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Chapter 1

Introduction

Encryption, the conversion of information into code, which is intelligible only for an
authorized receiver, has intrigued men since ancient times. Historically, cryptographic
techniques have been developed for diplomatic or military applications but today they
can be found everywhere in private and public sectors where confidential information is
crucial. The first system of military cryptography was the “skytale”, invented by the
Spartans as early as the fifth century B.C [1]. The secret message was on the parchment
down the length of the skytale. The parchment is then unwound and send on its way,
where it can only be read if it is wrapped around a baton of the same thickness as the

first.

Cryptology, the science of code and cipher systems, start to develop not until the First
World War. Until then few papers about cryptology have been published. The first
notable paper about cryptography was Claude Shannon’s paper “The Communication
Theory of Secrecy Systems”, which appears in 1949 [2]. The revolution of
telecommunication, which has produced a vast amount of transmitted confidential data,

has initiated the flush of the cryptology.

However, the science of cryptology differs from all the other sciences in a rather striking
way: there is no public feedback about how cryptographic systems fail. Designers of
cryptographic systems are at a disadvantage to most other engineers, in that information
on how or if their systems fail is hard to get. The major users have traditionally been
government agencies, which are very secretive about their mistakes. The National
Security Agency (once called “No Such Agency”) spends thousands of millions dollars to
cryptanalyze new algorithms and the publition of this achievement would meaning that
this algorithm will stop being used. Cryptology also presents a difficulty not found in
normal academic disciplines: the need for the proper interaction of cryptography and

cryptanalysis. Exposing flaws in these designs is far harder than designing them in the



first place. The result is that the competitive process, which is one strong motivation in
academic research, cannot take hold, since direct comparisons on how secure is one

algorithm against the other is very difficult.

The last few years many encryption algorithms have been proposed, both in hardware and
in software. The most widely used is the Data Encryption Standard (DES) developed at
IBM [3, 4]. However, the recent cryptanalysis of the DES algorithm [7] and the AS5/1
algorithm [5.6] (used in GSM cellular phones) has initiated a race for a new secure
algorithm. In this thesis a real-time hardware implementation of the SCAN algorithm is
presented, which is mainly targeting image encryption but can also be applied in text data
or compressed video data. The SCAN encryption algorithm is a secret key block
encryption algorithm, which divides the data into a series of blocks of equal length, and
these blocks are sequentially processed using a key known to the sender and receiver

exclusively.

The thesis is divided into 6 chapters. Chapter 2 describes several block cipher algorithms
implemented in hardware that have been proposed in academic and commercial areas.
Chapter 3 provides the theoretical details of the SCAN algorithm and provides some
information of the algorithm, implemented in software. Chapter 4 describes the SCAN
architecture that has been developed in hardware. Chapter 5 provides the performance of
this architecture implemented in reconfigurable logic. Finally, chapter 6 discusses some
conclusions of this work and any future work that can be done to expand the capabilities

of this architecture.



Chapter 2

Relevant Research

Several algorithms have been proposed to encrypt images. Most image encryption
algorithms are based on position permutations with or without confusion functions [8, 9,
10, 11] where the pixel values are scrambled to different positions on the 2D array. The
other algorithms are based on chaos transformations [12,13,14] where chaotic binary
sequences are generated for the rearrangement of the image pixels, on tree structures
[15,16] where the pixel values are transformed by using certain functions, or on other
methods [17,18,19] like the quantization based approaches. Furthermore, many image
encryption algorithms have been implemented in software, due to the resulting flexibility
and the algorithm complexity. This means that most of these algorithms are good for non-
real-time image encryption but not for compressed video encryption. Very few widely
used image encryption algorithms have been implemented in hardware, and generally in
conjunction with image compression. On the other hand, many block cipher, which are

used for encrypting text data, have been used to encrypt images.

In this section, we briefly discuss some image algorithms and the corresponding
implementations in hardware. In sections, 2.1 and 2.3 we present three block cipher
algorithms, designed specially for image encryption, that have been proposed and are
based on chaos methods and tree structures, while in sections 2.4 through 2.6 we present
some general block cipher algorithms implemented in hardware that can be used to

encrypt images.
2.1 A Chaotic Mirror-Like Image Encryption Algorithm

Yen et al. [20, 21] have proposed the Chaotic Mirror-Like Image Encryption Algorithm
(CMLIE). This algorithm belongs to the position permutation algorithms. Based on a
binary sequence generated from a chaotic system, image pixels are rearranged according

to the defined swapping operations. It possesses the features of low computational



complexity, high security, and no distortion according to its author. Moreover, based on a
look-up-table generated by the CMLIE algorithm is capable of being integrated with
JPEG and MPEG.

The associated VLSI architecture design for the proposed image encryption and
decryption algorithm is shown in figure 2-1. The basic idea of the CMLIE algorithm is to
rearrange the image pixels by way of mirror-like operations according to a random
sequence derived from chaotic systems. Instead of using shift registers to shift the image
pixels directly, a 1D look-up table stored in memory buffers is generated and then used to
permute the image pixels. Initially, there is one memory buffer storing the data that the
value in position x is x for 0 <x <M x N — 1. According to the four different kinds of
mirror-like operations in the algorithm, the transmitted sequence of the image pixels is
generated by repeatedly using memory read and write operations accessed from the
memory buffers, which store the order of the transmitted sequence. After four iterations,
the order of the transmitted sequence is used to act as the addresses where the image
pixels are accessed and transmitted. The key to the scheme for realizing the algorithm lies
in the address generation scheme. The operating performance of this implementation is
39.68 MHz, targeting an ALTERA EPFIOKS50VRC240-1 FPGA. According to the
authors, this implementation can be efficiently integrated with the image compression

standards JPEG and MPEG.

N N
Transmitting pixels in
Original random sequence Reconstructed
M image s image M
frame buffer cC® @ frame buffer
i i
Random Address | | Chaotic Bit-String | .| Random Address

Generator (RAG) Generator (CBSQ) Generator (RAG)

Encryption Process Decryption Process

Figure 2-1. Chaotic Image Encryption



2.2 Partial Encryption of Compressed Images and Videos

Another approach to encrypt images is to combine the compression and the encryption in
order to eliminate the demanding distinct processing. Cheng [15, 22] propose a novel
approach called partial encryption in order to reduce encryption and decryption time in
image and video communication and processing. In this approach, only part of the
compressed data is encrypted, as shown in figure 2-2. The proposed algorithm can be
applied in schemes of quad tree and wavelet image compression, as well as an extension
for video compression. Partial encryption allows the encryption and decryption time to
be significantly reduced without affecting the compression performance of the underlying
compression algorithm. It is also shown that although a large portion of the compressed
data is left unencrypted, it is difficult to recover the original data without decrypting the
encrypted part. In the case of quad tree image compression the encrypted portion is 13%-
27% of the compressed output for typical images. For wavelet compression based on zero
trees, less than 2% of the compressed output is encrypted for 512x512 images. The

results on video compression are similar.

The proposed algorithm has not been implemented in hardware in order to known its

potential throughput.
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Figure 2-2. The block diagram of partial encryption



2.3 Chaotic Encryption using Kolmogorov flows

Combining two apparently distant sciences like cryptography and chaos theory, J.
Scharinger [24, 25] has proposed a new product cipher whose aim is to guarantee security
and privacy in image and video archival applications. This encryption technique makes
use, during its permutation phase, of the Kolmogorov flows, which are well known to be
dynamically unstable systems. The absence of computationally heavy operations such as
multiplications or divisions makes his algorithm particularly attractive for hardware
implementation. Cappelletti [26] has presented an FPGA implementation of this
algorithm. The block diagram of this implementation is shown in figure 2-3. The cipher
performs an encryption iterating the same algorithm for r rounds. According to the
author, a number of rounds at least equal to 12 is recommended. Each iteration consists
of a permutation and a substitution. The permutation component is responsible for the
actualization of the diffusion concept. Each data, which composes the plain block at the
input, is transposed to a new position at the output. This transformation follows the rules
dictated by the chaotic Kolmogorov flow. Confusion is accomplished by the substitution
component. The implementation is targeting a Xilinx Virtex FPGA and its performance is

about 45 Mbits/sec using 67.7 MHz clock frequency.
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Figure 2-3. The architecture of chaotic encryption using Kolmogorov flows




2.4 The DES Algorithm

One of the wide known block cipher using private key is the DES algorithm. It was
proposed by IBM during the early 1970s and it was adopted as a federal standard on
November 23, 1976. In [7] it is claimed that with $150K it is possible to crack the DES
algorithm using a known plain/cipher text in only two hours. This amount is well within
the budget of all countries and large and medium sized companies, any well ran criminal
organization, and most terrorist group. There are many DES variants, but the most
possible successor is the triple DES which is much harder to break using exhaustive
search: 2''? attempts instead of 2°° attempts. The fastest implementation of the DES
algorithm in hardware is reported in [29] providing a throughput of 400Mbytes/sec. In
[23] there is an application of the DES algorithm in order to encrypt images,
unfortunately without providing any quality results. The block diagram of the DES

algorithm is shown in figure 2-4.
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Figure 2-4. The block diagram of the DES algorithm,




2.5 Rijndael Advanced Encryption Standard

Rijndael is a private-key symmetric block encryption algorithm that supports 128, 192,
and 256-bit length keys and operates on 128, 192 and 256-bit blocks. All nine
combinations of key length and block size are possible. Recently, Rijndael was selected
as the Advanced Encryption Standard (AES) to replace DES. Karri [27] has presented an
FPGA implementation of this algorithm. The Rijndael encryption algorithm is shown in
figure 2-5. The round transformation data path shown in Figure 2-6 implements the byte
substitution, shift row, mix column and key xor operations. The data path consists of two
16x8 SRAMs (SRAM 0 and SRAM 1), one 256x8 ROM (SBOX), two 32-bit registers
(REG_A and REG_B) and three multiplexers. The total design targets the Wildforce
reconfigurable computing board and its performance is 124 Mbits/s using 13.6 MHz

clock frequency.

128:b1 plain text o = L v
——{ SR SRARY —_ o
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Figure 2-5. The block diagram Figure 2-6. The architecture
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2.6 The Serpent Block Cipher Algorithm

An other candidate of the AES was the Serpent Block Algorithm. The Serpent algorithm
is a 32-round Substitution-Permutation (SP) network operating on four 32-bit words. The
algorithm encrypts and decrypts 128-bit input data via a key of 128, 192, or 256 bits in
length. The Serpent algorithm consists of three main components:

- Initial Permutation IP

- Thirty-two rounds consisting of a Round Function that performs Key Masking, S-Box
Substitution, and data mixing via a Linear Transformation

- Final Permutation FP

A block diagram for the Serpent algorithm is shown in figure 2-7. Elbirt [28] has
presented an FPGA implementation of this algorithm using various architecture variants,
such as iterative looping and loop unrolling. The Xilinx Virtex FPGA was selected as the
target device and the achieved performance was 444 Mbits/s using 13.88 MHz clock

frequency, and iterative looping with partial loop unrolling.

32 Copies of S-Box Sk ‘

4 4 32

Rounds
L 4 .

Linear
Transfonmation

Figure 2-7. The Serpent block cipher algorithm
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Chapter 3
The SCAN Algorithm

In reality, SCAN [8 - 11] is a class of formal languages, which can be applied to
compression, encryption, data hiding, or combinations thereof. This section describes the
SCAN language in detail and provides some experimental results on the quality of the
methodology obtained from the implementation of the algorithm in software [10]. The
language and the experimental results are not part of this thesis, but their included to
provide the specifications of the architecture and a base that can be used to compare with

the results of the implementation in hardware.

3.1 SCAN Methodology

A scanning of a two dimensional array P, = {p(i, j) : 1 £i<m, 1 <j <n} is a bijective
function from Py, to the set {1, 2, .. mn-1, mn}. In other words, a scanning of a two
dimensional array is an order in which each element of the array is accessed exactly once,
or a permutation of the array elements. The terms scanning, scanning path, Scan pattern,

and Scan word are used interchangeably in this paper.

The SCAN represents a family of formal languages based on two-dimensional spatial
accessing methodologies, which can represent and generate a large number of scanning
paths easily. The SCAN family of formal languages includes several versions such as
Simple SCAN, Extended SCAN, and Generalized SCAN, each of which can represent
and generate a specific set of scanning paths. Each SCAN language is defined by a
grammar and each language has a set of basic scan patterns, a set of transformations, and
a set of rules to compose simple scan patterns, which in turn are used to obtain complex
scan patterns. The rules for building complex scan patterns from simple scan patterns are

specified by the production rules of the grammar of each specific language.
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3.2 SCAN-based encryption

The basic idea of the proposed encryption method is to rearrange the pixels of the image
and change the pixel values. The rearrangement is done by a set of scanning patterns
(encryption keys) generated by an encryption-specific SCAN language, which is formally
defined by the grammar G = (I, 2, A, I7). Grammar G comprises of non-terminal
symbols I'= {4, S, P, U, V, T}, of terminal symbols 2= {c, d, o, s, r,a,e,m,y, w, b, z, x,
B,Z X, (,), space, 0, 1, 2, 3,4, 5, 6, 7}, its start symbol is 4, and its production rules /7
are given by:

A—>S|P

S— UT

P—>VIAAAA
U—>cld|o|s|r|ale|m|y|w|b]|z]|x
Vo>B|Z|X
T—>0|1|2|3]|4]|5|6]|7

§ Al =n =0 G I 5972
= | e o
2] - . L 2
= < : < <
r % d 0 a
< =
T | /
= \4 I\: 7 /{
s m e . y w
oS A
"—'4/’ E <,></
Zrzl =3 S
Z b X

Fig. 3-1. Basic scan patterns
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Fig. 3-2. Partition patterns and transformations

The semantics of this encryption-specific SCAN language are described as follows:

(a) A —> S| P means process the region by scan S or partition P.

(b) S > UT means scan the region with scan pattern U and transformation 7.

(c) P> VT(4 A A A) means partition the region with partition " and transformation 7,

and process each of the four subregions in partition order using 4s from left to right.

(dU—>c|d|o|s|r|ale|m|y|w]|b]|z|xmeans scan with continuous raster, or

(e)
89

diagonal, or continuous orthogonal, or spiral out, or raster, or right orthogonal, or
diagonal parallel, or horizontal symmetry, or diagonal symmetry, or diagonal
secondary, or block, or zeta, or xi respectively. These scan patterns are shown in
Fig.1.

V — B | Z| X means partition with letter B or letter Z or letter X respectively.
T—0]1]2]3|4|5]6]|7 means use one of the eight transformation with a scan or
partition. For a partition, these transformations are shown in Fig.3-2. For all scan
patterns, 0 means the identity transformation as shown in Fig.1, and 2 means 90°
clockwise rotation. For scan patterns c, o, s, a, e, m, y, w, b, and x, 4 means 180°
clockwise rotation and 6 means 270° clockwise rotation. For scan patterns » and z, 4
means vertical reflection and 6 means vertical reflection followed by 90° clockwise
rotation. For scan pattern d, 4 means 90° clockwise rotation followed by horizontal
refection and 6 means 180° clockwise rotation followed by vertical refection. For all

scan patterns, 1, 3, 5, and 7 are reverses of scanning paths specified by 0, 2, 4, and 6

respectively.

14



As an example, consider the scan key B5(s2 Z0(c5 b0 00 s5) c4 d1) for a 16x16 image.
The scanning path which corresponds to this scan key is shown in Fig.3-3. The image is
first partitioned into 4 subregions using the B5 partition order. These 4 subregions are
scanned using s2, Z0(c5 b0 00 s5), c4, and dl. The second subregion is further
partitioned into 4 subregions using the Z0 partition order and the resulting 4 subregions

are scanned using ¢35, b0, 00, and s5 respectively.

4 ...L
I ] 23 /;_I
[ ' < L_l
| U= T A
5§ =
R
' B
i
l/r/,// |
U2%2%% |
D8I [ -
V47478744 g :
V' JAF -

Figure 3-3. Example of scan key pattern - B5(s2 Z0(c5 50 00 s5) ¢4 d1)

3.3 The SCAN Image Encryption Scheme

The basic idea of this image encryption method is to rearrange the pixels of the image
and change the pixel values. The pixel rearrangement is done by scan keys. The pixel
values are changed by a simple substitution mechanism, which adds confusion and
diffusion properties to the encryption method. The permutation and substitution
operations are applied in intertwined and iterative manner. First, the encryption
algorithm is described in detail. Next, the confusion and diffusion properties of the

algorithm are presented in detail, and experimental results are shown to demonstrate

15




these properties of the encryption method, as well as pixel rearrangement. Finally,

various extensions of the encryption method and the size of the encryption key space are

discussed.
3.4 The SCAN Image Encryption Algorithm

The encryption is done by the Encrypt( ) function which is described below, and is

illustrated in Fig.3-4.

Original image Key k Substitution Spiral sO Diagonal d0 Substitution Key k2 Encrypted image

Repeat
Figure 3-4. Illustration of the encryption scheme

BRerypt (L, v N says Ky Dl wel)

Inputs: Image I, Image size NxN (N = 2", n>2), Encryption keys k;
and k,;, Random seed integer p, Number of encryption iterations m
Output: Encrypted image J

{

Let A, D, G be two dimensional arrays of size NxN and let B, C,
E, F, R be one-dimensional arrays of length NxN

Generate NxN random integers between 0 and 255 using random seed
pland assiign o, R

Copyl i antEoyA
Repeat m times

{
Read pixels of A using key k; and write into B

C[1]=B[1]
Cl7jl=(B[]j]+((C[j-1]+1)R[j])mod256)mod256, for 2<j<NxN
Read pixels of C and write into D using spiral key sO
Read pixels of D using diagonal key dO and write into E
F[1]=E[1]
F[71=(E[J]1+((F[j-1]+1)R[j])mod256)mod256 for 2<j<NXN
Read pixels of F and write into G using key k>
}

Copy G into J and return J

}
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The encryption key actually consists of four components, namely, the two scan keys ki
and k,, the random seed integer p, and the number of encryption iterations m. These four
encryption key components are known to both the sender and the receiver before the
communication of encrypted image. The random numbers needed by Encrypi() can be
obtained by any method such as a linear congruential generator with seed p. The
encryption algorithm uses four scan keys to increase the complexity of pixel
rearrangement. The keys k; and k, are specified by the user as part encryption key. The
other two keys spiral sO and diagonal d0 (shown in Fig. 3-1) are fixed as part of
encryption algorithm. These two keys s0 and d0 are chosen because they have opposite
directions of scanning and hence increase the complexity of pixel rearrangement caused
by the user specified keys k; and k. Note that the user generates keys k; and 4 using the

SCAN grammar mentioned above.

There are two fundamental properties that every secure encryption method must satisfy
[3, 4]. The first is the confusion property, which requires that ciphertexts (encrypted
data) have random appearance (uniformly distributed pixel values). The second is the
diffusion property with respect to plaintexts (original data) and keys, which requires that
similar plain texts produce completely different ciphertexts when encrypted with the
same key, and similar keys produce completely different ciphertexts when encrypting the
same plaintext. The proposed encryption method satisfies both the confusion and

diffusion properties, as explained below.

The confusion and diffusion properties are achieved by trans.forming the sequence B into
sequence C using C[/]=(B[j]+((C[-1]+1)R[j] )mod256)mod256, and similarly, sequence
E into sequence F. The sequences C and F get uniformly distributed pixel values because
uniform random sequence R is used to multiply the pixel values in the transformation.
Since pixels in F are placed in G, G also gets uniformly distributed pixel values and gets
the confusion property. The sequence C gets the diffusion property because a single
change in value B[j] changes C[j], which changes C[j+1], which changes C[j+2] and

these changes propagate up to the end of the sequence C[NxN]. It can be shown that a
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single pixel change in 4 causes all pixels in G to be changed in one iteration as follows:
Suppose a single pixel is changed in 4. Then, the corresponding pixel at some location j
in B changes. Subsequently, all pixels between j and NxN in C change. Then, the
corresponding pixels in D including the top left pixel change (because spiral scan ends at
top left corner). Then, the corresponding pixels in E including the first pixel change
(because diagonal scan begins at top left corner). Then, all pixels in /" change and then
all pixels in G change. A single change in encryption scan key also changes all pixels in
G in one iteration, because a change in scan key causes at least one pixel at some location

in B to be changed, which causes all pixels in G to be changed as shown above.

The decryption is done by reversing the operations of encryption. Note that the
decryption requires the encryption key which consists of ki, k2, p and m. Decryption is
done as follows: Read pixels of G using key k, and write into . Then, transform F into
E by E[11=F[1], E[/]=(F[]-((F[i-1]+R[j])mod256)mod256 for 2<j< NxN. Then, read
pixels of E and write into D using diagonal scan d0. Then, read pixels of D using the
spiral scan 50 and write into C. Then, transform C into B by B[1]=C[1], B[j]=(C[/]-((C[}-
1]+ DR[])mod256)mod256 for 2<j<NxN. Then, read pixels of B and write into 4 using
key k;. Repeat this process m times to get the decrypted image. Note that the random

array R is obtained with random seed p.

3.5 Experimental Results

Several experiments were conducted to test various properties of the SCAN image en-
cryption method, which include pixel rearrangement, confusion, and diffusion. In all the
following experiments, a fixed sequence of random numbers was generated by the C
language library random number generator with seed 100, and used in the Encrypi()

function. Note also that all images are of size 256x256.
(a) The Encrypi() algorithm was first used to encrypt the Lena image with the encryption
scan keys B2(x0 y5 s6 r3), ¢5 and five encryption iterations. The original and

encrypted images are shown in Fig.3-5.
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(b) In order to determine how well Encrypi() rearranges the pixels, the confusion and dif-
fusion parts (i.e transforming B to C and E to F) of Encrypt() were eliminated and
only the rearrangement parts of Encrypt() were used with keys B2(x0 y5 56 r3), c5.
The encrypted images of Lena after one, two, and five iterations are shown in
Fig. 3-6. The pixels are rearranged in completely random looking manner in just a

few iterations.

(¢) In order to measure the dispersion at a point and at a block, two measures are defined
as follows.
PSpready(p) = (Zdist(E(p), E(¢)))/IN(p)|, geN(p)
BSpready ,(B) = (£PSpready. ,(p))/|B|, peB
where p is any point in the original image, N(p) is the set of neighboring points of p in
the original image, £ is a set two encryption scan keys, » is the number of encryption
iterations, £() function is the permutation induced by scan key & and iteration n, dist()
is the Euclidean distance function, B is any region in the original image, and | | is the

magnitude in number of pixels.

&

Origial iage Ecrypted 1mge After 1 iter.

After 5 iter.

After 2 iter.
Fig. 3-5. Encryption of Lena Fig. 3-6. Pixel rearrangement property of Encrypt()
image using Encrypi()

(d) In order to determine whether large spreads occur for blocks at any locations and with
any scan keys, 10x10 blocks were chosen at 100 random locations and at each
location two random scan keys were generated, and the spread was computed for

these blocks and keys after 10 iterations.
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Original images Encrypted imag

Histograms

Fig. 3-7. Confusion property of Encrypt()

(e) In order to determine the confusion property of Encrypt(), the Jet image and a pure

(H

black image were encrypted using Encrypt() with scan keys B2(x0 y5 s6 r3), ¢5 and
number of iterations 10. The original and encrypted images and their histograms are
shown in Fig. 3-7. The encrypted images have uniform histograms regardless of the
original images, thus proving the confusion property of Encrypi().

In order to determine the diffusion property of Encrypt() with respect to images, the
jet image was modified by incrementing the value of one randomly chosen pixel by 1.
The value of pixel (100, 23) was incremented from 239 to 240. Both the original Jet
and modified Jet were encrypted using Encrypt() with keys B2(x0 y5 s6 r3), ¢5 and
applying 10 iterations. Fig. 3-8 shows the pixelwise difference of the two encrypted
images, which demonstrates that the two encrypted images have no similarities, even
though the original images differ by only one pixel, thus showing the diffusion

property of Encrypt() with respect to images.

Fig. 3-8. Diffusion property of Encrypi() with a difference of one pixel from the original
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3.6 Number of Encryption Keys

Let S(n) be the number of scan patterns of a 2"x2" two dimensional array generated by the
encryption specific SCAN defined in section 3.2. Let 7(n) be the number encryption key
pairs which can be used to encrypt a 2"x2" image. Then S(n) and 7(n) are given by the
formulas below. Table 3-1 illustrates the magnitude of number of encryption key pairs.
From the table, it is clear that attack by searching the encryption key pairs exhaustively is
impossible.

S(2) =104

S(n) =104 + 24(S(n-1))* for n>3

T(n) = (S(n))* for n>2

Table 3-1. Number of encryption keys.

Image size Number of encryption keys
is greater than

64 x 64 (i
128 x 128 Fipis
256 x 256 19"
512 x 512 G

1024 x 1024 1 et

The above formulas can be derived as follows. For a 2"x2" n>2 image, there are 13 basic
scan patterns, shown in Fig. 3-1, each with 8 transformations, resulting in 104 basic scan-
transformation patterns. When n23, there are additionally 24 ways, shown in Fig. 3-2 to
partition the image into subregions of size 2”'x2™', each having S(»n-1) scan patterns
recursively. This results in S(2) = 104, S(n) = 104 + 24(S(n—1))4 n=23. A scan key pair has

two scan keys, each of which can be any of S(#) scan patterns, resulting in 7(n) = (S(n))".
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Chapter 4
The SCAN Architecture

In this section, we present the architecture that has been developed in order to achieve the
real-time implementation of the SCAN algorithm in hardware. The general architecture
can be applied to several technologies such as ASIC or FPGA. The specific values for
several components such as Block RAMs and FIFOs have been selected depending on
the resources for the specific FPGA that the design had to be downloaded. In section 4.1,
the general architecture is presented, while in the other sections each components of this

architecture is analyzed.

4.1 The Architecture Overview

The block diagram of the architecture is shown in figure 4-1. The total design consists of
three Address Generators, one 12-bit Counter, two 2048x12 bits FIFOs, two 4096x8 bits
block RAMs and two Substitution Units. The Address Generator Unit reads the key from
a register file and creates the corresponding address based on the SCAN algorithm.
According to figure 3-4 in the case of the encryption the RAM 1 is read sequential and
the data are written in RAM 2 based on the address produced by the Address Generator 1
using the key1 and stored in FIFO 1. Then the data are read from RAM 2 again sequential
using the Address Counter and the data are written in RAM 1 in the address produced by
the Address Generator 3 using the key s0. Meanwhile the Address Generator 2 starts
calculating and storing the addresses from key2 in the FIFO 2 and Address Generator 1
storing the addresses from key 1 in the FIFO 1. The data are read once again sequential
from RAM 1 and are written in RAM 2 in the address produced from AG3 using the key
d0. Finally the data are read from RAM 2 and using the addresses from FIFO 2 are
written in RAM 1. This process can be repeated as many times we want. According to the
algorithm, five iterations of this process produce a highly encrypted image. The whole

process has been summarized in the table 5-1.
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Figure 4-1. The block diagram of the architecture

RAM 1 Address

RAM 2 Address

Address Counter (read)

FIFO 1 (write)

Address Counter (write)

% Address Generator 3 (write) Address Counter (read)
E‘ Address Counter (read) Address Generator 3 (write)
é FIFO 2 (write) Address Counter (read)

FIFO 1 (read) Address Counter (write)
-i Address Counter (write) Address Generator 3 (read)
g Address Generator 3 (read) Address Counter (write)
=

FIFO 2 (read)

Table 4-1. RAM Addresses




In the case of the decryption, the data are read using the SCAN algorithm and are written

sequential. For example, the data are first read using the AG1 from FIFO1 and are written

sequential.

Using three distinct Address Generators and two FIFOs, we achieve maximum
performance. As it will be shown in the section 4.2, the total cycles needed from the
address generator to calculate the addresses using the input keys depends on these keys.
The sO and dO algorithm are rather simple and can be calculated fast. On the other hand,
some keys need triple the time of the simple keys. By using three Address Generator and
two FIFOs we can eliminate the overhead of these calculations by calculating the
addresses of keyl and key2 and storing them in the corresponding FIFOs. The depth of
the FIFOs was selected to be 2048 entries since this was the maximum FIFOs that could
be created in the remaining Block RAMs of the targeting FPGA. The 2048 entries of the
FIFO are capable of storing the half addresses. The timing diagram of these parallel
functions for the first two iterations is shown in the table below (Table 4-2). The second
row of this table below refers to the figure 3-4. The entries shown in italic refer to the
addresses that are calculated but stored in the corresponding FIFO while the bold entries
refer to the address that are used to drive the RAMs. When the FIFO is full, for example
in the stage D->E for key2, then the corresponding Address Generator stalls and waits
until the first cycle of the next stage (F->G). In this cycle, the first entry is read from the
FIFO to drive the RAM, while the Address Generator starts again writing to the FIFO.
The Address Generators stalls using a gate clock which results to an efficient and low-

power function.

First Iteration Second Iteration
A>B | C>D | D>E | F>G | A->B | C>D | D->E | F->G
AG1 Keyl - Keyl Keyl Keyl - Keyl Keyl
AG2 - Key? Key?2 Key2 - Key? Key? | Key2
AG3 - SO DO - - SO DO -

Table 4-2. Timing table
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The block RAMs are 4KBytes, thus they can store one 64x64 pixels image. As it was
presented in section 3.6, the encryption security depends on the image size. By using
64x64 pixels images, a good compromise between security and performance has been
achieved. Using this block size the number of different keys is 10'%%. Using a larger
block size, for example 128x128 pixels, then the image would require 16KBytes of
internal RAM to be stored, which exceeds the available resources of the FPGA targeting

device.

Furthermore, two substitutions units have been added to implement the confusion and
diffusion property that was mention in section 3.4. The Encryption Substitution Unit
(ESU) has a feedback signal since the current output depends on the previous output of
this unit. On the other hand, the Decryption Substitution Unit (DSU) depends only on the
inputs. The ESU has been added between the RAM2 and RAMI, since the substitution is
performed after the use of key 1 (Figure 3-4). In contrast, the DSU has been added
between the RAM1 and RAM2 since the first decryption using the key 2 has been
performed as soon as the data have been read from the RAMI using the AG2.

Finally, we must note that some registers that have been used for the Address Generators
and the Address Counter have been omitted from the schematic for simplicity. The use of
these registers is to delay the write addresses while the data are passing through the

Substitution Units.

4.2 The Address Generator Unit

The Address Generator Unit (AGU) reads the key from a register file and calculates the
corresponding address for the 64x64 block RAM. The AGU consists of several units, one
unit for the partition pattern and one for each scan pattern. The scan patterns (Figure 3-1)
can be divided in two groups. In the first group belong all the scan patterns that can be
generated by simple iterative loops. In this group belongs ther, ¢, d, 0,a,s, m, e, y and w
scan patterns. In the second group belongs all the other scan patterns (z, b and x), which

need recursive loop to calculate the addresses. In the current design, the ¢ scan pattern
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has been implemented from the first group, since all the other patterns have the same

format, and the z, b and x scan patterns from the second group. The partition patterns use

the same algorithm as the recursive scan patterns (Z, B, X) as it is shown in figure 3-2.

Each pattern has been encoded by 8 bits (Table 4-3). The first bit shows if it is a valid

pattern or not. The next four bits represents one of the 16 different scan and partition

patterns, while the last three bits represent the transformation number as it has been

presented in section 3.2. The exact representation is shown in the table 4-4.

Key:

Table 4-4. The pattern encoding

Valid Scan-Partition pattern Digit
7 6.1 87 @i A0 1 R
Table 4-3. The format of the pattern registers.
Pattern Code (6..3) Transformation Digit (2..0)
Number
B 0000 0 000
Z 0001 1 001
X 0010 2 010
r 0011 3 011
c 0100 4 100
d 0101 5 101
0 0110 6 110
a 0111 7 111
s 1000
m 1001
e 1010
y 1011
w 1100
z 1101
b 1110
X 1111

A simple register file for the key BO ( BS (c0 c1 ¢2 ¢3) c4 c5 c6) is shown in Table 4-5.

The corresponding image partition using these keys is shown in the figure 4-2.
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Index Pattern Code
0 0 0 0000 000
1 BO 1 0001 000
2 B5 1 0001 101
3 CO 1 0100 000
4 Cl 1 0100001
5 B 10100010
6 £ 10100011
¥ C4 10100 100
8 ] 10100101
9 Cé6 10100110
10 0 0 0000 000

Table 4-5. An example of a register file

cili] el

22 cd

c6 ¢5

Figure 4-2. The image partition

The Address Generator reads the register file that contains the key and then drive this

register to the appropriate pattern as it is shown in the figure below.

Read Key Register [«

Scan
Pattern

Partition
Pattern

y y y
Create 4 Sub Recursive Simple
Regions Pattern Pattern

Figure 4-3. The Address Generator FSM
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In section 4.2.1 is described the c¢ scan pattern, in section 4.2.2 is described the
combination of the z, b and x scan patterns and finally in section 4.2.3 the partition

patterns (Figure 3-2) are described.

4.2.1 The Simple Scan Patterns

The Simple Scan Patterns are algorithm that calculates the Scan address using some
iterative loops. The software implementation of the C Scan algorithm consists of two
nested loops. The boundaries of these loops depend on the transformation number. For
example, the outer limits for the 0-3 transformations is 0 to n, while for the 4 to 8
transformations is n to 0. The initial values of the address are forwarded to the rotate
procedure, which further calculates the final addresses depending on the transformation

number.

The hardware implementation of this algorithm consists of a FSM and a computation
module, the rotate module. The FSM controls the number of iterations while the rotate
module computes the final address depending on the transformation number. The FSM

and the rotate module are shown in the figure 4-4 and 4-5.
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The rotate module transforms the corresponding addresses depending on the
transformation number and the window size. The multiplexer is controlled by the FSM of
the C Scan module. The i and j signals represent the number of the iteration, while the x,
y and n signal represent the upper left address and the size of the window respectively.
This algorithm is quite straightforward with only few idle cycles resulting to a very
efficient address generation. For example, as it will be shown in the next chapter, it can

produce the 4096 address for one 64x64 pixels window in only 4236 cycles.

4.2.2 The Recursive Scan Patterns

The Recursive Scan Patterns are more complex since the algorithm consists of recursive
procedures. The Z, B and X Scan Patterns have been implemented in only one module
since their differences have been included in the corresponding Look Up Tables. In order
to present the hardware implementation of these patterns, the algorithm implementation
in software is presented first. The Z scan pattern, shown in Figure 4-6, is produced from a
function that calls itself recursively when the size is greater than 2, and if the size is 2 it
calculates the address. The software function that implements this pattern is quite trivial,
as shown in Figure 4-7. When the size » is greater than 2 the function first produces new
values for x and y, divides the size by 2 and then calls itself with the new values. If we
call the pattern with initial size 4, then the order that the values will be produced is shown

in Table 4-6.

In order to implement this function in hardware, a stack could be used. The stack would
preserve the parameters (x, y, n, index) for each level of the function, resulting into a
rather complicated scheme. For example, if the size was 8, then sx, and sy would need to
be calculated from x and y. Then these parameters would need to be passed to the next
level where the size is 4, and then the initial values of x and y would have to be retrieved
in order to calculate the new values sx and sy. This approach would need very few

storage elements, but it would spend many cycles to recalculate many values.



o

Fig. 4-6. The Z Scan Pattern

In contrast, the hardware scheme that was developed in this work, functions in the reverse
order. The parameters of each level are first calculated until the end, and then processing
continues to the next level. This way the order that the values are produced is as shown in

table 4-7, which results into a simple, fast and area-efficient implementation scheme.

Levell X b Levell X Y,
Level2 X] 1 Y] 1 Levell Xz Y2

Level2 X12 Y12 Levell X3 Y3
Level?2 Xi3 | Y3 Levell X4 i &

Level2 X14 Y14 Level2 X]] Y]]
Levell Xz Yz Level?2 Xlz Y 12
Level2 X5 Yo, Level2 Xi3 Y3
Table 4-6. Software scheme Table 4-7. Hardware Scheme

void 2 sg BT (Int )Y IntagRi nttn, ‘char transform)
{
int Lo ady Ay 8% 00N OEtios [ @17
BEA( L)
ftor odi =00 1 el 104
{
prlgin (Ordee [af] ;"X "yt n; 28%, sy) ;
Z' 89 arrisx, 5y, nl2, transform);
}
else
for (1 = O3 004 siis bk
{
originfordenfi@E Sm iy, n, sx, Ssy);
I = sx:. — "=
J ey =

Fig. 4-7
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In the reconfigurable logic scheme five FIFOs, a Control Unit and the Transformation
Unit were used. The FIFOs have 16-bit width, since x and y are 8 bits each, and 4 words
depth. The maximum width of an image is 64 (2°) pixels, which means that five FIFOs of
four deep, 16-bit wide (each) had to be used. The FIFO 1, 2, 3, 4 and 5 is used for the 4,
8, 16, 32, 64 sizes of the windows respectively. The FIFO Select Unit is a multiplexer
that defines the input and the output of the FIFOs. The Transformation Unit calculates /

and J using the x, y and » values.

The code in Figure 4-7 is implemented in the following manner: First we load the initial

values of x, y and n. In case that » is 2 we calculate the four different addresses without

using the FIFOs. In case that n is greater than 2 we perform the following steps:

e calculate the 4 new values (X1, Y1, X2, Y2, ...),

e read the first value from FIFOI,

e divide the size by 2,

¢ increment the FIFO Select Unit to index to the next FIFO (FIFO2) and

Then, we calculate the new values and if the new size is 2 then we start reading the
contents of the FIFO until the FIFO is empty, otherwise we store the four new values to
the current FIFO. When the FIFO empty signal is asserted we multiply the size by 2 and
decrement the FIFO Select Unit in order to read again from FIFOI1 the next value (X2,
Y2). This process is continued until the last FIFO (FIFO1) is empty.

The architecture of the iteration Scan Patterns is shown in the figure 4-8 and the detailed
finite state machine is shown in figure 4-9. The Write FIFO and Create Address states are
repeated for 4 cycles, since the number of iteration for the algorithm is four. The first
time the size is greater than 4 the Read FIFO and the Increment FIFO states are ignored.
The Transform module mainly consists of a Look Up Table (LUT) that can be used to

provide the order that an 2x2 block must be scanned depending on the scan pattern.
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Figure 4-8. The architecture for the Z, B, X algorithms
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Figure 4-9. The FSM for the Z, X, B algorithms
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The bits that represent the pattern (bit 6 down to 3, table 4-4) are used as index to the

LUT. The four regions of the 2x2 pixels image block has been encoded as it is shown in

figure 4-10. This encoding is used to provide the order that these regions must be scanned

by the corresponding pattern. For example, the BO pattern reads first the upper left

corner, then the upper right, the lower left and finally the lower right corner. Thus the

order is 00, 01, 10, 11. These values have been stored in the pattern LUT as it is shown in

table 4-8.

00

01

10

11

Figure 4-10. Regions encoding.

Pattern Encoding
B0 00011011
Bl 11 1001 00
B2 01101100
B3 00111001
B4 1011 00 01
BS5 01001110
B6 110001 10
B7 1001 00 11
Z0 01001011
43 11 1000 01
72 1001 11 00
Z3 00110110
74 0001 1110
Z5 10110100 -
76 01100011
Z1 11 00 1001
X0 001001 11
X1 1101 1000
X2 01111000
X3 00101101
X4 1000 1101
X5 01110010
X6 110100 10
X7 10000111

Table 4-8. Recursive patterns LUT
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4.2.3 The Partition Patterns

The Partition Patterns splits the initial image into four sub-images and provides the initial

address to the Scan Pattern Units (SPU). The similarity of the Partition Patterns with the

z, b and x Scan Patterns is obvious, since the same algorithm is used, as shown in the

figure 3-2. The PPU calculates if it is necessary the four initial addresses, and provide

this values to SPU in order to calculate the correspond address as it is shown if figure 4-

11. Following the Scan Units there is a RAM decoder, which decodes the 2-D location

indexes (I, J) into a valid address for the internal RAM.

FIFO 4x16 bit (n=4)

FIFO 4x16 bit (n=8)

Initial
x ¥

L

FIFO 4x16 bit (n=16)
> —Q—> Transform —J
— >
FIFO 4x16 bit (n=32) A
Y
FIFO 4x16 bit (n=64 Partition
- (=89 Pattern
B Unit
Increment
FIFO Control
Select |¢ Dacrement Unit
4
vy
r 1 N R
Counter Counter EEI:D Transform
FSM S FSM Z D
J J [ l [ l
Counter Counter [:D:D FSM

L LJ

RAM Decoder

12

+> Address

Bbits for I/* 6Bbits for J
7

Figure 4-11. The Address Generator

Scan
Pattern
Units
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This RAM decoder can be easily changed in order to drive different types of internal (or
even external) RAMs, in case we want to encrypt larger blocks of images. In the simple

case of 4K X8 bits RAM this is implemented by just concatenating the I and J bits.

4.3 The Substitution Unit

As it was presented in section 3.4 the diffusion and the confusion property is based on a

formula that alters the pixel’s value using a random number. The Substitution Units are

used to change these pixels.

4.3.1 The Encryption Substitution Unit

In the case of the encryption the equation is:
Clj1= ( B[]+ ((C[-11+ 1) * R[j] ) mod256 )mod256, C[0]=B[0].

The hardware implementation of this equation is shown in the figure below. It is consists
by two 8-bit adders and one 8-bit multiplier. The last output data are increased by one,
multiplied by a random number and added to the current input data. The mod operation is
utilized using the last 8-bit of the multiplier and the adder. The multiplexer is used to load
the first data to the adder (C[0]). Since the current output depend on the last output value,

the whole process must be completed in only one cycle. Thus, this unit becomes the

bottleneck of this design.
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Figure 4-12. The Encryption Substitution Unit.

4.3.2 The Decryption Substitution Unit

In the case of the decryption the equation is:
E[j1=(Fj]1 - ((FJj-1]+ 1) * R[] ) mod256 ) mod256, E[0]= F[0].

This module consists of one 8-bit adder, one 8 bit multiplier and one 8-bit subtractor
(Figure 4-13). The input data are delayed by one cycle, increased by one, multiplied by a

random number and added to the current input data.

1" —p
+
D »
X
Random Number |
Generator
Output
8 = —>
Input o=

Figure 4-13. The Decryption Substitution Unit
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4.4 The Random Number Generator

The Random Number Generator consists of one 16-bit Linear Feedback Shift Registers
(LFSRs) that implement the polynomial equation: Q(x) = P+ + x> +x+ 1. Eight
random bits are selected to be the 8-bit output of this module. The output of this
Generator must never be zero. Thus, a high bit is constantly shifted along the 8-bit output.
The Generator must always be initialized with the same value before starting encrypting

or decrypting data. The architecture of the Generator is shown in figure 4-14.

R
A A A

p16|...| 9> 8|...| 5P 4 L R

Polynomial Shift Register

Output

High Bit Shift Register

Figure 4-14. The Random Number Generator



4.5 The UART Unit

A UART Unit has been added to the design to debug, verify and use the SCAN
encryption application. The UART Unit has been provided by CMOSexod [37] in

Verilog. The core consists of a baud-rate generator, a receiver unit and a transmitter unit.

The UART Unit has been used to read the contents of the Virtex Block RAMs. A 12-bit

counter that increases every time a new byte has been transmitted to the host PC has been

used. Using the UART interface, we can initiate an encryption, a decryption and a read

back of RAM1 or RAM2. The main FSM of the design is shown in the figure below. The

UART is working at 38400bps using a 60MHz clock frequency, thus it can transmit a
block RAM of 4Kbytes in less than a second.

Read RAM1

A
Read RAM2 ( Encrypt )

Transmit data

Decrypt

Wait until it is
transmitted

Increase
counter

No

Figure 4-15. The main FSM
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Chapter 5

Simulation, Verification and Performance

In this chapter, we present the simulation of the design and compare its properties
(confusion and diffusion) with the software approach. Furthermore, we present the
performance evaluation of the implementation in order to meet the real-time
specifications. Finally, we present the target board that it has been evaluated and the total

system integration.

5.1 Simulation and Verification

The total design has been implemented in VHDL. Each pattern algorithm that was
implemented in hardware has been verified by the corresponding testbench. The initial
provided software implementation was changed in order to export the generated address,
for specific inputs (pattern, window size, transformation number, initial addresses) in a
file. The hardware implementation of the corresponding patterns was simulated and its
generated addresses were exported to a file in order to compare it with the software
implementation file. In figure 5-1 it is shown the flowchart for the verification of the Z3
algorithm for an 8x8 block image and initial addresses (x, y) = (64, 128). The Microsoft

WinDiff program has been used to compare the generated addresses.

The design has also been tested to meet the diffusion and confusion properties. In the
figures below, it is shown the experimental results after the functional simulation of the
system. Figure 5-2 shows the histogram from the first 64X64 block of the Lena image
and its corresponding encrypted histogram using the pair keys (keyl: c0, key2: z0) after
one iteration. Figure 5-3 shows the histogram of the first block (4096 bytes) and its
corresponding encrypted histogram of the MPEG tennis video stream using the same

keys. The histogram of the video stream is more uniformly distributed as it is compressed

40



by the MPEG algorithm. Finally, Figure 5-4 shows the histogram of the encrypted data if
the plain data is zero. As it is shown, the histogram of the images after the encryption is
uniformly spread to the x-axis. The figures below, compared to these of figure 3-7, show

that the confusion and diffusion properties have been preserved in the hardware

implementation.

Z Patternin C Z Pattern in VHDL

Z3s
window size=8,
initial x= 64,
initial y= 128

<

Generated
Addresses

=
=

Win Diff

U

Valid

Figure 5-1. The Flowchart of the verification
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Figure 5-2. Lena’s image histogram (one 64X64 block) and its corresponding encrypted
histogram after 1 iteration.
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Figure 5-3. Tennis’s MPEG video histogram (one 64X64 block) and its corresponding
encrypted histogram

[=JFigure No. 1 [-]0][x] [ Figure No. 1 [-IoIx]|
Fie Edt Wndow Hep fie £d Wndow Help

5000 + 35
4500

4000

I
’,\ I
1000 \ ! ‘

1
- * | Hl!

' '

0 50 100 150 200 250 300 ZD 300

Figure 5-4. Zeros data histogram (one 64X64 block) and its corresponding encrypted
histogram

5.2 System Integration

We have implement the architecture in Section 4 using the new Xilinx ISE v4.2 Platform
and targeting the design to the Virtex Family of Xilinx Corporation. The modules were
written in VHDL and we used the FPGA Express v.3.6.1 to synthesize the code. We also
have used the Xilinx Core Generator v.4.2 to produce the RAMs [31] and the FIFOs [30].
We must note that the minimum depth of the library-provided FIFOs is 16. Although we

needed to use FIFOs with depth 4 for the recursive patterns, the wasted resources were
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offset by performance since the FIFO is created specifically for the Virtex family. For the
functional and timing simulation, we used the ModelSim 5.5 SE simulator. The total
project without spatial parallelism fits in 10% of the logic and 87% of the block RAMs of
a Virtex XCV1000 FPGA, such as the type used in the Plato board [32]. Plato is a PCI-
based board with ATM network interface, 512 Kbytes of external SRAM, 256 Mbytes of
SDRAM, and the XCV-1000 with clock and programming ROM circuits. The results
reported in this section are from post place and route timing simulations, which are

conservative with respect to actual hardware performance.

The complete baseline design runs at 60- MHz and the area distribution is described in
Table 5-1, below. The slices refer to the Xilinx Virtex FPGA’s basic units. Each slice
corresponds to half a CLB, the basic unit of the older Xilinx FPGAs. The place and route

process was speed optimized.

Unit Sh;;(s:%fl;]:);tex Percentage

Address Generator x 3 1270 58.5%
Address Counter 13 1.1%
Decryption Substitution 28 2.1%
Encryption Substitution 24 1.8%
Random Number Generator 21 1.6%
UART 37

Control Unit 189 14.8%
Total Design 1602 100%

Table 5-1. Logic Area distribution

As it is shown in the table, the three Address Generators have been automatically

combined by the Place and Route process in order to minimize the number of slices.

The Address Generator includes the Pattern Partition and the Scan Partitions. The exact
Slices for each pattern are shown in the table below. The ZBX Scan patterns and the

Partition Patterns have the same slices, since the implement the same algorithm.
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Unit Sh;(e(s:(\)/flzf(l)l(')tex Percentage
C Scan Pattern 145 19.3%
ZBX Scan Patterns 302 40.3%
Partition Patterns 303 40.4%
Total Address Generator 750 100%

Table 5-2. Address Generator Area distribution

The Virtex 1000 FPGA family has 32 block RAMs, 512 bytes each. Table 5-3 shows the
distribution of the memory elements of the design. The remaining block RAMs cannot be
used to increase the trace FIFOs, since the Xilinx Core Generator creates FIFOs with

power of two entries.

Unit i Dia i o Percentage
Virtex XCV1000
Block RAMI1 8 25%
Block RAM?2 8 25%
Trace FIFO1 6 18.7%
Trace FIFO2 6 18.7%
Total 28 87.4%

Table 5-3. Memory distribution

The ISE Xilinx platform provides a Power Estimation tool called XPower. Using this
tool, we can estimate the power consumption of the design. Unfortunately, this tool can
estimate the power consumption only for small modules, usually below 500 slices. In the
table below, we present the power estimation of the SCAN patterns and the other
modules used in the current design. We must note that these estimations are using

60MHz clock frequency, 2.5V Vce and 25°C Ambient Temperature.
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Unit Power Consumption
/BX Patterns 127mW
C Pattern 84mW
Decryption Substitution Unit 68mW
Encryption Substitution Unit 67mW
Random Number Generator 66mWwW

Table 5-4. Power Consumption

5.3 Performance Evaluation

After the pixel values are placed into internal RAMs, the number of cycles just to read
and write an image 1024X1024X8 bits using 5 iterations is 26,214,400 cycles as shown
in table 5-2. The five functions refer to the 4 keys that are used (keyl, s0, d0, key2) and
the function of storing the elements to the internal RAMs for each block. We assume that
using a dual port block RAMs we can overlap the export of one block RAM with the
input of the next block RAM that is going to be encrypted.

64 Pixels
x 64 Pixels
4,096
X 5 Functions (4 keys + 1 I/0O of Memory)
20,480
X 5 Iterations
102,400
X 256 Number of 64X64 Blocks for the 1024x1024 image
26,214,400 _
Table 5-2. Total number of operations

The actual number of cycles to encrypt the images is mainly dependent on the encryption
key (keyl and key2). If the key is simple, such as c0, the number of cycles is very close
to the ideal limit, shown above. Thus, every cycle a new address is generated based on
the key pattern. In case there are many recursive scan patterns, the total number of cycles
increases. Table 5-3, below, contains the total number cycles to encrypt 64X64X8 bit

images (i.e. our grain of operation), and the corresponding throughput using different
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keys (the key column refers to both keyl and key2). These results are without any
advanced design methods, such as parallelism of the RAM, etc., which will be described

subsequently.

The throughput of the baseline design without the use of the trace FIFOs, for the

following keys, using sO and d0 as intermediate keys, and five iterations is:

K Cycles for Tiustailllled ¢
e roughpu
y 64X64 blocks | 110 v /fec)
1. cO 4,236 2.64

2. BO(BO(cO c0 c0 c0) c0 c0 c0) 4,508 2.56

3. BO(BO(c0 c0 c0 c0) BO(cO c0 c0 c0) c0 c0) 4,612 £33

4. BO(z0 z0 c0 c0) 9,686 1.64

5. z0 14,925 1.20

Table 5-3. Number of cycles for several keys

The recursive algorithms are the most complicated and uses all of the available resources.
All of the FIFOs are being used and the increased number of cycles is due to the several

stages of the FSM (Figure 4-7) for every four new addresses.

Using the trace FIFOs, we can reduce the number of cycles for the most demanding keys,
such as key4 or key 5 in table 5-3, increasing the throughput. The table below shows the
total cycles for each iteration for several keys and the corresponding throughput using the

trace FIFOs.

Key Keyl Key2 Cycles (1% (ZC,,%I_CSI?,,S ) &;;‘:g:;gg
-0 CO 16807 16669 2.68
2. BO(b0(c000) c0 c0 c0) [Z0 20459 20049 2.24
3. K0 B0(z0 z0 c0 c0) 16807 16669 2.68
4. 1CO Z0 20187 20049 2.24
3. 20 B0(z0 z0 c0 c0) 25623 16669 2.43
6. |20 70 30892 23428 1.82

Table 5-4. Number of cycles for several keys
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Of course, it is obvious that if we use the remaining Block RAMs (Table 5-3) for
additional image data instead of the trace FIFOs, then we can increase linearly the
throughput to 2.40 Mbytes/sec in the worst case (keyl and key2:z0). The aim of the trace
FIFOs is to drive multiple Block RAMs as it is will be shown below, in order to

overcome the memory overhead that it is added.

If a compression scheme (such as SCAN compression [11]) is used before the encryption
of the video, for the worst-case keys (user keyl =z0, user key2 = z0), using five

iterations, the results are shown in Table 5-5, below:

Threshold Claire 352x288 Heart 256x256
Value |[Comp%)| Error |Throughput (fps)|/Comp%| Error | Throughput (fps)
0 11.05 0.00 12.31 37133 1 000 1731
1 52.26 0.63 22.94 45.47 | 0.02 19.90
2 73.09 1.04 40.69 50.24 | 0.46 21.81
5 89.60 1.70 105.28 TR3Z 1018 47.84
10 93.77 453 L1573 9017 | :3.20 110.38

Table 5-5. Throughput in fps for compressed video

The threshold value refers to the quality of the compression. When the threshold value is

zero then a lossless compression is performed, resulting to a poor compression.

In addition, this throughput is capable of encrypting both MPEG-4 and H.263 video
streams. In [33] there is a detailed statistical analysis for various video traces encoded in
MPEG-4 and H.263. From the table below (Table 5-6) it is shown that the minimum
throughput of 1.82Mbytes/sec (14.56 Mbits/sec) is sufficient for encrypting the most

demanding video stream.

Maximum Bit Rate
Jurassic Park Soccer
MPEG 4

Low quality 1.6Mbit/s -
Medium quality 1.7Mbit/s -

High quality 3.3Mbit/s 3.6Mbit/s

H.263
16 kbit/s target bit rate 0.092Mbit/s | 0.092Mbit/s
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64 kbit/s target bit rate 0.36Mbit/s 0.39Mbit/s
256 kbit/s target bit rate 1.4Mbit/s 1.5Mbit/s
VBR 3.4Mbit/s 4.5Mbit/s

Table 5-6. Maximum Bit Rate for compressed video

The throughput of the encryption depends on the number of iterations for each data
stream. In the case of uncompressed image, 5 iterations are necessary to provide enough
security [11]. On the contrary, in the case of the compressed video (i.e. MPEG) it has
been proven [34] that there is a uniform distribution for every byte value and a uniform
distribution of the possible digrams (pair of two adjacent numbers). This attribute can be
exploited by reducing the number of iterations for the encryption of compressed video in
order to achieve higher throughput without any compromise in the security of the
encryption. The table below shows the throughput in terms of the number of iterations for

the worst-case key (z0 sO d0 z0).

Number of Throughput
iterations (Mbytes/sec)
5 1.82
3 Ko7
1 253

Table 5-7. Throughput for various numbers of iterations

Spatial parallelism can be easily employed in this architecture because separate 64X64
byte blocks can be processed independently. Using an FPGA family with larger internal
RAM such as the Xilinx Virtex II family XC2V8000, which provides 186 Kbytes of
internal RAM, we can create 22 pairs, resulting in 58.96 Mbytes/sec in the best case (c0)
or 40.04 Mbytes/sec in the worst case (z0). This throughput is enough for encrypting
40fps of uncompressed 1024X1024X8-bit grayscale images or 13fps of uncompressed
1024X1024X8-bit color images, using a the worst key. We must note that only the block
RAMs have to be added, since the same FIFOs can be used to drive these RAMs. The

main overhead may be the additional fan out of these FIFOs.
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In addition, since the logic part of the design is only 10% of the available resources, we
can add more Address Generators with different keys in order to improve the security of

the encryption.

Another approach would be to use external SRAM module to encrypt images. Using
these modules, we can encrypt larger image blocks, thus increasing the encryption
security. For example, the Compaq Pamette PCI board [36] has four 128Kbytes modules
that have 8nsec read access time. Using one pair we can encrypt 256x256 pixels images,
and if we combine the two pairs we can encrypt 512x512 pixels images, increasing the

number of possible keys to BO7PR

5.4 Hardware Verification

As it was mentioned in section 4.5 a UART Unit has been added to the system, to
interface with a PC using the serial port. Between the host PC and the Plato board, a
MAX232 converter has been used to convert the RS-232 signals to 5V signals for the
Plato board. The Xilinx Multilinx Unit has been used to download the bitstream of the
design using the Hardware Debugger. The schematic of the system is shown in the figure

below.

Slave
RS232 Serial
ﬂ s

S SR §
P Multilinx |

Host PC Plato

RS232 UART
wie - veanaise

L ]

Figure 5-5. The Hardware block diagram
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We must note that the serial port has been used only for verification and demonstration
purpose and not for real-time image encryption, since the serial port can be a main
overhead to the I/O operation. For example, the time to send a block RAM to the host PC
at 38400bps is 0.85sec, while the time to encrypt this block using five iterations is only
2msec in the worst case. If a high speed interface is used, such as the USB or the PCI
interface that the Plato board support, then a real-time encryption of images can be

achieved.

The Xilinx Core Generator program, that creates the Block RAMs, can be configured to
load the original image during the configuration process. Thus after the download of the

bitstream to the Virtex, the Block RAM contains the original image.

In order to interface with the Plato board using the serial port a graphical user interface
has been developed in Visual Basic. This interface uses the serial port of a host PC to
send the commands to the design as it was shown in section 4-5. The commands are sent

as a plain ASCII character and are shown below:

® “A”: Read RAMI block
® “B”: Read RAM2 block
® “C”: Encrypt ( Reply: “H” when is done)

® “D”: Decrypt (Reply: “G” when is done)

The interface, using the serial port, receives the contents of the internal RAMs at
38400bps and stores them in a file. A command is used to convert these data files into
BMP images. In order to create these BMP images, the header of the original BMP image
is copied to the encrypted and the decrypted image and then the data from Plato are

appended.

A snapshot of the graphical interface is shown in the figure below. Some sample images

before the encryption, after the encryption and after the decryption is shown in figure 5-7.
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Read RAMI Image has been encrypted succesfully

Read RAMZ
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Encrypt
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Decrypt

DAT1 -> BMP1

DATZ -> BMP2

Exit

Figure 5-6. Snapshot from the user interface

The photo of the integrated system is shown in figure 5-8. On the breadboard there is the
MAX 232 converter, while the Multilinx unit is shown below the Plato board. The Plato
uses a 60MHz clock oscillator module, verifying the frequency that was reported by the
Xilinx tools, thus the 1.82Mbytes/sec can be achieved. We must note that the
corresponding throughput of the software implementation using a Pentium 4, at 1.5GHz
and 256 Mbytes RAM is about 54.6Kbytes/sec, since it takes 0.075sec to encrypt a
64x64-grayscale image using 5 iterations. Thus, the hardware implementation is 33X
faster than the software approach using only one block RAM. If we use an other FPGA
such as the new Virtex-2, we can achieve 40.04Mbyte/sec as it was mentioned in the
previous section, which results to 726x faster than the software approach. The
performance comparison in shown in table 5-8. For the last row, we used the Synopsys
Design Compiler, using the “umc 0.13u (worst case)” libraries and this speed refers to the

critical path of the design, the substitution unit.
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Plain Encrypted

MIT 2 iterations

Lena 5 iterations

Black 2 iterations

Black 5 iterations

Decrypted

Figure 5-7 Samples

Chip Throughput Frequency
Pentium 4 54Kbytes/sec 1.5GHz
FPGA Virtex 1000 1.82 Mbytes/sec (1 block RAM) 60 MHz
FPGA Virtex2 8000 | 40.04 Mbytes/sec (22 block RAMs) 60 MHz
ASIC 0.13u 12.96 Mbytes/sec (1 block RAM) 400 MHz

Table 5-8. Performance comparison
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Figure 5-8. The Plato board with the MAX232 converter
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Chapter 5

Conclusions and Future Work

In this dissertation, it is presented the SCAN image and video encryption algorithm and
an architecture for its efficient implementation in reconfigurable logic. The results of the
implementation show that the same architecture can be used to encrypt still images or
frames of video, if they are preceded by some compression module. It can also be used as
a naive algorithm in order to encrypt compressed video streams such as MPEG and
H.263. The fact that this algorithm is a block cipher with large block size, in contrast with
other block ciphers, shows that the internal RAM is a key factor in order to exploit
parallelism in hardware. Using many blocks of internal RAM, we can achieve
performance that can be used to encrypt large blocks of data flowing in high-speed

networks.

In future work, the mapping of the SCAN algorithm to the IRAM (Intelligent RAM) [35]
architecture can be explored, because IRAM merges processing and high memory
bandwidth into a single chip. In addition, the current design can be improved by
developing a hardware architecture for the SCAN compression scheme [11] and
integrating to the current design. Furthermore, the SCAN algorithm can be used for
information hiding [11]. For example using the SCAN patterns a small image can be
encrypted into another image. First, the pixels that are insensitive to the eye must be
removed and then these pixels can be used in order to hide the desired information.
Finally, the SCAN architecture can be used to encrypt data transmitted over a network.
For example, the design can be used to encrypt packets at the Network Interface Card

(NIC), before the packets are transmitted to an Ethernet network.
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