
ERROR PREDICTION FOR SPEECH RECOGNITION

USING ACOUSTIC AND LINGUISTIC CUES

By

Nikos E. Malandrakis

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DIPLOMA IN ELECTRONICS AND COMPUTER ENGINEERING

AT

TECHNICAL UNIVERSITY OF CRETE

CHANIA, GREECE

SEPTEMBER 2007

c© Copyright by Nikos E. Malandrakis, 2007

TECHNICAL UNIVERSITY OF CRETE

DEPARTMENT OF

ELECTRONICS AND COMPUTER ENGINEERING

The undersigned hereby certify that they have read and

recommend to the Faculty of Undergraduate Studies for acceptance

a thesis entitled “Error prediction for speech recognition using

acoustic and linguistic cues” by Nikos E. Malandrakis

in partial fulfillment of the requirements for the degree of

Diploma in Electronics and Computer Engineering.

Dated: September 2007

Supervisor:
Assoc. Prof. Alexandros Potamianos

Readers:
Prof. Vasilis Digalakis

Assoc. Prof. Athanasios Liavas

ii

TECHNICAL UNIVERSITY OF CRETE

Date: September 2007

Author: Nikos E. Malandrakis

Title: Error prediction for speech recognition using

acoustic and linguistic cues

Department: Electronics and Computer Engineering

Degree: Diploma Convocation: September Year: 2007

Permission is herewith granted to Technical University of Crete to
circulate and to have copied for non-commercial purposes, at its discretion,
the above title upon the request of individuals or institutions.

Signature of Author

THE AUTHOR RESERVES OTHER PUBLICATION RIGHTS, AND
NEITHER THE THESIS NOR EXTENSIVE EXTRACTS FROM IT MAY BE
PRINTED OR OTHERWISE REPRODUCED WITHOUT THE AUTHOR’S
WRITTEN PERMISSION.

THE AUTHOR ATTESTS THAT PERMISSION HAS BEEN
OBTAINED FOR THE USE OF ANY COPYRIGHTED MATERIAL
APPEARING IN THIS THESIS (OTHER THAN BRIEF EXCERPTS
REQUIRING ONLY PROPER ACKNOWLEDGEMENT IN SCHOLARLY
WRITING) AND THAT ALL SUCH USE IS CLEARLY ACKNOWLEDGED.

iii

To my brother

iv

Table of Contents

Table of Contents v

List of Figures vii

Abstract ix

Acknowledgments x

Introduction xi

1 Theory 1

1.1 Speech Recognition System [15] 1

1.2 Language Modeling [4] . 3

1.2.1 Counting Words . 3

1.2.2 Punctuation Marks . 3

1.3 N-grams Probabilistic Model . 4

1.3.1 Conditional probability and independence 4

1.3.2 Smoothing . 7

1.3.3 Witten-Bell Discounting 8

1.3.4 Backoff . 10

1.3.5 A clever combination: Backoff and Discounting 11

1.4 String Distance [10] [4] . 12

1.4.1 Hamming Distance . 13

1.4.2 Minimum Edit Distance 13

1.5 Receiver Operating Characteristics Graph [14] [13] 15

2 Our approach 19

2.1 “Bayesian formulation of the speech recognition problem” [9] . . . 19

2.2 Misrecognition models . 20

2.3 Simplified form . 21

2.4 Baseline system . 21

2.4.1 Lexica . 23

v

2.4.2 Misclassification . 24

2.4.3 Language model . 24

2.5 AURORA4 ; The real-life counterpart 25

3 Experimental Procedure 27

3.1 Adaptation . 27

3.1.1 Phone set . 27

3.1.2 Lexicon . 27

3.1.3 Language model . 29

3.2 Operation . 29

3.2.1 Processing results . 32

3.2.2 Classification . 33

4 Evaluation 34

4.1 Behavior . 34

4.2 Predictive power . 38

4.2.1 Prediction . 38

4.2.2 Diagnosis . 41

4.2.3 Prediction VS Diagnosis 43

4.2.4 Acoustic VS Linguistic Influence 43

5 Conclusions and Future Work 52

5.1 Conclusions . 52

5.2 Future Work . 53

A FSM Toolkit [7] 54

A.1 Overview . 54

A.2 Commands . 55

B Practical Limitations 59

Bibliography 61

vi

List of Figures

1.1 ASR System . 2

1.2 Confusion Matrix . 16

1.3 ROC graph example . 17

2.1 System diagram . 23

2.2 Misclassification Matrix . 25

3.1 Table of phone conversions . 28

3.2 Sample output of N-best recognition 30

3.3 Pronunciations example . 30

3.4 Misclassification example . 31

3.5 Output fsm example . 31

3.6 Sample output of N-best recognition, comparative 33

4.1 P(error) given word length in letters 35

4.2 P(error) given word length in phones 35

4.3 P(error) given the number of alternate pronunciations of the word 36

4.4 P (P (error)|category) distributions 37

4.5 P (category|P (error)) distributions 37

4.6 ROC using different class language models, prediction 39

4.7 ROC using different misclassification models, zerogram, prediction 40

4.8 ROC using different misclassification models, unigram, prediction 40

4.9 ROC using different misclassification models, bigram, prediction . 42

4.10 ROC using different criteria, zerogram, prediction 42

4.11 ROC using different criteria, unigram, prediction 45

vii

4.12 ROC using different criteria, bigram, prediction 45

4.13 ROC using different class language models, diagnosis 46

4.14 ROC using different misclassification models, zerogram, diagnosis 46

4.15 ROC using different misclassification models, unigram, diagnosis . 47

4.16 ROC using different misclassification models, bigram, diagnosis . . 47

4.17 ROC using different criteria, zerogram, diagnosis 48

4.18 ROC using different criteria, unigram, diagnosis 48

4.19 ROC using different criteria, bigram, diagnosis 49

4.20 ROC using Wc vs Wr, zerogram 49

4.21 ROC using Wc vs Wr, unigram 50

4.22 ROC using Wc vs Wr, bigram . 50

4.23 Influence of acoustic and linguistic components 51

viii

Abstract

In this work we explore a method of approximating a speech recognition system

via a composition of finite state machines and use this approximation to predict

word errors of a standard ASR system. Specifically, N-best recognition is used as

an indication of word confusability which can help us define confidence scores or

just classify the output of a speech recognizer as correct or wrong. We explore

the factors affecting the accuracy of such a classifier, such as the classes of the

individual models used as well as the practical limitations of the implementation

and possible solutions.

Our motivations comes from work showing that the perplexity of such a model

correlates well with the WER (word error rate) [9] of a speech recognition system.

Taking that as a given, such a system should be capable of predicting the errors

of an ASR system, the probability assigned to an assumption should correlate

with the probability of that assumption being correct.

To test that theory we use a transducer composite system to assign probabil-

ities to recognition assumptions knowing the correct word and to correct word

assumptions given the recognized word. Then using these probabilities as fea-

tures, we classify utterances as correct or wrong. Evaluating the performance of

the method happens using ROC diagrams, showing the performance potential of

the classifier in different roles.

Overall it is shown that such an approach is valid, with results being encour-

aging if not particularly good. Our implementation of some parts of the system,

notably the acoustic model prove inadequate and should be the focus of any

future work.

ix

Acknowledgments

I want to express my appreciation to my supervisor Mr. Alexandros Potamianos

for his patience and guidance.

I am also grateful to the members of the supervisory committee.

I would like also to thank my friends and family for their love and support.

x

Introduction

Predicting speech recognition errors is related to the concept of word confus-

ability; words with similar phonetic sequences can be confused with each other,

unless the language model asserts its influence to disambiguate them.

Research is being conducted towards the goal of quantifying word confus-

ability, defining a metric for it. In parallel, research is targeted at methods of

decreasing the confusability inherent in each speech recognizer via for example

removing from the lexicon particular pronunciations.

Attempting to predict the errors of a speech recognizer seems like a logical

next step, since the more confusable word is one that has a higher chance of

a misrecognition. There are limits to what can be done; word confusability

is defined over all pronunciations of each word, however in an actual speech

recognition experiment only one of those is going to be used per sample and the

exact pronunciation used affects the recognition outcome. Despite that it is still

an experiment worth doing.

There are three parts in the approach, each with it’s issues that need to be

addressed. First of all there’s feature selection, since word confusability is still

work in progress with no definite calculation method. So some feature corelating

with word error rate must be selected, an example being the probability of error

over a N-best recognition.

Secondly a method of extracting said feature must be devised. Referencing

related work, approximating the speech recognition process with a composition

of finite state machines is a popular approach and one that creates an easily

manipulated system. Using the probabilities/costs returned by such a system

can serve as feature extraction.

xi

xii

The last part is classifying the samples based on the features via selecting the

appropriate threshold(s). The unclear part of this is the relative weight of error

types. A modern speech recognizer has a very low word error rate, so even a small

percentage of samples being mis-predicted as mistakes can lead to the predictor

”rejecting” more correct samples (numerically) than wrong samples. Therefore

such an approach only makes sense assuming that the classifier has extremely

good performance or that the cost of a wrong word is much higher than that of

a false alarm.

This being preliminary work the feature extraction is based upon a system

composed of simple models, the main question being if the approach even works.

As such no single feature is picked, instead performance is compared across mul-

tiple alternatives. The threshold choice problem is left untouched, instead all

meaningful thresholds are used in every test and ROC diagrams are produced by

the multiple results.

Beyond that comes the question of why it works and what is the contribution

of each component to the outcome. The contribution of each component serves

as an evaluation of the components, indicating which would require a more com-

plex (higher order) alternative. Beyond that, the performance difference between

components of different orders is an answer to the question ”do the results justify

the use of more complex models?”, which is important since the main weakness

of the method is extreme computational complexity.

Outline

The thesis is organized as follows: Chapter 1 provides the necessary theoretical

background. In Chapter 2 the principles behind our implementation are discussed

and in Chapter 3 the experimental procedure is thoroughly described. In Chapter

4 an evaluation of the proposed system is provided and finally, in Chapter 5 some

conclusions are provided along with an outline of future work and ideas that may

improve the performance of the proposed system.

Chapter 1

Theory

1.1 Speech Recognition System [15]

A speech recognition system is the implementation of the equation

Ŵ = arg max
W

P (W |O) (1.1.1)

Where W represents linguistic assumptions and O represents the acoustic ob-

servations. As such , it provides the most likely linguistic assumption given the

acoustic observation vectors.

Most speech recognition systems are based around Hidden Markov Models,

because of their favorable characteristics. Creating an Automatic Speech Recog-

nition (ASR) system requires a front end, which extracts features from the speech

signal and acoustic and linguistic models, defining the statistic properties of phone

and word sequences. The decoding process checks all expressions and decides on

the most likely one as the speech recognition output. A schematic representation

of such a system can be seen in figure (1.1)

The speech signal is viewed as locally stationary, meaning it’s spectral charac-

teristics stay constant for very small intervals. An ASR system’s front end works

based on that assumption, splitting the input signal in frames typically a few

msec each and extracting a set of features from each frame.

Acoustic models are used to provide the probability of each acoustic obser-

vation vector sequence given the word W. This could be implemented by get-

ting multiple examples of each word and determining the statistics of the vector

1

2

Acoustic
Models

Training Data

Language
Models

speech
signal

signal
representation modelling decoding

recognized
words

Figure 1.1: ASR System

sequences, however it is impractical (or even impossible) for large vocabulary

systems. So we prefer decomposing words to basic sounds called phones. A

pronunciation lexicon is created mapping each word to all corresponding phone

sequences.

There is variation in the pronunciation of each phoneme depending on the

speaker, conditions and acoustic context, requiring multiple HMM models for

each phoneme. A typical approach involves the use of triphones, triads of phonemes

focused on the middle (second) phoneme. Each phoneme has one HMM trained

for each combination of left and right neighbors, resulting in a very large total

number of HMMs. These models are trained in an iterative fashion.

Decoding takes all alternate paths of the recognition process and picks the

best path by applying the Viterbi method.

3

1.2 Language Modeling [4]

1.2.1 Counting Words

Probability theory deals with predicting how likely it is that an event will take

place. There are two interesting views of probabilities:

The objectivist view states that probabilities are real aspects of the world that

can be measured by relative frequencies of outcomes of experiments. In contrast,

according to the subjectivist view, probabilities are descriptions of an observer’s

degree of belief or uncertainty rather than having any external significance. These

contrasting views are also referred to as Frequentist vs. Bayesian. Both views

are relevant for linguistics; yet, the laws of probability theory remain the same

under both interpretations.

Probabilities are based on counting things. In our case, statistical language

processing requires computation of word probabilities. These probabilities are

computed by counting words or lexical units in a corpus. The classical definition

of probability, as given by Pascal is:

“The probability of an event x is computed as the relative frequency with which x

occurs in a sequence of n identical experiments.”

So, the probability of a word w can be approximated by:

p(w) =
occurrences of word w

number of words
(1.2.1)

which is the relative frequency with which w occurs in the corpus.

1.2.2 Punctuation Marks

Suppose that we have to count the words of the following sentence from Shake-

speare’s Hamlet and compute the probability of the word “God”.

“Oh God, I could be bounded in a nutshell and count myself a king of infinite

space.”

If we count punctuation marks as words, the sentence has totally 19 words, if we

do not 17 words..

Whether we count punctuation marks as words depends on the task. Tasks

such as grammar checking or author-identification must treat punctuation marks

4

as words because in these cases the location of the punctuation is important.

Usually corpora of spoken language do not have punctuation marks.

In our work punctuation marks are not taken under consideration.

1.3 N-grams Probabilistic Model

This model proposes the assignment of probabilities to strings of words. Based

on this method we can easily compute the probability of an entire sentence or

predict the next word in a sequence.

The simplest probabilistic version of this model allows every word to have the

same probability of following every other word. A more robust model let every

word follow every other word, with the appearance of the following word to be

depended on its normal frequency of occurrence. We still consider the individual

relative frequency of each word. The following example, based on real data, can

verify the precision of this simplistic approach.

Brown corpus [2] has 1, 000, 000 words. The word “the” occurs 69,971 times

in the corpus and the word “rabbit” occurs 11 times. Thus the probabilities are

0.07 and 0.00001 for the words “the” and “rabbit”, respectively. Suppose that

we have just read this part of a sentence: “Just then, the white...”. Furthermore,

suppose that we are curious about what the next word will be. If we use the

simple model, we will conclude that the word “the” is the most possible word to

follow “white”. But this seems totally false because there is no meaning in the

sentence “Just then, the white the”. Doubtless the sentence “Just then, the white

rabbit” sounds more reasonable. This example shows that the computation of

the probability of word sequences must use the conditional probability of a word

given the previous word. Particularly that means that the probability of a word

given the previous one is higher than its probability otherwise.

1.3.1 Conditional probability and independence

The notion of conditional probability can be considered as a kind of updated

probability of an event given some knowledge. The probability of an event before

gaining additional knowledge is referred to as the prior probability of the event.

5

The new probability of the event estimated using the additional knowledge is

called posterior probability of the event. The event of interest is formed by the

occurrences of a word in the corpus. Using symbol Ω we denote the sample space,

which is discrete, having finite number of elements. The sample space, which

corresponds to a corpus, includes all the occurrences of each distinct word of the

corpus. That is, the sample space Ω includes all the events of the corpus. For

instance, assume a small corpus: “A tiny corpus tiny”. For the previous corpus:

Ω = { occurrence of the word “A”, occurrence of the word “tiny”, occurrence of

the word “corpus”, occurrence of the word “tiny” for second time }.
The event of the occurrence of “tiny” in the corpus is denoted as tiny and is:

tiny = {occurrence of the word “tiny”, occurrence of the word “tiny” for second

time}.
We define the probability of the occurrence of the word ”tiny” according to

Eq. (1.2.1) as:

p(tiny) =
|tiny|
|Ω|

(1.3.1)

where |tiny| is the number of elements in the set “tiny” and |Ω| is the number of

elements in the probability space Ω. Thus p(Ω) = 1. So, the probability of the

event p(tiny) is: p(tiny) = |tiny|
|Ω| = 2

4
.

For the general case:

p(event) =
|event|
|Ω|

(1.3.2)

where each event is a subset of Ω.

The conditional probability of a word w2 assuming that word w1 has occurred

(p(w1) > 0), denoted p(w2|w1) equals:

p(w2|w1) =
p(w2 ∩ w1)

p(w1)
(1.3.3)

which can easily be transformed into:

p(w2|w1)p(w1) = p(w2 ∩ w1) (1.3.4)

Eq. (1.3.3) gives:

p(w1|w2) =
p(w1 ∩ w2)

p(w2)
(1.3.5)

6

We can do the conditionalization either way because set intersection is sym-

metric, w2 ∩ w1 = w1 ∩ w2. So Eq. (1.3.3) becomes:

p(w2|w1) =
p(w2)p(w1|w2)

p(w1)
(1.3.6)

Two words w1, w2 are considered to be conditionally independent if p(w2 ∩
w1) = p(w2)p(w1).

Conditional probability and independence can be the basis for computing

the probability of a string of words. A string of words can be represented as

w1, w2, ..., wn−1, wn or w1..n. Assuming the occurrence of each word in the corpus

as an independent occurrence, we can write the probability of a string of words

as follows:p(w1, w2, ..., wn−1, wn) or p(w1..n).

Using the chain rule of probability we represent p(w1..n) as:

p(w1..n) = p(w1)p(w1|w2)p(w3|w1..2)...p(wn|w1..n−1) =
n∏

k=1

p(wk|w1..k−1) (1.3.7)

Since there is not any easy way for computing the probability of a word given

all the previous words, an alternative solution for this task is to find a satisfactory

approximation. The bigram model proposed for solving this difficulty, assumes

that the probability of a word depends only on the previous word. In other words,

p(wn|w1..n−1) is approximated by the conditional probability of the word that

preceded p(wn|wn−1). This approximation is referred as a Markov assumption.

Markov models are probabilistic models, which predict a future event without

much prior knowledge. In the case of bigram (first order Markov model) models

they need to know only the preceding word.

It is obvious that the trigram (second order Markov model) model looks two

words into the past. Generalizing bigrams and trigrams, N-grams are resulted by

which the probability of a word given all the previous words can be approximated

by the probability given only the previous N words.

p(wn|w1..n−1) ' p(wn|w(n−N+1)..(n−1)) (1.3.8)

For a bigram grammar, p(w1..n) can be found by combining Eq. (1.3.8) and

7

Eq. (1.3.7):

p(w1..n) '
n∏

k=1

p(wk|wk−1) (1.3.9)

1.3.2 Smoothing

For any particular corpus, it is possible that some N-grams not to exist in this

corpus. The consequence is that the N-gram model assigns zero probability to

these N-grams. Also, using only relative frequencies to estimate N-grams proba-

bilities might produce poor estimates when the counts are too small. This major

problem raises the need to find a way of reevaluating zero probability and low

probability N-grams and assigning them non-zero values. This procedure is called

smoothing.

Add-One Smoothing

This algorithm suggests to take the bigram counts and before normalizing them

to probabilities, to add one to all the counts. This algorithm is very simple and

in practice does not perform well. However it stands as an introduction to the

concept of smoothing that is implemented much better by other algorithms.

Considering the unsmoothed maximum likelihood estimate of the unigram

probability:

p(wx) =
c(wx)∑
i c(wi)

=
c(wx)

N
(1.3.10)

where c(wx) is the frequency (counts) of word wx in the corpus and N represents

the total number of word tokens in the corpus.

The basic idea of smoothing relies on the c’s adjustment. The adjusted count

for add-one smoothing is defined by adding one to the count c and then multiply-

ing by the factor N/(N+V), which is a normalization factor. Then the adjusted

count is:

c∗i =
(ci + 1)N

(N + V)
(1.3.11)

where V is the vocabulary size of the corpus.

8

Eq. (1.3.11) can be turned into probabilities p∗
i by dividing with the total

number of word tokens:

p∗
i =

(ci + 1)

(N + V)
(1.3.12)

Applying Eq. (1.3.12) to Eq. (1.3.10), the add-one-smoothed probability for

a bigram is defined as:

p∗(wn|wn−1) =
c(wn−1wn) + 1

c(wn−1) + V
(1.3.13)

An alternative view of smoothing

Actually a smoothing algorithm discounts some non-zero counts. This is a way

to find the probability mass, which will be assigned to the zero counts. An

alternative way to refer to lowered counts c∗ is to define a discount ratio dc:

dc =
c∗

c
(1.3.14)

The choice of value one (1) which is added to the each count c is arbitrary. This

affects the probability mass that is moved near the zero value. A solution to this

problem is the choice of smaller values regarding the situation.

1.3.3 Witten-Bell Discounting

This algorithm is referred as Method C, a method initially introduced by Alistair

Moffat [8] and is considered to perform better than Add-One smoothing. In

[16], Witten and Bell surveyed and compared several approaches to the zero-

frequency problem that have been used in text compression systems. Witten and

Bell described the zero-frequency problem in the case of adaptive word coding

assuming a coding scheme in which the encoder reads the next word of text,

searches for it in a list and transmits an index extracted from the list in place

of the word. If the next word is not appeared in the list, a special code, called

escape code, must be transmitted followed by the unknown word. This new word

is added to the encoder and decoder’s lists in case it appears again. According

to this method each word is assigned an associated frequency. The computing of

9

probability of the escape character, by estimating the likelihood of a novel word

occurring, can solve the zero-frequency problem.

Similarly, a novel N-gram could then be assigned the probability of seeing it

for the first time. The basic idea behind this conception is to “use the count

of things we have seen once to help estimate the count of things we have never

seen”.

We can compute the probability of seeing a novel N-gram by counting the

number of times we saw N-grams for the first time in the corpus. The count

of the first-time seen N-grams is simply the number of N-gram types we have

already seen.

Hence we can estimate the total probability mass of all the zero N-grams by

dividing the number of N -gram types we have seen with the sum of number of

tokens and the number of N -gram types we have seen:∑
i:ci=0

p∗
i =

T

N + T
(1.3.15)

where T is the N-gram types we have already seen and N is the number of tokens.

Probability given by Eq. (1.3.15) is the total probability of unseen N-grams.

This “amount of probability” needs to be divided in order to assign a part of

it to each zero N-gram. A simple compromise is to divide equally. Letter Z

denotes the total number of N-grams with count zero. So the equal share of the

probability mass is:

p∗
i =

T

Z(N + T)
(1.3.16)

The probability of all the seen N-grams is given by the equation:

p∗
i =

ci

N + T ′ , if ci > 0 (1.3.17)

Extending the Witten-Bell discounting to bigrams, the type-counts are con-

ditioned on some history. The probability of seeing for first time a bigram wn−1

wn is equivalent to the probability of seeing a new bigram starting with the word

wn−1.

According to the Eq. (1.3.14) the probability of a bigram wx wi we have not

10

seen is: ∑
i:c(wxwi)=0

p∗(wi|wx) =
T (wx)

N(wx) + T (wx)
(1.3.18)

where T (wx) is the number of bigram types on the previous word wx we have

already seen and N(wx) is the number of bigram tokens on the previous word

wx.

Distributing the probability mass of the Eq. (1.3.18) among all the unseen

bigrams, we get:

p∗(wi|wi−1) =
T (wi−1)

Z(wi−1)(N + T (wi−1))
, if c(wi−1wi) = 0 (1.3.19)

where Z(wi−1) is the total number of bigrams with wi−1 as the first word, that

have zero counts.

For the non-zero bigrams, we parameterize T on the history:

p∗(wi|wx) =
c(wxwi)

c(wx) + T (wx)
, if c(wi−1wi) > 0 (1.3.20)

1.3.4 Backoff

So far the algorithms we have presented have all made use of the frequency of an

N-gram and have tried to compute the best estimate of its probability. In general

N-grams that never appeared or appeared only few times, were given the same

estimate. A reasonable extension of the previous methods (smoothing) is to try

to build better estimates by looking at the frequency of the (N-1)-grams found

in the N-gram.

If (N-1)-grams, found in the N-gram, are appeared rarely, then a low estimate

is given to the N-gram. Otherwise, N-grams with (N-1)-grams of moderate fre-

quency are given a higher probability estimate. This issue grounded in a more

general discussion deals with combining multiple probability estimates making

use of different models. That is, if there are no examples of a particular tri-

gram, let’s say wn−2wn−1wn, the computation of p(wn|wn−1wn−2) can be achieved

through the use of the bigram probability p(wn|wn−1). In the same manner, if

we have no examples of wn−1wn in order to compute p(wn|wn−1), we can use the

unigram probability p(wn).

11

In the backoff model, as described above, an N-gram model is built based on a

(N-1)-gram model. We only look to a lower-order N-gram if we have no examples

of a higher-order N-gram. So the backoff model for the trigram wi−2wi−1wi can

be calculated from:

Case 1:

p(wi|wi−2wi−1) = p(wi|wi−2wi−1) if c(wi−2wi−1wi) > 0 (1.3.21)

Case 2:

p(wi|wi−2wi−1) = a1p(wi|wi−1) if c(wi−2wi−1wi) = 0 and c(wi−1wi) > 0

(1.3.22)

Case 3:

p(wi|wi−2wi−1) = a2p(wi) otherwise (1.3.23)

Parameters a1 and a2 are weighting factors, which ensure that the result of

the previous equation system is a true probability. For the general case the form

of backoff is:

p̂(wn|w(n−N+1)..(n−1)) =

p̃(wn|w(n−N+1)..(n−1)) + θ(p(wn|w(n−N+1)..(n−1)))ap̂(wn|w(n−N+2)..(n−1)) (1.3.24)

The θ notation indicates a binary function that selects a lower-order model only

if the higher-order model produces a zero probability. Specifically, if x = 0 then

θ(x) = 1, else θ(x) = 0. Each p(.) is a Maximum Likelihood Estimation.

1.3.5 A clever combination: Backoff and Discounting

As was previously shown, discounting methods are used to calculate the proba-

bility mass which is assigned to unseen events, assuming that they were equally

probable. Combining discounting with backoff, this probability can be distributed

more cleverly.

Consider the following example, which shows how backoff can lead to prob-

ability greater than 1: Using relative frequencies,
∑

i,j p(wn|wiwj) = 1, which

means that the probability of a word wn over all N-gram contexts equals to 1. If

12

we use backoff in this case, adopting a lower order model, the probability of wn

will be greater than 1. So, discounting must be applied to backoff model.

Thus, the correct form of Eq. (1.3.23) is:

p̂(wn|w(n−N+1)..(n−1)) =

p̃(wn|w(n−N+1)..(n−1))+θ(p(wn|w(n−N+1)..(n−1)))a(w(n−N+1)..(n−1))p̂(wn|w(n−N+2)..(n−1))

(1.3.25)

where p̃(.) stands for the discounted MLE probabilities:

p̃(wn|w(n−N+1)..(n−1)) =
c∗(w(n−N+1)..n)

c(w1..(n−N+1))
(1.3.26)

Function a represents the amount of probability mass, which must be distributed

from an N-gram to an (N-1)-gram:

a(wn|w(n−N+1)..(n−1)) =
1−

∑
β p̃(wn|w(n−N+1)..(n−1))

1−
∑

β p̃(wn|w(n−N+2)..(n−1))
(1.3.27)

where β denotes wn : c(w(n−N+1)..(n−1)) > 0.

1.4 String Distance [10] [4]

String Distance is a measure of the similarity between two strings x and y, useful

during string searching/matching. The metrics used for string distance can be

also used for word distance and phone sequence distance. For example the prob-

lem of finding the distance between ”such nice weather” and ”a nice weather”,

the distance between ”horse” and ”horses” and the distance between ”ah n iy”

and ”ah n ih” are functionally equivalent, with the distance being measured in

different units since each sequence is composed of different building blocks (words,

letters, phones respectively). The basis for string distance metrics is the list of

fundamental editing operations ;

1. substitutions : A character in x is replaced by the corresponding character

in y.

2. insertions : A character in y is inserted into x, thereby increasing the

length of x by one character.

13

3. deletions: A character in x is deleted, thereby decreasing the length of x

by one character.

1.4.1 Hamming Distance

One distance metric is the Hamming distance, introduced by Richard Hamming

in 1950. It is defined as the number of substitutions required to change one

string into the other. For example the Hamming distance of strings ”such nice

weather” and ”a nice weather” is 1 word, since by substituting ”such” with ”a”

we transform the first string into the second one. The main problem with the

Hamming distance is that it only applies to strings of equal length since there is

no support for insertions and deletions.

1.4.2 Minimum Edit Distance

Minimum edit distance, also knows by as Levenshtein distance is a generaliza-

tion of Hamming distance to include all fundamental operations (substitutions,

insertions and deletions). It is defined as the minimum number of fundamental

operations required to convert one string into the other. For example the min-

imum edit distance between ”horse” and ”horses” is 1 letter insertion, since by

inserting an ”s” at the end of ”horse” we get ”horses”.

The minimum edit distance path can be represented in many ways, like this

alignment ;

original word ; intention i n t e n ε t i o n

comparison ; execution ε e x e c u t i o n

cost 1 1 1 0 1 1 0 0 0 0

The minimum edit distance of ”intention” and ”execution” is 5.

The operation path that produces the minimum edit distance (minimum edit

path) would be ;

original word ; intention i n t e n ε t i o n

comparison ; execution ε e x e c u t i o n

path D S S C S I C C C C

14

Where C,S,D and I correspond to Correct, Substitution, Deletion and Insertion

respectively.

For these examples each operation has a cost of 1, however different costs

or weights can be assigned to the different operations. For example we could

give substitutions a cost of 1 and insertions and deletions a cost of 0.7, in which

case the distance of ”intention” and ”execution” is 4.4. Implementation of the

algorithm that finds the minimum edit distance and the corresponding path is

done via dynamic programming.

1. begin

2. initialize A , x , y , m ← length[x] , n ← length[y]

3. C[0,0] ← 0

4. i ← 0

5. do i ← i + 1

6. C[i,0] ← i

7. until i = m

8. j ← 0

9. do j ← j + 1

10. C[0,j] ← j

11. until j = n

12. i ← 0 ; j ← 0

13. do i ← i + 1

14. do j ← j + 1

15. C[i,j] = min[C[i-1,j]+1 , C[i,j-1]+1 , C[i-1,j-1]+1-δ(x[i], y[j])]

16. until j = n

15

17. until i = m

18. return C[m, n]

19. end

1.5 Receiver Operating Characteristics Graph

[14] [13]

A receiver operating characteristics (ROC) graph is a technique for visualizing

classifier performance. ROC graphs have long been used in signal detection theory

to depict the tradeoff between hit rates and false alarm rates of classifiers, while

they are currently widely used in medical applications.

Assuming a classification problem using only two classes, each instance I is

mapped to one class of the set p,n of positive and negative class labels. A

classifier is a mapping from instances to predicted classes. We label the predicted

class using the capital letters P,N.

Given a classifier and an instance, there are four possible outcomes. If the

instance is positive and it is classified as positive, it is counted as a true positive ;

if it is classified as negative, it is counted as a false negative. If the instance

is negative and it is classified as negative, it is counted as a true negative ; if

it is classified as positive, it is counted as a false positive.Given a classifier

and a set of instances (the test set), a two-by-two confusion matrix (also called

a contingency table) can be constructed representing the possible outcomes from

that set of instances.

Figure (1.2) shows a confusion matrix. The numbers along the major diagonal

represent the correct decisions made, and the numbers off this diagonal represent

the confusions (errors) between the classes. This matrix is the basis for many

common classifier performance metrics, like accuracy and recall.

ROC graphs are two-dimensional graphs in which true positive rate is plotted

on the Y axis and false positive rate is plotted on the X axis (equivalently, true

negative and false negative can be used). A ROC graph depicts relative tradeoffs

between benefits (true positives) and costs (false positives).

16

True Class
p n

P True False
Positive Positive

Hypothesized
Class N False True

Negative Negative

Figure 1.2: Confusion Matrix

An example of a ROC graph can be seen in figure (1.3), where the points

produced for different parameters of the same classifier have been connected by

a line.

The lower left point (0%, 0%) in ROC space represents the strategy of never

issuing a positive classification; such a classifier commits no false positive errors

but also gains no true positives. The opposite strategy, of unconditionally issuing

positive classifications, is represented by the upper right point (100%, 100%). The

point (0%, 100%) represents perfect classification.

Informally, one point in ROC space is better than another if it is to the

northwest (tp rate is higher, fp rate is lower, or both) of the first. Classifiers

appearing on the left-hand side of an ROC graph, near the X axis, may be thought

of as conservative: they make positive classifications only with strong evidence so

they make few false positive errors, but they often have low true positive rates as

well. Classifiers on the upper right-hand side of an ROC graph may be thought of

as liberal: they make positive classifications with weak evidence so they classify

nearly all positives correctly, but they often have high false positive rates. The

preferred type of classifier depends on the class skew of the domain.

The diagonal line y = x represents the strategy of randomly guessing a class.

For example, if a classifier randomly guesses the positive class half the time, it

can be expected to get half the positives and half the negatives correct; this yields

the point (50%, 50%) in ROC space. Overall a random classifier will produce a

17

 0% 20% 40% 60% 80% 100%
 0%

 20%

 40%

 60%

 80%

100%

false positive

tr
ue

 p
os

iti
ve

ROC
chance

Figure 1.3: ROC graph example

ROC point that moves on the diagonal. For a classifier to appear in the upper

triangle it needs to make use of the data.

Thus any classifier that appears in the lower right triangle performs worse than

random guessing, so this triangle is usually empty in ROC graphs. Reversing such

a classifier (inverting all it’s decisions) results in it moving to the upper triangle.

Normally discrete classifiers (those outputting only a class label) define a sin-

gle point in ROC space. That however can change when considering parametric

systems. The obvious case and the one used in this thesis is a varying classifi-

cation threshold, changing it produces multiple points in ROC space which in

turn can define a curve. This curve can be used to fine-tune the classifier for a

specific usage, like picking an appropriate threshold for a conservative classifier

(low number of false positives).

Comparing different parametric classifiers through their ROC curves can be

done in many ways depending on our demands. For example we could compare

the total Area Under the Curve (AUC) if interested in overall performance or

18

there might be a Region Of Interest (ROI) within which we are limited. Further

consideration should be given to the fact that ROC graphs don’t take into account

class skew (one class could be much more likely than the other) or error weight

(mistakenly diagnosing cancer has a much lower cost than mistakenly giving a

clean bill of health), factors like these usually help us define a region of interest

in ROC space.

Chapter 2

Our approach

2.1 “Bayesian formulation of the speech recog-

nition problem” [9]

The general formulation of the speech recognition problem using the bayesian

formulation is

Ŵ = arg max
W

P (W |O) = arg max
W

P (O|W)P (W) (2.1.1)

Where O is the acoustic observation vector, W is any word sequence and Ŵ is

the recognized (most probable) word sequence.

The probability of the recognized word sequence can also be calculated as

PLA(Wr) =
∑
Wc

P (Wr|Wc)P (Wc) (2.1.2)

Where P (Wr|Wc) is the word misclassification probability, the probability that

Wr will be recognized given the speaker said Wc, PLA(Wr) is the probability of

recognizing Wr and P (Wc) is the probability that the speaker says Wc.

To simplify matters we assume that only word substitution errors can happen,

no insertions or deletions. Then we can compute the word unigram and bigram

probabilities for recognized word sequence Wr from n-gram models of correct

word sequences. For unigrams we have

PLA(w1
r) =

∑
w1

c

P (w1
r |w1

c)P (w1
c) (2.1.3)

19

20

and for bigrams

PLA(w2
r |w1

r) =
∑

w1
c ,w2

c

P (w1
r , w

2
r |w1

c , w
2
c)P (w2

c |w1
c)

P (w1
c)

PLA(w1
r)

(2.1.4)

These can be simplified further by assuming independence among word misrecog-

nitions

P (w1
r , w

2
r |w1

c , w
2
c) = P (w1

r |w1
c)P (w2

r |w2
c) (2.1.5)

2.2 Misrecognition models

The quantity needed in the above equations is P (Wr|Wc), the misrecognition

probability. This section discusses some methods of calculating it.

There are three main categories of models :

1. Assume that Wr and Wc are independent → P (Wr|Wc) = P (Wr) →
PLA(Wr) = P (Wr)

2. Assume that P (Wr|Wc) is a constant for any Wr 6= Wr → all words are

equally confusable with any word in the corpus

3. Assume that P (Wr|Wc) is a function of both Wr and Wc

Some model examples

P (Wr|Wc) =

{
p Wc = Wr

1−p
N−1

Wc 6= Wr

(2.2.1)

P (Wr|Wc) =


p Wc = Wr

1−p
N(Wc)−1

Wc 6= Wr&L(Wc) = L(Wr)

0 else

(2.2.2)

P (Wr|Wc) =


p + (1− p)P (Wc)

a Wc = Wr

(1− p)P (Wr)
a Wc 6= Wr&L(Wc) = L(Wr)

0 else

(2.2.3)

21

2.3 Simplified form

Given a probabilistic lexicon with alternate pronunciations for each word and

with Ur and Uc being the phone sequences corresponding to Wr and Wc, we can

express P (Wr|Wc) as

P (Wr|Wc) =
∑
Uc,Ur

P (Uc, Ur, Wr|Wc) =

=
∑
Uc,Ur

P (Wr|Uc, Ur, Wc)P (Ur|Uc, Wc)P (Uc|Wc) =

=
∑
Uc,Ur

P (Wr|Ur)P (Ur|Uc)P (Uc|Wc) =

=
∑
Uc,Ur

P (Ur|Wr)P (Wr)
P (Ur|Uc)

P (Ur)
P (Uc|Wc) (2.3.1)

assuming P (Wr|Uc, Ur, Wc) = P (Wr|Ur) and P (Ur|Uc, Wc) = P (Ur|Uc) which is

equivalent to a bayesian network of Wc → Uc → Ur → Wr. In the equation,

P (Ur|Wr) and P (Uc|Wc) are the probabilities of a sequence of phones given a se-

quence of words, which are pronunciation probabilities directly retrievable from a

probabilistic pronunciation lexicon. P (Ur|Uc) is the phone misrecognition proba-

bility, retrievable from a phone misclassification model. So in total we can get all

required probabilities using : a phone misclassification model, a language model

and a probabilistic pronunciation lexicon.

2.4 Baseline system

For the implementation we approximate Eq. (2.3.1) with

P (Wr|Wc) = max
Ur,Uc

[P (Uc|Wc)P (Ur|Uc)P (Ur|Wr)P (Wr)] (2.4.1)

with Ur, Uc being the acoustic observation vectors and Wr, Wc being the word

sequences. We are assuming that all phones are equiprobable and that Ur has

the same number of phones for each Ur corresponding to word sequence Wr (the

22

later is true when we allow only for substitutions in the phone misclassification

model). We also substitute the sum with the max, which should be a good ap-

proximation provided most of the probability mass is confined to a small amount

of assumptions.

The recognition result will be the Wr assumption with the highest probability

Ŵr = arg max
Wr

[P (Wr|Wc)] = arg max
Wr

[max
Ur,Uc

[P (Uc|Wc)P (Ur|Uc)P (Ur|Wr)P (Wr)]]

(2.4.2)

Which corresponds to the best path of a composition of a probabilistic pro-

nunciation lexicon (L), it’s inverse (L−1), a phone misclassification model (M)

and a language model (W). So our system will correspond to ;

L ◦M ◦ L−1 ◦W (2.4.3)

In a similar fashion we can get the Wc estimate given the recognized word

sequence.

Ŵc = arg max
Wc

[P (Wc|Wr)] = arg max
Wc

[max
Ur,Uc

[P (Uc|Wc)P (Uc|Ur)P (Ur|Wr)P (Wc)]]

(2.4.4)

Which can be represented by the same system, only using a different misclas-

sification model.

The schematic representation is presented in figure (2.1).

The first component is a pronunciation lexicon representing P (Uc|Wc), it’s

output is the combination of all possible pronunciations a speaker may use to

utter the phrase Wc. That then passes through a misclassification model rep-

resenting P (Ur|Uc), mapping each phone to all possible confusions. Then all

resulting phone sequences pass through an inverse pronunciation lexicon provid-

ing P (Ur|Wr) which transforms them into all possible recognized word sequences

Wr. Finally these word sequences go through a language model representing the

P (Wr) term of the equation, which adds grammar weight.

Intuitively, the first lexicon represents the speaker, the misclassification model

and second lexicon are the phonetic part of the recognition process and the lan-

guage model is the linguistic part. The system is implemented via fsm toolkit, by

23

Figure 2.1: System diagram

composing the 4 finite state machines. Initially all automata were trained using

the TIMIT dataset.

Each component of the system is implemented in multiple ways, following are

their descriptions.

2.4.1 Lexica

The 2 lexica are the same, with one of course being inverted. Two alternatives

were used

1. a classic pronunciation lexicon containing all alternates available in the

24

corpus with a cost of −100ln(P (Uc|Wc)) where P (Uc|Wc) = count(Uc,Wc)
count(Wc)

.

2. a version contains only one pronunciation per word, the most likely one of

the previous lexicon and is costless.

2.4.2 Misclassification

The misclassification model is a 1:1 mapping of all possible phone substitutions.

It is trained by taking the minimum edit paths between a transcription and a

phone recognition of the same text. It’s costs are −100ln(P (U i
r|U i

c)), calculated

by simply counting the instances where the transcription phone U i
c is substi-

tuted by U i
r in the recognizer output (a deletion is a substitution with ε, an

insertion is a substitution of ε). Across the entire phone sequence U the cost is

−100ln(
∏

i P (U i
r|U i

c)), where U i
r is the i − th element of phone sequence U . We

assume phone misrecognition independence, the result of one phone recognition

has no effect on following ones. For the purposes of this thesis we consider only

phone substitution errors, insertions and deletions are ignored.

Part of the misclassification matrix can be seen in figure (2.2), the first

column being the phones in the transcription result versus the first line which are

the recognition result. For example, ”aa” appears 846 times in the transcription,

137 of these correspond to ”EPS” (a deletion) in the recognition. These numbers

converted to probabilities (normalized by the total number of ”aa” occurences in

the trascription) create our model.

We also train a second misclassification model, used for P (Wc|Wr) calculation.

For the second misclassification model we follow the same training procedure, but

map from recognition to transcription.

Finally we also create a uniform error probability model as the one illustrated

in Eq. (2.2.1).

2.4.3 Language model

The language model is task-dependent, based on the one from the system we

are trying to approximate. It’s costs are −100ln(P (Wc)). We create unigram,

25

EPS aa ae ah ao aw ay b ch d dh eh er ey f g hh ih iy jh k l m n ng ow oy p r s sh t th uh uw v w y z

EPS 0 19 23 57 22 18 19 15 30 52 18 18 19 21 14 16 91 36 26 12 56 23 16 34 11 22 4 29 11 11 3 75 21 10 11 16 24 13 14 930

aa 137 430 12 62 90 35 26 0 0 2 1 2 6 0 2 1 4 2 1 1 6 4 1 4 2 5 1 1 1 0 1 2 0 0 0 1 3 0 0 846

ae 86 9 462 25 1 21 23 0 1 1 0 96 2 8 1 0 2 19 4 0 0 0 1 1 0 0 0 0 1 0 0 3 0 0 1 0 3 1 0 772

ah 479 45 25 1132 34 27 27 6 0 4 2 62 48 2 1 1 5 178 5 1 5 18 8 23 1 57 12 6 9 2 3 4 4 37 7 2 5 2 6 2295

ao 126 78 1 16 433 12 14 1 0 1 0 0 2 1 0 1 0 0 1 0 0 15 0 2 0 9 12 2 6 0 0 2 0 0 0 0 23 2 1 761

aw 13 15 13 12 7 136 1 1 0 1 0 2 0 0 0 0 0 0 0 0 1 6 0 1 0 3 1 0 0 0 0 0 0 0 0 1 1 0 1 216

ay 49 30 17 31 4 6 501 1 0 1 0 8 0 13 0 0 1 5 1 0 1 1 0 2 0 0 8 0 1 0 0 1 1 0 1 0 1 0 1 686

b 90 2 0 1 1 2 0 667 1 33 27 3 1 0 0 6 0 0 2 0 0 2 4 10 3 1 0 96 1 1 0 3 1 0 1 15 3 0 0 977

ch 32 0 0 0 0 0 0 0 178 5 0 1 0 0 0 0 0 0 0 30 1 0 0 1 0 0 1 0 1 2 5 2 0 0 0 0 0 0 0 259

d 378 3 9 7 1 3 9 23 1 1295 52 5 12 4 0 29 4 16 5 5 6 2 5 43 12 7 1 9 0 2 1 125 9 2 4 8 0 2 2 2101

dh 215 0 0 1 2 0 1 34 0 51 437 0 0 1 2 3 4 6 1 0 2 1 13 15 3 4 0 19 0 3 0 7 36 1 1 27 0 1 5 896

eh 293 3 111 109 3 16 5 2 7 7 5 459 17 37 3 0 7 106 6 0 2 1 1 3 0 5 5 0 6 2 1 2 4 7 1 4 2 4 1 1247

er 125 8 4 28 13 1 5 0 0 1 3 22 1220 5 2 0 2 69 2 4 1 3 0 3 0 6 4 1 133 0 0 2 1 4 15 2 1 1 1 1692

ey 42 0 6 2 0 1 15 0 0 0 0 16 2 590 0 0 2 51 46 0 2 1 0 1 6 0 10 0 0 1 0 0 0 2 5 0 0 1 0 802

f 40 0 0 0 1 0 0 0 3 0 1 3 1 0 772 0 1 2 1 0 0 1 0 2 1 2 1 4 0 2 5 3 47 1 0 14 1 1 1 911

g 50 3 1 2 1 0 1 6 0 33 1 1 2 5 0 352 1 1 2 0 55 2 2 6 6 2 0 0 0 0 1 5 1 0 1 9 0 4 1 557

hh 99 0 0 0 0 0 1 0 3 5 0 2 2 1 2 0 409 0 4 1 3 0 4 3 1 0 0 2 0 3 4 4 0 0 1 3 1 0 3 561

ih 759 0 38 262 2 0 12 2 3 13 13 191 89 98 1 6 2 2016 123 6 3 7 2 33 4 13 18 2 19 1 6 5 5 58 67 7 3 43 7 3939

iy 127 0 1 0 0 1 0 1 0 6 0 2 12 79 0 0 1 85 1372 1 1 0 1 8 6 0 11 1 5 0 0 2 2 1 10 0 0 72 2 1810

jh 27 0 0 0 0 0 1 0 35 3 0 0 0 0 1 0 0 0 0 200 0 0 0 0 0 0 0 0 0 2 9 9 0 0 0 0 0 0 8 295

k 73 0 3 11 3 1 7 0 0 13 1 1 4 3 1 79 8 7 3 2 1171 1 0 2 2 0 0 9 0 0 0 39 1 2 0 0 1 1 1 1450

l 291 18 2 32 33 61 7 3 0 7 22 3 4 1 2 3 5 3 3 0 2 1396 17 14 2 114 12 6 15 3 2 7 10 6 13 7 72 1 2 2201

m 127 3 2 7 1 4 0 10 2 0 4 8 4 2 3 2 1 10 1 0 0 7 1012 136 23 2 0 5 2 1 2 3 1 0 3 16 2 0 0 1406

n 327 5 10 29 5 5 11 1 0 62 8 8 6 6 0 4 2 25 9 0 2 12 93 1859 105 7 1 1 6 0 2 9 3 1 9 10 3 1 3 2650

ng 25 1 1 0 0 1 1 1 0 2 0 1 4 2 0 3 0 2 7 0 0 2 2 33 282 3 1 1 2 0 0 1 0 0 0 0 0 0 0 378

ow 87 8 2 46 26 22 2 1 0 2 3 12 10 2 1 0 0 7 1 0 1 44 0 2 0 288 6 2 2 0 1 0 0 7 8 0 5 1 1 600

oy 5 1 0 0 3 0 3 0 0 0 0 1 0 4 0 0 0 0 1 0 0 1 0 0 0 2 104 0 0 0 0 0 0 0 0 0 2 0 0 127

p 39 1 5 7 4 2 0 43 0 12 9 1 0 0 6 3 6 0 0 0 11 0 1 2 2 2 0 878 0 1 0 34 6 1 0 9 1 0 0 1086

r 457 7 4 9 5 2 11 5 25 6 2 3 249 1 5 2 4 8 1 13 10 2 5 5 3 5 24 3 917 3 2 7 1 3 2 18 11 4 5 1849

s 96 0 0 2 0 2 0 0 12 2 0 1 3 1 12 0 0 5 0 7 1 1 0 1 1 0 0 0 1 1762 60 8 25 0 0 1 0 0 168 2172

sh 8 0 0 0 0 0 0 0 28 0 0 1 0 0 1 0 0 1 0 3 0 0 0 1 1 0 0 0 0 19 391 2 0 0 0 1 0 0 3 460

t 326 3 4 28 3 4 3 8 10 147 12 11 7 10 4 16 9 14 2 12 63 5 4 6 5 2 0 46 1 9 6 1354 44 2 5 9 1 0 16 2211

th 19 0 1 1 0 0 0 0 1 3 13 0 0 1 15 1 0 2 0 0 1 0 0 2 0 0 0 11 0 7 0 16 157 1 0 2 0 1 4 259

uh 51 0 0 41 5 0 0 0 0 0 0 6 9 0 0 0 0 23 0 0 0 3 0 2 0 11 1 1 3 1 0 1 1 50 5 0 1 0 0 215

uw 130 0 2 6 0 1 0 1 1 3 0 2 20 1 1 2 1 52 36 3 0 9 3 5 1 13 0 0 2 1 2 1 1 12 243 1 10 6 0 572

v 119 2 2 8 1 3 1 11 0 24 19 3 2 2 32 0 1 5 3 0 0 0 3 5 3 11 0 1 0 1 0 0 6 2 3 430 5 1 1 710

w 115 1 0 1 4 1 0 3 2 0 2 1 1 1 8 3 1 1 1 0 1 22 1 3 2 4 6 2 4 0 0 1 1 0 9 5 689 3 4 903

y 64 0 1 0 0 1 1 0 2 6 1 0 0 0 0 1 1 4 8 1 1 0 2 1 3 1 2 0 1 0 8 3 0 0 0 2 1 260 0 376

z 46 0 0 3 0 0 0 0 3 1 4 3 0 0 5 1 0 1 2 17 2 0 0 2 1 0 1 2 0 243 46 7 9 1 1 0 1 2 905 1309

5572 695 762 1978 708 389 708 846 348 1804 660 959 1758 902 897 535 575 2762 1680 319 1411 1592 1201 2276 492 601 247 1140 1150 2083 561 1749 398 211 427 620 876 428 1167 43487

Figure 2.2: Misclassification Matrix

bigram and zerogram versions.

2.5 AURORA4 ; The real-life counterpart

AURORA4 is the name of the automatic speech recognition system used as a ref-

erence point. It is based on HMMs and uses tied-state triphone models. Specifi-

cally the iterative training process goes as follows ;

R1 → Initial 1-gaussian/3-state monophone models

hmm0

26

hmm1

...

hmm8

R2 → Cross-Word initial triphones 1-gaussian/3-state

hmm0

hmm1

hmm2

hmm3

R3 → Tied-state triphones

hmm10

...

hmm13 → 1-gaussian

hmm20

...

hmm23 → 2-gaussian

...

hmm60

...

hmm63 → 6-gaussian

It is trained and tested using the wall street journal dataset.

For the purposes of this thesis we train the system using clean (noise-less) data

and use a 166 sentence testing dataset, again using noise-less data, for testing.

The model used is the tied-state 1-gaussian one.

Chapter 3

Experimental Procedure

3.1 Adaptation

Adapting the system was required for it to become compatible with the testing

data of AURORA4. This is the procedure followed.

3.1.1 Phone set

The phone set used by TIMIT and therefore the one used by our lexica and

misclassification models is different than the one used by AURORA4. We used

the maximum common subset of those 2 : AUR4 ∩ TIMIT . Conversion from

the old sets to the new one happens according to figure (3.1). The mappings

were decided by looking at the previous misclassification matrix (phones become

their most common misclassification) and by comparing the pronunciations of

words between the lexica of the 2 systems. The phones ”q”,”sp” and ”sil” are

used in the 2 systems to signify silence, but in different ways, so we remove them

completely.

The phones in the lexica of both systems and the training files for the mis-

classification model are adapted to the new phone set.

3.1.2 Lexicon

The lexicon we had trained with TIMIT data didn’t include too many words from

the one used by AURORA4. Furthermore, we couldn’t just use the AURORA4

27

28

AUR - converted to AUR + TIMIT
sp - NULL EPS
sil - NULL aa
zh - z ae

ah
ao
aw

TIMIT - converted to ay
ax - ah b
axr - er ch
dx - d d
el - l dh
en - n eh
ix - ih er
nx - n ey
q - NULL f

g
hh
ih
iy
jh
k
l
m
n
ng
ow
oy
p
r
s
sh
t
th
uh
uw
v
w
y
z

Figure 3.1: Table of phone conversions

29

lexicon since it isn’t probabilistic and we didn’t have access to it’s training corpus.

So we went for a middle ground solution. We created a probabilistic lexicon based

on AURORA4’s with all pronunciations being equiprobable, then we combined

that with the TIMIT-trained lexicon as

lex = lexTIMIT ∪ (lexAUR4 − lexTIMIT)

All words already existing in the TIMIT lexicon are left untouched, then the new

words from AUR4 (and their equiprobable pronunciations) are added.

3.1.3 Language model

The language model used by AURORA4 is a smoothed back-off bigram in the

.arpa format, with costs being −100log10(P (Wc)). We convert it to a form com-

patible with fsm-toolkit and recalculate the costs. A unigram and a zerogram

(uniform unigram) model are also created from the same file.

Language model weight was a recurring problem. We used multiple heuris-

tic methods trying to get an appropriate value, one was comparing the value

average(linguistic cost
acoustic cost

) of the 2 systems, another was comparing the standard de-

viation of the fraction of costs for the two systems stdev(linguistic cost
acoustic cost

) however

the resulting weights didn’t produce the expected results. The values we use in

our experiments are the ones that produced the best results, but not necessarily

the optimal ones. Specifically we use a language model weight of 1 for unigram

experiments and a weight of 0.5 for bigram and zerogram models. Intuitively

the weight should increase as language model class increases, but experimentally

that wasn’t the case.

3.2 Operation

The system accepts as input a file of word sequences and returns the results of

N-best recognition for each sequence, along with the lingo-acoustic, linguistic and

acoustic costs. A sample output file given the correct phrase ’in a fundamental’

can be seen in figure (3.2).

30

in a fundamental (2052.845142) (1065.496735) (987.34848)
and a fundamental (2153.82909) (1126.185426) (1027.643723)
no fundamental (2278.721944) (1347.947937) (930.773972)
any fundamental (2287.354074) (1353.540711) (933.813401)
in the fundamental (2290.035474) (1329.834442) (960.201004)

5-Best recognition given the correct phrase ’in a fundamental’.
The output is ; recognized phrase, lingo-acoustic cost, acoustic cost, linguistic
cost.

Figure 3.2: Sample output of N-best recognition

Initially the input sentence is read and through the lexicon the transducer

containing all pronunciations of it is produced. Figure (3.3) shows the pronun-

ciation fsm for input phrase ”hot water”.

phrase.fst.tmp1

0

1hh/182.0

2
hh/21.44

3

hh/344.2

4

aa/0

5
aa/0

ao/0

6w/552.1

7
w/182.6

8

w/621.4

9
w/361.1

10

w/354.0

11
w/27.83

12

w/511.5

t/0

13

aa/0

14

ao/0

15

uh/0

aa/0

16
aa/0

17

ao/0

ah/0

ao/0

ao/0

uh/0

18
d/0

19/0

er/0

d/0

r/0

r/0

20
d/0

ah/0

uh/0

Figure 3.3: Pronunciations example

That is then composed with the misclassification model, giving us the total

number of possible ways the phrase can be recognized by a front-end. Figure

(3.4) shows part of the fsm for this stage, given the phrase ”hot water”.

The inverted lexicon converts those phones back into words and the language

model adds grammar weight. Figure (3.5) shows part of the fsm for this stage,

given the phrase ”hot water”.

31

a3.fsm

0 1
hh:hh/53.44

2

hh:hh/214.0

3

hh:hh/376.2

4

aa:aa/67

6

aa:ah/261

aa:aw/318

aa:ay/348

5aa:ao/224

7aa:aa/67

8

aa:ao/224

aa:ah/261

ao:ao/56
t:d/271

t:k/355

t:p/387

t:th/391

9

t:t/49

t:t/49

10
t:t/49

11
w:w/54.83

12

w:w/209.6

13w:w/54.83

14w:w/54.83

15

w:w/209.6

w:w/209.6

16
w:w/54.83

18

ao:aa/228
17

ao:ao/56

aa:aa/67

ao:ao/56

ao:aa/228

ao:ah/386

ao:ay/399

ao:l/393

ao:w/350 19

ao:ao/56

aa:aa/67

aa:ao/224

ao:aa/228

ao:ao/56

21

d:d/48

20

d:d/48

d:dh/369
d:n/388

d:t/282

22d:d/48

23/0

er:er/32

er:r/254

er:er/32

er:er/32

er:ih/320

er:r/254

Figure 3.4: Misclassification example

a3.fsm

0
3

had/1161.

hard/1147.

how/1084.

her/1124.

hit/1163.

hud/1136.

not/1046.

high/1093.

2
hot/1004.

high/934.8

how/925.6

1

hot/687.1

5

hot/845.7

6/0

water/676.7

water/835.4

7/0
water/676.7

4/0
water/676.7

wider/1074.

water/994.0

8/0

water/835.4

water/835.4

water/676.7

Figure 3.5: Output fsm example

32

From that fsm we extract the N best paths using Viterbi decoding.

3.2.1 Processing results

One of our targets is comparing the results of the real and virtual recognition

systems given the same test data, another is using the virtual system to pre-

dict the behavior of the real one. In any case we need a method of comparing

the output of the two systems, so we create a superscript that reads the testing

dataset of AURORA4 and feeds the virtual system with the appropriate data.

Then the results are processed ; we add a normalized probability for each path

assuming there are no other valid paths besides those N (the assumption doesn’t

hurt us that much, since almost all probability mass really is spread across very

few paths). A sample can be seen in figure (3.6). The total probabilities of

correct/error are produced by taking the minimum edit paths between each can-

didate path and the correct/recognized words. Note that the probabilities of

correct/error are based on the second word of the trigram (see appendix B), for

example the minimum edit path between ”in a fundamental” and ”and a funda-

mental” is ”S-C-C” which is identified as correct since the second word (”a”) is

correct and it’s probability is added to P (correct).

Most of our tests follow this procedure ;

1. Run a 166 phrase test in AURORA4

2. Get the minimum edit paths from the correct to the recognized phrases of

AURORA4

3. From the minimum edit paths identify an appropriate amount of trigrams

4. Give the correct or recognized trigrams as input to the virtual system and

run a 5-best or 10-best recognition

The output is multiple text files of the form seen in figure (3.6). Unless men-

tioned otherwise, we use an input of 1639 correct-correct-correct and 92 correct-

substitution-correct trigrams for the unigram and zerogram tests, 50 correct-

correct-correct and 50 correct-substitution-correct trigrams for the bigram tests.

33

C-S-C
CORRECT : in a fundamental
AURORA4: in the fundamental

PHR C(LA) C(A) C(L) P(LA)

in a fundamental (2052.845142) (1065.496735) (987.34848) 0.603173349186083 correct
and a fundamental (2153.82909) (1126.185426) (1027.643723) 0.219722448762161 correct
no fundamental (2278.721944) (1347.947937) (930.773972) 0.0630190217484311
any fundamental (2287.354074) (1353.540711) (933.813401) 0.0578073143392496
in the fundamental (2290.035474) (1329.834442) (960.201004) 0.0562778659640748 recognized

P(correct) = 0.822895797948244
P(error) = 0.177104202051756
P(recognized) = 0.0562778659640748

5-Best recognition given the correct phrase ’in a fundamental’ and the AURORA4
recognized ’in the fundamental’.
The output is ; recognized phrase, lingo-acoustic cost, acoustic cost, linguistic
cost, lingo-acoustic probability.

Figure 3.6: Sample output of N-best recognition, comparative

3.2.2 Classification

Given the output files of the previous stage and the probabilities contained in

them, we can classify the results. For example we can set a P (error) threshold

of E and classify any result with a probability of error higher than that threshold

as wrongly identified. To create the ROC graphs used for our evaluation we

1. Pick a feature to act as the criterion (P (error),P (correct),P (substitution)

etc)

2. Classify all results using all N samples as thresholds T , so a total of N

classifications per experiment

3. Place all points (true reject, false reject) in ROC space creating a curve

Chapter 4

Evaluation

4.1 Behavior

Initially we want to see if the output of the virtual system matches that of the real

recognition system using the probability of error against some often used metrics.

Specifically we use P (error|wordlengthinletters), P (error|wordlengthinphones)

and P (error|number of alternate pronunciations of word) or rather the average

values of those expressions across all available conditions. The comparison is

against the probability of error of AURORA4 across it’s entire test set. The

diagrams can be seen in figures (4.1), (4.2) and (4.3).

All models provide a reasonably good approximation given word length in let-

ters and phones, at least in the range of values for which we have a lot of samples

(4-8 phones, very short and very long words are much less common). None of

the models does really well given the number of alternate pronunciations, how-

ever that is reasonable since the 2 systems use different lexica and therefore have

different numbers of alternate pronunciations for the same words (the number of

pronunciations in the virtual system’s lexicon was used for the comparison).

Distributions

For the purpose of classifying samples we create distributions of the output,

P (P (error)|category) and P (category|P (error)). An example can be seen in

figures (4.4) and (4.4) with the distributions from a unigram test.

The concept of P (P (error)|category) or P (P (error)) in general may seem

34

35

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

#letters

P
(e

rr
or

)

AURORA4
zerogram
unigram
bigram

Figure 4.1: P(error) given word length in letters

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

#phones

P
(e

rr
or

)

AURORA4
zerogram
unigram
bigram

Figure 4.2: P(error) given word length in phones

36

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

#pronunciations

P
(e

rr
or

)

AURORA4
zerogram
unigram
bigram

Figure 4.3: P(error) given the number of alternate pronunciations of the word

confusing at first. As an example, in figure (4.4), about 60% of all correct word

samples from the recognizer are assigned an error probability of around zero (the

samples are quantized), while about 0% are assigned an error probability around

1. Similarly, 30% of all recognition error samples are assigned a probability of

error around zero, while about 5% are given a probability around 1.

The P (P (error)|category) diagram shows that misrecognitions are assigned

a higher average probability of error, with a larger probability mass spread across

the higher P (error) values than correct samples. However a lot of mass is gath-

ered around the zero mark, for both correct and wrong samples. This indicates

that the system underestimates confusability, perhaps an artifact of the simple

phone misrecognition model (no insertions or deletions) and places a limitation

to any classification efforts. It should be noted that corresponding graphs for

all our tests follow the same form, including the probability mass around zero,

though the exact values are different in each case.

The P (category|P (error)) diagram is here mostly for illustrative purposes,

37

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P(error)

P
(P

(e
rr

or
)|

ca
t)

CORRECT
ERROR

Figure 4.4: P (P (error)|category) distributions

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P(error)

P
(c

at
|P

(e
rr

or
))

CORRECT

ERROR

Figure 4.5: P (category|P (error)) distributions

38

the much larger a-priori probability of a correct recognition means that a correct

recognition is always the much more likely outcome. This suggests that if all

errors (false accept and false reject) have equal weights then we should just classify

all samples as correct. However the weight of false accept (wrong word accepted as

correct) is typically much higher than that of false reject (correct word rejected

as wrong) and the varying weight of these errors is what pointed as to ROC

analysis.

4.2 Predictive power

As a post process all samples of the output are classified as correct (accepted) or

wrong (rejected), trying to predict the output of the real speech recognition sys-

tem. The criterion used is the probability of error of each sample (see figure (3.6),

samples with a probability of error higher than the threshold are rejected, others

are accepted. We define ROC space as true reject (errors correctly identified as

errors) over false reject (correct samples wrongly classified as errors).

Varying the classification threshold from 0− to 1+ we get multiple points

in ROC space, which give us a complete view of the classifier’s potential. For

presentation purposes we connect those points creating ROC curves, though our

classifier is discrete and so doesn’t produce a continuous ROC curve. Following

are comparative ROC diagrams, illustrating the factors that affect prediction

accuracy. Unless mentioned otherwise, the diagrams refer to classification using

the total probability of error as the criterion.

It should be noted that the graphs are not directly comparable to each other,

since each corresponds to different common parameters.

4.2.1 Prediction

Initially we give the system the correct trigram and ask it to predict if the second

word will be correctly identified by the speech recognition system.

39

Language Model

We compare the three available language models using the normal misclassifica-

tion model and the single pronunciation lexicon (a necessity to accommodate the

bigram model). Figure (4.6) shows the results. As expected, the higher the class

of the language model used the more accurate the classification. Experimentally

this seems to be the most important factor.

 0% 20% 40% 60% 80% 100%
 0%

 20%

 40%

 60%

 80%

100%

false reject

tr
ue

 r
ej

ec
t

zerogram
unigram
bigram
chance

Figure 4.6: ROC using different class language models, prediction

Misclassification

Another major factor is the misclassification model used. For comparison we use 2

models as illustrated in section (2.4.2), one being the ”normal” (default) one, the

other using a uniform probability of error. Figures (4.7), (4.8), (4.9) show the

effect of using the two misclassification models combined with the three language

models, all tests utilize the probabilistic pronunciation lexicon. All 3 diagrams

show minor differences. In this case we would expect more of an improvement by

using the ”normal” model.

40

 0% 20% 40% 60% 80% 100%
 0%

 20%

 40%

 60%

 80%

100%

false reject

tr
ue

 r
ej

ec
t

normal
uniform
chance

Figure 4.7: ROC using different misclassification models, zerogram, prediction

 0% 20% 40% 60% 80% 100%
 0%

 20%

 40%

 60%

 80%

100%

false reject

tr
ue

 r
ej

ec
t

normal
uniform
chance

Figure 4.8: ROC using different misclassification models, unigram, prediction

41

Classification Criteria

Classification accuracy is affected by the feature we use as the criterion. By

default we use the total probability of error (substitution, insertion and deletion),

for comparison we also create ROCs using as criteria ;

the probability of substitution error

the difference of log probabilities between the most likely correct and the most

likely wrong path.

Figures (4.10), (4.11), (4.12) show the effect of using the three criteria combined

with the three language models. As seen in the figures, the substitution error

accuracy improves comparatively to the total error accuracy as the language

model class increases. It is much worse in the zerogram case, but comparable in

the unigram and bigram cases. This is expected, accuracy deteriorates as more

non-substitution errors occur and the zerogram model has a natural tendency

towards deletions.

P (error) and log(P)difference are more competitive, the latter usually per-

forming better in the lower left and upper right quadrants of the diagram, the

former inbetween. The latter produces a larger area under the curve, but the

former produces higher peaks. The advantage of the log(P) criterion seems to be

that the concentrated probability mass (see figure (4.4)) is distributed better.

4.2.2 Diagnosis

In the more realistic case, we have the recognized word and want to decide

whether it is correct or not. So we present the recognized trigram to the system

and expect an estimate of which correct word produced the recognized second

word, if the estimated correct word is identical to the recognizer output then we

assume the result to be correct.

Language Model

As previously, figure (4.13) shows the effect of using different class language

models. And again using a language model of a higher class produces a more

accurate classification.

42

 0% 20% 40% 60% 80% 100%
 0%

 20%

 40%

 60%

 80%

100%

false reject

tr
ue

 r
ej

ec
t

normal
uniform
chance

Figure 4.9: ROC using different misclassification models, bigram, prediction

 0% 20% 40% 60% 80% 100%
 0%

 20%

 40%

 60%

 80%

100%

false reject

tr
ue

 r
ej

ec
t

P(error)
P(substitution error)
Log(P) difference
chance

Figure 4.10: ROC using different criteria, zerogram, prediction

43

Misclassification

As previously, figures (4.14), (4.15), (4.16) show the effect of using the two

misclassification models combined with the three language models. Again all

models show minor differences.

Classification Criteria

Figures (4.17), (4.18), (4.19) show the effect of using the three criteria combined

with the three language models. Again substitution error proves a poor criterion,

while the other two are competitive.

4.2.3 Prediction VS Diagnosis

Since we assume only substitution errors and the test data we use only produces

substitution errors in the real speech recognition system, we expect error pre-

diction accuracy to be similar whether given the correct or the recognized word

(trigram). Figures (4.20), (4.21), (4.22) show prediction accuracy using the 2

methods with the three language models. The zerogram model works noticeably

better in diagnosis, the unigram model shows little difference while the bigram

model works significantly better in prediction. Overall the prediction perfor-

mance improves comparatively to diagnosis word performance as the language

model class increases.

It seems the zerogram language model provides a different angle, giving it

the edge in diagnosis. By it’s nature it takes into account things like the higher

probability of a small word in the context of a large word being misrecognized.

Things that the higher order models don’t do.

4.2.4 Acoustic VS Linguistic Influence

Previous tests have shown that changing the class of the language model has an

important effect in the system’s performance, while changing the phone misclassi-

fication model doesn’t. To further explore this we compare 2 systems, one having

a strong linguistic but weak acoustic component and one being the opposite.

44

The ”linguistic” system is composed of a bigram language model, a single

pronunciation lexicon and a uniform error probability phone misclassification

model. The ”acoustic” system is composed of a zerogram language model, a

probabilistic pronunciation lexicon and the normal phone misclassification model.

Figure (4.23) shows the result of the prediction experiment.

It serves as a confirmation of what we’ve seen before, the linguisticically

stronger system performs much better.

45

 0% 20% 40% 60% 80% 100%
 0%

 20%

 40%

 60%

 80%

100%

false reject

tr
ue

 r
ej

ec
t

P(error)
P(substitution error)
Log(P) difference
chance

Figure 4.11: ROC using different criteria, unigram, prediction

 0% 20% 40% 60% 80% 100%
 0%

 20%

 40%

 60%

 80%

100%

false reject

tr
ue

 r
ej

ec
t

P(error)
P(substitution error)
Log(P) difference
chance

Figure 4.12: ROC using different criteria, bigram, prediction

46

 0% 20% 40% 60% 80% 100%
 0%

 20%

 40%

 60%

 80%

100%

false reject

tr
ue

 r
ej

ec
t

zerogram
unigram
bigram
chance

Figure 4.13: ROC using different class language models, diagnosis

 0% 20% 40% 60% 80% 100%
 0%

 20%

 40%

 60%

 80%

100%

false reject

tr
ue

 r
ej

ec
t

normal
uniform
chance

Figure 4.14: ROC using different misclassification models, zerogram, diagnosis

47

 0% 20% 40% 60% 80% 100%
 0%

 20%

 40%

 60%

 80%

100%

false reject

tr
ue

 r
ej

ec
t

normal
uniform
chance

Figure 4.15: ROC using different misclassification models, unigram, diagnosis

 0% 20% 40% 60% 80% 100%
 0%

 20%

 40%

 60%

 80%

100%

false reject

tr
ue

 r
ej

ec
t

normal
uniform
chance

Figure 4.16: ROC using different misclassification models, bigram, diagnosis

48

 0% 20% 40% 60% 80% 100%
 0%

 20%

 40%

 60%

 80%

100%

false reject

tr
ue

 r
ej

ec
t

P(error)
P(substitution error)
Log(P) difference
chance

Figure 4.17: ROC using different criteria, zerogram, diagnosis

 0% 20% 40% 60% 80% 100%
 0%

 20%

 40%

 60%

 80%

100%

false reject

tr
ue

 r
ej

ec
t

P(error)
P(substitution error)
Log(P) difference
chance

Figure 4.18: ROC using different criteria, unigram, diagnosis

49

 0% 20% 40% 60% 80% 100%
 0%

 20%

 40%

 60%

 80%

100%

false reject

tr
ue

 r
ej

ec
t

P(error)
P(substitution error)
Log(P) difference
chance

Figure 4.19: ROC using different criteria, bigram, diagnosis

 0% 20% 40% 60% 80% 100%
 0%

 20%

 40%

 60%

 80%

100%

false reject

tr
ue

 r
ej

ec
t

given Wc
given Wr
chance

Figure 4.20: ROC using Wc vs Wr, zerogram

50

 0% 20% 40% 60% 80% 100%
 0%

 20%

 40%

 60%

 80%

100%

false reject

tr
ue

 r
ej

ec
t

given Wc
given Wr
chance

Figure 4.21: ROC using Wc vs Wr, unigram

 0% 20% 40% 60% 80% 100%
 0%

 20%

 40%

 60%

 80%

100%

false reject

tr
ue

 r
ej

ec
t

given Wc
given Wr
chance

Figure 4.22: ROC using Wc vs Wr, bigram

51

 0% 20% 40% 60% 80% 100%
 0%

 20%

 40%

 60%

 80%

100%

false reject

tr
ue

 r
ej

ec
t

acoustic
linguistic
chance

Figure 4.23: Influence of acoustic and linguistic components

Chapter 5

Conclusions and Future Work

5.1 Conclusions

Overall the classifier has fair but not spectacular performance, yet shows poten-

tial. As it is, it can perform well as a conservative classifier, indicated by fairly

good results in the lower left quadrant of ROC space. The best results provided

by the composition of the most complex models (probabilistic lexicon, normal

misclassification, bigram language model) are inconclusive due to the limited

amount of samples used in that scenario, but still encouraging.

The language model is the main factor in all our tests. As exhibited, the effect

of the language model’s class is more important than all other factors combined.

One obvious reason for this is that the language model used is identical to the

one used by the actual ASR system while the acoustic components are not.

Alternatively the acoustic components used are too weak. The phone misclas-

sification model doesn’t feature insertions or deletions, the phone set conversion

required for compatibility inserts noise, while the lexicon features a lot of words

with equiprobable pronunciations. Furthermore the system has no concept of

word boundaries, like silence between words. Improvements in these sections

should enhance the overall performance of the system noticeably.

52

53

5.2 Future Work

This being preliminary work and one plagued by technical limitations (see Ap-

pendix (B)), there are many possible improvements.

An obvious one would be increasing the complexity of the phone misclassifica-

tion model. Including phone insertion and deletion errors was omitted from our

tests because the results produced were not particularly good (unclear why) but

it is the next logical step. Further improvement should come from incorporating

phonetic context, since phone misrecognition does depend on the neighboring

phones.

The lexicon could be altered to include word boundaries (perhaps in the form

of silence phones). Presently the system has no idea of where each word ends

when they are converted to phones (see figures (3.3) and (3.4)), the problem

being confounded by the absence of any type of duration data. This would not

necessarily improve results.

Discarding information, like the least likely paths (pruning), during the stages

of the process would both lessen the computational perplexity of the system and

better approximate the operation of a speech recognition system decoder.

Further experiments can be done in the classification stage using different

classification criteria. It should be noted however, that the form of the probability

distributions produced by this system limit what we can expect from such efforts.

Electing to substitute a sum for a max (see Eq. (2.4.1)) is a necessity from an

implementation standpoint. Assuming execution can be accelerated enough, it

should be be corrected. It should be noted that while the system extracts paths

using that formula, the sum of probabilities we use in the result processing stage

(see (3.2.1)) alleviates the problem somewhat.

Appendix A

FSM Toolkit [7]

A.1 Overview

The AT&T FSM library is a set of general-purpose software tools available for

Unix, for building, combining, optimizing, and searching weighted finite-state ac-

ceptors and transducers. Finite-state transducers are automata for which each

transition has an output label in addition to the more familiar input label.

Weighted acceptors or transducers are acceptors or transducers in which each

transition has a weight as well as the input or input and output labels.

The original goal of the AT&T FSM library was to provide algorithms and rep-

resentations for phonetic, lexical, and language-modeling components of large-

vocabulary speech recognition systems.

This imposed the following requirements:

1. Generality: to support the representation and use of the various information

sources in speech recognition

2. Modularity: to allow rapid experimentation with different representations

3. Efficiency: to support competitive large-vocabulary recognition using au-

tomata of more than 10 million states and transitions.

The mathematical foundation of the library is the theory of rational power series,

which supplies the semantics for the objects and operations and creates oppor-

tunity for optimizations such as determinization and minimization.

System Components:

54

55

1. AT&T FSM library: includes about 30 stand-alone commands to construct,

combine, determinize, minimize, and search weighted finite-state machines

(FSMs). These commands manipulate FSMs by reading from and writing

to files or pipelines.

2. Dot and Dotty: programs used by the FSM library to visualize graph rep-

resentations of FSMs (Graphviz).

A.2 Commands

1. FSM COMPILATION AND DISPLAY

fsmcompile takes input representing an FSM from file file or standard

input, and sends to standard output its binary encoding. The input should

be the textual representation of an FSM. FSM states, input symbols and

output symbols are represented in the input by non-negative numbers, un-

less the options -s symbols, -i symbols, -o symbols are used. These options

allow state, input symbols and output symbols, respectively, to be given

textual names, where symbols files give the translation from those names

and numbers . The input should be an acceptor, unless the -t option is

given, in which case it should be a transducer.

fsmprint prints the input FSM on standard output using same textual

format as fsmcompile accepts as input. States, input symbols and output

symbols are printed in numeric form, unless the options -s symbols, -i sym-

bols, -o symbols are used to provide textual names for states, input symbols

and output symbols, respectively.

fsmdraw sends to standard output a dot(1) graph representation of the

input FSM (The command dot -Tps can be used to convert from dot format

to PostScript.) States, input symbols and output symbols are displayed in

numeric form, unless the options -s symbols, -i symbols, -o symbols are used

56

to provide textual names for states, input symbols and output symbols, re-

spectively. The options -w x and -h x set the page width and height (in

inches), -f fontname sets the font name (default is Times-Roman), -F n sets

the font size (in points), -p use portrait mode (default is landscape), and

-v displays vertically (i.e., top-to-bottom; default is left-to-right).

2. FSM CONSTRUCTION AND COMBINATION

fsmunion returns the union of one or more input FSMs.

fsmconcat returns the concatenation of one or more input FSMs, in the

order specified by the command-line arguments.

fsmclosure returns the Kleene closure of the input FSM. With the -p op-

tion, the empty string is not added, that is, Kleene ”+” is used instead of

Kleene ”*”.

fsmrmepsilon returns an equivalent FSM with no epsilon transitions.

The input FSM must have no negative cost epsilon cycles.

fsmintersect returns the intersection of two or more acceptors. Each

input FSM accepts string s iff the output FSM accepts s with the costs

combined by the EXTEND operation.

fsmcompose returns the relational composition of the input FSMs, in the

order given in the command line. With two input FSMs, for example, if the

first machine transduces string s1 to s2 and the second machine transduces

s2 to s3, then the output machine will transduce s1 to s3 with the two costs

combined by the EXTEND operation. If an input machine is an acceptor,

it is treated as a transducer from the language it accepts to itself.

57

fsmdifference returns the intersection of the acceptor fsm1 with the com-

plement of the costless, deterministic, epsilon-free acceptor fsm2.

3. FSM MINIMIZATION AND EQUIVALENCE

fsmconnect returns an FSM from which any states and arcs in the input

that do not lie on a path from the start state to a final state have been

removed. With the -t option, it returns exit status 1 if the output has no

states, which is useful for testing the input for emptiness.

fsmdeterminize determinizes the input FSM, which must be determiniz-

able. Epsilon arcs are treated the same as other symbols.

fsmminimize returns the minimal deterministic FSM equivalent to the in-

put FSM, which must be a deterministic acceptor. Epsilon arcs are treated

the same as other symbols.

fsmarccollect COLLECTS costs on identically-labelled arcs between the

same source and destination states.

fsmcompact uses a heuristic procedure to return an FSM equivalent to

fsm. but possibly smaller. It works for arbitrary FSMs.

fsmequiv exits with zero status if fsm1 and fsm2 are equivalent. The in-

puts must be deterministic, epsilon-free acceptors.

4. FSM SEARCH

fsmbestpath returns the lowest-cost path from the start state of the input

FSM to a final state. The path is encoded as a (single path) FSM. With

the -n nbest option, the nbest lowest-cost paths are returned. The output

58

is encoded as an FSM that is the union of the individual paths in increasing

cost order. With the -c cthresh and -N nthresh options, the input FSM is

pruned as in fsmprune, limiting the nbest search. With the -u option, all

paths returned will be distinct strings.

fsmprune returns those states and arcs that lie on paths whose total path

cost in fsm is within cthresh of the lowest cost path and at most the nthresh

best such states. input epsilons. In each case, if there is a cycle with respect

to the sorting criterion, fsmtopsort returns the input FSM unsorted.

fsminfo sends to standard output the following information about the

input FSM – its FSM class and whether it is an acceptor or transducer.

With the ”-n” option, various numeric information is printed, including the

number of states, number of transitions, final states, epsilon transitions,

strongly-connected components, accessible states, and co-accessible states.

With the ”-p” option, FSMProps is called on the input, which will return

pre-computed information about the FSM, such as whether it is cyclic, cost-

less, non-negative, or deterministic. If pre-computed information about a

property is not supported by the FSM class, a ”?” is printed for it. With the

”-t” option, values for all FSM properties are printed (by explicit tests run

on the FSM if needed). See ”fsmprops.h” for the set of defined FSM prop-

erties. With the ”-c” option, the FSM class properties are printed, which

include the FSM operations supported by that class. See ”fsmprops.h” for

the set of defined FSM class properties. With the ”-q w” option, quantiles

in intervals of width w are printed for various data including state in-degree,

state out-degree, input label, output label, and arc cost. With the ”-b q1”

option, the quantiles begin at q1 (default: 0.0), and with the ”-e q2” op-

tion, the quantiles end at p2 (default: 1.0). The ”-v” option is equivalent

to ”-tcn -q4”.

Appendix B

Practical Limitations

Our system is produced by composing 4 finite state machines as shown in figure

(2.1). After the first step, we have a machine with all the possible combinations

of word pronunciations, so the number of paths in the automaton will be

n∏
i=1

(# pronunciations of wi) (B.0.1)

The second step involves the misclassification matrix, which will multiply the

total number of paths by

(# of phones)avg(# of misclassifications per phone) (B.0.2)

The third step involves converting phone sequences back into words, the increase

in path numbers is hard to compute, but it is proportional to the number of

phones in each path (more phones will produce more possible outputs).

Finally the language model increases the total number of paths by adding backoff

arcs (each word sequence can be produced in a lot of different ways), the number

of arcs added is obviously proportional to the number of words in each sequence.

Overall, on average, the number of arcs in the final stage is proportional to

the input sequence’s length in words and phones and to the product of alternate

pronunciations for all words in the sequence. These factors however are not inde-

pendent, a phrase containing more words is likely to also have a longer phonetic

length and it will probably have a higher product of alternate pronunciations. As

also verified experimentally the system’s demands in processing time and space

increase exponentially as phrase length increases.

59

60

That makes it impractical or even impossible to use large phrases in conjunc-

tion with the bigram language model. As an example the composite machine

given the correct trigram ’companies with experience’ has a size of 2.4 Gigabytes,

273727 states, 159374132 arcs and requires over 7 Gigabytes of virtual memory

to produce and process (obtain best paths etc). The size of the machines pro-

duced even for very small word sequences means that our system requires a 64-bit

addressing space to work (so a 64-bit processor and operating system). Using a

’normal’ sized sentence of 10 or so words would require impossible amounts of

time and storage space to complete.

Similar problems are cited in related work on the use of transducer composi-

tion [11][1][12][17] and is mostly countered by simplifying the system. Proposed

solutions include the use of incremental language modeling [3] and on-the-fly

transduction [6].

In this thesis we pick the option of making concessions. For all our tests we

used trigrams (an example seen in figure (3.6)), focusing on the second word.

Keeping the words before and after the one we are interested in means we keep

a linguistic context and since each of those words is composed of at least one

phone we also maintain phonetic context. One problem this introduces is that

insertion errors have no real meaning. We give a trigram as input to the system

and then get it’s minimum edit paths with the output N-best paths to see what

happens to the second input word. However that second word already exists in

the correct trigram, it can not be inserted, it can only be correct, substituted or

deleted. Furthermore we use specific trigrams from AURORA4’s test set, namely

those where the first and third word are recognized correctly, as an effort to keep

as much context as possible. As can be seen in figure (3.6), the result is labeled

’C-S-C’, which is the result of AURORA4’s recognition ; the first word is correct,

the second one is substituted, the third one is correct.

It should be noted that only the bigram model has such a problem, using a

unigram or zerogram language model allows us to ignore this for the most part.

However, since the bigram implementation is our main focus and to keep results

comparable between the systems we used trigrams for all tests.

Bibliography

[1] Beng T. Tan, Yong Gu, Trevor Thomas, “Word Confusability Measures

For Vocabulary Selection In Speech Recognition.” in Proc. IEEE Automatic

Speech Recognition and Understanding Workshop, 1999.

[2] Francis, W. and Kucera, H., “The Brown Corpus (Revised and Amplified).”

Brown University, 1979.

[3] Hans J.G.A. Dolfing, I.Lee Hetherington, “Incremental Language Models For

Speech Recognition Using Finite State Transducers.” in Proc. IEEE Auto-

matic Speech Recognition and Understanding Workshop, 2001.

[4] Jurafski, Martin, “Speech and Language Processing.” Prentice Hall , p 174-

191, 2000.

[5] M. Mohri and F. Pereira and M. Riley, “Weighted Finite State Transducers

in Speech Recognition.” in Proc. ISCA ITRW Automatic Speech Recognition:

Challenges for the Millenium, pages 97-106, 2000.

[6] M. Mohri, M. Riley, D. Hindle, A. Ljolje, and F. Pereira, “Full expansion of

context-dependent networks in large vocabulary speech recognition.” in Proc.

ICASSP, 1998.

[7] Mehryar Mohri, Fernando C. N. Pereira and Michael D. Riley, “AT&T FSM

Library documentation.” http://www.research.att.com/~fsmtools/fsm/,

1998.

61

62

[8] Moffat, A., “Implement the PPM data compression scheme.” IEEE Trans-

action on Communications, 38(11): 1917-1921, 1990.

[9] Potamianos A., “Lingo-Acoustic Perplexity Measures for Automatic Speech

Recognition.” Technical University of Crete , Personal Notes, 2007.

[10] R. Duda, D. Stork, P. Hart, “Pattern Classification.” John Wiley & Sons,

2000.

[11] T. Hain, “Implicit pronunciation modelling in ASR.” in Proc. ISCA Pronun-

ciation Modeling Workshop, 2002.

[12] Timothy J. Hazen, I. Lee Hetherington, Han Shu, and Karen Livescu, “Pro-

nunciation Modeling Using A Finite-State Transducer Representation.” in

Proc. ISCA Pronunciation Modeling Workshop, 2002.

[13] Tom Fawcett, “Using Rule Sets to Maximize ROC Performance.” ICDM , p

131-138, 2001.

[14] Tom Fawcett, “An introduction to ROC analysis.” Pattern Recognition Let-

ters 27, 2006.

[15] V. Digalakis, “Introduction to Speech Processing Ch11.” Technical University

of Crete , Class Notes.

[16] Witten, I.H. and Bell, T.C., “The zero-frequency problem: Estimating the

probabilities of novel events in adaptive text compression.” IEEE Transac-

tions on Information Theory, vol. 37(4), 1991.

[17] X. Mou, S. Seneff, and V. Zue, “Context-dependent probabilistic hierarchical

sub-lexical modelling using finite state transducers.” in Proc. Eurospeech,

2001.

	Table of Contents
	List of Figures
	Abstract
	Acknowledgments
	Introduction
	Theory
	Speech Recognition System ASRsyst
	Language Modeling nlp
	Counting Words
	Punctuation Marks

	N-grams Probabilistic Model
	Conditional probability and independence
	Smoothing
	Witten-Bell Discounting
	Backoff
	A clever combination: Backoff and Discounting

	String Distance patreco nlp
	Hamming Distance
	Minimum Edit Distance

	Receiver Operating Characteristics Graph ROC1 ROC2

	Our approach
	``Bayesian formulation of the speech recognition problem'' potam1
	Misrecognition models
	Simplified form
	Baseline system
	Lexica
	Misclassification
	Language model

	AURORA4 ; The real-life counterpart

	Experimental Procedure
	Adaptation
	Phone set
	Lexicon
	Language model

	Operation
	Processing results
	Classification

	Evaluation
	Behavior
	Predictive power
	Prediction
	Diagnosis
	Prediction VS Diagnosis
	Acoustic VS Linguistic Influence

	Conclusions and Future Work
	Conclusions
	Future Work

	FSM Toolkit fsmtool
	Overview
	Commands

	Practical Limitations
	Bibliography

