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Abstract

We propose two new low-complexity frequency-domain algorithms for blind speech separation (BSS) for
unknown channel order. The proposed methods consist of two separate stages: in the first stage parallel factor
analysis (PARAFAC) is employed in order to separate the speech signals, while in the second stage the task of
matching the arbitrary permutations in the frequency domain is performed, via a novel integer-least-squares-based
method. The proposed algorithms offer guaranteed convergence and good separation performance at considerably
reduced complexity relative to previous methods, when applied to real-world speech data. Our approach reveals
the much broader identifiability potential of joint-diagonalization-based BSS methods, which went unrecognized in
the past. The new algorithms are compared with previous BSS methods.

Index Terms

Blind speech separation, multipath channel, nonstationary signals, parallel factor analysis, integer least squares.

I. INTRODUCTION

ONE of the key problems in speech processing for teleconferencing and mobile telephony applications
is that of speaker separation from multichannel measurements. In a typical teleconferencing appli-

cation, multiple microphones can be deployed in a room, each providing a different linear combination
of the speaker signals. In a mobile telephony application, two microphones can be deployed, e.g., one on
the headset, another on the dashboard or elsewhere in a car. Such multichannel measurements provide
the opportunity for speaker separation or speaker-background noise separation, which can be crucial for
intelligibility. The objective of the “blind” speech separation problem is to separate the multiple speaker
signals, using only the measured microphone signals, i.e., without assuming knowledge of the mixing
channels.

A significant attribute of speech signals that one can exploit in order to separate multichannel speech
mixtures, is their inherent non-stationarity. This attribute, that apart from speech signals is encountered in
most real world signals (e.g., biological signals), has led several researchers towards developing methods
for tackling the BSS problem which rely on proper utilization of the signals’ non-stationary nature. The
majority of the proposed methods that exploit non-stationarity, consider the simple case of instantaneous
linear mixtures [8], [11], [21]. In recent years, however, the focus of the blind source separation community
has shifted towards the more general and realistic case of convolutive linear mixtures. Various approaches
have been proposed, which can be divided into time-domain [12], [26], [17] and frequency-domain methods
[30], [19], [18], [23], [24].

Time-domain BSS methods are applied directly to the convolutive mixture model. This approach may
achieve good separation once the algorithm converges, but has the disadvantage of being computationally
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expensive due to calculating many convolutions. In addition the mixing channel order need be known,
which is rather impractical in real-world BSS problems.

On the other hand, frequency-domain BSS methods suggest moving to the frequency domain in or-
der to decompose the time-domain convolutive BSS problem into multiple independent instantaneous
BSS problems, one at each frequency bin. In general the frequency-domain algorithms have a simpler
implementation as well as the mixing channel order need not be known, in contrast with their time do-
main counterparts. However, there is an inherent frequency-dependent permutation and scaling ambiguity
problem in all frequency-domain BSS methods which does not exist in time-domain BSS methods.

In this paper we propose two new frequency domain BSS techniques that exploit non-stationarity of
speech signals and deal with the more general case of convolutive linear mixtures. Both methods presented
in this paper consist of two separate stages: the first stage performs the separation of the speech signals
while the second one resolves the frequency-dependent permutation and scaling ambiguity, which is a
key problem when the separation of the signals is conducted in the frequency-domain. As mentioned
earlier, various frequency domain methods [30], [19], [18], [23], [24] have been proposed over the years.
The methods in [30], [19], [18], however, employ a least-squares (LS) gradient descent procedure in
order to separate signals while our techniques are based on the formulation of the BSS problem as
a conjugate symmetric PARAFAC model that is fitted optimally, using a more efficient alternating LS
algorithm that converges monotonically. The method presented in [24] is also based on an alternating LS
algorithm in order to separate the speech signals, but doesn’t establish the link to the conjugate-symmetric
PARAFAC model. The conjugate-symmetric PARAFAC model exhibits strong identifiability properties that
allows the separation of a much higher number of signals than what is suggested in any of the above
methods. Regarding the frequency-dependent permutation ambiguity, e.g., in [19] the latter is dealt with
by imposing a constraint on the length of the inverse-channel impulse response W (τ), an approach that
is loosely motivated. We propose an interpretable approach that follows naturally, by considering the
physical properties of the system under study. Our approach is based on an integer-least-squares (ILS)
formulation to adjust the arbitrary permutations, and its implementation assures that the occurrence of an
error at any point of the permutation correction procedure, does not have a catastrophic impact on the
quality of the final separated signals, unlike e.g. [30], [18], [23]. Finally, it should be stressed that our
methods are characterized by low computational cost, unlike [19] or [24], which is a feature that is highly
desired, especially in applications where real-time processing is essential. In [24] for example, the number
of frequency bins used, for the method to attain good separation performance, is at least 4096 as apposed
to 16 or 32 frequency bins in our methods. Thus, the alternating LS algorithm in [24] is iterated for at
least 4064 times more, relative to our methods, which can be very costly computationally. To support our
arguments we present numerical simulations using real speech data and compare the performance of our
algorithm with the one proposed in [19]1.

Our contributions in this paper can be summarized as follows:
• Improved performance relative to the method in [19].
• Complexity reduced by 1-2 orders of magnitude relative to the method in [19], bringing execution

times within range for on-line application, at least for teleconference, possibly also cellular telephony
applications.

• Guaranteed convergence of overall algorithm.
• Interpretable criteria for resolving the permutation-scaling ambiguities, leading to well-known ILS

problem, for which many good approximate solutions exist.
• Our approach reveals the much broader identifiability potential of joint-diagonalization-based BSS

methods, which went unrecognized in the past. Prior references assumed J ≥ I , where J is the
number of microphones and I the number of speakers.

• Our permutation correction scheme prevents catastrophic errors that can happen as a result of a
wrongly adjusted permutation.

1We downloaded the MATLAB implementation of the algorithm proposed in [19] from http://newton.bme.columbia.edu/ lparra/publish/.
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• We used a much larger corpus, validated with real-world data in our simulations.
The paper is organized as follows: Section II states the BSS problem along with our assumptions and

some preliminaries. Necessary background in PARAFAC theory is presented in section III. Section IV
reviews the Trilinear Alternating Least Squares technique that is subsequently used to fit the PARAFAC
model. The proposed method for resolving the permutation and scaling ambiguities is discussed in section
V. Our algorithms are summarized in section VI. The results we obtained after application of our algorithms
to real-world speech data are presented in section VII, whereas our conclusions and final remarks are
presented in section VIII.

Some notation conventions that will be used in this paper follow.
∗ Convolution operator.
(.)∗ Complex conjugate.
E[.] Expectation operator.
bxc Integer floor of x.
ai ith column of A.
AT Transpose of A.
AH Conjugate transpose of A.
A† Moore-Penrose pseudo-inverse of A.
Dp{ A} Diagonal matrix constructed from the pth row of A.
A¯B Khatri-Rao (column-wise Kronecker) product of A,B.
diag{x} Forms a diagonal matrix from vector x.
||.||F Frobenius norm.
||.||2 Euclidean vector norm.

II. BLIND SPEECH SEPARATION

A. Data Model and Problem Statement
Assume I mutually uncorrelated (not necessarily statistically independent) speaker signals s(t) =

[s1(t), . . . , sI(t)]
T . These signals are convolved and mixed in a linear medium leading to J microphone

signals x(t) = [x1(t), . . . , xJ(t)]T . We consider the following I-speaker J-microphone multi-input multi-
output (MIMO) linear model for the received signal for the convolutive mixing problem

x(t) = A ∗ s(t) + n(t) =
L∑

τ=0

A(τ)s(t− τ) + n(t), t = 1, . . . , N (1)

where A(τ) = [α1(τ), . . . , αI(τ)] ∈ RJ×I for τ = 0, . . . , L is the mixing impulse response matrix,
αi(τ) = [α1,i(τ), . . . , αJ,i(τ)]T ∈ RJ×1 is the spatial signature of the ith speaker for lag τ , n(t) =
[n1(t), . . . , nJ(t)]T is the additive noise vector, L is the maximum (unknown) channel length and N is
the number of snapshots. The objective of the blind separation problem is to estimate the inverse-channel
impulse response matrix W (τ) from the observed signals x(t), since

s(t) = W ∗ x(t) (2)

Following, e.g. [19], one approach towards solving the problem is to transform it into the frequency
domain and to solve the joint separation problem across frequency bins.

Recall the well known property of the Discrete Fourier Transform (DFT) that allows us to express
circular convolutions as products. In (1), however, we assumed a linear convolution. A linear convolution
can be approximated by a circular convolution if the size T of the DFT’s frame is much larger than the
length of the convolution sum. In such a case we can write approximately2

x(f, t) ≈ A(f)s(f, t) + n(f, t), forL ¿ T (3)

2For simplicity, we use the same symbol to denote time-domain and frequency-domain representation of a signal or a filter, depending on
its argument.
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where x(f, t) =
∑T−1

τ=0 x(t+τ)e
−i2πfτ

T is the DFT of the frame of size T starting at t, [x(t), . . . , x(t+T −
1)]. Accordingly s(f, t) =

∑T−1
τ=0 s(t + τ)e

−i2πfτ
T and A(f) =

∑T−1
τ=0 A(τ)e

−i2πfτ
T =

∑L
τ=0 A(τ)e

−i2πfτ
T ,

because A(τ) = 0J×I for τ > L. The ith column of A(f) represents now the spatial signature of the ith
speaker in the frequency domain, at frequency f .

Before proceeding further, we list our main assumptions:
Assumption 2.1: The speaker signals s(t) are zero mean, second-order quasi-stationary signals; i.e. the

variances of the signals are slowly varying with time such that over short time intervals they can be
assumed approximately stationary.

Assumption 2.2: The number of speakers is known.
Assumption 2.3: The contribution of the noise term n(t) is negligible compared to the contribution of

the speaker signals. In our context, this is an accurate approximation in many real-world cases. When
noise is not negligible, its power can be estimated from silence periods and subtracted from correlation
matrix estimates, which is the only place where noise comes into play in our algorithms.

B. Direct Channel Estimation versus Inverse Channel Estimation
•Direct channel estimation (DCE) approach: Equation (3) dictates that the BSS problem could have

been solved, had we had in our disposal the frequency domain counterparts of the multipath channel
matrices A(τ), that is A(f), for all frequency bins. Provided that rank[A(f)] = I , by taking the left
Moore-Penrose pseudo-inverse of each frequency’s corresponding matrix A(f), and applying the Inverse
DFT to the collection of the acquired pseudo-inverses {A†(f), f = 0, . . . , T − 1}, we could determine
estimates of the inverse-channel matrices {W (τ), τ = 0, . . . , T−1}, and subsequently estimate the speaker
signals via (2). The same could be achieved by computing ŝ(f, t) ≈ A†(f)x(f, t) for all frequency bins,
and applying Inverse DFT to {ŝ(f, t), f = 0, . . . , T − 1}. When rank[A(f)] < I (in particular, when
J < I) perfect separation is not possible; substantial reduction of crosstalk is still possible, however, using
matched filtering to the columns of A(f), or more sophisticated array processing methods, like Capon
beamforming. Therefore, the blind speech separation problem boils down to the problem of estimating
the matrices {A(f), f = 0, . . . , T − 1}.

Let us focus on a time interval over which the measured signals can be assumed stationary (see
assumption 2.1). Furthermore we consider one specific frequency bin f , ignoring for the time being
the rest T − 1 frequencies. The autocorrelation matrix of the vector of microphone outputs at frequency
f is then

Rx(f, t) = E[x(f, t)xH(f, t)] ≈ A(f)E[s(f, t)sH(f, t)]AH(f) = A(f)Ds(f, t)AH(f) (4)

Since we assume mutually uncorrelated speaker signals we postulate diagonal autocorrelation matrix
Ds(f, t), while by assumption 2.3 the autocorrelation matrix of the noise vector n(f, t) has been neglected.
As we will see in Section III, proper processing of the autocorrelation data (4) via PARAFAC analysis,
for all frequency bins and all intervals over which the measured signals are assumed stationary, enables
us to specify the matrices {A(f), f = 0, . . . , T − 1} up to an individual permutation and scaling of their
columns (spatial signatures), that vary arbitrarily from one frequency bin to another.
•Inverse channel estimation (ICE) approach: Instead of first estimating and then inverting the

forward-channel matrices {A(f), f = 0, . . . , T−1}, we can directly estimate the inverse-channel matrices
in the frequency domain, {W (f), f = 0, . . . , T − 1}, perform the Inverse DFT to obtain {W (τ), τ =
0, . . . , T − 1} and subsequently estimate the speaker signals via (2), or, again we can compute ŝ(f, t) ≈
W (f)x(f, t) for all frequency bins, and then apply Inverse DFT to {ŝ(f, t), f = 0, . . . , T − 1}.

Assume, for the moment, that the number of microphones equals the number of the speakers (J = I)
and rank{A(f)} = I . In this case, the inverse of the autocorrelation matrix Rx(f, t) in (4) can be written
as

R−1
x (f, t) = [A(f)Ds(f, t)AH(f)]−1 = [A−1(f)]HD−1

s (f, t)A−1(f) = W H(f)D−1
s (f, t)W (f) (5)
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where the last equality follows from the fact that the inverse-channel matrix W (f) equals the inverse
of the forward-channel matrix A−1(f), in this case. Employing parallel factor analysis of the “inverse”
autocorrelation data (5), for all frequency bins and all intervals over which the speaker signals are assumed
stationary, we may obtain the beamforming matrices {W (f), f = 0, . . . , T − 1}, up to a frequency-
dependent scaling and permutation ambiguity of their rows.

In the case of fewer speakers than microphones (J > I), however, the inversion of the autocorrelation
matrix Rx(f, t) cannot be performed, and therefore PARAFAC analysis cannot be applied. In order to
deal with this problem, we reduce our model for the received signal back to the J = I case, by resorting
to an appropriate dimension-reducing prefiltering of the data in (3). The following paragraphs describe
how this is done.

Consider one specific frequency bin f , ignoring for the time being the rest T − 1 frequencies. Let
NT = bN

T
c and X(f) = [x(f, 0), x(f, T ), . . . , x(f, T (NT −1))], then from (3), the J×NT matrix X(f)

has the following factorization

X(f) = A(f)S(f) (6)

where S(f) = [s(f, 0), s(f, T ), . . . , s(f, T (NT − 1))] ∈ CI×NT , and the noise term has been neglected
in accordance with assumption 2.3. We choose F (f) to be the matrix whose columns are the I domi-
nant eigenvectors which correspond to the eigenvalue decomposition (ED) of the autocorrelation matrix
R̄x(f) = 1

NT
X(f)XH(f). It is known that F (f) is an asymptotically unbiased estimate of UA(f) where

A(f) = UA(f)ΣA(f)V A(f) is the economy-size singular value decomposition (SVD) of A(f).
Let us now consider a prefiltered version of the data in (6), using the matrix F H(f) as the filtering

matrix, i.e.,
X̃(f) , F H(f)X(f) = Ã(f)S(f) (7)

with Ã(f) , F H(f)A(f) ∈ CI×I . By properties of the SVD, Ã(f) is a nonsingular I×I matrix. Hence,
the autocorrelation matrix R̃x(f) that corresponds to the prefiltered data model in (7), can be inverted to
yield the following factorization

R̃
−1

x (f, t) = [Ã(f)Ds(f, t)Ã
H

(f)]−1 = [Ã
−1

(f)]HD−1
s (f, t)Ã

−1
(f) = W̃

H
(f)D−1

s (f, t)W̃ (f) (8)

with W̃ (f) = Ã
−1

(f). Employing parallel factor analysis of the “inverse” autocorrelation data (8), for
all frequency bins and all intervals over which the speaker signals are assumed stationary, we may obtain
the matrices {W̃ (f), f = 0, . . . , T − 1}, up to a frequency-dependent scaling and permutation ambiguity
of their rows. In this case, the beamforming matrices {W (f), f = 0, . . . , T − 1} can be written as

W (f) = W̃ (f)F H(f) (9)

Note that the ICE approach cannot be employed when we have fewer microphones than sensors (J < I).
In this case we have to resort to the DCE approach.

Of course, the beamforming matrices {W (f), f = 0, . . . , T − 1} in the ICE approach, just as the
acquired mixing matrices {A(f), f = 0, . . . , T −1} in the DCE approach, are specified up to a frequency-
dependent individual permutation and scaling of their columns. This constitutes a serious problem since
only consistent permutations and scaling across frequencies will correctly reconstruct the source signals.
Hence a second major problem arises, that of resolving the frequency-dependent permutation and scaling
issue. The following section reviews the basics of PARAFAC analysis, and shows how it is employed on
the BSS problem, via our two approaches.
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III. PARALLEL FACTOR ANALYSIS

The present section is devoted to the presentation of the necessary background in PARAFAC theory,
and also shows how blind speech separation comes under this category of problems. We only consider
the model in (4), since the analysis for the model of (8) follows by substituting R̃x

−1
(f, t), W̃

H
(f) and

D−1
s (f, t) for Rx(f, t),A(f) and Ds(f, t), respectively.

A. PARAFAC Model
Let us divide the whole data block of N snapshots into P sub-blocks, so that each sub-block contains

NP = bN
P
c snapshots. We assume that each sub-block corresponds to a time interval over which the

speaker signals are stationary, in accordance with assumption 2.1. Under this framework, the measured
snapshots within any pth sub-block correspond to the following autocorrelation matrix

Rx(f, tp) = A(f)Ds(f, tp)A
H(f), f = 0, . . . , T − 1 (10)

where Ds(f, tp) is the diagonal autocorrelation matrix of the speaker signals in the pth sub-block. Using
all P sub-blocks, we will have P different autocorrelation matrices {Rx(f, t1), . . . , Rx(f, tP )} for each
frequency. We observe that for each frequency, these matrices differ from each other only because the
source signal autocorrelation matrices Ds(f, tp) differ from one sub-block to another.

Let us stack the P matrices {Rx(f, tp), p = 1, . . . , P} together to form a three-way array Rx(f). The
(j, l, p)th element of such an array can be written as

rj,l,p(f) , [Rx(f)]j,l,p =
I∑

i=1

αj,i(f)vi(f, p)α∗l,i, f = 0, . . . , T − 1 (11)

where vi(f, p) , [Ds(f, tp)]i,i is the power-spectral-density of the ith source in the pth sub-block. Defining
the matrices P (f) ∈ CP×I , f = 0, . . . , T − 1 as

P (f) ,




v1(f, 1) . . . vI(f, 1)
... . . . ...

v1(f, P ) . . . vI(f, P )


 (12)

we can write the following relationship between Ds(f, tp) and P (f)

Ds(f, tp) = Dp{P (f)} (13)

for all p = 1, . . . , P and all f = 1, . . . , T .
Equation (11) implies that rj,l,p(f) is a sum of rank-1triple products; this equation is known as

(conjugate-symmetric) parallel factor (PARAFAC) analysis of rj,l,p [9], [13], [28], [29]. If I is sufficiently
small (11) represents a low-rank decomposition of Rx(f). Therefore, the problem of estimating the matrix
A(f) for a specific frequency f can be reformulated as the problem of low-rank decomposition of the
three-way autocorrelation array Rx(f). By solving a similar problem separately for every frequency we
obtain the entire collection of the frequency-domain mixing matrices {A(f), f = 0, . . . , T − 1}, up to
certain inherent indeterminacies, discussed next.

B. Identifiability
By identifiability we mean the uniqueness (up to inherently unresolvable source permutation and scale

ambiguities) of all speaker spatial signatures at a given frequency, given the exact frequency-domain
autocorrelation data at that frequency.

In this subsection, we briefly review identifiability properties of the PARAFAC-model based spatial
signature estimation. Towards this end, we discuss conditions under which the trilinear decomposition of
Rx(f) is unique. Identifiability conditions on the number of sub-blocks and the number of microphones
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are presented. In the following we consider the frequency index fixed, and omit it for convenience since
the results presented do not depend on the frequency f .

We start with the definition of the Kruskal rank of a matrix [13].
Definition: The Kruskal rank (or k-rank) of a matrix C is kC if and only if every kC columns of C

are linearly independent, and either C has kC columns or C contains a set of kC + 1 linearly dependent
columns. Note that k-rank is always less than or equal to the conventional matrix rank. It can be easily
checked that if C is full column rank, then it is also full k-rank.

Using (13), we can rewrite (10) as

Rx(tp) = ADp{P }AH , p = 1, . . . , P (14)

To establish identifiability, we have to obtain under which conditions matrices P and A are the unique
(up to the scaling and permutation ambiguities) matrices that give rise to the data {Rx(tp), p = 1, . . . , P}
of (14). In the context of our present application, which involves a conjugate-symmetric PARAFAC model
the following theorem follows from [13] (also cf. [25]).

Theorem 1: Consider the set of matrices (14). For I > 1, if

kA + kP + kA∗ = 2kA + kP ≥ 2I + 2 (15)

then A and P are unique up to inherently unresolvable permutation and scaling of columns, i.e. if there
exists any other pair {Ā, P̄ } which satisfies (15), then this pair is related to the pair {A,P } via

Ā = AΠ∆1, P̄ = PΠ∆2 (16)

where Π is a permutation matrix, and ∆1,∆2 are diagonal scaling matrices satisfying

∆1∆
∗
1∆2 = I (17)

For I = 1, A and P are always unique, irrespective of (15).
It is worth noting that condition (15) is sufficient but not necessary for identifiability [2]. For I > 1

the condition kP ≥ 2 becomes necessary [10]. In terms of the number of sub-blocks the latter condition
requires that P ≥ 2.

Alternative uniqueness conditions can be derived if random component matrices are considered, giving
rise to the concept of almost sure-identifiability. The best known result on almost sure-identifiability
conditions for the conjugate-symmetric PARAFAC model has been established in [31] and is presented
in the next theorem

Theorem 2: Suppose that the elements of A and P are drawn from a jointly continuous distribution.
If

I(I − 1)

2
≤ J(J − 1)

4

[
J(J − 1)

2
+ 1

]
−

(
J
4

)
1{J≥4} (18)

where 1{J≥4} =

{
0 if J < 4
1 if J ≥ 4

, then for I ≤ 30, A and P are almost surely unique up to inherently

unresolvable permutation and scaling of columns.
In our context J corresponds to the number of microphones we use while I corresponds to the number

of speakers that can be separated. In Table I below, we give for values J = 2, . . . , 8 the upper bound
for I , according to the formula given in (18). Observe that 6 microphones it is possible to estimate the
steering vectors of up to 15 speakers, whereas with 8 microphones it is possible to estimate the steering
vectors of up to 26 speakers - more than 3 times the number of microphones, in theory.

Note that the formula in (18) provides theoretical bounds on the number of speaker signals that can
be separated, relying on the link to the conjugate symmetric PARAFAC model established in the previous
subsection. The ICE approach, however, requires the number of speakers to be at most equal to the number
of microphones used. Thus, practically in the ICE approach, the maximum number of speakers that can
be separated, cannot surpass the number of microphones used to achieve this separation, regardless of the
bounds resulting from (18) and shown in Table I.
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TABLE I

VALUES OF J AND UPPER BOUNDS FOR I , WHICH FOLLOW FROM (18)

J 2 3 4 5 6 7 8
Upper bound for I 2 4 6 10 15 20 26

IV. TRILINEAR ALTERNATING LEAST SQUARES ESTIMATOR

We will now review the Trilinear Alternating Least Squares (TALS) technique [10], [28], [29] for fitting
the PARAFAC model of Section III. Again, we solely consider the PARAFAC model of the DCE approach
(5), since by letting x̃(f, t), R̃

−1

x (f, t), W̃
H

(f) and D−1
s (f, t) stand in for x(f, t), Rx(f, t),A(f) and

Ds(f, t) respectively, the following analysis is identical for the model of the ICE approach. TALS will be
subsequently used to estimate the matrices A(f) and W̃

H
(f) up to a frequency-dependent permutation

and scaling ambiguity. Exactly how these ambiguities are resolved (to yield our final separation solution),
will be discussed in section V.

A. Preliminaries
In practice, the exact autocorrelation matrices Rx(f, tp) are unavailable but can be estimated from the

array snapshots x(t), t = 1, . . . , N . If we define K = bNP

T
c, the sample autocorrelation matrix estimates

are given by

R̂x(f, tp) =
1

K

K−1∑

k=0

x(f, tp + kT )xH(f, tp + kT ), p = 1, . . . , P (19)

We can choose tp such that we have non-overlapping times for R̂x(f, tp), i.e. tp = pTK, but overlapping
averaging times can be chosen, as well. The matrices R̂x(f, tp), p = 1, . . . , P can be used to form a sample
three-way autocorrelation array denoted as R̂x(f).

In order to explain TALS, we will need to define “slices” of the three-way arrays Rx(f) and R̂x(f)
along different dimensions [29]. Towards this end, let us define the “slice” matrices3

R(j)
α (f) , [rj,:,:(f)],R

(l)
b (f) , [r:,l,:(f)], R(p)

c (f) , [r:,:,p(f)] (20)

R̂
(j)

α (f) , [r̂j,:,:(f)], R̂
(l)

b (f) , [r̂:,l,:(f)], R̂
(p)

c (f) , [r̂:,:,p(f)] (21)

where j, l = 1, . . . , J ; p = 1, . . . , P ; rj,l,p(f) , [Rx(f)]j,l,p; and r̂j,l,p(f) , [R̂x(f)]j,l,p.
For the sake of convenience, let us introduce B(f) , AH(f). Define the matrices

Rα(f) ,




R(1)
α (f)

R(2)
α (f)

...
R(J)

α (f)


 = [P (f)¯A(f)]B(f) (22)

Rb(f) ,




R
(1)
b (f)

R
(2)
b (f)

...
R

(J)
b (f)


 = [BT (f)¯ P (f)]AT (f) (23)

3We use MATLAB notation.
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Rc(f) ,




R(1)
c (f)

R(2)
c (f)

...
R(P )

c (f)


 = [A(f)¯BT (f)]P T (f) (24)

and similarly for the updates of their respective sample estimates R̂α(f), R̂b(f), R̂c(f).
Note that for the sake of algorithm simplicity, we will not exploit the fact that our specific PARAFAC

model is symmetric. That is, the algorithm that follows treats A(f) and B(f) as independent variables;
symmetry will only be exploited in the calculation of the final estimate of A(f).

B. Algorithm
The basic idea behind the TALS procedure for PARAFAC fitting is to update each time a subset of

parameters using LS regression while keeping the previously obtained estimates of the rest of parameters
fixed. This alternating projections-type procedure is iterated for all subsets of parameters until convergence
is achieved [9], [3], [28], [29].

In application to our problem, the PARAFAC TALS procedure can be formulated as follows

• Step 1: Initialize P (f) and A(f).
• Step 2: Find the estimate B(f) by solving the following LS problem

B̂(f) = arg min
B(f)

‖R̂α(f)− [P (f)¯A(f)]B(f)‖2
F (25)

whose solution is given by
B̂(f) = [P (f)¯A(f)]†R̂α(f) (26)

Set B(f) = B̂(f).
• Step 3: Find the estimate of A(f) by solving the following LS problem

Â(f) = arg min
A(f)

‖R̂b(f)− [BT (f)¯ P (f)]AT (f)‖2
F (27)

whose solution is given by

Â(f) = R̂
T

b (f)
[
[BT (f)¯ P (f)]†

]T

(28)

Set A(f) = Â(f).
• Step 4: Find the estimate of P (f) by solving the following LS problem

P̂ (f) = arg min
P (f)

‖R̂c(f)− [A(f)¯BT (f)]P T (f)‖2
F (29)

whose solution is given by

P̂ (f) = R̂
T

c (f)
[
[A(f)¯BT (f)]†

]T

(30)

Set P (f) = P̂ (f).
• Step 5: Repeat steps 2-4 until convergence is achieved and then compute the final estimate of A(f)

as Â(f) = [A(f) + BH(f)]/2.
The TALS algorithm is repeated for every frequency. The complexity of the TALS algorithm is O(I3 +

J2IP ) (O(I3 + I3P ) for the model of the ICE approach) per iteration. It is worth noting that when
I is small relative to J and P , only a few iterations of the algorithm are usually required to achieve
convergence [28]. The TALS algorithm can be initialized randomly, or via algebraic eigenvalue-based
solutions, similar to ESPRIT, in certain cases; see [3].
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V. RESOLVING THE SCALING AND PERMUTATION AMBIGUITIES

As already mentioned, in order to achieve adequate separation performance, the resolution of the
frequency-dependent permutation and scaling ambiguity problems must be addressed. In this section, we
suggest a novel method for solving the permutation and scaling problems that arise in the blind speech
separation context. In the first two subsections, our method of dealing with the frequency-dependent
permutation ambiguities is presented, while the third subsection describes how the scaling problem is
resolved.

A column-permuted and scaled version of the true mixing matrix A(f), can be written as

As,p(f) = As(f)Π(f) = A(f)D(f)Π(f) (31)

where Π(f) is a permutation matrix and D(f) is a diagonal scaling matrix. This is the output matrix of
the TALS algorithm at frequency f , when following the DCE approach.

Similarly, a column-permuted and scaled version of the matrix U (f) = W H(f), where W (f) is the
true beamforming matrix, can be written as

U s,p(f) = U s(f)Π(f) = U (f)D(f)Π(f) (32)

This is the output matrix of the TALS algorithm at frequency f , when following the ICE approach.
In order to separate the individual speech signals, it is imperative to reduce this frequency-dependent

permutation and scaling to a single, frequency-independent permutation and scaling. How this is done, is
discussed next.

A. Resolving the frequency-dependent permutation problem
First, let us consider the data model of the first approach. We resolve the permutation problem by

exploiting two inherent attributes of the system under study. Proper interpretation and utilization of each
of these attributes allows us to transform the frequency dependent permutation problem into an optimization
problem with each attribute providing us with a different optimization criterion. We then formulate a joint
optimization criterion that incorporates these two constituent criteria.
•Criterion 1: Based on the underlying physical model of the electro-acoustic J×I (microphones×speakers)

system, the elements of the mixing matrices {A(f), f = 0, . . . , T − 1} may be decomposed into products
of the form

αj,i(f) = Gj,i(f)Hj(f)e−
2π
√−1f
T

τj,i (33)

where
• Gj,i(f) represents the frequency response of the acoustic channel between the jth sensor and the ith

source.
• Hj(f) represents the jth microphone’s frequency response.
• τj,i represents the delay, due to the time needed for the sound to cover the distance between the ith

speaker and the jth microphone.
For this subsection only (derivation of criterion 1), we make the following assumptions:
Assumption 5.1: The speech signals travel in an almost non-reverberant (unechoic) environment. This

means that, aside from a real multiplicative factor that is associated with the power loss over distance of the
signals, the frequency responses of the acoustic channels are almost identical. Hence, Gj,i(f) ≈ nj,iG(f),
where nj,i is the aforementioned multiplicative factor, that depends solely on the distance between the ith
speaker and the jth microphone.

Assumption 5.2: The microphones’ frequency responses are almost flat over the frequency band of
interest (i.e., 20Hz-3.4KHz approximately, which is the frequency band of human speech). Hence, Hj(f) ≈
Hj for all j = 1, . . . , J , with Hj ∈ C.

Under the assumptions made, (33) can be rewritten as

αj,i(f) ≈ nj,iG(f)Hje
− 2π

√−1f
T

τj,i (34)
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Now, normalize the spatial signatures of the output matrices (31) with respect to an arbitrary reference
microphone (e.g., the first microphone for j = 1). Consider the vector whose elements are the magnitudes
of the respective elements of the ith normalized spatial signature. Using (34), the latter can be written as

α
(n)
i (f) ≈




1
n2,i|H2|
n1,i|H1|

...
nJ,i|HJ |
n1,i|H1|




(35)

for all i = 1, . . . , I .
Hence, in non-reverberant (or, mildly reverberant) environments, where the recordings have been con-

ducted using microphones with (almost) flat frequency responses, the magnitude of the elements of the
normalized spatial signature, is approximately independent of frequency, as is readily seen from (35). Thus,
the collection of vectors {α(n)

i (f), f = 0, . . . , T −1, i = 1, . . . , I}, can be divided into I separate clusters,
each of the latter being associated with a different speaker. Each cluster consists of T resemblant (in the
Euclidean distance sense) vectors {α(n)

i (f), f = 0, . . . , T − 1}, i.e., the vectors (35) which correspond to
the same specific speaker (fixed i).

We apply a vector quantization (VQ) clustering procedure [7], over all the available vectors {α(n)
i (f), f =

0, . . . , T − 1, i = 1, . . . , I}, in order to determine the I center vectors (centroids) {c1, . . . , cI}, with
ci ∈ RJ , of the I clusters. With the I centroids at our disposal, the frequency-dependent permutation
problem boils down to the following Integer Least Squares (ILS) minimization problem

min
{sf}T−1

f=0 ∈{1,...,I!}T

T−1∑

f=0

‖C −An(f)Π11{sf=1} − . . .−An(f)ΠI!1{sf=I!}‖2
F (36)

where C ∈ RJ×I is the matrix whose columns are the centroids {ci, i = 1, . . . , I}, An(f) ∈ RJ×I is
the matrix whose columns are the arbitrarily permuted4 vectors {α(n)

i (f), i = 1, . . . , I}, Πl ∈ RI×I for
l = 1, . . . , I! is one of the total number of5 I! permutation matrices of dimensionality I × I , 1{x=α} ={

0 if x 6= α
1 if x = α

, and sf takes on the integer values {1, . . . , I!}.

The solution {s1, . . . , sT} to the minimization problem (36) provides us with all the information we need
for dealing with the frequency-dependent permutation problem. Suppose that sf = l with l ∈ {1, . . . , I!}.
Then, by permuting the columns of As,p(f) in accordance with the permutation matrix Πl, the permutation
ambiguity at frequency f is lifted. Thus, based on the values {sf , f = 1, . . . , T} that criterion (36)
provides, and performing the appropriate permutations across all frequency bins, the frequency-dependent
permutation problem can be adequately resolved.
•Criterion 2: For adjacent frequency bins, f1, f2 = f1+1, αi(f1) ≈ αi(f2) and consequently α

(n)
i (f1) ≈

α
(n)
i (f2). This is valid for dense FFT grids irrespective of whether or not assumptions 5.1 and 5.2 hold.

Based on this fact, we formulate our second ILS minimization criterion

min
{sf}T−1

f=0 ∈{1,...,I!}T

T−1∑

f=0

‖An(f)Π11{sf=1} + . . . + An(f)ΠI!1{sf=I!} −An(f − 1)Π11{sf−1=1} − . . .

−An(f − 1)ΠI!1{sf−1=I!}‖2
F (37)

where An(−1) = 0J×I , by convention. Criterion (37) should also provide adequate resolution of the
permutation problem, by reordering the columns of the matrices As,p(f) of (31), as outlined in the
previous paragraph for our first criterion.

4in accordance with the arbitrary permutations of the columns of the output matrices {As,p(f), f = 0, . . . , T − 1}
5I! equals the total number of possible permutations of the columns or the rows of an I × I matrix or equivalently the total number of

permutation matrices of dimensionality I × I
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The criteria of (36) and (37) can be combined into one overall ILS minimization criterion

min
{sf}T−1

f=0 ∈{1,...,I!}T

T−1∑

f=0

{‖C −An(f)Π11{sf=1} − . . .−An(f)ΠI!1{sf=I!}‖2
F + λ‖An(f)Π11{sf=1} + . . .

+ An(f)ΠI!1{sf=I!} −An(f − 1)Π11{sf−1=1} − . . .−An(f − 1)ΠI!1{sf−1=I!}‖2
F (38)

where λ is a weighting factor. When λ → 0 (practically, for λ << 1), the combined criterion (38)
coincides with criterion 1, while for λ →∞ (practically, for λ >> 1), (38) coincides with criterion 2.

Note that the ILS minimization criterion (38), fixes the permutation ambiguity globally across all
frequency bins. This is an important advantage versus a sequential approach to the permutation problem,
where starting from the first frequency bin f1, we adjust the permutation of each bin relative to its previous
bin. This is because the sequential approach, although simpler, has a major drawback as explained next.
Consider the situation where an error is made in estimating the correct permutation matrix for frequency
bin fk. Using the sequential approach, it is quite possible that many of the estimated permutation matrices
for the frequency bins after fk will be wrong. In the worst case scenario we will have half of the frequency
bins with one permutation and the other half with a different permutation, which will result in very poor
or no separation. Such a catastrophic situation is prevented by the global ILS minimization criterion (38).

The criterion of (38) can be properly modified in order to resolve the frequency-dependent permutation
problem that arises when the second approach is followed. In this case we have

min
{sf}T−1

f=0 ∈{1,...,I!}T

T−1∑

f=0

{‖C −Un(f)Π11{sf=1} − . . .−Un(f)ΠI!1{sf=I!}‖2
F + λ‖Un(f)Π11{sf=1} + . . .

+ Un(f)ΠI!1{sf=I!} −Un(f − 1)Π11{sf−1=1} − . . .−Un(f − 1)ΠI!1{sf−1=I!}‖2
F (39)

where Un(−1) = 0J×I , by convention. In (39), Un(f) = [u
(n)
1 (f), . . . , u

(n)
I (f)] ∈ RJ×I with u

(n)
i (f)

representing the vector whose elements are the magnitudes of the respective elements of the (normalized
with respect to an arbitrary microphone) ith column of the corresponding frequency’s output matrix (32).
Again, C ∈ RJ×I is the matrix whose columns are the centroids {ci, i = 1, . . . , I}, obtained after
application of a clustering procedure via VQ over all the available vectors {u(n)

i (f), f = 0, . . . , T −1, i =
1, . . . , I}.

The ILS minimization criteria of (38), (39) proved to be satisfactory for resolving the permutation
problem of the real-world BSS problems we examine in section VI. The following subsection considers
the 2-sources case and discusses the selection of the algorithm we used for the implementation of the
criterion (38). The pertinent analysis for the criterion (39) is identical, thus is omitted for brevity.

B. Special case: J × 2 mixture
We will henceforth focus on the 2-sources (i.e., (J, I) = (J, 2)) case, but all our results readily extend

to the case of general (J, I). By letting sf ∈ {−1, 1}, Π−1 = I =

[
1 0
0 1

]
and Π1 = Π =

[
0 1
1 0

]
,

the optimization criterion of (38) simplifies to

min
{sf}T

f=1∈{±1}T

T∑

f=1

{∥∥∥C − 1− sf

2
An(f)− 1 + sf

2
An(f)Π

∥∥∥
2

F
+

λ
∥∥∥1− sf

2
An(f) +

1 + sf

2
An(f)Π− 1− sf−1

2
An(f − 1)− 1 + sf−1

2
An(f − 1)Π

∥∥∥
2

F

}
(40)

It is shown in Appendix A that (40) can be put in the following more familiar form:

min
s∈{±1}T

‖x−Bs‖2
2 (41)
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where s = [s1, s2, . . . , sT ]T .
The ILS optimization problem of (41) is known to be NP-hard. Over the years, several methods have

been developed to obtain high-quality solutions at manageable complexity cost. The trade-off between
performance and complexity makes the selection of the most suitable algorithm an application-dependent
issue.

Sphere Decoding (SD) [32] along with numerous variants of it [1], [5], [33], [34], and Semi-Definite
Relaxation (SDR) [16], are methods that can provide near-optimal performance at often acceptable
complexity. Unfortunately, they are too complex when the dimensionality of s exceeds 100 (e.g. 128
in our context). Block Minimum Mean Squared Error - Decision Feedback Equalization (BMMSE-DFE)
[6] and Probabilistic Data Association (PDA) [15], [22] are two simple methods that sometimes perform
well, but they need variance estimates for “signal” and “noise” at their input, which are not obvious
in the context of our application. A very suboptimal solution of the ILS optimization problem (41) is
to use the sign of the unconstrained LS solution, known as Quantized Zero-Forcing (QZF) in the digital
communications community, but performance leaves much to be desired. The best performance-complexity
trade-off in our context was exhibited by the Successive Interference Cancelation - Iterative Least Squares
(SIC-ILS) method [14]. In our specific application, SIC-ILS performs equally well as the near optimal
Sphere Decoding method for low dimensionalities (e.g., 32 or 64). We therefore used SIC-ILS throughout.

C. Resolving the frequency-dependent scaling problem
After the resolution of the frequency-dependent permutation ambiguity, as described in the previous

subsections, the only remaining problem is the frequency-dependent scaling ambiguity: i) of columns
of the estimated mixing matrices {A(f), f = 0, . . . , T − 1} for the DCE approach, ii) of rows of the
estimated unmixing matrices {W (f), f = 0, . . . , T − 1} for the ICE approach. First, let us consider the
resolution of the scaling problem for the DCE approach, that is based upon the following simple fact
whose proof can be found in Appendix B.

Fact 1: Consider a full rank matrix A ∈ CJ×I , with J ≥ I . Let An ∈ CJ×I denote the matrix whose
ith column a

(n)
i is the ith column ai of A, divided by the element aji,i of ai, i.e., a

(n)
i = 1

aji,i
ai, with

i = 1, . . . , I, ji ∈ {1, . . . , J}. Then A†
nA = diag{[aj1,1, . . . , ajI ,I ]

T}.
Let

As(f) = [d1(f)α1(f), . . . , dI(f)αI(f)] = A(f)




d1(f) . . . 0
... . . . ...
0 . . . dI(f)


 = A(f)D(f) (42)

where di(f) ∈ C for all i = 1, . . . , I , represent a column scaled version of the true mixing matrix A(f) at
frequency f . Divide the columns of matrix As(f) by their respective elements {d1(f)αj1,1(f), . . . , dI(f)
αjI ,I(f)}, with ji ∈ {1, . . . , J}, to yield matrix As,n(f)

As,n(f) = As(f)




1
d1(f)αj1,1(f)

. . . 0
... . . . ...
0 . . . 1

dI(f)αjI ,I(f)


 = A(f)D(f)D−1(f)




1
αj1,1(f)

. . . 0
... . . . ...
0 . . . 1

αjI ,I(f)


 =

A(f)




1
αj1,1(f)

. . . 0
... . . . ...
0 . . . 1

αjI ,I(f)


 = An(f) (43)

where An(f) denotes the matrix whose ith column a
(n)
i (f) is the ith column ai(f) of the true mixing

matrix A(f), divided by element aji,i(f) of ai(f).
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Let us multiply (3) (we neglect the noise term) from the left with the pseudoinverse A†
s,n(f) = A†

n(f).
Invoking Fact 1, we have

A†
s,n(f)x(f, t) ≈ A†

n(f)A(f)s(f, t) = diag{[αj1,1(f), . . . , αjI ,I(f)]T}s(f, t) =

[αj1,1(f)s1(f, t), . . . , αjI ,I(f)sI(f, t)]T (44)

Regarding the ICE approach, it is shown in Appendix C that by performing the appropriate manipulations
on the row scaled version W s(f) of the true unmixing matrix W (f), we can construct matrix W s,n(f)
given in (53). Multiplying (3) from the left with W s,n(f) yields

W s,n(f)x(f, t) ≈ [αj1,1(f)s1(f, t), . . . , αjI ,I(f)sI(f, t)]T (45)

We see from (44) and (45) that each speaker signal si(f, t) is multiplied by the element aji,i(f), for
all i = 1, . . . , I . But aji,i(f) is just the total frequency response6 that corresponds to the link between the
ith speaker and the jith microphone, at frequency f , which is almost constant across all frequencies of
interest (see assumption 5.2). Thus, the frequency-dependent scaling of the individual speaker signals that
would result if we had used the pseudoinverses of the matrices {As(f), f = 0, . . . , T − 1} in (44) or the
matrices {W s(f), f = 0, . . . , T − 1} in (45), now is reduced to a single, frequency-independent scaling,
i.e., the frequency-dependent scaling ambiguity problem is resolved. Intuitively, equations (44) and (45)
imply that after separation we essentially listen to the ith speaker’s speech signal the way it is captured
by the jith microphone, as if there were no other interfering speakers.

VI. ALGORITHMS

In this section, we summarize our two BSS algorithms, namely DCE-PARAFAC-ILS and ICE-PARAFAC-
ILS for J ≥ I . The two algorithms are formulated as follows

• Step 1
DCE-PARAFAC-ILS: Compute the autocorrelation data (4) for P time intervals over which the
measured signals are assumed stationary, using the sample average (19) on the frequency-domain
data (3).
ICE-PARAFAC-ILS: If J = I compute the “inverse” autocorrelation data (5) for P time intervals over
which the measured signals are assumed stationary, using the sample average (19) on the frequency-
domain data (3). If J > I perform a dimension reducing prefiltering of the data in (3), as outlined
in section II. Subsequently, compute the “inverse” autocorrelation data (8) for P time intervals over
which the measured signals are assumed stationary, using the sample average (19) on the prefiltered
frequency-domain data.

• Step 2
DCE-PARAFAC-ILS (ICE-PARAFAC-ILS): Apply the TALS algorithm to the autocorrelation data
calculated in Step 1, iteratively for all frequency bins f = 0, . . . , T − 1, to obtain the matrices
{As,p(f), f = 0, . . . , T − 1} ({W s,p(f), f = 0, . . . , T − 1}) i.e., the estimates of the true mixing
(unmixing) matrices up to a frequency-dependent permutation and scaling ambiguity of their columns
(rows).

• Step 3
DCE-PARAFAC-ILS (ICE-PARAFAC-ILS): Apply a VQ clustering procedure over all the available
vectors {a(n)

i (f), f = 0, . . . , T − 1, i = 1, . . . , I} ({u(n)
i (f), f = 0, . . . , T − 1, i = 1, . . . , I}) as

desctribed in subsection A of section V, to obtain the associated with the I speakers centroids
{c1, . . . , cI}. Form matrix C whose columns are the centroids {c1, . . . , cI}.

• Step 4

6which equals the triple product of the frequency response of the acoustic channel between ith speaker-jith microphone, the frequency
response of the jith microphone and an exponential term that is dependent on the delay, as verified from (33).
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DCE-PARAFAC-ILS (ICE-PARAFAC-ILS): Apply the SIC-ILS algorithm in order to solve the ILS
optimization problem in (38) (in (39)), and fix the arbitrary permutations as described in subsection
A of section V, thus determining the matrices {As(f), f = 0, . . . , T − 1} ({W s(f), f = 0, . . . , T −
1}), i.e., the estimates of the true mixing (unmixing) matrices up to a frequency-dependent scaling
ambiguity of their columns (rows).

• Step 5
DCE-PARAFAC-ILS (ICE-PARAFAC-ILS): Compute the matrices {As,n(f), f = 0, . . . , T−1}({W s,n(f),
f = 0, . . . , T − 1}), as outlined in subsection C of section V.

• Step 6
DCE-PARAFAC-ILS (ICE-PARAFAC-ILS): Apply the Inverse DFT to the collection of matrices {A†

s,n(f),
f = 0, . . . , T − 1} ({W s,n, f = 0, . . . , T − 1}) to yield the estimate of the inverse-channel impulse
response matrix {Ŵ (τ), τ = 0, . . . , T − 1}.

• Step 7
Estimate the speaker signals via ŝ(t) = Ŵ ∗ x(t)

VII. EXPERIMENTAL RESULTS

In the present section, we report the results obtained after application of our two algorithms to real-world
data of the PEACH multi-microphone database [20].

A. Experimental setup and performance measurement considerations
The mixed speech signals of the PEACH database were recorded using I = 2 loudspeakers and J = 4

omni-directional microphones. Analytically, the speech mixtures’ acquisition procedure was conducted
as follows: First, three utterances were acquired with a close-talk microphone for each one of eight
different speakers. The speakers were separated into two groups of four speakers each, with speakers of
the same group pronouncing the same three sentences every time. After the completion of the close-talk
signals’ acquisition procedure, the speakers were divided into four pairs, with each pair consisting of
speakers that belong to different groups. The close-talk signals of each pair were reproduced together
in a quiet room, by two loudspeakers in front of a microphone array consisting of four microphones,
for four different geometric configurations. Specifically, utterance i of one speaker was played back
simultaneously with utterance i of the pair’s other speaker by the two loudspeakers, for i = 1, 2, 3.
Thus, each pair of speakers provided three different speech mixtures for each geometric configuration.
The measurements can be separated into four sessions of twelve experiments each, giving a total of 48
experiments, and with each session corresponding to a different geometric configuration. As shown in Fig.
1, the loudspeakers and the microphones were uniformly-spaced on two parallel lines at distance d1. The
distance between microphones was d2, which was also the distance between the loudspeakers. For session I:
d1 = 150cm, d2 = 10cm, for session II: d1 = 150cm, d2 = 30cm, for session III: d1 = 100cm, d2 = 10cm
and for session IV: d1 = 100cm, d2 = 30cm.

In order to quantify the separation performance, we measured the average input Signal-to-Interference
Ratio (SIR) across microphones and the SIR for each of the unmixed signals that are the output of the
BSS algorithms. SIR is measured following the method proposed in [24]: The close-talk signals of each
speaker were played back through the corresponding loudspeaker one at a time, i.e. at each time only one
source (loudspeaker) was active. Let P x

j,i =
∑T−1

t=0 x2
j(t), where T is the number of samples, represent the

power of the recorded signal at the jth microphone when only source i is active and all the other sources
are inactive. The signal-to-interference ratio in dB of the recorded signal xj(t) at the jth microphone can
be estimated using

SIRx(j, i) = 10 log
maxi P

x
j,i∑I

i=1 P x
j,i −maxi P x

j,i

(46)
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Fig. 1. Geometry of the measurement setup

for j = 1, . . . , J and i = 1, . . . , I . In our case the number of microphones J = 4 and the number of
sources I = 2. The formula (46) can also be used to measure SIRy(j, i), that is the SIR of the jth
output of the separating algorithm, simply by substituting P x

j,i with P y
j,i, the latter representing the power

of the signal at the jth output of the algorithm when only source i is active, for j, i = 1, . . . , I . For our
experiments I = 2. Finally, the improvement on the SIR for the ith source is defined as SIR+(i) =
maxj SIRy(j, i) − SIRx(i), where SIRx(i) is the average input SIR across microphones for the ith

source, i.e. SIRx(i) =
PJ

j=1 SIRx(j,i)

J
.

The experiments have been conducted using speech data of approximately equal duration in time
(about 19 seconds), sampled at 16KHz. Throughout all BSS experiments using our proposed algorithms,
the number of time segments the speech mixtures were divided into, was set to P = 10. Due to the
approximately equal length of all speech signals (about 300,000 samples), the size of each segment was
about 30,000 data samples long, for all experiments. For the solution of the permutation problem, the two
ILS minimization criteria in (38) and (39) were weighted equally, i.e., λ = 1.

B. Discussion on the results
Figures 2 and 3 show how the performance of the proposed algorithms changes for various numbers of

frequency bins used to estimate the autocorrelation matrices, for all geometric configurations. The plots
of each figure were obtained by averaging the improvements on the SIR over all twelve experiments
and speakers of the corresponding session, at each point. It should be mentioned that depending on the
experiment the SIR improvement reached up to more than 12 dBs in certain cases, but we chose to report
the aggregate behavior of the proposed algorithms instead of focusing on specific experiments 7. Note that
on the average, the performance seems to decrease as the size of the Fast Fourier Transform (FFT) grid gets
bigger; this is the reason we don’t report the performance for more than 256 frequency bins. In most cases,
the highest separation performance for both algorithms, is achieved for small FFT grid sizes of 16 and 32
bins. A second remark is that the separation performance is a function of the geometry of the measurement
setup, since the performance improves in the following cases: i) when the distance between microphones
increases, ii) when the distance between loudspeakers and microphones decreases. The rationale for

7A subset of the recorded speech mixtures along with the corresponding separated signals, can be found in the following website:
http://www.speech.tuc.gr/res/research bss.html.
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TABLE II

COMPARISON TABLE FOR DCE-PARAFAC-ILS, ICE-PARAFAC-ILS, AND PARRA’S METHOD: AVERAGE SIR IMPROVEMENT IN DB FOR EACH

EXPERIMENTAL SESSION, ALONG WITH THE AVERAGE EXECUTION TIME FOR EACH OF THE ABOVE METHODS IN SECONDS. THE

NUMBER OF TIME SEGMENTS P = 10 WHILE THE NUMBER OF FREQUENCY BINS T = 32 FOR DCE-, ICE-PARAFAC-ILS AND T = 4096

FOR PARRA’S METHOD.

Session DCE-PARAFAC-ILS ICE-PARAFAC-ILS Parra’s Method
SIR impr. mean SIR impr. mean SIR impr. mean

I: 150cm-10cm 2.9 3.2 3.5
II: 150cm-30cm 4.2 5.0 3.1
III: 100cm-10cm 5.6 5.2 6.8
IV: 100cm-30cm 6.3 5.3 1.0
Overall Average 4.750 4.675 3.600
Execution Time 4.5 6.4 351.3

this, partially lies in the method that resolves the frequency-dependent permutation problem; the method
virtually exploits the diversification in the distances between the speakers-microphones positions in each
geometric configuration, via the first criterion of (38) (see Assumption 5.1). In addition, PARAFAC is
sensitive to diversity. In the limit as d1 → ∞ or as d2 → 0 there is no diversity, which results in poor
or no estimation of the matrices {A(f), f = 0, . . . , T − 1} and {W̃ (f), f = 0, . . . , T − 1} (up to a
frequency-dependent permutation and scaling ambiguity) in the PARAFAC step of DCE-PARAFAC-ILS
and ICE-PARAFAC-ILS, respectively. Figure 4 depicts the overall behavior of the proposed separating
algorithms in terms of SIR improvement averaged over all four geometric configurations versus the number
of frequency bins used. Finally, bearing in mind that the total running time of BSS algorithms is a crucial
parameter (especially in the case where the algorithms are used in real-time applications), we report in
figure 5 the average time needed for each of the proposed algorithms, in order to perform the source signals’
separation for several FFT grid sizes. The times reported correspond to the MATLAB implementations
of the algorithms, which were tested on a Pentium M-based personal computer running at 2 GHz with
1.5 MB of RAM. This figure demonstrates convincingly the strength of the proposed algorithms: High
separation performance is achieved at a low computational cost, using 16 or 32 FFT grid points.

To support our arguments, the performance of our methods is compared with the method presented in
[19], henceforth referred to as “Parra’s method”, for the corpus of the PEACH database. Table II reports the
results for DCE-PARAFAC-ILS, ICE-PARAFAC-ILS and Parra’s method for each experimental session
along with the average execution time for each method, in order to perform the separation of the speaker
signals. The parameters for “Parra’s method” were chosen so that the method exhibits the highest possible
performance. Specifically, the number of frequency bins T = 4096 while the length of the inverse channel
impulse response was set to Q = 512, as suggested in [19]. For DCE-, ICE-PARAFAC-ILS T = 32. The
number of time segments the speech signals were divided into, was set to P = 10, for all three methods.
We see from Table II, that our methods outperform the method proposed in [19] in sessions II and IV,
while Parra’s method exhibits slightly better separation performance in the first and third experimental
session. However, the overall separation performance in Table II, which can be thought of as a index of
a method’s effectiveness regardless of the geometric configuration, favors our proposed algorithms over
Parra’s method by more than 1 dB. In addition, the robustness of the new methods in changes of the
experimental setup’s geometry, seems to be higher when compared to Parra’s method: The separation
improvement of the PARAFAC-ILS methods varies from 2.9 to 6.3 dB’s while Parra’s method varies
from 1 to 6.8 dB’s. Finally, our algorithms are faster than Parra’s by two orders of magnitude on average.

VIII. CONCLUSIONS

We have presented two new approaches for the blind speech separation problem. The new approaches
employ PARAFAC to separate signals in the frequency domain and a context-specific ILS method to
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resolve the frequency-dependent permutation ambiguity, which is a key problem in this setting. Our
approaches offer guaranteed convergence, unlike [19], and better separation performance in most cases,
measured both quantitatively and in subjective tests, at considerably reduced complexity. The link to
the conjugate symmetric PARAFAC model established here, also shows that a much higher number
of signals can be separated than what was suggested in [19]. In the future, we will investigate the
separation performance of our algorithm as a function of the source-sensor geometry and the permutation
minimization criterion weight λ.
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APPENDIX A
It suffices to bring (40) in the form

min
s∈{±1}T

{‖x1 −B1s‖2
2 + λ‖x2 −B2s‖2

2} (47)

since ‖x1 −B1s‖2
2 + λ‖x2 −B2s‖2

2 = ‖x−Bs‖2
2 for x =

[
x1√
λx2

]
and B =

[
B1√
λB2

]
.

Considering the first term of (40) we have

T−1∑

f=0

∥∥∥C − 1− sf

2
An(f)− 1 + sf

2
An(f)Π

∥∥∥
2

F
=

T−1∑

f=0

∥∥∥C − An(f)

2
− An(f)Π

2
+

(An(f)

2
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2

)
sf

∥∥∥
2

F
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)
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2
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2
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1 (f)

2

)
sf

∥∥∥
2

2
= ‖x1 −B1s‖2

2 (48)

where x1 =


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and a
(n)
i (f)

denotes the ith column of An(f).

Similarly, the second term of (40) can be written as
T∑

f=1
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with

x2 =
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By setting x =

[
x1√
λx2

]
and B =

[
B1√
λB2

]
, as already mentioned, the optimization problem of

(47) is reformulated as in (41).

APPENDIX B
Proof of Fact 1: Matrix An can be written as

An = AV (50)

where the diagonal matrix V =




1
αj1,1

. . . 0
... . . . ...
0 . . . 1

αjI ,I


. Hence, the left Moore-Penrose pseudoinverse of

An is written
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and
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T} (52)

This completes the proof.
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APPENDIX C
Consider the resolution of the scaling problem for the ICE approach. In this case let

W s(f) =




d1(f) . . . 0
... . . . ...
0 . . . dI(f)


 A†(f) = D(f)A†(f) (53)

where di(f) ∈ C for all i = 1, . . . , I , represent a row scaled version of the true unmixing matrix
W (f) = A†(f) at frequency f . The right Moore-Penrose pseudoinverse of W s(f) can be written as

W †
s(f) =

(
D(f)A†(f)

)†
= A(f)D−1(f) (54)

with entries W †
s(f)(j,i) =

αj,i(f)

di(f)
, where X(j,i) denotes the (j, i)th entry of X .

With W †
s(f) in our disposal, and using (53), (54) we can form the following matrix

W s,n(f) =




αj1,1(f)

d1(f)
. . . 0

... . . . ...
0 . . .

αjI ,I(f)

dI(f)


W s(f) =




αj1,1(f) . . . 0
... . . . ...
0 . . . αjI ,I(f)


 D−1(f)D(f)A†(f) =
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

αj1,1(f) . . . 0
... . . . ...
0 . . . αjI ,I(f)


 A†(f) (55)

Now, by multiplying (3) (we neglect the noise term) from the left with the matrix W s,n(f) given in
(55) we have

W s,n(f)x(f, t) ≈ diag{[αj1,1(f), . . . , αjI ,I(f)]T}A†(f)A(f)s(f, t) =

diag{[αj1,1(f), . . . , αjI ,I(f)]T}s(f, t) = [αj1,1(f)s1(f, t), . . . , αjI ,I(f)sI(f, t)]T (56)

Again, we have reached to the result of (44).
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Fig. 2. Average SIR improvement versus number of frequency bins using DCE-PARAFAC-ILS.
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Fig. 3. Average SIR improvement versus number of frequency bins for ICE-PARAFAC-ILS.
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Fig. 4. Separation performance of our algorithms versus number of frequency bins, averaged over all geometric configurations
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Fig. 5. Average execution time of our algorithms. The average length of the speech mixtures processed is about 300,000 samples.


