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AABBSSTTRRAACCTT 
 

A classification algorithm based on wavelet transform analysis has been developed in 

order to detect ECG characteristics concerning some of the most common types of 

arrhythmias encountered in the majority of the human population. In particular, sinus 

tachycardia, sinus bradycardia, premature contractions, atrial fibrillation (AF) and the 

malignant ventricular tachyarrhythmias (VT) may be discriminated by this single 

uniform classification algorithm. The results showed that the proposed method is a 

promising approach as it had correctly detected 98.4% of the VT and 82.5% of the AF 

recordings, while the overall success rate was 91%. 
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11..  MMEEDDIICCAALL  BBAACCKKGGRROOUUNNDD  

 

11..11  TThhee  hheeaarrtt  

 

11..11..11  BBaassiicc  ssttrruuccttuurree  

The human heart is a muscular organ, which is located just to the left of the breast 

bone. There are four chambers inside the heart that fill with blood. Two of these 

cavities are called atria and the other two are called ventricles. The two atria that 

receive blood from the body or lungs form the curved top of the heart. The ventricles 

meet at the bottom of the heart to form a pointed base. The right ventricle pumps 

blood to the lungs to pick up oxygen whereas the left ventricle pumps blood to the rest 

of the body and is the strongest chamber as it contracts most forcefully. There are also 

four valves in the heart that help to direct the blood flow [1]. 

  

11..11..22  TThhee  ccoonndduuccttiioonn  ssyysstteemm  

Cardiac muscle cells are all electrically excitable and are capable of propagating 

action potentials. In a normal subject the cardiac impulse arises in the sinoatrial node 

(SA node), which is located near the entrance of the superior vena cava. This 

specialized tissue is the heart's "natural pacemaker". The rate of impulse formation 

can increase or decrease as sympathetic and parasympathetic nerve fibres end in this 

region causing the heart rate to vary. 

After the initial impulse evolvement, action potentials spread from the SA node 

throughout the atria. Then, several pathways serve to channel the impulse from the 

SA node to the atrioventricular node (AV node). The AV node is normally the only 

conducting bridge between the atria and ventricles. 

After emerging from the AV node the impulse finally enters the ventricular 

conduction system. The ventricular conduction system consists of the bundle of His, 

the right bundle branch, the left bundle branch and the Purkinje network. The latter is 

a network of nerve-like fibres that carry the electrical signal from the His bundle to 
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the heart muscle itself. Figure 1.1 illustrates the basic structure of the heart together 

with its conduction system, while figure 1.2 is a flow chart of the sequence of the 

normal cardiac activation [2]. 

 

Figure 1.1: The heart and its conduction system 

 

 

Figure 1.2: Normal conduction pathway 

 

  

11..22  TThhee  eelleeccttrrooccaarrddiiooggrraamm  ((EECCGG))  

 

11..22..11  TThhee  1122--lleeaadd  EECCGG  

The electrical activity of myocardial cells establishes small currents within the body. 

These lead to potential differences on the surface, which can be detected using 

suitable equipment. The graphic record of these body surface potentials as a function 

of time is known as the electrocardiogram (ECG).  
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The ECG can be recorded by special medical devices, which are capable of recording 

the electrical activity of the heart from electrodes placed on the skin in specific 

locations. Modern ECG recorders utilize twelve leads, which are composed of three 

bipolar limb leads ( , , ), three augmented unipolar limb leads ( , , 

) and six unipolar precordial leads ( , , , , , ).  

I II III RaV LaV

FaV 1V 2V 3V 4V 5V 6V

The first three bipolar limb leads ( , , ) use one limb electrode as the positive 

pole and another electrode as the negative pole. The positioning of them was first 

introduced by Eithoven as shown by the equilateral triangle called Eithoven’s 

Triangle in the figure 1.3. These leads obey the following equation, which is known 

as the Eithoven’s Law: 

I II III

 

Lead II = Lead I + Lead III   (1.1) 

 

The second three augmented unipolar limb leads ( , , ) use one limb 

electrode as the positive pole (placed on the right arm, the left arm and the left foot, 

respectively) and the other electrodes are averaged together to create a composite 

negative reference (alternatively common ground can be used). They termed 

augmented because the potentials may be smaller than desirable so they are amplified. 

The last six unipolar precordial leads ( , , , , , ) are arranged laterally 

on right side of heart over the anterior apical portion of heart and then laterally on the 

left side of the heart as shown in figure 1.4. These leads measure the amplitude of the 

cardiac electrical current in an anterior-posterior aspect with regard to the heart as 

opposed to the limb leads, which record in the coronal plane [3]. 

RaV LaV FaV

1V 2V 3V 4V 5V 6V

 

 

Figure 1.3: Eithoven’s Triangle 
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Figure 1.4: Placement of the unipolar precordial leads 

 

 

11..22..22  EECCGG  iinnddiivviidduuaall  ccoommppoonneennttss    
 

A typical heart beat as recorded by lead II is illustrated in figure 1.5. Generally, it 

consists of a P-wave, a PR-interval, a QRS-complex, a ST-segment, a QT-interval and 

a T-wave. The P-wave refers to electrical currents produced in atria during 

depolarization and it initiates contraction of the atria. The PR-interval represents the 

atria to ventricular conduction time. The QRS-complex is the result of the production 

of electrical currents in ventricles during depolarization and it initiates ventricular 

contraction. The ST-segment is important in identifying pathology such as myocardial 

infractions (elevations) and ischemia (depressions). The QT-interval expresses the 

duration of activation and recovery of the ventricular muscle. The T-wave occurs 

during ventricle repolarization. Note that multiple variations of the QRS-complex 

exist and some of them are presented in figure 1.6. The naming convention is 

performed as follows: The R-wave is the first (and the second) upward deflection of 

the QRS-complex, the Q-wave is the downward wave that precedes R-wave, while the 

S-wave is the downward deflection of the QRS-complex which follows R-wave [3]. 
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Figure 1.5: Individual components of a normal ECG beat (lead II) 

 

 

 
Figure 1.6: Some of the multiple variations of the QRS-complex 

 

 

11..22..33  HHeeaarrtt  rraattee  ((HHRR))  
 

The heart rate (HR) is defined as the number of cardiac cycles that occurred in a 

minute. The cardiac cycle can be specified by the duration between two identical 

points of consecutive ECG waveforms such as the R-R interval. Therefore, the HR 

can be estimated by: 

 

HR = R-R intervals / Minute   (1.2) 

 

and is measured at beats per minute (bpm).  

 

Usually, the HR is computed by the division of a minute to the time duration of a 

cardiac cycle (R-R interval). If the ECG recording speed is 25mm/sec, which is a 

universal standard, then a length equal to 1mm at the horizontal axis of the 

electrocardiographic map as shown in figure 1.7 corresponds to time duration of 

0.04sec. Moreover, the vertical axis of the electrocardiographic map is also 

standardized and 1mm corresponds to 0.1mV of recorded voltage. Consequently, the 
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time duration of an R-R interval can easily be calculated in a similar manner to the 

HR by the following equation: 

 

HR = 60 sec / R-R interval (sec)   (1.3) 

 

When the R-R intervals are not equal as for example in an atrial fibrillation a 

justifiable question could be how to estimate the cardiac cycle. In such situations the 

number of R-R intervals existing through the available length of the ECG recording 

should be counted. Then this number should be multiplied by a suitable factor in order 

to compute how many cardiac cycles occurred in a minute, thus calculating the HR. 

For example, if the available length of the ECG recording is six seconds, then after 

counting the different R-R intervals in these six seconds one should multiply by ten. 

Though for only three seconds available one should multiply by twenty and so on [3]. 

 

 
 

Figure 1.7: Electrocardiographic map 

  

  

11..22..44  HHeeaarrtt  rrhhyytthhmm  
 

The heart rhythm is characterized as sinus only when the two following conditions 

exist: An ECG recording every P-wave must be followed by a QRS-complex and 

simultaneously every QRS-complex must be preceded by a P-wave [3]. 
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11..33  AArrrrhhyytthhmmiiaass 

  

11..33..11  IInnttrroodduuccttiioonn    

  
Any turbulence in the heart rhythm is characterized as arrhythmia. Many different 

kinds of arrhythmias exist and their classification depends upon their origin. 

Therefore, there are arrhythmias originated from the SA node like sinus tachycardia 

and sinus bradycardia and arrhythmias induced by the atria like atrial premature 

contractions and atrial fibrillation. There are also arrhythmias caused by the AV node 

and the bundle of His like premature junctional contractions and arrhythmias 

introduced by the ventricles like premature ventricular contractions and ventricular 

tachyarrhythmia. 

 

Cardiac arrhythmia is the leading cause of death in the Western world and strikes 

mostly people with a history of heart disease or damage resulting in sudden death but 

can also occur in young and apparently healthy men and women4. Furthermore, those 

with heart problems die usually due to an acute lethal arrhythmia rather than sudden 

deterioration of the heart [3,5]. 

 

 

11..33..22  SSiinnuuss  ttaacchhyyccaarrddiiaa  ((SSTT))  

  
Sinus tachycardia (ST) occurs when the heart rate is greater than 100 beats per minute 

at rest although the rhythm is the same as the normal sinus rhythm. Many processes 

can result in the heart rate increasing at rest. Exercise, pregnancy and emotion can all 

result in sinus tachycardia. Sometimes sinus tachycardia may be adjusted 

compensatorily by the circulatory system via the sympathetic nervous system to some 

conditions. Such conditions include low blood pressure, low blood volume, impaired 

ability of the blood to transport oxygen, or ineffective ventricular ejection. Anaemia, 

post-surgical blood loss, heart failure and fever are situations when sinus tachycardia 

occurs clinically as a compensatory mechanism. Pain, cancer, endocrine disorders, 

and drug toxicity or drug withdrawal all of which are associated with abnormally 
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elevated energy expenditure can also result in sinus tachycardia. Drugs can also cause 

sinus tachycardia whereas sometimes the cause is unknown. Figure 1.8 illustrates an 

ECG signal during sinus tachycardia [3]. 

 

 
Figure 1.8: An ECG signal during sinus tachycardia 

 

 

11..33..33  SSiinnuuss  bbrraaddyyccaarrddiiaa  ((SSBB))  

  
Sinus bradycardia (SB) occurs when the heat rate is lower than 50 beats per minute 

although the rhythm is the same as the normal sinus rhythm and is stimulated by an 

increased tone activity of the parasympathetic nervous system. This could be 

physiological if the subject is asleep, it is an athlete or a pregnant woman. However, 

there are many pathological causes that generate sinus bradycardia and some of them 

are very serious. These are increased endocranial pressure, imbalances of the carotidal 

ventricle, hypothyroidism, arteriosclerosis of the elderly, S.S.S., heart attack, 

obstructive jaundice, recovery from infectious diseases and any drug consumption 

such as B-blockers. 

 

One should be aware of sinus bradycardia for two reasons. Firstly, because the QT-

interval is long and thus the “R on T phenomenon” is favoured. This phenomenon sets 

ventricular tachycardia, which is a critical type of arrhythmia. Secondly, in many 

cases sinus bradycardia appearance is accompanied with the development of S.S.S.. 

Figure 1.9 illustrates an ECG signal during sinus bradycardia [3]. 
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Figure 1.9: An ECG signal during sinus bradycardia 

 

 

11..33..44  PPrreemmaattuurree  ccoonnttrraaccttiioonnss  ((PPCC))  
 

Premature beats are the most common cause of an irregular heartbeat and occur 

earlier than expected interrupting the normal heart rhythm. Premature beats are often 

associated with other arrhythmias and tend to be more common in people with heart 

disease. They may originate from anywhere in the heart. Premature contractions in the 

ventricle (PVC = premature ventricular contraction) and in the atria (PAC = 

premature atrial contraction) are common.  

 

Usually the presence of premature contractions in normal individuals does not require 

treatment unless they cause intolerable symptoms. Some changes in lifestyle, such as 

reducing stress or avoiding caffeine will often control them. In order to avoid serious 

implications a cardiologist should examine patients with PVC’s when they are 

frequent or occur in certain patterns although treatment may not be needed. Those 

without heart abnormalities rarely have serious problems. 

 

 

11..33..44..11  PPrreemmaattuurree  aattrriiaall  ccoonnttrraaccttiioonnss  ((PPAACC))  

 

Premature Atrial Contractions (PAC) originate within the atrial myocardium but 

outside the SA node and occur before the next expected sinus discharge; it maybe 

conducted normally through the AV node and ventricles; or it can be partially or 

completely blocked. Although an increased rate of premature contractions occur 

before the onset of atrial fibrillation and are usually associated with lung and thyroid 

diseases, the cause of PAC is unknown. Figure 1.10 presents an ECG signal disturbed 

with one atrial premature contraction. 
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Figure 1.10: An ECG signal with an introduced PAC 

 

 

11..33..44..22  PPrreemmaattuurree  vveennttrriiccuullaarr  ccoonnttrraaccttiioonnss  ((PPVVCC))  

 

Premature Ventricular Contractions (PVC) arise from a ventricular focus with 

enhanced automaticity or may represent a form of reentry within the His-Purkinje 

system. PVC's are the most common of the ventricular arrhythmias and may occur 

randomly or may alternate with normal beats in a regular pattern. Isolated PVC in the 

setting of cardiac disease (e.g. recent heart attack) can indicate increased risk of 

having ventricular tachycardia or fibrillation, both of which increase the risk of 

sudden death. Figure 1.11 presents an ECG signal disturbed with one ventricular 

premature beat [3,5]. 

 

 
Figure 1.11: An ECG signal with an introduced PVC 

 

 

11..33..55  AAttrriiaall  ffiibbrriillllaattiioonn  ((AAFF))    
 

Atrial fibrillation is characterised by an irregularly erratic pulse and it is the most 

common abnormal heart rhythm. It is more common in older people and rare in 

children and adolescents. Its incidence increases with age and in the United States 

there are more than one and a half million sufferers4. The pulse rate can either be high 
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or low but in atrial fibrillation, the atrial and ventricular contractions are not 

synchronized together. The atria may be contracting at greater than 300-400 beats per 

minute. The electrical signals from the atria must pass through the AV node, which 

acts as a rate controlling device only allowing a certain number of electrical signals to 

pass to the ventricle per minute. As a result, the heart rhythm is irregular and erratic. 

 

Atrial fibrillation can be variable and unpredictable and many people are 

asymptomatic. Episodes can last from minutes to hours, revert spontaneously, and 

recur infrequently and sometimes can result in a dominant atrial rhythm. 

 

The basic cause of atrial fibrillation is unknown but is often associated with certain 

diseases. Such diseases include coronary heart disease, hypertension, mitral valve 

prolapse, congestive heart failure, rheumatic heart disease, cardiomyopathy, 

congenital atrial malformations, and metabolic diseases as well as alcohol and drug 

use - and also withdrawal - especially in the young and mid-adult years. 

Complications can occur which include serious circulatory problems, the risk of 

cerebral embolism and stroke. Atrial fibrillation shortens life expectancy and 

increases the risk of stroke particularly if the age is increased and cardiovascular 

disease is also present. Figure 1.12 illustrates an ECG signal during an atrial 

fibrillation episode [3,5]. 

 

 
Figure 1.12: An ECG signal during an atrial fibrillation episode 

 

 

11..33..66  VVeennttrriiccuullaarr  ttaacchhyyaarrrrhhyytthhmmiiaa  ((VVTT))    
 

The ventricular tachyarrhythmias are fast heart rhythms (>100 beats per minute) that 

arise entirely within the lower chambers of the heart (the ventricles), include a number 

of different rhythms and can be life-threatening. VTs are divided into monomorphic 

 15



 

which would appear on an ECG record with a regular rate and rhythm and fixed shape 

or morphology of the ECG trace or polymorphic which is irregular in rate and rhythm 

and has varying shapes or morphologies on the ECG. Polymorphic ventricular 

tachycardia is the most dangerous rhythm with ventricular fibrillation being the worst 

form leading to death if not corrected. 

 

In developed countries, the majority of the patients suffer from coronary artery 

disease. Although most patients having ventricular tachycardia will have underlying 

coronary disease or severely depressed heart function some have no demonstrable 

disease of the heart muscle or coronary arteries4. 

 

 

11..33..66..11  MMoonnoommoorrpphhiicc  vveennttrriiccuullaarr  ttaacchhyyccaarrddiiaa   

 

Symptoms such as palpitations or shortness of breath can result from ventricular 

tachycardia in which the ventricle beats abnormally fast and inefficiently. Syncope or 

sudden death may result with faster heart rates and underlying heart disease. Rates 

between 110 and 150 beats per minute (bpm) may be tolerated, rates > 180 bpm may 

cause drops in arterial pressure and syncope whereas rates > 220 bpm are imminently 

dangerous. Figure 1.13 illustrates an ECG signal during a monomorphic ventricular 

tachycardia episode. 

 

 
Figure 1.13: An ECG signal during a monomorphic ventricular tachycardia episode 

 

 

11..33..66..22  PPoollyymmoorrpphhiicc  vveennttrriiccuullaarr  ttaacchhyyccaarrddiiaa::  VVeennttrriiccuullaarr  ffiibbrriillllaattiioonn  ((VVFF))  

 

The mechanism of ventricular fibrillation is not known although it results when 

multiple sites in the ventricles fire impulses very rapidly in an uncoordinated fashion. 
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The ventricles stop the circulation of blood and death follows unless emergency 

treatment is given. VF causes death in patients with cardiac arrest and is most 

commonly associated with structural heart disease. Specifically, coronary artery 

disease and myocardial infarction or ischemia together with dilated cardiomyopathies 

are the most common underlying heart disease. 

 

In episodes of cardiac failure, fibrillation is almost preceded by a run of ventricular 

tachycardia, which eventually gives way to the fibrillation itself. Therefore, any 

clinically useful detector should respond to the runs of tachycardia preceding 

fibrillation, since medical intervention is needed at the earliest opportunity. Figure 

1.14 illustrates an ECG signal during a ventricular fibrillation episode [3,5]. 

 

 
Figure 1.14: An ECG signal during a ventricular fibrillation episode 
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22..  AALLGGOORRIITTHHMMSS  OOVVEERRVVIIEEWW  

..11  FFoouurriieerr  ttrraannssffoorrmm  

..11..11  CCoonnttiinnuuoouuss--ttiimmee  FFoouurriieerr  ttrraannssffoorrmm  ((CCFFTT))  

mongst others, signal-processing field involves various feature extraction methods. 

 

22

 

22

 
A

These methods address the problem of extracting information from a given signal 

( )x t  and converting it into a recognizable form. The most common approach to this 

 is to transform ( )x t  to a different domain, where it is easier to interpret the 

signal. The latter procedure should be performed using an information-preserving 

mapping. The most popular method to implement this, perhaps, is the Continuous-

time Fourier Transform (CFT), which is defined as follows: 

 

issue

( ) ( )exp( 2 )X f x t j ftπ
+∞

−∞

= −∫ dt   (2.1) 

 

and with its inverse transform:  

 

( ) ( ) exp( 2 )x t X f j ftπ
+∞

−∞

= ∫ dt  ,  (2.2) 

 

where  is referred to as a spectral representation of the signal  and ( )X f ( )x t f  

represents frequency, which is the new domain. 

 

The CFT reveals how the energy in the signal  is distributed with respect to the 

is t

( )x t

frequency. The main limitation of the CFT hat the values of the computed 

coefficients are affected by all the values of ( )x t  from t = −∞  to +∞ . Therefore, any 

particular feature in ( )X f  cannot be linked with a specific time region of ( )x t . This 

is mentioned as lack e resolution (See Appendix) and it means that although we of tim
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might be able to determine all the frequencies present in a signal, we do not know 

when they are present. 

 

In many cases, the CFT is the most useful representation, especially when  does 

not involve any special time variations. However, for many signals, the nature of  

varies with time. Consequently, in order to analyze this type of signals, a spectral 

representation that includes some explicit dependence on time is needed. This has led 

to the introduction of the Short-Time Fourier Transform [7,8]. 

( )x t

( )x t

 

 

22..11..22  SShhoorrtt--ttiimmee  FFoouurriieerr  ttrraannssffoorrmm  ((SSTTFFTT))  
 

The Short-Time Fourier Transform performs a spectral transformation of  that 

informs us not only about which frequencies are present in the signal, but also when a 

particular frequency was present. In this approach, the frequency variable 

( )x t

f  defined 

by CFT is retained and a new one, the time variable τ , is introduced. The latter 

variable ensures that only values of  that are close to ( )x t τ  would be able to 

influence the transform coefficients. This is achieved by multiplying the original 

signal by window functions localized at τ  . Thus, the two-variable STFT of signal 

 is defined as: ( )x t

 

*( , ) ( ) ( ) exp( 2 )X f x t g t j ftτ τ
+∞

−∞

= − −∫ dtπ

)

 ,  (2.3) 

 

where *(g t τ−  represents the complex conjugate of a window function that is 

localized around time t τ=  . If the window function is real then *( ) ( )g t g tτ τ− = −  . 

A typical choice for the window function is the Gaussian 

 since it falls away quickly to zero for times others than 2( ) exp( ( ) / 2)g t tτ β τ− = − −

t τ= . For this choice, the complex conjugate notation is removed from equation (2.3) 

since it is real. Apparently, if ( ) 1g t =  the STFT in equation (2.3) reduces to the CFT 

given in equation (2.1). 

 

 19



 

Therefore, the primary purpose of the window in the STFT is to limit the extend of 

the signal to be transformed so that the spectral characteristics are reasonably 

stationary over the duration of the window. However, at the calculation of STFT any 

sharp change of the analyzed waveform  around time t( )x t τ=  will not appear in the 

STFT solely at τ  , but it will rather  spread over a region of time in the vicinity of 

t τ=  . The range of spread depends on the length of the applied window. 

 

Apparently, as discussed previously, the more rapidly the signal characteristics alter, 

the shorter the window should be. Nevertheless, as the length of the window 

diminishes, frequency resolution (See Appendix) decreases. On the other hand, as the 

window becomes shorter, the ability to distinguish resolvable transitions with time 

increases. Conclusively, the choice of the window length becomes a trade-off between 

time resolution and frequency resolution. 

 

The time and frequency resolution cannot be arbitrarily small since their product 

 (known as the time-bandwidth product) is lower bounded. t f∆ ∆

 

t f C∆ ∆ ≥      (2.4) 

 

where  and t∆ f∆  is the length of the window in time and frequency domain, 

respectively, and C  is a nonzero constant which depends on the definition of the 

width of a selected function. Equation (2.4) is referred to as the uncertainty principle 

(or Heisenberg inequality), which states that the time resolution can only be improved 

at the expense of frequency resolution (or vice versa). 

 

Once the window function  is chosen the time and frequency resolutions of the 

STFT are fixed for all values of  and 

( )g t

t f  since the same window is utilized 

throughout the transform. This characteristic of the STFT is shown schematically in 

figure 2.1. The tiles of the fτ −  plane represent regions where the basis functions 
*( ) exp( 2i )jg j fτ τ π− − τ  are concentrated. These regions are illustrated as rectangles 

of fixed area and dimensions for all values of iτ  and jf  [7-9]. 
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Figure 2.1: Time & frequency resolutions of STFT 

 

 

2..22  WWaavveelleett  ttrraannssffoorrmm 

 

22..22..11  WWaavveelleettss  oovveerrvviieeww  

 
Wavelets have increasingly being used over the past decade in many new fields 

including signal processing such as image compression, turbulence, human vision, 

radar and earthquake prediction. Wavelets were first developed independently in 

different scientific fields like mathematics, quantum physics, electrical engineering 

and seismic geology, but more recently an interchange between those areas has led 

wavelet applications into today’s form. Nowadays, the applications of the wavelet 

theory in signal processing extend from speech analysis, medical imaging, theoretical 

mathematics and physics to data compression, communications, oil exploration and 

seismic sensing as well as sonar, weather forecasting, stock market modeling.  

 

The main reason for wavelets almost complete dominance in the signal processing 

range from the time they first appear is their advantageous behavior over the well-

known Fourier methods. This behavior mainly concerns the good time resolution at 

high frequencies and good frequency resolution at low frequencies. It also concerns 

the variety of wavelet functions are currently available hence the most appropriate 

may be chosen for the signal under investigation (In contrast Fourier analysis is 

restricted to one shape: the sinusoid). In addition, this superiority is especially obvious 

when the processing signal involves discontinuities and sharp spikes, that is when 
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having both short-term and relatively long-term characteristics. In order to understand 

wavelets together with their transform deeply it is better to take a closer look at what 

exactly wavelets are. 

 

Wavelets are “little waves” as their name reveals. “Waves” because they have an 

oscillatory behavior and “little” because their amplitude quickly decays to zero in 

both directions (positive and negative). Figure 2.2, for example, shows a classical 

wavelet known as the “Morlet” wavelet in time and frequency domain. 

 

The Morlet wavelet consists of a plane wave modulated by a Gaussian. The Morlet’s 

wavelet function is given by:  

 
2

01/ 4 / 2
0 ( ) ie eω η ηψ η π − −=  ,   (2.5) 

 

where 0ω  is the center frequency. In this project, this parameter is taken to be 0 6ω =  
. Usually the 0ω  is chosen such that the second maximum of the real part of the 

wavelet function 0{ ( )}ψ ηℜ  , 0η >  , is half the first one. 

 

A candidate function to be a wavelet should satisfy the admissibility condition: 

 
2( )
d

ω
ω

ω
Ψ

< +∞∫  ,    (2.6) 

 

where ( )ωΨ  stands for the Fourier transform of ( )tψ . This condition implies that 

( )ωΨ  vanishes at the zero frequency and so wavelets must have a band-pass like 

spectrum. This also means that the average value of the wavelet in the time domain 

must be zero and therefore it must be oscillatory. Therefore, a candidate function 

should satisfy both essential prerequisites of having zero mean and of being localized 

in both time and frequency space. The Morlet wavelet does not satisfy exactly the 

admissibility condition since 0( ) | 0ωω =Ψ ≠  (equation (2.6)). However, its value at 

zero frequency is negligible and it does not present a problem in practice. In addition 

to this type of wavelet, which is the main complex wavelet used in this study, there 

 22



 

are many other wavelets such as the “Paul wavelet”, which is also complex and the 

“DOG wavelets” (derivatives of a Gaussian), which are real [10-13]. 
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Figure 2.2: Morlet wavelet with 0 6ω =  in time (left) and frequency (right) domain 

 (Real part: solid line, Imaginary part: Dashed line) 

 

 

22..22..22  WWaavveelleett  tthheeoorryy  

 
Wavelet theory is a mathematical tool that can represent objects, actions or operations 

and can be applied almost anywhere. Like most tools, its primary purpose is to 

improve the efficiency of the analysis. Generally, the wavelet theory representations 

should not be blindly forced upon any application. This is because, although wavelet 

theory has some advantages over other traditional methods (i.e. Fourier) as mentioned 

previously, it should only be employed where its implementation could prove out to 

be beneficial.  

 

Wavelet theory involves two primary operations: the scaling and the translation. 

Performing a combination of these two operations on a mother wavelet creates a set of 

scaled and translated version of this mother wavelet function, the wavelet set. When 

wavelet theory cuts up data into many interrelated components and these components 

are scaled and translated versions of a mother wavelet, then this breaking down 

process is called wavelet transform. The wavelet transform is generally an analysis 

filter. It examines or operates on the decomposed pieces instead of the original data 

set. The inverse process of putting these components back together in order to 
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reconstruct the original data is known as the inverse wavelet transform. The 

reconstruction formula is a synthesis filter. In this instant, a justifiable question could 

be why break a signal apart and then put it back together. The answer is because 

through the analysis process significant insights, gains and efficiencies can be 

obtained by operating on the separate pieces rather than the original signal. 

Nonetheless, some loss on information may occur during the inverse procedure of 

reconstruction of the initial data set. Usually, there is a trade off between the gains in 

efficiencies and the added distortion together with other losses. Each application has, 

of course, its own set of tradeoffs. 

 

Overall, there are four primary wavelet transforms: The continuous wavelet transform 

(CWT) and the wavelet series (WS), the discrete time wavelet transform (DTWT) and 

the discrete wavelet transform (DWT). In the CWT and the WS the independent 

variable is continuous whereas in the DTWT and the DWT the independent variable 

is discrete. In the wavelet series, which is simply a sampled version of the CWT, and 

the DWT the transform domain parameters (the scale and the translation variables) are 

both discrete. In the DTWT, which corresponds to the CWT of a sampled sequence 

(n )x x nT=  , assuming sampling period to be unity leads us to consider only integer 

time shifts in the analysis, whereas the scale variable can vary continuously.  

 

Depending on the nature of the analyzed signal (e.g. continuous-time or discrete-time 

signal) and the implementation method (e.g. by a computer) the choices of the 

available wavelet transforms are usually reduced to only two. For example if the 

analyzed signal is a sequence of the form ( )nx x nT=  then our choices is either the 

DTWT or the DWT. Generally, the continuous wavelet transform is best suited for 

signal analysis. However, in the case where computer implementation is required the 

continuous wavelet transform is performed as described in the following section. On 

the other hand, its semi-discrete version (wavelet series) and its fully discrete one 

(discrete wavelet transform) have been used for signal coding applications, including 

image compression and various tasks in computer vision [11,13]. 
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22..22..33  CCoonnttiinnuuoouuss  wwaavveelleett  ttrraannssffoorrmm  ((CCWWTT))  
 

Assume the case of a signal with a mixture of short-lived high-frequency components 

that are closely spaced in time together with long-duration low-frequency components 

that are closely spaced in frequency. This type of signal does not comprise an 

exception but rather the majority of analysed signals. A suitable transform in this case 

would have sufficient time resolution to distinguish the brief high-frequency events, 

and at the same time, enough frequency resolution to separate the closely spaced low-

frequency components. As mentioned above these two aims are incompatible with the 

STFT since the time and frequency resolutions are both fixed. 

 

One possible solution to this problem is the use of a representation that has variable 

time-frequency resolution over the ( , )fτ  plane. This representation should be chosen 

in such a way that it provides good time resolution at high frequencies and good 

frequency resolution at low frequencies. One such representation is the continuous 

wavelets transform (CWT), which is expressed as: 

 

*1( , ) ( ) ( )
| |

tX s x t dt
ss
ττ ψ

+∞

−∞

−
= ∫    (2.7) 

 

or as a convolution in the time domain: 

 

1( , ) ( )* ( )
| |

X s x
ss
ττ τ ψ −⎡ ⎤= ⎢ ⎥⎣ ⎦

 ,   (2.8) 

 

where  and t τ  are time variables,  is the time waveform being analyzed, ( )x t ( )tψ  is 

the mother wavelet function, and s  is the variable known as scale. In equation (2.8) 

the sign * denotes the convolution operation. The term 1
| |s

 performs energy 

normalization, thus it keeps the energy of the scaled mother wavelet equal to the 

energy of the original mother wavelet.   
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The parameter scale s  is similar to the scale used in maps. As in the case of maps, 

high scales correspond to a non-detailed global view of the signal and low scales 

correspond to a detailed view. Similarly, in terms of frequency, low frequencies (high 

scales) correspond to a global information of a signal that usually spans the entire 

signal, whereas high frequencies (low scales) correspond to a detailed information of 

a hidden pattern in the signal that usually lasts a relatively short time. Scaling, as a 

mathematical operation, either dilates or compresses a signal. Larger scales 

correspond to dilated (or stretched out) signals and small scales correspond to 

compressed signals. Figure 2.3 illustrates the scaling operation when applied to the 

Morlet mother wavelet with 0 6ω =  . 

 

The CWT is strictly defined as a time-scale representation. However, if often proves 

easier to interpret CWTs in terms of time and frequency rather than time and scale. 

Therefore, for a given wavelet the mapping /f K s=  is possible to be used allowing 

the CWT of a signal to be interpreted in terms of frequency rather than scale. In order 

to examine the above relationship the method of [14] should be followed which is 

described in the implementation section. 

 

For a better understanding of the differences between the STFT and the CWT let’s 

consider equation (2.8), which is the formulation of the CWT as a convolution in the 

time domain. As with the STFT, the value of  at ( )x t 0t τ=  is smeared over a time 

equal to the width of the function ( / )sψ τ  . The width of a function can be defined in 

many ways; in this project, the width of a wavelet function is defined as the e-folding 

time of the wavelet amplitude (See Appendix). For the STFT case recall that the range 

of spread depends on the length of the applied window, which is fixed upon the 

selection of the window. In the CWT case, however, the width of ( / )sψ τ t fixed. 

It depends on the value of scale 

 is no

s  . For example, (2 )tψ  has half the width of ( )tψ  , 

 ( / 2)twhile ψ  has twice the width of ( )tψ  (Figure 2.3). The larger the value of s  , 

e wider the function ( /th )sψ τ d be. Since time resolution depends on the width 

of this function, the following situation obtains: as 

woul

s  decreases, ( / )sψ τ  becomes 

narrower in time so that the time resolution improves. Conversely, as s  increases, th  e
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time resolution is degraded. At the same time, the frequency resolution is enhanced 

because the quantity t f∆ ∆  must b intained constant. e ma

j

 

Figure 2.4 shows the tiling of the time-frequency (time-scale) plane by CWT with 

rectangles centered at ( , )i fτ  . These rectangles represent regions where the functions 

*([ ] / )i jsψ τ τ−  are concentrated, with /j jf K s=  . As one can notice, the rectangles 

are of fixed area but variable shape. More analytically, at low frequencies (large 

scales) the rectangles are broad in time but narrow in frequency, since then the time 

resolution is poor and the frequency resolution is good. The converse is true at high 

frequencies (small scales) [8,11-14]. 
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Figure 2.3: The scaling operation. i) Morlet mother wavelet with 0 6ω =  (scale=1), 

ii) Morlet wavelet with 0 6ω =  (scale=0.5), iii) Morlet wavelet with 0 6ω =  (scale=2) 

 

 

 
 

Figure 2.4: Time & frequency resolutions of CWT 

(the ratio used is illustrative) 
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22..22..44  CCWWTT  vveerrssuuss  SSTTFFTT  

 

As pointed out in the preceding paragraphs, a very basic distinction between wavelet 

transforms and Fourier methods, like STFT, is that while the basic functions of the 

latter consist of a function of constant width, the former has a frequency-dependent 

(actually scale-dependent) width. In other words, it is narrow at high frequencies and 

broad at low frequencies. This gives to the wavelet transform the ability to “zoom-in” 

on transitory phenomena, which usually are short-lived components of a signal. 

Another key distinction is that a variety of wavelet functions is currently available 

hence the most appropriate may be chosen for the signal under investigation. 

 

It is apparent from the foregoing discussion that the CWT and the STFT have 

different frequency - and time - resolution properties. It is these properties, and their 

relationship to the characteristics of the signal itself, that determine the relative 

advantages of the two techniques for analysing a given signal. Consequently, the 

CWT is a preferred tool when the analysis requires good frequency resolution at low 

frequencies together with good time resolution for impulsive (high-frequency) events. 

The STFT is appropriate when the required frequency resolution (and time resolution) 

remains fixed across the time-frequency plane. 

 

 

22..22..55  DDiissccrreettee  wwaavveelleett  ttrraannssffoorrmm  ((DDWWTT))  
 

As a transform of its own, the discrete wavelet transform (DWT) is mainly applicable 

in the image compression (in a two-dimensional form). The DWT is similar to WS 

but applies to discrete-time signals, thus both its independent variable and its 

transform variables are discrete. This section only addresses the special case of 

discrete wavelet transforms, which only allow scales that are powers of two and 

integer translations. 

 

In this DWT, filters of different cutoff frequencies are used to analyze the sequence at 

different scales. The decomposition procedure in the DWT is simply obtained by 

successive filtering of the time domain sequence. The original sequence nx  is first 
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passed through a halfband lowpass filter  and a halfband highpass filter . 

After the filtering, the sequence is subsampled by two, simply by discarding every 

other sample, because half of the samples can be eliminated according to the 

Nyquist’s rule. The output of the highpass filter followed by subsampling constitutes 

one level of DWT coefficients. This comprises one level of decomposition. The 

filtering operation halves the width of the lowband (or the highband), thus it doubles 

the frequency resolution (after the filtering operation the frequency band of the 

sequence spans only half the previous frequency band). The subsampling by two 

operation doubles the scale but also halves the time resolution since only half the 

number of samples now characterizes the entire sequence. 

( )g n ( )h n

 

The above procedure is repeated for further decomposition until two samples are left. 

Therefore, the output of each highpass filter followed by subsampling constitutes the 

corresponding level of DWT coefficients, while the subsampled output of the lowpass 

filter is passed through the lowpass and highpass filters for further decomposition. At 

each level, the filtering and subsampling will result in half the number of samples 

(and hence half the time resolution) and half the frequency band spanned (and hence 

double the frequency resolution). Figure 2.5 illustrates a basic computational cell of 

the DWT whereas figure 2.6 shows the overall organization of the DWT. 

 

If the main information of the initial signal lies within the high frequencies, as 

happens most often, the time localization of these frequencies will be more precise, 

since they are characterized by more number of samples. If the main information lies 

only at very low frequencies, the time localization will not be very precise, since few 

samples are used to express signal at these frequencies. This procedure in effect offers 

a good time resolution at high frequencies and good frequency resolution at low 

frequencies as it would be expected. 

 

The lowpass filters utilized in the DWT correspond to the scaling sequences, while 

the highpass filters are associated with the wavelet sequences. These filters should 

meet some specific constraints in order to accomplish perfect reconstruction of the 

initial sequence. The easiest case of achieving a perfect reconstruction appears when 
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the analysis and synthesis filters are identical (except for a time reversal). In this case, 

the impulse responses of the lowpass and highpass filters are related by: 

 

( 1 ) ( 1) (nh L n g n− − = − )    (2.9) 

 

where  and  are the lowpass and highpass filters respectively and  is the 

filter length in number of points, which has to be even. 

( )g n ( )h n L

 

The two filtering and subsampling operations can be expressed as: 

 

0 ( ) ( ) ( 2 )
n

y k x n g n k= − +∑    (2.10) 

1( ) ( ) ( 2 )
n

y k x n h n k= − +∑    (2.11) 

 

where  and  are the subsampled by two outputs of the lowpass and 

highpass filters respectively. 

0 ( )y k 1( )y k

 

Apart from these filters, it is possible to find others that provide perfect reconstruction 

using other constraints concerning the analysis and synthesis filters. The most famous 

are the ones developed by Daubechies, the Daubechies’ wavelets [8,11,13,15]. 

 

 
 

Figure 2.5: Basic computational cell of the DWT 
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Figure 2.6: DWT structure 

 

 

22..22..66  CCWWTT  vveerrssuuss  DDWWTT    
 

As pointed out in previous sections, the CWT is computed by changing the scale of 

the wavelet function, shifting the wavelet function in time, multiplying by the signal, 

and integrating over all times. In the DWT case, filters of different cutoff frequencies 

are used to analyze the sequence at different scales. The sequence is passed through a 

series of highpass filters to analyze the high frequencies, and it is passed through a 

series of lowpass filters to analyze the low frequencies. The resolution of the sequence 

is changed by the filtering operations, while the scale is changed by upsampling and 

subsampling operations. 

 

From the above, one can extract the following conclusions. The CWT together with 

its sampled version, the WS, provide highly redundant information as far as the 

reconstruction of the signal is concerned. This redundancy also requires a significant 

amount of computation time and resources. On the other hand, the CWT is often 

easier to interpret since its redundancy tends to reinforce the traits and makes all 

information more visible. This is especially true of very subtle information. 

Consequently, the CWT gains in "readability" and in ease of interpretation what it 

loses in terms of computational time and space saving. 
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However, the DWT is sufficient for exact reconstruction of the initial signal, if some 

special conditions hold, as discussed in the above paragraphs. Moreover, it ensures 

space-saving coding and it uses less computational time and resources when 

compared to those needed by CWT. Conclusively, the CWT is best suited to signal 

analysis whereas the DWT is, for example, more suitable for signal coding 

applications. 
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33..  IIMMPPLLEEMMEENNTTAATTIIOONN  

 

33..11  DDaattaa  aaccqquuiissiittiioonn  
 

The data set used in this project is a combination of seven different databases 

organized by PhysioBank6. PhysioBank is a large archive of well-characterized digital 

recordings of physiologic signals and related data for use by the biomedical research 

community and is available online. The data analysed in this study are part of the 

following databases: The MIT-BIH Normal Sinus Rhythm Database, the MIMIC 

Database, the MIT-BIH Arrhythmia Database, the MIT-BIH Atrial Fibrillation 

Database, the AF Termination Challenge Database, the MIT-BIH Malignant 

Ventricular Arrhythmia Database and the Creighton University Ventricular 

Tachyarrhythmia Database. 

 

Each database includes excerpts of digitized long-term recordings of human subjects. 

The leads used are commonly two or more and the sampling frequency of each 

database is illustrated in table 3.1. In this case only ten seconds of a lead of each 

recording were analysed. Some of these recordings were obtained from subjects who 

experienced episodes of atrial fibrillation or ventricular tachyarrhythmia. Other 

subjects presented atrial or ventricular (or both) premature contractions during the 

ECG recording. Some other exhibited sinus tachycardia, while few subjects had no 

significant arrhythmias or were normal.  

 

In order to have the same desirable time duration (of ten seconds) for the analysis all 

the recordings acquired in a renormalized form. Thus, the number of samples for each 

signal was different and it was dependent on its sampling frequency. Most of the 

available recordings were annotated. The residuals were classified by a cardiologist 

thus all the signal archives used were initially diagnosed. Based on the characteristics 

of each recording the data series are organized into various categories. Table 3.1 

summarizes the number of signals used from each database, its characteristics and the 

sampling frequency of each database. 
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Database Signals Characteristics 
Sampling 

Rate 

17 NSR MIT-BIH Normal Sinus 

Rhythm 1 Sinus Tachycardia 
128 

7 NSR 
MIMIC 

4 Sinus Tachycardia 
125 

MIT-BIH Arrhythmia 18 Premature Contractions 360 

MIT-BIH Atrial 

Fibrillation 
10 Atrial Fibrillation 250 

AF Termination 

Challenge 
30 Atrial Fibrillation 128 

MIT-BIH Malignant 

Ventricular Arrhythmia 
29 Ventricular Tachyarrhythmias 250 

Creighton University 

Ventricular 

Tachyarrhythmia 

33 Ventricular Tachyarrhythmias 250 

 

Table 3.1: Signals and its characteristics 

 

 

33..22  DDaattaa  aannaallyyssiiss  

 

33..22..11  PPrree--pprroocceessssiinngg  

  

Firstly, the initial sequence nx  was normalized by its standard deviation. This was not 

necessary, but makes it easier to compare between different wavelet transform results. 

One could instead normalize the wavelet transform but it is more efficient to 

normalize the time series since this is just an one-dimensional array [12]. 
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33..22..22  WWaavveelleett  ttrraannssffoorrmm  ((WWTT))  
 

Every time series nx  with  belonging to the same database has the same 

time spacing 

0... 1n N= −

tδ , which is the inverse of sampling rate, and thus the same length . 

As it is well-known, the continuous wavelet transform of a discrete sequence 

N

nx  

(DTWT) is defined as the convolution of nx  with a scaled and translated version of a 

given mother wavelet 0 ( )ψ η  as follows: 

 
1

*
'

' 0

( ' )( )
N

n n
n

n n tW s x
s
δψ

−

=

−⎡ ⎤= ⎢ ⎥⎣ ⎦
∑  ,  (3.1) 

 

where superscript “*” denotes a complex conjugate. The scaled and shifted version of 

the mother wavelet was normalized to have a unit energy at each scale (that is why the 

subscript 0 on ψ  is dropped). The normalization process was performed to ensure that 

the wavelet transforms at each scale s  were directly comparable to each other and to 

the transforms of a different time series. 

 

Equation 3.1 was not used in its initial form for the computation of the wavelet 

transform, as it was considerably faster to perform the calculations in Fourier space. 

To approximate the CWT, the convolution in equation 3.1 was done  times 

(arbitrary choice) for each scale, where  was the number of points in the time 

series. These  convolutions were performed simultaneously in Fourier space using 

a discrete Fourier transform (DFT). The DFT of 

N

N

N

nx  is given by: 

 
1

2 /

0

1ˆ
N

ikn N
k n

n

x x e
N

π
−

−

=

= ∑ ,    (3.2) 

 

where  is the frequency index. Therefore, according to the convolution 

theorem, the wavelet transform is the inverse of the product:  

0... 1k N= −

 
1

*

0

ˆˆ( ) ( )
N

i n t
n k k

k

W s x s e κω δψ ω
−

=

=∑  ,                        (3.3)  
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where the angular frequency kω  is defined as: 

 

2 ,
2

2 ,
2

k

k Nk
N t

k Nk
N t

π
δω
π
δ

⎧ ≤⎪⎪= ⎨
⎪− >
⎪⎩

    (3.4)  

 

Consequently using equation 3.2 and a standard Fourier transform routine, the DTWT 

can be calculated for a given scale s  at all  simultaneously and efficiently. n

 

In our implementation the Morlet wavelet was chosen with 0 6ω =  to perform the 

transform while the scales s  were chosen arbitrarily to be fractional powers of two: 

 

0 2 j j
js s δ= , 0,1,...,j J=    (3.5) 

1
2log ( / )0J j N tδ δ−= s ,   (3.6) 

 

where  is the smallest resolvable scale,  determines the largest scale and 0s J jδ  is the 

spacing between the discrete scales. The  was chosen so that the equivalent Fourier 

period is approximately

0s

2 tδ , since the smallest scale that can be resolved is 

approximately equal to the Nyquist frequency. The choice of a sufficiently small jδ  

depends on the width of the wavelet function. For the Morlet wavelet, for example, a 

jδ  of about 0.5 is the largest value that still gives adequate sampling in scale whereas 

for other wavelet functions a larger value can be used. Smaller values of jδ  give a 

finer resolution. In this study, the value of 0.25 was used for jδ  and it appeared 

adequate to provide sufficient information. 

 

Before we proceed to the next implementation steps of the data processing is 

necessary to mention some influence issues first. As we are dealing with finite-length 

time series errors will occur at the beginning and at the end of the wavelet power 

spectrum. This effect is caused by the assumption of the Fourier transform in equation 

33 that the data is cyclic. To overcome this the time series was padded with sufficient 
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zeroes to bring the total length  up to the next higher power of two, thus limiting 

the edge effects and simultaneously speeding up the Fourier transform. However, at 

the same time the process of padding with zeroes introduces discontinuities at the 

end-points and, as the scale becomes larger, the amplitude decreases near the edges as 

more zeroes enter the analysis. The cone of influence (COI) is the region of the 

wavelet power spectrum, 

N

2( )nW s  , in which edge effects become important. The COI 

is defined as the e-folding time for the autocorrelation of wavelet power at each scale. 

For minimal edge effects the e-folding time was chosen so that the wavelet power for 

a discontinuity at the edge drops by a factor 2e−  . Note that the COI does not exist for 

cyclic series hence there is no need to pad this kind of data with zeroes. 

 

Another arising issue is the interconnection between the wavelet scale and the Fourier 

frequency. The relation between them is not necessarily straightforward. Some 

wavelets, for example, are highly irregular without any dominant periodic 

components. In such cases, it is meaningless to try finding any equation that connects 

them. However, in the case of the Morlet wavelet it seems more reasonable. 

 

As examination of the above relationship is required the method of [3] should be 

followed. Therefore, the equivalent Fourier period with respect to the wavelet scale 

can be analytically derived for a particular wavelet function after following the next 

steps: 

 

1) Choose the desirable wavelet function, 

2) Perform the wavelet transform of a cosine wave of a known frequency 

using equation 3.3 and the chosen wavelet function, 

3) Compute the wavelet power spectrum, 

4) Find the scale s  at which the wavelet power spectrum reaches its 

maximum. 

 

The resulting equation is a linear relation between wavelet scale and Fourier 

wavelength λ  as given by: 
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2 1/ 2

0 0(2 )
4

s ω ω λ
π

⎡ ⎤+ +
= ⎢
⎣ ⎦

⎥    (3.7) 

 

For the Morlet wavelet with 0 6ω =  the above process gave a value of  

 

1.03sλ =               (3.8) 

 

for the equivalent Fourier period. This last equation indicates that for the Morlet 

wavelet the wavelet scale is almost equal to the Fourier period. An analogous 

procedure could be followed in the discrete wavelet transform case [12,14]. 

 

The software that calculates the continuous wavelet transform of a discrete sequence 

(DTWT) was based on routines originally came from [12] and were properly 

modified. 

 

 

33..22..33  PPoosstt--pprroocceessssiinngg  

  
33..22..33..11  WWaavveelleett  ppoowweerr  ssppeeccttrruumm  ((WWPPSS))  

 

After the computation of the DTWT using the above described routines the amplitude 

of the transform ( )nW s  was squared in order to produce the wavelet power spectrum 

of the initial data series 2( )nW s  . Basically, the wavelet power spectrum shows the 

distribution of the power of the signal in the time-scale (or time-frequency) plane.  

 

Figure 3.1 illustrates a normal ten-second ECG signal (mimicdb439 (NSR).dat) and 

figure 3.2 its wavelet power spectrum (WPS). In the WPS the horizontal axis 

represents time while the vertical axis represents the equivalent Fourier frequency. 

The different colours represent the different levels of wavelet power. Therefore, the 

brown and the red regions refer to high power while the cyan and the blue ones refer 

to lower power. The white curved line appearing at the bottom of the WPS determines 
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the boundaries of the COI region, thus underneath this line the edge effects become 

important [12]. 

 

 
Figure 3.1: A normal ECG signal 

 

 
Figure 3.2: Wavelet Power Spectrum of the normal ECG signal of figure 3.1 

 

  

33..22..33..22  GGlloobbaall  wwaavveelleett  ssppeeccttrruumm  ((GGWWSS)) 

 

A vertical slice through a wavelet plot is a measure of the local spectrum. 

Accordingly, a time-average over the whole wavelet power spectrum produces the 

global wavelet spectrum (GWS) which is given by: 

 
1

22

0

1( ) ( )
N

n
n

W s W s
N

−

=

= ∑    (3.9) 

 

Consequently, after the calculation of the wavelet power spectrum the computation of 

the GWS was performed. Figure 3.3 shows the global wavelet spectrum of the same 

transformed signal (mimicdb439 (NSR).dat) [12]. 
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Figure 3.3: Global Wavelet Spectrum of the normal ECG signal of figure 3.1 

 

 

33..22..33..33  SSccaallee--aavveerraaggeedd  wwaavveelleett  ppoowweerr  ssppeeccttrruumm  ((SSAAWWPPSS))  

  

Generally, the scale-averaged wavelet power spectrum (SAWPS) examines the 

fluctuations in power over a range of scales. It is defined as the weighted sum of the 

wavelet power spectrum over scales  to  : 1s 2s
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where the range [ ] determines the band of scales in which equation 3.10 is 

applied. Therefore, specific interesting bands of scales can be isolated within the WPS 

and their power fluctuations can be studied.   

1s 2s

 

The factor Cδ  comes from the reconstruction of a δ  function from its wavelet 

transform  using the wavelet function ( )W sδ 0 ( )ψ η  : 
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where { }( )jW sδℜ  represents the real part of the wavelet transform of the delta 

function. The Cδ  is scale independent and is a constant for each wavelet function. For 

the Morlet wavelet with 0 6ω =  it is equal to 0.776. 

 

Figure 3.4 illustrates the scale-averaged wavelet power spectrum over a band of 

scales of the normal ECG signal of figure 3.1. It can be noticed that every power peak 

shown at the SAWPS corresponds to a peak of the ECG signal. This is an intrinsic 

consequence as this spectrum represents the power fluctuations with respect to time 

duration [12]. 

 

 
Figure 3.4: The scale-averaged wavelet power over a band of scales  

of the normal ECG signal of figure 3.1 

  

  

33..22..33..44  GGWWSS  aannaallyyssiiss 

 

It was noticed that the GWS was a constitute of several power peaks. These maxima 

determine some frequency bands with close power values. In order to distinguish 

these bands the next procedure must be followed, which is also illustrated graphically 

in figure 3.5. The resultants frequency bands helped in the estimation of the variables 

discussed in the following section. 

 

1. Compute the global wavelet spectrum (GWS) 

 

2. Reject some low frequencies in the GWS that are below a user defined 

threshold. This is performed due to the COI existence (here taken to be equal 

to one) 
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3. Find all the local maxima within the GWS 

 

4. For each computed local maxima 

a. Find the local minimum at the left 

b. Find the local minimum at the right 

c. Keep the local minimum with the largest power amplitude as the first 

boundary of the band 

d. Find the second boundary that is adjacent on the other side of the 

maximum and has the same power with the first one 

e. These two boundaries determine one band 

 

5. Repeat the above procedure for all local maxima in order to calculate all the 

frequency bands within the GWS 

 

 
 

Figure 3.5: Flow diagram of the computation of the frequency bands within GWS 
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33..22..33..55  VVTT  ddeetteeccttiioonn  

  

The terminology “ventricular tachyarrhythmias” usually includes two main 

subcategories. These are the monomorphic ventricular tachycardia (figure 1.13) and 

the ventricular fibrillation (figure 1.14). Generally, it was observed that in ventricular 

tachyarrhythmias the GWS had a special characteristic in the frequency domain that 

was absent in atrial fibrillation or other types of arrhythmia. This characteristic was 

presented as a thin high power band in the WPS and it was usually obvious within the 

interval 2.5 - 5.5 Hz. As a result, this particular feature was reflected a dominant 

narrow but with high power frequency band in the GWS. The other frequency bands 

within the GWS were usually wider and with much lower power. This specific 

frequency band was defined as “band of interest”. Figure 3.6 shows the global 

wavelet spectrum of an ECG signal recorded during a ventricular tachycardia episode 

(vfdb423 (VT).dat). Compare this GWS with the one illustrated in figure 3.3. The 

latter even if it has a high power frequency band it is not narrow and it also has other 

two bands with not negligible power. Remember that at frequencies below 

approximately one Hertz the wavelet transform was highly affected by side effects so 

these values were discarded. 

 

In order to distinguish the ECG data series comprising ventricular tachyarrhythmia 

episodes from the other characterized with different arrhythmias four different 

parameters were introduced. The first one, “potential_vt”, regards the presence (or 

not) of the peak of the highest power frequency band within the interval [2.5-5.5] 

(Hz). If the peak of the highest power frequency band concerns amongst the latter 

boundaries then the variable is set equal to “yes”. This denotes that the possibility of 

the existence of a ventricular tachyarrhythmia episode is high. The second parameter 

that was checked is called “peak_diff”. This variable is equal to the difference 

between the power amplitudes of the two maximum peaks of the limited GWS. It 

indicates how far away from the “band of interest” is the second higher power band. 

The third parameter refers to the width of the “band of interest” and is called the 

“boi_width”. This width is defined in this case as an analogous of the e-folding time 

of an oscillation thus it is equal to the time needed for the maximum of the “band of 

interest” to decrease down to the 1/e of its value. The last variable is not a primary 

variable. However it is very helpful as it provides the right classification of some 
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ambiguous cases. Remember the fact that ventricular tachyarrhythmias introduce high 

power peak within the GWS. This characteristic was measured with the help of 

“power_fr”, which represents the power fraction of the “band of interest” within the 

GWS. 

 

Depending on the values of the above parameters it was possible to distinguish 

between the ECG data series with ventricular tachyarrhythmia. This classification 

process was performed by following the decision flowchart, which is analytically 

described in figure 3.7. A more concise version of this classification algorithm 

follows. Thus: 

 

 If the “potential_vt” is false, then the algorithm seeks for missed VT 

detections concerning high power bands outside the predefined range [2.5-5.5 

Hz] . This is performed by evaluating both “peak_diff” and “boi_width” 

towards some predefined thresholds. 

 

If the “potential_vt” is true, then the rest variables are assessed starting from 

“peak_diff”. In the case of ambiguous situations (AS) the variables are 

evaluated hierarchically starting from “peak_diff”, continuing with 

“boi_width” and concluding with “power_fr”. For example, if “peak_diff” < 

‘7’ then the control is ended since the possibility of the existence of any VT is 

very small. On the other hand, if ‘7’ <= “peak_diff” < =‘15’ (AS) then the 

“boi_width” is assessed and if “boi_width” <= ‘1.2’ (AS) then the “power_fr” 

is evaluated and its value determines the final decision which is the existence 

or not of any VT. 

 

 
Figure 3.6: Global Wavelet Spectrum of a ventricular tachycardia ECG signal
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Figure 3.7: Decision flowchart for the detection of ventricular tachyarrhythmias
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 33..22..33..66  AAFF  ddeetteeccttiioonn  

  

The main characteristic of an atrial fibrillation ECG is the total disparity of the beat to 

beat intervals. On the other hand, a rhythmic ECG has all the peak to peak intervals 

similar to each other. For better comprehension of the specific property of an atrial 

fibrillation ECG compare figures 3.1 and 1.12. Consequently, it was possible to 

classify the data series with introduced episodes of atrial fibrillation from the 

fluctuations in R-R interval values. 

 

However, the computation of these intervals is not always a straightforward 

procedure. In many cases ordinary peak detection algorithms when applied to the 

original data set fail due to the complicated nature of the ECG signal. Moreover, 

depending on the lead used for data acquisition an ECG could comprise more than 

one close located peaks with similar amplitudes within one heart beat. Not to mention 

the possible addition of noise. Therefore a peak detection algorithm that is based on a 

threshold when applied directly to an ECG could easily be confusing. 

 

To overcome this, a peak detection algorithm was applied not directly to the initial 

ECG time series but rather on the scale-averaged wavelet power spectrum of it. The 

band of scales utilized in the computation of the SAWPS was the corresponding band 

of frequencies with one Hertz lower bound and upper bound the maximum frequency 

used in the transform. It is obvious that R-R interval estimation is more convenient 

when performed on this spectrum rather than on the original data set. Figure 3.8 

illustrates the SAWPS over the specified band of the atrial fibrillation ECG signal of 

figure 1.12. 

 

In the SAWPS the local maxima were first estimated. Thereafter, a threshold rejects 

those local peaks that are lower than that. The threshold selected in this case consisted 

of the sum of the mean value and the standard deviation of the scale-averaged wavelet 

power. This action was performed in order to discard some low power peaks that 

sometimes appear at the adjacency of the true power maxima. It is an effect of the 

coexistence of two high peaks within the same heart beat. Finally, the peak to peak 

intervals of the residual local maxima were estimated, while the first and the last of 

these intervals were rejected for discontinuity reasons at the edges of the data series. 
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Afterwards, a histogram of these beat to beat intervals was calculated. The bins 

utilized in the histogram computation had resolution equal to 0.05. The choice of the 

resolution has concluded from different implementations of various histograms (from 

rhythmic and atrial fibrillation ECG signals). These implementations have shown that 

it is a sufficient value. However, smaller values could also be used instead at the 

expense of a small increment in computational complexity. 

 

From the computed histogram two parameters were estimated in order to characterize 

the diversity of all intervals. The diversity refers not only to the quantity of the 

different values of R-R periods but also to the extent of this difference itself. The first 

variable is called “max_elem_percent” and it concerns the maximum amplitude of the 

histogram. More specifically, it expresses the percentage of the maximum number of 

similar intervals in respect to the number of all the calculated intervals. The second 

one, the “disperse_bins_percent”, represents the percentage of those periods which 

are far from the maximum amplitude of the histogram at distance larger than a 

selected threshold. This threshold was chosen to be equal to 0.1, which is twice as the 

precision of the bins used. 

 

Depending on the values of the above parameters it is possible to distinguish between 

the ECG data series with atrial fibrillation. This classification process was performed 

along with the premature beat contractions detection (which is described in the 

following section) in one unified algorithm. The flow chart of this algorithm is shown 

in figure 3.10. Figure 3.9 illustrates three histograms resulted from the analysis of a 

NSR, a PC and an AF ECG recording. The dispersion of the R-R intervals is 

characteristic for each signal category. 

 

 
Figure 3.8: The scale-averaged wavelet power over the specified band  

of the atrial fibrillation ECG signal of figure 1.12 
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i)  

 

 

ii)  

 

 

iii)  

 

Figure 3.9: The distribution of the R-R intervals of i) a NSR,  

ii) a PAC and iii) an AF signal 
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33..22..33..77  PPCC  ddeetteeccttiioonn 

  

The data series with introduced premature contractions (atrial or ventricular) had 

fewer similar R-R intervals comparable to those in rhythmic ECG signals. At the 

same time they also had fewer unequal R-R intervals than ECG experienced with 

atrial fibrillation. 

 

It was therefore obvious that time series with introduced ectopic beats constitute an 

intermediate situation between the rhythmic and the atrial fibrillation signals with 

regard to the heart rhythm. Therefore, following the same methodology described in 

the previous section the classification amongst the rhythmic ECG data series, atrial 

fibrillation episodes and ECG signals with the presence of premature beats was 

possible. As mentioned previously one unified algorithm was able to perform the 

above taxonomy. This procedure is illustrated in a flowchart in figure 3.10. 

 

 

 
 

Figure 3.10: Decision flowchart for the detection of atrial fibrillation,  

premature contractions and rhythmic signals 

 

 

 49



 

33..22..33..88  HHRR  eessttiimmaattiioonn  

  

As long as the ECG signal is free from ventricular tachyarrhythmia episodes the heart 

rate parameter in beats per minute (BPM) was calculated. The beats per minute could 

be estimated by the number of R-R intervals existing through the available length of 

the ECG recording in cases of unequal beat to beat intervals existence as mentioned in 

the Medical Background section. This method, of course, could also be applied to 

rhythmic ECG signals. Consequently, the already calculated peak to peak intervals are 

counted and then the resultant number was multiplied by six since the duration of 

each record analyzed in this case was equal to ten seconds. The outcome constituted 

the requested BPM parameter. 

 

Every ECG time series for which the BPM was calculated could be characterized by 

normal rate, bradycardia or tachycardia. This characterization was based upon the 

value of BPM. Therefore, when BPM was within the range [50-100] then the signals 

have normal heart rate. In cases where the heart rate was lower than 50 beats per 

minute bradycardia was diagnosed whereas when the heart rate was higher than 100 

beats per minute tachycardia was indicated. 

 

 

33..22..33..99  SSTT,,  SSBB  aanndd  NNSSRR  ddeetteeccttiioonn 

  

After the last classification of the ECG signal into the three categories (normal heart 

rate, bradycardia and tachycardia) according to the heart rate, the assessed heart 

rhythm parameter could be combined in order to expand the classification process 

further. Therefore, when the heart rhythm and the heart rate are normal then the 

normal sinus rhythm describes the ECG data series. Moreover, a combination of a 

reduced heart rate (<50 BPM) in a rhythmic ECG results in sinus bradycardia. On the 

other hand, an increased heart rate (>100 BPM) combined with rhythmic time series 

leads to the characterization of sinus tachycardia. 
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33..22..44  CCllaassssiiffiiccaattiioonn 

  
This section describes the overall classification process. This was initiated with the 

calculation of the different frequency bands within the GWS, which helped in the 

estimation of the VT parameters as outlined in section 3.2.3.4. Then, the classification 

procedure was mainly separated into two parts. At the first part, the ECG recording 

was checked for a potential ventricular tachyarrhythmia episode existence. The 

variables described at section 3.2.3.5 were estimated and the decision flowchart 

illustrated in figure 3.7 was performed. Therefore, if any ventricular tachyarrhythmia 

disturbance was traced the analysis stopped. 

 

On the contrary, if no ventricular tachyarrhythmia could be detected by the VT 

parameters the flow was shifted to the second part and the R-R intervals were 

estimated.  In the case when no peak to peak intervals were able to be computed then 

the control flow stops as VT is highly suspected. Otherwise the histogram of these 

peak to peak intervals was calculated. Therefore, the next parameters (AF parameters) 

- mentioned at section 3.2.3.6 - were calculated. Then, the second decision flowchart 

shown in figure 3.10 was followed in order to classify the ECG signals into three 

categories: (i) into those with atrial fibrillation, (ii) those with introduced premature 

contractions and (iii) those that were rhythmic. 

 

Afterwards, the heart rate was calculated. The value of the beats per minute 

determined bradycardia, tachycardia or normal heart rate ECG time series. In the 

special occasion where the analysed data was rhythmic then the characterization of 

the ECG signal was split into three new categories concerning sinus bradycardia, 

sinus tachycardia and normal sinus rhythm. All the classification procedure is 

presented in the following flow diagram as shown in figure 3.11. 

 

 51



 

 
 

Figure 3.11: Overall classification process of the ECG signals 

  

  

33..33  SSooffttwwaarree  pprreesseennttaattiioonn  
 

33..33..11  IInnppuutt  vvaarriiaabblleess  
 

The software utilized for the signal analysis was developed in MATLAB. The 

executable file was named “ecg_analysis.m”. Initially the program asks from the user 

to load an ECG time series to analyse. This is performed by the dialog window 

illustrated in figure 3.12. After loading the data the user should determine some 

parameters for the analysis. The first parameter concerns the location of the ECG data 

series within the “.dat” file. When more than one ECG recordings from different leads 

are available in the data file then this variable is used for choosing the preferred 

signal. For example, this parameter should be set equal to one when the data file 
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contains only the desirable signal. The second variable is the sampling frequency 

utilized during the discretization process. The third parameter is the frequency 

threshold used in the wavelet analysis in order to reject frequencies (scales) in which 

the influences are not negligible. The last two variables specify the band of interest. 

Remember that this band determines the region of GWS in which ventricular 

tachyarrhythmia characteristics are the mostly concentrated. The dialog window in 

figure 3.13 shows all the input parameters. 

 

 

 
 

Figure 3.12: Dialog window for loading the data series 

 

 

 
 

Figure 3.13: Dialog window for loading the input variables 
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33..33..22  PPrrooggrraamm  oouuttppuutt  
 

Five representative outputs, one of each ECG signal category (NSR, Sinus 

Tachycardia, Premature Contraction, Atrial Fibrillation and Ventricular 

Tachyarrhythmia), are illustrated in figures 3.14, 3.15, 3.16, 3.17 and 3.18 

respectively. 
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Figure 3.14: Output for a NSR ECG signal 
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Figure 3.15: Output for an ECG signal during Sinus Tachycardia 
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Figure 3.16: Output for an ECG signal with an introduced PAC 
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Figure 3.17: Output for an ECG signal during Atrial Fibrillation 
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Figure 3.18: Output for an ECG signal during Ventricular Tachyarrhythmia 
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44..  RREESSUULLTTSS  

 

44..11  PPaarraammeetteerrss  ddiissttrriibbuuttiioonn  
 

44..11..11  DDiissttrriibbuuttiioonn  ooff  tthhee  VVTT  ppaarraammeetteerrss  
 

A total number of 149 ECG recordings of ten seconds duration each were analysed. 

The different parameters (VT and AF) were estimated in order to find the distribution 

of them with regard to every ECG signal category. Thus, the first separation of the 

ECG data series into the two large subclasses of those with or without experienced 

ventricular tachyarrhythmia episodes was performed by the VT parameters. The 

fluctuations of the first VT parameter (“potential_vt”) are illustrated in figure 4.1 for 

all the ECG’s (i) and for the non-VT signals (ii) and the VT signals (iii) separately in 

histograms. As this figure reveals with the use of this variable a sufficient number of 

ECG signals without VT episodes was successfully discarded. On the other hand, only 

a few detections concerning VT signals were missed. Note that values which lie on 

the x-y plane are not corresponding to ECG signals since the number of the analysed 

samples of each ECG category is not equal. 

 

The fluctuations of the next parameter (“peak_diff”) are shown in figure 4.2. It is 

apparent that the values for the VT case are generally greater comparing to those in 

the non-VT case. The contrary scene is observed in figure 4.3 where the distribution 

of the “boi_width” parameter is picturized.  

 

The distribution of the last VT variable examined is illustrated in figure 4.4 from 

where mainly two observations can be obtained. The first concerns the non-VT 

signals and is the fact that the “power_fr” fluctuates among intermediate values 

whereas there are some signals with relatively large power percentage. The second 

one deals with the VT time series where the majority of the “power_fr” is above 60% 

while a small percentage is below this value. 
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Figure 4.5 shows the feature space for the last three variables (“peak_diff”, 

“boi_width”, “power_fr”), while table 4.1 summarizes the distribution of each VT 

parameter based on selected thresholds. 
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Figure 4.1: i) Distribution of the “potential_vt”, ii) Histogram of the “potential_vt”   

of non-VT signals, iii) Histogram of the “potential_vt” of VT signals. 
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Figure 4.2: Distribution of the “peak_diff” 

 

 
Figure 4.3: Distribution of the “boi_width” 
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Figure 4.4: Distribution of the “power_fr”  
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Figure 4.5: Feature space of the VT parameters (“peak_diff”, “boi_width” and 

“power_fr”). The blue upward pointing triangles correspond to VT signals, while the 

cyan downward pointing triangles correspond to non-VT signals. 
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(%) 

True 

(%) 

<  thres 

 (%) 

>  thres 

(%) 

<  thres 

(%) 

>  thres 

(%) 

< thres 

(%) 

> thres 

(%) 

Normal Sinus 

Rhythm 
50 50 87.5 12.5 16.7 83.3 83.3 16.7 

Sinus 

Tachycardia 
60 40 80 20 20 80 80 20 

Premature 

Contractions 
50 50 55.6 44.4 16.7 83.3 100 0 

Atrial Fibrillation 45 55 75 25 20 80 85 15 

Ventricular 

Tachyarrhythmias 
6.5 93.6 6.5 93.6 74.2 25.8 8.1 91.9 

 

Table 4.1: Distribution of each VT parameter based on selected thresholds 
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44..11..22  DDiissttrriibbuuttiioonn  ooff  tthhee  AAFF  ppaarraammeetteerrss  
 

The second classification step was performed by the estimation of the AF variables. 

The distributions of these two parameters (“disperse_bins_percent” and 

“max_elem_percent”) are illustrated in figures 4.6 and 4.7, respectively. From the 

fluctuations of the “disperse_bins_percent” one can derive the next remarks: 

 

 NSR: Generally they have very small values of “disperse_bins_percent” whereas 

in some few cases these values could reach higher. 

 

 Sinus tachycardia: A similar distribution as in the NSR category is observed here 

apart from the higher peaks. 

 

 Premature contractions:  In the ectopic beats case, the major fluctuations of the 

parameter “disperse_bins_percent” construct a band with values greater than in 

the two last cases. 

 

 Atrial fibrillation: The distribution of the “disperse_bins_percent” for the atrial 

fibrillation case has an expected topology. Furthermore, although the fluctuations 

in this signal category are somewhat similar to those in the premature contraction 

case they appear slightly concentrated in a higher band. This is the basic reason 

why the next parameter was introduced: To improve the discrimination process 

between the ECG signals with introduced ectopic beats and those with atrial 

fibrillation episodes. 

 

The distribution of the second parameter “max_elem_percent” through the different 

ECG signals presents the complete opposite topology from the one shown in the first 

AF variable. That is high values for the NSR and the sinus tachycardia cases and 

lowers for the ectopic beat and the atrial fibrillation signals. 

 

Figure 4.8 illustrates the feature space of (i) the “disperse_bins_percent” and (ii) the 

“max_elem_percent”, while table 4.2 summarizes the distribution of each AF 

parameter based on selected thresholds. 
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Figure 4.6: Distribution of the “disperse_bins_percent” 

 

 
Figure 4.7: Distribution of the “max_elem_percent” 
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Figure 4.8: (i) Feature space of the AF parameter “disperse_bins_percent”. (ii) 

Feature space of the AF parameter “max_elem_percent”. The cyan downward 

pointing triangles correspond to NSR signals, the blue left pointing triangle 

correspond to Sinus Tachycardia signals, the magenta right pointing triangles 

correspond to Ectopic Beats signals and the red upward pointing triangles 

correspond to Atrial Fibrillation signals. 
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VT parameters “disperse_bins_percent” “max_elem_percent” 

ECG category < thres (%) > thres (%) < thres (%) > thres (%) 

 (thres1 = 15) (thres = 25) 

Normal Sinus 

Rhythm 
91.7 8.3 0 100 

Sinus 

Tachycardia 
100 0 0 100 

 (thres2 = 55) (thres = 25) 

Premature 

Contractions 
88.9 11.1 11.1 88.9 

Atrial 

Fibrillation 
25 75 77.5 22.5 

 

Table 4.2: Distribution of each AF parameter based on selected thresholds 

 

 

 

 

 

 

 

 

 65



 

44..22  EECCGG  ccllaassssiiffiiccaattiioonn  rreessuullttss  

  
The extracted classification results for each ECG signal category are the following.  

 

 Ventricular tachyarrhythmia: A total number of 62 ECG signals with 

ventricular tachyarrhythmia episodes were used in the current analysis. The 

discrimination procedure followed was unable to characterize only one VT signal, 

while the rest of them were classified correctly. 

 

 Atrial fibrillation: A total number of 40 ECG data series experienced with atrial 

fibrillation episodes were analysed here. Six of them were classified incorrectly as 

premature contraction beats while one of them was wrongly characterized as 

ventricular tachyarrhythmia. The latter signal had similar characteristics as the VT 

signal in the GWS. The other six that referred as PC were in a way justifiably 

featured like this because their features were in the borderline between the AF and 

the PC category. 

 

 Premature contraction: From the ectopic beat category there were only 18 ECG 

signals available. These recordings contained one or two premature contractions 

either atrial or ventricular. From them only two were featured as AF data series. 

The reason is the same as with the AF case discussed in the preceding section. 

Note that a ten second signal with two introduced ectopic beats can easily be 

perceived as an AF signal, since one ectopic beat corresponds to two different R-R 

intervals. 

 

 Sinus tachycardia: In this signal category only 5 ECG record were available. All 

of them were distinguished from the others except for one. This record has similar 

behaviour with a VT signal that’s why it was characterized proportionally. 

 

NSR: The number of NSR ECG recordings that were analysed in this project was 

equal to 24. Only the two of them were incorrectly classified as time series with 

introduced premature contractions. However, this is substantially justifiable by the 

fact that these exceptions present a slight degree of arrhythmia (Sinus arrhythmia). 
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Therefore, the classification algorithm utilized performs the discrimination of the 

NSR signals in a very sufficient way. 

 

 

44..33  EECCGG  ccllaassssiiffiiccaattiioonn  rraatteess  

  
Figure 4.9 illustrates graphically the success and the miss classification rates of each 

ECG signal category, while table 4.3 concentrates on the success rate (precision), the 

miss rate and the misclassification rate (sensitivity) of all the ECG signals analysed in 

this project. From table 4.3 it can be observed that the success rates are relatively 

large, while the misclassification rates are very small, almost negligible in the 

majority of the ECG signal categories. 

  

Figure 4.10 shows the success and the miss classification rates of the total number of 

the classified ECG recordings. The overall success rate concerns the total efficiency 

(precision) of the discrimination algorithm utilized in this project. As it can be derived 

from the results, the percentage of the overall miss rate is relatively small. However, 

this rate is possible to be improved by rejecting some “inappropriate” signals like the 

ones used in the NSR category (with sinus arrhythmia). However, if a sufficient 

number of the ECG recordings presenting with this type of arrhythmia was available 

and with suitable modifications in the classification algorithm it would be an easy step 

to distinguish between these signals and include them into a new ECG category. 

Moreover, the overall miss rate could potentially be reduced by introducing new 

parameters used for the distinction of the premature contractions from the atrial 

fibrillation recordings. 
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                                                   Success rate  98%

Success and Miss rates (VT)

Miss rate  2%

                Success rate 83%

Success and Miss rates (AF)

Miss rate (VT) 3%

Miss rate (PC) 15%

 
i) VT classification rates  ii) AF classification rates 

 

                              Success rate 89%

Success and Miss rates (PC)

Miss rate (AF) 11%

 

             Success rate 80%

Success and Miss rates (ST)

Miss rate (VT) 20%

 
 

iii) PC classification rates  iv) ST classification rates 

 

                                      Success rate 92%

Success and Miss rates (NSR)

Miss rate (PC) 8%

 
v) NSR classification rates 

 

 

Figure 4.9: Success and miss classification rates of (i) VT, (ii) AF, (iii) PC, (iv) ST 

and (v) NSR ECG recordings 
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ECG category 
Success Rate 

(%) 

Miss Rate 

(%) 

 

Misclassification Rate 

(%) 

 

Normal Sinus 

Rhythm 
91.7 8.3 0 

Sinus 

Tachycardia 
80 20 0 

Premature 

Contractions 
88.9 11.1 6.9 

Atrial Fibrillation 82.5 17.5 1.8 

Ventricular 

Tachyarrhythmias 
98.4 1.6 2.3 

 

Table 4.3: Success rate, miss rate and misclassification rate of each ECG signal 

category 
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                                 Success rate 91%

Overall Success and Miss rates

Miss rate 9%

 
Figure 4.10: Overall classification rates 
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55..  CCOONNCCLLUUSSIIOONNSS  AANNDD  FFUURRTTHHEERR  WWOORRKK  

 
This project examined some of the most common types of arrhythmias encountered in 

the majority of the human population starting from the less serious such as sinus 

tachycardia, sinus bradycardia - even if no ECG recordings where available for this 

type of arrhythmia, the classification algorithm is able to distinguish them - and 

premature contractions to the more severe atrial fibrillation and the malignant 

ventricular tachyarrhythmias. A uniform classification algorithm was implemented in 

order to detect any type of the above set of arrhythmias. 

 

The proposed classification method was able to detect the non-rhythmic from the 

rhythmic ECG signals in all cases. The discrimination between the non-rhythmic ECG 

recordings was generally very efficient especially in the critical case of VT where 

immediate intervention is required. The algorithm was also efficient in the 

classification of the PC and the AF ECG data series, although in some cases was 

misleading. This misleading is totally justified by the fact that the classification 

procedure for these signals was based on R-R interval estimation and these 

misclassified PC and AF ECG signals had similar distributions in their R-R interval 

values. The classification process for the ST ECG signals also performed well, 

whereas no sufficient number of ECG recordings of this type of arrhythmia was 

available and thus no definite conclusions could be extracted. 

 

Further investigations could be focused towards reducing the number of false 

diagnoses. This objective requires the correct discrimination and characterization of 

the specific features of each ECG signal category. Therefore, as mentioned above, 

new parameters could be introduced for distinguishing the PC from the AF ECG 

recordings. One further approach could also be the combination of different 

parameters derived from the GWS and the computed SAWPS simultaneously, based 

on the special VT characteristic and utilized for the improvement of the classification 

method. Moreover the presented method could be extended in order to include other 

ECG cases as well. 
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The method proposed in this case is based on simple classification techniques derived 

from the wavelet transform analysis of the ECG. The most important is that it 

combines the detection of characteristics appearing on the time (distribution of R-R 

intervals) and frequency domain (high power peak in GWS). Consequently, the 

implemented algorithm can be utilized for the characterization of NSR, ST, SB, AC 

and AF together with different VT ECG recordings. This is realized by taking 

advantage of the benefits of the continuous wavelet transform such as the good time 

and frequency localization plus the endogenous redundancy, which reinforces the 

traits and makes all information more visible. 
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77..  AAPPPPEENNDDIIXX  

  

77..11  DDeeffiinniittiioonnss  
 

TThhee  ee--ffoollddiinngg  ttiimmee    

The e-folding time is defined as the time required for the amplitude of an oscillation 

to increase or decrease by a factor of e. 

 

TTiimmee  rreessoolluuttiioonn    

The time resolution of a transform operation is defined as the ability to resolve fine 

features in the time domain. 

 

FFrreeqquueennccyy  rreessoolluuttiioonn    

The frequency resolution of a transform operation is defined as the ability to resolve 

fine features in the frequency domain. 

 

 

77..22  RReelleevvaanntt  ssttuuddiieess  

  
Some other relevant to this project work that has been done in the past few years is 

listed and briefly described below. 

  

11))  DDSSPP  iimmpplleemmeennttaattiioonn  ooff  wwaavveelleett  ttrraannssffoorrmm  ffoorr  rreeaall  ttiimmee  EECCGG  wwaavvee  ffoorrmmss  ddeetteeccttiioonn  

aanndd  hheeaarrtt  rraattee  aannaallyyssiiss  

 

This first study was published by M. Bahoura, M. Hassani and M. Hubin back in 

1997. In this study the DWT is utilized. More specifically, this algorithm combined 

the wavelet coefficients in order to distinguish QRS complexes, P and T waves from 

noise, baseline drift or artifacts as each ECG characteristic was excited better at 

different scales. It was implemented in a DSP (SPROC-1400) for real time detection. 

For the MIT-BIH Arrhythmia Database, this algorithm was able to detect 99.7% of 

the QRS complexes [16]. 
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22))  WWaavveelleett  ddeeccoommppoossiittiioonn  aannaallyyssiiss  ooff  tthhee  ssiiggnnaall  aavveerraaggeedd  eelleeccttrrooccaarrddiiooggrraamm  uusseedd  ffoorr  

rriisskk  ssttrraattiiffiiccaattiioonn  ooff  ppaattiieennttss  wwiitthh  hhyyppeerrttrroopphhiicc  ccaarrddiioommyyooppaatthhyy  

 

A. Englund et al studied the predictive value of wavelet decomposition in order to 

identify patients with hypertrophic cardiomyopathy (published in 1998). The 

proposed method, based on the CWT, was applied in the signal averaged ECG. 

Several parameters were derived from the wavelet decomposition analysis. The 

research concluded that the wavelet analysis of predicting sudden death or ventricular 

fibrillation was limited in patients with hypertrophic cardiomyopathy. However, it 

could identify patients at risk of dying non suddenly and with non sustained 

ventricular tachycardia [17]. 

 

  

33))  BBiioorrtthhooggoonnaall  wwaavveelleett  ttrraannssffoorrmmss  ffoorr  EECCGG  ppaarraammeetteerrss  eessttiimmaattiioonn  

 

This second study was conducted by N. Sivannarayana and D.C. Reddy (published in 

1999). Biorthogonal wavelets were used in this study and characterization of the 

parameters of various morphologies of ECG signals as normal or otherwise were 

performed. The proposed method applied in single normalized ECG beats. Various 

morphologies were excited better at different scales and amplitudes, durations and 

various segments and widths could be determined more accurately. The study 

concluded that even when the signal-to-noise ratios were poor, the proposed method 

could estimate accurately the said parameters [18]. 

 

 

44))  AA  nnoovveell  wwaavveelleett  ttrraannssffoorrmm  bbaasseedd  aannaallyyssiiss  rreevveeaallss  hhiiddddeenn  ssttrruuccttuurree  iinn  vveennttrriiccuullaarr  

ffiibbrriillllaattiioonn  

 

Another study performed by James N. Watson et al. and published in 2000 introduced 

a novel method of examining the surface ECG signal using the CWT. According to 

this analysis, at higher frequencies the P, QRS and T components were individually 

resolved according to their frequency makeup and temporal location. The study 

demonstrated the utility of the wavelet transform as a new method of ECG signal 

analysis during VF [19]. 
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55))  EECCGG  bbeeaatt  ccllaassssiiffiiccaattiioonn  bbyy  aa  nnoovveell  hhyybbrriidd  nneeuurraall  nneettwwoorrkk  

 

In this study, performed by Zumray Dokur and Tamer Olmez and published in 2001, a 

new hybrid neural network structure for ECG beats classification was presented. The 

method was followed in three stages: ECG normalization, feature extraction process 

and classification based on an artificial neural network. ECG features were computed 

using specific DFT and DWT coefficients determined by dynamic programming 

according to their distribution values. Ten different types of ECG beats were obtained 

from the MIT-BIH Arrhythmia Database. These beats were classified with a success 

rate of 96% by using the hybrid structure [20]. 

  

 

66))  WWaavveelleett  aannaallyyssiiss  ooff  aattrriiaall  ffiibbrriillllaattiioonn  eelleeccttrrooggrraammss  

 

This final study was performed by John K. Mell et al and was published in the year 

2003. In this study, an algorithm was developed for measuring beat spacing intervals 

in AF basket catheter electrograms. The algorithm utilizes partial reconstruction of the 

continuous wavelet transforms to extract the amplitude envelope corresponding to 

beat bodies to give a new signal where beats can be readily identified and the time 

interval between beats can be accurately quantified. The results presented on chronic 

AF electrograms suggest that the wavelet-based methods developed in this paper may 

be useful for identifying spatially localized sources of AF from basket catheter 

electrograms [21]. 

 

From the above studies it can be seen that a lot of attention has been given in the past 

to the analysis of ECG signals and how these can be utilized to treat cardiac diseases, 

which makes our study worthwhile.  
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