
 1

The UWA Approach to Modeling Ubiquitous Web Applications

UWA Consortium
Piazza del Carmine,22 – 09100 Cagliari (Italy)

gab@acm.org

ABSTRACT

Web applications have already evolved from “static”
sites to completely distributed applications; nowadays
they are facing a new transformation and are becoming
ubiquitous systems that are available anytime,
anywhere, and with any media.
This new requirement led the UWA Consortium to
propose a special purpose design approach to modeling
Web applications. This paper introduces the approach
and sketches the main design steps.

I. INTRODUCTION

Web applications have already evolved to distributed
systems that exploit the Internet as communication
means and the Web as interface to access services and
data ([2]). Nowadays, they are facing a new
transform ation to supply users with ubiquitous systems
that are available anytime, anywhere, and with any
media ([10]).
These new applications supply the user with both data
and services, are multi-channel, that is, available on a
variety of devices, and are used by several classes of
users, with different needs and expertise. Even if most
of the features of these applications are not new, their
combination implies a new multi-aspect modeling
approach that cannot be obtained by just piling up
existing methodologies, tools and techniques. Given this
belief, the UWA consortium 1 started working on the
special-purpose modeling methodology that is presented
in this paper.
The overall modeling problem is partitioned in the
following design aspects:
• Requirements elicitation to define what the

application should do;
• Hypermedia Design to model data, and how they

can be navigated and presented, and operations
(services) as available to the user;

• Transaction Design to model the transactional
behavior exhibited by the application and how it is
affected by multi-channel delivery;

• Customization Design to specify how the
application should adapt itself to the context, and,
in particular to the user, device, communication
channels, time and location.

Each modeling activity is defined in terms of a
metamodel, which captures the set of relevant concepts

1 The UWA consortium comprises: Atlantis SpA (Italy), Banca 121
(Italy), Fundacion Robotiker (Spain), Politecnico di Milano (Italy),
Punto Comercial (Spain), University of Linz (Austria), MUSIC Lab of
Technical University of Crete (Greece), Siemens AG (Austria),
Università della Svizzera Italiana (Switzerland), and University
College London (United Kingodm).

and the primitives, a notation, based on UML ([6]) to
represent the concepts, a set of guidelines and
heuristics, to help the designer exploit the concepts and
understand the trade-off among the different design
solutions, and a set of tools, to enact the design process
and enforce coherence and consistency of design.
Unfortunately, in this paper space limits oblige us to
simply introduce each modeling aspect. Interested
readers can refer to [8] for an in-depth presentation.
The UWA project provides a unified framework, which
integrates the various meta-models and notations and
highlights their mutual interdependence, and a unified
software environment, based on Rational Rose, that
integrates the tools specific to each modeling activity.

The rest of this paper presents each modeling phase in
detail: each section introduces the main concepts design
heuristics. The last section concludes the paper and
introduces the future work.

II. REQUIREMENTS ELICITATION

The major influence on our approach to requirements
engineering is Axel van Lamsweerde’s KAOS work [3].
Work by Lamsweerde [3] (and Yue [9]) introduced a
new approach to requirements engineering. Their goal-
oriented approach makes the why of requirements
explicit by tying requirements to goals. A goal is a
somewhat abstract and long-term objective the system
should achieve through cooperation of agents (user and
software) in the software-to-be and in the environment,
while requirements are shorter-term and more concrete
objectives. Requirements operationalise goals. Goals
and requirements are to be placed within a framework
which conceptually supports the elicitation of goals and
the refinement of goals into requirements. Key aspects
of this framework are briefly introduced in the
following.

A stakeholder is someone or something that has an
interest in the system. Almost anyone can be a
stakeholder. Examples include end users, developers,
buyers, managers (i.e., people who will not use the
system but will manage people who do). A stakeholder
owns one or more goals, and a goal may be owned by
one or more stakeholder. A goal that interests no one is
a non-goal, and should therefore be removed. Given the
nature of the applications involved, a user-centred
approach is employed. The centre of our world is no
longer the system, but rather the stakeholders of the
system. A goal delivers a certain value to its
stakeholders. The value is extremely hard (and probably
impossible in the general case) to formalise. Therefore,
it is usually expressed in prose as a comment. It is an
arbitrary quantity that cannot be taken as an absolute

 2

measure. It is nonetheless very useful for establishing
importance and priority of goals.

High-level goals represent the ultimate desires of
stakeholders. However, for them to be of use, they have
to be refined into lower -level goals. This refinement
process is extremely useful because a high-level goal
per se does not say much to the designer. It is too
abstract, too high-level and too long-term to be fed
directly to Web designers. Refining goals can also help
identify new ones and better understand those already
elicited. Refining a goal into subgoals helps identify
conflicts between goals. Conflicts must be solved as
soon as possible, and always before the
operationalization step, that is, before any of the goals
involved in the conflict are turned into actual
requirements.

Requirements also have an associated priority.
Prioritising requirements becomes very desirable in any
realistic software engineering methodology. There
comes a time when a designer realises he simply cannot
implement all of the requirements at the same time or in
the same version. Finally, an assumption represents
some entity, event, or other piece of information that
belongs to the world and that we have to come to terms
with when refining goals into subgoals and eventually
into requirements.

As this is the first case in the literature in which the
goal-oriented approach has been applied to interactive
systems and Web-based applications, a novel
requirement categorisation scheme had to be invented.
Requirements – the leaves of our derivation graph – are
categorised into dimensions . The dimensions that are
currently included in the metamodel are:
§ content : this is the core value of a Web application.

Content refers to the set of ideas and messages that
the site communicates to its users. Ideas and
messages are mainly specified in terms of the core
information objects available

§ structure of content: requirements can give a
coarse-grained insight into how the information
objects identified are structured. By structure we
mean the organisation of content within the same
information object

§ access : this dimension refers to the naviga tional
paths available to the user to reach the needed
content

§ navigation : requirements can suggest a connection
between different information objects allowing the
user to navigate from one piece of content to
another

§ presentation: requirements can also give guidelines
for defining the visual communication strategies for
presenting content, navigational capabilities, and
operation to the user

§ user operation: user operations are those operations
that are visible to users. They are the only
operations the users must be aware of

§ system operation: system operations are those
operations that are not visible to users, but are
essential in building user operations.

Each requirement belongs to exactly one dimension.
This restriction can also be seen as a necessary
(although certainly not sufficient) condition for a

requirement to be considered as such: if a requirement
cannot be easily and clearly assigned to exactly one
dimension, then it is too general to be called a
requirement (and is therefore still a goal). The number
and nature of dimensions is not fixed, and new ones can
be added at will and at any time.

III. HYPERMEDIA DESIGN

Hypermedia aspects in UWA are dealt with by suitably
tailoring W2000 ([1]), whose main concepts are
organized in three main models:

The Information model specifies the concepts for
specifying the content available to the user (Hyperbase)
and how it can be accessed (Access structures).
The key element is the Entity: It renders data of interest
to the user as if they were conceptual objects. An entity
resembles the concept of a class and, as classes, it can
be the root of a generalization hierarchy. An entity is
organized in semantic sub-units, called Components,
which are pure organizational devices for grouping the
contents of an entity into meaningful chunks. The result
of this definition is a tree of components, based on the
part-of relationship. Components can further be
decomposed in sub-components, but the actual contents
can be associated with leaf components only. The
contents of leaf components is defined in terms of Slots,
i.e., the attributes that define the primitive information
elements. A Segment groups slots to supply information
chunks as ``consumed'' by the user.
A Semantic Association connects two entities with a
double meaning: it both creates the ``infrastructure'' for
a possible navigation path (by connecting a source to a
target) and has proper, local, information, called
Association Center, which contains data that define
and specify the association itself and provides additional
information on how to represent both the single target
elements, in a concise way, and the whole group of
target elements that relate to the same source. . Entities
can also be grouped in Collections that are organized
sets of information objects. A collection provides the
user with a way to explore the information contents of
the application and, thus, is the key concept as to access
structures.

The Navigation model specifies the concepts that allow
the designer to reorganize the information for
navigational purposes. He should ``reuse'' the elements
in the previous model to specify the actual information
chunks together with the relationships among them.
The information contents is organized in atomic units,
called Nodes : They do not define new contents, but
either come from entity components, semantic
association, and collection centers, or are added only for
navigation purposes (e.g., to introduce fine-grained
navigation steps). In the former case, they contain the
slots associated with the information element they
renders. In the latter case, they are simple empty nodes.
Two nodes are linked through a directed Accessibility
Relationship to specify that the user can navigate from
the source to the target node.
Nodes exist in the context of a Navigation Cluster that
groups nodes and accessibility relationships to foster

 3

and facilitate the navigation among data (nodes).
Clusters can be nested and can further be characterized
according to the kind of information they render.
Structural Clusters consist of all the nodes derived
from the components of entities, Semantic Clusters
comprise all the nodes that come from source, target and
centers of semantic associations, and Collection
Clusters comprise all the nodes that come from the
members and centers of collections.

The Presentation model specifies the concepts to make
the designer specify how the content is published in
pages and how users are supposed to reach data within
the same page or across different pages. Presentation
Units are the smallest granules at presentation level.
They can either come from nodes or add new contents
that are defined only at presentation level for
aesthetic/communication purposes. A Section is a set of
presentation units derived from nodes that belong to the
same navigation cluster. A Page is a grouping of
sections, which could also be non-semantically related,
from which it inherits links and navigation features.
Presentation units, sections, and pages can all be sources
or targets of Presentation Links, that is, a connection
between two presentation elements to enable the
navigation between them. According to the
aforementioned concepts, we can further classify the
links in a page as: Focus Links to remain in the same
page, but moving the page focus from a unit to another,
Intra-page Links to navigate between instances of the
same page type, and Page Links to navigate between
instances of different page types.

One of the main differences of Web applications, with
respect to more traditional Web sites, is the possibility
of invoking special-purpose operations (services) while
browsing the site. Operations can change the
hypermedia and business states of the application, but
they can also impact on the underlying system, control
or be controlled by external elements (e.g., an S.M.S.
server), and be either explicitly triggered by users or
implicitly invoked in particular situations. In UWA,
designers can add:
• Simple Operations , which are atomic (with respect

to their execution) computational steps that can be
invoked by the user, or could be part of activities. A
simple operation must be considered a black-box
component with respect to the user's point of view.

• Multi-step Operations , which preserve their essence
of being atomic, but are not black-box any more. A
multi-step operation is constrained on its borders
only, but suitable scenarios can be defined to
explain the different steps through which the
execution evolves.

• Activities, which are not atomic anymore. They can
be seen as business transactions or/and containers
for operations (both simple and multi-step ones).
Activities identify sets of operations to which
different behavioral semantics can be associated.
For example, either the whole activity is seen as an
atomic transaction, or other more sophisticated
transactional properties could be associated with

the activity to better control the effects of its
execution.

IV. TRANSACTION DESIGN

Transactions in web applications are critical for
businesses. Web transactions can be complex, the may
be composed of several sub-transactions, they may be
accessing many different resources including existing
legacy systems and they may have complex semantics.
To deal with such complex applications, web
transaction design needs to be very flexible allowing
both developing web applications from scratch by
decomposing user level goals into sub -goals that exhibit
transactional behavior (top-down design), as well as
using already existing systems or services to compose
new applications offering added value services (bottom-
up design).

Transaction models that provide for transactions with
complex internal structure are known as extended
transaction models (ETM) and up to now several
different such models have been proposed (sagas,
nested, open nested, etc). Some recent web standards
have adopted and new proposals are continuously
appearing. Although the ETMs are valuable in many
application domains relaxing some of the ACID
transactional properties, they can’t always deal with the
full complexity that some modern ubiquitous web
applications have. Their limitations come mainly form
their inflexibility to incorporate different transactional
semantics in one (structured) transaction or to describe
different behavioral patterns for different parts of the
same transaction.

Our objective is to facilitate the complex design
process for web transactions by providing a high level
modeling language based on extensions of UML for
designing complex web transactions In particular our
objectives are to:

1. Provide a formal, high-level design mechanism
for designing both the static structure of
transactions and their dynamic behavior.

2. Provide the ability for designing transactions
compatible to most of known transaction models.

3. Provide for designing transaction models for
scratch. As new models may be needed according
to the application’s requirements the ability to
define new transaction models becomes very
important.

4. Provide for describing different transaction
decomposition semantics and behavior in the
same structured transaction. This is very
important for applications that access resources
with different interfaces, behavior and semantics.
With this ability the same transaction can access
different resources and utilize existing legacy
systems or services adapting to their behavior.

5. Provide for modeling activities with weaker
transactional semantic that they do not have all
the ACID properties.

To achieve the above objectives we propose UTML
(Unified Transaction Modeling Language) as a high
level modeling mechanism for web transactions. The
core of UTML is a transaction meta-model that is

 4

flexible enough to describe complex transaction
according to application’s requirements.

An important model primitive of the meta-model is
the concept of the activity. An activity is a set of
operations or other activities, the execution of which has
to obey specific constraints and semantics both on what
they must satisfy and when they can be executed.

Each activity has an execution contract that has to
obey. An execution contract is defined by a set of
properties concerning the execution of an activity
instance. Such properties are Atomicity, Consistency,
Isolation and Durability. It should be noted that an
activity can have any (with some exceptions) possible
PropertySet from empty (no contract is defined for the
execution of activity instances) to ACID (forming an
execution contract similar to traditional transactions).

Another basic concept of this meta-model is the
concept of operation. An operation is an atomic, not
suspendable unit of work (sem antic operation). Each
activity has a set of operations (OperatonSet) that
implement its logic (Functional Operations) or manage
the activity itself (Management Operations).
Management operations are classified as Initialization
and Termination operations. Each activity may be
decomposed into a number of sub -activities which
compose its ActivitySet . By associating ActivitySets and
ManagementSets with each activity separately, we can
better specify its behavior incorporating different
behavioral patterns into the same structured transaction.

The decomposition of an activity has been also
modeled in terms of vitality and visibility. On this basis,
each activity decomposition association has been
enhanced with the properties vital/non-vital and
visible/invisible.

Finally, the structural dependencies that can be
defined in the Organization Model are supported by the
notion of well -formedness rules. A well -formedness rule
is a constraint that applies on a structured activity and
can specify or formalize the message flow between
activities, the commit or rollback process, etc. The
syntax of well-formedness rules is based on the
aforementioned concepts and can be described either
mathematically or through OCL (Object Constraint
Language) of UML, based on a specific UTML
organization model. However, it should be noted that in
order to express constraints on activity instances (real
time behavior) appropriate concepts should be defined.
Thus, we associated with each activity instance the
concept of OperationHistory (OS) and ActivityHistory
(AS). These sets contain operation instances and activity
instances of all successfully executed operations and
activities accordingly.

Like UML, UTML is extensible. This can be done by
introducing new management operations to describe the
transaction management and well-formedness rules to
define the complete behavior of activities and the flow
of messages that are required to be exchanged.

UTML is supported by a UML compatible notation.
That is, a specific UML profile for transaction design.
For this profile, appropriate UML stereotypes have been
introduced, using the UML extensibility mechanism, to
support both the Organization and Execution Model and
a design tool is under development.

The main contributions of this meta-model are the
following:

• It provides description for both structural and
execution dependencies of transactions.

• It provides detailed specification of transaction
decomposition semantics not for the whole model
necessarily, but for each transaction node
independently. This is important since it allows
for incorporating behavior of different transaction
models into the same transaction.

• It distinguishes between management operations
and functional operations that a transaction has
giving the ability to specify its behavior.

• It provides for designing transactions with
execution contracts weaker than ACID
integrating diverse resources like legacy systems.
Moreover, it formalizes the decomposition of
such transactions and the propagation of these
properties in sub-transact ions.

• It introduces the concept of well-formedness
rules that are based on well-described concepts
and are used to describe intra and inter-
transaction dependencies. Well-formedness rules
and management operations compose the
extensibility mechanism of the meta-model
enabling for describing application-specific
transactional behaviors.

• It uses finite state machines to describe
transaction execution flows and run time
execution dependencies between transactions.

• It provides an extend UML based notation, with
appropriate stereotypes, that is used to visualize
and document the transaction design.

Currently, UTML is being extended to provide
support for modeling ubiquitous transaction execution,
i.e. description of transactions that can be executed on
disconnect ed hosts and be synchronized with the central
database later on. This includes modeling not only of
the synchronization process but also of resource pre-
allocation for transactions in order to be able to be
executed in a disconnected mode. Another underway
extension of UTML has to do with the capability of
modeling persistent activities. This is important for
execution of “long-lived” transaction, especially under
unstable or weak connection. Finally, extension for
modeling dataflow dependencies between transactions
will give us the ability to describe scopes and strategies
for activities.

V. CUSTOMIZATION DESIGN

The approach to customization design is based on a
broad view on customization [4]. Although most often
separated in existing approaches [5], we think that
customization for ubiquitous web applications should
uniformly consider personalization aspects, together
with issues resulting from being ubiquitous , thus
supporting the anytime/anywhere/anymedia paradigm.
In our opinion, the design space of customization
comprises the two orthogonal dimensions context and
adaptation. The context dimension comprises the
circumstances of consumption of a ubiquitous web

 5

application mainly dealing with the question “why to
customize and when”. In this respect, we define context
as the reification of certain properties, describing the
environment of the application and some aspects of the
application itself , which are necessary to determine the
need for customization. The adaptation dimension
mainly refers to the questions which changes to make as
well as what to change. Customization is seen, in turn,
as a combination between a certain context and certain
adaptation, thus adapting the ubiquitous web application
towards a certain context. In particular, customization is
regarded as a new dimension, influencing all other tasks
of ubiquitous web application design as described in the
previous sections.
For designing the customization, we propose a generic
customization model in the sense of an object-oriented
framework, which provides the customization designer
with appropriate model elements for specifying both
context and adaptation. Generic means that the model is
application independent and provides some pre-defined
classes and language constructs in order to model
application dependent customization. In addition, the
pre-defined classes can be extended by the
customization designer through sub-classing in order to
cope with application specific details.
To support the context dimension, we define a physical
context model, comprising a set of pre-defined context
classes, holding actual, historical and future information
about the environment of the application and the
application itself, e.g. the device used, the user
accessing the web application. Second, there is a logical
context model , which contains a set of pre-defined
profile classes for providing more abstract and static
inform ation about the context, e.g., descriptions of the
properties of a certain device, user profile information.
Third, the customization rule model allows to specify
certain customizations. The adaptation desired towards
a certain context is specified in terms of customization
rules which are specified within UML annotations
attached to those model elements being subject to
customization. The customization rule model again
provides a set of sub models in terms of an event model,
a condition model and an action model. The event
model specifies a set of pre-defined events, responsible
for determining potential violations of certain
requirements due to changes in context. The condition
model provides logical expressions using OCL syntax
and allows to specify predicates on the context model.
The action model, finally, defines the syntax for certain
adaptations and provides a set of adaptation operations.
These adaptation operations are generic and pre-defined
for each model element being part of information
design, navigation design, presentation design, and
operations design. In addition to these generic
adaptation operations, additional application-specific
adaptation operations can be defined by the
customization designer.

VI. AN EXAMPLE

This section presents an example for an interactive, Web-
based tourist guide, designed with the UWA methodology.
Within requirements’ design, requirements are expressed as a

directed acyclic graph going from higher-level goals to
requirements proper (the leaves of the graph) 2.

Figure 1 shows a partial derivation graph including functional
(e.g. Guide Tourists) and non-functional (e.g. Maximise
Ubiquity) requirements of ubiquity and customisability.
Obviously, this does not in any way claim to be complete, but
only serves the purpose of showing the underlying process.

MaximiseUbiquity

MakeInfoAvailable
OnGSM

MakeInfoAvailable
OnWAP

ProvideContext
SensitiveInfo

MakeInfoAvailable
OnLowBandwidth

MakeInfoAvailable
OnLowBandwidth

ProvideGuidance
ToTourists

GuideTourists

ShowSites
C

ShowSite
Descriptions

C
ShowRoutes

C
ShowMaps

C

MaximiseUbiquity

MakeInfoAvailable
OnGSM

MakeInfoAvailable
OnWAP

ProvideContext
SensitiveInfo

MakeInfoAvailable
OnLowBandwidth

MakeInfoAvailable
OnLowBandwidth

ProvideGuidance
ToTourists

GuideTourists

ShowSites
C

ShowSite
Descriptions

C
ShowRoutes

C
ShowMaps

C

Figure 1. A (very partial) goal derivation graph

The example depicted in Figure 2 shows a small
fraction of the tourist guide’s Navigation Design,
modelling the Navigation Cluster for a tourist site. The
Navigation Cluster contains the available nodes, holding
information about the site’s description, i.e., a short
description (cf. TouristSight), a full description of
the tourist sight (cf. FullDescription), and a route
information (cf. RouteInfo), as well as the links in-
between.

«NodeType»

«Segment»

FullDescription

description
«NodeType»

«Segment»

RouteInfo

description

«NodeType»

«Segment»

TouristSight

name
location

«NodeType»

Structural Index

Index

«CustomisationRule»
R: ShowSiteDescriptions, MakeInfoAvaliableOnGSM
E: changeOfDevice
C: Profile.UserAgent->

graphicEnabled(CONTEXT['current'].UserAgent) == 'FALSE'
A: textMode { TouristicSight->switchTo('text') }

«CustomisationRule»
R: ShowRoutes, ProvideContextSensitiveInfo
E: changeOfLocation
C: Profile.Location->distance(CONTEXT['current'].Location,

CONTEXT['StartTime'].Location) >= '5 km'
A: recomputeRoute {

street := Profile.Location->getStreet(CONTEXT['current'].Location);
RouteDescription->findRoute(street) }

Structural Cluster Type of
Entity Type TouristSight

«NodeType»

«Segment»

FullDescription

description
«NodeType»

«Segment»

RouteInfo

description

«NodeType»

«Segment»

TouristSight

name
location

«NodeType»

Structural Index

Index

«CustomisationRule»
R: ShowSiteDescriptions, MakeInfoAvaliableOnGSM
E: changeOfDevice
C: Profile.UserAgent->

graphicEnabled(CONTEXT['current'].UserAgent) == 'FALSE'
A: textMode { TouristicSight->switchTo('text') }

«CustomisationRule»
R: ShowRoutes, ProvideContextSensitiveInfo
E: changeOfLocation
C: Profile.Location->distance(CONTEXT['current'].Location,

CONTEXT['StartTime'].Location) >= '5 km'
A: recomputeRoute {

street := Profile.Location->getStreet(CONTEXT['current'].Location);
RouteDescription->findRoute(street) }

«CustomisationRule»
R: ShowRoutes, ProvideContextSensitiveInfo
E: changeOfLocation
C: Profile.Location->distance(CONTEXT['current'].Location,

CONTEXT['StartTime'].Location) >= '5 km'
A: recomputeRoute {

street := Profile.Location->getStreet(CONTEXT['current'].Location);
RouteDescription->findRoute(street) }

Structural Cluster Type of
Entity Type TouristSight

Figure 2. Partial Navigation and Customisation Design

The customisation rules are formulated in pseudo
code and are attached to the W2000 elements. The
specification of the requirement, which is realised by a
customisation rules, is marked with "R:". The "E:",
"C:", and "A: " indicate the event, condition, and action
of the customisation rule, respectively. The underlying

2 For space reasons, only tiny snapshots of the actual graph
will be shown.

 6

physical and logical context models for this example are
not shown due to limited space.

The first rule specifies the requirement to use text
only on non -graphic enabled devices. The event detects
that the device changed, the condition evaluates the
graphical capability of the device by accessing the
device’s profile and the action activates the hook
method switchTo() of the customisable object
TouristicSight. The second rule customises the
graphic resolution according to the bandwidth. For this,
the event detects bandwidth variations, the condition
checks whether the bandwidth falls below 10 KB, and
the action resizes the two maps (SightMap and
RouteMap) proportionally.

VII. CONCLUSIONS AND FUTURE WORK

The paper presents the UWA approach to modeling
ubiquitous Web applications. Space limits obliged us
just to sketch the methodology, but interested readers
can refer to [7] for all details about the project.
As future work, we are about to start the implementation
of the supporting tools and use special-purpose case
studies to assess and evaluate the soundness of the
approach.

REFERENCES

[1] L. Baresi, F. Garzotto, and P. Paolini. Extending UML
for Modeling Web Applications. In Proceedings of 34th
Annual Hawaii International Conference on System
Sciences (HICSS-34). IEEE Computer Society, 2001.

[2] G. Booch. The Architecture of Web Applications, 2001.
www.developer.ibm.com/library/articles
/booch_web.html.

[3] A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-
directed Requirements Acquisition. Science of Computer
Programming, 20:3–50, 1993.

[4] G. Kappel, W. Retschitzegger, W. Schwinger, Modeling
Ubiquitous Web-Applications – The WUML Approach,
Proceedings of the International Workshop on Data
Semantics in Web Information Systems, Kyoto, Japan,
2001.

[5] G. Kappel, W. Retschitzegger, W. Schwinger, Modeling
Customizable Web Applications – A Requirement’s
Perspective, Proceedings of the International Conference
on Digital Libraries, Kyoto, Japan, 2000.

[6] Object Management Group. Unified Modeling Language
(UML) Specification. Version 1.4, Technical report,
OMG, September 2001.

[7] UWA consortium. www.uwaproject.org
[8] UWA Consortium. General Definition of the UWA

Framework. Technical report EC IST UWA Project,
2001.

[9] K. Yue. What Does It Mean to Say that a Specification
is Complete? In Proceedings of IWSSD-4 – the Fourth
International Workshop on Software Specification and
Design, Monterey, CA, USA, 1987.

[10] M. Weiser, "Some computer science issues in ubiquitous
computing", CACM , Vol. 36, No. 7, July 1993.

