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Chapter 1

Introduction

This thesis considers the development of a hybrid MIMO detection algorithm

using Semidefinite Programming (SDP) and Sphere Decoding (SD) techniques.

The aforementioned algorithm can be applied for multiuser detection in DS-

CDMA systems, and for low complexity Maximum Likelihood (ML) decoding in

multi-antenna communication systems.

The MIMO communication model, shown in figure (1), is constituted by a

transmitter with M transmit antennas and a receiver with N receive antennas.

An M -dimensional symbol vector s, whose elements are integers drawn from

a Finite Alphabet (FA) constellation, which can be either real or complex, is

transmitted through a linear time invariant N ×M block fading channel M. The

elements of the channel matrix M (mixing matrix) are the channel coefficients

(channel gains) mij of the corresponding paths. At the receiver, a N × 1 vector

d is observed, which is corrupted by Additive White Gaussian Noise (AWGN)
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Figure 1.1: MIMO communication model architecture

vector of zero mean and covariance matrix σ2I, where I denotes the N × N

identity matrix. Thus, this model, for a single time interval, can be formulated

as:

d = Ms + n, s ∈ FAM (1.1)

where s is the M × 1 transmitted symbol vector, M is the N × M baseband-

equivalent channel matrix, d is the observed N × 1 baseband-equivalent output

vector and n is the N × 1 Gaussian noise vector. Assume that the channel ma-

trix M remains constant while transmitting a single block and is known at the

receiver (full channel state information (full CSI-R)) but not at the transmitter.

The goal at the receiver is to detect accurately the transmitted symbol vector from

the received one, using the known channel matrix and the noise statistics. The

Multiple-Input Multiple-Output (MIMO) model (1.1) is common in a number of

modern communication systems. In addition to multi-antenna space-time sys-

tems, MIMO decoding is also encountered in multiuser spread-spectrum systems
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like synchronous Code Division Multiple Access (CDMA) receivers performing

multiuser detection [1], [7].

1.1 ML Detection

For any constellation, ML detection in memoryless MIMO communication sys-

tems, in the presence of AWGN, boils down to the following problem:

ŝML = arg min
s∈FAM

||d − Ms||2
2

(1.2)

In this thesis, high-order QAM constellations (16-, 64-, 256-QAM etc.) are

considered, so the variables are in general complex, s ∈ FAM , (M,d) ∈ (CN×M , CN×1)

respectively. For separable, but not necessarily uniform, QAM constellations

(squared PAM), we may define:

z := [ℜ{d}T ℑ{d}T ]
T
,

H :=






ℜ{M} −ℑ{M}

ℑ{M} ℜ{M}




 ,

r := [ℜ{s}T ℑ{s}T ]
T
,

(1.3)

and convert the problem to the real-valued form:

r̂ML = arg min
r∈FA2M

||z − Hr||2
2

(1.4)

where r ∈ FA2M ,H ∈ R2N×2M , z ∈ R2N×1, where FA now denotes the PAM

alphabet, employed for the real and imaginary part of the original, complex QAM

constellation. In (1.4):
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the vector z and the matrix H are given, and the goal is to find the column

vector r̂ ∈ FA2M that minimizes the squared Euclidean distance from z to Hr:

||z − Hr||2
2

(1.5)

The above is variably known as lattice search, or Integer Least Squares (ILS)

problem [15], because the elements of r are drawn from the integer lattice. The

ML detector minimizes the probability of error for equiprobable symbol vectors.

Viewing z as a point in the 2N -dimensional space, (1.4) suggests searching ex-

haustively over all |FA|2M candidate vectors r and selecting the one for which

Hr lies closest to z. Unfortunately, it is known that this solution requires ex-

ponential computation complexity in M , which is prohibitive in most practical

scenarios. Specifically, problem (1.4) has been proved to be nondeterministic

polynomial-time hard (NP-Hard) [1]. For this reason several computationally

efficient algorithms have been developed in order to achieve (quasi-)optimal per-

formance with relatively low computational cost. The current state-of-the-art

includes two main families of quasi-ML detectors: Those based on Semidefinite

Relaxation [7], [8], [9], [10], [11], and those based on Sphere Decoding [14], [18],

[13], [19], [22].

1.1.1 Overview of common suboptimal methods

Apart from the SDR family of suboptimal algorithms, other heuristic approxi-

mation methods are employed to reduce the complexity of finding a (suboptimal
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in general) solution for the ILS problem (1.2). Some common approaches in the

communication literature are discussed next [16].

1. Solve the unconstrained least-squares problem to obtain ŝ = pinv(M)d,

where pinv(M) denotes the pseudoinverse of M ((MTM)−1MT). The

entries of ŝ will not necessarily be integers, so a quantization to the nearest

FA point is needed (a process referred to as slicing) to obtain

ŝB =
[

(MTM)−1MTd
]

FAM

(1.6)

The above estimate is also called the Babai estimate [28]. In communica-

tions theory, this procedure is also referred to as zero-forcing equalization.

2. Nulling and cancelling. In this method, the Babai estimate is used for only

one of the entries of s, say the first one (s1). That entry is then assumed

to be known and its effect is cancelled out to obtain a reduced-order ILS

problem with M − 1 unknowns. This process is repeated to find s2, etc.

This is similar to decision-feedback equalization.

3. Nulling and cancelling with optimal ordering (Detection ordering). Nulling

and cancelling is sensitive in “error propagation”; if s1 is estimated in-

correctly it can have an adverse effect on the estimation of the remaining

unknown symbols (s2, s3 . . .). To minimize this effect, it is advantageous

to perform nulling and cancelling from the “strongest” to the “weakest”

symbol. This method is proposed in [29], [30].
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The above heuristic methods all require O(MN2) computations, essentially

because they all first solve the unconstrained least-squares problem, assuming

that the channel changes very slowly, so that the matrix inversion can be re-

used.

1.1.2 Measures of Performance

In this thesis, the state-of-the-art algorithms and the proposed one are com-

pared, by means of three performance metrics; namely, Symbol Error Rate (SER),

mean and worst-case execution time.

The key detection performance indicator of a detector is the SER - the prob-

ability that a transmitted symbol has been mistaken for another one of the em-

ployed constellation.

Moreover, a detector has to be computationally efficient in order to be im-

plementable in practical communication systems. For this reason, as measures

of the computational cost of the various detection algorithms considered, we use

the mean and the worst-case execution time1.

1.1.3 Comparison of SDR and SD properties

The SD family of detectors [14], [18], [13], [19], [22], yields high quality (ML)

solutions at low computational cost, provided that the Signal to Noise Ratio

(SNR) is relatively high, and the aggregate transmission rate is relatively low.

1On an Intel Centrino Core Duo 1.83 GHz system, with 2GB RAM
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On the other hand, SD cannot efficiently handle high problem dimensions (long

symbol vectors) or high-order symbol constellations, especially at low SNR, and

it has been recently shown that its expected complexity is exponential under mild

conditions [26]. In practice, SD exhibits a phase transition: it either works very

efficiently in terms of both complexity and detection performance, or it hopelessly

“freezes”.

SDR approaches [7], [8], [9], [10], [11], on the other hand, feature polynomial

worst-case complexity and very competitive performance (quasi-ML). Initially,

SDR multiuser / MIMO detection was developed for BPSK constellations, but the

ideas were later extended to high-order QAM constellations [8]. The complexity of

the SDR MIMO detector in [8], is nearly cubic in the dimension of the transmitted

symbol vector, and independent of the constellation order for uniform QAM,

affine in the constellation order for non-uniform QAM.

Still, when SD is operative, it often outperforms SDR in terms of complexity

and SER performance. These observations motivate research in hybrid SDR-SD

techniques, aiming to capture and leverage the best features of both families of

detectors. Specifically, we may use SDR to speed up SD in difficult cases, as we

will see in chapter 4.

1.2 Thesis Outline

The basic idea of this thesis is the description and implementation of SDR and

SD algorithms in the MIMO detection problem with high-order QAM signaling
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and the development of a hybrid SDR-SD algorithm for the same reason. In

the first chapter, the MIMO model and the detection in MIMO systems have

been explained. Also, a brief reference to some of the simpler algorithms that

have been developed for the detection procedure has been given. Chapter two

is devoted to the convex optimization theory and semidefinite relaxation. In

the first section of this chapter the basic concepts of convex optimization theory

are reviewed. The family of convex optimization problems and its classes are

introduced. The possibility of converting a non-convex engineering problem, like

the one considered in this thesis, to a convex one by reformulating it or dropping

/ relaxing the non-convex constraints is explained, and how the resulting convex

problem can be solved by efficient algorithms. Next, a link is drawn between

convex relaxation the MIMO detection problem. The second part is devoted

to the description of the semidefinite relaxation algorithm in [8] for solving the

detection problem. The sphere decoder, with its variates and improvements, is

explained in chapter three. A detailed description of this algorithm is given,

analysing the way of choosing an appropriate radius and explaining how SD

searches within a (hyper-)sphere to find the exact ML solution. In the sequel,

the Schnorr-Euchner (SE) variate of SD is given, explaining how SE ordering

increases the probability to find the exact ML solution earlier than the original

SD. Also a short reference to improvements and heuristics such as the detection

ordering (DO) preprocessing step is given. In the fourth chapter, the development

of a hybrid SDR-SD algorithm is presented, which is the main contribution of
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this thesis. In chapter five, simulation results and figures are presented, along

with a simple and efficient way of converting QAM to multidimensional BPSK

constellations. In the figures, the SDR algorithm, SE-SD and the hybrid SDR-

SD algorithm are compared regarding their error performance and their mean /

worst-case execution time. Also a comparison with the fast SDR detector of Z.

Luo and M. Kisialiou [27] is given. The aforementioned conversion from QAM to

multidimensional BPSK constellations is employed to enable [27] to work with

high-order QAM. Conclusions are presented along with the simulation results in

chapter five.
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Chapter 2

Convex Optimization and

Semidefinite Relaxation

In the first section of this chapter the basic concepts of convex optimization

theory are reviewed. The family of convex optimization problems and its classes

are introduced. The conversion of a non-convex engineering problem, like the

one considered in this thesis, to a convex one by reformulating it or dropping

/ relaxing the non-convex constraints is explained and how is being solved by

efficient algorithms. Next, the meaning of convex relaxation is given and the

link between this theory and the MIMO detection problem. The second part

is devoted to the description of the semidefinite relaxation algorithm in [8] for

solving the detection problem.
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2.1 Convex Optimization Theory

2.1.1 Convex Problems

In general, an optimization problem with equality and inequality constraints

can be expressed as follows :

minimizex f0(x)

subject to fi(x) ≤ 0 1 ≤ i ≤ m

hi(x) = 0 1 ≤ i ≤ p

(2.1)

where f0 is the objective function, fi are the inequality constraint functions, hi

are the equality constraint functions and x ∈ Rn is the optimization variable

[2]. When the objective and the inequality constraint functions are convex and

the equality constraint functions are affine, then problem (2.1) is a convex op-

timization problem. A function f : Rn → R is said to be convex if for all

x1,x2 ∈ domf (the domain of f) and λ ∈ [0, 1], λx1 + (1 − λ)x2 ∈ domf ,

and f(λx1 + (1 − λ)x2) ≤ λf(x1) + (1 − λ)f(x2). The set of all points x that

satisfy the constraints is called feasible set. An optimization problem is said to

be feasible if there exists at least one feasible solution, i.e. the feasible set is not

empty; infeasible otherwise. For a convex optimization problem, the feasible set

is convex. A set S ⊂ Rn is said to be convex if for any two points x1,x2 ∈ S,

the line segment joining x1 and x2 also lies in S. This property can be expressed

mathematically as: λx1 + (1 − λ)x2 ∈ S, ∀λ ∈ [0, 1] and x1,x2 ∈ S. Gen-

eraly, a convex set must be a solid body, containing no holes and always curve
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outward [6]. For example, convex sets are ellipsoids, hypercubes, polyhedrals etc.

An important property of convex sets is that the intersection of any number of

convex sets remains convex. On the other hand, the union of two convex sets

is typically non-convex. The optimal solution of an optimization problem is the

point x∗ that belongs to the feasible set and yields the optimal (i.e minimum)

value f ∗ = f0(x
∗).

2.1.2 Convex Classes and Problem Reformulation

Convex optimization problems do not entail local minima, which usually give

rise to difficulties in optimization. Moreover, as mentioned earlier, convex prob-

lems can be solved very efficiently, in polynomial time, by powerful modern opti-

mization algorithms like interior point methods [2], using software packages like

SeDuMi [5].

There are various classes of convex problems, depending on the nature of the

functions involved. Basic classes are:

1. Linear Program (LP): Where all functions are linear,

2. Quadratic Program (QP): Where f0 is quadratic and fi, hi are linear,

3. Quadratically Constrained Quadratic Program (QCQP): Where f0, fi are

quadratic and hi are linear,

4. Semidefinite Program (SDP): Where f0, hi are linear and the fi’s are Linear

Matrix Inequalities (LMIs).
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We will focus our interest in the fourth class (SDP) because the MIMO detec-

tion problem can be easily relaxed to an SDP [3], which can be solved efficiently

using interior point methods.

Unfortunately, not all problems are convex, as many engineering problems

and MIMO detection is one such example. This is not necessarily bad in general.

In many cases we may be able to properly reformulate a problem into a convex

one by rewriting it, changing some variables or adding some others (auxiliary

variables), unveiling its hidden convexity. It has to be noted that there is no

systematic way to reformulate a problem in convex form, it is rather an art that

can only be learned by examples.

2.1.3 Convex Relaxation

There are many engineering problems that cannot be converted to convex form -

e.g. NP-hard problems. In such cases, the non-convex constraints can be dropped,

resulting in a relaxed problem that is convex. Dropping constraints expands the

feasible set. This means that more x points are allowed to solve the problem

(minimize or maximize the objective function). Obviously, the optimal solution

in this case will not always be the desirable one, due to the relaxation of the

constraints, and cannot be directly used as an approximate solution of the original

problem, because it may not lie in the original feasible set. Thus, we have to use

some techniques to convert the solution of the relaxed problem to a respective

solution of the original. A known and well working approximation technique
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is the Gaussian Randomization. Hence, a relaxation algorithm consists of two

steps. First, solve the relaxed problem; then use an approximation algorithm in

order to convert the relaxation solution to an approximate solution of the original

problem.

In our case, reformulating the MIMO detection problem and dropping a non-

convex constraint, we end up in a SDP and thus this method is called Semidefinite

Relaxation. In the next paragraph the Semidefinite Relaxation method and the

Gaussian Randomization are presented, and the SDR algorithm [8] for the MIMO

detection problem is introduced.

2.2 Semidefinite Relaxation Algorithm

The ML detection problem in memoryless MIMO communication systems with

AWGN, for any QAM constellation, can be expressed as the following optimiza-

tion problem :

min
s

||d − Ms||2
2

subject to: ℜ{s(i)} ∈ FAreal ,∀i

ℑ{s(i)} ∈ FAimag ,∀i

(2.2)

where d is the complex baseband received vector, M is a known baseband-

equivalent channel matrix, s the symbol vector and FA the symbol alphabet

of the employed constellation. Converting problem (2.2) to a real valued form, as

already described in (1.3) and (1.4), and assuming that FAreal = FAimag = FA
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(i.e. “square” QAM constellations) in the sequel, problem (2.2) can be written

as:

min
r

||z − Hr||2
2

subject to: r(i) ∈ FA ,∀i

(2.3)

Assume that the FA is symmetric about the origin (always valid for QAM con-

stellations). If r satisfies the FA constraints then so does tr, t ∈ {−1, 1}. Fur-

thermore

||z − Hr||2
2

= rTHTHr − 2zTHr + zTz (2.4)

It follows that the minimization in (2.3) subject to the corresponding constraints

is equivalent to

min
r

(rTHTHr − 2zTHtr)

subject to: r(i) ∈ FA ,∀i

t ∈ {−1, 1}

(2.5)

For brevity of exposition, assume that after the conversion of the problem to a

real one, the transmitted symbol vector r is of dimension M × 1, z is N × 1 and

H is N × M . Moreover, by defining

x := [rTt ]T ∈ RM+1 , and

Q :=






HTH −HTz

−zTH 0






(2.6)
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the minimization problem (2.5) can be rewritten in homogeneous quadratic form

min
x

xTQx

s.t : x(i) ∈FA,∀i ∈ {1, . . . ,M}

x(M + 1) ∈ {−1, 1}

(2.7)

Using the property xTQx = Trace(xTQx) = Trace(QxxT), and denoting

X := xxT (that means X is symmetric, positive semidefinite and of rank 1),

problem (2.7) can be equivalently rewritten as:

min
X

Trace(QX)

s.t : X � 0, rank(X) = 1,

X(i, i) ∈ FA2,∀i ∈ {1, . . . ,M},X(M + 1,M + 1) = 1

(2.8)

Problem (2.8) is not a Convex Optimization Problem because it contains

the following non-convex constraints :

1. rank(X) = 1, (rank-one constraint)

2. X(i, i) ∈ FA2,∀i ∈ {1, . . . ,M}, (Finite Alphabet constraint)

Dropping the rank-one constraint, and relaxing the Finite Alphabet con-

straint X(i, i) ∈ FA2,∀i ∈ {1, . . . ,M} to the convex half-space constraints

L := mina∈FA a2 ≤ X(i, i) ≤ maxa∈FA a2 =: U,∀i ∈ {1, . . . ,M}, the follow-

ing convex relaxation problem is derived:
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min
X

Trace(QX)

s.t : X � 0,

L ≤ X(i, i) ≤ U,∀i ∈ {1, . . . ,M},

X(M+1,M + 1) = 1

(2.9)

The relaxed problem (2.9) can be solved by using any software SDP solver,

such as SeDuMi [5], based on interior point methods. Note that, as already men-

tioned in section (2.1.3), the solution of (2.9) is not necessarily an appropriate

solution to the original problem (2.8), due to the relaxation. After this step, an

approximate solution to the original problem can be generated using Gaussian

Randomization, as described in [8] (also in [7]). This simple method draws ran-

dom vectors x ∼ N (0,X0), where X0 denotes the solution of the relaxed problem

(in our case, problem (2.9)). Afterwards, each element of x is quantized to the

nearest point in FA, r is reconstructed from the quantized x and the one that

yields the smallest cost (after a fixed number of trials) in (2.2) is picked. Note

that in general X0 6= xxT, where X0 denotes the relaxation solution and x the

solution after the Gaussian Randomization step and before the reconstruction of

r. Note that in case that matrix X0 (the relaxed problem solution given by the

SDP solver) is of rank 1, then the solution to the original problem is the principal

component of matrix X0 and the randomization method is not needed.

The computation complexity of this algorithm is O(M3,5), where M is the

dimension of the transmitted symbol vector r.
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Chapter 3

The Sphere Decoder

The Sphere Decoding (SD) Algorithm (Sphere Decoder), first introduced in

[12] by Finke and Phost, has been applied for lattice decoding in [14], [13], multi-

antenna systems [18], and MIMO decoding [19], [20], where it is used to compute

the (quasi-) ML symbol vector estimate with moderate computational complexity.

It has also been proposed for the multiuser detection problem in synchronous

CDMA systems [21]. Since then, many improvements have been developed in

order to reduce its computation complexity, and heuristics for returning the exact

ML solution with high probability [22], [23], [24], [25]. In this chapter, a detailed

description of SD and the Schnorr-Euchner (SE) variate of SD is given. In this

thesis, the SE-SD is used for all simulations and comparisons, due to its improved

complexity performance.
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3.1 The Idea behind Sphere Decoding

Consider again the real MIMO model :

z = Hr + v, r ∈ FAM (3.1)

where r is the M × 1 transmitted symbol vector, H is the N × M baseband-

equivalent channel matrix, z is the observed N × 1 baseband-equivalent output

vector and v is the N × 1 Gaussian noise vector. This model is derived from the

concatenation of the real and imaginary parts of the complex MIMO model (1.1),

using the simple method described in the first chapter (1.3). The dimensions of

the complex problem are half of those of the real one, for notational brevity. As

already explained in chapter 1, viewing z as a point in the N -dimensional space,

the solution of problem (1.4) requires exhaustive search over all possible |FA|M

candidate vectors r and selecting the one for which Hr lies closest to z. This

procedure requires exponential complexity in the dimension of the transmitted

vector r, a prohibitive process for embedded communication systems.

As its name indicates, SD searches within a (hyper-)sphere of radius C,

centered at the received vector z. This implies that SD accounts for all Hr

candidates that lie inside the hyper-sphere of radius C. The noise vector v is the

reason of the distance between z and Hr0, where r0 denotes the true transmitted

symbol vector. The SD has three basic steps. First, find an appropriate radius

that guarantees that at least one candidate solution lies inside the hyper-sphere.

Next, initialize the search with the unconstrained least-squares solution and then
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Figure 3.1: Illustration of sphere decoding

search exhaustively but efficiently within the sphere of fixed radius C.

3.2 Selecting a Radius and Initializing with the

Unconstrained LS

If the radius C is large enough, i.e infinite, then there is no difference (in terms

of the final estimate) between sphere decoding and searching exhaustively. On

the other hand, if the radius is too small, the sphere is possibly empty (con-

tains no Hr candidate vectors). The radius has to be appropriately chosen, i.e.

small enough in order to search within the sphere with moderate complexity,

and large enough to guarantee that the sphere is not empty of candidates. For

AWGN, the probability that Hr0 lies within a sphere of fixed radius C, is given

by Pr(||z − Hr0||
2
2 ≤ C2) = Pr(||v||22 ≤ C2). Under the AWGN model, ||v||2

2
is

chi-square distributed.

When n standard normal distributed random variables are squared and
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summed, a chi-square random variable emerges, with probability density function

(pdf):

fV (u) =
1

(2σ2)
M
2 Γ(M

2
)
u

M
2
−1e−

u

2σ2 , u ≥ 0 (3.2)

The point Hr0 is contained with probability p in a sphere centered at z and

radius that can be calculated by solving the following equation with respect to

Cp

Pr(||v||22 ≤ C2
p) =

∫ C2
p

0

fV (u)du = p (3.3)

The physical meaning of this method is that the calculated radius generates a

sphere that contains the ML solution with probability p. For instance, with

p = 0.99, the engineer knows that if SD searches within a sphere of radius C0.99,

it will return the ML solution with probability 0.99. This method ensures that

the ML solution will be found within the sphere with the given probability but

does not guarantee that it will be done with polynomial complexity.

The next question is how SD searches within the sphere among all candi-

dates to find the vector that minimizes the error norm (1.5). The starting point

of SD is the unconstrained least-squares solution r̂ = (HTH)−1HTz. The LS

solution is obtained using the QR-decomposition of channel matrix H. SD uses

the last entry of the soft least-squares(LS) estimate to search backwards for the

remaining candidate symbols.
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Note that SD does not search within a sphere centered at z but within an

equivalent one centered at Hr̂, where r̂ denotes the soft LS estimate here [4].

Below follows a proof of the equivalence ||z−Hr||2
2

= ||R(r− r̂)||2
2
+ c, where R

denotes the M ×M upper triangular matrix of the QR-decomposition of matrix

H, and c a constant that does not depend on r.

Let P := H(HTH)−1HT or P := HH†, where H† denotes the pseudoinverse

of matrix H, (HTH)−1HT. Also let P⊥ := I−HH†. P denotes the orthonormal

matrix that when multiplied with a vector from left it projects it onto the column

space of H, and H⊥ denotes its orthogonal complement. Using the latter it holds:

||z − Hr||2
2

= ||Hr − z||2
2

= ||Hr − (P + P⊥)z||2
2

=

||Hr − Pz − P⊥z||2
2

= (∗), z = Hr0 + v

(3.4)

PHr0 = Hr0 because Hr0 already lies in the column space of H as a linear

combination of the columns of H. Thus :

(∗) = ||Hr − Hr0 − Pv − P⊥v||2
2

= (∗∗)

r̂ = H†z = H†(Hr0 + v) = r0 + H†v ⇒

Hr̂ = Hr0 + HH†v ⇔ Hr̂ = Hr0 + Pv

(∗∗) = ||Hr − Hr̂ − P⊥v||2
2

= ||H(r − r̂) − P⊥v||2
2
⇒

||z − Hr||2
2

= ||H(r − r̂)||2
2

+ ||P⊥v||2
2

(3.5)

The last equivalence is derived using the Pythagoras’ Theorem - the squared norm

of the difference of two orthogonal vectors, is the sum of their squared norms.
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Using the orthonormality of factor Q of the QR-decomposition:

||z − Hr||2
2

= ||R(r − r̂)||2
2

+ c (3.6)

Note that the constant c vanishes in the square case (M = N , equal number

of transmit and receive antennas) because matrix H is square and of full col-

umn rank, thus its columns span the whole space and therefore, its orthogonal

complement is zero. This implies that :

r̂ML = arg min
r∈FAM

||z − Hr||2
2

= arg min
r∈FAM

||R(r − r̂)||2
2

(3.7)

With the proof of (3.7) the equivalence between the two spheres is estab-

lished. Moreover, since r̂ is a projection of z in the “signal range space”, searching

within a sphere centered at Rr̂ or equivalently at Hr̂, instead of one centered

at z, results in noise mitigation by providing an initialization orthogonal to the

“noise subspace” [4]. This mitigation increases with the difference N −M , where

M,N denote the number of transmit and receive antennas respectively. Also, SD

can search within the sphere recursively with respect to the dimension of r, using

the upper triangular structure of matrix R.

3.3 Sphere Decoding

SD searches for the ML solution only between candidate vectors r that fulfill the

condition ||R(r − r̂)||22 < C2. Expressing the norm ||R(r− r̂)||2
2

component-wise,

starting from the last (Mth) entry and moving backwards to the first:



3.3 Sphere Decoding 26

||R(r − r̂)||22 = R2
M,M(rM − ρM)2 + R2

M−1,M−1(rM−1 − ρM−1)
2 + . . . + R2

1,1(r1 − ρ1)
2,

ρk := r̂k −
M∑

j=k+1

(rj − r̂j)
Rk,j

Rk,k

for 1 ≤ k ≤ M.

(3.8)

In equation (3.8), the contribution of each symbol to the norm (||R(r − r̂)||22)

increment is explicit. Furthermore, for each symbol, the partial norm increment,

depends on the already decided symbols of higher dimensions. For example,

symbol rM−2 increases the norm for R2
M−2,M−2(rM−2 − r̂M−2 +

∑M

j=M−1(rj −

r̂j)
RM−2,j

RM−2,M−2

).

Now, let’s explain how does SD choose a candidate symbol from the FA

for each dimension. Remember that SD starts the search from the last entry of

r and goes step by step to the top of the vector, if this is possible. Condition

||R(r − r̂)||22 < C2 explains how this works. This inequality constrains the last

entry rM of r to be such that R2
M,M(rM−ρM)2 < C2, or equivalently, by expanding

the squares :

⌈r̂M −
C

RM,M

⌉ ≤ rM ≤ ⌊r̂M +
C

RM,M

⌋, (3.9)

where ⌈.⌉, ⌊.⌋ denote the ceiling and the floor operator, respectively. At this step,

SD computes a lower and an upper bound for the candidate symbol and searches

in the FA for symbols that lie inside the interval defined by the computed bounds.

Then it selects a candidate symbol from the admissible list, say the one closest

to the lower bound, which is denoted as r
(1)
M , and proceeds to the next dimension

(M − 1th entry of r). If none of the FA′s symbols lie inside the interval (the
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number of the candidates (nrM
) of the admissible list is zero), then SD declares

infeasibility. The admissible list of candidate symbols per dimension can be empty

(nrM
= 0), or as large as FA is (nrM

= |FA|). The candidate symbols for the

next (M−1) dimension must satisfy the condition (inequality) R2
M−1,M−1(rM−1−

ρM−1)
2 +R2

M,M(r
(1)
M − ρM)2 < C2, which constrains the candidate symbols of this

entry of r to lie in an interval defined by the r
(1)
M ’s value chosen at the previous

step, the fixed radius C and the entries of R, r̂ obtained from the initialization

step.

Generally, for each entry, the condition that the candidate symbols must

satisfy can be expressed as :

R2
k,k(rk − ρk)

2 +
M∑

i=k+1

R2
i,i(ri − ρi)

2 < C2, or

R2
k,k(rk − ρk)

2 < C2 −
M∑

i=k+1

R2
i,i(ri − ρi)

2.

(3.10)

This expresses also that the sum of the partial norm increments of each symbol

must not exceed C2. Given the selected candidate of the previous dimensions

{ri}
M
i=k+1, the condition that constraints the admissible candidates of symbol rk

can be written as :

⌈ρk −
τk

Rk,k

⌉ ≤ rk ≤ ⌊ρk +
τk

Rk,k

⌋, k = M, . . . , 1, (3.11)

where τk :=
√

C2 −
∑M

i=k+1 R2
i,i(ri − ρi)2, k = M − 1, . . . , 1, represents the

radius reduction after deciding for the candidates {ri}
M
i=k+1.

If the search procedure flows normally, in the way described above, SD

reaches the first entry (r1) of r and decides for a candidate symbol. Then, stacking
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all collected candidates per dimension in a vector, yields an admissible candidate

vector r(1) = [r
(1)
1 , r

(1)
2 , . . . , r

(1)
M−1, r

(1)
M ]T (Admissible here means that r(1) obeys

the FA constraints and ||z − Hr(1)||22 < C2). This does not imply that r(1)

is necessarily the ML solution. SD just found a lattice point that lies within

the sphere of fixed radius C. SD can use this solution to search within a new

sphere, centered at the same point Rr̂, but with a new, smaller radius C(1) :=

||R(r(1) − r̂)|| < C, for another solution, possibly the ML one. This procedure

continues until SD searches within a sphere that is empty of candidate vectors.

This implies that the last vector r found, is the ML solution.

While searching per dimension for candidate symbols, if SD reaches a di-

mension k for which the list of symbol candidates is empty, it returns back to the

previous dimension k + 1, selects another symbol from the candidates list and

proceeds again to dimension k. SD generates a new candidate symbol list for

dimension k, selects one from the new list and proceeds toward dimension 1.

This kind of search is also called depth-first search. SD while searching gen-

erates a tree where the nodes (leafs) are the symbols picked from the candidates

list. At each branch, SD computes the cost (norm increment) that is summed

with the total cost of the previous branches. The algorithms that use this kind

of search are also called branch and bound algorithms.
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3.4 Sphere Decoder’s Complexity

The complexity of the sphere decoder is proportional to the number of nodes

visited by the algorithm. The complexity also depends on the value of the initial

radius. In [26] it is shown that an exponential lower bound on the complexity of

SD is given by

C(M) ≥
|FA|ηM − 1

|FA| − 1
, η =

1

4ρr + 2
(3.12)

where ρr is an upper bound for the SNR value, and SD’s initial radius is a

function of SNR (see [4]). This proves that the expected complexity of SD cannot

be polynomial, since it is lower bounded by an exponential function in M [26].

Moreover, sphere decoder’s expected complexity is a decreasing function of SNR

and an increasing function of the data transmition rate.

3.5 SD with Detection Ordering

As already described in chapter’s introduction, many preproccesing steps and

/ or heuristics have been developed in order to reduce SD’s complexity and /

or improve the algorithm’s error performance. A simple method of detection

ordering (DO), also described in paragraph (1.2.1, number 3), is based on the idea

of detecting at first symbols with large SNR. DO sorts the columns of channel

matrix H in ascending order according to their SNR values (the column with the

largest SNR value is ordered last). The entries of each column represent the gain
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of each sub-channel. The last column will be the one with the largest SNR value.

The SNR comparison between the columns of H is performed by computing the

squared Euclidean norm of each column (||hk||
2
2). The ascending order of sorting

is employed due to SD’s property to search backwards in the dimension of r.

3.6 Schnorr-Euchner variate of SD

The Schnorr-Euchner (SE) variate of SD differs from the original algorithm in

the ordering of the admissible symbol candidates list. Remember that the original

SD selects at each dimension the symbol closest to the lower bound every time

and if this results in an empty candidate list for the next dimension, returns

back and picks the next one. SE-SD on the other hand, applies a different, more

sophisticated ordering for the candidates list. According to the SE ordering, the

first candidate in the list of a dimension (say kth), is the rk value from the FA

that lies closest to ρk, namely r
(1)
k = ⌈ρk⌋. The rk chosen is the one that lies

in the middle of the interval defined by the admissible candidates (3.11). This

choice also leads to the smallest increment of the squared distance R2
k,k(rk − ρk)

2

among all candidates in the list of dimension k. Note that, as in the original

SD, the decision of rk depends on the decisions of the previous dimensions. If

all the previous symbols are perfectly detected, ⌈ρk⌋ is the most likely candidate

at dimension k, since it is the one that results in the smallest increment of the

LS error norm (||R(r − r̂)||22 or equivalently ||z − Hr||22) and under the AWGN

assumption, minimum distance translates to ML. The second candidate in the
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list of the kth dimension is the second closest point to the middle of the interval

defined by (3.11). This is either ⌈ρk⌋ − 1, in case that ρk ≤ ⌈ρk⌋, or ⌈ρk⌋ + 1 in

case that ρk ≥ ⌈ρk⌋. Sorting all nrk
symbol candidates according to SE ordering,

SE-SD generates a list of admissible symbol candidates with order :

[r
(1)
k , r

(2)
k , r

(3)
k , r

(4)
k , . . .] = [⌈ρk⌋, ⌈ρk⌋ − 1, ⌈ρk⌋ + 1, ⌈ρk⌋ − 2, . . .], (3.13)

in case ρk ≤ ⌈ρk⌋, or exchanging the order of candidate ⌈ρk⌋ − n with the order

of candidate ⌈ρk⌋ + n in case that ρk ≥ ⌈ρk⌋. The improvement of SD with the

SE ordering is that the the sorted list in (3.13) increases the likelihood to find

early an admissible vector r for which Rr lies very close to Rr̂, or equivalently

Hr lies very close to z.

It is obvious that SE-SD picks a symbol from the list for a dimension, with-

out taking into consideration the fixed radius C. After deciding for a dimension,

SE-SD computes the LS error norm increment of this symbol (R2
k,k(rk−ρk)

2), adds

it to the total computed distance (the LS error norm increments of the previous

dimensions) and checks if it exceeds the squared radius C2. In case that the com-

puted total distance d2 = d2
M +d2

M−1+d2
M−2+ . . .+d2

k, where d2
k := R2

k,k(rk−ρk)
2,

exceeds C2, SE-SD returns back to a dimension that has not already examined

all the list’s candidates (remember, the number of symbol trials per dimension is

stored in nrk
). Note that the algorithm does not pick another symbol from the

list of the current dimension, because SE ordering sorts the candidate symbols

in ascending order according to their squared-distance increment. According to

counter nrk
, SE-SD picks the next candidate from the list, computes its LS er-
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ror norm increment, adds it to the total distance for the kth dimension, checks

the radius constraint and proceeds backwards toward dimension 1. Note that

SE-SD sets the counter nrk
for the remaining dimensions to zero and starts to

pick symbols from the beginning of their lists. Also note that the total distance

for the kth dimension is recomputed, using stored value of the total distance for

dimension k − 1. Actually, SE-SD stores (and SD in general) for each dimension

value d2
k. Therefore, the memory that SE-SD needs to store the distances is only

linear in the dimension of M .

When SE-SD reaches dimension 1, it constructs a vector r = [r1, r2, . . . , rM ]T

using the symbol decisions for each dimension, stores its total squared distance

d2 =
∑M

k=1 R2
k,k(rk − ρk)

2 = ||R(r − r̂)||22 and updates the fixed radius by setting

its value to the reduced one of d2. This means that SE-SD uses this estimate

(vector r), and more specifically its computed squared distance, to search again

within a new sphere of reduced radius C ′2 = d2 = ||R(r − r̂)||22 < C2. After

constructing and returning vector r, SE-SD from dimension 1, returns back to

a dimension that has not already examined all the list’s candidates and picks

another candidate symbol from its list, according to nrk
. After that, SE-SD pro-

ceeds toward dimension 1 in the same way described in the previous paragraph.

Reaching dimension 1 again, SE-SD constructs a new estimate for vector r that

will be used for searching within a new sphere of reduced radius. This proce-

dure continues until SE-SD searches within a sphere empty of candidate vectors.

Then, the last estimate found, is the ML solution of the initial problem (1.4).
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Pseudocode of SE-SD is provided in the following table. Preprocessing

steps such as DO and QR decomposition applied to the channel matrix H are

not included. Function enum(.) takes as arguments the values of ρk,FA and nrk

(number of candidates that have been enumerated), returns a candidate symbol

picked from the admissible list according to nrk
and increases it by one. This

algorithm reduces the radius whenever a candidate vector with smaller LS error

is found.
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Table 3.1: Schorr-Eucher Sphere Decoding Pseudocode

[rML, d] = SE-SD(R, r̂, C,FA,M)

1. d := C2; k := M ; d2
k := 0; calculate ρk;

2. [rk, nrk
] := enum(ρk,FA, 0);

3. while(1){

4. w := d2
k + R2

k,k(rk − ρk)
2

5. if(w < d){

6. if(k > 1){

7. k := k − 1; d2
k := w; calculateρk

8. [rk, nrk
] := enum(ρk,FA, 0);

9. }else{rML := [r1, r2, . . . , rM ]; d := w; goto Rollback;}

10. }else{ Rollback:

11. while(+ + k < M && nk ≥ |FA|){if(k == M) break;}

12. if(k == M){

13. if(d < C2){return [rML, d];}else{return [0,−1];}}

14. [rk, nrk
] := enum(ρk,FA, nrk

);

15. } }
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Chapter 4

Hybrid Semidefinite

Programming - Sphere Decoding

Algorithm

In chapters 2 and 3, the Semidefinite Relaxation and the Schorr-Euchner Sphere

Decoder algorithms were introduced and related to the MIMO detection problem.

In this chapter, a hybrid algorithm, based on SDR preprocessing and sphere

decoding, is introduced. The properties of the two state-of-the-art algorithms

(SDR and SD) are described in paragraph (1.2.3). SD (even SE-SD) “freezes” at

high problem dimensions (long transmitted vectors / high order constellations)

especially at low SNR environments, but guarantees ML estimates fot sufficiently

large radius; in contrast, SDR that has a fixed complexity behaviour at any

system and environment, yields a suboptimal, albeit near-ML solution. Aiming
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Table 4.1: Hybrid SDR-SD algorithm

1. (Preprocessing step) Run SDR for problem (1.4) to obtain rSDR

2. Run SE-SD with initial radius C2 := ||z − HrSDR||
2
2 to obtain rML

to speed up SE-SD in difficult cases and obtain the ML solution in any case,

it is reasonable to perform a preprocessing step, applying SDR to the MIMO

detection problem. The SDR algorithm will yield a quasi-ML solution rSDR to

the problem (1.4). This solution has a LS error given by ||z − HrSDR||
2
2. This

LS error can be interpreted as a distance of the SDR estimate to the received

vector z. This distance can be used as a radius to generate a hyper-sphere that

SE-SD will search within, to yield the ML solution. The suboptimality of the

SDR estimate guarantees that the ML solution of the MIMO detection problem

is at a distance that is less than, or equal to the SDR one, and thus subsequently

applying SE-SD with radius C := ||z − HrSDR||2, will yield the ML estimate.

The basic steps of the hybrid SDR-SD algorithm are shown in table (4.1).

The complexity of SE-SD is reduced using a small enough radius, which

however is guaranteed to contain the exact ML solution. Note that the first stage

of this algorithm (preprocessing step) runs the SDR detector. This implies that

a O(M3.5) complexity is added to the overall complexity of the hybid algorithm.

Therefore, the complexity of the hybrid SDR-SD algorithm is O(M3.5)+ SE-SD’s

comlexity.
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Chapter 5

Simulations and Results

In the first part of this chapter, the algorithms considered in this thesis are

simulated in order to compare their error performance and their computational

efficiency and applicability. The algorithms run for detecting the transmitted

symbol vector over a MIMO memoryless block fading channel. Two communi-

cation scenarios were used. The first was a MIMO system with 16 transmit and

16 receive antennas (M = N = 16) using 64-QAM signaling, and the second

a MIMO system with 8 transmit and 8 receive antennas (M = N = 8) using

256-QAM signaling. The Monte-Carlo (MC) simulation method was used for all

scenarios, in order to estimate the average SER and mean/worst case execution

time. For every MC trial, a new transmission block (symbol vector), channel

matrix and noise vector realization, were generated. In all cases, the channel

matrix has i.i.d elements drawn from a circulary symmetric zero-mean complex

normal distribution of unit variance CN (0, 1). The simulations were conducted
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for an SNR range from 15dB to 35dB (with step 5) and for 1000 MC runs for

every SNR value. The SNR is defined as SNR := 10log10(MEs/N0), where M

is the length of the transmitted QAM symbol vector, Es the the mean symbol

energy of the QAM constellation and the noise vector is i.i.d CN (0, N0).

In the second part of this chapter, the hybrid SDR-SD algorithm is com-

pared with the fast SDR BPSK detector of Z.-Q. Luo and M. Kisialiou [27]. The

simulation of these algorithms was made over a MIMO channel with 16 trans-

mit and 16 receive antennas with 16-QAM signaling. Note that in order to use

the fast SDR detector [27], the 16-QAM constellation has to be converted into

a BPSK one, since [27] works only with BPSK symbols. This conversion can

be made using a simple and efficient technique, discribed in the corresponding

paragraph.

5.1 SDR, SE-SD, Hybrid SDR-SD simulations

over MIMO channels and comparison

In this section, the SDR, the SD and the hybrid SDR-SD algorithm are com-

pared. All the simulation scripts are written in MATLAB. The SDR algorithm is

implemented using the general-purpose SeDuMi MATLAB toolbox [5]. SE-SD is

implemented as a MATLAB executable (mex) compiled from optimized C code.

The hybrid SDR-SD algorithm uses the implementations of SDR and SE-SD,

integrated using a MATLAB simulation script.
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Figure 5.1: SER s SNR for 16x16 MIMO system using 64-QAM

5.1.1 16x16 MIMO system using 64-QAM constellation

In this scenario the number of randomization steps for SDR is set to 300.

The initial radius for SE-SD is set to infinity, in order to obtain always the ML

solution. Note that the simulation script performs a control in SE-SD’s execution

time and if it exceeds the value of 300 seconds for a single block detection, SE-SD

is being deactivated for the rest of the MC runs for the corresponding SNR value,

otherwise the simulations will take too much time. The SER of SE-SD in this

case is set to the random choice: |FA|2−1
|FA|2

+ until now errors in detection, and the

mean execution time to infinity. The results of this simulation are presented in

figures 5.1, 5.2, 5.3.

It is obvious that the hybrid SDR-SD algorithm outperforms SDR in terms
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Figure 5.2: Mean execution time vs SNR for 16x16 MIMO system using 64-QAM
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Figure 5.3: Worst case execution time vs SNR for 16x16 MIMO system using

64-QAM
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of error performance. SE-SD could not return a solution in reasonable (¡ 300 sec)

time at all SNR values. That is why it’s SER is not the same with the hybrid

SDR-SD’s one (without the execution time control it had to be the same, since

they both search for the ML solution in an appropriate sphere). The execution

times of the hybrid SDR-SD algorithm (mean and as well worst case) are obvi-

ously reduced relative to those of SE-SD with infinity initial radius, by using the

SDR estimate to initialize the radius. Hybrid SDR-SD’s execution times can be

analyzed in two parts. The first part contains an approximately constant execu-

tion time due to the SDR operation, in order to define SE-SD’s radius, and the

second part that is the execution of SE-SD with initial radius the one defined by

the LS error of the SDR estimate. At low SNR values (15 to 23dB), the SE-SD

execution is time consuming in contrast with high SNR’s(25 to 35dB) where SE-

SD finds the ML solution quickly and the execution time of the hybrid SDR-SD

algorithm is almost the same with SDR’s one. The key feature of hybrid SDR-SD

algorithm in those cases (long symbol vectors and high order constellations) is

that SDR can run and return a quasi-ML estimate in a constant low-order poly-

nomial time, and by using it we can “pay” something more (in terms of execution

time / complexity) to obtain the exact ML solution by running SE-SD with the

SDR estimate LS error as it’s initial radius.
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Figure 5.4: SER vs SNR for 8x8 MIMO system using 256-QAM

5.1.2 8x8 MIMO system using 256-QAM constellation

This scenario assumes a MIMO system with 8 transmit and receive antennas

using 256-QAM constellation. The results are presented in figures 5.4, 5.5, 5.6.

As it is obvious from figure 5.1.2, SE-SD did not manage to yield the ML

solution in reasonable time at low SNR values (15 to 30dB) in contrast with

hybrid SDR-SD who did it at low computational cost. SE-SD exhibits the same

error performance with hybrid SDR-SD at high SNR values (30 to 35dB) with less

average execution time but much more worst case execution time. Hybrid SDR-

SD, on the other hand, features a competitive mean and worst-case, execution

time performance in addition to ML (optimal) error performance at all noise

levels. It is reasonable to mention again that hybrid SDR-SD’s execution time is
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Figure 5.5: Mean execution time vs SNR for 8x8 MIMO system using 256-QAM
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Figure 5.6: Worst case execution time vs SNR for 8x8 MIMO system using 256-

QAM
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a function (combination) of SDR’s and SE-SD’s (with SDR radius initialization)

execution times. In most scenarios considered here (8x8 MIMO using 256-QAM

and for 16x16 MIMO using 64-QAM from 25 to 35dB), the second stage of the

algorithm (SE-SD execution) is so fast, that the mean execution time of the

hybrid SDR-SD algorithm is almost the same with SDR’s one. This means that

the SE-SD’s radius initialization using SDR, gives very good comlexity reduction

for the SE-SD stage, without harming the ML error performance feature of SE-

SD.

5.2 Hybrid SDR-SD and fast SDR detector com-

parison

In this section, the hybrid SDR-SD algorithm is compared with the fast SDR

BPSK detector [27]. In order to compare these algorithms using a QAM constel-

lation, the 2-dimensional signal (QAM) has to be transformed to a BPSK one,

since fast SDR works only with BPSK signals. This method is introduced in the

following section.

5.2.1 QAM to multidimensional BPSK transformation

An x-QAM signal can be written as a linear combination of BPSK signals.

Consider a 4-QAM signal. It can be written as
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s4−QAM =

[

1 j

]






b1

b2




 , (5.1)

where b1, b2 ∈ {±1} are BPSK singnals. This can be expanded for a 16-QAM

constellation as follows.

s16−QAM =

[

1 j

]






s4

t4




 = (∗), s4, t4 ∈ 4 − PAM

(∗) =

[

1 j

]






1 2 0 0

0 0 1 2









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

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



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b3

b4














=

[

1 2 j 2j

]

︸ ︷︷ ︸

cT














b1

b2

b3

b4














, bi ∈ BPSK

(5.2)

The MIMO detection problem for N = M can be written as

min
s∈(16−QAM)N

||d − Ms||22 (5.3)
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where M ∈ CN×N and

s =














cT 0 . . . 0

0 cT . . . 0

...
...

. . .
...

0 0 . . . cT














︸ ︷︷ ︸

AN×4N


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


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

b1

b2

...

bN














4N×1

(5.4)

So, the equivalent problem can be written as

min
b∈{±1}4N

||d − MA
︸︷︷︸

N×4N

b||22 (5.5)

Transformation (5.2) can be expanded for any high-order QAM constellation.

The general case can be written as

sx−QAM =

[

1 j

]






20 21 . . . 2i−1 0 0 . . . 0

0 0 . . . 0 20 21 . . . 2i−1






︸ ︷︷ ︸

2×2i














b1

b2

...

b2i














(5.6)

where i is the column index and is the number of the bits per constellation symbol.

For example, a 64-QAM constellation is the product of two 8-PAM constellations

(one in each dimension). A 8-PAM symbol “carries” 3 bits. This number (3 in

this case) is the value of i.
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5.2.2 Simulation Results

The simulation of hybrid SDR-SD and fast SDR detector was made over a

MIMO channel with 16 transmitt and 16 receive antennas using 16-QAM con-

stellation. The algorithms are compared for their error performance, their mean

and worst case execution time in a noise environment from 15 to 35dB. The im-

plementation of the fast SDR detector (available online, see URL in [27]) is made

as a MATLAB executable (mex) compiled from optimized C code, in contrast

with hybrid SDR-SD where only the second stage of the algorithm (SE-SD ex-

ecution) is implemented in optimized C code. As a result, the execution times

(mean and worst-case) estimates, are somewhat biased in favor of fast SDR de-

tector. The simulation script is written in MATLAB code, using the simulation

setup described earlier (chapter introduction). The results are presented in the

following figures.

As it is obvious in figure 5.2.2, hybrid SDR-SD outperforms fast SDR de-

tector (with QAM to multidimensional BPSK transformation) in terms of error

performance. Note here that due to the QAM to multidimensional BPSK trans-

formation, the resulting channel matrix is fat an thus the warm-start procedure of

[27] must be disabled. This takes away an important advantage of [27], however

there was no way around it. Figures 5.2.2 and 5.2.2 show that the execution times

of the algorithms, in this scenario, are almost equal, with the hybrid SDR-SD

algorithm having less worst case execution time at high SNR values (23 to 35dB).

In conclusion, hybrid SDR-SD is better than fast SDR detector in communication
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Figure 5.7: SER vs SNR for 16x16 MIMO system using 16-QAM
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Figure 5.8: Mean execution time vs SNR for 16x16 MIMO system using 16-QAM
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systems that use QAM constellations.
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