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Abstract 
Most research in the area of designing and 
implementing continuous media servers, which 
support delay-sensitive data like audio and 
video, has assumed either clients with very small 
memory sizes for buffering and no secondary 
storage (thin clients) or a homogeneous client 
environment where all clients have exactly the 
same performance characteristics. Both 
assumptions are radically changing due to the 
availability of inexpensive storage, as well as the 
great diversity of clients that exist now and will 
exist in the future. In this work we look more 
closely at the implications that the existence of 
clients with diverse performance characteristics 
may have in the server design. Our approach is 
experimental. We use conventional hardware for 
servers and clients and examine bottlenecks and 
optimization options systematically, in order to 
reduce jitter and increase the maximum number 
of clients that the system can support. We show 
that the diversity of client performance 
characteristics can be taken into account, so that 
all clients are well supported for delay-sensitive 
retrieval in a heterogeneous environment. We 
also show that their characteristics can be 
exploited to maximize server throughput under 
server memory constrains.  

1 Introduction 
In recent years the research community and the computer 
industry have focused their attention on the management 
of multimedia data such as audio and video and on the 
provision of advanced multimedia services in the 
workplace, at home and on the road. The management of 
multimedia data and their delivery over 
telecommunication lines presents difficult problems that 
arise from the nature of the data. These problems are 
related to the management of very large volumes of data, 
high bandwidth requirements for the delivery of data that 
have to be consumed in output devices on high average 
rate, and the requirements for small variance in data 
delivery due to the delay-sensitive nature of the data. 
The above problems have drawn research in the areas of 
storage media ([1], [2]), secondary storage parallelism 
([3]-[8]), storage hierarchies ([9]-[12]), scheduling and 
delay-sensitive data support ([13]-[23]). Some studies 
focus on the overall system architecture trying to identify 
server bottlenecks. In environments where clients are thin 
it has been shown that main memory space requirements 
are very high and they form a system bottleneck [24]. 
Recent studies have focused on environments where the 
clients have enough main memory to buffer significant 
amount of data during the delivery process, in order to 
alleviate the load of the server [25]. These studies 
however are analytical in nature and necessarily treat the 
clients as if they were uniform. In addition, they can not 
easily accommodate very significant performance 
metrics, such as the transmission jitter. 
Access to multimedia services through 
telecommunication lines becomes rapidly widespread and 
the variety of devices attached to the network extends 
continuously. A heterogeneous mix of clients varying 
from very powerful ones with excessive memories, to 
thinner ones with less CPU, as well as mobile devices 

 
 
 
 
 
 
 
 
 



 

 

receiving video and audio (through newer standards like 
UMTS (up to 2Mbps) or Bluetooth (up to 20Mbps)), will 
be the rule rather than the exception. In the future, 
secondary storage devices of the clients will radically 
increase their sizes at a low cost, allowing their use for 
buffering purposes to alleviate server bottleneck. 
The work presented in this paper is a first effort to study 
some of the problems that appear in heterogeneous client 
environments and the implications to the server 
architecture. The approach is necessarily experimental 
since there are too many interdependent parameters 
involved in the overall system design, which are difficult 
to model. The experiments involve off-the-shelf hardware 
components and give a picture of the technology and the 
design choices as they are now. We show that the 
diversity of client performance characteristics can be 
taken into account, so that all clients are well supported 
for delay-sensitive retrieval in a heterogeneous 
environment. We also show that their characteristics can 
be exploited to maximize server throughput under server 
memory constrains. The results of the study are easily 
extendible to clusters of workstations acting as 
multimedia server. 
In sec.2 we present the design parameters and we proceed 
with experiments that were performed on both server and 
client systems. Sec. 3 is a brief description of the 
architecture of our stream service where we present the 
developed scheduling mechanisms and report the 
experimental results. In the following sections we focus 
on buffer space requirements in the server (sec.4), we 
discuss the support of heterogeneous clients and system 
scalability issues (sec. 5, 6) and finally we summarize our 
work (sec. 7). 

2 Designing the stream service 
The development of a multimedia management system 
relies on a storage subsystem that takes into account the 
special characteristics of stream data and guarantees real 
time delivery. In addition, such a multimedia system must 
be able to control effectively the processing of a large 
number of different tasks. These tasks include device 
management, data storage management, and request 
processing, buffer and transmission management.  
The challenge in our development of the stream service 
was to design a complete scheduling mechanism, that 
would be capable of guiding and synchronizing the 
different tasks, while at the same time it would provide 
real time service guarantees.  
Before we proceed presenting the design of the stream 
service, we analyze the requirements that arise during the 
operation of such a system experimentally.  

2.1 Hardware architecture 

The stream service (in the experiments that will follow) 
runs on an Ultra-1 workstation with two (2) SCSI-2 

controllers and four (4) disks (SEAGATE ST51080N), 
two in each controller. The data is transmitted through an 
ATM card (Fore SBA-200-155Mbps) over the local ATM 
network. Experimental clients run on a Sparc-20 and two 
(2) Sparc-4 workstations connected to the local ATM 
network (with an ATM switch) and three (3) PCs 
connected with an Ethernet switch. 

2.2 Data transmission & retrieval experiments 

We studied the behavior and the capabilities of our 
transmission server, running several experiments on 
different machines. The aim of those experiments was to 
identify the maximum transmission throughput 
(independently of the stream server) and the processing 
demands for this task.  
We used the UDP/IP protocol stack for the delivery of 
stream data to client sites. During the experiments the 
transmission server assumes that the stream data is 
available in its buffers on time. We used three different 
workstations that were connected to the local ATM 
network with the same device.  
The experiments showed us that using small UDP packet 
sizes resulted in reduced performance. Using the 
maximum packet size the transmission server achieved 56 
Mbps on a Sparc-4 machine, using 100% of its processing 
power. Running the same experiment on a Sparc-20 and 
Ultra-1 workstation, we monitored throughput 100Mbps 
with 100% CPU usage and 122 Mbps with 96% CPU 
usage respectively.  
It is obvious from the above that data transmission tasks 
have high processing demands and that the system 
throughput depends both on the network infrastructure 
and the available processing power. Thus, CPU becomes 
a critical resource and careful scheduling of the execution 
of different tasks is needed.  
Several experiments were also carried out to identify the 
real capabilities of the storage subsystem that would 
support the stream service. The experiments showed that 
the current storage subsystem (4 disks, 2 SCSI 
controllers) was capable of supporting from 70-90 
MPEG-1 (1.5Mbps) clients, varying the retrieval block 
size from 192KB to 8MB. 
 The results of all those experiments (transmission and 
retrieval) were useful, because we were able to compare 
the performance of the complete system with the 
performance that each subsystem (I/O, network) could 
independently achieve with the same hardware 
configuration, and thus to evaluate the operation of the 
whole system at various stages of the design. 

2.3 Data reception experiments 

In this section we describe some experiments that took 
place using heterogeneous client systems. The aim of 
those efforts was to identify the requirements that the 
stream server should satisfy, in order to provide 



 

 

acceptable quality of service at the client side. The 
experiments that follow were performed on different 
computers and under diverse conditions. Later in this 
paper we will see how such experiments can be applicable 
in a real system as part of a client configuration phase. 
 We ran the transmission server on an Ultra-1 workstation 
and we used 7 different packet sizes (1KB-64KB). In the 
experiment the server starts with the smaller packet and 
transmits data increasing the rate in steps. In figures 1,2 
we present the results we monitored in two different 
clients (Sparc-20, Ultra-1) that were equipped with the 
same network devices. During the experiments we 
recorded the percentage of packet loss relatively with the 
packet size and the transmission rate.  

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100 110 120

Transmission Rate (Mbps)

Pa
ck

et
 L

os
s 

(%
) 1K

2K
4K
8K
16K
32K
64K

Packet 
Size 

(Bytes)

 
Figure 1: Packet loss (%) vs. transmission rate for various 

packet sizes (Sparc-20 client, ATM) 

Figures 1,2 show that the use of small packets leads to 
significant packet loss problems. Comparing the two 
figures we can also observe that the more powerful client 
(Ultra-1) succeeded in accepting data without losses at 
higher rates than the Sparc-20 client in all cases.  
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Figure 2: Packet loss (%) vs. transmission rate for various 

packet sizes (Ultra-1 client, ATM) 

Trying to monitor what is happening in a thin client 
system during data reception activity, we used one PC 
with Intel Pentium 166 MHz processor, connected 
through a 10Mbps Ethernet channel with the server (the 
PC was connected with an Ethernet switch, which was 
connected to the ATM switch). We forced the server to 
send data starting at 1Mbps rate and increasing it 
gradually up to 10Mbps. At the client side, we measured 
the usage of the CPU and the percentage of packet loss. 
The results are presented in figure 3 and show that the 
client faced the problem of packet loss for transmission 
rates over 4 Mbps. In addition, we observed that high data 

arrival rates reserved significant percentage of the CPU 
time in the client (up to 90% for 9Mbps transmission 
rate). 
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Figure 3: CPU usage and packet loss measurements during data 

reception (PC client – Intel Pentium Pro 233Mhz, Ethernet) 

As it is expected, using a more powerful client system 
(Intel Pentium II 433Mhz) the data is received without 
losses at higher rates, while at the same time a much 
smaller portion of the available processing power of the 
client is used (figure 4). 
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Figure 4: CPU usage and packet loss measurements during data 

reception (PC client – Intel Pentium II 433Mhz, Ethernet) 

In the previous experiments the client’s CPU was 
processing only data reception tasks. In real multimedia 
applications the client’s software is responsible of 
performing several other tasks. 
For example a simple MPEG VoD client subsystem 
includes software modules for receiving data over the 
network, storing data in buffers or storage media, 
decoding the MPEG data and finally displaying them on 
output devices. Naturally, all these tasks reserve portions 
of CPU time (especially MPEG decoding, if it is not 
supported by hardware), affecting the overall client ability 
in data reception. To prove this, we run a complete client 
application that accepts data from the server, stores them 
in a local disk, decodes and displays the requested media. 
At the same time, we monitor at the client side the display 
frame rate and the packet loss percentage for different 
data transmission rates of the server. The results running 
the client on an Ultra-1 machine are presented in figure 5. 
As we can see, data transmission rates over 10Mbps result 
in noticeable display frame rate degradation thus reduced 
quality of service. From the experimental results we 
conclude that the data reception tasks are consuming 



 

 

much CPU time. Therefore, a client with a fast network 
infrastructure must also have increased processing 
capabilities, in order to accept data at high rates and 
succeed to perform other necessary jobs simultaneously. 
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Figure 5: Display frame rate and packet loss (%) vs. 

transmission rate (Ultra-1 client, ATM) 

Since we are interested in supporting heterogeneous client 
systems we ran the same experiments using different 
network infrastructure (Ethernet) and client systems 
(Windows NT, PCs). Figures 6,7 show the results of these 
experiments using 2 PCs, one Pentium Pro 233Mhz and 
one Pentium II 433Mhz. 
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Figure 6: Display frame rate and packet loss (%) vs. 

transmission rate (PC client-Pentium Pro 233Mhz, Ethernet) 
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Figure 7: Display frame rate and packet loss (%) vs. 

transmission rate (PC client - Pentium II 433Mhz, Ethernet) 

The first client faced difficulties while it was trying to 
display the video object and at the same time receive the 
video data at 1.5 Mbps. When we forced the server to 
send data at higher rates we observed noticeable reduction 
at presentation frame rate and substantial increase in 
packet losses. On the contrary, in the second client we did 
not monitor any changes in display frame rate even at 
high transmission rates. Studying the graphs we can 

conclude that clients with smaller CPU power (figure 6) 
need special attention by the server, since they require 
stable data rate transmission with low jitter in order to 
receive services at satisfactory levels.  
On the other hand, powerful clients (figure 7) that can 
accept and store data at high rates can be exploited by the 
server for better results, as we describe later.  

3 The system architecture 
In order to develop a high performance system, such as 
the stream service, the choice of the software 
development tools and techniques is an important and 
substantial factor. Based on our previous experience in 
system development ([24], [25], [26]), we wanted to 
avoid the existence of many processes, which can lead in 
excessive IPC overhead and implement an immediate data 
flow path through the subsystems. Having the above in 
mind and trying to exploit the benefits of the 
multithreading technology we present the architectural 
design of the stream service. 
The basic tasks that the stream service must take care and 
are logically independent are the following. (1) The 
request management task is the input gate of the system. 
Tasks such message acceptance, decoding, and storing in 
appropriate data structures are included in this category. 
(2) Every new service that a new client requests from the 
system forms a different new task. (3) Another 
independent category of tasks is associated with the 
storage media. It is obvious that the operation of a disk 
drive can be viewed as an autonomous execution flow or 
in other words the management of a disk drive resembles 
of a micro-server. (4) Finally one more task that must be 
handled by the stream service is the data transmission to 
the client sites. The existence of a central software 
scheduler module is necessary for managing the access to 
critical resources, synchronizing multiple storage media 
and defining the timing execution order of different 
system tasks. If we map each one of the different tasks 
that we mentioned above with an independent execution 
flow, thus with a different thread, we have the first step in 
our multithreading design that is graphically showed in 
figure 8. Each ellipse in the figure corresponds to an 
independent thread of execution. Next we briefly describe 
the responsibilities of each thread. 
Stream Service Interface: This thread is the front end of 
the stream service. It is permanently at a waiting stage to 
accept, decode new messages from clients and exchange 
information with them. 
Main Scheduler: The scheduler thread holds the 
responsibility of central processing for request execution 
scheduling. It gathers the necessary information from the 
appropriate subsystems, checks the ability of the system 
to serve new requests and is always informed about the 
status of each request service. Whenever a new request 
must be processed, the main scheduler fires a new thread 



 

 

(Process Request Thread), which works independently 
and returns the results to the scheduler. 
RT-Controller: The real-time controller is a special 
thread that aims to provide timing information to internal 
modules of the system. The RT-Controller periodically 
and in small intervals takes time stamps from the system 
clock and drives the scheduling, synchronizes the storage 
media and guides the operation of the transmission server 
(Xmt-Server). 
D-Servers: Each one of these threads is responsible of 
managing the operation of one disk drive. The disk server 
thread (D-Server) reads the appropriate disk sub-requests, 
executes them and transfers the retrieved data to the 
system buffer. 
Xmt-Server: This server thread with the appropriate 
scheduling mechanism takes over the transmission of 
stream data over the network to the clients that requested 
service. The scheduling mechanism that must be applied 
to the transmission of packets is a critical factor for the 
overall system performance. 

 
Figure 8: Threads executing different tasks in the stream service 

The next step in the design is the attentive tuning and the 
appropriate synchronization of thread execution. For 
example the response of each thread must be within 
certain time limits, depending on how critical the 
execution of each task is for the system performance.  

3.1 The scheduling mechanism for data retrieval 

The scheduling mechanism that was developed for stream 
retrieval implements a scheme of servicing requests in 
rounds. This technique is often used and follows the 
periodic nature of stream data. In each service round, data 
blocks for each stream are retrieved from storage devices 
and are transmitted over the network to clients.  
The RT-Controller thread continuously watches the 
system clock and helps in keeping the system rounds 
accurate. The main scheduler determines the tasks that 
must be performed during a service round, processes all 
active streams and produces the appropriate disk retrieval 
subrequests. These subrequests are written in a special 
memory space shared among the threads that is called 
DSR-Channel (D-Server Request channel). The system 

round is stable and common for all D-Servers. For 
performance reasons we store the stream data in such a 
way so that each data block (that must be retrieved in one 
round) is stored physically in contiguous storage. The 
above model of retrieval operation is graphically 
presented in figure 9 and is an open approach since the 
appropriate data placement and scheduler operation 
allows the easy application of both coarse and fine 
striping techniques, as well as priority and prefetching 
schemes. 

 
Figure 9: The scheduling mechanism of data retrieval 

3.2 The scheduling mechanism for stream data 
transmission 

One of the most important goals of a stream server is to 
provide quality of service, and at the same time to 
maximize its throughput. Therefore, the task of delivering 
the retrieved stream data to clients is critical since it 
immediately affects the way each client is served.  
For the experiments that follow in this section, we 
isolated the storage subsystem (supposing that data 
retrieval is done on time) and focused on the transmission 
subsystem, trying to apply different scheduling policies 
for packet transmission and to monitor the results at the 
client side. 

We assume that several MPEG1 video streams (CBR-
1.5Mbps) are stored (in data blocks of 192Kbytes) in the 
server, which is running on an Ultra-1 machine connected 
to the local ATM network. For the delivery of data the 
server sends each retrieved block continuously in FIFO 
order (among the blocks), using 48KB packets. During 
the experiment we monitored the first client (Sparc-20, 
ATM) that requested a video playback and we measured 
the data arrival rate, while at the same time new clients 
were inserted in the system. The results are shown in 
figure 10 and as we can see the monitored client is served 
poorly, since the measured data arrival rate is below the 
expected one for satisfactory service. The obvious reason 
for this is that due to bursty transmission of data blocks, 
the client faces a great amount of packet losses. 



 

 

 
Figure 10: The scheduling mechanism of data transmission 

Trying to improve the service of clients, we apply the 
EDF scheduling policy in the transmission process. A 
deadline is dynamically assigned to each new packet, 
based on the bite rate that each client must receive data 
(in this experiment we assume 1.5Mbps for all clients). 
The transmission server multiplexes data packets for 
different clients and keeps a deadline queue sending each 
time the packet with the earliest deadline that is available. 
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Figure 11: Arrival data rate at first client vs number of active 
clients in server (Scheduling scheme: transmission of data 

blocks in FIFO order) 

We repeated the experiment by applying the EDF policy 
and from figure 11 we conclude that multiplexing and 
prioritizing the stream packets during transmission gives 
better service to the clients. This is due to the fact that 
packet multiplexing creates delays in the transmission of 
successive packets for the same client resulting in a more 
smooth arrival rate. However it is worth noticing that 
when the number of clients that are served by the system 
is small, these delays are not enough, so we face again 
packet loss problems. 
Defining jitter as the variations of the packet arrival times 
from the expected ones for smooth transmission rate, we 
graph the jitter measured at the client side during the 
same experiment (figure 12). From this graph we observe 
that the transmission jitter is reducing as new clients are 
inserted in the system. 
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Figure 12: Arrival data rate at first client vs. number of active 

clients in server (Scheduling scheme: transmission of data 
packets with the EDF policy) 

Taking into account the above results and those from the 
transmission experiments that we performed in 
heterogeneous clients, we conclude that the stream server 
should transmit the data to each client with specific 
maximum rate, which depends on the hardware 
configuration and the processing power of the clients.  
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Figure 13: Transmission jitter monitored at first client side 

(Scheduling scheme: transmission of data packets with the EDF 
policy) 

Figure 13 describes how the transmission of stream data 
is performed in the server. The scheduling mechanism is a 
non work-conserving approach. Each time a new stream 
block is retrieved in the buffer (Communication Pool), the 
D-Servers inform the Xmt-Server that new data is 
available for delivery. The Xmt-Server forms the 
transmission packets (each client may accept different 
packet sizes) and assigns the appropriate deadlines. The 
RT-Controller periodically enables the execution of 
Dservers with period the service round. In subdivisions of 
this round, the RT-Controller continuously takes time 
stamps and informs the Xmt-Server about the current 



 

 

time. A deadline queue (a min-heap tree) is maintained. 
The nodes of the tree point to data packets. The Xmt-
Server starts sending the packets, the deadlines of which 
are near to the current time. When the deadline of the next 
packet is far enough that can be serviced in the next 
subround, it blocks its execution and waits the RT-
Controller to wake it up with the next time stamp. 
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Figure 14: Arrival data rate at first client vs. number of active 

clients in server 

With this technique we exploit the benefits of 
multiplexing different stream packets, while at the same 
time we insert delays when this is necessary. The 
application of the above mechanism leads to stable 
transmission rates with low jitter, as it is shown in the 
next experiment, and the mechanism was embodied in the 
stream server. We ran the transmission server with the 
new scheduling scheme and we measured (at the first 
client) the arrival rate, which was near the expected one 
without any packet loss problems. From figure 14, it can 
be seen that the maximum throughput of the transmission 
server is 81 clients (121.5 Mbps), which approximates the 
maximum transmission throughput (122 Mbps) of the 
system measured in the experiments in section 2.2. 
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Figure 15: Transmission jitter monitored at first client side 

The graph in figure 15 shows that the application of our 
transmission mechanism led to low jitter even under 
heavy load conditions. This has a positive impact to 
clients resulting in satisfactory service quality without 
packet loss problems. 
The previous experimental results showed that this 
transmission mechanism is capable of supporting the 
delivery of multiple data streams by properly adjusting 
the transmission rate to network and client capabilities, if 
they are known. 

3.3 The complete system architecture 

In sections 3.1 and 3.2 we presented the scheduling 
mechanisms of data retrieval and transmission. In figure 
16 is shown the complete multi-threaded architecture of 
the stream service with all the task threads, the software 
modules that support them, as well as the way they 
interact and cooperate with each other.  

The stream service interface thread accepts the 
requests and stores them in a waiting queue. The 
scheduler (through the executor module) fires threads to 
process new requests and the processed results are 
returned back to the scheduler’s appropriate table 
(processed request table). The scheduler keeps the 
necessary information for request service (active streams 
table) and is supported by several managers and the 
stream storage system (which manages the storage of 
streams in disks and maintains the necessary indexing 
information). Finally the RT-Controller drives the 
operation of the D-Servers and the Xmt-Server 
proceeding in time rounds. 
Several experiments were performed using the 
architecture shown below that are not presented here due 
to lack of space. Although the results were satisfactory at 
the client side, the overall system performance appeared 
reduced, compared to the performance that the 
transmission and storage subsystems achieved 
independently. It is obvious that the combination of all 
tasks running in real conditions was not optimal and 
possibly time critical tasks were being delayed by other 
non-critical. We have made an effort to overcome such 
problems by fine-tuning the system design, focusing in 
thread scheduling and real time response of critical tasks. 

3.4 Improving system performance 

The first step in trying to fine tune the stream service, was 
to assign priorities to threads dynamically. Two levels of 
priorities were used, one low priority level which 
indicates that the current thread is not as critical, and a 
high one which indicates that the fast processing of the 
thread is important for system performance. 



 

 

 
Figure 16: The complete architecture of the stream service 

 
A high priority thread is favored by the operating system 
during the reservation of an available lightweight process 
(LWP) in the kernel (a LWP can be considered as a 
bridge between user-level and kernel level threads). But 
this is not enough, especially when we have to deal with 
time critical tasks such as packet transmission and 
retrieval of stream data. These tasks should have special 
treatment at kernel level for better results. In order to 
achieve this goal we tried to exploit the real time services 
of the Solaris 2.x operating system, on which we 
developed the stream service. The Solaris operating 
system permits privileged users to run their processes in 
the real-time (RT) scheduling class and thus have the 
highest possible software dispatch priority in the system 
(even higher than the system tasks), and at the same time 
the OS guarantees bounded dispatch latency for RT 
processes. This fact is very important and it helped us to 
built a stream server capable of providing real time 
service guaranties. 
Figure 17 shows in more detail the changes that took 
place to exploit the real-time benefits of the OS. Time 
critical threads (RT-Controller, Dservers, Xmt-Server) 
were bounded to a LWP for exclusive use. By doing this, 
it was possible to change the scheduling class of the 
bounded threads to the RT class. As we can see in the 
figure, the scheduling of critical threads is now performed 
at the kernel level with high priority, while the rest of the 
threads remain under the applied user-level scheduling 
scheme. Proper synchronization techniques and blockage 
for system service prevent RT threads from monopolizing 
the CPU resource. 

 
Figure 17: The thread-scheduling scheme applied in the stream 

service 

By running experiments with the new complete system 
(all subsystems active), we had encouraging results. 
Figure 18,19 show the arrival rate of stream data and the 
monitored jitter in the first client, while new clients were 
continuously inserted in the system. The stream server 
succeeds to serve 70 clients, since the storage subsystem 
appeared to be the bottleneck with the current experiment 
configuration (with a data retrieval block size of 192KB). 
One of the interesting characteristics of the system was 
that it experimentally proved to have also the same 
performance under heavily loaded processing conditions 
(running at the same time other CPU consuming 
processes together with the stream server). This fact 
drives us to the conclusion that the system is capable of 
providing real time service guarantees. 

 



 

 

120000

140000

160000

180000

200000

220000

240000

4 24 44 64 84 104 124 144 164 184 204 224 245 270

Time (secs)

A
rr

iv
al

 R
at

e(
B

yt
es

/s
ec

)

0

10

20

30

40

50

60

70

80

90

N
o 

C
lie

nt
s

Rate Expect AvgRate Clients

Figure 18: Arrival data rate at first client side using the complete 
system vs the number of active clients in server 
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Figure 19: Transmission jitter monitored at first client side 
running the complete system 

The same experiments were run many times for other 
random users (not only the first), in order to check that 
service quality was stable for all clients, and all gave 
similar results. 

4 Buffer Space Requirements 
In the development of the stream service we embodied a 
well-known and widely accepted scheduling scheme for 
disk data retrieval in which the service of streams is 
performed in rounds and in each round the SCAN policy 
is applied in order to minimize disk seek overhead. 
Memory management is an important issue in stream 
server operation [CM97]. Assuming that S bytes are 
retrieved for each stream in each round, eventually we 
need the double buffer space (2S) due to the round-SCAN 
scheme. Thus, the stream server in order to serve N 
clients should reserve 2NS space using a double buffering 
scheme. 
On the other hand in order to improve the storage media 
performance to approach maximum device throughput, 
we have to use very large retrieval data block sizes. This 
method, as expected, leads to excessive memory space 
requirements. Thus, the system designers are often forced 
to under-utilize the storage subsystem, in order to reduce 
the buffering demands. 
In the previous experiments we used a retrieval block size 
of 192KB and system round 1sec. If we run the server 
with the same configuration, inserting gradually up to 70 
clients, and we measure the space that is dynamically 
reserved during the experiment we will see that the 
highest values (bytes of memory reserved) are equal to 

26.25MB (2NS) that corresponds to the double buffering 
scheme. If we increase the block size to 1MB, in order to 
improve the performance of the storage subsystem so as 
to serve 80 clients, the server will need 160MB of buffer 
space. Following the same technique if we want to fully 
exploit our storage subsystem and support 90 clients we 
have to use 8MB block size, resulting in memory 
requirements of 1440MB. 
The allocation-deallocation scheme that is used in our 
system to manage the buffer space is presented 
graphically in figure 20 (steps 1-5). 
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Figure 20: Buffer space reservation measurements using double 
buffering scheme (DblBuf) or exploiting the client capabilities 

(ClBufRate) 

One solution to reduce the memory size needed is to 
exploit the buffering and data reception capabilities of 
powerful clients. Due to the round-SCAN scheme, the 
transmission of the first block is delayed (in the server) 
until the end of the current round. Instead of forcing the 
server to buffer and delay the transmission, we could send 
immediately the first block and force the client to buffer 
the data and delay the presentation of media. It is easily 
understood that this action could save half of the buffer 
space at the server side. If we also assume that a set of 
powerful clients is available, which can receive data with 
high transmission rates without problems, then the server 
can take advantage of it by sending the available data to 
clients with the maximum rate. Thus, it would succeed to 
free space in buffers faster than the normal scheduling 
scheme. We experimentally proved that the above 
technique leads to drastic reduction of memory space 
requirements (figure 21, ClBufRate). In the experiment 
we used data block size 1MB and we assumed that a set 
of powerful ATM clients able to receive data at 100Mbps 
were available. The experimental results show that the 
system accomplished to serve up to 79 clients with less 
than 20MB of buffer space. The stream server in this 
experiment exploited 100% of the CPU, 97,13% of the 
network equipment and 87,7% of the storage subsystem, 
according to performance values we recorded from 
independent tests to each subsystem (section 2.2). This is 
an encouraging result, since it shows that the integrated 
system schedules many tasks efficiently and succeeds to 
approximate the maximum throughput that the physical 
configuration allows. 
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Figure 21: System throughput comparison under limited buffer 
space (60MB) and different scheduling approaches (Normal, 

ClBuf, ClBufRate) 

Assuming that we solved the CPU and network 
bottleneck (by using a faster or multiprocessing machine 
and additional network cards), we ran an experiment 
using 60MB of buffer size and three different versions of 
servers. One that follows the normal round-SCAN 
scheduling scheme (Normal), one that exploits client’s 
buffer space capabilities (ClBuf) by forcing it to delay the 
presentation of the first block and one that exploits both 
buffer space and data reception capabilities of powerful 
clients (ClBufRate). 
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Figure 22: Number of audio clients supported for various 
retrieval block sizes and memory space requirements using 

double buffering or exploiting client capabilities 

In figure 22 we compare the three schemes and observe 
large performance variations when we increase the 
retrieval block size. From the figure it becomes evident 
that the last technique maximizes system throughput since 
it significantly reduces the memory size requirements. 
In fact the first two approaches (normal, ClBuf) result in 
system throughput reduction due to the memory space 
constrains. On the contrary, the last technique 
(ClBufRate) presents high performance, since it exploits 
the increase in storage device throughput (large blocks), 
by reducing the buffer space requirements. 
The memory requirements are significantly increased 
when we have to deal with audio clients. In this case the 
stream data demands are reduced but the system has to 
support a much greater number of clients. Trying to 
utilize the storage devices, the memory space 
requirements grow rapidly to unacceptable sizes for 
conventional server machines (DblBuf line, figure 23). If 
we assume that a set of clients (capable of receiving data 

at 10Mbps max) is available, then the stream server can 
apply the same technique previously described to reduce 
memory space demands by exploiting their capabilities. 
In figure 23 is shown experimentally that the stream 
server (ClBufRate) succeeded in supporting 2000 audio 
clients (64Kbps) using extremely low buffer space, 
compared to the normal approach (DblBuf) that would 
need several Gbytes of memory for the same task.  

5 Supporting heterogeneous clients 
One of the conclusions of the work we presented so 

far is that heterogeneous clients have different demands 
and the scheduler of the stream server must be informed 
of client configuration and processing capabilities, in 
order to serve properly thin clients and exploit powerful 
ones. 
The first step in the effort to support many clients 
efficiently is to collect the characteristics of clients that 
wish access to the server.  
We could face the following cases: (1) clients with large 
memory capacity (disks or buffers), (2) clients with small 
buffer space, (3) clients with different network hardware, 
and (4) clients with different processing power. 
According to the experimental results, the server must 
send the data packets with a maximum rate specific for 
each client; otherwise the possibility of packet losses is 
increased. It is obvious that the system scheduler must be 
aware of these rates for all the clients it serves. 
This can be accomplished if each client that wishes to be 
serviced downloads a small application and runs it 
locally. Through this application the user inserts the 
hardware characteristics of his system and asks the server 
for registration. A special thread is fired at the server side 
and takes over the client configuration process. During 
this process small tests are ran to identify the reception 
capabilities of the new client in real conditions. All the 
necessary info, which is gathered during configuration, is 
stored in the client profile manager (figure 13). 
The client profile manager helps the scheduler to drive 
properly the stream data retrieval and transmission 
process for each client, through the scheduling 
mechanisms we described in this paper (section3.2). 
The knowledge of client characteristics gives also the 
opportunity to the server to decide whether is going to 
apply prefetching mechanisms or techniques to reduce the 
buffer requirements, with main goal to maximize its 
throughput.  

6 Scalability 
Multimedia servers must be developed to be flexible and 
independent from resource limits, so that can guarantee 
scalability, while keeping the response times, availability 
and reliability within satisfactory levels.  



 

 

 
Figure 23: An example of scaling stream service using a cluster of three servers 

The multithreaded design of the stream service that was 
presented in this paper gives the capability of effective 
system scaling after the addition of new resources (new 
disks, CPUs, network devices). The scaling of the server 
in shared-memory multiprocessing environments is 
straightforward, since the addition of new storage media 
or network devices can be handled by new threads that 
will run on different processors. 
 The system is also able to scale over a distributed 
environment, using a cluster of workstations. On each 
machine we can run an instance of the stream service. In 
such a scheme we can use replication techniques or we 
can apply striping methods on network level to achieve 
load balancing across server nodes. 

 
Figure 24: Allocation and deallocation of space in CP during 

system operation 

The architecture of the system uses the RT-Controller 
thread, which is responsible for providing timing 
information that drives the system operation. By 
synchronizing these threads of the different server nodes 
over the network (using existing network time 
synchronization protocols), each node can operate 
independently without the overhead of passing media data 
to other nodes or circulating synchronization messages, as 
we see in other approaches in the literature. In figure 24 
we present graphically an example of scaling the system 
using a cluster of three servers. If we assume that a stream 
object is stored striped across the servers in round-robin 
manner, then each node can operate independently 
retrieving and transmitting the stream data at the proper 

intervals (based on the assumption that the server nodes 
are accurately synchronized). Some preliminary 
experiments that were performed using the above schema 
of multiple servers, produced encouraging results. More 
experimentation and research on this scalable schema is 
in our future plans. 

7 Summary and conclusions 
In this paper we presented the process of designing and 
developing a real stream server system, which is capable 
of providing stream services to a great number of clients.  
We have tried to identify the impact that the need of 
supporting heterogeneous clients would impose on server 
system design. We performed a large number of 
experiments both at client and server side, using different 
hardware, configurations and conditions. Thin clients 
with limited processing capabilities and small buffer 
capacities, need an attentive data delivery with the 
appropriate rate and low jitter, in order to be serviced with 
acceptable quality. On the other hand, the existence of 
clients with large storage capabilities, fast network 
equipment and powerful processors can be exploited by 
the server in order to reduce the internal memory 
demands, utilize the storage subsystem and maximize its 
throughput. Thus, the server should be informed about the 
profiles of the clients. 
Experiments showed that data transmission needs 
increased processing power, so CPU becomes a critical 
resource and careful scheduling of task execution is 
necessary.  
Finally, we described the design and the process of 
developing of the stream service, and tested 
experimentally the performance of the embedded 
complete scheduling mechanism that have the following 
characteristics: 
• Exploit the multithreading technology and real time 

services of the OS 
• Synchronize the execution of different tasks from the 

retrieval to data transmission 



 

 

• Drive the transmission server for supporting multiple 
data streams over network with the appropriate rate 
and low jitter. 

• Provide real time service guarantees 
• Experimentally achieve the maximum performance 

that the system configuration and the hardware limits 
allow 

• Change their scheduling strategy based on the 
characteristics of their client mixes, in order to serve 
heterogeneous client environment 

• Exploit client capabilities in order to reduce buffer 
space demands  

• Have the ability to scale using cluster of servers 
Summarizing, we believe that as the diversity of devices 
that are attached to the network increases, proper 
execution of a stream service demands knowledge of the 
configuration and the processing power of the clients. The 
client profile information can be used to optimise the 
throughput of the server. Considerably more work is 
needed in this area for supporting the great variety of 
clients and networks that will be attached to the network 
in the future. 
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