
A crowdsourcing framework for
the management of mobile

multimedia nature observations
Giannis Skevakis, Chrisa Tsinaraki, Ioanna Trochatou and

Stavros Christodoulakis
School of Electronic & Computer Engineering, Technical University of
Crete/Laboratory of Distributed Multimedia Information Systems and

Applications, Chania, Greece

Abstract
Purpose – This paper aims to describe MoM-NOCS, a Framework and a System that support
communities with common interests in nature to capture and share multimedia observations of nature
objects or events using mobile devices.
Design/methodology/approach – The observations are automatically associated with contextual
metadata that allow them to be visualized on top of 2D or 3D maps. The observations are managed by
a multimedia management system, and annotated by the same and/or other users with common
interests. Annotations made by the crowd support the knowledge distillation of the data and data
provenance processes in the system.
Findings – MoM-NOCS is complementary and interoperable with systems that are managed by
natural history museums like MMAT (Makris et al., 2013) and biodiversity metadata management
systems like BIOCASE (BioCASE) and GBIF (GBIF) so that they can link to interesting observations in
the system, and the statistics of the observations that they manage can be visualized by the software.
Originality/value – The Framework offers rich functionality for visualizing the observations made
by the crowd as function of time.

Keywords Multimedia capturing, Observation, Annotation, Crowdsourcing, Ontology,
Interactive map, Visualization, Event, Path, Mobile multimedia

Paper type Research paper

1. Introduction
We believe that several scientific fields (biodiversity, biology, agriculture, etc.) would
greatly benefit if it was possible to have the observations made by casual users with
interest in the domain, informed outsiders and experts, captured in multimedia together
with their geospatial and time information. These multimedia observations could be
stored in observation repositories, and further annotated. Crowd intelligence can
contribute to correctly classify and annotate the observations without the direct
involvement of the experts in the domain. Moreover, advanced visualization services
(including geovisualization) could be offered on top of the observation repositories.
These services may assist the domain researchers to draw useful scientific conclusions
related, for example, to sustainability and preservation. In application environments
like biodiversity, where the capturing process is extremely slow due to the limited
number of experts and funding, a software framework that manages the mobile

The current issue and full text archive of this journal is available at
www.emeraldinsight.com/1742-7371.htm

IJPCC
10,3

216

International Journal of Pervasive
Computing and Communications
Vol. 10 No. 3, 2014
pp. 216-238
© Emerald Group Publishing Limited
1742-7371
DOI 10.1108/IJPCC-06-2014-0038

http://dx.doi.org/10.1108/IJPCC-06-2014-0038


multimedia observations of biodiversity data and their correct identification and
knowledge distillation by the crowd that has interest in the field is extremely valuable.

Multimedia observation capturing may be assisted from the modern media capturing
devices (cameras, mobile phones, tablets, etc.) that may also store the capturing
parameters, including spatiotemporal and direction information. There is, though, an
urgent need for supporting users (both domain experts and informed outsiders) that
make scientific observations to capture and annotate the captured material. Such users
should be assisted from software application frameworks that allow them to easily
capture, upload and annotate their observations. These frameworks should support the
interaction with other users in ways familiar to the users (e.g. social network
interaction), to discuss on the existing observations and even argue on issues relevant to
them (classification, conclusions, etc.).

Research that has been carried out in this direction has so far treated specific research
questions, but has not focused on integrated frameworks that support the whole
process. Multimedia content and context capturing has evolved with the availability
of mobile/smart capturing devices, and its applications range from the user
preference-based multimedia content retrieval and filtering (Tsinaraki and
Christodoulakis, 2006) to the mobile capturing of multimedia material and the
context-based multimedia capturing of events (Christodoulakis et al., 2010; Panteli et al.,
2011; Volgin et al., 2005).

The multimedia content annotation is also an active research topic, and the
ontology-based approaches for annotations have seen intense interest recently (Bannour
and Hudelot, 2011; Kallergi et al., 2009; Schreiber et al., 2001). The importance of the
annotations of every type of content has led to the formation of a W3C working
group that aims to provide an open annotation model standard (Sanderson et al.,
2013). The visualization of information on top of maps and other spatial plans has
also gained attention due to several important applications ranging from the
geovisualization of time-series data (Becker, 2009) and historical GIS (Berman, 2009)
to event geovisualization (Tarantilis et al., 2011) and urban planning facilitation
(Phan and Choo, 2010).

In this paper we present MoM-NOCS, a Framework and a System for the
Management of Mobile Nature Observations using Crowd Sourcing. The Framework
supports the capturing of observations (like objects of interest or events) in nature, by
(possibly naïve) users carrying any mobile device. During the capturing process, the
system extracts rich contextual data (location, direction, etc.) using the device
contextual capturing capabilities. The mobile users are provided with the ability to
supply in real time or later their annotations for each observation, thus helping in the
correct identification and understanding of the depicted species. The multimedia
annotation services offer capabilities for identifying and annotating parts of images
using graphical overlays. Interface mechanisms support and encourage crowd
participation in the discussion about the species and observed events, as well as their
correct identification via data provenance processes. The system also supports the
spatiotemporal visualization of the observations and related time-varying statistics on
top of maps.

The system that we are implementing is complementary and interoperable with
biodiversity metadata management systems like BIOCASE (Berendsohn et al., 2002)
and GBIF (GBIF), as well as with systems that are managing the collections of the

217

Crowdsourcing
framework



multimedia objects owned by natural history museums like MMAT (Makris et al., 2013).
MMAT is an integrated system that we have previously developed to allow publishing,
semantically describing and managing nature objects of natural history museums that
are captured in multimedia. The interoperability makes it possible for them to link to
interesting observations in our system, and our observation visualization software to be
used for visualizing the statistics on the observations that they manage. Thus our
system can be used as an independent system for managing crowd observations of
nature and their data provenance, which may be run by a region or country. It can also
be used as a system that systematically manages and visualizes observations by
museums. The museum personnel may be part of the crowd participating in the data
provenance processes (with high authority and expertise that is supported by the
system workflows).

The rest of the paper is structured as follows: The MoM-NOCS functionality is
described in Section 2 and the MoM-NOCS conceptual model is presented in Section 3;
The MoM-NOCS system architecture is described in Section 4, and a demonstration of
the MoM-NOCS framework in a real-world scenario, including the capture and
annotation of a flora specie observation, is outlined in Section 5. The paper concludes in
Section 6, where we also discuss our future research directions.

2. The MoM-NOCS functionality
In this section we present the functionality of the MoM-NOCS integrated framework that
we are developing, which allows the multimedia capturing and further annotation of
observations made by domain experts and/or informed outsiders. It also allows offering
advanced visualization services on the observations on top of maps and other spatial
plans.

The MoM-NOCS system workflow is outlined in Subsection 2.1, followed by the
MoM-NOCS functionality description in Subsection 2.2.

2.1 Workflows
The MoM-NOCS framework workflow is outlined in Figure 1. There are two types of
individuals that may interact with the MoM-NOCS framework:

(1) the experts, who are essentially the scientific domain experts; and
(2) the users, who are the informed and interested outsiders.

The following paragraphs describe in detail all the activities that the framework users
can perform:

• Observation capturing: Any user may create/edit observations. The capturing can
be real-time, using a mobile application, or asynchronous, using a web-based
system and uploading the captured multimedia content. An observation may be
associated with any number of multimedia objects (an example can be an
observation with multiple images alongside with audio).

• Observation annotation: All users may annotate the observations that have been
captured by them or other MoM-NOCS users. This may be a social activity that
allows the different users to complete the annotation of the observations, leading
to the collaborative classification and characterization of the content of the
multimedia objects associated with the observation. The observation annotation

IJPCC
10,3

218



activity is assisted by an annotated ontology that allows the classification of the
multimedia object content based on taxonomic keys (i.e. domain-specific criteria
that allow the classification of the domain individuals). The users may annotate
specific parts of the media objects using selectors to draw the attention to these
parts (e.g. they may draw polygons or other geometric shapes around the different
real-world objects contained in a picture).

• Ontology annotation: The MoM-NOCS experts may annotate the ontology that
assists the observation annotation activity. The ontology may be annotated using
multiple media to assist the users in the classification of the multimedia object
content based on taxonomic keys. As an example, consider two species of the same
plant that differ in the leaf shape. The ontology classes that represent these species
should be annotated with images where the plant leaves can be easily recognized.
These images should be also annotated: each of them should have a shape selector
around the plant leaves and the selector should have a textual annotation that
describes the leaf characteristics and emphasizes its distinguishing features.

• Visualization: All the MoM-NOCS users may visualize the observations stored in
the MoM-NOCS repository on top of maps or other spatial plans.

Figure 1.
The MoM-NOCS

framework workflow

219

Crowdsourcing
framework

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJPCC-06-2014-0038&iName=master.img-001.jpg&w=191&h=303


2.2 The MoM-NOCS functionality
In this section we present the functionality of the MoM-NOCS framework. The
operations presented below are grouped based on the subsystem that offers them (i.e. the
Annotation Subsystem or the Capturing and Visualization Subsystem).

2.2.1 Annotation subsystem functionality. Ontology annotation: The expert users
may annotate the ontology that assists the observation annotation. Using the system
they can browse the ontology, select the classes they want to annotate, fill in the
necessary fields (a small description, common name, etc.) and associate the class with
relevant multimedia resources (that may be uploaded by the user or already existing in
the system database). The users may also annotate the class with its taxonomic keys,
which are the features of the real-world entity described by the class that distinguish the
class instances from similar ones that belong to other classes (e.g. the shape and color of
the leaves may be the taxonomic key that allows the users decide to distinguish “Arum
italicum” from “Arum creticum”). Additionally, the annotation may include drawing the
appropriate selectors around the taxonomic key if it is displayed in the visual resources
(i.e. images, video).

Observation annotation: The MoM-NOCS users can annotate the existing
observations using a web-based interface. This includes the annotation of the
multimedia resources associated with the observation and, optionally, the identification
of the observation contents. The multimedia resources can be tagged and selectors may
be drawn around the resource contents. This annotation can lead to the identification of
the species depicted in the observation.

Observation tagging: The MoM-NOCS users can also tag the multimedia resource
contents and may refer to the taxonomic keys of the observation contents; they may also
use tagging to spot the differences between species.

Observation identification/Commenting: The MoM-NOCS users can identify the
contents of the multimedia resources contained in an observation. This may be achieved
either by a single user, who tags the real-world objects with the names of the ontology
classes that they belong, based on the taxonomic keys, or in collaboration with other
users browsing the observations that exist in system. In the latter case, a user initiates
the observation identification session, which is followed by the comments of the other
users on his identification proposal. Furthermore, any user is allowed to leave a
comment on any observation. This can be from a simple textual opinion, to an agree/
disagree position about the identification proposals.

2.2.2 Capturing and visualization subsystem functionality. Media capturing: The
MoM-NOCS users are allowed to create their observations either by uploading
multimedia resources (text, images, audio, video) on a web-based system, or by using the
MoM-NOCS mobile application for real-time observation capturing. The multimedia
resources are associated (when possible) with the GPS coordinates of the observed
real-world entities (or, approximately, of the media capturing location). For every
observation, the user can capture/upload any number of relevant multimedia resources
(an example can be an observation with multiple images from different angles, along
with a video).

Observation description: After the capturing process, the MoM-NOCS users are asked
to give a title and a brief description of the observation. They may also give additional
descriptive tags, allowing for more efficient searching, as well as spatiotemporal
information (GPS location, time, etc.). Whenever possible, the spatiotemporal data are

IJPCC
10,3

220



automatically provided by the capturing device (e.g. newest mobile phones can be
exploited to extract location and direction data). The description and title of the
observation can optionally be verbal, allowing the users to create observations faster.

Path capturing: The MoM-NOCS users can create/edit observation paths. These can
be suggested paths for other users to follow, or paths that they have walked while
making observations. Both of these types will need a set of GPS points in sequence
(which form a path node), and each node can be connected with observations in a specific
place. For example, a user on a tour in a tropic forest will walk a long distance while making
numerous observations that draw his attention. Afterwards, he can review them in the order
that they were captured and view the path that he has followed. Other users can also review
and possibly follow the captured path, making the same or additional observations, or
change the path to a more complex one, incorporating more observations from others. Later
they can follow it using the directions provided by the mobile application.

Browsing/Retrieval: The MoM-NOCS users can browse the existing observations.
They may also exploit some basic social features, like browsing the observations made
by friends or the most popular ones and find specific observations for species of interest,
or for a given geographic area. This information can be presented as a single list or on
top of interactive maps, according to their browsing and retrieval preferences. The
system has also incorporated services that allow the browsing of data from other
well-established sources, like Natural Europe (Natural Europe) and GBIF (GBIF). These
services provide data generated from experts in professional institutes, thus giving
valuable information to our end-users.

3. Conceptual model
In this section we present the conceptual model that we have developed for the
representation of mobile nature observations in crowdsourcing environments and we
formally describe the more important model classes (due to space limitations). An
overview of the MoM-NOCS conceptual model is given in Figure 2. Our model allows the
systematic integration of ontologies that capture domain-specific knowledge. These
ontologies are composed of instances of the “Object” class (Figure 2). An “Object”
instance object(n, d, cn, u) has a name n, is described in a textual or multimedia
description d, has a set of common names cn and may be accessible from a set of URLs
u. It may be compound (i.e. composed of other objects) and may be associated with
semantic tags (“SemanticTag” instances, see below for details).

The “central” class in Figure 2 is the “Resource” class, which represents all the
resources that are handled by the MoM-NOCS framework. A “Resource” instance
resource(resourceID) is identified from the unique value of its resourceID attribute and
may be associated with other class instances through the following relationships (notice
that the syntax R(n, c, src, trg) describes a relationship having n as name, of cardinality
c, which has src as source and trg as target):

• R (hasTag, 1*, “Resource”, “Tag”), which states that a “Resource” instance may
have one or more tags. The tags are represented by the “Tag” class. A
specialization of the “Tag” class is the “SemanticTag” class, which allows
associating an annotation with the constructs specified in the system ontology, as
every “SemanticTag” instance is associated with an “Object” instance.

• R (hasSelector, *, “Resource”, “Selector”), which states that a “Resource” instance may
have any number of selectors that draw the attention on specific resource parts. The

221

Crowdsourcing
framework



selectors are represented by the “Selector” class and are further specialized in text
selectors, media fragment selectors and SVG selectors (represented, respectively, by
the TextPositionSelector, FragmentSelector and SvgSelector classes).

• R (hasState, 1, “Resource”, “State”), which states that a “Resource” instance may be in
a specific state. The states are represented by the “State” class.

Figure 2.
UML class diagram that
presents the conceptual
model for the
representation of mobile
nature observations in
crowdsourcing
environments

IJPCC
10,3

222

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJPCC-06-2014-0038&iName=master.img-002.jpg&w=343&h=444


• R (hasBody, 1, “Annotation”, “Resource”), which states that a “Resource” instance
may be the body of one or more annotations. The annotations are represented by the
“Annotation” class (see below for details).

• R (hasTarget, 1, “Annotation”, “Resource”), which states that a “Resource” instance
may be the target of one or more annotations.

The different resource types are represented by the subclasses of the “Resource”
class: The resources are distinguished in media resources (represented by the
“Media Resource” class) and complex resources (represented by the “Complex
Resource” class).

A “Media Resource” instance mediaresource(resourceID, timestamp) has been
created in the timestamp time point. The “Media Resource” class is further specialized
by the “Text”, “Image”, “Audio” and “Video” classes, which represent, respectively, the
textual, image, audio and video resources.

A “Text” instance text(resourceID, timestamp, location) is a textual resource that was
created in the location geographic point.

An “Audio” instance audio(resourceID, timestamp, location, duration) is an audio
resource that was created in location and has a duration length.

An “Image” instance image(resourceID, timestamp, height, width) is an image
resource that has height height and width width. It is associated with the location it was
captured through the relationship R (capturedAt, 1, “Image”, “CameraPoint”). The
location where the image was captured is an instance of the “CameraPoint” class. An
instance camerapoint(longitude, latitude, altitude, orientation, verticalTilt, exposure) of
the “CameraPoint” class represents the picture-taking location that is geographically
identified by longitude, latitude and altitude and also holds the picture-taking
parameters orientation, vertical tilt and exposure.

A “Video” instance video(resourceID, timestamp, height, width, duration) is a video
resource that comprises pictures of height height and width width and has a duration
length. It is associated with the locations where its scenes were captured through the
relationship R (capturedAt, *, “Video”, “CameraPoint”).

The “Complex Resource” class has the subclasses “Annotation” and “Event”.
The “Annotation” class represents the resource annotations that are specified

and handled within the MoM-NOCS framework. An “Annotation” instance
annotation(annotationID, annotatedAt, serializedAt) is identified from the unique value
of its annotationID attribute, was created in the annotatedAt date and was serialized in
the serializedAt date. An annotation may be nested (i.e. an annotation may include other
annotations) and has, in addition to the relationships that associate it with its body and
target resources, the following relationships:

• R (motivatedBy, 1*, “Annotation”, “Motivation”), which states that an
“Annotation” instance may be the target of one or more motivations. The
motivations are represented by the “Motivation” class.

• R (annotatedBy, 1, “Annotation”, “User”), which states that an “Annotation”
instance has been created by a user. The users are represented by the “User” class.

• R (serializedBy, 1, “Annotation”, “User”), which states that an “Annotation”
instance has been serialized by a user.

223

Crowdsourcing
framework



The “Annotation” class is specialized by the “Taxonomic Key” class, which represents
the taxonomic keys, a special type of ontology annotations that specify which are the
differentiations between the real-world instances represented by different classes. Note
that our model is fully compatible with the Open Annotation Data Model (Sanderson
et al., 2013) that is under development by the W3C Open Annotation Community Group.

All the events that are handled in the MoM-NOCS framework are represented in our
model by the “Event” class. An “Event” instance event(name, description, startDate,
duration, geographicArea) has a name name, is described in a textual or multimedia
description description, has started in the time point startDate, has a duration length and
has taken place in a geographic area geographicArea. It is also associated with a user
that has created it through the relationship R (createdBy, 1, “Event”, “User”).

The events are distinguished in nature events and observations (represented,
respectively, by the “NatureEvent” and “Observation” classes).

A “NatureEvent” instance natureevent(name, description, startDate, duration,
geographicArea) may be compound (i.e. a nature event may include other nature events)
and has the following relationships:

• R (relatedWith, *, “NatureEvent”, “Observation”), which states that a nature
event may be related with any number of observations that may have been
performed on the nature event.

• R (has, *, “NatureEvent”, “EventPath”), which states that a nature event may
have any number of event paths, which are essentially sequences of observations
related with the same event. The event paths are represented by the “EventPath”
class. The “EventPath” instances are associated, through the contains
relationship, with GPS Node instances that represent the path coordinates.

An “Observation” instance observation(name, description, startDate, duration,
geographicArea, location) takes place in the location location and has the following
relationships:

• R (has, *, “Observation”, “MediaResource”), which states that an observation may
be associated with any number of media resources.

• R (has, *, “Observation”, “Object”), which states that an observation may be
associated with any number of ontology classes.

• R (has, *, “Observation”, “UserTourPathNode”), which states that an observation
may compose user tour path nodes (represented by the “UserTourPathNode”
class) that form user tour paths. A user tour path is a path of observations in
sequence and is represented by the “UserTourPath” class.

• R (has, *, “Observation”, “ContextualObject”), which states that an observation
may be associated with any number of contextual objects, like GPS points and
camera points.

4. Architectural overview
This section describes the overall architecture of the MoM-NOCS framework, identifies
its basic components and provides an in-depth analysis of the internal functionality.
Built as a web application, the system adopts the Rich Internet Application (RIA)
principles, which promote the development of web applications as desktop applications
performing business logic operations on the server side, as well as on the client side. The

IJPCC
10,3

224



architecture distinguishes two subsystems, based on the functionality and the
responsibilities that each of them provides. These are the Capturing/Visualization
subsystem and the Observation/Ontology Annotation subsystem. The overall
architecture is presented in Figure 3. The Capturing/Visualization subsystem handles
the capturing of observations both from mobile devices and the web and the
visualization of the observations on top of maps. The Observation/Ontology Annotation
subsystem handles the collaborative annotation of the observations from multiple users,
using the annotated ontology provided by the system, and provides the expert users
with the means for the annotation and semantic enrichment of the MoM-NOCS ontology.

The following sections describe the architecture of the two subsystems. Subsection
4.1 describes the Capturing/Visualization subsystem, and Subsection 4.2 describes the
Observation/Ontology Annotation subsystem.

4.1 Capturing/Visualization subsystem
The Capturing/Visualization subsystem comprises the Client Side and the Server Side
logic. The Client Side logic operates within the web browser running on a user’s local
computer, while the Server Side logic operates on the web server hosting the application.
The description of the architecture has been split in two parts; Subsection 4.1.1 describes
the Client Side architecture, and Subsection 4.1.2 describes the Server Side architecture.

4.1.1 Client side architecture. The Client Side of the Capturing/Visualization
subsystem is responsible for the interaction with the user. All the actions performed by
an individual using the system are handled by the client side logic, which undertakes the
presentation of the information as well as the communication with the server. To
achieve a high level of decoupling between the components forming the client side logic,
we adopted the Model View Controller (MVC) design pattern, as well as the Observer
pattern.

The usage of the MVC pattern introduces the separation of the responsibilities for the
visual display and the event handling behavior into different entities, named,
respectively, the View and the Controller. Some of the advantages of this approach are:

• maximization of the code that can be tested with automation (web pages
containing HTML elements are hard to test);

• code sharing between pages that require the same behavior; and

Figure 3.
Overview of the

MoM-NOCS system
Architecture

225

Crowdsourcing
framework

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJPCC-06-2014-0038&iName=master.img-003.jpg&w=311&h=142


• separation of Business logic from User Interface logic to make the code easier to
understand and maintain.

As can be seen in Figure 4, the client side is composed of a number of distinct modules.
These are described in more detail in the following paragraphs:

• Model: The Model encompasses all the business objects used by the system. When
the system needs to present information about a business object, the client side
requests the respective information. In turn, the server side services transfer the
Model to the client side. When an update on the Model needs to be persistent, the
client side sends the updated Model to the server side, initiating the corresponding
procedures.

• View: In the MVC pattern, the view is responsible for all the information
presentation. Each view controls a number of widgets on the user’s web browser.
It contains the Action Handlers, which listen to the user’s actions, and the
Templates that define the presentation of the widgets.

• Controller: The Controllers contain most of the client side logic of the Capturing/
Visualization Subsystem. They are the modules that respond to the user input and
define the Views that comprise the visual effect on the user interface. Additionally,
they maintain the Model and change it appropriately. For every distinct visual

Figure 4.
Overview of the
capturing/visualization
subsystem architecture

IJPCC
10,3

226

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJPCC-06-2014-0038&iName=master.img-004.jpg&w=343&h=290


interface of the system, there is a Controller, who in most cases handles a single
view. Moreover, there are several cases where a “composite” Controller manages a
number of other Controllers, creating complex interfaces. The Controllers also
access the browser features that provide access to the Storage space, the File
Uploads, the GPS location, etc.

• Event Bus: The Event Bus implements the Publish-Subscribe (Observer) pattern,
enabling the decoupling of the user interface components. It is responsible for the
message transmission between the entities that reside on the Client Side. It
provides mechanisms for publishing events and subscribing to events.

• Application Manager: The Application Manager acts as a centralized point of
control, handling the communication between the Controllers and the server side
by making calls to the services exposed in the Service Layer, and notifying the
Presenters for their responses. It contains the Data Wrapper, which implements
the Mediator pattern, handling all the communication between the Controllers and
the Server Side. Moreover, it enables the seamless caching of the data on the client
side with the use of a dedicated cache. On each data request, the Data Wrapper
checks if the data already exist in the cache before requesting them from the
server, thus reducing the number of requests and speeding up the application
execution.

• Router: The Router manages the URL of the client browsers. Its main purpose is to
provide a different URL to each distinct interface, without raising a browser event
that will force a reload on the whole page. Additionally, when the URL changes
from other controls on the page (e.g. a click on a link), the Router analyzes the new
location and handles the transition to the new interface. This contains a mapping
between the different URLs supported in the system, as well as the Controller
responsible for each mapped user interface.

4.1.2 Server side architecture. The Server Side part of our framework follows a
multi-layered architectural pattern consisting of three basic layers: Service Layer,
Business Logic Layer and Data Layer. This increases the reusability of the system
components as well as the system maintainability, scalability, robustness and security.
As shown in Figure 4, the server side comprises a number of distinct modules that will
be described in the following sections:

(1) Service Layer: The Service Layer controls the communication between the client
logic and the server logic, by exposing a set of services (operations) to the client
side components. These services comprise the middleware concealing the
application business logic from the client.

The basic system services are:
• CRUD Services: Facilitate the creation, retrieval, update and deletion of an

observation, a multimedia object associated with an observation, a user etc.
• External Access Services: Provide the means for external systems to search

and use the data of the system.
• Search Services: Provide the Client Side with the ability to search the data.
• Multimedia Access Services: Allow access to the uploaded multimedia files

and their respective thumbnails.

227

Crowdsourcing
framework



• Statistics Services: Supply the usage statistics of the observations and the
objects.

(2) Business Logic Layer: The Business Logic Layer, also known as Domain Layer,
contains the business logic of the application and separates it from the Data
Layer and the Service Layer. It comprises the following modules:

• The Persistency Management Module, which manages the access to the data
on the repository.

• The Statistics Management Module, which manages the statistics of the
system.

• The Search Management Module, which responds to the queries on the data
with the appropriate results.

• The Multimedia Management Module, which manages the persistence and the
delivery of the multimedia files, as well as their analysis and thumbnail
generation.

(3) Data Layer: The Data Layer accommodates external systems that are used to
store data accessed by it. Such systems are the Cache Server, which holds the
cached information for faster access; the Data Repository, which holds all the
data of the system; the Search Index allowing faster full-text queries; and the File
Repository, persisting the multimedia files and the thumbnails.

4.2 Annotation subsystem
The Annotation subsystem comprises the Client Side and the Server Side logic. The
Client Side logic operates within the web browser running on a user’s local computer,
while the Server Side logic operates on the web server hosting the application. The
description of the architecture comprises two parts; Subsection 4.2.1 describes the Client
Side architecture, and Subsection 4.2.2 describes the Server Side architecture. The
implementation status as well as the technologies used are described in Subsection 4.2.3.

4.2.1 Client side architecture. The Client Side of the Annotation subsystem is
responsible for the interaction with the user. All the actions performed by an individual
using the system are handled by the client side logic, which undertakes the presentation
of the information as well as the communication with the server when needed. To
achieve the scalability of the User Interface, and the distinction between the components
forming the client logic, we adopted the Model-View-Presenter (MVP) design pattern.

The usage of the MVP pattern allows us to decouple the client side architecture,
introducing the separation of the responsibilities for the visual display and the event
handling behavior into different entities, named, respectively, the view and the
presenter. Some of the advantages of this approach are:

• maximization of the code that can be tested with automation (web pages
containing HTML elements are hard to test);

• code sharing between pages that require the same behavior; and
• separation of the Business logic from the User Interface logic to make the code

easier to understand and maintain.

The components in the system architecture that compose the MVP pattern are the
Model, the View and the Presenter. The View is responsible for the user interface. It

IJPCC
10,3

228



implements the Display Interface, whose members are technology striped UI elements of
the view. The Presenter controls the behavior of the View. The user interacts with the
View and all the user actions generate a User Interface event which is handled by the
Presenter. The Model is used for all the logic operations of the Presenter, representing
the business objects.

As can be seen in Figure 5, the client side of the Annotation subsystem comprises two
distinct modules following the same architectural design. These are:

(1) Observation annotation: Handles the collaborative annotation of the
observations from multiple users, using the annotated ontology provided by the
system.

(2) Ontology annotation: Provides the expert users with the means for the
annotation and semantic enrichment of the MoM-NOCS ontology.

Model: The Model encompasses all the business objects used by the system.
When the system needs to present information about a business object, the client
side requests the respective information. In turn, the server side services transfer the
Model to the client side. When an update on the Model needs to be persistent, the
client side sends the updated Model to the server side, initiating the corresponding
procedures.

View: In the MVP pattern, the view is responsible for all the information presentation
(colors, borders, UI layout) and the management of the controls on a page or part of a
page. Both the HTML pages and the StyleSheets are handled by views.

Figure 5.
Overview of the

annotation subsystem
architecture

229

Crowdsourcing
framework

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJPCC-06-2014-0038&iName=master.img-005.jpg&w=311&h=247


Presenter: A Presenter contains the client side logic of our application. It is the key
entity in the MVP design pattern, for it is a bridge between the Model and the View. As
a general rule, for every View there is a presenter that instantiates and manipulates it,
but there might be cases where one Presenter needs to control multiple Views. The
presenter has handlers for the events that take place in his view/s or in the application in
general. The life cycle of a presenter is composed of four distinct phases, in the
respective order:

(1) Initialization phase: The presenter initializes its corresponding view/s, and
instructs them where to deploy. In addition, the presenter registers handlers to
the crucial UI events and application events. When the initialization and handler
registration are completed, the presenter goes into the sleeping phase.

(2) Sleeping phase: This is the phase where the presenter does nothing but waiting
for a UI event from the view, or an application event.

(3) Operating phase: When an already registered event is raised, the presenter
wakes up and handles it; it contacts the services on the server side, updates the
view or raises new events.

(4) Termination phase: When the user chooses to leave the application, all the
presenters go into the termination phase, the final stage before they are
destroyed. During this phase, the presenter might need to inform the server for
the termination of any ongoing processes.

As already stated, the presenter has no knowledge of any widget-based code inside the
view and all the interaction with the view is done through a number of interfaces,
achieving the decoupling between the two.

4.2.2 Server side architecture. The Server Side part of the Annotation subsystem
follows a multi-layered architectural pattern consisting of three basic layers: Service
Layer, Business Logic Layer and Data Layer.

The advantages of this approach include the increased system maintainability,
reusability of the system components, scalability, robustness and security. Moreover,
the adoption of a multitier architecture and the provision of well-defined interfaces for
each layer allows any of the layers to be upgraded or replaced independently (with
minimum effort) as requirements or technology change.

(1) Service Layer: The Service Layer controls the communication between the client
logic and the server logic, by exposing a set of services (operations) to the client
side components. These services actually comprise the middleware concealing
the application business logic from the client.

The basic system services are listed below:
• CRUD Services: Facilitate the creation, retrieval, update and deletion of

annotations.

• External Access Services: Provide the means for other, well-described, external
application to search and use the data of the system.

• Visualization Services: Responsible for supporting all the visualization
functionality.

• Ontology Access Service: Provides access to the species ontology.

IJPCC
10,3

230



(2) Business Logic Layer: The Business Logic Layer, also known as Domain Layer,
contains the business logic of the application and separates it from the Data
Layer and the Service Layer, which are used by the Client Side modules. It
consists of following basic modules:

• The Persistency Management Module, which manages the access to the
repository data.

• The Visualization Management Module, which is used for the visualization of
the observations along with their annotations.

• The Ontology Management Module, which manages a classification of the
species stored in the ontology server.

(3) Data Layer: The Data Layer accommodates external systems that are used to
store data accessed by it. Such systems are the Repository, which holds all the
data structured according to our conceptual model, and the Ontology Server,
which holds all the information about the system ontology.

4.2.3 Implementation status and technologies. The system is currently in
implementation phase, with most of the functionality already in final state. The client
side is based on the latest web-application standards and the server side relies on the
Java technology. The client side application has also been packaged as a native mobile
application with the use of PhoneGap (PhoneGap), making it compatible with all the
major mobile platforms. This allows the application to run without the need of Internet
access, or the loading of its source each time that the user loads it. Additionally,
PhoneGap allows us to provide more functionality by using various native platform
features that are otherwise unavailable to web applications.

The client side is built with JavaScript, HTML5 and CSS3. For the code organization
of the client side, we have used a number of libraries/frameworks.

Backbone.js has been used to structure the system as an MVC-compatible
application. The use of Backbones models, collections, events and views provides
the application with a very basic “solid” structure. The models and the collections allow
the application objects to act as object-oriented classes with key-value binding and
custom listeners on each of the properties. Moreover, the events allow custom events to
be broadcasted from any part of the application, reducing the coupling of the
components. Finally, the views allow the creation of independent widgets and their
composition into complex user interfaces.

Requirejs has been used to allow the organization of the code in smaller files and the
management of the dependencies for each JavaScript file. This introduces modular
programming to the client side, breaking the large JavaScript files into smaller blocks of
manageable code. This eases the maintenance effort and increases reusability. However,
this introduces the dependencies between the smaller blocks of code. The management
of these dependencies between the modules is handled in full by RequireJS. The modules
are defined in separate files along with their dependencies, and RequireJS takes on the
responsibility to provide each module with the required dependencies at run time.
Modular loading also allows incremental “lazy” loading of the different parts of the
application at the time that they are needed, instead of loading all the JavaScript code at
loading time. This can have a big impact on application loading and running, especially
in recent web applications that rely heavily on JavaScript.

231

Crowdsourcing
framework



Leaflet has been used to provide support for maps. It is a minimal JavaScript library,
optimal for usage on mobile phones. The maps that are used here are provided by
OpenStreetMaps.

Finally, Node.js[1] and Grunt[2] have been used to automate the necessary tasks
during the development and deployment stages. These involve the compilation and
compression (minification) of the source code, the unit testing and the static source code
checking. Node.js allows the execution of JavaScript just as any other scripting language
on any machine. This enables Grunt to automate every part of the development process.
Apart from the aforementioned purposes, Grunt is also used for the compilation of the
application to the various formats supported by PhoneGap.

The server side (backend) of the system has been based on the Java programming
language. In particular, we used the Spring Framework extensively. The main features
of Spring that we used were the Inversion of Control container, the Spring Data
framework, Spring Web and Spring Security.

For the persistence of the data, we have chosen a document database, MongoDB.
MongoDB is a non-relational (NO-SQL) database, which allows us to represent the data
of the system as JSON documents, while providing rich query expressivity and
selectivity. We have split the model in a number of entities, with each entity represented
by a collection in MongoDB. The most important of these entities are Observation,
Object, Multimedia, User and Statistics. Apart from JSON documents, MongoDB can
also persist blobs (files), which allowed us to put the multimedia files and the thumbnails
along with model collections.

For indexing and searching purposes, the data are also pushed into an
Elasticsearch[3] instance. Elasticsearch is based on Lucene, providing a distributed,
multitenant-capable full-text search engine with a RESTful web interface and
schema-free JSON documents. Every part of the data that is searchable is indexed in an
Elasticsearch cluster.

Another very important part of the server side architecture is the caching system.
To this end, we have used the Redis server, which is an open-source, networked,
in-memory, key-value data store. A very important feature that it provides is the
optional durability to any data that it holds. This allows us to specify the maximum
size of main memory that we want to allocate to the cache, while Redis handles the
removal of the least used elements when the limits are reached. The usage of the
server cache increases the response time of the application when the clients request
objects that are in the cache.

5. MoM-NOCS in action
A demonstration of the MoM-NOCS framework in a real-world scenario is outlined in
this section. This includes the capture and annotation of a flora specie (Arum italicum)
observation, as well as the visualization of relevant observations.

We have already mentioned that the users may be assisted by the system ontology
during observation annotation. This ontology is annotated by the expert users, using
the AnnoTool component, which allows both ontology and observation annotation and
is depicted in Figure 6.

The snapshot in Figure 6 shows the annotation of the Arum italicum class. The user
has selected to perform the ontology annotation operation through the left-side menu, on
which we draw the attention with the green rectangle. Notice that the user has browsed

IJPCC
10,3

232



the ontology, as is shown in the area designated by the red rectangle, and has selected
the Arum italicum class. Then, in the area that is surrounded by the yellow rectangle, he
has filled in the necessary fields (a small description, common name, etc.) and has
associated the class with a relevant image. He has also annotated the class with its
taxonomic keys, which are the features of the real-world entity described by the class
that distinguish the class instances from similar ones that belong to other classes: green
spathes, and whitish-cream stripes. This annotation includes drawing the appropriate
numbered selectors around the taxonomic keys in the Arum italicum picture.

Consider now a naturalist who is on an excursion, during which some lilies in a
garden draw his attention. He decides to take videos or photos of the plant using the
MoM-NOCS capturing subsystem, and in particular the mobile application that he has
already been installed on his phone. Using this application, he also gives a title and a
brief description outline of what he is observing, either in textual or in speech form. The
mobile user interface for observation capturing and description is presented in Figure 7.
As is shown in Figure 7, the user is presented not only with the title and the description
he has given, but he also views the multimedia resources associated with the
observation and his location on the surrounding area map.

When the naturalist is at home, he will be able to make a review of the photos and
videos that he has captured and annotate his observation using AnnoTooL, the
MoM-NOCS web application for ontology and observation annotation. He may also
want to classify the herb depicted in the captured material – essentially to locate the herb
class it belongs.

Let the user superficially decide that the flower that he has observed is Arum
creticum, as Arum creticum and Arum italicum have several similarities and he has not
exploited all the functionality offered by the MoM-NOCS framework (he could have been
assisted in the classification task by the annotated ontology). Once the annotation of the
observation is complete, the user submits it so that other users may view it, comment on
it and express their opinion on the classification.

Figure 6.
The MoM-NOCS ontology

annotation interface

233

Crowdsourcing
framework

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJPCC-06-2014-0038&iName=master.img-006.jpg&w=343&h=198


Consider another user, who reviews the annotation and believes that the observation
is not correctly classified, as the flower depicted in the multimedia material is Arum
italicum. To be able to argue on her opinion, she browses the class hierarchy of the
ontology. As the ontology is annotated with multimedia material, she views
characteristic images of both Arum italicum and Arum creticum as well as
descriptions of the taxonomic keys of the two flowers. Then, she comments on
the annotation, stating that she believes that it is an Arum italicum, based on the
characteristic photo of Arum creticum and the taxonomic keys, as is shown in the
area of Figure 8 that the green rectangle draws the attention. Notice that she refers
to the taxonomic keys in her comment and she uses selectors to draw the attention
to the taxonomic keys.

Other users can also express their opinion below the existing conversations, agreeing
or disagreeing with each other as well as leaving their comments. When there is enough
information provided, the system proposes a probable classification for the observation
contents based on the number of people agreeing for a classification and their authority
level. The user reputations are taken into account in the classification proposal provided

Figure 7.
The MoM-NOCS
capturing interface

IJPCC
10,3

234

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJPCC-06-2014-0038&iName=master.img-007.jpg&w=179&h=321


by the system. In particular, the annotations, comments and votes made by users with a
“good” annotation/classification history are weighed higher than the ones made by
users with a poor annotation/classification history.

Once the observations are captured and annotated, the users may view the
(geo)visualizations of the observations of interest that are in their surrounding area using the
web interface or their mobile device. An example of this can be seen in Figure 9, where we
present the geovisualization of the Arum italicum in the area near the current user location.

The screenshot is taken from the mobile application, and the user can see the nearby
observations that have been made by others (denoted by the placeholders on which we
draw the attention with a light blue curve that has been drawn around them in Figure 9),
as well as his current position and direction on the map (denoted by the light blue
triangle on which we draw the attention with a red circle in Figure 9). This way, he can
navigate to the exact position of an observation made by another user (in the case that
the observation subject is not moving, like a plant), or approach an area, knowing that
there is high possibility to find the desired species.

6. Conclusions – future work
In this paper, we have presented MoM-NOCS (Capturing, Annotation and
Visualization), an integrated framework that allows the mobile capturing of multimedia
observations by crowds of people interested in a domain as well as the further
annotation of the observations by the crowd members. It also allows offering advanced
visualization services on the observations on top of maps and other spatial plans. The
prototype application implementation is carried out in the biodiversity domain, where
the capturing process is extremely slow due to the limited number of experts and

Figure 8.
The MoM-NOCS

observation annotation
interface.

235

Crowdsourcing
framework

http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJPCC-06-2014-0038&iName=master.img-008.jpg&w=343&h=243


funding. The system has been designed to be interoperable with existing metadata
services in the biodiversity domain and with collection management systems in natural
history museums.

Several mobile multimedia applications and services that use the infrastructure
described in this paper for different user communities are currently developed.

Our future work includes conducting a survey to potential users, to get some
feedback both for the system functionality and the user interface design. It also includes
the experimentation with different rating schemes for the determination of the user
reputation regarding annotation and/or classification.

Notes
1. http://nodejs.org/

2. http://gruntjs.com/

3. http://www.elasticsearch.org/

Figure 9.
Geovisualization of the
Arum italicum
observations on a mobile
device

IJPCC
10,3

236

http://nodejs.org/
http://gruntjs.com/
http://www.elasticsearch.org/
http://www.emeraldinsight.com/action/showImage?doi=10.1108/IJPCC-06-2014-0038&iName=master.img-009.jpg&w=179&h=320


References
Bannour, H. and Hudelot, C. (2011), “Towards ontologies for image interpretation and annotation”,

in Proceedings of the 9th International Workshop on Content-Based Multimedia Indexing
(CBMI), Madrid, pp. 211-216.

Becker, T. (2009), “Visualizing time series data using web map service time dimension and svg
interactive animation”, Master thesis, International Institute for Geo-Information Science
and Earth Observation (ITC), Enschede.

Berendsohn, W., Döring, M., Gebhardt, M. and Güntsch, A. (2002), “BioCase – a biological
collection access service for Europe”, Tech. Rep., available at: http://www.biocase.org/

Berman, M. (2009), “Modeling and visualizing historical GIS data”, in Proceedings of the
Spatio-Temporal Workshop, Harvard University, Cambridge, MA.

Christodoulakis, S., Foukarakis, M., Ragia, L., Uchiyama, H. and Imai, T. (2010), “Picture context
capturing for mobile databases”, IEEE Multimedia, Vol. 17 No. 2, pp. 34-41.

Global Biodiversity Information Facility (GBIF). available at: http://www.gbif.org/
Kallergi, A., Bei, Y. and Verbeek, F.J. (2009), “The ontology viewer: facilitating image annotation

with ontology terms in the CSIDx imaging database”, Proceedings VISSW, CEUR-WS
Proceedings, Workshop on Visual Interfaces to the Social and the Semantic Web
(VISSW2009), IUI2009, Feb 8 2009, Sanibel Island, Florida, Vol. 4430.

Makris, K., Skevakis, G., Kalokyri, V., Arapi, P. and Christodoulakis, S. (2013), “Metadata
management and interoperability support for natural history museums”, in Proceedings of
the 17th International Conference on Theory and Practice of Digital Libraries (TPDL’13),
Valletta, September, pp. 120-131.

Panteli, A., Tsinaraki, C., Ragia, L., Kazasis, F. and Christodoulakis, S. (2011), “Mobile multimedia
event capturing and visualization (MOME)”, in The Proceedings of FTRA Conference
Multimedia and Ubiquitous Engineering (MUE 2011), FTRA, Loutraki, pp. 101-106.

Phan, V.T. and Choo, S.Y. (2010), “A combination of augmented reality and google earth’s facilities
for urban planning in idea stage”, International Journal of Computer Applications
(0975-8887), Vol. 4 No. 3, pp. 26-34, PhoneGap, available at: http://phonegap.com/

Sanderson, R., Ciccarese, P. and Van de Sompel, H. (Eds) (2013), Open Annotation Data Model,
W3C Community Draft, available at: http://www.openannotation.org/spec/core/

Schreiber, A.T., Dubbeldam, B., Wielemaker, J. and Wielinga, B. (2001), “Ontology-based photo
annotation”, IEEE Intelligent Systems, Vol. 16 No. 3, pp. 66-74.

Tarantilis, N., Tsinaraki, C., Kazasis, F., Gioldasis, N. and Christodoulakis, S. (2011), “Evisuge:
event visualization on google earth”, in Proceedings of the 6th International Workshop on
Semantic Media Adaptation and Personalization (SMAP), Pontevedra, pp. 68-73.

Tsinaraki, C. and Christodoulakis, S. (2006), “A multimedia user preference model that supports
Se-mantics and its application to MPEG 7/21”, in The Proceedings of the IEEE Multimedia
Modeling 2006 Conference (IEEE MMM 2006), Beijing, pp. 35-42.

Volgin, O., Hung, W., Vakili, C., Flinn, J. and Shin, K.G. (2005), “Context-aware metadata creation
in a heterogeneous mobile environment”, in The Proceedings of the International
Workshop on Network and Operating System Support for Digital Audio and Video,
Stevenson, WA, pp. 75-80.

Further reading
The Natural Europe Project. available at: www.natural-europe.eu/
Potel, M. (1996), MVP: Model-View-Presenter, ‘The Taligent Programming Model for C�� and

Java’, Taligent, available at: http://www.wildcrest.com/Potel/Portfolio/mvp.pdf

237

Crowdsourcing
framework

http://www.biocase.org/
http://www.gbif.org/
http://phonegap.com/
http://www.openannotation.org/spec/core/
http://www.natural-europe.eu/
http://www.wildcrest.com/Potel/Portfolio/mvp.pdf
http://www.emeraldinsight.com/action/showLinks?crossref=10.5120%2F810-1150
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FMUE.2011.29
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FMUE.2011.29
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FCBMI.2011.5972547
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FCBMI.2011.5972547
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1065983.1066002
http://www.emeraldinsight.com/action/showLinks?crossref=10.1145%2F1065983.1066002
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2F5254.940028&isi=000170049300014
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-642-40501-3_12
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FMMUL.2010.2&isi=000277653800005
http://www.emeraldinsight.com/action/showLinks?crossref=10.1007%2F978-3-642-40501-3_12
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FSMAP.2011.23
http://www.emeraldinsight.com/action/showLinks?crossref=10.1109%2FSMAP.2011.23
http://www.emeraldinsight.com/action/showLinks?crossref=10.5120%2F810-1150


About the authors
Giannis Skevakis is a Research Assistant at the Laboratory of Distributed Multimedia
Information Systems and Applications of the Electronic and Computer Engineering Department
of the Technical University of Crete. He holds a diploma and a Master of Science degree in
electronic and computer engineering from the Technical University of Crete. Giannis Skevakis is
the corresponding author and can be contacted at: skevakis@ced.tuc.gr

Chrisa Tsinaraki received her PhD in 2008 from the Technical University of Crete. She has
worked as a Postdoc Researcher and a Visiting Lecturer in the Technical University of Crete and
as a Postdoc Researcher in the University of Trento and is now working, as a Postdoc Researcher,
in the Joint Research Center of the European Union.

Ioanna Trochatou is a Graduate Student at the Department of Electronic and Computer
Engineering at the Technical University of Crete. Previously, she earned BSc degree in computer
science from the University of Crete.

Stavros Christodoulakis is a Full Professor in the School of Electronic and Computer
Engineering, Technical University of Crete, and Director of the MUSIC/TUC lab. His research
interests cover the areas of information systems, databases, multimedia, web and mobile
architectures, applications and services. He is the author or co-author of many scientific papers in
those fields. He is in the Scientific Board of the Institute of Telecommunications of Crete, and has
been in the Scientific Board of the Institute for Computer Research (ICR) of the University of
Waterloo, and several other research institutes, organizations and international scientific
journals, as well as member or chair of many international conferences in his areas of expertise.

Professor Christodoulakis has a PhD degree in computer science from the University of
Toronto, and he has been Professor in the Departments of Computer Science of the University of
Toronto and University of Waterloo, Canada.

To purchase reprints of this article please e-mail: reprints@emeraldinsight.com
Or visit our web site for further details: www.emeraldinsight.com/reprints

IJPCC
10,3

238

mailto:skevakis@ced.tuc.gr
mailto:reprints@emeraldinsight.com

