize the following sentence fragment:

 42

“e??a? ?a???”

Suppose that we cannot find this fragment in the Weather Forecast Database.

However, we do have the following two words recorded consecutively:

“e??a? ????a ”

We also have “e??a?” recorded in sequence with other words. The problem that we

are facing is which instance of “e??a?” to use to form the sentence fragment “e??a?

?a???”.

We can make this decision by determining the level of similarity of the word “e??a?”

when recorded before “?a???” and “????a ”. We can the compare it to the similarity

of the other instances of “e??a?”, and use the one that matches, phonetically, best with

“?a???”.

The problem of the similarity of the edges of those previous two words can be

reduced to the evaluation of the similarity of the following biphones:

e??a? ?a??? e??a? ????a
[?]k [E]x

Using the clustering information for the triphones observed in Greek, we may get an

indication of the similarity of these biphones by examining the statistics for the

following classes of triphones:

*[?]x-2 and *[E]k-2

where “-2” denotes the final state of the HMMs describing each class of triphones.

Thus, by computing the quantity:

() []() []()∑
∀

− −⋅−=
icluster

2 2*#2*#, iiE kExEkxc

 43

we can get an indication of the level of co-occurrence for the classes of triphones

*[E]x and *[E]c. These are the triphones with [E] as the central phoneme, followed by

x and c respectively, regardless of the phoneme preceding [E].

By computing the sum:

() ()∑
≠

−− =

2
2,

222 ,

px
px

EE pxcxC

we get the co-occurrences’ sum of all the combinations between the *[E]x class of

triphones and all the other triphones, that have E as their central phoneme.

Therefore, a metric for the co-occurrence of the two phonemes can be obtained by

dividing these two quantities, yielding a value ranging from 0 to 1.

() () ()
()xC

kxc
kxRsunuR

E

E

2

2
21

,
,.,.

−

−==

The equations used to calculate the coarticulation cost for any given pair of word

instances, have the following general form:

() ()sunuRpueuRCost eqeq .,.5.0.,.5.0 2121 +=

where:

()

()
()

()









−

=

=

pueu
euC

pueuc
euC

pueuR
su

su

su

eq

.,. if0

otherwise
.

.,.
1

0. if1

.,.

21

1.

21.

1.

21

2

2

2

with: () () ()∑ −⋅−=
icluster

221221. 0.].[*#0.].[*#.,.
2 iisu pusueusupueuc

 () ()∑
≠

=
eux

susu xeuceuC
.

1.1.
1

22
,..

 44

and

()

()
()

()









=

−

=

=

sunu
nuC

sunuc
nuC

sunuR
eu

eu

eu

eq

.. if0

otherwise
.

.,.
1

0. if1

.,.

21

1.

21.

1.

21

1

1

1

with () () ()∑ −⋅−=
icluster

211121. 2.].[*#2.].[*#.,.
1 iieu sueunueusunuc

 () ()∑
≠

=
nux

eueu xnucnuC
.

1.1.
1

11
,..

Word Reduction Cost

If a word instance has the property reduction (see also Section 2.3. Post-Recording Phase) a

cost of 1.9 is added to the interconnecting edge of the unit. Otherwise no cost is

assigned.

In conjunction with the Concatenation Cost this will lead to the selection of a reduced

word only if the left and right words are the left and right neighbors of the reduced

word in the corpus.

Word Position Cost

The position of a word in an utterance may influence its prosodic structure. At least

three different word positions have to be differentiated for spoken Greek. These are:

1. initial

2. final

3. neither 1) nor 2).

Normally we add 1 to the interconnecting edge of the unit if the requested word

position is not equal to the denoted word position of the word instance. However,

the quality of the synthetic speech decreases dramatically if a word instance with word

position 2) is selected for a wrong position in the synthetic utterance. To avoid this

case we add 3 to such an edge instead of 1.

 45

Sentence Modality Cost

The sentence modality cost should distinguish between interrogative and declarative

utterances. The F0 curve is the most important perceptual cue for this distinction. A

final fall of the F0-curve will lead to a declarative intonation a final rise to an

interrogative one. In our experience the F0 curve of the last word is the primary

indicator for the impression of sentence modality. For that reason each word in our

corpus is labeled with a sentence modality attribute out of the set [i, d, u], where i

denotes an interrogative, d denotes a declarative and u denotes an unknown F0 curve.

The synthesis input contains the sentence modality information so that a simple

comparison between the requested and instance inherent modality will lead to the

necessary cost function. Therefore, 0 is assigned to an interconnecting edge if the

modalities match, otherwise 1.

The cost terms 1) and 2) belong to the transition costs, and 3) to 5) belong to the

unit costs.

The following table summarizes the usage and the punitive costs assigned by the cost

functions used for the unit selection problem.

Cost Function Punitive Cost Comment

Concatenation 1 Words not found consecutively in corpus

Coarticulation c ∈ [0, 1] Evaluated by expression
Req(ul.e, u2.p)+Req(ul.n, u2.s)

Word Reduction 1.9 Word has the reduction property

Word Position 1 or 3 Applied to words found in different position.

Sentence Modality 1 Word modalities do not match.
Table 4 Cost Functions for the Unit Selection Problem

3.4. Shortest path algorithm

Selecting a path between two nodes of a weighted graph where the sum of weights

assigned to the edges is minimal under all paths is a common problem in graph

theory.

 46

The input to a weighted shortest path algorithm is a weighted directed graph:

associated with each edge (v i, v j) is a cost ci,j to traverse the edge. The cost of a path p

= {v1v2…vN} is

() ∑
−

=
+=

1

1
1,

N

i
iicpC

This is referred to as the weighted path length.

The shortest path weight from u to v is

() (){ }




∞
→

=
otherwise

 to frompath a is thereif:min
,

vuvupw
vu

p

δ

The shortest path from vertex u to vertex v is then defined as any path p with weight

() ()vupw ,δ=

The identification of the shortest-path in the graph representing the possible

concatenation options, given the initial vertex, is a classic single source shortest-

path problem.

Single Source Shortest-Path Problem

Given as input a weighted graph, G = (V, E), and a distinguished
vertex, s, find the shortest weighted path from s to every other vertex in
G.

By considering only the shortest paths initiating at Start node of the graph, the

algorithm would provide us with the solution to the problem of finding the shortest

weighted path from the Start node to every other vertex in the Graph, including the

End node.

 47

We have chosen to use Dijkstra’s algorithm in order to solve the weighted shortest-

path problem. This algorithm assumes that there are no negative edges. In our graph,

all edges have costs equal to or greater than zero, so the algorithm can be used.

The running time for this algorithm is O(|E|log|V|) when implemented with

reasonable data structures. More information of the idea behind the algorithm and its

efficiency analysis can be found in Section 1. Single-Source Shortest Paths in the

Appendices.

4. SIGNAL MANIPULATION

The average energy of the words in our corpus is considered during the recording

process. But depending of the word context in the corpus there might be energy

deviations at the concatenation points in the synthetic utterance. These deviations

sound like plosives and disturb the natural sound of the synthetic utterance. To avoid

this we do a simple energy smoothing operation on all words except the ones that are

consecutively spoken in the corpus. Depending on the context just the left or right

half of a 640-point Hamming window (thus applied to 20msec of speech signal) is

multiplied with the samples near the left or right boundary of a word unit before

concatenation is done.

 48

 49

C h a p t e r 4

IMPLEMENTATION ISSUES

1. INTRODUCTION

In the previous chapter, we have presented the general guidelines of our approach to

the problem of speech synthesis by word concatenation. However, we have neither

analyzed most of the details of the procedure, nor explained our reasoning for most

of our decisions at the technical level.

In this chapter we are going to provide insight to these technical aspects of our work,

aiding the reader to understand our line of thinking that has lead us to this approach

of the synthesis by concatenation problem.

2. CORPUS PREPARATION

2.1. Corpus Selection

The selection process of the sentences to form the corpus of the Weather Report

Database, among those available to us in the material provided by EMY, can be

described as follows:

Define a procedure for the selection of the most representative sentences
to be used for the creation of the Corpus.

The term representative is used to describe a sentence that, when added to the collection

of sentences already chosen, introduces as much new information, in the form of

words, either new or ones found in a context that has not yet been observed, as

possible.

 50

2.1.1. Corpus Selection Tools

In selecting these sentences, we were greatly assisted by the use of an implementation

of a Concordance. A concordance of a file is a listing that contains all the words of

that file, along with the line number on which the word occurs. So, for example, the

following file:

Line No

1 This is a line.

2 Another line follows the previous one.

3 One line.
Table 5 Sample File

has the following concordance:

a 1

Another 2
follows 2

is 1

line 1,3
line. 2

One 3
one. 2

previous 2

the 2
This 1

Table 6 Concordance of the sample file

We can use the concordance as an indication of the level of information of each

sentence. Getting the concordance of the concordance of a given file does this. We

will refer to the concordance of the original file as a first level concordance, and to the

concordance of a first level concordance as a second level concordance.

First we alter the utility to be able to print the number of instances of a word in a file,

rather than the lines where the word is found on. As we have already stated, the

 51

concordance of the file contains all words in the file, along with the line numbers

where they are found. Therefore, the second level concordance contains the line

numbers of the original file and the line numbers where they are found in the

concordance. By using the previous example, and by printing the counts rather than

the line numbers, we get this listing:

1 4

2 6
3 2

a 1
Another 1

follows 1

is 1
line 1

line. 1

One 1
one. 1

previous 1
the 1

This 1
Table 7 Second Level Concordance of the Sample File

We just ignore the words – there is no use for them, since there is obviously only one

occurrence of each word in the first level concordance – and concentrate on the first

three lines. Each line contains two numbers. The first one is the number of a line

from the original file. The second one is the count of the instances of that number

(line) in the first level concordance, i.e. the number of words found in that line

(sentence). Therefore, by inspection of the second level concordance we can get an

indication of the line (sentence) that contains most new words.

 52

2.1.2. Corpus Selection Algorithm

Suppose that we have a file with all the available sentences, and that we wish to select

the most representative ones. Using the first and second level concordances, we can

achieve that by following this procedure:

1. Find the line with the most occurrences.

2. Add this line to the Corpus and delete the words that it contains from the first

level concordance.

3. Get the updated second level concordance, based on the new first level one, and

repeat the procedure, until there are no more words left.

This procedure, simple though it is, works and produces adequate results. It can be

seen as an entropy maximization procedure, since we always add to the corpus the

sentence that will increase the entropy as much as possible.

However, this is a standard example of a greedy algorithm and several problems arise

from the nature common to such a type of algorithms.

1. Each time, we are adding into the corpus the sentence with the most new words.

This means that we will start by adding into the corpus the largest sentences,

which usually include the most common words, leaving less common ones to be

later included into the corpus. It’s usually the case that after the first 5 – 10

sentences, where at least 80% of their words are new to the corpus, we will be

adding 10 – 15 word sentences, in order to add 3 – 5 new words to the corpus.

2. We treat common and rare words in the same way.

We should have given rare words a greater weight factor, leading to their selection

in the beginning, ra ther than at the end of the procedure. By doing that, we would

also be adding more common words along with the rare ones, eliminating the

need to add them per se in another sentence.

These seem to be severe problems of the procedure, but only if we see the procedure

without bearing in mind the actual task that we are performing. Although the corpus

produced in this manner is not the smallest possible, we actually want this to happen.

We need words with relative higher occurrence rate in the original data set to have a

 53

high occurrence rate in the corpus too. We have observed that even though sub-

optimal, with concern to the number of the corpus’s words, this selection procedure

preserves the statistical characteristics of the original data set.

3. GENERAL OVERVIEW

The final application is actually a linear application of several procedures to different

data, leading to the desired result. This proved to be very useful since we could

develop each stage of the procedure independently of the others, knowing only the

type and form of messages that were to be passed down from one stage to the next. It

also allowed us to tweak the performance of each stage, improving the overall quality

of the synthesized speech, without the need for extensive changes in the architecture

of the application.

There are also some procedures that had to be applied only once on certain sets of

data, creating new data that are needed by the final application. These data were

needed by all stages of the application and had to be created before the synthesizer

could work. Data such as the Word Segment Database and the Coarticulation

Database belong to this category.

This section will be providing insight into the works of our synthesizer, explaining

each stage of the synthesis procedure.

 54

Word Segment
Database

Selection
Mechanism Input

Text

DSP and
Concatenation

Unit

Word
Segments

Phonetic
Annotation

Graph
Creation Unit

Sentence
Parser

Coarticulation
Matrices

Coarticulation
Database

Synthesized
Utterance

Synthesizer

Figure 7 Components of Speech Synthesizer

3.1. Internal Data

The basic function of our Text-to-Speech synthesizer is to transform a given

sequence of words into their associated spoken representation. Thus, the input file,

containing that very sequence of words, forms the starting point of the speech

creation process.

However, the system cannot function without the presence of the Coarticulation and

the Word Segment Databases. These parts of the system need to be present before

the input sentence file can be parsed and processed.

 55

3.1.1. Word Segment Database

The Word Segment Database forms an easy to use and quick in response medium

that serves both as storage of the recorded instances of the words found in the

corpus, and as a retrieval mechanism for those instances.

We designed the database to support the following two services:

store a specific recorded instance and associate it with the word it represents

retrieve a specific recorded instance

The performance of our synthesizer relies heavily on access to these recorded

instances that are added to the database during the start-up period of our application.

Thus both the “store” and “retrieve” operations needed to take as little time as

possible.

Words

Each entry to the database represents a certain recorded instance of a word and

contains all information associated with that instance. Table 8 summarizes the data

stored along with each word instance.

Field Use

wordName Name of Recorded Instance

uttName Name of Utterance containing that Word Instance

uttPosition Position of Word Instance in Utterance

maxPosition Number of Words in Utterance

p Last phoneme of previous Word in Utterance

s First phoneme of Word

e Last phoneme of Word

n First phoneme of next Word in Utterance

reduced Word has the reduction property

position Relative position (initial, final, medial) in Utterance
Table 8 Word Instance Data

 56

The wordName is the key attribute and identifies each Recorded Word Instance

uniquely. The uttName and the uttPosition attributes are used during the selection

process to determine their Concatenation Cost. If the two instances share the same

uttName and have consecutive uttPositions then they can be concatenated with no

cost. The uttPosition and the maxPosition attributes are used to determine the

position attribute, labeling the instance as found at the start of the utterance, at its

end, or neither at the start or at the end. The reduced attribute has the use discussed

in Section 2.3. Post-Recording Phase in Chapter 3. The attributes p, s, e, n are used as

stated in the description of Coarticulation Cost in Section 3.3.1. Cost Functions also in

Chapter 3.

One notices that there is no reference to the Word Class to which the Recorded

Word Instance belongs. The reference exists but is not immediate, since we have

given a hierarchical structure to the corpus database. This can be visualized in Figure

8.

Corpus

Word1 Word2 Word3

Word2_1

Word2_2

Word2_3

Word1_1 Word3_1

Word
Classes

Words

Figure 8 The Hierarchical Structure of the Recorded
Segments Database

WordClasses

 57

Each recorded word instance is inserted into the database under the Word Class

whose orthographic form is the same as that of the current recorded instance. If no

such Word Class exists, a new one is created and the Word instance is inserted under

that.

In each WordClass object, the information shown in Table 9 is kept:

Field Use

className Name of Word Class

wordMap Mapping structure for all Word Instances of Class

allWords List with Word Instances belonging to Class

numWords Number of Word Instanced belonging to Class
Table 9 Word Class Data

The className is a unique identifier of a WordClass object and serves as the key

attribute. The numWords attribute is used to get the number of word instances

belonging to a certain word class, without needing to access the allWords list, where

they are stored. Finally, wordMap provides a quick access to the recorded word

instances of this Word Class, using the wordName attribute of each Word as the key.

Corpus

Finally, all WordClasses belong to a single Corpus. The function of the Corpus

object for WordClasses is similar to the function of WordClasses for Words. It

encapsulates all the WordClasses and provides the means to access them quickly by

using their className as the key.

A Corpus object contains the information shown in Table 10:

Field Use

wordClassMap Mapping structure for all Word Classes in Corpus

allWordClasses List with Word Classes belonging to Corpus

numWordClasses Number of Word Classes belonging to Corpus
Table 10 Corpus Data

 58

Maps

The maps used to provide access to the WordClasses of the Corpus and the Words of

each WordClass actually consist of a collection of pairs of attributes tied together in a

single construct. For instance, the wordMap of any WordClass is a collection of the

following pairs:

Field Use

wordName Name of Word Instance

Word* Pointer to that Word
Table 11 wordMap Data

This map allows the retrieval of the Word associated with a given wordName from

the pool of Word instances of that WordClass. However, this implies that there exists

a method that allows us to find that specific wordName among the other wordNames

as quickly as possible. This is achieved by implementing the map as a Hash Table .

Hashing

There are several reasons for choosing the map to be implemented as a Hash Table.

The most important is the fact that hashing allows insertions, deletions and finds to

be performed in constant average time. We have discussed the speed factor above

and presented our reasoning on why the retrieval and storage operations for the

Word Segment Database need to be as quick as possible. Hashing, as implemented

through Separate Chaining is consistent with the requirements presented above.

The efficiency of hashing is based both on the data structure used to implement the

hash table and on the hashing function used to determine the place where each

element is to be stored in this table. Collision resolution, i.e. the strategy to be

followed when two keys hash to the same value, and the hash table size also play a

significant role on the speed of a certain hash table implementation.

We chose the separate chaining method, since it provides an easy way to resolve

collisions, by keeping a list of all elements that hash to the same value, while at the

 59

same time the correct selection of the hash table’s size allows for a constant average

time for the insertion and retrieval operations on the hash table. This can be achieved

by setting the size of the table at least equal to the average number of elements that

are to be stored in the hash table. Thus, the load factor ? of the hash table, that is the

ratio of the number of elements in the table to the table size, would be equal to ? =

1.0. Since the effort to perform a search is the constant time required to evaluate the

hash function, plus the time to traverse the list. The average length of each list is ?. In

an unsuccessful search, the number of nodes to examine is ? on the average. A

successful search requires that about 1+(?/2) links are traversed.2

The hash function that we have used involves all the characters in the key (the name

of the Word or WordClass) and can generally be expected to distribute well. It

computes

[]∑
−

=

⋅−−=
1

0

371
KeySize

i

iiKeySizeKeyhash

and brings the result into proper form. It uses Horner’s rule to compute a polynomial

function. It also takes advantage of the fact that overflow is allowed, and that it can

introduce a negative number, hence there is an extra test. Given the length of the keys

that are used in our application, the hash function is both simple and reasonably fast.

Segment Naming Policy

We have seen that the name file containing the fragment that is inserted into the

Word Segment Database is used as the key for both its insertion and retrieval. We

have chosen to use the following convention regarding the naming of these files.

uttxxx_yyy_zzz.wav

where:

2 To see this, notice that the list that is being searched contains the one node that stores the match, plus zero or

more other nodes. The expected number of “other nodes” in a table of N elements and M lists is (N-1)/M = ? –
1/M, which is essentially ?, since M is presumed large. On average, half the “other nodes” are searched, so
combined with the matching node, we obtain an average search of 1 + ?/2 nodes.

 60

xxx: the number of the corpus utterance from where the fragment was extracted

yyy: the position of the word instance in the utterance

zzz: the total number of words in the utterance

Figure 9 demonstrates our naming scheme:

utt036.wav: ? ? p ? ? ? ? ??at?t?ta ?a e??a? ?at? d?ast?µata pe?????sµ???.

??at?t?ta: utt036_004_008.wav

1 2 3 4 5 6 7 8 9

Figure 9 Segment Naming Example

3.1.2. Coarticulation Database

The inclusion of the Coarticulation Cost as a criterion for the concatenation of any

given pair of Words was found to have notable results on the quality of the

synthesized speech. This is attributed to the nature of the data used to support the

cost assignment for this case.

The Coarticulation Cost for a given pair of Words is the result of a two level similarity

function. Costs due to the use of both the first and the second Word are added and

normalized to a maximum value of 1.0. We have already discussed the way this cost

function works in Section 3.3.1. Cost Functions in Chapter 3. In this section we will be

discussing the way these costs are assigned.

Our intention is to determine the similarity level of any two instances of a certain

phoneme when followed or preceded by some other phoneme. For instance, we want

to determine how much similar is the phoneme [E] in these two instances:

“e??a? ?a???” and “e??a? ????a”

This can be achieved by using the clustering information for all triphones as found in

the Nuance® speech recognition system. Triphones are segments of speech

 61

consisting of three phonemes. They allow for the representation of the central

phoneme in the context of its neighboring phonemes. For instance, the “a?” in “e??a?

?a???” has the following triphone representation:

“e??a? ?a???” ? n[E]c

Triphones and HMMs

In an HMM-based speech recognition system triphones are represented as three-state

HMM processes. Transitions from each state to the other model the temporal change

of the speech signal for that particular triphone. Each state has an output distribution

that is associated with the acoustical vector of that particular segment of the triphone.

Thus, each state represents part of the spectral features of the triphone.

 a00

a12

a11 a22

a01 a23

b0 b1 b2

n[E]c-0 n[E]c-1 n[E]c-2

Start End

Figure 10 HMM for triphone n[E]c

Figure 10 shows the HMM representation of the triphone n[E]c. Each state produces

as output a spectral feature vector. Due to the relatively large number of triphones in

Greek (as well as in other languages) – approximately 14,000 – a clustering scheme is

used to reduce the number of distinct spectral feature vectors.

Clustering

 62

 Clusters

Feature-Space

Features

Figure 11 Clustering of Feature Vectors

According to this scheme, feature vectors are clustered together according to their

elements’ similarity. Thus, a single vector, representing the whole collection, replaces

each collection of similar feature vectors. Figure 11 allows us to visualize the function

of the clustering process.

The number of clusters that are going to be formed varies according to the

implementation of the clustering scheme that is used. We have made use of the

clustering information for triphones for the Greek language, as used in the Nuance®

speech recognition system, and in that case the 14,544 triphones were merged into

986 clusters.

 63

#[z]o-1 970
i[z]o-1 970
u[z]A-1 970
o[z]#-1 970
o[z]E-1 970
o[z]A-1 970
E[z]o-1 970
A[z]o-1 970
E[z]o-2 971
#[z]o-2 971
t[z]o-2 971
i[z]o-2 971
A[z]o-2 971
E[z]i-0 972

Figure 12 The Clustering Information File

Since similarity of feature vectors is used as a criterion for the clustering procedure,

we may use the Clusters Info File – an excerpt is shown in Figure 12 – to extract the

information that may be used to obtain a notion on the phonetic similarity of any

given set of triphones.

This can be understood by examining the previous example that we have used in the

Coarticulation Cost section of Chapter 3. Suppose we want to form the phrase:

“e??a? ?a???”

when the following speech excerpts exist in the Corpus, among others containing

either of the two Word Classes that we want to concatenate:

“e??a? ????a” and “p??? ?a???”.

The former phrase may be constructed through the concatenation of the words

“e??a?” from the first excerpt, and “?a???” from the second one. However, the two

words are recorded in different context than the desired. This can be seen in Table

12. “*” stands for any phoneme.

 64

Word Desired Available

e??a? *[E]k *[E]x

?a??? E[k]* i[k]*
Table 12 Words in Context

We need a measure of how similar the word instance “e??a?” is when recorded before

a word starting with [k] and another one starting with [x]. We also wish to have this

information for the word “?a???” when recorded after a word ending in [E] and

another one ending in [i].

Remember that a triphone is represented by a three-state HMM. The first state of the

HMM represents the beginning of the triphone, while its last state represents its end.

Thus, when judging the similarity of the beginning of a triphone with another

triphone, only the feature vectors of their first states need to be used to extract any

information. In the case when we want to determine the similarity of the end of two

triphones, the last states’ feature vectors need to be consulted.

It is obvious that the decision is based on two different kinds of information,

depending on whether the beginning or the end of the word is being considered.

Coarticulation Matrices

This information is found in what we call the two Coarticulation Matrices, one for each

situation mentioned above. These matrices are constructed directly from the

Clustering Information file. We will be presenting how the matrix used for the

evaluation of the phonetic similarity of the first word in a pair is constructed.

Each cluster contains feature vectors of several triphones. These feature vectors are

phonetically equivalent, meaning that their respective triphones have similar

pronunciations. When considering the first word in a pair, we are only interested in its

end. Thus, we are interested only in the last feature vectors of the respective

triphones. Those vectors are marked with a “-2” in the clustering info file. In addition

 65

to that, we do not care for the first phoneme of the triphone. Thus the vectors

“a[E]k-2” and “b[E]k-2” are regarded as equivalent in this context.

We will call the collection of feature vectors such as *[y]z-n and x[y]*-n as feature

vector classes. As we have already mentioned, the phonetic similarity of the classes of

feature vectors *[E]x-2 and *[E]k -2 can be evaluated by using the following equation

() () ()
()xC

kxc
kxRsunuR

E

E

2

2
21

,
,.,.

−

−== (1)

where

() []() []()∑
∀

− −⋅−=
icluster

2 2*#2*#, iiE kExEkxc (2)

() ()∑
≠

−− =

2
2,

222 ,

px
px

EE pxcxC (3)

Equation (1) produces an indication of how probable is the substitution of the

triphone *[E]k by the triphone *[E]x. It is based in the level of co-occurrence of the

feature vector classes *[E]k and *[E]x in any given cluster. Equation (2) is a measure

of the co-occurrence since it is the sum of the product of the occurrences of the two

vectors classes in the same cluster. Finally, equation (3) provides a measure of the co-

occurrence of the vector class *[E]x-2 with any vector class with [E] as the central

phoneme in all clusters.

The Coarticulation Matrices provide us with the information needed to evaluate

equation (1), thus facilitating the evaluation of the Coarticulation Cost for any given

combination of phonemes. They are loaded at the beginning of the application, thus

creating the Coarticulation Database. These matrices organize the information found

in the Clustering Information file, and allow us to easily gain access to this

information. For more information on the Coarticulation Matrices, see Section 3.2.3.

Coarticulation Matrices.

 66

3.2. Input Data

The basic input data for any Text-to-Speech system is the sequence of characters

forming the sentence to be synthesized. However, we will also be considering the data

used for the construction of the internal structures described in Section 3.1. Internal

Data .

3.2.1. Sentence File

The file containing the sentence to be synthesized is simple in its syntax. It contains

the sentence, along with any punctuation marks that are to be applied to the speech,

enclosed in the symbols “$s” and “$f” at the beginning and the end of the sentence.

$s <word1> <word2> ... <wordn> $f

Figure 13 The syntax of the Sentence File

The use of those two symbols is going to be made clear later, however we may say

that they represent the “Start” and “End” nodes of the graph that will be created later

on for this sentence.

3.2.2. Word Metadata File

This file is used during the creation of the Word Segment Database. It contains the

metadata associated to each Recorded Word Instance extracted from the sentences of

the Corpus.

The metadata consists of the names of the WordClasses and their associated Words,

and for each Word of the phonemes at the edges of the Word and the last and first

phoneme of the previous and next word, respectively, in the corpus. Finally the

reduced attribute for each Word is also included.

The information in this file has the syntax shown in Figure 14.

 67

<word1>
<word_instance1>
<p> <s> <e> <n> <reduced>
<word_instance2>
<p> <s> <e> <n> <reduced>
...
<word_instanceN>
<p> <s> <e> <n> <reduced>
%
<word2>
<word_instance1>
<p> <s> <e> <n> <reduced>
...
%
<wordN>
<word_instance1>
<p> <s> <e> <n> <reduced>
...
%

Figure 14 Syntax of the Word Metadata File

All information found in the Metadata file, except for the reduction characterization,

is inserted automatically using the Segment Alignments file (see Section 2.3. Post-

Recording Phase in Chapter 3). However, the reduction property is evaluated by

listening to each Word Instance in order to determine whether it may be

characterized as “reduced”.

3.2.3. Coarticulation Matrices

These files are used for the construction of the Coarticulation Database. They are the

dumps of the matrices. Therefore, the matrices can be easily reconstructed just by

reading these files.

The syntax of the files is simple. As shown in Figure 16 and Figure 18, they begin

with the dimensions of the matrix to be constructed and are followed by the matrix’s

elements. The files are in ASCII format for easy inspection.

As stated before, the coarticulation cost is evaluated as the result of the following

equation:

 68

() () ()
()xC

cxc
cxRsunuR

E

E

2

2
21

,
,.,.

−

−==

Both factors of the fraction that results to the coarticulation cost are stored in those

matrices rather than computed at run-time. The first matrix – shown in Figure 15 –

may be called the Co-Occurrence matrix, since it provides a measure of the co-

occurrence of two phonemes, before or after another phoneme.

 () []() []()∑
∀

− −⋅−=
icluster

2 21*#22*#1,2 iicenter optcenteroptcenteroptoptc

center

opt1

opt2 22
0
16 10

0
0 0 0

14

4 0 10 0

12
22
0

Figure 15 The Co-Occurrence Matrix

In each cell of the matrix, a value indicating the number of co-occurrences of the

triphone classes, consisting of the central phoneme and the two phonemes in

question, in the same cluster is found. Thus, the evaluation of the c() function is

reduced to a simple lookup to the Co-Occurrence matrix, using the three phonemes

as indices.

 69

<opt1_num> <opt2_num> <center_num>

<elm_1-1-1> <elm_1-2-1> ... <elm_1-N-1>
<elm_2-1-1> <elm_2-2-1> ... <elm_2-N-1>
...
<elm_N-1-1> <elm_N-2-1> ... <elm_N-N-1>

<elm_1-1-2> <elm_1-2-2> ... <elm_1-N-2>
<elm_2-1-2> <elm_2-2-2> ... <elm_2-N-2>
...
<elm_N-1-2> <elm_N-2-2> ... <elm_N-N-2>

...

<elm_1-1-N> <elm_1-2-N> ... <elm_1-N-N>
<elm_2-1-N> <elm_2-2-N> ... <elm_2-N-N>
...
<elm_N-1-N> <elm_N-2-N> ... <elm_N-N-N>

Figure 16 The syntax of the Coarticulation Matrices

The denominator of the R() function, representing the total co-occurrences of a

phoneme with all other phonemes, along with the central phoneme, is also reduced to

a simple lookup of the Total Co-Occurrence Matrix, shown in Figure 17.

center

opt2

4 0 10 0

() ()∑
≠

−− =

2
2,

222 ,22

px
px

centercenter poptcoptC

Figure 17 The Total Co-Occurrence Matrix

It is obvious that this is a two-dimensional matrix, since there are only two features of

concern, the central phoneme and the phoneme whose total co-occurrence level is of

question. However, for uniformity, we use the same syntax for the data in this matrix,

regarding it as a three-dimensional matrix, with one dimension equal to 1.

 70

<opt2_num> 1 <center_num>

<elm_1-1-1> <elm_1-2-1> ... <elm_1-N-1>

<elm_1-1-2> <elm_1-2-2> ... <elm_1-N-2>

...

<elm_1-1-N> <elm_1-2-N> ... <elm_1-N-N>

Figure 18 The syntax of the Total Co-Occurrence Matrix

3.3. The Synthesis Process

We have already described the data structures needed to support the synthesizer. We

are ready to study the process initiated by reading the Sentence File and leading to the

synthesis of the associated speech in the form of a Waveform File.

3.3.1. Sentence Parser

The Sentence Parser reads the input sentence from the Sentence file and creates a List

with the words that form this sentence. These words are actually the WordClasses

that will be used for the creation of the Graph later on.

 $s <Word1> <Word2> … <WordN> $f

$s Word1 Word2 WordN $f …

Figure 19 Creation of Word Class List from Sentence
File

3.3.2. Graph Creation Unit

Using the list of WordClasses created by the Sentence Parser, the actual Word Graph

is created.

There are two basic functions for the Graph Creation unit. The first is to make sure

that this sentence can be synthesized. It is obvious that we cannot synthesize a

 71

sentence if there is not at least one available Word Instance for every Word Class in

the sentence. Its second function is the actual creation of the Graph.

The first function is easily accomplished just by checking if each of the Word Classes

in the List has a non-empty allWords list. Remember that a WordClass’s allWords list

holds all the Word instances of that WordClass.

The second function is actually just simulated at this step. The Graph is created later,

by a procedure using as input a Graph Creation File created now. This file contains

pairs of vertices, indicating the edges of the graph, and the costs associated with these

vertices and edges. In a further stage, this file is used to create the graph as a

collection of interconnected vertices, with a vertex ($s) serving as the start, and

another ($f) as the end of the graph, incorporating information on the transition and

unit costs into the vertices.

Representation of Graphs

In the case of our application we are working with sparse graphs. All vertices are

connected only with the vertices of the next layer. Thus, instead of using adjacency

matrices, a better solution is the adjacency list representation. This means that, for each

vertex, we keep a list of all adjacent vertices. The space requirement is then

O(|E|+|V|)

which is linear in the size of the graph.

In the case of weighted graphs, the weight of the edge is also included in the

Adjacency List representing the graph.

 72

v3

v2

v6 v7

v1

v5 v4

5
1

1

4

10

2

6
8

4

2

3

2

Figure 20 A directed, weighted graph

 2, 3

1, 4

4, 1

4, 3 5,10

6, 5

3, 2 6, 8 7, 4

7, 6

6, 1

1

2

3

4

5

6

7

5, 2

Figure 21 Adjacency List representation for the Graph in
Figure 20

Adjacency lists are the standard way to represent graphs. A common requirement in

graph algorithms is to find all vertices adjacent to some given vertex v, and this can be

done, in time proportional to the number of such vertices found, by a simple scan

down the appropriate adjacency list.

Information about each vertex, including a list of its adjacent vertices, is stored in an

object of type Vertex. In most real-life applications, the vertices have names, which

are unknown at compile time; and thus, generally, we will need to provide a mapping

of the names to its corresponding Vertex object. The easiest way to do this is to use a

hash table, in which we store a name (which serves as the key) and a pointer to a

 73

Vertex. New Vertex objects are created as the graph is read. As each input, we check

whether each of the two vertices has already been seen. If so, we use the Vertex

corresponding to it. Otherwise, we create a new Vertex object and insert the name

and Vertex object as a pair into the hash table. Each Vertex entry will also need to

store the vertex name, since, eventually, we will need to output these names.

Creating the Graph File

The Graph File that we have mentioned above has a syntax shown in Figure 22. The

‘#’ symbols act as inline comments for the aid of the user. The two Words are

vertices of the graph and define an edge. The sum of the unit cost associated with the

first word and the transition cost associated with that pair of words is assigned to the

edge defined by these two Words.

#<WordClass1>
<Word1_1> <Word2_1> <Unit_Cost1_1> <Trans_Cost1_1-2_1>
<Word1_1> <Word2_2> <Unit_Cost1_1> <Trans_Cost1_1-2_2>
...
<Word1_1> <Word2_N> <Unit_Cost1_1> <Trans_Cost1_1-2_N>

#<WordClass2>
<Word2_1> <Word3_1> <Unit_Cost2_1> <Trans_Cost2_1-3_1>
...
<Word2_M> <Word3_K> <Unit_Cost2_M> <Trans_Cost2_M-3_K>

...

#<WordClassN>

Figure 22 The syntax of the Graph Creation File

The creation of the graph file is simple in its conception. Using the WordClasses

present in the WordList created by the Sentence Parser, we traverse the list

considering every time the current WordClass, and the following one. Using the

allWords list associated with each WordClass, we form all the pairs of Word Instances

of those two WordClasses.

 74

$s Word1 Word2 WordN $f …

Word1_2

Word2_1 Word1_1

Word2_2

Word1_3 Word1_1 Word2_1 u1 t1
Word1_1 Word2_2 u2 t2
Word1_2 Word2_1 u3 t3
Word1_2 Word2_2 u4 t4
Word1_3 Word2_1 u5 t5
Word1_3 Word2_2 u6 t6

Figure 23 Creation of Graph from Word Class List and
Graph Creation File

The unit cost of each Word Instance is the sum of these factors:

Unit Cost = Word Reduction Cost + Word Position Cost

The Word Reduction cost is determined by the value of the reduced field in the Word

structure. The position field in the same structure determines the position of this Word

Instance in the sentence it was extracted from. This is compared to the actual position

of this WordClass in the sentence, and the Word Position cost is computed.

The transition cost of any given pair of Word Instances is the sum:

Transaction Cost = Concatenation Cost + Coarticulation Cost

The Concatenation cost is determined by comparing the UttName and UttPosition

attributes of each Word Instance. If both instances have the same UttName and

consecutive UttPosition values, then they were recorded consecutively. Otherwise, a

certain penalty should be applied for their concatenation. The phonemes stored with

each Word Instance are used as input to the Phonetic Similarity function, producing

an estimation of the Coarticulation Cost.

 75

Creating the Graph

As we have already stated, the Word Graph is formed by reading the Graph Creation

File. The Word Graph has been implemented as a collection of Vertices connected,

through Edges of certain cost, to other Vertices.

Each Vertex caries the information shown in Table 13.

Field Use

name Name of Vertex

adj List of Edges with adjacent Vertices in Graph

known Set when Vertex has been selected

dist Cost of shortest path so far

path Previous Vertex on Shortest Path
Table 13 Vertex Data

The name of each Vertex is actually the name of the Word Instance being

represented by the Vertex. However, since the possibility exists that a certain Word

may be found more than once in the same Sentence, meaning that two different

layers in the Graph may consist of the same Words, an additional number is

augmented at the end of the name, indicating the layer in which this Vertex is located.

Thus all Vertices are unique.

The known, dist and path fields and are necessary for the function of the Shortest

Path Algorithm. Finally, the adj list holds a list of the Edges starting from the current

Vertex. This list actually implies the form of the Graph, and is created by reading the

Graph Creation File. All Edges that begin with this Vertex are included in this list.

The list also implements the directionality of the Graph. This can be seen in Figure 24

where only the Edges originating from the current Vertex are included in the adj list.

 76

Word2_2

Word1_1 Word2_1

Word2_3

Word1_1 Word2_1 u1 t1
Word1_1 Word2_2 u2 t2
Word1_1 Word2_3 u3 t3

Word2_1
u1+t1

Word2_2
u2+t2

Word2_3
u3+t3

Start

adj List

Figure 24 Use of adj List in Graph

Edges enclose the information shown in Table 14.

Field Use

pVertex Vertex at end of Edge

cvw Edge Cost
Table 14 Edge Data

The pVertex attribute holds a pointer to the actual Vertex at the end of the Edge,

and cvw the cost assigned to that Edge.

The data used to implement the Graph is shown in Table 15.

Field Use

vertexMap Mapping structure for all Vertices of Graph

allVertices List with Vertices belonging to Graph

numVertices Number of Vertices belonging to Graph
Table 15 Graph Data

Like the structures used for the Word Segment Database, the Vertices forming the

Graph are stored in the allVertices List, with the vertexMap mapping structure

 77

providing quick access to any Vertex, using its name as the key. The numVertices

attribute stores the number of individual Vertices in the Graph.

3.3.3. Selection Mechanism

The Selection Mechanism is implemented by applying Dijkstra’s algorithm on the

Graph. This algorithm finds the shortest path between two Vertices. In our

application, we are only interested in the shortest path between the “Start” and “End”

Vertices of the Graph.

The path can be found by tracking back to the origin (“Start”) Vertex starting at the

destination (“End”) Vertex. This procedure produces the series of Word Instances

that should be used for the synthesis of the input sentence.

The DSP and Concatenation Unit however synthesizes the sentence by using this

series of Word Instances as input. In fact, the synthesis is based on the Fragments

File, the file containing the exact locations of each one of the waveform files

containing these Word Instances.

Word2_2

Word1_1 Word2_1

Word2_3
<path>\Start.wav
<path>\Word1_2.wav
<path>\Word2_1.wav
<path>\Word3_3.wav
<path>\End.wav

Start

Word1_2 Word3_2

Word3_1

Word3_3

End

Shortest Path

Fragments File

Figure 25 Creation of the Fragments File

 78

3.3.4. DSP and Concatenation Unit

The Selection process provides as input to the DSP and Concatenation Unit the

Fragments File, containing the exact path and filename of each Segment to be used

for the creation of the synthesized sentence.

Digital Signal Processing

According to the strategy that we have followed during the segment selection phase,

the use of consecutive word segments, extracted from the same utterance of the

corpus, is promoted over the use of isolated segments. However, only sometimes is

this the case, so the concatenation of isolated words is necessary for the synthesis of

the desired sentence.

The energy levels at the edges of most words are usually different. For instance, many

word segments start or end at a high energy level, and it has been observed that most

segments have a great difference at their energy levels at the edges. This energy level

mismatch has the effect of introducing annoying noises in the synthesized speech,

reducing overall quality, thus making the speech more difficult to listen to.

We have chosen to attack this problem by introducing a simple energy smoothing

operation on the edges of segments that are to be concatenated with other, non-

consecutive, segments. We achieve that by applying the left or right half of a 640-

point Hamming window to the edges of the segments that are to be concatenated.

This means that the last 20 msec of the left segment are faded out and the first 20

msec of the right segment are faded in before being concatenated into the synthesized

sentence.

Concatenation

The Segments that are used for the synthesis are simple waveform files. The

concatenation of the waveform files produces the synthesized sentence. These

waveform files are stored in RIFF format (See Also Section 2. Resource Interface Format

Files in the Appendices). The synthesized sentence is also stored in RIFF format.

 79

The concatenation procedure consists of the creation of a new RIFF waveform file,

whose data subchunk is the collection of the data subchunks of the individual files

that form the synthesized sentence.

 80

 81

C h a p t e r 5

QUALITY EVALUATION

1. INTRODUCTION

In spite of the rapid progress that is being made in the field of speech technology, any

speech synthesis system available today can still be spotted for what it is: nonhuman,

a machine. Although there have been significant improvements in the quality of the

output of TTS systems, as long as synthetic speech is inferior to human speech,

synthesis evaluation will be useful.

Speech synthesis assessment can be important to two parties: systems designers on

the one hand, and prospective buyers and end user on the other. Designers are intent

on improving their TTS-systems. However, designers who have grown up with their

systems are used to all its habits; they are likely to understand its output better than

first-time users, and will often overrate its performance level. More meaningful quality

assessment techniques are needed in order to determine how well a system performs

relative to a benchmark test, or how favorably it compares with a previous edition of

the system or with an other designer’s product. To the extend that a system performs

less than perfect (something of which the author is aware), the designer will have to

learn which aspect(s) and/or component(s) of his system are flawed

The needs of buyers and end users are different than those of designers but they too

heavily rely on assessment techniques. Prospective buyers will always have a specific

use of their TTS system in mind. Understandably, they will want the simplest, and

therefore cheapest, system that satisfies their needs. The buyer will therefore need an

absolute yardstick in order to determine beforehand if the TTS system is good

enough to get a message across in the given application.

 82

1.1. Taxonomy of Evaluation Tasks and Techniques

To justify our selections for the evaluation strategy used for the quality assessment of

our TTS system, we will first discuss a number of distinguished parameters and

explain the relationships between them.

The diagram shown in Figure 26 illustrates the relationships between the various

dichotomies in the hierarchical order in which they have been listed in this diagram.

Any path from the root down to any terminal that does not cross a horizontal gap

constitutes a meaningful combination of test attributes.

glass box black box

field laboratory laboratory

acoustic acoustic linguistic

objective subjective

functional judgment

analytic analytic global global

Figure 26 Relationships among dimensions involved in
taxonomy of speech output evaluation methods

1.1.1. Black Box (Monolithic) versus Glass Box (Modular)

TTS systems generally comprise of a range of modules that take care of specific tasks

(e.g. concatenation, signal processing).

End users will typically be interested in the performance of a system as a whole. They

will consider the system as a black box that accepts text and outputs speech, a

 83

monolith without any internal structure, since the quality of the output speech is the

only thing that matters.

However if the output is less than optimal, it is almost impossible to pinpoint a

certain cause for this malfunction. Therefore, for diagnostic purposes, designers often

set up their evaluations in a more experimental (glass box) way. Keeping the effects of

all modules but one constant, while systematically varying the characteristics of the

latter, allows for any difference in the assessment of the system to be attributed to the

variations of the target module.

1.1.2. Laboratory versus Field

TTS systems are often part of a human-machine user interface in a specific

application. Typically, the vocabulary and types of information exchanges are

restricted and domain specific, so that situational redundancy can often make up for

bad intelligibility. On the other hand, TTS systems will often be used in complex

information processing tasks, so that the listener has only limited resources available

for attending to the speech input.

It is generally impossible to predict beforehand, on the basis of laboratory tests, exactly

how successful a TTS-system will be in the practical application. The system needs to

be tested in the field, i.e. in the real application, with real users. However, the use of

field tests is limited to one system in one specific application; results of the test cannot,

as a rule, be generalized to other systems and/or other applications.

1.1.3. Linguistic versus Acoustic

Complex TTS systems can roughly be divided into a linguistic interface that

transforms spelling into an abstract phonological code and an acoustical interface that

transduces this symbolic representation to an audible waveform.

The quality of the intermediary representation can be tested directly at the symbolic-

linguistic level or indirectly at the level of the acoustic output. Testing the audio has the

advantage that only errors in the symbolic representation that affect the audio output

will affect the evaluation. However, it concerns human listeners and is therefore

 84

costly and time consuming. Moreover the designer is not informed on the origin of

any problems (linguistic or acoustic).

As an alternative, the intermediate representations in the linguistic interface are often

evaluated in the symbolic level. It involves the comparison of the symbolic output of

the linguistic model to a pre-stored model representation. The non-trivial problem is

to obtain this model representation, which will have to be compiled manually, and

will often involve multiple correct solutions.

1.1.4. Subjective versus Objective measurement

When an assessment technique involves the responses of human subjects, the

measurement is called subjective.

It is most common that human subjects are called upon in order to evaluate the

quality of a TTS system. This is to be expected, since the end user of a TTS system is

a human listener. However there are certain drawbacks inherent to the use of human

subjects. Firstly, humans are often somewhat noisy in their judgments, i.e. the results

of tests are never perfectly reproducible. It often makes sense to use an expert listener

as a shortcut to a preliminary evaluation, since he will be able to determine in great

accuracy problems related to coarticulation, temporal organization and intonation.

However he will not be able to predict in numerical terms how well the TTS system

would perform as a communication tool with naïve listeners. Since this is what we

need to assess, expert listeners should be used during the initial stages of

development, as a design tool, while non-expert users should be used for the final

evaluation of the system. In this case, a group of users may be used, and the average

of their responses could somewhat compensate for the noisiness of their

measurements. This is what is called inter-subjective measurement.

In addition to yielding noisy measurements, quality tests involving human listeners are

also time consuming and therefore expensive to run. Automatic quality assessment

for TTS systems that automatically measure the discrepancy in acoustical terms

between a system’s output and its human model is still a field under investigation.

This is the type of objective evaluation technique that one would ultimately want to

 85

come up with, since it avoids the use of human listeners, providing perfectly

reproducible results in as little time as needed to run that particular test program.

Unfortunately, these types of services are not yet available for use.

1.1.5. Judgment versus Functional

By judgment testing we mean a procedure whereby a group of listeners is asked to

judge the performance of a TTS system, along a number of rating scales. The scales

are typically bi-polar adjectives that allow the listeners to express the quality of the

system.

A TTS system may also be assessed in terms of how well it actually performs its

communicative purpose. This is called functional testing. For instance, if we want to

know to what extent the output speech is intelligible, we may measure its intelligibility

not by asking the listener how intelligible he things it is, but by determining, for

instance, whether the listener correctly identifies the sounds.

1.1.6. Global versus Analytic

Judgment test usually include one or more rating scales covering such global aspects as

“overall quality”, “naturalness” and “acceptability”.

On the other hand, one may be interested in determining the quality of specific

aspects of a TTS system, in an analytic listening mode, where listeners are requested to

pay particular attention to selected aspects of the speech output.

2. EVALUATION OF ACOUSTIC ASPECTS

Due to the nature of our synthesis algorithm (i.e. use of whole word units rather than

phone segments), testing at the linguistic level is trivial, and has been used only during

the design stage of our system.

The quality assessment of our TTS system was solely based on the evaluation of its

acoustic aspects.

 86

2.1. Aspects of Speech to be evaluated

There are three layers that are distinguished in speech: a segmental layer, (related to

short-term fluctuation in the speech signal), a voice dynamics or prosodic layer

(medium term fluctuations), and a voice quality layer (long term fluctuations).

We will make the same distinction in the evaluation of acoustic aspects.

2.1.1. Segments

The primary function of segments is simply to enable listeners to identify words. The

segments used in our system are whole word units. In addition to that, we are

penalizing the use of abnormally pronounced words during the synthesis of a

sentence through their characterization with the reduction property. We may claim

that this characterization actually constitutes a method of segment quality assessment.

Thus, the question of word identification in the domain of our TTS system has been

addressed only as part of the system’s assessment in analytic listening mode.

2.1.2. Prosody

By prosody we mean the ensemble of properties of speech utterances that cannot be

derived in a straightforward fashion from the identity of the phonemes constituting

the words of the speech utterance. Prosody comprises the melody of the speech,

word and phrase boundaries, word stress, sentence accent, tempo and changes in

speaking rate.

The more important functions of prosody are located at the linguistic levels above the

word:

• prosody tells the listener which words go together and should be interpreted

as making up a coherent chunk of information; it also allows the user to

determine whether he has come to the end of a word group, clause, sentence,

etc.

• prosody provides an indication for the listener which words are presented by

the speaker as expressing important information

 87

• prosody, especially melody, caries its own intonational meaning, allowing for

instance the speaker to present a sentence as a statement or a question

These observations suggest that prosody affects comprehension, which is what most

functional tests of prosody try to evaluate.

2.1.3. Voice Quality

Voice quality can be viewed as the background against which segmental and prosodic

variation is produced and perceived. It is used by the listener to form a (sometimes

incorrect) idea of the speaker’s mood and personality, physical size, sex, and also to

identify the speaker. This information may have practical consequences for the

continuation of the communication procedure, since it may influence the listener’s

attitude towards the speaker in a positive or negative sense, and may affect the

listener’s interpretation of the message.

2.1.4. Overall Output Quality

In most situations good intelligibility of specific words is not enough for TTS output

to be called functionally adequate. One would want to have at one’s disposal a

functional test to evaluate the adequacy if the complete TTS output in all respects. In

practice, the functional quality of overall TTS output has been equated with

comprehension, based upon the integration of “bottom-up” speech signal

information at different levels (segments, prosody, voice quality) and “top-down”

knowledge and expectations based on previous experience, specific properties of the

extra-linguistic context, and word internal and word combinatory redundancy.

2.2. Test Method

The importance of application specific test materials has been stressed by ITU-T's

standardization sector. They developed a test specifically aimed at evaluating the

quality of telephone speech, and which has been modified to fit our purposes. It is a

judgment test comprising rating on eight scales, namely one 2-point scale acceptance

and seven 5-point scales overall impression, listening effort, comprehension problems, articulation,

pronunciation, speaking rate, and voice pleasantness.

 88

Strictly speaking, only the first four scales can be captured under the heading overall

quality; the other four scales are directed at more specific aspects of the output and

require analytic listening. The content of the speech samples are synthesized in

accordance with the application.

We used the ITU-T speech quality test for the evaluation of the output of our

application. For the purposes of the test, nine weather forecast reports, compatible

with the syntax of the EMY weather reports, were synthesized using several

combinations of the selection criteria.

The synthesized utterances of these reports were organized in groups, in such a way

that each group contained one weather report synthesized with each of these

combinations. That means that each group consisted of nine weather reports, each

one synthesized in a different manner, and put together in different order. Two

people evaluated each such group. We asked the subjects to listen to a whole report,

and then evaluate the quality of the synthetic speech using the eight scales we

mentioned above. For the first scale (acceptance), the evaluation should determine

whether the synthesized speech is accepted or not. For the rest seven scales, the

evaluation was done by assigning a grade in the range of [0, 4], with 4 denoting the

best performance.

The evaluations for each method among all groups were averaged, providing a

measure for the performance of the method in each of these eight scales.

3. RESULTS

The evaluation procedure consisted of two stages. In the first stage we wanted to

evaluate the performance of any combination of the selection criteria. In the second

stage, we wanted to determine the improvement of the speech quality gained by

introducing DSP methods to the synthesis strategy that performed best in the

previous stage.

 89

3.1. First Stage

There are four3 criteria used for the selection of the segments to be concatenated in

forming the desired synthesized utterance:

reduction

concatenation

position

coarticulation

The first criterion actually prevents the use of “oddly pronounced” words, and only

occasionally does it affect the quality of the synthesized speech. So, the following

synthesis strategies, utilizing combinations of the aforementioned criteria were used

for the synthesis of the evaluation sentences:

1. None (reduction)

2. Pos (reduction + position)

3. Concat (reduction + concatenation)

4. Cooc (reduction + coarticulation)

5. Pos+Concat (reduction + position + concatenation)

6. Concat+Cooc (reduction + concatenation + coarticulation)

7. Pos+Cooc (reduction + position + coarticulation)

8. All (reduction + position + concatenation + coarticulation)

9. PreRec (prerecorded Corpus sentences)

As we can see, all strategies except 1) include Reduction in the selection criteria.

Reduction by itself produces sentences with almost awful quality. On the other hand,

the inclusion of prerecorded sentences, forming a meaningful Weather Report, is

necessary in order to determine what the users believe is the optimum performance.

A feature score of 2 may be considered average, but it is not that bad when the

prerecorded utterances received a score of 3 for the same feature.

3 There is a fifth one (modality) that was not used in the context of Weather Forecast Reports.

 90

0

0.5

1

1.5

2

2.5

3

3.5

4

acc
ept

anc
e

im
pre

ssi
on effo

rt

com
pre

he
nsi

on

arti
cul

atio
n

pro
nu

nci
atio

n rate

ple
asa

ntn
ess

Feature

E
va

lu
at

io
n

M
ea

ns
All None Pos

Concat Cooc Pos+Concat

Concat+Cooc Pos+Cooc PreRec

Figure 27 Evaluation Results (First Stage)

Figure 27 provides an overview of the evaluated performance for all the synthesis

methods described above. As we may see, the forecasts that consisted of prerecorded

utterances (PreRec) received the highest scores, followed by the combination of all

selection criteria (All), which consistently receive the second best scores for all

features. The worst performance, as expected, is observed for the sentences that used

only the reduction criterion (None), since the choice of fragments used for the

synthesis is almost random.

We will discuss the results for each feature.

 91

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

All None Pos Concat Cooc Pos+Concat Concat+Cooc Pos+Cooc PreRec

Method

E
va

lu
at

io
n

Figure 28 Acceptance

0

0.5

1

1.5

2

2.5

3

3.5

4

All None Pos Concat Cooc Pos+Concat Concat+Cooc Pos+Cooc PreRec

Method

E
va

lu
at

io
n

Figure 29 Overall Impression

 92

0

0.5

1

1.5

2

2.5

3

3.5

4

All None Pos Concat Cooc Pos+Concat Concat+Cooc Pos+Cooc PreRec

Method

E
va

lu
at

io
n

Figure 30 Listening Effort

0

0.5

1

1.5

2

2.5

3

3.5

4

All None Pos Concat Cooc Pos+Concat Concat+Cooc Pos+Cooc PreRec

Method

E
va

lu
at

io
n

Figure 31 Comprehension Problems

 93

The majority of the subjects have found it quite difficult to comprehend the message

of the synthesized utterances. They all indicated that the greatest problems were

erratic speech, differences in the volume of different words in the same sentence,

inconsistent with the message of the sentence, and concatenation noises among word

fragments.

0

0.5

1

1.5

2

2.5

3

3.5

4

All None Pos Concat Cooc Pos+Concat Concat+Cooc Pos+Cooc PreRec

Method

E
va

lu
at

io
n

Figure 32 Articulation Problems

We may see that articulation poses the greatest challenge for the performance of our

synthesizer. Methods utilizing co-occurrence information through the Coarticulation

Cost, perform better than methods not using this information. However there exists a

large gap between the best performing methods (All and Concat+Cooc) and the

prerecorded utterances. We attribute this behavior to the absence4 of energy

smoothing at the edges of concatenated words.

4 We remind the reader that the first stage does not include energy smoothing and energy averaging operations on

the fragments used for utterance synthesis.

 94

0

0.5

1

1.5

2

2.5

3

3.5

4

All None Pos Concat Cooc Pos+Concat Concat+Cooc Pos+Cooc PreRec
Method

E
va

lu
at

io
n

Figure 33 Pronunciation

0

0.5

1

1.5

2

2.5

3

3.5

4

All None Pos Concat Cooc Pos+Concat Concat+Cooc Pos+Cooc PreRec

Method

E
va

lu
at

io
n

Figure 34 Speaking Rate

 95

The fact that the prerecorded utterances did not receive as good a score as in other

cases indicates that the subjects did not believe that the speaker has spoken these

sentences in a totally accepted way. This problem has propagated itself in the rest

methods as well.

0

0.5

1

1.5

2

2.5

3

3.5

4

All None Pos Concat Cooc Pos+Concat Concat+Cooc Pos+Cooc PreRec

Method

E
va

lu
at

io
n

Figure 35 Voice Pleasantness

The same observations as for the previous feature apply here as well.

3.2. Second Stage

The first stage of the evaluation procedure indicated that the noises heard between

two words, noises that may be attributed to differences in the energy levels of the

concatenated words, as well as the difference in the volume of words in the same

sentence are mostly responsible for most comprehension and listening effort

problems.

The second stage of the evaluation procedure attempts to quantify the contribution of

DSP methods to the overall quality of the synthesized speech.

 96

In order to get an objective measure of the performance of these methods, we have

asked the subjects to listen to five weather forecasts, each synthesized with one of the

following strategies:

None (reduction)

Cooc (reduction + coarticulation)

All (reduction + position + concatenation + coarticulation)

All+DSP (reduction + position + concatenation + coarticulation + DSP)

PreRec (prerecorded utterances)

0

0.5

1

1.5

2

2.5

3

3.5

4

acc
ep

tan
ce

impre
ssi

on effo
rt

com
pre

he
nsi

on

arti
cul

atio
n

pro
nu

nci
atio

n rat
e

ple
asa

ntn
ess

Feature

E
va

lu
at

io
n

M
ea

ns

All+DSP None

Cooc All

PreRec

Figure 36 Evaluation Results (Second Stage)

We can see that the synthesis strategy that combines all the selection criteria along

with DSP methods (All+DSP) has consistently outperformed the strategy that used

only the selection criteria (All). This has lead to the creation of synthetic utterances

that are even closer to natural speech, as one can notice by comparing the scores of

(All+DSP) to those of (PreRec).

 97

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

All+DSP None Cooc All PreRec

Method

E
va

lu
at

io
n

Figure 37 Acceptance

0

0.5

1

1.5

2

2.5

3

3.5

4

All+DSP None Cooc All PreRec

Method

E
va

lu
at

io
n

Figure 38 Overall Impression

In both of these charts, one may notice that not only has (All+DSP) outperformed

(All), but that it has also made it less appealing to the subjects’ evaluation.

 98

0

0.5

1

1.5

2

2.5

3

3.5

4

All+DSP None Cooc All PreRec

Method

E
va

lu
at

io
n

Figure 39 Listening Effort

0

0.5

1

1.5

2

2.5

3

3.5

4

All+DSP None Cooc All PreRec

Method

E
va

lu
at

io
n

Figure 40 Comprehension Problems

 99

0

0.5

1

1.5

2

2.5

3

3.5

4

All+DSP None Cooc All PreRec

Method

E
va

lu
at

io
n

Figure 41 Articulation Problems

0

0.5

1

1.5

2

2.5

3

3.5

4

All+DSP None Cooc All PreRec

Method

E
va

lu
at

io
n

Figure 42 Pronunciation

The greatest differences between the two methods ((All) and (ALL+DSP)) is found

in the evaluation of these two features. Smoothing the edges of concatenated

fragments has reduced the severity of articulation problems. At the same time, the use

 100

of fragments that were extracted from sentences that had all been normalized to the

same average energy level has reduced unnecessary fluctuations in the volume of the

sentence, thus rendering the synthesized output more “natural”. The same

observation applies to Comprehension Problems and Listening Effort.

0

0.5

1

1.5

2

2.5

3

3.5

4

All+DSP None Cooc All PreRec

Method

E
va

lu
at

io
n

Figure 43 Speaking Rate

0

0.5

1

1.5

2

2.5

3

3.5

4

All+DSP None Cooc All PreRec

Method

E
va

lu
at

io
n

Figure 44 Voice Pleasantness

 101

The fact that the Speaking Rate seems to be improved may be partially attributed to

the smoothness of the volume of the sentence, something that most subjects

regarded to be affecting the evaluation of this feature.

3.3 Conclusions

The following conclusions may be extracted from the evaluation procedure:

1. the Coarticulation cost is the single most significant feature in terms of quality

2. the combination of all features produces better results than any combination of

up to three features

3. with the signal processing enhancements, the average acceptance score is 0.7,

which compares favorably to the average score of 0.8 for the prerecorded

sentences.

 102

 103

C h a p t e r 6

FUTURE WORK

1. DISCUSSION

The talking computer HAL in the 1968 film “2001 – A Space Odyssey” had an

almost human voice, but it was the voice of an actor, not a computer. Getting a real

computer to talk like HAL has proven one of the toughest problems posed by

“2001”.

Many of the improvements in speech synthesis over the past five years have come

from creative use of the technologies developed for speech recognition. We too have

extensively used knowledge extracted from that field in order to improve the

performance of our TTS system. The use of co-occurrence information for

determining the coarticulation cost, information already used for the clustering of

feature vectors in HMM-based SR systems, has greatly improved the quality of the

synthesized speech. Automatic segmentation, aided by an SR system, has minimized

the time needed to implement our system for domains other than the Weather

Forecast domain.

Speech synthesis by word concatenation is a cheap, fast and simple way to do speech

synthesis in restricted domains. Frequently the achieved quality is close to that one

produced by humans. The only problem with such an approach is that storage

complexity steeply rises as we try to cover wider domains.

2. FUTURE WORK

As a matter of course it is necessary to extend our approach to unrestricted domains.

Therefore rules have to be developed which enable us to generate syllables from

 104

phonemes and words from syllables. Thus, the system should perform unit

concatenation in three different levels:

• diphones

• syllables

• words

The unit database should be modified to support such diverse units, while the

selection process should adapt properly, choosing the best combination of units to

synthesize the desired utterance.

Recent work on the creation of a language analysis for Greek in TUC, has provided

us with the following facts:

Word # Language Coverage

5,000 78.91%

10,000 85.32%

20,000 90.65%
Table 16 Vocabulary Size and Language Coverage for

the Greek language

The data presented in Table 16 indicates that by extending the vocabulary size of our

application to 20,000 WordClasses, there would only be one word out of ten in every

sentence that would not be found in the Word Segment Database and that would

need to be synthesized by simpler units (syllables, diphones, etc.). However, 20,000

WordClasses means that there would be approximately 100,000 Word Instrances, if

the 1:5 ratio between WordClasses and Words (see also Table 3) stands for this

application too.

It turns out that the storage complexity is much higher than that for diphone

synthesis but this is not a real disadvantage. With the aid of signal processing it should

be possible to reduce the number of recorded words as well as the number of stored

samples. The number of stored samples may be easily reduced using compression

algorithms. To reduce the number of words, additional research is required. In our

 105

opinion, the question whether non-final sounding words might be transformed by

signal manipulation into final sounding ones or vice versa is a main question of

further work. Another interesting question is, whether it is possible to cluster

instances of words so that only few prototypes need to be stored.

Our next step should extend the corpus annotation by phoneme segmentations based

on manually corrected word boundaries. Together with automatically computed pitch

marks, it would be possible to apply artificial F0 and duration parameters using

PSOLA manipulation to the synthetic signal.

Prominence is currently not explicitly considered in our selection criteria. It turns out

to be the case that both the constrained domain of Weather Forecasts and our

selection criteria already implicitly treat a number of prominence-related phenomena

that need not be modeled by rule sets. Word class and prominence are highly

correlated. This could explain the circumstance mentioned above. However, to

respond to the necessities of Content-to-Speech (CTS), the generation of prosodic

focus should be possible. For the planned extension of our synthesis using smaller

units than words, prominence will play a major role. Therefore, an automatic labeling

process should be developed which will mark the perceptual prominence of each unit.

3. EPILOGUE

The difference between a person and a talking computer is that the person

understands the ideas and emotions conveyed through speech, and the computer

doesn't. This is part of the larger problem of artificial intelligence, which is what

"2001" author Arthur C. Clarke imagined in HAL. Our ability to replicate our own

minds in a machine is limited by our incomplete knowledge of how our own minds

work.

The ultimate goal for speech synthesis, as with all AI applications, is to make it pass

the Turing Test - a blindfolded user shouldn't be able to tell whether he is talking to a

human or a machine. Like the voice of HAL, that's a long way away. But we believe

that modifying speech recognition techniques could lead to better speech synthesis

 106

results. Ultimately the right model might just be the same for both synthesis and

recognition.

 107

A p p e n d i c e s

APPENDICES

1. SINGLE-SOURCE SHORTEST PATHS

1.1. Background

The input to a weighted shortest path algorithm is a weighted directed graph G =

(V,E), with a weight function w : E → R mapping edges to real-valued weights. The

weight of a path p = {v1v2…vN} is

() ∑
−

=
+=

1

1
1,

N

i
iicpC

This is referred to as the weighted path length.

The shortest path weight from u to v is

() (){ }




∞
→

=
otherwise

 to frompath a is thereif:min
,

vuvupw
vu

p

δ

The shortest path from vertex u to vertex v is then defined as any path p with weight

() ()vupw ,δ=

1.1.1. Representing Shortest Paths

We often wish to compute not only shortest path weights, but the vertices on the

shortest paths as well. The representation we use for shortest paths is similar to the

one used for breadth first trees.

 108

Given a graph G = (V,E), we maintain for each vertex v ∈ V a predecessor p[v] that

is either a vertex of NIL.

A shortest paths algorithm sets the p attributes so that the chain of predecessors

originating at vertex v runs backwards along a shortest path from s to v. Thus given a

vertex v for which p[v] ? NIL, the shortest path from s to v can easily be tracked.

1.1.2. Relaxation

The technique of relaxation is used by Dijkstra’s algorithm. For each vertex v ∈ V,

we maintain an attribute d[v], which is the upper bound on the weight of a shortest

path from source s to v. We call d[v] a shortest path estimate. We initialize the

shortest path estimates and predecessors by the following procedure.

Initialize-Single-Source(G, s)

1 for each vertex v ∈ V[G]

2 do d[v] ? ∞

3 p[v] ? NIL

4 d[s] ? 0

After initialization, p[v] = NIL for all v ∈ V, d[v] = 0 for v = s, and d[v] = ∞ for v ∈

V – {s}.

The process of relaxing5 an edge (u, v) consists of testing whether we can improve

the shortest path to v so far by going through u, and, if so, updating d[v] and p[v]. A

relaxation step may decrease the value of the shortest path estimate d[v] and update v’s

predecessor field p[v]. The following code performs a relaxation step on edge (u, v).

Relax(u, v, w)
1 if d[v] > d[u] + w(u,v)

5 It may seem strange that the term “relaxation” is used for an operation that tightens an upper bound. The use of

the term is historical. The outcome of a relaxation step can be viewed as a relaxation of the constraint d[v] ≤ d[u]
+ w(u, v), which must be satisfied if d[u] = d(s, u) and d[v] = d(s, v). That is, if d[v] ≤ d[u] + w(u, v), there is no
“pressure” to satisfy this constraint, so the constraint is “relaxed”.

 109

2 then d[v] ? d[u] + w(u,v)

3 p[v] ? u

1.2. Dijkstra’s Algorithm

Dijkstra’s algorithm solves the single source shortest-paths problem on a weighted,

directed graph G = (V,E) for the case in which all edge weights are nonnegative. In

this section, therefore, we assume that

() () Evuvuw ∈≥ , edgeeach for ,0,

Dijkstra’s algorithm maintains a set S of vertices whose final shortest path weights

from the source s have already been determined. That is

[] ()vsvdSv ,δ=→∈∀

The algorithm repeatedly selects the vertex SVu −∈ with the minimum shortest

path estimate, inserts u into S, and relaxes all edges leaving u. In the following

implementation we maintain a priority queue Q that contains all the vertices in V – S

keyed by their d values. The implementation assumes that graph G is represented in

adjacency lists.

Dijkstra(G,w,s)
1 Initialize-Single-Source(G,s)

2 S ? Ø

3 Q ? V[G]
4 while Q ? Ø

5 do u ? Extract-Min(Q)

6 S ? S ∪ {u}

7 for each vertex v ∈ Adj[u]

8 do Relax(u,v,w)

Dijkstra’s algorithm relaxes edges as shown in the pseudocode seen above. Line 1

performs the usual initialization of d and p values, and line 2 initializes the set S to the

 110

empty set. Line 3 then initializes the priority queue Q to contain all the vertices in V –

S = V – Ø = V.

Each time through he while loop of lines 4 – 8, a vertex u is extracted from Q = V –

S and inserted into set S. (The first time through the loop, u = s.) Vertex u, therefore,

has the smallest shortest-path estimate of any vertex in V – S. Then, lines 7 – 8 relax

each edge (u, v) leaving u, thus updating the estimate d[v] and the predecessor p[v] if

the shortest path to v can be improved by going through u. Observe that vertices are

never inserted into Q after line 3 and that each vertex is extracted from Q and

inserted into S exactly once, so that the while loop of lines 4 – 8 iterates exactly ¦ V¦

times.

Because Dijkstra’s algorithm always chooses the “lightest” or the “closest” vertex in

V – S to insert into set S, we say that it uses a greedy strategy. Greedy strategies do

not always yield optimal results in general, but as the following theorem and its

corollary show, Dijkstra’s algorithm does indeed compute shortest paths. The key is

to show that each time a vertex u is inserted into set S, we have d[u] = d(s,u).

Theorem: Correctness of Dijkstra’s Algorithm

If we run Dijkstra’s algorithm on a weighted, directed graph G = (V,E) with

nonnegative weight function w and source s, then at termination,

d[u] = d(s,u) for every vertex u ∈ V

Corollary

If we run Dijkstra’s algorithm on a weighted, directed graph G = (V,E) with

nonnegative weight function w and source s, then at termination, the predecessor

subgraph Gp is the shortest-paths tree rooted at s.

1.2.1. Analysis

How fast is Dijkstra’s algorithm? Consider first the case in which we maintain the

priority queue Q = V – S as a linear array. For such an implementation, each Extract-

 111

Min operation takes time O(V), and there are ¦ V¦ such operations, for a total

Extract-Min time of O(V2). Each vertex v ∈ V is inserted into set S exactly once, so

each edge in the adjacency list Adj[v] is examined in the for loop of lines 4 – 8 exactly

once during the course of the algorithm. Since the total number of edges in all the

adjacency lists in ¦ E¦, there are a total of ¦ E¦ iterations of this for loop, with each

iteration taking O(1) time. The running time of the entire algorithm is thus O(V2+E)

= O(V2).

If the graph is sparse, however, it is practical to implement the priority queue Q with a

binary heap. The resulting algorithm is sometimes called the modified Dijkstra

algorithm. Each Extract-Min operation then takes time O(logV). As before, there are

¦ V¦ such operation. The time to build the binary heap is O(V). The assignment d[v]

? d[u] + w(u,v) in Relax is accomplished by the call Decrease-Key(Q,v, d[u] + w(u,v)),

which takes time O(logV), and there are still at most ¦ E¦ such operations The total

running time is therefore O((V+E)logV), which is O(ElogV) if all vertices are

reachable from the source.

We can in fact achieve a running time of O(VlogV+E) by implementing the priority

queue Q with a Fibbonacci heap. The amortized cost of each of the ¦ V¦ Extract-Min

operations is O(logV), and each of the ¦ E¦ Decrease-Key calls takes only O(1)

amortized time. Historically, the development of Fibbonacci heaps was motivated by

the observation that in the modified Dijkstra algorithm there are potentially many

more Decrease-Key calls than Extract-Min calls, so any method of reducing the

amortized time of Extract-Min would yield an asymptotically faster implementation.

Dijkstra’s algorithm bears some resemblance to both breadth-first search and Prim’s

algorithm for computing minimum spanning trees. It is like breadth-first search in

that S corresponds to the set of black vertices in a breadth-first search; just as vertices

in S have their final shortest-path weights, so black vertices in a breadth-first search

have their correct breadth first distances. Dijkstra’s algorithm is like Prim’s algorithm

in that both algorithms use a priority queue to find the “lightest” vertex outside a

given set (the set S in Dijkstra’s algorithm and the tree being grown in Prim’s

 112

algorithm), insert this vertex into the set, and adjust the weights of the remaining

vertices outside the set accordingly.

2. RESOURCE INTERFACE FORMAT FILES

The preferred format for multimedia files is resource interchange file format (RIFF).

The RIFF file I/O functions work with the basic buffered and unbuffered file I/O

services. RIFF files can be opened, read, and written in the same way as other file

types.

RIFF files use four-character codes to identify file elements. These codes are 32-bit

quantities representing a sequence of one to four ASCII alphanumeric characters,

padded on the right with space characters. The data type for four-character codes is

FOURCC. The mmioFOURCC macro may be used to convert four characters into

a four-character code. To convert a null-terminated string into a four-character code,

the mmioStringToFOURCC function should be used.

The basic building block of a RIFF file is a chunk. A chunk is a logical unit of

multimedia data, such as a single frame in a video clip. Each chunk contains the

following fields:

• A four-character code specifying the chunk identifier

• A doubleword value specifying the size of the data member in the chunk

• A data field

The following illustration shows a "RIFF" chunk that contains two subchunks.

 113

Figure 45 "RIFF" chunk containing two subchunks

A chunk contained in another chunk is a subchunk. The only chunks allowed to

contain subchunks are those with a chunk identifier of "RIFF" or "LIST". A chunk

that contains another chunk is called a parent chunk. The first chunk in a RIFF file

must be a "RIFF" chunk. All other chunks in the file are subchunks of the "RIFF"

chunk.

"RIFF" chunks include an additional field in the first four bytes of the data field. This

additional field provides the form type of the field. The form type is a four-character

code identifying the format of the data stored in the file. For example, Microsoft

waveform-audio files have a form type of "WAVE".

"LIST" chunks also include an additional field in the first four bytes of the data field.

This additional field contains the list type of the field. The list type is a four-character

code identifying the contents of the list. For example, a "LIST" chunk with a list type

of "INFO" can contain "ICOP" and "ICRD" chunks providing copyright and

creation date information. The following illustration shows a "RIFF" chunk that

contains a "LIST" chunk and one other subchunk (the "LIST" chunk contains two

subchunks).

 114

Figure 46 "RIFF" chunk containing a "LIST" subchunk

Multimedia file I/O services include two functions that can be used to navigate

among chunks in a RIFF file: mmioAscend and mmioDescend. These functions

can be used as high-level seek functions. When descending into a chunk, the file

position is set to the data field of the chunk (8 bytes from the beginning of the

chunk). For "RIFF" and "LIST" chunks, the file position is set to the location

following the form type or list type (12 bytes from the beginning of the chunk). When

ascending out of a chunk, the file position is set to the location following the end of

the chunk.

To create a new chunk, the mmioCreateChunk function can be used to write a

chunk header at the current position in an open file. The mmioAscend,

mmioDescend, and mmioCreateChunk functions use the MMCKINFO structure

to specify and retrieve information about "RIFF" chunks.

BIBLIOGRAPHY

Dutoit, Th. An Itroduction to Text-to-
Speech Synthesis, Dordrecht, Kluwer
Academic Publishers, 1997.

Weiss, M. A. Data Structures &
Algorithm Analysis in C++, 2nd ed.
Addison Wesley Longman, 1999.

Raman, T. V. Auditory User Interfaces:
Toward the Speaking Computer,
Dordrecht, Kluwer Academic
Press, 1997

Cormen, T. H., Leiserson, C. E. and
Rivest, R. R. Introduction to
Algorithms, Cambridge MA, The
MIT Press, 1990

Stöber, K., Portele, T., Wagner, P.,
Hess, W., “Synthesis By Word
Concatenation”, Proceedings of
EuroSpeech 1999, Budapest, Hungary,
Vol. 2:619-622, 1999

Lieberman, M., “Computer Speech
Synthesis: Its Status and
Prospects”, Voice Communication
between Humans and Machines,
Washington D.C., National
Academy Press, 1994

Sproat, R., Olive, J., “An Approach to
Text-to-Speech Synthesis”, Speech
Coding and Synthesis, The
Netherlands, Elsevier Science,
1998

Heuven, V. J. van, Bezooijven, R. van,
“Quality Evaluation of
Synthesized Speech”, Speech Coding
and Synthesis, The Netherlands,
Elsevier Science, 1998

Moulines, E., Charpentier, F., “Pitch-
synchronous waveform
processing techniques for text-to-

speech synthesis using diphones”,
Speech Communication, 9(5/6):453-
467, 1990

Allen, J., Hunnicut, S., Klatt, D., From
Text to Speech, The MITalk System,
Cambridge, Cambrdge University
Press, 1987

Beutnagel, M., Mohri, M., Riley, M.,
“Rapid Unit Selection from a
Large Speech Corpus for
Concatenative Synthesis”,
Proceedings of EuroSpeech 1999,
Budapest, Hungary, Vol. 2: 607-610,
1999

Hunt, A., Black, A., “Unit Selection in
a Concatenative Speech Synthesis
System using a Large Speech
Database”, Proceedings of ICASSP-
96, Atlanta, GA, Vol. 1: 373-376,
1996

Lewis, E., Tatham, M., “Word and
Syllable Concatenation in Text -to-
Speech Synthesis”, Proceedings of
EuroSpeech 1999, Budapest, Hungary,
Vol. 2: 615-618, 1999

Balestri, M., Pacchiotti, A., Quazza, S.,
Salza, P. L., Sandri, S., “Choose
the Best to modify the Least: A
New Generation Concatenative
Synthesis System”, Proceedings of
EuroSpeech 1999, Budapest, Hungary,
Vol. 5:2291-2294

 4

