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1 Introduction 

As we continue to step forward into the new millennium with wireless technologies 

leading the way in which we communicate, it becomes increasingly clear that the 

dominant consideration in the design of systems employing such technologies will be 

their ability to perform with adequate margin over a channel perturbed by a host of 

impairments, not the least of which is multipath fading [1]. This is not to imply that 

multipath fading channels are something new to be reckoned with; indeed, they have 

plagued many a system designer for well over 40 years, but rather to serve as a 

motivation for their ever-increasing significance in the years to come.  

Radio wave propagation through wireless channels is a complicated phenomenon 

characterized by various effects such as multipath and shadowing. A precise 

mathematical description of this phenomenon is either unknown or too complex for 

tractable communication systems analyses. However, considerable efforts have been 

devoted to the statistical modelling and characterization of these different effects. The 

result is a range of relatively simple and accurate statistical models for fading 

channels that depend on the particular propagation environment and the underlying 

communication scenario. 

In this work Star QAM signal over fading channels will be discussed and their 

performance will be examined at slow and fast frequency flat fading channels. 

Initially Star QAM signals will be described and how they are derived from PSK and 

ASK modulations. Afterwards fading channels will be examined, and a statistical 

characterization will be given. Various forms of fading will be mentioned, such as 

slow and fast fading, flat and frequency selective fading, when they appear in mobile 

communications and what damage they do at the signal. The theoretical performance 

of Star MQAM frequency non-selective channels will be examined and closed form 

expressions for SER will be given. Simulations of 16 Star QAM signals over slow 

and fast fading channels will be carried out and graph results will be given. Finally an 

example of a frequency selective channel will be given by using a tapped delay line 

model to simulate it. A simple signal will be passed through the tapped delay line 

model and the consequences that frequency selective channels will be shown 

graphically. 
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2 QAM Modulation Scheme 

The purpose of a communication system is to transmit information bearing signals 

(baseband signals) through a communication channel separating the transmitter from 

the receiver. The proper use of the communication channel requires a shift of the 

range of baseband frequencies into other frequency ranges suitable for transmission, 

and a corresponding shift back to the original frequency range after reception. A shift 

of the range of frequencies in a signal is accomplished by using modulation, which is 

defined as the process by which some characteristic of a carrier is varied in 

accordance with a modulating wave (signal). Modulation is performed at the 

transmitting end of the communication system. At the receiving end of the system, 

the original baseband signal is required to be restored. This is accomplished by using 

a process known as demodulation, which is the reverse of the modulation process. 

In analogue modulation a sinusoidal carrier is used whose amplitude or angle is 

varied in accordance with a message signal and it is called continuous wave 

modulation.  

In pulse modulation, some parameter of a pulse train is varied in accordance with the 

message signal [2]. There are two families of pulse modulation: analogue pulse 

modulation and digital pulse modulation. In analogue pulse modulation, a periodic 

pulse train is used as the carrier wave, and some characteristic feature of each pulse is 

varied in a continuous manner in accordance with the corresponding sample value of 

the message signal. In digital pulse modulation, the message signal is represented in a 

form that is discrete in both time and amplitude, thereby permitting its transmission in 

digital form as a sequence of coded pulses. 

There is another way in which digital data may arise and this is as the output of a 

source of information that is inherently discrete in nature (e.g. a digital computer). 

Digital transmission may be done over a baseband channel or a pass band channel. 

Baseband transmission of digital data requires the use of a low-pass channel with a 

bandwidth large enough to accommodate the essential frequency content of the data 

stream. 

In digital pass band transmission, the incoming data stream is modulated onto a 

carrier (usually sinusoidal) with fixed frequency limits imposed by a bandpass 

channel of interest. The communication channel used for passband data transmission 

may be a microwave radio link, a satellite channel etc. Yet other applications of 
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passband data transmission are in the design of passband line codes for use on digital 

subscriber loops and orthogonal frequency division multiplexing techniques for 

broadcasting. In any event, the modulation process making the transmission possible 

involves switching (keying) the amplitude, frequency, or phase of a sinusoidal carrier 

in some fashion in accordance with the incoming data. Thus there are three basic 

signaling schemes, and they are known as digital pulse amplitude modulation (PAM) 

or amplitude shift keying (ASK), frequency shift keying (FSK), and phase shift 

keying (PSK). 

In the following paragraphs a detailed analysis of ASK and PSK will be carried out 

and a combination of these two methods will be done to produce a hybrid modulation 

called Quadrature amplitude modulation (QAM).  

2.1 Pulse Amplitude Modulation (PAM) 

In digital PAM, the signal waveforms may be represented as: 

   m=1,2,…,M, 0 ≤ t ≤ T  (2.1) 
tftgA

etgAts

cm

tfj
mm

c

π

π

2cos)(

])(Re[)( 2

=

=

Where {Am, 1 ≤ m ≤ M} denote the set of M possible amplitudes corresponding to 

M=2k possible k-bit blocks or symbols. The signal amplitudes Am take the discrete 

values (levels) 
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Where Eg denotes the energy in the pulse g(t). Clearly, these signals are one-

dimensional, and are represented by the general form 

 )()( tfsts mm =   (2.4) 

where f(t) is defined as the unit-energy signal waveform given as 

 tftg
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and gmm EAs 2
1= , m=1,2,…,M (2.6) 

The corresponding signal space diagrams for M=2, M=4, and M=8 are shown in Fig. 

2.1. 

 
Fig. 2.1 Signal space diagram for digital PAM signals 

The mapping of k information bits to the M=2k possible signal amplitudes is done by 

applying Gray encoding where the adjacent signals amplitudes differ by one binary 

digit as illustrated in Fig. 2.1. 
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Hence the distance between a pair of adjacent signal points, i.e., the minimum 

Euclidean distance, is  
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2.2 Phase Shift Keying (PSK) 

In digital phase modulation (PSK), the M signal waveforms are represented as 

 m=1,2,…,M, 0≤t ≤T (2.9) [ ]
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where g(t) is the signal pulse shape and θm=2π(m-1)/M, m=1,2,…,M, are the M 

possible phases of the carrier that convey the transmitted information 
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The signal waveforms may be represented as a linear combination of two-orthogonal 

signal waveforms, f1(t) and f2(t), i.e., 

 )()()( 2211 tfstfsts mmm +=  (2.11) 
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And the two dimensional vectors sm=[sm1 sm2] are given by 
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Fig. 2.2 Signal space diagrams for PSK signals 
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In Fig. 2.2 the signal space diagrams for M=2, 4, and 8 are shown where it can be 

seen that for M=2 the PSK signal is identical to the Binary PAM signal [3]. The 

mapping of k information bits are Gray encoded as in the case of PAM. 

The Euclidean distance between signal points is: 
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The minimum Euclidean distance corresponds to the case in which |m-n|=1, i.e. 

adjacent signal phases. In this case,  
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2.3 Quadrature Amplitude Modulation (QAM) 

In an M-ary PSK system, the in-phase and quadrature components of the modulated 

signal are interrelated in such a way that the envelope is constrained to remain 

constant. The constraint manifests it self in a circular constellation for the message 

points. However, if this constraint is removed, and the in-phase and quadrature 

components are thereby permitted to be independent, we get a new modulation 

scheme called M-ary quadrature amplitude modulation (QAM). This latter 

modulation scheme is hybrid in nature in that the carrier experiences amplitude as 

well as phase modulation. 

QAM is used in NTSC and PAL television systems, where the in-phase and 90° 

components carry the components of color information. It is also used extensively in 

modems, and other forms of digital communication over analogue channels. 64-QAM 

and 256-QAM are often used in digital cable television and cable modem 

applications. In the US, 64-QAM and 256-QAM are the mandated modulation 

schemes for digital cable, as standardized by the SCTE in the standard ANSI/SCTE 

07 2000. 

The bandwidth efficiency of PAM/SSB can also be obtained by simultaneously 

impressing two separate k-bit symbols from the information sequence {an} on two 

quadrature carriers cos2πfct and sin2πfct. The resulting modulation technique is called 

quadrature PAM or QAM, and the corresponding signal waveforms may be expressed 

as: 
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Where Amc and  Amc are the information bearing signal amplitudes of the quadrature 

carriers and g(t) is the signal pulse. 

Alternatively, the QAM signal waveforms may be expressed as:  
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Where 22
msmcm AAV +=  and θm=tan-1(Ams/Amc). From this expression, it is apparent 

that the QAM signal waveforms may be viewed as combined amplitude and phase 

modulation. 

Any combination of M1-level PAM and M2-phase PSK may be selected to construct a 

M=M1M2 combined PAM-PSK signal constellation [3]. If M1=2n and M2=2m, the 

combined PAM-PSK signal constellation results in the simultaneous transmission of 

m+n=logM1M2 binary digits occurring at a symbol rate R/(m+n). In Fig. 2.3 signal 

space diagrams for combined PAM-PSK are shown. 

As in the case of PSK signals, the QAM signal waveforms may be represented as a 

linear combination of two orthonormal signal waveforms, f1(t) and f2(t): 
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Fig. 2.3 Examples of combined PAM-PSK signal space diagrams 
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Eg is the energy of the signal pulse g(t). 

The Euclidean distance between any pair of signal vectors is 

(2.21) 
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In the special case where the signal amplitudes takes the set of discrete values {(2m-

1-M)d, m=1,2,…,M} the signal space diagram is rectangular. In this case the 

modulation is called Square QAM and the Euclidean distance between adjacent 

points is: 

g
e

mn Edd 2)( =  (2.23)

which is the same result as for PAM 
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Fig. 2.4 Several signal space diagrams for square QAM 

From Fig. 2.4 it can be seen that in 16-state Quadrature Amplitude Modulation 

(16QAM), there are four in phase I values and four quadrature Q values. This results 

in a total of 16 possible states for the signal. It can transition from any state to any 

other state at every symbol time. Since 16= 24, four bits per symbol can be sent. This 

consists of two bits for I and two bits for Q. The symbol rate is one fourth of the bit 

rate. So this modulation format produces a more spectrally efficient transmission. It is 

more efficient than BPSK, QPSK, or 8PSK. Note that QPSK is the same as 4QAM. 

Another variation is 32QAM. In this case there are six I values and six Q values 

resulting in a total of 36 possible states (6x6=36). This is too many states for a power 

of two (the closest power of two is 32). So the four corner symbol states, which take 

the most power to transmit, are omitted. This reduces the amount of peak power the 

transmitter has to generate. Since 25
 = 32, there are five bits per symbol and the 

symbol rate is one fifth of the bit rate. The current practical limits are approximately 

256QAM, though work is underway to extend the limits to 512 or 1024 QAM. A 

256QAM system uses 16 I-values and 16 Q-values, giving 256 possible states. Since 

28 = 256, each symbol can represent eight bits. A 256QAM signal that can send eight 

bits per symbol is very spectrally efficient. However, the symbols are very close 

together and are thus more subject to errors due to noise and distortion. Such a signal 

may have to be transmitted with extra power (to effectively spread the symbols out 

more) and this reduces power efficiency as compared to simpler schemes. 
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2.3.1 Star QAM Constellation 

Digital communications using 16-level QAM signals and conventional receiver 

techniques have unacceptably high BER in a Rayleigh fading environment [4]. The 

problem is the inability to track absolute phase during fades with the result that on 

emergence from a fade the phase locked loop (PLL) in the receiver locks onto a 

different quadrant than that required [5]. Differential encoding can reduce this false 

phase locking problem, but the standard square QAM constellation suffers from 

possible false lock positions at 26o and 53o. At these angles, given appropriate 

amplitude scaling, more than half the original constellation points can be successfully 

mapped onto the rotated constellation points. The points that cannot be successfully 

mapped cause random fluctuations in the error signal in the clock recovery loop but 

do not actually drive the system off lock. Data mapped onto these points will nearly 

always be in error and thus this problem cannot be overcome with differential coding. 

Unfortunately, false locking occurs fairly frequently as the PLL and automatic gain 

control (AGC) tend to drive the system towards these lock points. The AGC can pose 

a problem for the square constellation as it has to act very fast to follow the fades, yet 

at the same time it must maintain a high degree of accuracy to allow amplitude 

information to be correctly decoded. 

A constellation having no false lock positions is introduced in [6] to overcome these 

deficiencies. This constellation is called ‘Star QAM’ and is shown in Fig. 2.5, it does 

not have a minimum least free distance between points in the strict sense, but does 

allow efficient differential encoding and decoding methods to be used which go some 

way toward mitigating the effects of Rayleigh fading. 

 
Fig. 2.5  Constellation of M-ary Star QAM 

 14



Some form of differential encoding is essential with PLLs as the Rayleigh fading 

channel can introduce phase shifts in excess of 50o between consecutive symbols, 

making it extremely difficult to establish an absolute phase reference. The differential 

encoding system considerably improves the BERs compared with those for the square 

constellation because it eliminates long error bursts that occur when a false lock has 

been made. Of considerable importance is that with differential amplitude encoding 

there is no longer any need for AGC. This not only simplifies the circuit but also 

removes errors caused by an inability of the AGC to follow the fading envelope. 

Since Star QAM was first introduced a lot of research has been carried out [7, 8, 9, 

10, 11, 12]. Its applications may include light weight hand held portable telephones, 

where power consumption, weight and low cost construction are crucial issues, and 

hence lower complexity modem schemes are desirable. In this case it may be 

preferable to reduce the system performance slightly in order to be able to employ a 

low- complexity non- coherent differentially encoded QAM constellation, such as the 

circular or star QAM scheme [13]. 

In the following chapters fading channels will be examined in detail and symbol error 

rate expressions will be derived for Star QAM in fading channels. 
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3 Characterization of fading channels 

3.1 The additive white Gaussian noise channel 

In the design of communication systems for transmitting information through 

physical channels, it is convenient to construct mathematical models that reflect the 

most important characteristics of the transmission medium. Then the mathematical 

model for the channel is used in the design of the channel encoder and the modulator 

at the transmitter and the demodulator and channel decoder at the receiver. A simple 

mathematical model is the additive noise channel where the transmitted signal is 

corrupted by an additive random noise process. Physically the additive noise process 

may arise from electronic components and amplifiers at the receiver of the 

communication system or from interference encountered in transmission. This type of 

noise is characterized statistically as a Gaussian noise process and the resulting 

mathematical model is called the additive Gaussian noise channel. 

An idealized form of noise is white noise where its power spectral density is 

independent of the operating frequency. The adjective white is used in the sense that 

white light contains equal amounts of all frequencies within the visible band of 

electromagnetic radiation. Two different samples of white noise, no matter how 

closely together in time are taken, are uncorrelated. If the white noise is also 

Gaussian, then the two samples are statistically independent. The combination of 

white and Gaussian noise gives the classical additive white Gaussian noise channel 

(AWGN) which represents the ultimate in “randomness”. 

3.2 Examples of time variant multipath communication channels 

The Gaussian noise channel is inadequate in characterizing signal transmission over 

radio channels whose transmission characteristics change with time. In such cases, a 

more general mathematic model must be developed, that characterize the time 

varying behavior of the channel [14]. Some examples of communication channels that 

require a different kind of channel model are given below. 

3.2.1 Signal transmission via ionospheric propagation in the HF band. 

Because of the ionospheric layers, the signal arrives at the receiver via different 

propagation paths at different delays these signal components are called multipath 

components. The signal multipath components generally have different carrier-phase 
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offsets and, hence, they may add destructively at times, resulting in a phenomenon 

called signal fading. 

3.2.2 Mobile cellular transmission 

In mobile cellular transmission between a base station and a mobile phone or a 

telephone equipped automobile, the signal transmitted from the base station arrives at 

the mobile through several reflections from the surrounding buildings, hills and other 

obstructions with consequences which affect the signal power, since the signal arrives 

from many propagation paths at different delays which adds constructively or 

destructively. The same is true of transmission from the automobile to the base 

station. Moreover, the speed that the automobile is traveling results in frequency 

offsets, called Doppler shifts, of the various frequency components of the signal. 

3.2.3 Line of sight microwave radio transmission 

In line-of-sight (LOS) radio transmission of signals, the transmitting and receiving 

antennas general1y are mounted on high towers, to avoid obstructions such as 

buildings and hills in the path of signa1 propagation. However, when there are tall 

obstructions or hilly terrain in the path of propagation, it is likely that signals will be 

reflected from the ground to the receiving antenna. This is especially a problem under 

seνere weather conditions. Ιn this case there is a received signal component that 

arrives via the direct path and an ensemble of secondary paths that are reflected from 

the ground terrain. The latter arrive at the receiver with various delays and constitute 

multipath propagation. Relatively narrow-beamwidth antennas are employed in 

microwave LOS transmission to reduce the occurrence of secondary reflections. 

Nevertheless, some secondary signal reflections are frequently observed in practice. 

3.2.4 Airplane to airplane radio communications 

in radio communications between two aircrafts, it is possible for secondary signal 

components tο be received from ground reflections. This is especially the case when 

omni-directional antennas are employed in the communication system. The ensemble 

of ground-reflected signal components generally arrive at the receiver with different 

delays and different attenuations. In addition, the motions of the aircraft result in 

Doppler frequency offsets in the various signal components. In many respects, this 

situation is similar to that in mobile cellular communications. 
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3.3 Physical Basis of Fading 

In a multipath environment as it is shown in Fig. 3.1, the composite received signal is 

the sum of the signals arriving along different paths. Except for the LOS path, all 

paths are going through at least one order of reflection, transmission, or diffraction 

before arriving at the receiver. 

 
Fig. 3.1 Typical link between mobile and base station antennas 

The LOS path is the first to arrive and it is usually the strongest of the individual 

paths but it is not necessarily stronger than the aggregate of the scattered paths. Since 

the individual paths are linear (i.e, they satisfy the superposition requirements), the 

overall multipath channel is linear. Each path has its own delay and gain/ phase shift, 

so the aggregate of paths can be described by its impulse response or frequency 

response. Therefore different carrier frequencies will experience different gains and 

phase shifts [15]. The modulation of the carrier depends on the time scale of the 

modulation (roughly, the reciprocal of its bandwidth), and is significantly effected by 

the range of delays (the “delay spread”). This implies that the dimensionless product 

of channel delay spread and signal bandwidth is an important measure. If the mobile 

changes position, the paths all change length in varying amounts. Since a change in 

path length of just one wavelength produces 2π radians of phase shift, a displacement 

of a fraction of a wavelength in any direction causes a large change in the aggregate 

gain and phase shift, as the sum of the paths shifts between reinforcement and 

cancellation. 

When the mobile moves through this two dimensional standing wave pattern, the 

impulse response and frequency response change with time, so the channel is a time-

varying linear filter. The time variant nature of the net gain is termed “fading” and the 

fastest rate of change is the “Doppler frequency”. The modulation of the carrier 

depends on the time span of the required receiver processing (eg, differential 
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detection over two symbols, equalization over many symbols), and is significantly 

effected by the time-varying nature of fading. The dimensionless product of this time 

span and the Doppler frequency is another important parameter. 

Either or both fading and delay spread can be significant or not in a given terrain with 

a given modulation rate. Fading is expected to be rapid with vehicular use, but modest 

with pedestrian use. Similarly, delay spread can be large in hilly or mountainous 

terrain, but smaller in an urban core, where multiple reflections quickly attenuate the 

signals with longer path lengths. 

3.4 Mathematical Model of Fading 

Radio signals are always bandpass, and are almost always narrowband. The 

transmitted bandpass signal at carrier frequency fc with complex envelope s(t) is 

denoted by 

( )2'( ) Re ( ) cj f ts t s t e π⋅ ⋅ ⋅ ⋅= ⋅  (3.1)

In a multipath environment there will be many signals arriving at the receiver each with its own 

reflection coefficient, αi(t), and propagation delay τi(t). 

If there are i signals arriving from the scatterers the received bandpass signal will be 

described from the equation: 

'( ) ( ) '( ( ))i i
i

y t a t s t tτ= ⋅ −∑  (3.2)

By substituting equation (3.1) in (3.2) yields the result 
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The equivalent low pass signal of (3.3) is 

))(()()( )(2∑ −⋅= −

i
i

tfj
i ttsetaty ic ττπ  (3.4)

And (3.3) can be simplified to 

( )2'( ) Re ( ) cj f ty t y t e π⋅ ⋅ ⋅ ⋅= ⋅  (3.5)

When the mobile moves through this welter of arriving reflections, the path lengths 

change. If the angle of arrival of path i with respect to the direction of motion is θi, 

then the path length change, as a function of speed v and time t is 

tvx ii ⋅−=∆ )cos(θ  (3.6) 
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This shifts the frequency of each component by an amount dependent on its arrival 

angle θi as it is shown below. By taking τi=(xi+∆xi)/c, and fc=c/λ, (3.6) and 

substituting them in (3.4) we have 
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Where c is the speed of light, and λ is the wavelength. 

The above equation may be simplified if the phases 2πxi/λ is included in the phase of 

ai because it is constant, and the term vcos(θi)t/c is neglected since this delay is very 

small compared with the time scale of the modulation s(t). 
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In the above equation it is shown that the ith scatterer shifts the input signal in time by 

τi, and in frequency by fdcos(θi). the maximum Doppler shift is fd=v/λ. 

In flat fading the signal bandwidth is so small that the delays τi do not affect the 

signal, and s(t-τi) ≈s(t). In frequency selective fading the signal bandwidth is bigger 

and the delays affect the signal. 

3.5 Consequences of a multipath channel 

In the previous section a multipath channel model was described mathematically by 

(3.8). The consequences of that equation are Doppler spread fd which is produced by 

vehicle motion and delay spread τi which is produced by the delays of the reflections 

of the signal. They are produced by two separate mechanisms, and either of them can 

be present or absent in common mobile situations. 

3.5.1 Doppler Spread 

Whenever a transmitter and a receiver are in relative motion, the received carrier 

frequency is shifted relative to the transmitted carrier frequency. This shifting of 

frequency is the Doppler effect of wave propagation between nonstationary points. 

If we consider that the portable terminal is moving with speed v, then the path lengths 

of the arriving reflections change. Doppler frequency spread is a measure of how 

rapidly the signal is changing with time. If the signal changes slowly the Doppler 
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frequency spread is relatively small, while if the signal changes rapidly the Doppler 

frequency spread is large. 

If we assume flat fading, in which the signal bandwidth is so small that the delays τi 

do not affect the signal as it will be explained below, equation (3.8) will become 

)()()()()( )cos(2 tstgetatsty
i

tfj
i

id ⋅=⋅⋅= ∑ ⋅ θπ

 
(3.9) 

Where the channel complex gain g(t) is time varying because the phase angles 

2πfdcos(θi)t change with time. This means that the Doppler effect and the variation of 

gain with time are relative to the motion of the mobile. The complex gain g(t) may 

become zero or close to zero while time varies and that has as a result the fade of the 

received signal y(t).  

In a realistic indoor environment the received signal arrives from several reflected 

paths with different path distances, and the velocity of movement in the direction of 

each arriving path is generally different from that of another path. Thus a transmitted 

signal instead of being subjected to a simple Doppler shift is received as a spectrum 

which is referred as the Doppler spectrum of Doppler spread. 

The received signal is affected by the complex gain and this depends on the fade rate 

and the time span of the required receiver processing. If the complex gain does not 

change significantly over this time span, then the primary effect is just a slowly 

varying SNR. This condition is termed slow fading and the criterion is that the 

product of fade rate and processing window is very small, that is NfdT<<1, where N 

is the receiver processing window measured in symbols and T is the symbol duration. 

If this product is significant, so that the signal in the window, or even individual data 

pulses, are distorted then this phenomenon is termed fast fading. In that case errors 

are produced even if there is no noise and no increase in power will eliminate it. 

3.5.2 Delay Spread 

If the transmitted signal is an impulse in time, the reflections spread it out upon 

reception. This range of delays, which is called delay spread, causes variation of the 

frequency response of the signal. Significant variation of the frequency response 

across the band produces signal distortion which will show up as intersymbol 

interference (ISI). At certain frequencies it is possible to have deep nulls, so part of 

the signal can be notched out. This is called frequency selective transmission and if 

the range of delays is not significant, the channel is considered flat. The criterion to 
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distinguish flat from frequency selective transmission is the comparison between 

delay spread and the fine structure in time of the signal (the reciprocal bandwidth of 

the signal). If the delay spread is very small compared to the reciprocal bandwidth we 

have frequency flat transmission, that is τdW<<1. 

Mathematically delay spread may be expressed as 

∑ −⋅= )()()( ii tstgty τ  where ij
ii eatg φ⋅=)(  

where very small Doppler or a stationary mobile is assumed and the phases of the 

reflections can be considered constant. In Fig. 3.2 the impulse response of a signal is 

shown where the signal is an impulse in time and its response spreads out in time 

because of the reflections. 

0 τ

τ

g(t ,τ)

 
Fig. 3.2 Impulse response of a signal 

If both of the above phenomena are present, Doppler and delay spread, then we have 

frequency selective fading and it is described by the following formula 

∑ −⋅= )()()( ii tstgty τ  where  tfj
ii

ideatg ⋅⋅⋅⋅⋅⋅= )cos(2)( θπ

This is a difficult situation for modulation and detection, especially if the fading is 

fast. This channel is a time variant linear filter. This means that the channel has an 

impulse response that depends on observation time t, as well as the delay τ. 

3.6 Fading Statistics 

In fading the received signal consists of a large number of copies of the transmitted 

signal, each with its own amplitude, phase and path delay, so all we have to do to 

know the relationship between the transmitted and the received signals is to measure 

the reflection coefficients and path lengths. But in practice, there are so many paths 
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that this is impractical. In addition there will be some inevitable errors in path length 

measurements, which even if they are really small (fraction of a wavelength), they 

introduce phase shifts that make the resultant quite different from the prediction. In 

such cases a statistical description is used, so that even if the actual channel filtering 

is not known some of its average properties can be characterized. 

3.6.1 Rayleigh Fading 

There are several probability distributions that can be considered in attempting to 

model the statistical characteristics of the fading channel. When there are a large 

number of scatterers in the channel that contribute to the signal at the receiver, as is 

the case in ionospheric or tropospheric signal propagation, application of the central 

limit theorem leads to a Gaussian process model for the channel impulse response. If 

the process is zero-mean, then the envelope of the channel response at any time 

instant has a Rayleigh probability distribution and the phase is uniformly distributed 

in the interval (0,2π). That is: 
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Fig. 3.3 Distribution of Rayleigh fading for various values of σg 
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3.6.2 Rice Fading 

There are many radio channels in which fading is encountered that are basically line-

of-sight (LOS) communication links with multipath components arising from 

secondary reflections, or signal paths, from surrounding terrain. In such channels, the 

number of multipath components is small, and hence the channel may be modeled in 

a somewhat simpler form. These channels may be described by the Rice distribution 

where the total gain is the sum of a constant specular (or LOS or discrete) component 

gs and a zero mean Gaussian diffuse (or scattered) component gd, so that g is a 

nonzero mean Gaussian variate.  

g=gs+gd

The specular component has K times the power of the diffuse component (the Rice K-

factor), so that K=0 gives Rayleigh fading and K==>∞ gives a constant channel. 

The pdf of the Rician distribution is given by: 
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Where I0 is the modified Bessel function of the first kind. 
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Fig. 3.4 Distribution of Rice fading for various values of K   

From the graph we can see that for large K the graph can be approximated by the 

Gaussian pdf. 
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3.6.3 Nakagami-m Fading 

An alternative statistical model for the envelope of the channel response is the 

Nakagami-m distribution given by the pdf: 
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Where m is the order of the pdf, 2σ2 is the mean square value and Γ(m) is the gamma 

function (equal to (m-1)! for integers).  

In contrast to the Rayleigh distribution, which has a single parameter that can be used 

to match the fading channel statistics, the Nakagami-m is a two parameter distribution 

involving the parameter m and the mean square value 2σ2. As a consequence, this 

distribution provides more flexibility and accuracy in matching the observed signal 

statistics. The Nakagami-m distribution can be used to model fading channel 

conditions that are either more or less severe than the Rayleigh distribution, and it 

includes the Rayleigh distribution as a special case (m=1).  

By increasing the order m of the Nakagami distribution changes its character from 

that of a purely scattered fading to fading with a LOS component. For modeling these 

channels, it is therefore a reasonable alternative to the Rice pdf which it resembles. 

For larger values of m, just as for larger values of K in the Rice pdf, it can be 

approximated by a Gaussian pdf 
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Fig. 3.5 Nakagami-m fading for various values of m 
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3.7 Second order statistics of time selective, flat fading channels  

In flat fading channels, as it was discussed before, the power spectrum of the output 

signal is broadened by the Doppler shifts because of the complex gain process g(t). 

This Doppler spectrum represents the distribution of scatterers (density of power) in 

the Doppler domain λ. The process g(t) is assumed to be wide sense stationary (WSS) 

that is that scatterers at different Dopplers are uncorrelated. The Doppler spectrum 

and the autocorrelation of the complex gain are important in analysis of modulation 

on fading channels. 

A widely used model for the Doppler power spectrum of a mobile radio channel is the 

so-called Jakes model [16] where isotropic scattering with a uniform density of 

scatterers in azimuth around the mobile is considered. In this model the 

autocorrelation of the time variant transfer function is given as:  

)2()( 0 τπτ dg fJR =  (3.13) 

Where J0( ) is the zero order Bessel function of the first kind and τ is the time 

separation. This function specifies the extent to which there is correlation between the 

channel’s response to a sinusoid sent at time t1 and the response to a similar sinusoid 

sent at time t2, where τ=t1-t2. to measure Rg(τ) a single sinusoid may be transmitted 

and determine the autocorrelation function of the received signal [17]. 

The Fourier transform of this autocorrelation function yields the Doppler spectrum. 
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where λ=fdcosθ which is the Doppler shift caused by the various scatterers around the 

mobile. 

The power spectrum and the correlation function of g(t) is shown in Fig. 3.6 which is 

derived from isotropic scattering and has a U-shape. For pedestrian use, this spectrum 

is realistic but for vehicular applications it is not. This is because cars do not usually 

have large scatterers directly ahead or behind and these are the scatterers that produce 

the ±fD shifts. Another point is that the surroundings are changing and the other cars 

in the lane facing the mobile also act as scatterers. There is also the fact that in many 

situations, the environment around the mobile could be dominated by a few large 

scatterers, rather than a collection of uniformly distributed small scatterers. 
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Fig. 3.6 Relationship among channel correlation function and power density 

functions. 

The time over which the complex gain stays roughly constant, so that the signal is 

relatively undistorted, is termed coherence time. The wider the Doppler spread, the 

shorter the coherence time, and the signal varies faster. Because the assessments of 

degree of coherence and distortion are somewhat subjective and because the 

quantities depend on specific functions, there is no precise definition of coherence 

time. That is 

d
c f

T 1
≈  (3.15) 

Clearly a slowly changing channel has a large coherence time and a small Doppler 

spread. 

3.8 Second order statistics of frequency selective, static channels 

In frequency selective static channels the signal from the surrounding scatterers 

arrives at different delays τi. In most radio transmission media, the attenuation and 

phase shift of the channel associated with path delay τ1 is uncorrelated with the 

attenuation and phase shift associated with path delay τ2. This is called uncorrelated 

scattering (US) and it is assumed that the scattering at different delays is uncorrelated. 

The distribution of scatterers (density of power) in the delay domain τ is called power 

delay profile and it is central to any analysis or simulation of delay spread and 

intersymbol interference. 
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In order to get a distortion free bandwidth, called the coherence bandwidth, a spaced 

frequency correlation function should be derived, which is the correlation between the 

responses due to sinusoids at f and ∆f, when observed at the same time (i.e ∆t=0) 

∫
∞

∞−

∆−=∆ ττ τπ dePfC fj
gg

2)()(  (3.16) 

where the density Pg(τ) is the power delay profile. Knowledge of Cg(∆f) it helps to 

answer the question what is the correlation between received signals that are spaced 

in frequency by (∆f). Cg(∆f) can be measured by transmitting a pair of sinusoids 

separated in frequency by (∆f), cross correlating the two separately received signals, 

and repeating the process many times with ever larger separation (∆f) [17]. 

The above relationship is depicted graphically in Fig. 3.7. Since Cg(∆f) is an 

autocorrelation function in the frequency variable, it provides a measure of the 

frequency coherence of the channel. As a result of the Fourier transform relationship 

between Cg(∆f) and Pg(τ), the reciprocal of the delay spread is a measure of the 

coherence bandwidth of the channel. Because the assessments of degree of coherence 

and distortion are somewhat subjective and because the quantities depend on specific 

functions, there is no precise definition of coherence bandwidth. That is  

d
cW

τ
1

≈  (3.17) 

where Wc is the coherence bandwidth. Thus, two sinusoids with frequency separation 

greater than Wc are affected differently by the channel. When an information bearing 

signal is transmitted through the channel, if Wc is small in comparison to the 

bandwidth of the transmitted signal, the channel is frequency selective. 
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Fig. 3.7 Relationship between frequency correlation and power spectrum. 

Some idealized power delay profiles are commonly used in analysis and design. In 

urban settings it is common for the power delay profile to be approximately 
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exponential. Another power delay profile commonly used is the two ray model where 

the arrivals are separated by the maximum delay spread τd.  

3.9 Second order statistics of time and frequency selective fading channels 

In the case where both of the above phenomena are present will be discussed. By 

assuming that the channels are WSS (scatterers at different Dopplers are 

uncorrelated) and US (scatterers at different delays are uncorrelated) simplifies the 

analysis 

The average power output of the channel as a function of the time delay τ and the 

Doppler frequency λ is described by a function called delay - Doppler power density 

function or scattering function of the channel: 
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3.10 A tapped delay line (TDL) channel model 

The tapped delay line is a discrete channel model for frequency selective fading. This 

model seeks to combat the effect of multipath by using a correlation method to detect 

the delayed signals individually and then adding them algebraically. In this way, 

intersymbol interference due to multipath is dealt with by reinserting different delays 

into the detected signals so that they perform a constructive rather than destructive 

role. A block diagram of a TDL model is shown in Fig. 3.8. The input signal s(t) is 

sampled at a rate fs that is high enough to represent the output after Doppler 

spreading; that is, if the input signal has low pass bandwidth W, then fs≥2(W+fd). In 

that way the same sampling rate is used for input and output. 

 
Fig. 3.8 Tapped delay line model 
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By keeping the WSSUS assumption the coefficients gi(t) are uncorrelated and 

because of the central limit theorem are Gaussian. The variances coefficients follow 

the power delay profile so that: 

∫
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Where K is a proportionality coefficient and the sampling interval is ts=1/fs.  

The above model may be expressed mathematically with the following equation: 
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The TDL model has its limitations because the independence of coefficients in the 

TDL model is expedient, but not completely accurate, even for a WSSUS channel.  

In a next chapter an example of such a model will be given and sample plots will be 

presented.
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4 Performance of Star QAM in fading channels 

In [18] a simple SER calculation technique adopted in [19] is generalized to derive 

single-integral closed form expressions of the average SER of Star M-QAM 

(kAnPSK, M=k×n) in fading channels corrupted by AWGN. Numerical results are 

computed and plotted for the cases of M=16, 64 and 256. The dependence of error 

probabilities on fading parameters is also analysed. 

4.1 Wireless Channel 

The signalling used is Star M-QAM and it is transmitted over a wireless fading 

channel that is also corrupted by AWGN. The fading is assumed to be slow compared 

to the signal duration and flat compared to the signal bandwidth. Besides the fading, 

the signal is also perturbed by AWGN with two-sided PSD N0/2.  

It is well known that the symbol error rate performance of M-ary signalling perturbed 

by stationary AWGN depends only on the instantaneous SNR γs describing each 

symbol [3]. However, in fading channels the instantaneous SNR becomes a random 

variable and its probability density function for Rician and Nakagami distributions is 

respectively given by [3] 
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where sγ  is the average instantaneous signal to noise ratio (SNR), K is the Rician 

parameter, m is the Nakagami parameter, Io(x) is the modified Bessel function of first 

kind, and Γ(m) is the Gamma function. 
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Fig. 4.1  Constellation of M-ary Star QAM 

4.2 Error Probability of Star M-QAM 

The constellation of star M-QAM (k-magnitudes, n-phases) is arranged with n 

equidistant signal points per ring on a total of k rings with radius 1,2…k as shown in 

Fig. 4.1. The original motivation for this type of constellation was to ease carrier 

recovery, since there are n equally valid synchronisation positions as opposed to 

square M-QAM, which has a number of potential false-lock positions. 

Assuming matched filter reception, the symbol signal to noise ratio at the output of 

the receiver filter is 
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where the average constellation power is 
2 2 2

2

1

1 2 ... 1 k

j

k j
k k =

+ + +
= ∑ , and σ2 is the 

variance of the thermal noise. 

Each constellation point has four neighbours, or three if it belongs to the innermost 

and outer rings. The distances of each point in the jth inner ring from its neighbours 

are {2jsin(π/n), 2jsin(π/n), 1,1}. The distances of each point in the innermost ring 

from its neighbours are {2sin(π/n), 2sin(π/n),1}. The distances of each point in the 

outer ring from its neighbours are {2ksin(π/n), 2ksin(π/n),1} Thus the average SER is 

proved to be given by 
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The first term of the numerator is the error from the neighbours in the same radius of 

the circle and the second term is the error from the neighbours from the adjacent 

phases of the constellation.  

Equation (4.4) can be expressed in terms of the inner and outer radius when the ring 

radius in not fixed to 1. In that case for the 16Star QAM (k=2, n=8) and by denoting 

the inner radius as rL and the outer radius rH (4.4) will become 
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By substituting the noise deviation σ in (4.4) with the symbol signal to noise ratio γs 

using (4.3), an alternate expression of SER is derived: 
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Once the PDF of γs is known, the average SER in fading can be calculated by 

averaging the conditional (on γs) SER over the PDF of γs  

0
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= ∫  (4.7) 

where Ps(e/γs) is the conditional (on γs ) SER in non-fading channel corrupted by 

AWGN. 

We now derive the generic expressions for average SER’s of coherent star M-QAM 

over Rician and Nakagami fading channels by using an alternate representation for 

the Gaussian Q-function [20], which is given by 
2
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By substituting (4.8) into (4.6), the conditional SER for the fading channel of our case 

is given by  
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By substituting equations (4.1) and (4.9) into (4.7) we get an expression for the 

average SER of star M-QAM over Rician fading channel: 
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The substitution of (4.2) and (4.9) into (4.7) yields the following expression for 

average SER of star M-QAM over Nakagami-m fading channel: 
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The above expressions (4.10) and (4.11) are high SNR approximations because only 

the distances to the immediate neighbours were considered in equation (4.4) were the 

average SER was initially calculated. An error that occurs to an immediate neighbour 

dominates in the high SNR regime, but at low SNRs there is a probability that an 

error occurs to another more distant point of the constellation. This error is not 

negligible but it is not taken into account in the derivation of the above equations. In 

the following chapter a simulation of a fading channel under Rician fading will be 

carried out and the validity of the above results will be confirmed. 

4.3 Numerical Results 

The final SER expressions for Star M-QAM are computed numerically for different 

values of M (M=16, 64, 256) while keeping the number of phases constant (n=8) and 

results are plotted in Fig. 4.2 and Fig. 4.3 for Rician and Nakagami fading channels 

respectively. The results are plotted for various values of K and m in order to show 

the dependency of SER on Rician parameter K and Nakagami parameter m. It can be 

seen that for a fixed value of M, as K or m increases, less power is needed in order to 

 34



achieve the same SER. This happens because as K or m increases the fading depth 

decreases. It is also shown that for fixed K or m as M increases, SNR has to be 

increased to keep the SER constant, which is exactly what one can expect from the 

theory of M-ary modulation techniques. 
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Fig. 4.2 Average SER of coherent Star M-QAM in Rician fading channels 
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Fig. 4.3 Average SER of coherent Star M-QAM in Nakagami-m fading 

channels 

Error rate performance of coherent Star M-QAM in slow, flat, fading channels is 

presented in terms of a single finite integral with an integrand composed of 

elementary (exponential and trigonometric) functions. The solutions are simple 

enough to allow numerical computation for cases of practical interest and general 

enough so that they include AWGN [ K = ∞ in (4.1), m= ∞ in (4.2)] and Rayleigh 

fading plus AWGN [ K = 0 in (4.1) m=1 in (4.2)]. 

 36



5 Simulating fading channels 

Simulation is a tool for system design and evaluation. Of course, simulation is often 

used in industry to evaluate systems for which analytical results are not available due 

to numerous implementation effects. In this chapter simulations are used to get results 

on the bit error rate of Star M-QAM in flat fading channels. 

5.1 Generation of complex gain 

As it was seen in a previous chapter, fading channels are characterized by the 

multiplication of a complex number to the signal. In order to simulate a fading 

channel a reliable way is needed to generate those complex gains with the right 

properties. The real and imaginary components must be both Gaussian with the same 

autocorrelation function, and independent to each other. Additionally different 

complex gain generators in a frequency selective channel model should be 

independent. 

The signal strength in dB along an arbitrary direction for an unmodulated carrier may 

be visualized by using the Jake’s complex gain generator for isotropic scattering [16] 

Jakes method is a way to simulate fading channels by generating channel complex 

gain samples which are statistically reliable, and computationally undemanding. In 

order to produce a Gaussian process with statistics corresponding to isotropic 

scattering, it mimics the model Jakes used to calculate the power spectrum in the first 

place – rays arriving uniformly from all directions with the same power. 

Computationally the method is very attractive because the processing load per sample 

is reasonable, its structure lends itself to real time DSP implementation, it can be run 

forward or backward in time, and the time step size can be varied at will. The original 

algorithm had a problem with persistent correlation between supposedly independent 

generators. The modification in [21] got around part of the difficulty, but introduced 

other forms of correlation, as well as non-WSS behavior, which together make it 

unsuitable for simulation. 

This problem is solved by using a Jakes - like generator [15] which is a good 

approximation to a Gaussian random process, it is band-limited and wide sense 

stationary, and it is easy to create multiple uncorrelated generators. The only 

drawback is that more rays are required in order to achieve the desired power 

spectrum. 
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If it is assumed that there are Ns scatterers equispaced in azimuth around the mobile, 

with all scattered signals have the same amplitude, but random phases φi, the 

generated complex gain will be the sum of the scattered signals. 
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From the previous chapters it was assumed that the process g(t) is wide sense 

stationary. In order to make sure that g(t) is WSS a test during simulation should be 

carried out. This process will be WSS if the real and imaginary components of g(t) 

are uncorrelated and have the same autocorrelation functions. This is: 

0)(1
0))()((

1

0

1

0

)()( =⋅⋅

=−⋅

∑ ∑
−

=

−

=

−++
s s

nnini

N

i

N

n

jtjj

s

eeEe
N

tgtgE
τωωωϕϕ

τ
 (5.2)

Where ωi=2πfdcos(θι). The above average will be zero provided that ωn ≠0 and 

ωi≠ωn. Since the Doppler shifts are determined by the arrival angles, i
sNi ⋅+= πθθ 2

0 , 

the zero average is achieved by ensuring that the number of rays Ns is odd and no 

arrival angle, θ0, is equal to ±π/2. A Matlab function is written in order to ensure the 

above conditions are kept. 

The autocorrelation function of the Jakes model as it was mentioned in a previous 

chapter (3.13) is a Bessel function J0 and the simulation should give complex gains 

with autocorrelation that resembles this function, and have variance 0.5 so that it 

doesn’t change the signal power passing through the channel. That is: 
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Since the summation in the second last line is a discrete approximation to an integral 

that is one definition of the J0 function: 

 38



∫−

⋅=
π

π

θτπ θ
π

τπ defJ dfj
d

)cos(2
0 2

1)2(  (5.4) 

The approximation is quite good for just a few arrivals and its quality depends on the 

offset angle θ0. The best case is where θ0=0 and the worst case θ0=π/2Ns. The 

approximation is quite good out to about fdτ=2 to 4 for Ns=15 rays, and this interval 

of good fit may be doubled by doubling the number of rays. In the original algorithm 

of Jakes the interval of good representation is twice as large than the used method but 

the WSS behavior is better in the method used in this simulation. 

The complex gain may now be derived by applying to (5.1) the randomized phases 

φn, and Doppler shifts ωi which are generated by taking in mind the WSS behavior. 
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Fig. 5.1 Flow Diagram of simulation of slow and fast fading channel 

5.2 Simulation of Differentially encoded 16 Star QAM in slow and fast fading 

channels 

The complex gains generated in the previous section will be used for the simulation 

of the differentially encoded 16 Star QAM over a fading channel. For flat fading the 
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received signal at the output of the fading channel and before addition of receiver 

noise is y(t)=g(t)·s(t). So the power of the received signal will be: 

( )[ ] ( )[ ] ( )[ ] sgy PtsEtgEtyEP ⋅=⋅== 2222 2)()(
2
1)(

2
1 σ  (5.5) 

Since the complex gains g(t) have variance 2
12 =gσ  the received power will remain 

unchanged by the complex gain power. 

The fundamental SNR per bit parameter is SNR=Eb/N0. For the case of 16 Star QAM 

where Es=4Eb and Es=PsT we have that N0= PsT/4SNR. By assuming that the 

bandwidth is twice the symbol rate W=2/T and the sampling rate is twice the 

bandwidth 2W=4/T we operate at Nss=4 samples per symbol. 

The receiver noise will have variance  and by substituting the above we 

get: 
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Fig. 5.2 BER of Star 16QAM for various mobile velocities and fc=1GHz 
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The parameter that distinguishes slow from fast fading as it was mentioned in a 

previous chapter is fdT which is an input to the simulation. If fdT <<1 the fading is 

slow, otherwise it is fast. Below in Fig. 5.1 there is a flow diagram of the simulation. 

Simulations were carried out for various values of fdT (T=10-4sec), (fd=fcv/c) and 

N=1.000.000 symbols, and the signal was detected by using a matched filter. Matlab 

code is included in Appendix and graphic results are shown below for Bit Error Rate 

versus SNR.  

As it can be seen in Fig. 5.2 as the velocity of the mobile increases the performance 

of the channel decreases. For carrier frequency 1GHz and pedestrian speed of 

v=3km/h the fading is slow and the performance of the channel increases as the SNR 

increases but for greater speeds where the fading is fast there is an error floor which is 

not corrected as the SNR increases. 

In Fig. 5.3 where the carrier frequency is increased and hence the Doppler frequency 

is increased the same behavior exists only that the performance of the channel is 

worst. 
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Fig. 5.3 BER of Star 16QAM for various mobile velocities and fc=2GHz 
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5.3 Comparison of simulations with theoretical results 

In order to check the validity of the results obtained in chapter 4 simulations were 

carried out using a Rician fading channel for various values of K (K=0, K=10, K=20). 

The method used was the same as in the previous sections with only difference that 

the Jakes method for generating the complex gain was substituted by a function 

which generated Rician distributed complex numbers. The number of symbols that 

the simulation was run was N=1.000.000 so the error accuracy that could be achieved 

was up to 10-6. Because the error accuracy of the theoretical results for high SNR was 

up to 10-12 for K=20 the results were plotted for SNRs that the SER were not smaller 

than 10-6. 
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Fig. 5.4 Comparison of simulation with theoretical results for 16 Star QAM in 

a Rician fading channel for K=0, (Rayleigh) 
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Fig. 5.5 Comparison of simulation with theoretical results for 16 Star QAM in 

a Rician fading channel for K=10 

It can be seen in Fig. 5.4, Fig. 5.5, Fig. 5.6 that the simulation results follow the 

theoretical equation for a Rician slowly, flat fading channel. In chapter 4 it was 

mentioned that the approximation of the SER of Star QAM was a high SNR 

approximation which is confirmed by the simulations. It can be seen in Fig. 5.4 were 

the fading is more severe, that at low SNRs (0-10dB) the results are not the same for 

the simulation and the theoretical curve. For higher K, Fig. 5.5, Fig. 5.6, this 

difference is smaller since the fading is less. These results are presented with more 

clarity in Fig. 5.7, Fig. 5.8, and Fig. 5.9 were the symbol error rate is shown only for 

low SNRs 
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Fig. 5.6 Comparison of simulation with theoretical results for 16 Star QAM in 

a Rician fading channel for K=20, (nearly Gaussian) 
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Fig. 5.7 Comparison of simulation with theoretical results for 16 Star QAM in 

a Rician fading channel for K=0, for low SNRs (0-20dB) 
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Fig. 5.8 Comparison of simulation with theoretical results for 16 Star QAM 

in a Rician fading channel for K=10, for low SNRs (0-20dB) 
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Fig. 5.9 Comparison of simulation with theoretical results for 16 Star QAM 

in a Rician fading channel for K=20, for low SNRs (0-10dB) 
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5.4 Example of a frequency selective channel using a TDL model. 

In this section a transmitted signal will be created and it will be passed through a TDL 

channel. Graphs of the input and output signal will be presented and it will be shown 

what effect has the delay spread and the Doppler frequency at the output signal.  

By using a phase modulated carrier with a cosine: 
)2cos(2)( tffj mdets ⋅⋅= ππ  (5.7) 

and choosing the modulation frequency fm =10 KHz, the sampling rate 1/ts=32fm  and 

the modulation index fd=0.4. 

by assuming a linear decay in the power delay profile: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⋅=

dd
gP

τ
τ

τ
τ 12)(   0≤ τ < τd (5.8) 

So that the area σg
2=1. 

The number of taps in the model will be the division of the delay spread over the 

sampling time rounded up, and it expresses the number of samples that there will still 

be information of the transmitted symbol after it was first received. 
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The standard deviation per tap is 
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where n=0,…,Nt-1 

The complex gain is generated in the same way as in the flat fading case and it is 

remains constant for each tap. 

The channel output is given by the equation 
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Fig. 5.10 Comparison of input and output of a TDL channel 

From Fig. 5.10 it can be seen that a delay spread of τd=10µs causes considerable 

damage, even to a 10KHz signal, but a Doppler of 1 Hz does not make the output 

aperiodic over this short observation interval. In the lower left graph where the 

Doppler frequency is 1 KHz it can be seen that the damage to the signal is  worst even 

if the number of taps are the same. In the top right graph where Doppler frequency 

and delay spread are low the signal is not that much disturbed. 
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6 Conclusions 

In this work performance Star QAM over fading channels was studied. Initially PAM 

and PSK signals where explained and performance curves over AWGN channels 

where given. The QAM modulation was then described and it was made obvious that 

QAM is generated by combining PAM and PSK signals together. Fading channels 

where then described and all possible form of fading where presented. It was made 

clear that fast and slow fading is a consequence of vehicular motion and frequency 

flat and frequency selective fading is a consequence of the surroundings. First and 

second order statistics of fading were given which where later used in simulations.  

Afterwards closed form expressions of the average SER for Star MQAM slow-flat 

fading channels were derived and performance curves were given for various Ricean 

and Nakagami-m statistics. Finally simulations were run for Star 16QAM in flat 

fading channels and performance curves were given for slow and fast fading. Also an 

example of frequency selective signal was presented and the distortion to the output 

signal was shown. 

Further study of the above work may include simulations for frequency selective Star 

QAM channels and application of methods to mitigate the consequences of fading. 
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