Querying XML Data with SPARQL *

Nikos Bikakis, Nektarios Gioldasis, Chrisa Tsinarak
Stavros Christodoulakis

Technical University of Crete, Department of Elentooand Computer Engineering
Laboratory of Distributed Multimedia Information §gms & Applications (TUC/ MUSIC)
University Campus, 73100, Kounoupidiana Chania, Gree
{nbikakis, nektarios, chrisa, stavros}@ced.tuc.gr

Abstract. SPARQL is today the standard access language foaiste Web
data. In the recent years XML databases have agoirad industrial impor-
tance due to the widespread applicability of XMLtte Web. In this paper we
present a framework that bridges the heterogemgeityand creates an interop-
erable environment where SPARQL queries are usaddess XML databases.
Our approach assumes that fairly generic mappirejden ontology con-
structs and XML Schema constructs have been auimatigtderived or manu-
ally specified. The mappings are used to autonigtit@nslate SPARQL que-
ries to semantically equivalent XQuery queries Wwhice used to access the
XML databases. We present the algorithms and thpleimentation of
SPARQL2XQueryramework, which is used for answering SPARQL cgeri
over XML databases.

Keywords: Semantic Web, XML Data, Information Integrationtdroperabil-
ity, Query Translation, SPARQL, XQuery, SPARQL2XQuery

1 Introduction

The Semantic Web has to coexist and interoperate ather software environments
and in particular with legacy databases. Bx¢ensible Markup Languag&XML), its
derivatives XPath XSLT, etc.), and th& ML Schemaave been extensively used to
describe the syntax and structure of complex doatsnén addition, XML Schema
has been extensively used to describe the standanthsiny business, service, and
multimedia application environments. As a resulgrge volume of data is stored and
managed today directly in the XML format in orderavoid inefficient access and
conversion of data, as well as avoiding involvihg application users with more than
one data models. The database management systéenstaafay an environment
supporting the XML data model and the XQuery actmsguage for managing XML
data. In the Web application environment the XMlh&oa acts also as a wrapper to
relational content that may coexist in the database

Our working scenario assumes that users and applisaof the Semantic Web
environment ask for content from underlying XML aaases using SPARQL. The

* An extended version of this paper is availablg 4}.

SPARQL queries are translated into semanticallyivedgnt XQuery queries which
are (exclusively) used to access and manipulateldte from the XML databases in
order to return the requested results to the usehe application. The results are
returned in RDF (N3 or XML/RDF) or XML [1] formaflTo answer the SPARQL
queries on top of the XML databases, a mappingesthema level is required. We
support a set of language level correspondencdssjrdor mappings between
RDFS/OWL and XML Schema. Based on these mappingsramework is able to
translate SPARQL queries into semantically equiMalQuery expressions as well
as to convert XML Data in the RDF format. Our agmio provides an important
component of any Semantic Web middleware, whichbksatransparent access to
existing XML databases.

The framework has been smoothly integrated withXB2OWLframework [9],
thus achieving not only the automatic generatiomappings between XML Schemas
and OWL ontologies, but also the transformatioiXbfL documents in RDF format.

Various attempts have been made in the literatugedtiress the issue of accessing
XML data from within Semantic Web Environments £,5, 6, 7, 8, 9, 10, 11, 12].
An extended overview of related work can be fouhd 3].

The rest of the paper is organized as follows: Mappings used for the translation
as well as their encoding are described in Se@ioBection 3 provides an overview
of the query translation process. The paper coeslinl section 4.

2 Mapping OWL to XML Schema

The framework described here allows XML encodea date accessed from Seman-
tic Web applications that are aware of some ontpleigcoded in OWL. To do that,
appropriate mappings between the OWL ontolo@y &nd the XML SchemaXxg
should exist. These mappings may be produced eithrmatically, based on our
previous work in theXxS20WLframework [9], or manually through some mapping
process carried out by a domain expert. Howeverd#finition of mappings between
OWL ontologies and XML Schemas is not the subjé¢his paper. Thus, we do not
focus on the semantic correctness of the defingapmgs. We neither consider what
the mapping process is, nor how these mappings e produced

Such a mapping process has to be guided from |lgeglevel correspondences.
That is, the valid correspondences between the GWL XML Schema language
constructs have to be defined in advance. The Eggulevel correspondences that
have been adopted in this paper are well-acceptedwide range of data integration
approaches [2, 4, 9, 10, 11]. In particular, wepsupmappings that obey the follow-
ing language level correspondence rules: A clagd @frresponds to a Complex Type
of X§ a DataType Property @ corresponds to a Simple Element or AttributeX&f
and an Object Property @f corresponds to a Complex ElemeniX&

Then, at the schema level, mappings between cendmhain conceptualizations
have to be defined (e.g. tleenployeeclass is mapped to theorker complex type)
following the correspondences established at thguage level.

At the schema level mappings a mapping relationsbtgreerO and anXSis a bi-
nary association representing a semantic assatiativtong them. It is possible that

for a single ontology construct more than one nagpélationships are defined. That
is, a single source ontology construct can be nppanore than one target XML
Schema elements (1:n mapping) and vice versa, winilee complex mapping rela-
tionships can be supported.
The mappings considered in our work are based eCdmsistent Mappings Hy-
pothesiswhich states thdor each mapped proper®r of O:
a. The domain classes &fr have been mapped to complex typesxi that
contain the elements or attributes tRathas been mapped to.
b. If Pr is an object property, the range classePothave been mapped to
complex types itXS§ which are used as types for the elementsRhats been
mapped to.

2.1 Encoding of the Schema Level Mappings

Since we want to translate SPARQL queries into seicelly equivalent XQuery
expressions that can be evaluated over XML dataviihg a given (mapped) sche-
ma, we are interested in addressing XML data reptesions. Thus, based on schema
level mappings for each mapped ontology class opgty, we store a set of XPath
expressions‘KPath set” for the rest of this paper) that address all theesponding
instances (XML nodes) in the XML data level. In tparlar, based on the schema
level mappings, we construct:
= A Class XPath SetX. for each mapped class, containing all the possible
XPaths of the complex types to which the cl@dsas been mapped to.
= A Property XPath SetXp, for each mapped properBr, containing all the possi-
ble XPaths of the elements or/and attributes tcRr has been mapped.
For ontology properties, we are also interestediémtifying the property domains
and ranges. Thus, for each property we defineXgheandXpr sets, where:
= The Property Domains XPath SetXpp for a propertyPr represents the set of the
XPaths of the property domain classes.
= The Property Ranges XPath SeiXp,r for a propertyPr represents the set of the
XPaths of the property ranges.

Example 1. Encoding of Mappings
Fig. 1 shows the mappings between an OWL Ontologlyaan XML Schema.

* \ 1\
)) Person Stafi
Rl EREEELLE WAL S\
FirstName | astName Nick emai FN LR Salary Contacl_Info
o v 4 A _-Y i
_______ T PSS 4
- —_ -
_______ 4 ’
=" -

Fig. 1. Mappings Between OWL & XML

To better explain the defined mappings, we showrign 1 the structure of the
XML documents that follow this schema. The encodaigthese mappings in our
framework is shown in Fig.2.

Classes: DataType Properties:
Xns:person—{/Persons/Person, /Persons/Staff} Xns:First_Name= {/Persons/Person/FirstName, /Persons/Staff/FN}
Xns:Employee={/Persons/Staff} Xns:sur_Name= {/Persons/Person/LastName, /Persons/Staff/LN}
Xans:Nick_Name—{/Persons/Person/Nick }
Object Properties: Xns:e-mait = {/Persons/Person/email, /Persons/Staff/Contact_Info}
Xns:Has_person— {/Persons/Person } Xas:ncome={/Persons/Staff/Salary}

Fig. 2. Mappings Encoding

XPath Set Operators.For XPath Sets, the following operators are defineatder to

formally explain the query translation methodolagyhe next sections:

= The unaryParent Operator”, which, when applied to a set of XPathgi.e. (X)7),
returns the set of the distinct parent XPaths {he.same XPaths without the leaf
node). When applied to the root node, the operatarns the same node.

Example 2.LetX={/a, /a/b, /c/d , lelflg , Ibi@f} theX|={/a,/a,lc,/lelf, /b }.

= ThebinaryRight Child Operator®, which, when applied to two XPath setandY
(i.e. X®Y), returns the members (XPaths) of the right)>§ethe parent XPaths of
which are contained in the left 9ét

Example 3.Let X={/a, /c/b } and Y={/a/d, /alc , /c/blpc/alg } then

X®Y ={/a/d, /alc, Ic/blp}.

= ThebinaryAppend Operatof, which is applied on an XPath $étind a set of node
namesN (i.e. X / N), resulting in a new set of XPathidy appending each member
of N to each member of.

Example 4.Let X={/a, /a/b} and N={c, d} then Y = X/ N = {/a, /a/d, /a/blc, a/b/d }.

XPath Set Relations.We describe here a relation among XPath sets thlats h
because of th&€onsistent Mapping Hypothesikescribed above. We will use this
relation later on in the query translation procemsd in particular in the variable
bindings algorithm (subsection 3.1):
P P
Domain-Range Property Relation,v Property. P Xprp=Xpy and érDz(XP) =(X PR)
The Domain-Range Property Relatiaran be easily understood taking into account
the hierarchical structure of XML data as well s €onsistent Mappings Hypothe-
sis It describes that for a single propery
= the XPath set of its ranges is equal to its owntKRet (i.e. the instances of its
ranges are the XML nodes of the elements thaptttperty has been mapped to).
= the XPath set of its domain classes is equal te¢heontaining its parent XPaths
(i.e. the XPaths of th€Ts(Complex Typedhat contain the elements that this
property has been mapped to).

3 Overview of the Query Translation Process

In this section we present in brief the entire station process using a UML activity
diagram. Fig. 3 shows the entire process whichtssteking as input the given
SPARQL query and the defined mappings between helagy and the XML Sche-

ma (encoded as described in the previous sectidi®.query translation process
comprises of the activities outlined in the follogiparagraphs.

act SPARQLZ7QUERY /
. (Union-Free GraphPattern Processing M
SPARQL
Query
Meppings 'SPARQL GraphPattern

Normalization

Fig. 3. Overview of the SPARQL Translation Process

SPARQL Graph Pattern Normalization. The SPARQL Graph Pattern Normali-
zation activity re-writes the Graph-Patter&R) of the SPARQL query in an equiva-
lent normal form based on equivalence rules. ThAREPL GP normalization is
based on th&P expression equivalences proved in [3] and re-mgitechniques. In
particular, eaclGP can be transformed in a sequeRdeUNION P2 UNION P3 UN-
ION...UNION PnwherePi (1<i<n) is a Union-Fre&sP (i.e. GPsthat do not contain
Union operators). This makes t&& translation process simpler and more efficient.

Union-Free Graph Pattern (UF-GP) ProcessingThe UF-GP processing trans-
lates the constitueiF-GPs into semantically equivalent XQuery expressionise T
UF-GP Processing activity is a composite one, with wasigub-activities. This is
actually the step that most of the “real work” isnd since at this step most of the
translation process takes place. THe-GP processingactivity is decomposed in the
following sub-activities:

— Determination of Variable Types.For everyUF-GP, this activity initially iden-
tifies the types of the variables used in ordedétect any conflict arising from the
user’s syntax of the input as well as to identifg form of the results for each vari-
able. We define the following variable types: T@kass Instance Variable Type
(CIVT), Theliteral Variable TypglLVT), TheUnknown Variable Typ8JVT), The
Data Type Predicate Variable TygBTPVT), The Object Predicate Variable Type
(OPVT), TheUnknown Predicate Variable TyggPVT).

We also define the following sets: The Daige Properties SDTPS, which
contains all the data type properties of the owfplorhe Object Properties Set
(OP9, which contains all the object properties of tr#ology. TheVariables Set
(V), which contains all the variables that are usethe UF-GP. The Literals Set
(L), which contains all the literals referenced ia th-GP.

The determination of the variable types is based @et of rules applied itera-
tively for each triple in the givebF-GP. Below we present a subset of these rules,
which are used to determine the typg) (of a variableX:

LetS P Obe a triple pattern.

1. If Pe OPSandO ¢ V = T = CIVT. If predicate is an object property and
object is a variable, then the type of the objectable isCIVT.

2. If OeL andP eV = T, = DTPVT If the object is a literal value, then the
type of the predicate variableDsSTPVT.

— Processing Onto-Triples.Onto-Triplesactually refer to the ontology structure

and/or semantics. The main objective of this aftivé to procesgOnto-Triples

against the ontology (using SPARQL) and based sratialysis to bind (i.e. assign-
ing the relevant XPaths to variables) the correeatks to variables contained in the

Onto-Triples These bindings are going to be used in the negissas input to the

Variable Bindingsactivity.

— UF-GP2XQuery. This activity translates thgF-GP into semantically equivalent

XQuery expressions. The concept 0GR, and thus the concept bfF-GF, is de-

fined recursively. ThGP2XQueryalgorithm translates the basic components of a

GP (i.e. Basic Graph Pattern8GPswhich are sequences of triple patterns and fil-

ters) into semantically equivalent XQuery expressi¢see subsection 3.2). To do

that a variables binding (see subsection 3.1) stapeeded. FinallyBGPsin the
context of aGP have to be properly associated. That is, to agySPARQL op-
erators among them using XQuery expressions anctifurs. These operators are:

OPT, AND, andFILTER and are implemented using standard XQuery exmessi

without any ad hoc processing.

Union Operator Translation. This activity translates theNION operator that ap-
pears amon@/F-GPsin aGP, by using thd_et andReturnXQuery clauses in order
to return the union of the solution sequence preduay theUF-GPsto which the
Union operator applies.

Solution Sequence Modifiers Translation.This activity translates the SPARQL
solution sequence modifiers using XQuery clausesiér By, For, Let.etc.) and
XQuery built-in functions (you can see the examplsubsection 3.3.). The modifiers
supported by SPARQL af@istinct, Order By ReducegdLimit, andOffset

Query Forms Based Translation. SPARQL has four forms of querieSelect Ask
ConstructandDescribg. According to the query form, the structure of fal result
is different. The query translation is heavily degent on the query form. In particu-
lar, after the translation of any solution modifierdone, the generated XQuery is
enhanced with appropriate expressions in ordechiese the desired structure of the
results (e.g. to construct an RDF graph, or a tegt)] according to query form.

3.1 Variable Bindings

This section describes the variable bindings agtivin the translation process the
term “variable bindings” is used to describe the assignment of the coXPeths to
the variables referenced in a givBasic Graph PatterfBGP), thus enabling the
translation oBGPto XQuery expressions. In this activignto-Triplesare not taken
into account since their processing has taken plrattee previous step.

Definition 1 : A triple pattern has the forns,p,0e (1 UBUV)x (1 UV UB)
x(1UBU L UV), wherel is a set of IRISB is a set of Blank NodeV,is a set of
Variables, and. the set of RDF Literals. In our approach, howetes, individuals
in the source ontology are not considered at &hgethey do not exist, or they are
not used in semantic queries).

Definition 2 : A variable contained in a Union Free Graph Patisritalled a
Shared Variablevhen it is referenced in more than one triple gratt of the same
Union-Free Graph Pattern regardless its positidhase triple patterns.

Variable Bindings Algorithm. When describing data with the RDF triplesp(0,
subjects represent class individuals (RDF nodesjdigates represent properties
(RDF arcs), and objects represent class individoal$ata type values (RDF nodes).
Based on that, and tldmmain-range propertyelation of Xpaths sets relations section
we havea) Xs = Xpp= (XpR" = (Xp)© b) X, =Xz and ¢) X, = Xpr .

Thus it holds thatXs = X5 = (X" = (Xp)° = (Xo)° = Xs= (X,)7 = (Xo)° (Subject-
Predicate-Object Relation)

This relation holds for every single triple pattefimus, the variable bindings algo-
rithm uses this relation in order to find the cotrbindings for the entire set of triple
patterns starting from the bindings of any singlelé pattern part (subject, predicate,
or object).

In case of shared variables, the algorithm triefinththe maximum set of bindings
(using the operators for XPath sets) that sattsfy telation for the entire set of triple
patterns (e.g. the entigGP). Once this relation holds for the entB&P we have as
a result that all the instances (in XML) that dstihe BGP have been addressed.

The variable bindings algorithm in case of sharadables ofLVT type it doesn’t
determine the XPaths for this kind of variable csititeral equality is independent of
the XPaths expressions. Thus, the bindings foabées of this type cannot be defined
at this step (mark d®ot Definable” at variable bindings rules). Instead, they will be
handled by th&GP2XQuery(subsection 3.2) algorithm (using the mappings ttwed
determined variables bindings).

The algorithm takes as inpuB&P as well as a set of initial bindings and the types
of variables as these are determined in etérmination of Variable Typectivity.
These initial bindings are the ones produced byQh#-Triple processing activity
and initialize the bindings of the algorithm. Théime algorithm performs an iterative
process where it determines, at each step, thengmaf the entirdBGP (triple by
triple). The determination of the bindings is basedthe rules described below. This
iterative process continues until the bindingsdibithe variables found in the succes-
sive iterations are equal. This means that no éarthodifications in the variable
bindings are to be made and that the current byysdéme the final ones.

Variable Bindings Rules Based on the possible combinationsSofP and O, there
are four different types of triple patterns (théabogy instance are not yet supported
by our framework):Type 1 :SeV, Pel,0eL. Type 2:S, OecV, Pel.Type 3:S, Pe V,
OelL.Type 4:S,P, O V.

According to the triple pattern type, we have defira set of rules for the variable
bindings. In this section we present a sub-seti@dé rules due to space limitations.

In what follows the symbal in XPath sets denotes the new bindings assigned to
the set at each iteration, while the symbetlenotes the assignment of a new value to
the set. All the XPath sets are considered to hiallg set tonull. In that case, the
intersection operation is not affected by thdl set. E.gX={ null } and Y= {/a/b ,
d/e} then XN Y ={/a/b , d/e }.The notatior’Not Definable” is used for variables of
typeLVT as explained above. Consider the tripIE O:

= [f the triple is of Type 1= X'« Xpp N Xg

= If the triple is of Type 2= Xg'— Xpp N XsN (Xo)”

—If Pe OPS= Xo'— Xs' ® Xo
—-If Pe DTPS= Xo' Non Definablgas explained in previously)
= If the triple is of Type 3= Xs'« Xpp N XsandXp'«— Xs' ® Xp
= If the triple is of Type 4= Xs'«— Xep N XsN (Xo)F andXp’— Xs' ® Xp
—-fTo=CIVTor To=UVT= Xo'«— X'N X5
—-If To =LVT = Xo' Non Definablgas explained previously)

XPath Set Relations for Triple-Patterns.Among XPath sets of triple patterns there
are important relations that can be exploited i development of the XQuery ex-
pressions in order to correctly associate datahbhse been bound to different vari-
ables of triple patterns. The most important refatamong XPath sets of triple pat-
terns is that of extension:

Extension Relation: An XPath sef is said to be an extensiofian XPath seB if
all XPaths inA are descendants of the XPath®8of

As an example of this relation, consider the XRstiproduced when applying the
append f) operator to an original XPath s&with a set of nodes.

The extension relation holds for the results ofithgable bindings algorithnslb-
ject-Predicate-Object Relatigrand implies that the XPaths bound to subjects are
parents of the XPaths bound to predicates and sbpétriple patterns.

3.2 Translating BGPs to XQuery

In this section we describe the translatioB&Psto semantically equivalent XQuery
expressions. The algorithm manipulates a sequehirple patterns and filters (i.e. a
BGP) and translates them into semantically equivalé@@uery expressions, thus
allowing the evaluation of BGP on a set of XML data.

Definition 3 : Return Variables(RV) are those variables for which the given

SPARQL Query would return some information. Thedfeall Return Variableof

a SPARQL query constitutes the Bl < V.

The BGP2XQuery Algorithm. We briefly present here thBGP2XQueryalgo-
rithm for translatingBGPs into semantically equivalent XQuery expressionke T
algorithm takes as input the mappings between tielagy and the XML schema,
the BGP, the determined variable types, as well as th@abkr bindings. The algo-
rithm is not executed triple-by-triple for a comgl®GP. Instead, it processes sub-
jects, predicates, and objects of all the tripkgzasately. For each variable included in
the BGP, the BGP2XQueryit creates d&or or Let XQuery clause using the variable
bindings, the input mappings, and thetension Relatioifor triple-patterns (see sub-

section.3.1), in order to bound XML data into XQueariables. The choice between
the For and thelL.et XQuery clauses is based on specific rules socasretate a solu-
tion sequence based on the SPARQL semantics. Mereiovorder to associate bind-
ings from different variables into concrete solatpthe algorithm uses tlextension
Relation For literals included in thBGP, the algorithm is using XPath predicates in
order to translate them. Due to the complexity tn&PARQL filter may have, the
algorithm translates all the filters into XQueryeavh clauses, although some “simple”
of them (e.g. condition on literals) could be tlated using XPath predicates. More-
over, SPARQL operators (Built-in functions) incladim filter expressions are trans-
lated using built-in XQuery functions and operatdiowever, for some “special’
SPARQL operators (liksameTermlang, etc.) we have developed native XQuery
functions that simulate them.

Finally, the algorithm creates an XQueRgturn clause that includes the Return
Variables RV) that was used in tHeGP.

There are some cases of share variables which spesgal treatment by the algo-
rithm in order to apply the required joins in XQuexxpressions. The way that the
algorithm manipulates these cases depends on whith ubject-predicate-objekt
of the triples patterns these shared variables tefe

3.3 Example

We demonstrate in this example the use of the ihestframework in order to allow
a SPARQL query to be evaluated in XML Data (basedEgample 1). Fig. 4 shows
how a given SPARQL query is translated by our fraomk into a semantically

equivalent XQuery.
Translated XQuery Query :
declare namespace func = "http://www.music.tuc.gr/funcs";
let $doc := collection("http://www.music.tuc.gr/....")
let $Modified Results :=(
let $Results :=(
let $BGP_1:=(
for $x in $doc/Persons/Person([./FirstName= "John"] union
$doc/Persons/Staff[./FN="John"]
for $lname in $x/LastName union $x/LN
let $email := $x/email union $x/Contact_Info
where(exists($email) and matches($lname, ""A"))
return(<Result> <x>{func:CIVT($x)} </x>,
<Iname>{ string($Iname)} </Iname></Result>)

Consider the query: “Return the Persons, their last
name(s) and their nick name(s), whose first name is
“John”, whose last name begins with “A”, and they
have an e-mail address. The (existence of) nick
name is optional. The query will return at most 30
solutions (LIMIT 30) ordered by last name value at
descending order and skipping the first 5 solutions

(OFFSET 5)”.)
let $BGP_2:=(
for $x in $doc/Persons/Person
for $nick in $x/Nick
SPARQL Query: return(<Result> <x>{func:CIVT($x)} </x>,

PREFIX ns:<http://example.com/ns#> <nick>{ string($nick)}</nick></Result>)

)
SELECT ?x ?lname ?nick return (func:OPTIONAL($BGP_1, $BGP_2))
WHERE({ { ?2x ns:First Name "John".
?x ns:Sur_Name ?Iname .
?x ns:email 2email.

)
return (let $Ordered_Results:=(
for Siter in $Results

}B(;Pl
FILTER regex(?lname, ""A") }
OPTIONAL{ ?x ns:Nick_Name ?nick. } BGP_2
1

s
ORDER BY DESC (?Iname)
LIMIT 30 OFFSET 5

order by $iter/Iname descending empty least
return(Siter))
return ($Ordered_Results[position()>5 and position()<=35]))

return (<Results>{$Modified Results }</Results>)

Fig. 4. SPARQL Query Translation Example

4 Conclusions

We have presented a framework and its softwareeimehtation that allows the eval-
uation of SPARQL queries over XML data which arerstl in XML databases and
accessed with the XQuery language. The framewaslkrass that a set of mappings
between the OWL ontology and the XML Schema exigigch obey to certain well
accepted language correspondences.

The SPARQL2XQuernframework has been implemented as a software cgervi
which can be configured with appropriate mappingstyeen some ontology and
XML Schema) and translates input SPARQL queries s¢mantically equivalent
XQuery queries that are answered over the XML Dagab

5 References

1. Beckett D.(eds), “SPARQL Query Results XML Format”. W3C Recomdsation, 15
January 2008 http://www.w3.org/TR/rdf-spargl-XMLres/

2. Bohring H., Auer S.: “Mapping XML to OWL Ontologiesteipziger Informatik-Tage
2005: 147-156

3. J. Perez, M. Arenas, C. Gutierrez. Semantics and @srtpof SPARQL. 5th Interna-
tional Semantic Web Conference (ISWC-06), Novemio@62

4. Rodrigues T., Rosa P, Cardoso J., “Mapping XML toiEgiOWL ontologies”, Interna-
tional Conference WWW/Internet 2006, Murcia, Sp&i8 October 2006.

5. Joel Farrell and Holger Lausen. Semantic Annotatfon WSDL and XML Schema.
W3C Recommendation, W3C, August 2007. Available gtttww.w3.org/TR/sawsdl/

6. Sven Groppe, Jinghua Groppe, Volker Linnemann, Rirkulenz, Nils Hoeller, Chris-
toph Reinke: Embedding SPARQL into XQuery/XSLT. SA@202271-2278

7. Waseem Akhtar, Jacek Kopecky et.al : XSPARQL: Triagebetween the XML and RDF
Worlds - and Avoiding the XSLT Pilgrimage. ESWC 20082-447

8. Matthias Droop, Markus Flarer et.al : “EmbeddingAI® Queries into SPARQL Que-
ries” In Proc. of the 10th International Conferermn Enterprise Information Systems

9. Tsinaraki C., Christodoulakis S., “Interoperabilify>dML Schema Applications with
OWL Domain Knowledge and Semantic Web Tools”. Ind®of the ODBASE 2007.

10. Cruz I.R., Huiyong Xiao, Feihong Hsu: “An Ontologydea Framework for XML Seman-
tic Integration”, Database Engineering and Applarag Symposium, 2004.

11. V.Christophides, G. Karvounarakis et.al : “The ICSHTH SWIM: A Powerful Semantic
Web Integration Middleware”. In Proc. of the SWDB030 pages 381-393.

12. Bernd Amann, Catriel Beeri, Irini Fundulaki, Micheltdi: Querying XML Sources
Using an Ontology-Based Mediator. CooplS/DOA/ODBASB2 429-448

13. Bikakis N., Gioldasis N., Tsinaraki C., ChristodouiaB.: “Semantic Based Access over
XML Data” In Proc. of 2¢World Summit on Knowledge Society 2009 (WSKS2009).

14. Bikakis N., Gioldasis N., Tsinaraki C., Christodouta.: “The SPARQL2XQuery
Framework” Technical Repohttp://www.music.tuc.gr/reports/SPARQL2XQUERY.PDF

