Department of Electronic and Computer Engineering
Technical University of Crete

This is for the obtainment of the Diploma of Electronic anch@uiter Engineer at the Technical
University of Crete

P2P Multidimensional Range Queries
(GRaSP: Generalized Range Search in P2P Networks)

Michail ARGYRIOU

The committee is consisted of:

Vasilis SAMOLADAS (supervisor)
Euripides G.M. RTRAKIS
Stavros GIRISTODOULAKIS

August 28, 2008

Abstract

In this paper we will present the Generalized Range Seareh BAGrid (GRaSP) framework.
GRaSP provides a model and an API for constructing novelildised data structures than can
handle generalized range queries. This means that we caomime GRaSP on the shape and di-
mensionality of the data and queries and will produce socode for a distributed data structure
that can handle the predefined type of queries. We exhibiesaldiate empirically GRaSP by im-
plementing two protocols on in. First of all the Multidimémsal Range Search protocol (MDRS)
and secondly the Three-sided Range Search protocol (3SIIDHDRS can answer d-dimensional
rectangular range queries and 3SIDED can answer d-dinreisdesided range queries. 3SIDED
is in our knowledge the only distributed data structure taat handle 3-sided range queries. Ex-
periments verify the theoretically logarithmic to the nweniof the peers on the network latency
and the low maximum throughput, i.e. the load of the mostddgoker on the network.

List of Figures

2.2 Routing a message over PGrid.
3.1 _The evolution of thetrie of GRaBP. 11
[3.2__The evolution of the topology of GRalSP. 13
3.3__Constructing the routing table of apeer. L. 14
B4 _Example of Search Algorithm. 15
M1l 2-DRaNge QUENY . . . o i 8
4.2 The evolution ofthe MDRStrle. 21
4.3 _The evolution of the MDRS topolofY. . .« .« v v v oo v e e oo 22
4.4 _Example of searching on MDRS oot 23
5.1 _Example of 3-sided queries. 24
-Si D. 25
I5.3 Difficult 3-sided querids. 26
5.4_The evolution of the 3SIDEDtAE. oot 29
I5.5__The evolution of the 3SIDED t0p0IOlY. o oo 30
5.6 Depicting when a peer can asnwer a 3-sided range querglRERl 30
5.7 _Example of searching on 3SIDED o v oo e, 31
I6.1 _Available Datasets with which we have experimehted. 36
I6.2__Fairness Index (for orthogonal range queries over MDRS) 39
6.3 Latency (for orthogonal range queries over MORS) 40
6.4 _Average Message Traffic (for orthogonal range queries MD_R_S]) 40
|ﬁ_5_Maxj_mum_‘Lh_r_m1ghnut (for orthogonal range gueries ovBRB) 41
I6.6 _Fairness Index (for 3-sided ran ies over MDRS &OBD) 42
I6.7 _Replication for the 3SIDED proto€olo 43
6.8 Latency (for 3-sided range queries over MDRS and 3SIDED) 44
I6.9 L atency (for 3-sided range queries over MDRS and 3SIDED) 45
Iﬁ_J_Q_A\LQLa,g_e_Mﬁs_a,ge Traffic (for 3-sided range queriesMEHRS and 3SIDED) . . 46
|6_J_J_A\Le_ta,g_e_M_e§sa,ge Traffic (for 3-sided range queriesMERS and 3SIDED) . . 47
|6_.;|_2_M_ammu_mlhmu,ghout (for 3- S|ded range auenes over I\ZE[E_(BSJ_D_ED) .. 48

List of Algorithms

Contents

lL__Introductionl 1
2__Related Work 5
B _Gist. 5
B2 VBl ..., 6
B3 PGl . .., 6
31 Topology . . . v v i 6
%{ﬂbs 7
o 8
234 UpdatesofDataltens 8
B_GRaspk 10
B TonoloéL/ 10
3.2__Hierarchical Space Pariioning v o oo e 11
3.3 _Proposed Bootstrapping Algorithms 12
B.4_Generalized Searching, 12
B5 _Datalupdates 6 1
13.6__Overview of customization steps for GRRSP 16
BZ sumUb 16
l4_MDRS 18
4.1 Hierarchical Space Parfiioningo oo 19
M11 Example 19
K42 Orthogonal Range Searching i 20
M21 Example 20
E_3sIDED 24
I5.1__Hierarchical Space Parfiioning oo e 25
511 Example 28
%&m&ding 28
L 28
l6__Performance Fvaluation 32
1 Simulatols 32
................................... 32
O 33
613 COmMParisono 33
CE . o e e 33
621 Replicatidn 34
.22 Faimessindex 34

CONTENTS iv

Chapter 1

Introduction

Searching is a fundamental problem in Computer Sciencedoadks now. The problem is to
organize pairs of ordered keys and values so that the ratrid\keys (and consequentially their
values) given a range is efficient. This problem is called @@meralized Range Search Prob-
lem More formally the Generalized Range Search is defined &sniblg. Assume we denote
the search space with the symtiokinfinite set), the key space witli C 2V (keys are subsets of
U) and the range space wifk C 2V (ranges are subsets &f). Then assuming that the dataset
K C K is stored on a network and given a general range quefy R we want all the keys
Ak (r) ={k € K|knr # 0} that answer it. Note that we don’t assume beforehand theesiap
the dimensionality of the data or the queries. This meanshieadata can be points, rectanEl,es
polygons or whatever. Also note that nowhere do we mentiemtture of the storage medium,
that is if the keys are stored on the Primary Memory of the 8dary Memory of on Peer-2-Peer
(P2P) network.

The Generalized Range Search problem can be instantiated form of Point Search Problem

where the keys and the queries are points. The answer toaapecall the keys that are identified
with the query. Another problem is tl@@rthogonal Range Search Problemiere the keys can be
of any shape and the query is a rectangle. The answers towaaneeall the keys that overlap the

query.

Software packages that can handle such generalized raageh ggroblems are calleBrame-
workd. A framework is customized for a specific type of search mwobli.e. shape and dimen-
sionality of data and queries) and generates a “solutiotél daucture. Nowadays such frame-
works for Primary and Secondary Memory exist with satisfacperformance. On the other hand
rudimentary work has been done for the case of P2P. Therdfemeed is imperative for develop-
ing frameworks that produce efficient distributed datacttmes. Our work comes to complete this
gap. We have crafted a framework callBdneralized Range Search over P-G{@RaSH which
tackles the aforementioned generalized range searchepnotmlore efficiently than any existing
adversary.

Initially we will present the most prominent data structutieat tackle individual search problems
such as point and rectangles range queries for (in this dRdiEnary Memory, Secondary Memory
and P2P. On the next chapter we will present existing framlesolutions.

For the Primary Memory the best well-known data structuregtze Binary Search Treée[36] with
worst-case search coét(logn), balanced data structures such as 2-3-4[trée[36], IAVL[8@] a

!We interchangeably use the ternestangle rectangularandorthogonal
2\We interchangeably use the terfrsmework protocolandnetwork

CHAPTER 1. INTRODUCTION 2

Red-Black Treé[36] with worst-case search c0$tog n) but with slight increased construction
and update costs in order they remain balanced, and datéuses such the Splay Trée[36] which
have expected search costlog n). On Secondary Memory the balanced solutions dominate with
the most well-known cases @f3-4 tred36], B-tred[14], B™ — tree and B* — tree with worst-
case search co8l(logg n), whereB is the number of keys that can fit in one block ani the
number of the keysUB-tred[15] is an interesting extension of ti&" — tree for handling multi-
dimensional keys.

Having solved the point search problem the interest nowsdiag on rectangle range search.
Orthogonal range search comes in many variants. The moptesione is the 1-dimensional Or-
thogonal range search where we want to retrieve all keyswétquery interval.A well-known
data structure for answering 1-dimensional range quesigeinterval Tred¢22] (or Segment Tree
which stores 1-dimensional intervals and returns all thgea overlapping the query. Query needs
O(logn + k) time, construction of the tre®(nlogn) time and storag®(n) space, where is

the number of stored objects ahds the number of reported results. The Interval Tree has been
externalized External Interval Trepand need$)(n/B) space((logg n+1/B) I/Os for search-

ing andO(log T') 1/Os for updating, wherd3 is the number of objects per disk block afhds

the number of reported results.

Generalizing the dimensionality of the 2-dimensional Ogibnal range search problem into higher
dimensions a multi-dimensional Orthogonal range seartrieves all the keys within a query
hyper-rectangle. The generalization of the Interval TreeHigher dimensions is thRange
Treg[36] which needs for searching(log?n + k) time and for storage)(nlogn) space. Ex-
ternal Range Treés the external extension of the Range tree and néxtlss; n + 7//B) 1/0Os
for searching and)(log% n/logy logz n) 1/Os for insertions/deletions. Another data structure
that can handle multi-dimensional (k-dimensions) Orth@doange queries is the well-knowad-
tredl7]. Levels of the tree are split along successive dimerssit the points. kd-tree can also
be used for nearest neighbor searches. The complexitye(if¢ie is balanced) i9(n log? n) for
the construction of the tre€(log n) for insertion,O(log n) for removal andD(n'~/? + k) for
searching. An interesting extension of the kd-tree isatiaptive k-d trefL8] where successive
levels may be split along different dimensions. An intaresextension of it, especially useful for
the disk, is th&k-d-B-tred39] which is actually a kd-tree in the sense that it splitdtidimensional
spaces like an adaptive k-d tree, but also balances thdingstiee like a B-tree. k-d-B-tree is a
static tree because it doesn’t allow point insertions néetams. It need$)(\/n/B + T/B) I/Os

for searching and(n/B logz n) 1/Os for construction. If we make it dynamic using a logarith
mic method then the searching ne€d§,/n/B + T/B) 1/0s, the update®(log% n) 1/0Os and
O(n/B) space (linear space). Probably the most general and dplglidata structure is th
tred28]. R tree stores multidimensional objects (eg interviadgions, 3-D objects, arbitrary high
dimensional objects). Actually it is the generalizatiortted B-tree[14] for higher dimensions and
for storing more general objects. Many extensions of theeR brave been developed but just to
mention a few ones there is thiz" — tree, the R* — tree and the Hilbert R-treeR™ — tree[dd]

is used for indexing spatial information and is a compronisiveen the R-tree and the K-D-B
tree; it avoids overlapping of internal nodes by insertingolject into multiple leaves if neces-
sary. R* — tree[dlg] supports point and spatial data at the same time witlightl higher cost
than other R-treedilbert R-tred34] exploits the fact that the performance of the R-treqsedéds
on the quality of the algorithm that clusters the data regizsion a node. More precisely Hilbert
R-tree uses Hilbert curve to impose a linear ordering on #ia tkctangles. It can be thought of
as an extension aB™ — tree for multi-dimensional objects. Another data structure rimulti-
dimensional Orthogonal range search is @gad tre¢26] which stores areas, points, lines and
curves. It can be easily extended into the 3-dimensionalesfictal Treg20]). O-tred41] is used

CHAPTER 1. INTRODUCTION 3

for planar planar Orthogonal range search on external mentareedsO(\/n/B + T//B) 1/0s
for searchingO(logz n) 1/Os for insertions/deletions art@(n/B) space (linear space). It can be
extended to work in d-dimensions with optimal query boandn/B)' /¢ + T/B).

Let's consider now P2P data structures. The trend nowadalysmap data and peers into IDs.
One way to achieve this is via the adoption of the DHTsDitributed Hash TabléDHT) is
actually a distributed Hash Table. The Hash Table is an efftailata structure (for Internal and
External Memory) for storing pairs of {key,value} and reting inO(1) (expected) time a value
if you have the key. Similarilly, istributed Hash TabléDHT[4, [2,[3,[5]) is a way to look up
(usually inO(logn)) a value into a structured, decentralized, scalable antHfaarant network

if you have the key is the number of the peers). This implies that in a network etermninis-
tically store keys (instead of values) to peers and probablforeign peers instead on the owner
peer of each value. In order to find the responsible peer fatgeywe hash the value into a key
ID, we also hash (using the same hash function) to a uniquecpedential (such as the peer IP) to
a peer ID and afterwards we store (or retrieve) the key tor{frpeer which has the most similar
ID to the key ID (or alternatively “the less distant”). Thestdince metric among key IDs and peer
IDs is defined each time by the protocol employed; for exartptedistance between a key and
a peer ID is defined by Kademlia[5] as their XOR distance wai€hord|R] defines it as their
difference; note that XOR is a symmetrical distance meteisus the difference. In order to look
up for an object we retrieve its key (by hashing it) and in a-4ig-step process a relative query is
forwarded through the overlay until it reaches the peershbhl the key. Some of the networks
that use a DHT are the CAN[4], MURK][8], Kademlia[5], PasB}[Tapestry[6], Chord]2] and
PGrid[10].

Point searching is the oldest and best studied searchitdgoncon P2P and many networks have
been developed such as Pastlily [3], Kadenilia [5], CHdrd [@]R@rid [10] which answer a query
in O(logn), wheren is the number of the peers. Moreover, SkipGraphs [13] angNgki29]
can handle point queries with coét(logn) w.h.p. and congestio®(logn). Rainbow Skip
Graphs[27] provide essentially the same performance guarantadswith additional guaran-
tees for fault tolerance. SkipWehs[12] can handle muhiatisional point queries with expected
costO(logn/loglogn) (same for updates) ar@(logn) congestion. Other methods that can tackle
d-dimensional point queries are CAN [4] and MURK [8].

An easy way to make DHTs able to handle multi-dimensionatigaés mapping the d-dimensional
keys onto 1-D with the help of a hashing algorithm (such asesiidling curves). Ganesan et all [8]
propose two structures, SCRAP, based on space-filling suwer a skip graph-like network, and
MURK, a CAN-derived network which partitions space in a mansimilar tok-d trees. They
evaluate their technigques experimentally, but do not ctemstongestion. Moreover thehower
algorithm [24] facilitates 1-dimensional range queries over a trieibiyng space filling curve.

BATONRZ1] is a distributed balanced tree based method which cadl@d -dimensional Orthogo-
nal range queries i@(logn) time and updates i@ (logn) amortized time, where is the number
of peers.BATON* is a k-ary tree generalization of BATON with query c@Xflog,n) and update
costO(k + logn). Another protocol is the P-treE [23].

To go one step further PHICI38], MURKI[8] and Distributed SegnTreel[44] can support multi-
dimensional Orthogonal range search.

Abstracting the shape and dimensionality of a range queryave face a more general search
problem, i.e. generalized range search . A generalizeceraegrch problem is formally defined

CHAPTER 1. INTRODUCTION 4

by a pair(K, R), wherek is the set of keys, an®® C 2 is the set of the query ranges. Our
ultimate goal is to organize a finite skt C K so that, for any- € R, ther N K can be computed
efficiently. Or simpler stated we want to retrieve all the &élyat answer a range query as fast as
possible (in terms of either memory accesses or disk accessaessages).

Having defined the generalized range queries we now wanteefiark which we can customize
to particular search problems. Such a framework shouldigeos theoretical model and a API
to develop new data structures that will have some theatetiiciency safeguards. The typical
procedure of the development of a new data structure usingnaefvork is initially customizing
the framework and afterwards generating the source codiadarata structure in question. Any
physical issues such as memory management, /0 and messssiegoshould be hidden from the
user in order to decrease complexity and development time.

On this thesis, we are especially interested on framewabddscan produce distributed data struc-
tures, i.e. data structures that can handle queries ovePa&Rdronment. Assume for example
that we want to construct a distributed data structure thatanswer point queries. In this case,
we could address to such a P2P framework, customize it witliniration such as how the peers
organize, the state of each peer and when a peer can answgraityeand the framework would
generate source code for such a data structure ready to te lsseles such as the middleware
needed for the peers to communicate should be hidden froostireand taken care automatically
from the framework. The framework could also be more clewer @any organization information
be hidden and self-handled by the framework. For examplpdbes could be organized into a list
or over a tree or over a skip-list etc.

We propose a novel P2P framework cal@eneralized Range Search over P-Gi@RaSRP which
tackles the generalized range search problem in a distdboanner. One can easily customize
GRaSP and rapidly develop new data structures that areageerlover a network. Theoreti-
cal guarantees and boundaries are given for its performavioee specifically on GRaSP range
queries are answered on(log n) hops with high probability, where is the number of peers of
the network. The congestion is also provable low, i&logn) and there is also the ability to
introduce storage redundancy to improve load balancingtly,ave empirically evaluate GRaSP
by implementing two new protocols on it. The first protocahie Multidimensional Range Search
(MDRS) and can deal with the d-dimensional rectangle gsefiibe second one is the Three-sided
Range Search (3SIDED) protocol and can deal with d-dimeasi®-sided queries. In our knowl-
edge 3SIDED is the only network that can deal with 3-sidedigaever a network.

On ChaptefR2 we introduce the reader to existing framewark®2P that tackle the generalized
search problem with especially emphasis on the PGrid cas€HaptefB we present GRaSP. On
the next two chapters we implement two networks based on BR&S on Chaptdr 4 we present
the MDRS network which can answer efficiently d-dimensiddehogonal range queries and on
ChapteiCb we present the 3SIDED network which can answedeigjueries. On Chaptér 6 we
evaluate MDRS and 3SIDED and we conclude on Chapter 7.

Chapter 2

Related Work

In Chapter 1, we emphasized the central role that searchayg i the field of Computer Sci-

ence. We mentioned that searching is so far well-studie@fiosnary and Secondary Memory but
immature yet for P2P environments. We are especially istedeon constructing a framework
which will tackle the Generalized Range Search Problem aaitithte the rapid development of
any distributed data structure.

The concept of frameworks is very old. For example in the fadl@oftware Engineering sev-
eral attempts had been made to construct frameworks tlavedl the rapid composition and
generation of new systems. A typical framework was GENEEISHh 1990. Soon the concept
of frameworks was developed by the Databases field. Maybenttet prominent example of
such a framework is the GiST framework which allows the depedent of data structures for the
Secondary Memory. Extending these ideas we want a framethatlcan be easily customized
and produce distributed data structures. Typical exampllesich frameworks are VEI[9] and
PGrid[10] networks.

On this chapter we will describe GiST, VBI and PGrid. We willlee more into PGrid because
it's peer organization will be the inspiration for GRaSP.thé¢ end of this chapter we to be clear
the pros and especially the cons of VBI and PGrid that willddtice on next chapter the superior
GRaSP.

2.1 GIST

GiST[30] is a tree data structure which supports search gadeta functions and provides an
API which further supports recovery and transactions. Gi@mework can be used to build a
variety of search trees for Secondary Memory such as R{Z&¢eB-Tree[14], hB-tre€[35] and
RD-tree[43]. Not surprisingly GiST has been used to corstmany indices for the well-known
ORDBMS PostgreSdl.

http://www.postgresg|.org

CHAPTER 2. RELATED WORK 6

2.2 VBI

A distributed data structure oriented to generalized ramgeries is theVirtual Binary Index
Tree (VBI-tree[@]. On VBI peers are overIayE(bver a balanced binary tree like they do on
BATON[BI]. The tree is only virtual, in the sense that peedemare not physically organized
in a tree structure at all. The abstract methods defined gawostuany kind of hierarchical tree
indexing structures in which the region managed by a nodersall regions managed by its chil-
dren. Popular multidimensional hierarchical indexingistures that can be built on top of VBI
include the R-treg[48], the X-tree[l19], the SS-tre¢[26k M-tree[Z1], and their variants. VBI
guarantees that point queries and range queries can beradswihin O(logn) hops, wheren

is the number of the peers. VBI specifies an effective loadrzihg strategy to allow nodes to
balance their work load efficient. Validation has been magegplying the M-tree and nearest
neighbor queries over VBI.

The major drawback of VBI is that it isn't scalable for lowatitnsional rectangular range queries
as has been recently proved by Blanas €t al[42]. They compéBdB], PGrid|10], CAN[4] and
MURK][B] and concluded that the only scalable network is RIGri

2.3 PGrid

According to the results of Blanas etal[42] (see the previgaragraph) the most scalable network
if PGrid[10]. Our framework GRaSP borrows many elementaff®Grid and therefore we delve
into PGrid in great detail. Some concepts initially introdd on the following paragraphs are
repeated or referred later on on Chapler 3 when speakingRaiSB.

2.3.1 Topology

Thetopologyof the network is referred to the overlay organization ofgkers. In PGrid peers are
organized over a binary tree but on the contrary to VBI the tsea triel_Blﬂ and not necessarily
balanced. The trie contains two kinds of nodes; the interaatl the externals (leaves). Peers are
located only on the leaves and therefore there is no congeséar the root. The internal nodes
are virtual in the sense that they do not contain any keysamotused and nor are adopted by
the peers. Every node has zero or two children. Thereforéridhés characterized as\artual
trie. Each peer holds only a part of the overall tree. Each peabisléd with a unique bitstring
(i.e. it contains only 0’s and 1's) which is calléerlID. PeerlID is determined by the peer’s po-
sition onto the trie and represents the part of the tree kieapeer is responsible for. The root has
the special Peerlld which denotes the empty bitstring and the overall data spi@enode has
PeerID = pid and has children then its children have Peeps 0 andpid - 1, where- denotes
the concatenation of two strings. PGrid doesn't relate tberl® of a peer with its data space.

2An overlay networks a computer network which is built on top of another netwddlodes in the overlay can be
thought of as being connected by virtual or logical links;reaf which corresponds to a path, perhaps through many
physical links, in the underlying network. For example, snpeer-to-peer networks are overlay networks because they
run on top of the Internet. (definition from http://en.wikitia.org/wiki/Overlay _network)

3A trie[B8] 7 for a stringS belonging into an alphabét is an ordered tree with the following properties: (a) each
node (except for the root) is labeled with a characteEp{b) the ordering of the children of an internal nodelofs
determined by a canonical ordering of the alphabeand (c)T" hass external nodes, each associated with a string of
S, such that the concatenation of the label of the nodes onéatiefrom the root to an external nodeof T' yields the
string of S associated with.

CHAPTER 2. RELATED WORK 7

Therefore is characterized as a framework.

PGrid construction is triggered by local interactions orWhenever two peers meet the refine
their routing tables with the help of thexchange algorithm More specifically when two peers
meet at random or intentionally (for example due to a poiataeor a datum update) they divide
the search space and each one takes responsibility for ¢frenidastores the address of the other
peer to cover the other half. Therefore a peer can guardmaeting of a message to any peer of
the trie. There is also an algorithm for the constructiorheftrie if there is already a pool of peers
available. This algorithm gives a balanced trie but thertré&/ soon become unbalanced because
of the exchange algorithm.

An exemplary trie is depicted on FiglireR.1.

Figure 2.1: PGrid exemplary trie. Each node is labelled mhetepth from the root.

2.3.2 Routing Tables

Each peer stores information necessary for routing a messagny peer on the network. The
information is in the form of pointers to other peers and ésexdl on a table, calleBouting Table
On PGrid, the routing table of each peer is consisted of &t leae pointer for each bit of its
PeerlID to at least another peer with this PeerID as a prefiis Jumrantees that if a peer cannot
answer a query it can forward it to another peer that is clstre result.

More specifically, for each bit in its path, a peer storessrrduting table the address of at least
one other peer that is responsible for the other side of therpitree at that level. Thus, if a peer
receives a query string it cannot satisfy, it must forwartbie peer that is closer to the result.
The PGrid construction algorithm guarantees that peeinmgtiables always provide at least one
path from any peer receiving a request to one of the peersnigofdkey so that any query can
be satisfied regardless of the peer queried. The routinggatre updated through the exchange
algorithm which we mentioned in the previous paragraph.

CHAPTER 2. RELATED WORK 8

2.3.3 Searching

PGrid was initially developed for answering 1-dimensigmaint queries[1il]. Later on Aberérl24]
proposed a searching algorithm which can answer d-dimealsiange queries. More specifically
using a space filling curve we can map a d-dimensional spagd.idimensional space. Then we
can execute a 1-dimensional range query on the mapped sead of the original and retrieve
there the answers. Aberer's searching algorithm comestivdoforms: a sequential algorithm
(Minmax Algorithn) and a superior paralleSpower Algorithrp In the shower algorithm each
peer forwards simultaneously a query it receives to neightimt can answer it. The cost for the
shower algorithm i€)(log n), wheren is the number of the peers. The evaluation of the afore-
mentioned searching algorithm has been made theoretiaatlyempirically on PlanetLab using
the search algorithms over PGrid.

Here we present the Shower Algorithm. We use our own notaimhrename Shower Algorithm
into Route Algorithm The purpose for this is that we will we also use the same iootdater
on when presenting GRaSP on Chapler 3 and its instances MDR®aptef4 and 3SIDED on
Chapteb. Assume that] ¢ denotes the Longest Common Prefix of PeertDg Also denote
with L, the routing table of peer. L,[x] selects uniformly among adi so thatp T ¢ = «.

Then apply recursively:

Route(Peerp, Peerg) {

if(pTa=q)
Process();
else

Route(Ly[p 1 q] . q);

We explain the Route Algorithm through an example that isdeg on FiguréZ]2. Assume that
peer 11 wants to route a message to peer 010. Further assahpedn 11 has references to peer
00, peer 00 to 011 and peer 011 to 010. Initially peer 11 fod&a message to peer 00 because
00 has common prefix of length 1 with the target peer 010. Nmdr 00 forwards a message to
peer 011 because the latter peer has common prefix of lengitin 2he target peer. Likewise does
the peer 011 which forwards a message to the target peer. ¥éevetthat at each step a message
is forwarded to a peer that is at least one bit closer to tlyetareer. Therefore the routing cost is
O(log n), wheren is the number of the peers.

The problem with such space filling curve techniques is thatspatial locality of the data items
is not preserved, i.e. if two data items are near on the aigipace then they are note necessarily
near on the reduced mapped space. Therefore neighbor éiais dan be stored into different
peers which are far away onto the underlying PGrid trie.

2.3.4 Updates of Data Iltems

PGrid supports key updates by utilizing a general algoritbinupdates which is basically a hybrid
push/pull rumor spreading algorithm which also offers piuilistic guarantees. For a detailed de-
scription of the updates sdé [7].

CHAPTER 2. RELATED WORK 9

Figure 2.2: Application of the Route Algorithm over the toé Figure[Z1. Peer 11 wants to
forward a message to target peer 010. Initially, peer 11diot& a message to peer 00 because it
has a common prefix of length 1 with the target peer 010. Likewgieer 00 forwards a message
to peer 011, and 011 forwards a message to target peer 018rv@likat the distance is halved at
each step. The latency herefig11,010) = 3 hops.

Chapter 3

GRaSP

In the previous chapter, we explored the existing framewadhat tackle the generalized range
search problem on P2P. We emphasized on the fact that noherofis a panacea, neither VBI
nor PGrid. Therefore we look to a new framework calig@eneralized Range Search in P2P Net-
works (GRaSP)hat also tries to tackle the generalized range searchgrobh P2P. In general

lines GRaSP resembles PGrid on the way the peers are ordamize a trie but abstracts the
searching algorithm.

One can customize GRaSP in order to rapidly construct nevoqots. The meaning each time
will be obvious from the collocation. For example one may ttarhandle queries of T-type and
D-dimensionality. Then he should customize GRaSP for tha sigace each peer is responsible
for, when a peer can answer such a T-type query and how a newsgleets a parent peer. It's ob-
vious that the type of the query and the dimensionality ofdéi@set should be known beforehand
the customization of a new protocol.

The chapter is organized as follows. Initially we presertttipology of GRaSP and how the peers
organize and share the underlying data space. Afterwaslsiwdy the procedure for data updates
(insertions/removals). Next, we present the steps takesntgw peer when joining the network.

On next section, we present the state of each peer whichsaitdarroute a message to any peer of
the network. This routing mechanism naturally introducgsmithe next section with the searching
algorithm. Lastly but not least, we sum up the steps needée followed in order to customize

GRaSP and construct a new protocol. We see that they arghdtfarward and easy to be grasped.

3.1 Topology

The peers of the network are organized over a trie samewibe a® on PGrid (see Sectibn213.1).
The trie structure has been chosen for the following reasons

e PGrid (and therefore the underlying trie organization) @esn empirically proved scalable
to the number of peers.
Blanas et all4R2] have empirically proved that PGrid whicloverlayed over a trie) scales
better than VBI[9], CAN[4] and MURK]IB] in relation to multichensional orthogonal range
queries.

e Aberer [10] has proved that for any trie, the expected hodeeH (p, ¢) between any pair
of peers p,q, i¥)(logn).

10

CHAPTER 3. GRASP 11

@) (b)

Figure 3.1: The evolution of the trie while constructing riorh a pool of four peers. On Fig-
ure[3-I(d) there is only one peer, the root which Rasr/D = e. On Figurg 3.1()) a new peer
joins the trie. The ex-root becomes node 0 and the new peente=cnode 1. On Figufe_3-1](c)
two more peers join the trie, peers 0 and 1 become nodes 00Gaaddlthe new peers get the
PeerIDs 01 and 11 (note that the trie is not necessarily bathrjust happens here).

e More recently Argyriou et al[37] have proven that the rogtiiameter of any trie wit
peers i (log n) with high probability.

e Argyriou et al [37] have also proven that the congestiof (B¢ n) for any trie withn peers.

For clarification purposes we present on Fiduré 3.1 thelsyegtep evolution of an exemplary trie
while new peers join it.

3.2 Hierarchical Space Partitioning

So far we have described how the peers are organized ove. a\law we will describe which
part of the data space each node of the trie adopts. Thisigedfas th&pace Partitioningf the
key spaceiX. Remember that only the leaves really store keys and nohttex nodes which are
virtual. The issue of space partitioning is very importaetduse the load balancing is depended
by it. Ideally the data and the queries would be uniformlyribsted across the peers. Then all the
peers would sustain the same load. But usually this is notdlse. Nor the data nor the queries
are uniformly distributed. Instead the data distributisrskewed and only a few peers are most
popular answering most of the queries. These peers are theneek of the network that limits
its scalability. When deciding a space partitioning aldon for a distributed data structure (i.e.
network) one should exploit the nature of the problem. The&ans that more peers should be
located on areas where data are more dense assuming thatreashaccept most of the queries.
On Chapter§l4d and 5 we will provide the reader with two examplesuch space partitioning
techniques that are provably efficient as is empiricallywptbon Chaptdrl6.

Now we pose a few conditions that any hierarchical spacdtiparhg algorithm should meet. If

we denote the universal data spacdbgnd the data space of pe@eer D with S(peerI D) then
we require both the following conditions to comply:

e S(e)=U

CHAPTER 3. GRASP 12

e S(x-0)US(z-1)=95(x)
The first condition states that the root node is responsilthe whole data space. The second one
states that the combined data spaces of two sibling nodedsaye data space of their parent peer.

With only these assumptions we note thdtey may be stored into multiple peefhis is deliber-
ately happening for load balancing purposes and should fiteatied by the user’s options when
definingS(PeerID).

On Figure[3.P we present the evolution of the trie while neerpgoin the network and two re-
spective arbitrary space partitioning schemes over a sguba-dimensional data space. Note that
the trie is the same as the one on Fiduré 3.1 but augmentedheitteta spacs() of each node.
Note that any space partitioning scheme can be chosen atesitmization of the GRaSP proto-
col and therefore beget unique novel protocols (data stres). The first data space partitioning
algorithm followed here splits the data space once almastdmtally and once vertically and the
second algorithm splits the data space of each peer alwaigohtally — these are really dummy
splitting algorithms and are only used for demonstratiomppses. The data space partitioning
algorithm of each crafted protocol should ameliorate anygestion problems by exploiting the
type of queries, i.e. should locate more peers wherevee ey dense data and the opposite on
the case the data are terse. We will look a concrete exampda stiadying the 3SIDED protocol
on Sectiori Bll.

3.3 Proposed Bootstrapping Algorithms

In order a new peer to join the network it should first seleaer@ootstrap Peewhich will guide

its join. The selection algorithm is call®botstrapping AlgorithmFor sake of simplicity we as-
sume that the bootstrap peer will adopt the new peer as i @liernatively it could redirect it
to another peer). We now want to propose some algorithmshfawsing the new peer a bootstrap
peer. For sake of simplicity we propose two bootstrappigrthms that both assume global
knowledge of the peers or that keys. Many more can bootstrg@dgorithms can be crafted even
free from such limiting assumptions.

Volume Balanced SelectionThe new peer chooses a random point on the data space (whjch ma
not correspond to an existing data key) in the multidimemsigearch space and the boot-
strap node is the node which is responsible for the data shateontains the chosen key.

Data Balanced SelectionThe new peer chooses a random data key (which exists!) armbtie
strap node is its owner peetr.

On the Volume Balanced Selection peers tends to equalizeothee of each peer. On the Data
Balanced Selection peers tend to have equal number of keys.

Both algorithms drive to much too much different tries. Aatglte exception consists the case
where the data are uniformly distributed. Then both sedeciigorithms drive to similar tries.

3.4 Generalized Searching

Here we present a novel searching algorithm caBedrch AlgorithmThis algorithm is an exten-
sion of the Route Algorithm already mentioned on Sedfioh B1& first let's remind the reader the

CHAPTER 3. GRASP 13

@) (b) (©

(d) (e) (®

) (h) @

Figure 3.2: The evolution of the trie and two possible spattipnings (a—c). Two possible data
partitioning schemes are presented; one on (d—f) and anmthg—i). We denote with S() the data
space of each node. The root node is denoted avith

fact that peers are organized over a trie exactly as theyrdelgrid. We also depicted a detailed
example on Sectidn3.1 and Figlirel3.1. Moreover, the rouséibps are constructed samewise as
on PGrid. For clarification purposes we present on Figufét#® &onstruction the routing table of
peer 0100.

Having now explained how the peers organize over a trie amd the routing tables are con-
structed we are ready to describe how to Search Algorithm&sydlore formally, given a range
gueryr and the peep who asks it the Search Algorithm returns all the peers tleit thata space
S(p) is intersected:, i.e. S(p) # 0.

Now let’s see the inner details of the Search Algorithm ftsEhe notation used is the same as the
one earlier introduced when describing the Route AlgoridmBectioi 2.313.

Then apply recursively:

CHAPTER 3. GRASP 14

(d) 010* = 011* (e) 01@* = 0101*

Figure 3.3: Constructing the routing table of peer 0100. & we present the overall trie. On (b)
we invert the first bit of peer 0100 in order to show that pe€as to have a reference link onto
a leaf of the subtri@, i.e. in our case onto peer 1. Samewise for (c), (d) and (eXf)Qve present
all the neighbors which peer 0100 has links to.

Search(Peermp, Ranger, intl) {
if(S(p)Nr#£0)
answerLocally(r);
foreach(prefix x of p, such that|z| > 1)

if(S(x - bit(p,|z])) Nr#£0)
Search(Ly[x], 7, |z| + 1);

CHAPTER 3. GRASP 15

@

Figure 3.4: Example of Search Algorithm. Peer 010 searabrethé range query. The subtries
for which a peer in question should have a pointer to a leafe@sdt) are circumscribed with
circles. Assume that peer 0100 asks a range queryich for sake of simplicity can be answered
only be peer 000. Peer 0100 cannot answer the query anddhefefwards it to its neighbor
001. 001 cannot also answer the query and therefore forviatdsts neighbor 000 which can
now fully answer the query. The series of executions of ther@eAlgorithm is the following:
Search(010@,1) — Search(00%,2).

The aforementioned algorithm is quite simple. It takes gsiments the pees which asks the
generalized query and an integet. [denotes the maximum depth of the trie that the query has
visited so far and is used as a boundary limit in order to aegitles when forwarding queries.
The peer that initiates the query sétsqual to 0 and each peer that accepts a query increases |
by one when reforwards the query. If the key sp&¢g) of the peer which receives the query is
intersected with the query then the peer answers the query. Then the peers checks titsgrou
table to find a neighbor that its key space is also intersegifdthe query. If this is the case
then it forwards the query to it with incremented by one thertmtary limit/ so that the neighbor
won't forward the query back to it. We should mention here thine query can be forwarded to
multiple neighbors then only one of them is chosen (unifgirfdr load balancing purposes.

Each peer has at least one pointer to the other side of theTthierefore a hop can traverse half
of the maximum distance among the peers. Or in other wordSHiosver algorithm at each call
halves the number of the undiscovered peers by two. Therdfernumber of the hops needed to
answer an abstract query(¥logn + k), wheren is the number of the peers akds the number
of the reported items.

Note that a key may be returned multiple times during a sedroh is obviously a bug but a minor
one.

On FigurdZ3¥ we present an example of peer 0100 searchingesraver the trie of Figur&313.

Later on Chaptenld 4 afidi 5 we will present two realistic exaspf the algorithm’s usage for two
novel distributed data structures.

CHAPTER 3. GRASP 16

3.5 Data Updates

GRaSP allows datum updates (insertions/deletions) in aaraimilar to PGridZ]3. Assume peer
g wants to insert (delete) the kéy on the network. Then the pegistoresAx (S(p)). In a more
detailed approach what is happening is that geexecutes the Search Algorithm with input the
key in question, i.e. Search(Pegrd, 0). The query is forwarded until it reaches one or more
peers that are responsible for the data space that inclbdesahdidate key. A similar process is
followed for a datum removal. A datum update can be apprahale removal and insertion view
a double-execution of the Search Algorithm — once for theaweahof the obsolete datum and
one for the insertion of the new one.

The above process would be very expensive for a new peengpthie network because it would
have to repeat it for every datum in its disposal in order stritiute them into the network. There-
fore we introduce the notion dfatch updatesNow the new peep passes a collection of keys into
the Search Algorithm instead of a Range.

3.6 Overview of customization steps for GRaSP

All-in-all it is very easy to construct a new protocol usingR&SP. The only issues one has to take
care to customize a new protocol is setting up the followibstiact parameters.

¢ Specify the form of the generalized range query:
eg is it a point query? a l-dimensional range query? an d+wiioral rectangular range
query? (see Sectidd 1 for the definition of the Generalizeatc®eProblem and some in-
stances of it)

e Specify (hierarchical) space partitioning (some specifieditions should guilt):S(p)
(see Sectiof312)

e Specify when a peer can answer a generalized range gtigsyn r
(see Sectioh34)

e Choose a bootstrapping algorithm
(see Sectioh33)

Obviously, all the aforementioned parameters have to béesen beforehand running a cus-
tomized protocol of GRaSP.

3.7 Sum Up

To sum up we have provided a framework that borrows the trézlay of PGrid and generalized

the Shower Algorithm into the Search Algorithm in order totiie any generalized range query
in any dimensions. We have also given instructions on the&partitioning tactic that should be
followed along with a few conditions that should be full €.

On the following two chapters we implement two protocolsdsben GRaSP in order to exhibit and
evaluate it: Multidimensional Range Search (MDRS) and &tsided Range Search (3SIDED).

CHAPTER 3. GRASP 17

MDRS can handle multidimensional rectangular range gser® 3SIDED can handle multidi-
mensional 3-sided range queries.

Chapter 4

MDRS

In the previous chapter we considered the GRaSP framewoeksaW that GRaSP facilitates the
construction of new distributed data structures by hidmgtechnical difficulties emerged, such
as the middleware. In this chapter we customize GRaSP im twdeaft a novel protocol that can
handle multi-dimensional rectangle range queries ovéangte keys. We call #Multidimensional
Range Search (MDRS)

In order to define MDRS more formally we instantiate the Galimed Range Search Problem
earlier defined on Chapt€f 1. Now, the search spadé is- [0,1]¢, whered is the number
of the dimensions. The key space and the range space cahthinensional rectangles, i.e.
K = R = {d-dimensional rectanglés

A d-dimensional rectangle can be depicted as a hyper-reetaomgl! dimensions bounded on
left-bottom by the pointP,.;, = (Plyin, P2min, - - ., Pdmin) and on top-right by the point
Pmax - (leax7p2maaz7 cee 7Pdmaaz)-

A typical 2-dimensional rectangle range query is depictedFigure[Z11.

For an exemplary application consider a Geographical inftion Systems (GIS) package. GIS
is an information system for capturing, storing, analyzinganaging and presenting data which
are spatially referenced (linked to Iocatﬂn)An exemplary function would be to locate all the
parks that are located on a user-specified rectangle ovepavimiah only includes all the parks of

Greece. Here the map of the earth would be the search gpabe rectangle would be the range

!Definition of GIS taken from http://en.wikipedia.org/wi&ilS.

yeais

> X-aXis

Figure 4.1: 2-D Range Query

18

CHAPTER 4. MDRS 19

spaceR and Greece would be the data spdce This is a typical example of a-dimensional
rectangle range query

According to the proposed steps mentioned on Segfidn 3.6écustomization of GRaSP we
have structured the organization of the chapter. InitialySectiol 411 we specify the space par-
titioning algorithm. Next, on Sectidn 4.2, we describe whgreer can answer an rectangle range
qguery. We conclude with an example of the Search Algorithplieg over a MDRS trie.

4.1 Hierarchical Space Partitioning

In order to achieve load balancing we want to exploit the matdithe problem, i.e. the fact that the
gueries are rectangle and can happen anywhere on the sgearefare we would like to split the
space into rectangles aligned to x and y dimensions. Theuobwolution is following the idea of
k-d trees, i.e.S(peerID) is splitted along dimensiofpeerID| mod d, where|id| is the length
of the bitstringid. Or other words we split the key space of a peer in a Round+Rwolainner. For
example in the case df= 2 the x and y splitting dimensions are interchanged at each tdthe
trie.

Obviously there aren't any peers holding the same ké\s ¢ 0) N S(z - 1) = 0). Therefore
each key is inserted only once into the network. Later on ani@d6.2.1 we will more say that
replication equals 1.

4.1.1 Example

In order to depict the aforementioned sceptic we presepentisely on Figuré_4.1l1 and Fig-
ure[43B an in-depth example of a series of node joins and #pective space partitionings for a
2-dimensional key space. The evolution of the trie is pregjrg according to what we have said
on Sectioriz311. For the rest of the chapter (and even thes)hesiwill stick with MDRS to two
dimensions for the sake of simplicity. Any generalizatiomsnore dimensions are self-intuitive.

For the figures that contain tries (on this and next chapterhbtation used on each node follows
the template:
peerID : [Phin — Ppaz|DIM = splitcoord

where:

peerID is the peerlD of the node (we use the notationt for the root node instead of the empty
stringe).

[PrinPmasz] are the two boundary points which define the rectangle kagesjfor which the peer
is responsible for. This is actually the key sp#tig of the peer with peerlB PeerID.

DIM = splitcoord DIM shows the dimension along which the key space of this nodhn (wi
PeerID= Peerl D) will be splitted when a new peer becomes its child (on boagting).
Typical values forDI M are the following. If the split dimension is along the y-dimsén
then DIM equalsY DIM. Else, if the split direction is along the x-dimension thé M
equalsX DIM. splitcoord is the coordinate on th® 1M -dimension that the key space of
this node will be splitted when a new peer becomes its chitldb@otstrapping). Obviously,
the value ofDIM = splitcoord for the root node is dummy without any sense.

CHAPTER 4. MDRS 20

For the case of MDRS we to make the following remafk€) 1 M andX DI M are interchanged at
each level of the trie. Also, the coordinat§ 1M = Y DIM = {the half of the parental DIJ
Moreover. two sibling nodes have the saméM = splitcoord value.

Next to each leaf we list its keys and routing table. Obvigptisé inner (virtual) nodes have neither
keys nor routing tables. Each edge of the trie is annotatéadGbr 1.

4.2 Orthogonal Range Searching

Having defined the query typeas a rectangle and the key spétfe) of a peerp as a rectangle
area of a set of rectangles (and postponed bootstrappingthly for Sectio6.313) the only thing
left to fully specify MDRS is checking when a peer can answguery. A peer can answer a query

r if its key space5(p) is intersected with it, i.e. if(p) N r. If this is the case then we want to find
all the keys inS(p) that intersect to- and return them as answers to the query. On other words
we want to check if a rectangle intersects a set of rectangles core of this problem is checking

if two rectangles, let's call them and B, intersect. This is the case if (@) the boundary top-right
point of A dominates (i.e. is more-or-equal) the boundary bottomneef3 and (b) the boundary
top-right point of B dominates the boundary bottom-left point of the

4.2.1 Example

Here we present an exemplary application of the Search Alhgor(see Sectiofi—3.4) over the
MDRS trie of FigurdZ.T]1(e).

Look at FigurdZ.Zl1. Assume node 011 asks the range quenth P, = (Tmin, Ymin) =
(0.000000,0.000000) and Ppax = (Tmaz, Ymaz) = (800.631002,176.698761). Actually this

is a real 3-sided query{(«{min, Tmazs Ymaz) = (0.000000,800.631002, 176.698761)) used in our
experiments on Sectidn 6.3. Node 011 initially checks dlftsan answer part of the query. This
is the case and therefore it answers part of the query lo¢atigwerLocallyf) of Search Algo-
rithm). Afterwards if traverses its routing table (the loofpSearch Algorithm) and checks if any
of its neighbors can answer part of the query too or if at laagtneighbor is closest to the query
than itself. This is the case with neighbors 1 and 00. Theeafode 011 forwards them the query
r (the inner recursive call of Search of Search Algorithm)cieively the same process is car-
ried out on nodes 1 and 00. Note that node 00 now doesn't fartter query to node 011 again
because of the parametenf the Search Algorithm.

oct:[(4.96671.4.96392)—(998 308,997 748)] X IM=496.6

pathid:

neighbors: [1

data: (249.294,429.375),
(771.228,317.013),
(656.462,140.13),
(131.728,992.784),
(420.466,501.592),
(96.706,514.831),
(499.636,819.441),
(96.9192,47.1816),
(993.342,779.295),

(473.326,115.654)

(a) number of nodes=1: {"}

OOT(4 966714 96392)—(998 308,997 78 TXIM=496 67

pathid: 1

neighbors: [00]

data: (499.636,819.441),
(96,9192,47.1816),
(993,342,779.295),
(473.326,115.654)

4966714 96392)—(96 671496 39 PAM=M5 85D GL[(4 96671496392 —(496.671997 78y [XIM=245 357

pathid: 00

neighbors: [1,01]

data: (249.294,429.375),
(771.228,317.013),
(656,462,140, 13),
(131.728,992.784)

pathid: 01

neighbors: [1,00]

data: (131.728,992.784),
(420.466,501.592),
(96.706,514.831),
(499.636,819.441)

(c) number of nodes=3 {"00’,01",'1’}

[QOE[(4.96671,-4.96392)--(998.308,997.748) [XIM=496 671

Q:[(4.96671,-4.96392)--(496.671,997.748) [YDIM=496.392 [(496.671,-4.96392)--(998.308,997.748) [YDIM=496 392

pathid: 0 pathid: 1

neighbors: [1] neighbors: [0]

data: (249.294,429.375), data: (499.636,819.441),
(771.228,317.013), (96.9192,47.1816),
(656.462,140.13), (993.342,779.295),
(131.728,992.784), (473.326,115.654)
(420.466,501.592),
(96.706,514.831),
(499.636,819.441)

(b) number of nodes=2 {'0’,1"}

QO[(4 9667L4 96397098 308,997) TKIM=496 67

pathid: 1

neighbors: [00]

data: (499.636,819.441),
(96.9192,47. 1816),
(993,342, 779.295),
(473.326,115.654

pathid: 00

neighbors: [1,011]

data: (249.294,429.375),
(771.228,317.013),
(656.462,140.13),
(131.728,992.784)

pathid: 010 pathid: 11

neighbors: [1,00,011]

data: (131.728,992.784),
(420.466,501,592),
(96.706,514.831)

neighbors: [1,00,0101
data; (96.706,514.831),
(499.636,819.441)path

(d) number of nodes€{30’,010’,011",1’}

Figure 4.2: Exemplary evolution of the MDRS trie on 2-D whilew nodes join arrive.

SHAW v 431dYHO

TZ

CHAPTER 4. MDRS 22

XMAX2

o 1
() number of nodes=1: {"} (b) number of nodes=2 {'0’,1'}
o1 ol1o0 o011
YMAXj2 1 YMAX2 1
oo oo
(c) number of nodes=3 {'0’,’10’,/11"} (d) 3number of nodes=3 {"00’,/01",'1}

Figure 4.3: Exemplary evolution of the 2-dimensional MDR®dlogy while new nodes join
arrive. There is a 1-to-1 mapping between this figure andre[guL.].

query:=
{xmin,xmax)}=(0.000000,800,.631002)

QoH{(4 966714 96392)—(998 308,997 748) X496 67

ymax=176.698761 Q)
=
pathid: 1 3
1 neighbors: [00] rﬂ
data: (499,636,8109.441), ~
(96.9192,47.1816),)
(993,342, 779.295), <
(4966714 .96392)—(196.671,997.748) YDIM=496 392 1(496.671-4.96392)—(998.308,997.748) YDIM=496 392 (473.326,115.654 %
9]
0
0](4.966714 96397)—(496 671496.392) [XIM=245 1{(<4 96671496.392)—196.6 71997 748) [XIM=245 852
pathid: 00
neighbors: [1,011] :
data: (249.294,420,375), : : :
(771.228,317.013), : -
(656.462,140.13),
(131.728, 992, 784) 10:(-4.96671496.392)—(245 852997 A N\DIM=A47.07 11](245.852.496.392)—196.6 71997 48 N\DIM=A47.07
pathidi 010 ™ pathid: 11
neighbors: [1,00,011] o neighbors: [1, 00,0101
data: (131.728,992.784), L data: (96,706,514,831),
{420.466,501.592), oY (499.636,819.441)path
{(96.706,514.831) o
N

Figure 4.4: Example of answering a 2-dimensional orthob@arege query over the MDRS trie.

The trie is the one earliespnted on Figuie 4.1.1(e).

Chapter 5

3SIDED

In Chaptei B we presented GRaSP, a framework for constgudistributed data structures that
can tackle the generalized range search problem over a P&Brkeln the previous ChaptEl 4 we

customized GRaSP and constructed MDRS, a protocol thataraaidnmulti-dimensional rectan-

gular range queries. Likewise, in this chapter we will cositted GRaSP and instantiate 3SIDED,
a protocol that can answer multi-dimensional 3-sided rapgries. The process followed to ac-
complish this is similar to the one followed on the consirtof MDRS.

Let’'s define more formally the 3-sided Range Search Problamsake of simplicity we will stick

to 2 dimensions — any generalizations are self-intuitivéie Keys are points. R&-sided range
gueryis a degenerated rectangle range query. More preciselyydugick to the definition of the
rectangle on the beginning of Chapkér 4 weéet 2 and P2,,,;,, = 0. On this case the 3-sided
query isbounded on topAlternatively, if P2,,,. = oo then the 3-sided range quenkisunded on
bottom Let’s relax the notation in order to make things simpler esqatesent the two dimensions
with the familiar x-axis and y-axis. Then a 3-sided rangergb@unded on bottom is equivalently
defined by the triplet of coordinates,,;,,, ma:, Ymin and a 3-sided range query bounded on top
by the triplet of coordinates,,.;n, Tmaz, Ymaz- A typical 3-sided range query bounded on top is
presented on Figufe 5.1(a) and another one bounded on bistimesented on Figufe 5.1(b). For
the rest of the chapter (and the thesis) we will stick to &dichnge queries bound on top.

3SIDED uses and alternative representation for the keysgjaades. Here we will use the nota-
tion earlier introduced when defining the Generalized Ra®g@rch Problem earlier defined on

Jras
Jeaiis

> XeaXis > X-aXis

(a) 3-sided Query (bounded on top) (b) 3-sided Query (bounded on bottom)

Figure 5.1: Example of 3-sided queries. On (a) we have Jgigery bound on top and on (b) a
3-sided query bounded on bottom.

24

CHAPTER 5. 3SIDED 25

100 101 11
100 | 101 g, 11| e o

(Qxmin,Qxmax,Qymax)

{Qymin,Qxmin)—r

wwwww xanx e xwinx

(a) 3sided Query (b) 3sided Query (reduced form)

Figure 5.2: 3-sided range query representation and itsalguit reduced form as used on 3SIDED.

Chaptei[l. First of all we define the search spac& as [0, 1]¢, whered is the number of the
dimensions. Each key is depicted as an upward rayKi.e- {upward ray$. Each 3-sided range
query is depicted as an horizontal segment, Re= {horizontal segmenis On Figure[56 we
present a typical 2-dimensional 3-sided range query arshjitg/alent horizontal segment reduc-
tion used by 3SIDED.

Typical applications of the 3-sided range search probleenfaund when working with finan-
cial data. Assume for example that on a 2-dimensional spacthavx-axist represents the time
progress (in days of month) and the y-axisepresents the sales of products (in dollars). We
want to find all the products that had high sales during Qindst Then the predicate would be
s > 100% and25 <=t <= 31 on December. This an example oBasided query bounded on
bottom Alternatively we could find low sales and this would b8-aided query bounded on top

According to the guidelines earlier provided on Seclionif.6érder to fully specify the 3SIDED
protocol we have to specify the format (shape and dimenkighaf the data and query, when a
peer can answer a query and the hierarchical space pogiacimeme. Again, we postpone the
choice of the bootstrapping algorithm for Secfion@.3.3c@dingly we have organized the struc-
ture of the chapter. Namely, on Sectlonl5.1 we specify theespartitioning followed by 3SIDED
and the reason motivated it. Afterwards on Sedfioh 5.2 weispe@hen a peer can answer a query.

A strong emphasis should be given to the fact that, in our kedge, there isn't any previous
work on P2P that tackles the multi-dimensional 3-sided easwarch problem, i.e. there isn't any
network that can handle 3-sided range queries. Our worloisgair and depicts the usefulness of
GRaSP once again.

5.1 Hierarchical Space Partitioning

Handling 3-sided queries is a very demanding problem. Thet prominent reason is that all the
queries hit peers low on the key space. This is especiallyoabvor the low-and-wide 3-sided
gueries. Moreover, if a 3-sided query is tall-and-narrownynpeers will be hitted. On both cases
each peer will return a small part of the answer. Typical exlamof both queries are depicted on
Figure[2.3B.

On Sectior-312 GRaSP proposes that in order to amelioraleddebalancing problem the Space
Partitioning scheme should be adapted to the nature of thidgm, i.e. to the difficult queries

CHAPTER 5. 3SIDED 26

(a) low-and-wide (b) tall-and-narrow

Figure 5.3: Difficult 3-sided queries. It's obvious theirtieularities and the problems they pose.

depicted on Figure3.3. Therefore we want many peers on ttierbf the space and less on
the top. The lower peers should hold low-and-wide areas addte upper ones tall-and-narrow.
This can be achieved by adding redundancy low on the key spatteaplitting the key space in
rectangles, low-and-wide on bottom and tall-and-narrowopras we mentioned before. This idea
can be effectuated by adopting the following algorithm. $hace partitioning algorithm adopted
by 3SIDED contains two type of splits, one horizontal and wextical. When a key space is split-
ted vertically then it is splitted into the middle of the ximfremember that for sake of simplicity
we just refer two 2 dimensions). Therefore two equal volurkeg spaces result. On the case of
the horizontal split the key space is splitted on the y-axisan the middle but on a thEsgp
percentage of its heightsz p is a user specified parameter and controls the overlappimgeba
the key spaces of the peers. The highegp is the higher the overall overlapping is. Obviously
Ysep € {0,1}. Assume a new pegrwants to join the network and becomes child of the parent
(bootstrap) nodé. If key space ob was resulted from an horizontal split and the last bit &f O
then its key space is also splitted horizontally. If it endedl then it is splitted vertically. On the
opposite case where the key spacé ofsulted from vertical split then it is also resplitted Vert
cally. Sectiofi-311 tells us which part of the key spacéedch newly created child gets. This ideas
are presented on a more formal manner on the algorithm kne@sidedHashingn Algorithm[1.

Assume we want calculate the key space of peer with Peerjde. the value ofS(bs). Also
assume that the search spdcés bounded respectively by the bottom-left and top-righin{so
Pin = {X]MIN7 Y]MIN} ande,w = {X]MAnyMAX}- Also assume that we have Kirp.
Then given the arguments as input to the hashing algorittem #sidedHashing returns the fol-
lowings:

Pmin = {Tmin, Tmaz }» Pmaz = {Ymin, Ymaz} The Key space of peéw is bounded respectively
by the bottom-left and top-right points,.;, andp,,.qz -

Ysep IS the coordinate on the y-dimension that the key space oftpeeill be further splitted if it
adopts a peer. This may be equaltg;, in case its key space will be vertically splitted.

Just to refresh the obvious we mention here where the 3safgdhy Algorithm is used. This
is the case when a new peer joins the network (see Sdciibth&. peer that will adopt it (boot-
strap/parent peer) should split its key space into two (apeing or not) subregions and each one
be given to each peer. The 3sidedHashing Algorithm tells lusrevto split the key space of the
parent peer.

CHAPTER 5. 3SIDED 27

Algorithm 1 3sidedHashingX /v, Yarrv, Xaax andYy, 4x are the boundaries of the overall
data space).
1: function 3S|DEDHASH|NG(XM]N,YM[N,XMAX,Y]MA)(,YSEP,Z)S)

2: Tmin — XMIN
3 Tmaz < XMAX
4 Ymin < YMIN
5: Ysep < YMIN
6: Ymaz < YMAX
7: hsplit < True
8: forall i — 1, size(bs) do
o: b < bsbs;]
10: if hsplit = T'rue then
11 Ymiddle < Ymin T YSEP * (ymax - ymzn)
12: if bit = 0then ymaez < Ymiddie
13: else
14: Ysep < Ymiddle
15: hsplit — False
16: end if
17: else
18: Tmiddle <~ Tmin + 0.5 % (xma:v - xmzn)
19: if bit = 0 then
20: Tmaz < Tmiddle
21: else
22: LTmin < Lmiddle
23: end if
24: end if
25: end for
26: return [Eminyxmam’ymin1ysep1yma:v]

27: end function

CHAPTER 5. 3SIDED 28

Note that on 3SIDED we don't pose the restricti§tz - 0) N S(z - 1) = () as we did on MDRS
on Sectior 4]1). Therefore we can introduce replicati@n,averlapping key spaces, into the net-
work. This is useful as we have already explained for loadrzihg reasons.

5.1.1 Example

A detailed example (fot’spp = 0.3) of a series of peer joins and the respective evolution of the
trie and the topology is depicted on Figlire 5.1.1 and Fifuie Actually, this is a realistic case
borrowed from our experiments on Sectlonl 6.3. The notatsgdus consistent to the notation
earlier introduced and used on Secfion4.1.1.

5.2 3-sided Range Searching

Having defined the query as an horizontal segment and the key spéd¢e) of peerp as a
rectangular area that contains a set of upward rays (angqusd bootstrapping algorithm for
Section[6.31) the only thing left to fully specify 3SIDED ébecking when a peer can answer
a guery. A peer can answer a query if its sub-key-space bounded oorbééift by the point
Pmin = {Tmin, Ysep @Nd on top-right by the poink,.ez = {Zmaz, Ymaz } IS intersected the query
horizontal segment. The aforementioned coordinatesteBum the execution of the 3sidedHash-
ing Algorithm with inputPeerI D = p. Note the distinction between the key space of a peer, i.e.
the area for which a peers holds all the inlaid keys, verseispiace of a peer for which the peer is
responsible for answering queries.

Now that we know if a peer can answer a query we want to getsalldys that answer the query.
A brute force method with linear time complexity would be tonpare all the upward ray keys of
the peer with the horizontal segment of the query.

On Figurg 5.6(0) we present an horizontal segment quergsitéed with 3 upward ray keys (we
also depict the original 3-sided range query and keys faifidation purposes). On Figufe 5.6(a)
we see that responsible for answering the 3-sided rangg ¢o@unded on top) is peer 010. Peer
010 holds keys a, b and c. Only keys a and b answer the queryari@veer keys are colored red.
On Figure 5.6() we see an equivalent picture where the gaeag horizontal segment and the
keys are upward rays. Again the upwards rays a and be anssvgudny.

An important notice is the following. Practically the queasgn be fully answered by peers 010
and 101 since their key spaces are intersected the querftdButvhat we have said at the begin-
ning of this section it’'s obvious that only peer 010 is inteted the query. Therefore is peer 101
receives the query in question it will discard it or forwardoi a neighbor.

5.2.1 Example

Here we tersely present an exemplary application of thecBealgorithm (see Sectiof3.4) on
Figure[B.Z1]l. The steps followed are similar to the respeatase of the MDRS protocol on Sec-
tion[4Z1 and therefore we avoid plagiarism.

0ot [(-4.96671,-4.96392)--(998.308,997.748)] YDIM=330.597

pathid:

neighbors: [1

data: (249.294,429.375),
(771.228,317.013),
(656.462,140.13),
(131.728,992.784),
(420.466,501.592),
(96.706,514.831),
(499.636,819.441),
(96.9192,47.1816),
(993.342,779.295),
(473.326,115.654)

(a) number of nodes=1: {"}

0Ot (4 96671,4.96392)--(998.308,99 7. 74 TYDIM=330.597
0](-4.96671,4.96392)--(998.308,330.59) TYDIM=108.436 (4.96671,330.597)--(998.308,997. 74 8) | XIM=496.671
pathid: 0

1{(196.67L330.597)--(098.308.997. T4 XM=74 749

neighbors: [11]

data: (771.228,317.013),
pathid: 11
neighbors: [0,10]

(656.462,140.13),
(96.9192,47.1816),

data: (499.636,819.441),
(993,342, 779.295),

(473.326,115.654)
(771.228,317.013),

(656.462,140.13)

0{(96671330.597~(496.671.997 4§ XIM=243 852

pathid: 10

neighbors: [0,111

data: (249.294,429.375),
(131.728,992.784),
(420.466,501.592),
(96.706,514.831),
(96.9192,47.1816),
(473.326,115.654)

(d) number of nodes=3 {'0’,10’,11"}

00t [(-4.96671,-4.96392)-(998 308,997 .748) | YDIM=330 597

2
>
0:[(4.96671,4.96392)-(998.308,330.597) [YDIM=108 436 [(-4.96671,330.597)--(998.308,997.748) [XIM=496 671 v
~|
pathid: 0 pathid: 1 rﬂ
neighbors): [1] neighbors: [0]
data: (771.228,317.013), data: (249.294,429.375), [§)]
(656.462,140.13), (131.728,992.784), N
(96.9192,47.1816), (420.466,501.592), w
(473.326,115.654) (96.706,514.831), N
(499.636,819.441), =
(993.342,779.295), O
(771.228,317.013), m
(656.462,140.13), (w]
(96.9192,47.1816),
(473.326,115.654)
(b) number of nodes=2 {'0’,1"}
thid: 00t (<4 966714 9639298 308,997 748 [YDIM=330 597
athid:
Eeighbors: 111
data: (771.228,317.013),
(656,462,140.13),
(96.9192,47.1816),
(473,326,115.654)
D4 966714 9639998308 330.59 TYDIM=108 436 [(-4.96671330.597—(998.308 99 7.748) | XIM=496.671
) {(4.96671330.599—(196.671997.748) | AIM=245 852 1[(196.671330.59D—(98.308.99 7. 48) [XIM=74 749
pathid: 11
neighbors: [0,100]
data: (499.636,819,441),
(993,342,779,295),
(771.228,317.013),
004 96671330.597—245 852,997 748) [XIM=120 443 0 1](245 852,330 597 —(196.6 7199778 |XIM=37126 1 (656.462,140.13)
pathid: 100 pathid: 101
neighbors: [0,11,1011 neighbors: [0,11,100]
data: (131.728,992,784), data: (249.294,429,375),
(96.706,514.831), (420.466,501,592),
(96.9192,47.1816) (473.326,115.654)
N
(]

(e) 3number of node3%'00’,01",'1"}

Figure 5.4: Exemplary evolution of the 3SIDED trie on 2-D {eliew nodes join arrive.

CHAPTER 5. 3SIDED 30

(a) number of nodes=1: {"} (b) number of nodes=2 {'0’,1'}
10 11 10 11
o o
(c) number of nodes=3 {'0’,/10’,/11"} (d) 3number of nodes=3 {"00’,/01",'1}

Figure 5.5: Exemplary evolution of the 2-dimensional 3SIDi&pology on while new nodes join
arrive. There is a 1-to-1 mapping between this figure andrE[@ul].

100 101 110 111 100 101 110 111

- -

o10 @ ! o11 o0 ° 011

e L

‘a a

H D e c

® oo ® oo
(a) 3sided Query (b) 3sided Query (reduced form)

Figure 5.6: Depicting when a peer can asnwer a 3-sided ramgry gn 3SIDED. Practically both
peers 010 and 101 can answer the query but on 3SIDED only G2Dsid On (b) keys are upward
rays and the 3-sided range query is an horizontal segmegt &and b anwer the query and are
colored red. Key ¢ doesn’t answer the query and is coloretkbla

query:=
| (xmin, }=(0.000000,800,631002)
aiio 0ot[(4 966714 96392)—(998 308,997 74) [YDIM=330 597 ol g, ety
neighbors: [11]
{(-+. WAL] NS =430,
(496671330 5979 —(998 308,997 748) | XIM=496 671

data: (771.228,317.013),
1

(656.462,140.13), [|
1{(196.671330 597 —(098.308.997.748) [XIM=1 749

(96.9192,47.1816),

(473.326,115.654)
pathid: 11
neighbors: [0,100]

T(4.966714 96392)—098.308.330.59) TYDIM= 103 436
4
D(4 96671330 597 —(196.6 71997.748) [XIM=245 85
data: (499.636,819.441),
..................... (993,342,779.295),

(771.228,317.013),
DOJ-9667L330.59D—(45 852,997 74 [XIM=120443 D 0 L{Q45 852330 599196 671997 748) [XIM=37126 1 (656.462,140.13)

pathid: 100 pathid: 101

neighbors: [0,11,1011] neighbors: [0,11,100]

data: (131.728,992,784), data: (249.294,429,375),
(96.706,514.831), (420.466,501.592),
(96.9192,47.1816) (473.326,115.654)

Figure 5.7: Example of answering a 2-dimensional 3-sidedeajuery over the 3SIDED trie. The trie is the one earliesgmésd on Figule5.1.1(e).

a3dis¢ 'GH31dYHO

T€

Chapter 6

Performance Evaluation

In order to evaluate GRaSP we have constructed a fast arabiraimulator called RangeSim-
Cpp. This is the mean of the evaluation and is presented dioBEC]. On Sectiof 62 we present
the Cost Model on which we have based the evaluation, i.en#idcs used to evaluate the quality
of a network. On Sectiofh 8.3 we experiment with 2-dimendianthogonal range queries over
MDRS and 3-sided queries over 3SIDED and MDRS (we regardide®igjuery as a range query
unbounded on a side).

6.1 Simulators

In order to develop protocols over the GRaSP framework wedeeé develop a consistent API.
This API gives the necessary mechanisms to represent théopology of GRaSP, the routing
tables, the searching algorithm, the bootstrapping andistomize any Space Partitioning algo-
rithm. Initially we experimented with a Java simulator fa2RPcalledPeersim Due to its lack
of efficiency (for reasons that we will justify later on) wevieadeveloped a novel C++ simulator,
calledRangeSimCpp

6.1.1 Peersim

Peersini[33] is a configurable, extendable and self-coatagimulator for P2P protocols in Java.

It can support the simulation of large networks and the msiog of many queries. It can also

support dynamic protocols, where node additions and relmava happening. Peersims has two
modes of operation, the Cycle Based and the Event Driven.

Cycle Based Simulation

The Cycle Based Simulation is a simplest simulation modereifenodes are given the control
periodically, in some sequential order. The processinguefigs follows a Breadth First Search
manner in the following sense; all the queries that are nvered till the current cycléare either
answered locally or forwarded. The ones answered are disddrom the network whereas the
ones forwarded are reprocessed in similarly manner on ¢yele This process is continued until
all the queries are fully answered.

32

CHAPTER 6. PERFORMANCE EVALUATION 33

Event Driven Simulation

In the event based model there is not the semantic of the.c@cl¢he contrary the events (eg the
queries in our case) have to be scheduled explicitly andethes the ones which drive the flow
of the simulation. Therefore this mode is more realisticddab less efficient. The Event Driven
Simulation also supports transport layer simulation vethe Cycle Based Simulation.

In our experiments we have employed the Cycle Based Siroalatiode of Peersim on static net-
works. Unfortunately the memory and processing demandgefdim have not been satisfactory
and therefore a new simulator has been developed from thchdn C++ which is working in a
similar Cycle Based mode.

6.1.2 RangeSimCpp

The C++ implementation has been callRdngeSimCppnd is working in a Cycle Based mode
but in a Depth First Search manner on the contrary to PeerShis means that each the query
is feeded to the simulator, processed on a cycle-by-cyclmnerauntil it is fully answered. After-
wards it is discarded from the simulator and a new query Isedihis process is followed until all
gueries are fully answered. Obviously only one query is éobat any time slice. The benefits are
obvious and are further discussed on Sedfionk.1.3.

6.1.3 Comparison

Peersim and RangeSimCpp exhibit some common attributesand crucial differences. Here
we compare the two aforementioned simulators side-by-sidelation to their common Cycle
Based operation. First of all Peersim is written in Java waerRangeSimCpp in C++. Each
language provides each pros and cons. Java supports mearbagg collection but is not as fast
as C++. On the contrary C++ is not safe from memory leaks bfaster than Java. The most
important difference however is the processing algoritirthe queries that each simulator fol-
lows; in Peersim we load all the queries in memory and all efrttare processed (forwarded or
answered) on each cycle (Breadth First processing) wharéangeSimCpp we load each query
in memory, we process each until is fully answered and afieds/we load the next one and so
on (Depth First processing). The subtle difference betwkernwo aforementioned algorithms is
that former requires all the queries residing in the memainying the whole duration of the simu-
lation whereas the latter one requires only one query beitigei memory at any time. Therefore,
according to our experience, Peersim cannot handle effigisimulations of tens of thousand of
gueries. For instance if the number of peers is of order oKl®@n the memory needs are of
order GB and the current CPUs cannot handle it at all. On th&éraxy RangeSimCgpmemory
needs are of order MB and the time needs are of order of minutes

6.2 Modeling P2P Network Performance

In order to evaluate GRaSP more general any P2P protocol wewbsome evaluation metrics.
Here we mention the most important ones which are the oneklate® on our experiments.

CHAPTER 6. PERFORMANCE EVALUATION 34

6.2.1 Replication

By replication (of data) we define the percentage of the waigilataset that is stored in our net-
work. Obviously the replication is greater or equal to ongué to one when there isn’t any).

Replication may exist when two or more peers possess sarsethéymay be the case for exam-
ple for load balancing when we want the queries for these tikelys splitted between the two peers.

6.2.2 Fairness Index

(i @i)°

n Z?:1 ;2
wherez; is the number of data points of peeandn is the number of peers. In essence Fairness
of Index shows the fairness of the distribution of the datatenpeers; i.e. how air are the data
distributed among the peers. Fl is continues, scale indkpeni.e. applies to any network size
(even for a few peers only) and is bounded between 0 and 1 — Onfairness (when one peer
holds all the data), 1 for equally fairness (when all the pdawe equal number of data).

Another metric pertinent to the data is thairness Indefd2] which is defined ag'l =

6.2.3 Average per-process Message Traffic, Maximum Througiut

Average per-process Message Traffic and Maximum Througapunovel metrics initially in-
troduced by Blanas and Samolada$[42]. They studied a feantde2P networks through d-
dimensional orthogonal range queries (PGrid[10], VBI[GAN[4], MURK[B]) and concluded
through extent simulation that all of them except PGrid t@cale with the number of peers.
They emphasized that it not enough measuring the averagepkrgpeer in order to reach a ver-
dict for the scalability of a network. What should be meadisghe load of the most loaded peer,
i.e. the Maximum Throughput.

Let's define now the Average per-process Message Traffic amdrivum Throughput. Assume
peer; accepts incoming messages at an arrival kafevhere each message has service demand
On the other hand this peer has maximum serviceyater an incoming message. Therefore the
time required to serve an incoming message/ig;. More generally assumg is a random vari-
able that denotes the distribution of the service demantieofricoming messages. Accordingly
defineS; = S/v; and denotdZ[S;] being its expected value.

If Pis a set of processes with individual popularitigsandm;(p) is the number of messages
in processy € P received by peer j then thmessage distributionf the network is defined as

pi = M and theAverage per-process Message Traffid\l = > v;u;.
J
The Maximum Throughpuis defined as\, ., = m Obviously, Maximum Throughput

is the inverse of the average per-query processing timeeafithst-loaded peer in the network. In
our experiments we have set for simplicilB{S] = 1 (i.e. each peer can service the 100% of the
incoming messages) and therefdvg,, = 1/max;u;. Simply stated it we could say the Maxi-
mum Throughput is a metric which measures the load of the loaded peer or alternatively that
is the maximum query rate that the network can sustain iniggfinAbove A,,,,,. Some peers may
become overload and crash or on the best cast discard mgssage

CHAPTER 6. PERFORMANCE EVALUATION 35

6.3 Experiments

In order to evaluate GRaSP we have implemented the MDRS alREESprotocols (see Chap-
ters[4 and[b respectively). We have experimented with 2-d&waal orthogonal range queries
over MDRS and 3-sided queries over 3SIDED and MDRS (we rega-ided query as a range
query withd = oo ord = —oo, whered is the unbounded side). Initially we set the test beds
to conduct our experiments, i.e. the number of queries ardspéhe datasets, etc. Finally we
evaluate each protocol by plotting its results based ondkemodel presented on Sectlonl6.2.

6.3.1 Datasets

We have simulated MDRS and 3SIDED with five datasets; onéstigahnd three synthetic ones.
Two of the synthetic were tuff to handle efficiently and onepretty easy. All of them are 2-D and
contain about 1M data points. They are all listed on FiguBelb.The realistic dataset is depicted
on Figurg6.1(d) and illustrates roads on he map of Greece.e&ly synthetic dataset contains
data points following a random uniform distribution (segute[6.1(d)). Lastly, the remaining
tuff synthetic datasets contain data points generated thenfollowing distribution: (a) a circle
distribution (Figur¢ 6.1()), (b) 25 Gaussian clusterg(Fé[6.1(H)) and (c) a diagonal distribution

(Figure[6.1(d)).

6.3.2 Queries

For the MDRS we have crafted pseudo 3-sided queries bourdédpoi.e. 2-D range queries
shifted on the x-axis (i.ey..;, = 0). For the 3SIDED we have created reduced 3-sided queries
bounded on top as described on the following paragraph. 8pthof queries have been created
data skewed, i.e. the probability for a key to answer a gueapalogous to the key density around
the location of this key. Therefore peers with many data arg popular and expected to accept
many queries.

Creation of 3-sided queries

In order to create 2-D range queries shifted on the x-axis awe lfiollowed the following steps
(assume that we want the query to contgiize keys for answer):

1. Choose a random poifit, y) (under the condition that the number of all the points under
the horizontal line passing through point is greater or etpuasize else reinitialize). The
chosen point is at this point a rectangular that closes in zelume.

2. Extend a little bit the rectangular from the left and thghtidirect ions on the x-dimension.
3. Extend a little bit the rectangular from the top and thedyotdirect ions on the y-dimension.
4. If the rectangular includes approximatelywith a predefined positive/negative bias) data
then stop. Else repeat the previous two steps iterativeilyaomvergence.
Creation of 4-sided queries

In order to create data skewed 3-sided queries we have fildie following steps (assume that
we want the query to contaisize keys for answer):

400 800 800 1000

200

Circle Dataset

I I I
200 400 800

(a) Circle

Clusters Dataset Digonal Dataset
(=)
= 2
e Z
(=1
8 - g -
)
87 =
(=
= 8 —)
Ly
[l
g <7
=
(=)
s
& 7 [
T T T T T T T T T T T T T \ \
800 1000 200 300 400 500 600 YOO 800 0 200 400 500 800 1000
H ®

(c) Diagonal

Ao |-

L M L 1
2R =xxxx 4300 =xonon =Hoom o EEEm) 1 or el 4

(d) Greece (e) Uniform

Figure 6.1: Available Datasets with which we have experirén

NOILYNTVATI JONVINHOJH3d "9 431dVHO

9€

CHAPTER 6. PERFORMANCE EVALUATION 37

1. Choose a random poifit, y) (under the condition that the number of all the points under
the horizontal line passing through point is greater or Etuagsize else reinitialize).

2. Extend a little bit the point from the left and the righteaditions thus creating a line segment
on the x-dimension.

3. If the rectangular area under the line segment includpeoajmatelyd (with a predefined
positive/negative bias) data then stop. Else repeat theopie two steps iteratively until
convergence.

6.3.3 Bootstrapping Algorithm

The bootstrapping algorithm (see Section 3.3) that wasvi@t by both protocols for the con-
struction of the trie was the Data Balanced Selection. Toezehe nodes should tend to have
equal number of data. The validity of this assertion will ladidated later when we will discuss
The Fairness of Index of each protocol.

6.3.4 TestBeds

Each experiment’s network is consistedléf, 5K, 10K, 20K, 30K, 50K, 75K and100K num-
ber of peers. The number of queries is relevant to the nunfiqggeers and equal to the one third
of them. For example when the number of peers is equakidhen we initiatel /3 = |333]
gueries. The datasets we have employed are the cycle,rsludiagonal and uniform ones that
are presented on Sectibn 6]3.1.

Maximum Throughput (see Sectibn 612.3) is reverse prapuatito the messages the most loaded
peers receives. These messages can be divided into theooag answered (relative messages)
and the ones forwarded (non-relative messages). Whenzbeokithe query is small (i.e. the
number of the reported data items that answer the query) wecexhe number of the relevant
messages to be low and the number of the non-relative mestage high. On the contrary we
expect the opposite when the size of the query is high. Inrdodurther examine the relation of
Maximum Throughput in respect to the query size we have er@ajuery sizes, 50-60, 500-600
and 5000-6000.

In order to avoid clutterness due to the large number of fiywe have grouped into one figure the
three figures that correspond to an experiment of the sanee sgeept for the three possible query
sizes. In order to accomplish this we have used improperlgdch experiment and each network
size the notation of theonfidence intervalmstead of the notation of points. Each curve describes
an experiment carried out for three query sizes and a rangeast. Each bundle of three query
sizes is depicted on the trajectory of each curve with a cenf@id interval which contains three
points, one for each query size. These three points comegjacthree results sorted from the low-
est to highest. Accordingly the have been depicted on th@faach confidence interval. More
specifically each c.i. containsraeanvalue, alowestbound and a highestighestbound. The
lowest bound corresponds to the experiment with the queeytbiat gave the lowest performance
value, the opposite gilts for the highest bound and the oiré [aft corresponds to the value of the
remaining experiment. Therefore a confidence interval shtbe range that a performance metric
gets for an experiment with three query sizes: 50-60, 500-a6@ 5000-6000 points.

We have carried out 10 individual experiments for both MDR8 8SIDED protocols. We have
used different seed for the random generator for each erpatiand averaged over the results.

CHAPTER 6. PERFORMANCE EVALUATION 38

6.3.5 Overview of the experiments conducted

The number of parameters that we have set up in order to cotitiexperiments are quite a few
because we want to thoroughly study the behavior of MDRS &10BD. Therefore the reader
may be confused. For this reason we sum up here all the testhaidve have set up:

For 2-dimensional orthogonal range queries over MDRS we:hav
e 1 protocol: MDRS
e 5 datasets
e 3 query sizes
e 10 simulations

And therefore we run in totdl * 5 * 3 * 10 = 150 test beds.

For 3-sided range queries over MDRS and 3SIDED we have:
e 2 protocols:

— MDRS
— 3SIDED (4 possible values fdfszp)

e 5 datasets
e 3 query sizes
e 10 simulations

And therefore we run in totdll + 4) « 5 % 3 % 10 = 750 test beds.

6.3.6 Results: 2-dimensional Rectangular Searching Over DIRS

On the following paragraphs we experiment with 2-dimensiaectangular range queries over
MDRS. The metrics used are Fairness Of Index, Replicatiatercy, Maximum Throughput and
Traffic.

Fairness Index

As we have already mentioned on Secfion ®.3.3 we expecteabidlrs to have comparable num-
ber of data items in their disposal because of the Data BathSelection choice as bootstrapping
algorithm.

Initially, remember from Section 6.2.2 that Fl is boundedsen 0 and 1, where 1 denotes the
perfect fairness where all the peers have exactly the saméemof data items and the opposite
happens for Fl equal to 0.

This is confirmed as we case see on Fiduré 6.2. On x-axis wergré®e network size and on y-

axis the FI for each network size. Actually Fl is generallghiespecially for the uniform dataset
where it approaches 0.7 (remember from Sedfionk.2.2 thiatldelunded between 0 and 1, where
1 denotes the perfect fairness where all the peers havdeikaEisame number of data items and

CHAPTER 6. PERFORMANCE EVALUATION 39

T T T
MDRS-circle —é—
MDRS-clusters ——f=—
MDRS-diagonal
MDRS-grescs
MDRS-unifarm 7

ot H—+—+ + + -

10000 20000 30000 40000 50000 60000 70OOD 80000 90000 100000

Peers

Figure 6.2: Fairness Index (for orthogonal range queries MDRS)

the opposite happens for Fl equal to 0). The worst Fl is aekidw the Circle and Diagonal
datasets and is equal to 0.3. The Fl of the Greece datasetlisdmewhere between and is equal
to 0.5.

Latency

Latency is theoretically (see Sectibnl3.4) equaDi@dogn), wheren is the number of peers. On
Figure[6.B we present the Latency for a series of networkssigzbviously MDRS approaches
indeed this theoretical measure. It's obvious that Latésdydependent of the query size.

Average Messages Per Query

The Average Message Traffic is increased with the numberafpes showed on Figureb.4. On
x-axis we list the number of the peers of the network and omriy-the Average Messages Per
Query for each such network size. All the datasets presenpamble Average Message Traffic
with the best (lowest) having the Diagonal dataset and thestwhighest) having the Uniform
dataset. The obvious relation between the Traffic and theyciee is the following: Traffic(small
query sizek Traffic(big query size).

Maximum Throughput

Maximum Throughput in relation to the network size is degicbn Figurd_6]5. On x-axis we
list the number of the peers of the network and on y-axis therdge Messages Per Query
for each such network size. It's obvious that MDRS presemesmhaximum (best) Maximum
Throughput for the Diagonal dataset and the lowest (womst)ttie Circle dataset. Generally
Maximum Throughput scales with the number of peers. Themsvielation between the Max-
imum Throughput and the query size is the following: Maxdughput(small query sizep
Max.Throughput(big query size)

6.3.7 Results: 3-sided Range Searching Over MDRS and 3SIDED

On the following paragraphs we experiment with 3-sided igsepver MDRS and 3SIDED. The
metrics used are again Fairness Of Index, Replication nicggdvlaximum Throughput and Traffic.

CHAPTER 6. PERFORMANCE EVALUATION

--—- MDRS-circle
---- MDRS-clusters -
MDRS-diagonal b
S | --- MDRS-greece 'i‘_ 'il'l
MDRS-uniform - i
In(Network Size) } [] il I
o |
—
>
o
=4
Q
©
-
[ee)
© -

T T T T T T
0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

Network Size

Figure 6.3: Latency (for orthogonal range queries over MPRS

T
° -~ MDRS-circle 'ir!
3 7| --- MDRS-clusters .il
MDRS-diagonal I.i
-—- MDRS-greece - i!-
MDRS-uniform [il!
o
S |
<
K]
i
F o
5 8
@
0
n
[}
=
(]
=]
o
[o
2 81
o
S
-
o

T T T T T T
0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

Network Size

Figure 6.4: Average Message Traffic (for orthogonal rangeriga over MDRS)

CHAPTER 6. PERFORMANCE EVALUATION 41

1400
|

-+ MDRS-circle ju

- MDRS-clusters iI |
MDRS-diagonal

-~ MDRS-greece
MDRS-uniform H

1200
|

1000

Max Throughput

o H

g .|.'," ',I
s il : pl
kY %) T K IL
it o+ Ay —g]II
=/l I o
s | A /IEI I ||I
) gowo b i
T b} i 14
(SR L) 't P e

T T T T T T
0e+00 2e+04 4e+04 6e+04 8e+04 1le+05

Network Size

Figure 6.5: Maximum Throughput (for orthogonal range geenver MDRS)

Fairness Index

Initially, remember from Section ©.2.2 that Fl is boundedzen 0 and 1, where 1 denotes the
perfect fairness where all the peers have exactly the samberof data items and the opposite
happens for Fl equal to 0.

Fairness Of Index is depicted on Figlire 613.7. On x-axis wsent the network size and on y-axis
the FI for each network size. As we have already mentionedemtic@[6.3.B we expect all the
peers to have comparable number of data items in their keyedpecause of the Data Balanced
Selection bootstrapping algorithm selection made. Uunfately this is the true in our case. As
we see on FigurE6.3.7 Fl is quite high for both MDRS and 3SID&dpecially for the uniform
dataset where Fl approaches 0.7. For the rest datasetsdh®BIRS is generally better (higher)
and constant but for 3SIDED decreases exponentially anshibes soon less that 0.1. More specif-
ically 3SIDED generally has Fairness Index than 0.4 for taskts Circle,Clusters,Diagonal and
Greece. MDRS behaves better with higher FI.

An importance observation is the inverse relation betw&BDED's Y5z p and FI. Namely, higher
Ysip the lower Fl is.

Replication

Replication is depicted as a histogram on Fiduré 6.7. X-exgraduated with the datasets and
y-axis measures the replication of each dataset. Obvigqlisaton is always greater than 1.

Filvs Peers woikload=00 qsiz==50-60)

FIvs Peers (wokbad=01 qsize=50-80)

Fi vs Peers woikbad=02 qsiz==50-60)

1 T T T T T T T T 1 T T T T T T T 1 T T T T T T T T
MDRS MDRS MDRS
3SIDED-3333333333 — K. 3SIDED-3333333333 — K- 3SIDED-3333333333 — K.
3SIDED-5000000000 ——— 3SIDED-5000000000 3SIDED-5000000000 ———
08 |- 3ISIDED-66666EGEEE S | 08 [3ISIDED-6666666666 - | 08 - 3ISIDED-66666EGEEE S |
3SIDED-8333333333 3SIDED-8333333333 3SIDED-8333333333
06 |- e - 06 |- e
04 |- = - 04 |- =
02 | B - 02 | B
0 L Nt Lok | L 0 L L 1 L] 1 1 1 L it b bl L St 1 L St | L
T 3 e, Fs Fan) o oy Faa) T P G Cd
10000 20000 30000 40000 50000 60000 70000 BO0OD 90000 100000 10000 20000 30000 40000 50000 60000 70000 BOOO0 90000 100000 10000 20000 30000 40000 50000 60000 70000 BODOD 90000 100000
Pesrs Pesr Pesrs
Flve Pasrs fwoikbad=03 qeiz==50.60) Fl va Pears (woikbad=04.qaiz==500)
1 T T T T T T T T o T T T T T T T
MDRS MDRS
3SIDED-3333333333 — K. 3SIDED-3333333333 — K-
3SIDED-5000000000 ——— 3SIDED-5000000000
08 |- 3ISIDED-66666EGEEE S | 08 [3ISIDED-6666666666 - |
3SIDED-8333333333 3SIDED-8333333333
o X — ¥
06 | e 0s |- -
3
04 =y = 04 |- -
IXx
02 4 K B 02 - B
e
A e
0 1 i 2 === 0 L I I L | ! L ! I
10000 20000 30000 40000 50000 60000 70000 BO0OD 90000 100000 10000 20000 30000 40000 50000 60000 70000 BOOO0 90000 100000

(d) Greece

Pasre

(e) Uniform

Pear

Figure 6.6: Fairness Index (for 3-sided range queries oM@RM and 3SIDED)

‘9 491dVHD

NOILYNTYAI FONVYNHOJH3d

(A4

CHAPTER 6. PERFORMANCE EVALUATION 43

Obviously MDRS has replication equal to 1 because theretarey peers holding the same keys
(see SectiohZl1). Generally. Replication is less thanThi means that replication is bounded.
The obvious relation between the Replication afag p is the following: Replication(hight'szp)

> Replication(lowYsgp).

An importance observation is the relation between 3SIDBIRsp and Replication which seems
to be proportional. The last result is expected since thiedrils ¢ p is the higher on the y-axis the
peers are places and therefore their key spaces are laithemaie keys.

O 5/6
@ 3/6
| 2/6

Circle Clusters Diagonal Greece Uniform
Figure 6.7: Replication for the 3SIDED protocol

Latency

Latency is theoretically (see Sectibnl3.4) equaDi@ogn), wheren is the number of peers. On
Figured6.B and 8.9 we depict the Latency. On x-axis we lsnhtwork size and on the y-axis the
Latency for each network size. From the figures we see thatM&tRS and 3SIDED approach
indeed this theoretical measure. But globally 3SIDED has leatency than MDRS (minor devi-
ation). Note than the Latency is increasing whilgz p is increasing (for the 3SIDED protocol).
This is expected because the replication is getting higtdlew’s p is getting higher and there-
fore more peers can answer a query.

Latency is theoretically (see Sectionl3.4) equaD{@ogn), wheren is the number of peers. From
Figure[6.8 we see that both MDRS and 3SIDED approach thigetieal measure. It's obvious
that Latency is independent of the query size. The obvidatioa between the Latency and query
size is the following: Latency(small query size)Latency(big query size}> Latency.

CHAPTER 6. PERFORMANCE EVALUATION

Latency

Latency

12

10

12

10

3SIDED_2/6
- 3SIDED_3/6
3SIDED_5/6

- MDRS
In(Network Size)

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05
Network Size
(a) Circle
—— 3SIDED_2/6
---- 3SIDED_3/6
3SIDED_5/6 -
- MDRS .
In(Network Size)

0e+00

T T T
2e+04 4e+04 6e+04

Network Size

(c) Diagonal

8e+04

le+05

Latency

Latency

12

10

12

10

3SIDED_2/6
3SIDED_3/6
3SIDED_5/6

- MDRS
In(Network Size)

0e+00

T T T
2e+04 4e+04 6e+04

Network Size

(b) Clusters

T
8e+04

T
le+05

- MDRS

3SIDED_2/6
3SIDED_3/6
3SIDED_5/6

In(Network Size)

0e+00

T T T
2e+04 4e+04 6e+04

Network Size

(d) Greece

T
8e+04

Figure 6.8: Latency (for 3-sided range queries over MDRS3BIDED)

T
1e+05

44

CHAPTER 6. PERFORMANCE EVALUATION 45

—— 3SIDED_2/6
---- 3SIDED_3/6
3SIDED_5/6 -

--- MDRS - |
In(Network Size) | !

Latency

< -

T T T T T T
0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

Network Size

Figure 6.9: Latency (for 3-sided range queries over MDRSIBIDED)

Average Messages Per Query

Average Message Per Query (or else Traffic) is depicted omr€6.ID anf6.11. On x-axis we
list the number of the peers of the network and on y-axis therdge Messages Per Query for
each such network size.

Obviously, MDRS grows rapidly for a}s.,). Both MDRS and 3SIDED foy,,,, = 5/6 have good
behavior. On the contrary 3SIDED fat.,={2/6,3/6} has bad behavior and doesn't scale. The
obvious relation between the Traffic apgl., is the following: Traffic(highy,.,) < Traffic(low
Ysep). The obvious relation between the Traffic and query sizegddllowing: Traffic(small query
size)« Traffic(big query size).

Maximum Throughput

Maximum Throughput in relation to the network size is degicon Figure§6.12 afid 6]113. On
x-axis we list the number of the peers of the network and omriy-the Average Messages Per
Query for each such network size.

3SIDED generally has higher Maximum Throughput than MDR&xvhum Throughput for
MDRS is generally constant. Constant or decreasing Maxifibnoughput means that the net-
work isn't scalable with the number of peers, or in other vgoifdthe network size reaches a
specific high size then a peer will become a major bottlen@XKDED for the Uniform dataset
does scale. Comparing 3SIDED and MDRS on the Uniform datesete that 3SIDED achieves
better Maximum Throughput by a factor of 1000 versus MDRE)ED for all the rest datasets
and MDRS for all datasets don'’t scale. The obvious relatietvben Maximum Throughput and
query size is the following: Max.Throughput(small quergedi> Max.Throughput(big query

CHAPTER 6. PERFORMANCE EVALUATION

Average Messages Per Query

Average Messages Per Query

800

600

400

200

4000 6000 8000 10000

2000

—— 3SIDED_2/6 I
---- 3SIDED_3/6 |
3SIDED_5/6 '

- MDRS !
!

|

T T T T T T
0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

Network Size

(a) Circle

< | — 3SIDED_2/6 !
---- 3SIDED_3/6
3SIDED_5/6

- MDRS

T T T T T T
0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

Network Size

(c) Diagonal

Average Messages Per Query

Average Messages Per Query

2500

2000

1500

1000

500

1500

1000

500

—— 3SIDED_2/6 I
7| ---- 3SIDED_3/6 |
3SIDED_5/6 :
- MDRS !
|
|
7 i
i
i
i
7 i
i
T T T T T T
0e+00 2e+04 4e+04 6e+04 8e+04 1e+05
Network Size
(b) Clusters
—— 3SIDED_2/6 !
|| ---- 3SIDED_3/6 |
3SIDED_5/6 i
- MDRS .
|
|
i !
i !
| | '!i'
| !i
| !i
H I
T T T T T T
0e+00 2e+04 4e+04 6e+04 8e+D4 le+05
Network Size
(d) Greece

46

Figure 6.10: Average Message Traffic (for 3-sided rangeigsiewver MDRS and 3SIDED)

CHAPTER 6. PERFORMANCE EVALUATION 47

—— 3SIDED_2/6
---- 3SIDED_3/6
3SIDED_5/6

-- MDRS

600 800
| |

Average Messages Per Query
400
I

0e+00 2e+04 4e+04 6e+04 8e+04 le+05

Network Size

Figure 6.11: Average Message Traffic (for 3-sided rangeigsever MDRS and 3SIDED)

size).

An important notice is the fact that Maximum Throughput isreased wheXsgp is increased
as well. This is expected because the number of peers thaamnsarer a query is increased when
Yspp is increased because the replication is also increasedgaawon Sectiof??).

CHAPTER 6. PERFORMANCE EVALUATION

Maximum Throughput

Maximum Throughput

—— 3SIDED_2/6
---- 3SIDED_3/6
Q| 3SIDED_5/6
i ---- MDRS
|
o |
N
w |
—
o
-
w
P
T T T T T T
0e+00 2e+04 4e+04 6e+04 8e+04 1e+05
Network Size
(a) Circle
o |
N
—— 3SIDED_2/6
----| 3SIDED_3/6
3SIDED_5/6
-! MDRS
wn |
—
o |
—
| I a ! :
1 1 1 ! |
A B ! !
e T T T T T T
0e+00 2e+04 4e+04 6e+04 8e+04 1le+05
Network Size
(c) Diagonal

Maximum Throughput

Maximum Throughput

35

30

25

20

15

10

35

30

25

20

15

10

48

—— 3SIDED_2/6
---- 3SIDED_3/6
3SIDED_5/6

- MDRS

[— 1 1
N " -t -
'/,“ 4 T I I
iAo i i i
.I! | _I!_ L3 -
- |
o —
i
T T T T T
0e+00 2e+04 4e+04 6e+04 8e+04 1e+05
Network Size

(b) Clusters

—— 3SIDED_2/6
---- 3SIbED_3/6
3SIDED_5/6

-~ MDRS

0e+00

T T T T T
2e+04 4e+04 6e+04 8e+04 1e+05

Network Size

(d) Greece

Figure 6.12: Maximum Throughput (for 3-sided range quenie MDRS and 3SIDED)

CHAPTER 6. PERFORMANCE EVALUATION

8 || — 3SIDED_2/6

Q ---- 3SIDED_3/6

3SIDED_5/6

-~ MDRS
g |
- 'L
5 | |
£ T i
8 . .
2 - | i
£ | I I
t 8 ! ! §
2 = i 1 i
3 il I ﬁ
kK I |
: : I i ;
)i ; /
i H i
8 e/ .- I \
5] Vb 4
L A < Y
N/ !I il | |
[I] Ii
q [L] Bl | 1
/ F i - ¥
fate e = = - -
o
T

T T T T T
0e+00 2e+04 4e+04 6e+04 8e+04 le+05

Network Size

Figure 6.13: Maximum Throughput (for 3-sided range quenier MDRS and 3SIDED)

Chapter 7

Conclusion and Future Work

Throughout the previous chapters we have presented GRd&Pnework for constructing dis-
tributed data structures for answering generalized gsierighis means that one can customize
GRaSP to a specific shape and dimensionality of key (e.g.t,p@ictangular, polygon, etc) and
guery (e.g. point, rectangular, polygon, etc) and rapidigstruct new distributed data structures
without the need of embroiling with low details such as comioation details. GRaSP supports
data updates (insertions/deletions), redundancy via uistomization of the space partitioning.
GRaSP is provable efficient in terms of latency and congestidore specifically, the routing
diameter (with high probability), the latency (i.e. the riaen of hops) and the congestion is loga-
rithmic to the number of peers of the network.

We have evaluated GRaSP framework empirically by constmidivo new protocols, MDRS
which handles d-dimensional orthogonal range queries StdBD which handles d-dimensional
3-sided queries. 3SIDED is the only protocol on our knowketltat can handle 3-sided queries
on P2P. Lastly we have experimented with synthetic andstéalilatasets and evaluated MDRS
over planar orthogonal range queries and compared botbqaistover planar 3-sided queries.

The cost model used in order to conduct those experimentsureghthe scalability performance
of the networks in terms of latency, fairness index, averagssages per query, maximum through-
put and replication (where appropriate).

In the immediate future we plan to support other types ofceproblems such as Nearest Neigh-
bor, similarity search, aggregate, etc. We also want toaygple existing and the aforementioned
protocols on real conditions such as on the PlanetLab. Swéanave handled load balancing
via static countermeasure, i.e. user-defined space paititj techniques that exploit the nature of
each problem. For example in the case of the 3SIDED protoedhave placed many peers low
on the y-dimension because there there was a high prolyabitjuery to refer. We now want to
craft and experiment with more general and dynamic solatemthat the network can adapt to
load imbalances.

50

CHAPTER 7. CONCLUSION AND FUTURE WORK 51

GRaSP has been published as part of the artBlRaSP: Generalized Range Search in P2P
Network§37].

Bibliography

[1] Don batory. on the difference between very large scalegend large scale reuse. in larry la-
tour, steve philbrick, and chandu bhavsar, editors, pdiogs of the fourth annual workshop
on software reuse, november 1991.

[2] Chord: A scalable peer-to-peer lookup service for interaygplications(2001).

[3] Pastry: Scalable, Decentralized Object Location, and autor Large-Scale Peer-to-Peer
SystemglLondon, UK, 2001), Springer-Verlag.

[4] A scalable content-addressable netw(@2R01).

[5] Kademlia: A Peer-to-Peer Information System Based on thR X@tric. (2002).
[6] Tapestry: A resilient global-scale overlay for service kbgment(2003).

[7] Updates in Highly Unreliable, Replicated Peer-to-Peert8ys(2003).

[8] One Torus to Rule them All: Multidimensional Queries in P3B8t8mg2004).

[9] VBI-Tree: A Peer-to-Peer framework for supporting muithdnsional indexing schemes
(2006).

[10] ABERER, K. P-Grid: A self-organizing access structure for P2Primfation systemsSixth
International Conference on Cooperative Information 8yst (CooplS 2001), Lecture Notes
in Computer Science 2172001), 179-194.

[11] ABERER, K., PUNCEVA, M., HAUSWIRTH, M., AND SCHMIDT, R. Improving data access
in p2p systemslEEE Internet Computing,6L (2002), 58-67.

[12] ARGE, L., EPPSTEIN D., AND GOODRICH, M. T. Skip-webs: Efficient distributed data
structures for multi-dimensional data sets P@DC (2005), pp. 69-76.

[13] ASPNES J., AND SHAH, G. Skip graphs.ACM Transactions on Algorithms, 3 (Nov.
2007), 37.

[14] BAYER, R. Binary b-trees for virtual memory. IRroceedings of 1971 ACM-SIGFIDET
Workshop on Data Description, Access and Control, San Di€gdifornia, November 11-
12, 1971(1971), E. F. Codd and A. L. Dean, Eds., ACM, pp. 219-235.

[15] BAYER, R. The universal b-tree for multidimensional indexingngeal concepts. IWWWCA
'97: Proceedings of the International Conference on WorttbAComputing and Its Applica-
tions (1997), pp. 198-209.

[16] BECKMANN, N., KRIEGEL, H.-P., SHNEIDER, R., AND SEEGER B. The r*-tree: an
efficient and robust access method for points and rectan@&sMOD Rec. 192 (1990),
322-331.

52

BIBLIOGRAPHY 53

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

BENTLEY, J. L. Multidimensional binary search trees used for asgivei searchingCom-
mun. ACM 189 (1975), 509-517.

BENTLEY, J. L. Multidimensional binary search in database appticat |IEEE Trans.
Software Eng. 45 (1979), 333—-340.

BERCHTOLD, S., KEIM, D. A., AND KRIEGEL, H.-P. The X-tree: An index structure for
high-dimensional data. IRroceedings of the 22nd International Conference on Vergéd.a
DatabasegSan Francisco, U.S.A., 1996), T. M. Vijayaraman, A. P. Buaehn, C. Mohan,

and N. L. Sarda, Eds., Morgan Kaufmann Publishers, pp. 28-39

CHEN, H. H., AND HUANG, T. S. A survey of construction and manipulation of octrees.
Computer Vision, Graphics, and Image Processing@&eptember 1988), 409-431.

CIACCIA, P., RTELLA, M., AND ZEzZULA, P. M-tree: An efficient access method for
similarity search in metric spaces. Tine VLDB Journa(1997), pp. 426—435.

CORMEN, T. H., LEISERSON C. E., RVEST, R. L., AND STEIN, C. Introduction to
Algorithms, Second EditiorThe MIT Press, September 2001.

CRAINICEANU, A., LINGA, P., GEHRKE, J.,AND SHANMUGASUNDARAM, J. Querying
peer-to-peer networks using P-treesWabDB(2004), pp. 25-30.

DATTA, A., HAUSWIRTH, M., JOHN, R., SCHMIDT, R., AND ABERER, K. Range queries
in trie-structured overlays. IR2P '05: Proceedings of the Fifth IEEE International Confer
ence on Peer-to-Peer Computing (P2P'@®)ashington, DC, USA, 2005), IEEE Computer
Society, pp. 57-66.

DaviD A. WHITE, R. J. Similarity indexing with the sstredn Proceedings of the 12th
ICDE Conferencg1996), 516-523.

FINKEL, R. A.,AND BENTLEY, J. L. Quad trees: A data structure for retrieval on composit
keys. Acta Inf. 4(1974), 1-9.

GOODRICH, M. T., NELSON, M. J., AND SuN, J. Z. The rainbow skip graph: a fault-
tolerant constant-degree distributed data structur&QDA(2006), pp. 384-393.

GUTTMAN, A. R-trees: a dynamic index structure for spatial seag:him SIGMOD 84
Proceedings of the 1984 ACM SIGMOD international confeeean Management of data
(New York, NY, USA, 1984), pp. 47-57.

HARVEY, N. J. A., DNES, M. B., SAROIU, S., THEIMER, M., AND WOLMAN, A. Skip-
net: a scalable overlay network with practical locality pedies. INUSENIX Symp. on
Internet Technologies and Syste(@603), pp. 9-9.

HELLERSTEIN, J. M., NAUGHTON, J. F.,AND PFEFFER A. Generalized search trees for
database systems. \fLDB’95, Proceedings of 21th International Conference en\Large
Data Bases, September 11-15, 1995, Zurich, Switzer{a@é5), U. Dayal, P. M. D. Gray,
and S. Nishio, Eds., Morgan Kaufmann, pp. 562-573.

JAGADISH, H., Ool, B., AND Vu, Q. Baton: A balanced tree structure for peer-to-peer
networks, 2005.

JAIN, R., CHIu, D., AND HAWE, W. A Quantitative Measure Of Fairness And Discrimina-
tion For Resource Allocation In Shared Computer SysteknXiv Computer Science e-prints
(Sept. 1998).

BIBLIOGRAPHY 54

[33] JELASITY, M., JESI, G. P., MONTRESOR A., AND VOULGARIS, S. Peersim. Online
webpage at http://peersim.sourceforge.net, 2006.

[34] KAMEL, I., AND FALOUTsOS, C. Hilbert r-tree: An improved r-tree using fractals. In
VLDB '94: Proceedings of the 20th International ConferermseVery Large Data Bases
(San Francisco, CA, USA, 1994), Morgan Kaufmann Publishrers pp. 500-509.

[35] LoMET, D. B., AND SALZBERG, B. The hb-tree: a multiattribute indexing method with
good guaranteed performand&CM Trans. Database Syst.,146(1990), 625—-658.

[36] MICHAEL T. GOODRICH, R. T. Algorithms design. Ilgorithms DesignWiley, 2002.

[37] MICHAIL ARGYRIOU, VASILIS SAMOLADAS, S. B. Grasp: Generalized range search in
peer-to-peer networks. InfoScale(Napoli, Italy, June 4-6 2008).

[38] RAMABHADRAN, S., RATNASAMY, S., HELLERSTEIN, J. M., AND SHENKER, S. Prefix
hash tree, an indexing data structure over distributed tadmbs. Tech. rep., Intel Research
Berkeley, Feb. 2004.

[39] RoBINsON, J. T. The k-d-b-tree: a search structure for large multatigional dynamic
indexes. INSIGMOD '81: Proceedings of the 1981 ACM SIGMOD internaticz@nference
on Management of datd 981), pp. 10-18.

[40] SELLIS, T., RoussopPouLOS N., AND FALOUSTOS, C. The R+ -tree: A dynamic index
for multi-dimensional objects. Iwldb (Brighton, England, 1987), pp. 507-518.

[41] SITZMANN, |., AND STUCKEY, P. J. O-trees: A constraint-based index structureAus-
tralasian Database Conferen¢2000), pp. 127-134.

[42] SpPYROS BLANAS, V. S. Contention-based performance evaluation of muttétisional
range search in peer-to-peer networkslnfieScale(Suzhou, China, June 6-8 2007), ACM.

[43] YANG, W. S., GHUNG, Y. D., AND Kim, M. H. The rd-tree: a structure for processing
partial-max/min queries in olapnf. Sci. Appl. 1461-4 (2002), 137-149.

[44] ZHENG, C., SHEN, G., LI, S., AND SHENKER, S. Distributed segment tree: Support of
range query and cover query over DHT.IRTPS(2006).

Index

3-sided Range Search Probldm], 24
3SIDED 22
3sidedHashind, 26

Average per-process Message Traffid, 34

Bootstrap Peef, 12
Bootstrapping Algorithn 12

Exchange Algorithm{17

Fairness IndeX_34
Framework[JL

Generalized Range Search ProblEn, 1
GRaSHI0

Maximum Throughpul-34
MDRS,[13

Orthogonal Range Search Probléin, 1
Overlay Network[b

PGrid,[®
Point Search Probleral 1

Replication[3#
Route Algorithm[B
Routing Table[d7

Search Algorithm[Z112
Shower Algorithm[B
Space Partitionindg, 11

Topology,[®
Trie,[@

Virtual Trie,[d

55

	Introduction
	Related Work
	GiST
	VBI
	PGrid
	Topology
	Routing Tables
	Searching
	Updates of Data Items

	GRaSP
	Topology
	Hierarchical Space Partitioning
	Proposed Bootstrapping Algorithms
	Generalized Searching
	Data Updates
	Overview of customization steps for GRaSP
	Sum Up

	MDRS
	Hierarchical Space Partitioning
	Example

	Orthogonal Range Searching
	Example

	3SIDED
	Hierarchical Space Partitioning
	Example

	3-sided Range Searching
	Example

	Performance Evaluation
	Simulators
	Peersim
	RangeSimCpp
	Comparison

	Modeling P2P Network Performance
	Replication
	Fairness Index
	Average per-process Message Traffic, Maximum Throughput

	Experiments
	Datasets
	Queries
	Bootstrapping Algorithm
	Test Beds
	Overview of the experiments conducted
	Results: 2-dimensional Rectangular Searching Over MDRS
	Results: 3-sided Range Searching Over MDRS and 3SIDED

	Conclusion and Future Work

