

Design & Development of a Stream Service in a Heterogeneous
Client Environment

N. Pappas S. Christodoulakis

Laboratory of Distributed Multimedia Information Systems and Applications
(MUSIC) - Technical University of Crete (TUC)

E-mail: {nikos, stavros}@ced.tuc.gr

Abstract
Most research in the area of designing and
implementing continuous media servers, which
support delay-sensitive data like audio and
video, has assumed either clients with very small
memory sizes for buffering and no secondary
storage (thin clients) or a homogeneous client
environment where all clients have exactly the
same performance characteristics. Both
assumptions are radically changing due to the
availability of inexpensive storage, as well as the
great diversity of clients that exist now and will
exist in the future. In this work we look more
closely at the implications that the existence of
clients with diverse performance characteristics
may have in the server design. Our approach is
experimental. We use conventional hardware for
servers and clients and examine bottlenecks and
optimization options systematically, in order to
reduce jitter and increase the maximum number
of clients that the system can support. We show
that the diversity of client performance
characteristics can be taken into account, so that
all clients are well supported for delay-sensitive
retrieval in a heterogeneous environment. We
also show that their characteristics can be
exploited to maximize server throughput under
server memory constrains.

1 Introduction
In recent years the research community and the computer
industry have focused their attention on the management
of multimedia data such as audio and video and on the
provision of advanced multimedia services in the
workplace, at home and on the road. The management of
multimedia data and their delivery over
telecommunication lines presents difficult problems that
arise from the nature of the data. These problems are
related to the management of very large volumes of data,
high bandwidth requirements for the delivery of data that
have to be consumed in output devices on high average
rate, and the requirements for small variance in data
delivery due to the delay-sensitive nature of the data.
The above problems have drawn research in the areas of
storage media ([1], [2]), secondary storage parallelism
([3]-[8]), storage hierarchies ([9]-[12]), scheduling and
delay-sensitive data support ([13]-[23]). Some studies
focus on the overall system architecture trying to identify
server bottlenecks. In environments where clients are thin
it has been shown that main memory space requirements
are very high and they form a system bottleneck [24].
Recent studies have focused on environments where the
clients have enough main memory to buffer significant
amount of data during the delivery process, in order to
alleviate the load of the server [25]. These studies
however are analytical in nature and necessarily treat the
clients as if they were uniform. In addition, they can not
easily accommodate very significant performance
metrics, such as the transmission jitter.
Access to multimedia services through
telecommunication lines becomes rapidly widespread and
the variety of devices attached to the network extends
continuously. A heterogeneous mix of clients varying
from very powerful ones with excessive memories, to
thinner ones with less CPU, as well as mobile devices

receiving video and audio (through newer standards like
UMTS (up to 2Mbps) or Bluetooth (up to 20Mbps)), will
be the rule rather than the exception. In the future,
secondary storage devices of the clients will radically
increase their sizes at a low cost, allowing their use for
buffering purposes to alleviate server bottleneck.
The work presented in this paper is a first effort to study
some of the problems that appear in heterogeneous client
environments and the implications to the server
architecture. The approach is necessarily experimental
since there are too many interdependent parameters
involved in the overall system design, which are difficult
to model. The experiments involve off-the-shelf hardware
components and give a picture of the technology and the
design choices as they are now. We show that the
diversity of client performance characteristics can be
taken into account, so that all clients are well supported
for delay-sensitive retrieval in a heterogeneous
environment. We also show that their characteristics can
be exploited to maximize server throughput under server
memory constrains. The results of the study are easily
extendible to clusters of workstations acting as
multimedia server.
In sec.2 we present the design parameters and we proceed
with experiments that were performed on both server and
client systems. Sec. 3 is a brief description of the
architecture of our stream service where we present the
developed scheduling mechanisms and report the
experimental results. In the following sections we focus
on buffer space requirements in the server (sec.4), we
discuss the support of heterogeneous clients and system
scalability issues (sec. 5, 6) and finally we summarize our
work (sec. 7).

2 Designing the stream service
The development of a multimedia management system
relies on a storage subsystem that takes into account the
special characteristics of stream data and guarantees real
time delivery. In addition, such a multimedia system must
be able to control effectively the processing of a large
number of different tasks. These tasks include device
management, data storage management, and request
processing, buffer and transmission management.
The challenge in our development of the stream service
was to design a complete scheduling mechanism, that
would be capable of guiding and synchronizing the
different tasks, while at the same time it would provide
real time service guarantees.
Before we proceed presenting the design of the stream
service, we analyze the requirements that arise during the
operation of such a system experimentally.

2.1 Hardware architecture

The stream service (in the experiments that will follow)
runs on an Ultra-1 workstation with two (2) SCSI-2

controllers and four (4) disks (SEAGATE ST51080N),
two in each controller. The data is transmitted through an
ATM card (Fore SBA-200-155Mbps) over the local ATM
network. Experimental clients run on a Sparc-20 and two
(2) Sparc-4 workstations connected to the local ATM
network (with an ATM switch) and three (3) PCs
connected with an Ethernet switch.

2.2 Data transmission & retrieval experiments

We studied the behavior and the capabilities of our
transmission server, running several experiments on
different machines. The aim of those experiments was to
identify the maximum transmission throughput
(independently of the stream server) and the processing
demands for this task.
We used the UDP/IP protocol stack for the delivery of
stream data to client sites. During the experiments the
transmission server assumes that the stream data is
available in its buffers on time. We used three different
workstations that were connected to the local ATM
network with the same device.
The experiments showed us that using small UDP packet
sizes resulted in reduced performance. Using the
maximum packet size the transmission server achieved 56
Mbps on a Sparc-4 machine, using 100% of its processing
power. Running the same experiment on a Sparc-20 and
Ultra-1 workstation, we monitored throughput 100Mbps
with 100% CPU usage and 122 Mbps with 96% CPU
usage respectively.
It is obvious from the above that data transmission tasks
have high processing demands and that the system
throughput depends both on the network infrastructure
and the available processing power. Thus, CPU becomes
a critical resource and careful scheduling of the execution
of different tasks is needed.
Several experiments were also carried out to identify the
real capabilities of the storage subsystem that would
support the stream service. The experiments showed that
the current storage subsystem (4 disks, 2 SCSI
controllers) was capable of supporting from 70-90
MPEG-1 (1.5Mbps) clients, varying the retrieval block
size from 192KB to 8MB.
 The results of all those experiments (transmission and
retrieval) were useful, because we were able to compare
the performance of the complete system with the
performance that each subsystem (I/O, network) could
independently achieve with the same hardware
configuration, and thus to evaluate the operation of the
whole system at various stages of the design.

2.3 Data reception experiments

In this section we describe some experiments that took
place using heterogeneous client systems. The aim of
those efforts was to identify the requirements that the
stream server should satisfy, in order to provide

acceptable quality of service at the client side. The
experiments that follow were performed on different
computers and under diverse conditions. Later in this
paper we will see how such experiments can be applicable
in a real system as part of a client configuration phase.
 We ran the transmission server on an Ultra-1 workstation
and we used 7 different packet sizes (1KB-64KB). In the
experiment the server starts with the smaller packet and
transmits data increasing the rate in steps. In figures 1,2
we present the results we monitored in two different
clients (Sparc-20, Ultra-1) that were equipped with the
same network devices. During the experiments we
recorded the percentage of packet loss relatively with the
packet size and the transmission rate.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100 110 120

Transmission Rate (Mbps)

Pa
ck

et
 L

os
s

(%
) 1K

2K
4K
8K
16K
32K
64K

Packet
Size

(Bytes)

Figure 1: Packet loss (%) vs. transmission rate for various

packet sizes (Sparc-20 client, ATM)

Figures 1,2 show that the use of small packets leads to
significant packet loss problems. Comparing the two
figures we can also observe that the more powerful client
(Ultra-1) succeeded in accepting data without losses at
higher rates than the Sparc-20 client in all cases.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100 110 120

Transmission Rate (Mbps)

Pa
ck

et
 L

os
s

(%
) 1K

2K
4K
8K
16K
32K
64K

Packet
Size

(Bytes)

Figure 2: Packet loss (%) vs. transmission rate for various

packet sizes (Ultra-1 client, ATM)

Trying to monitor what is happening in a thin client
system during data reception activity, we used one PC
with Intel Pentium 166 MHz processor, connected
through a 10Mbps Ethernet channel with the server (the
PC was connected with an Ethernet switch, which was
connected to the ATM switch). We forced the server to
send data starting at 1Mbps rate and increasing it
gradually up to 10Mbps. At the client side, we measured
the usage of the CPU and the percentage of packet loss.
The results are presented in figure 3 and show that the
client faced the problem of packet loss for transmission
rates over 4 Mbps. In addition, we observed that high data

arrival rates reserved significant percentage of the CPU
time in the client (up to 90% for 9Mbps transmission
rate).

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

Transmission Rate (Mbps)

C
PU

 U
sa

ge
 (%

)

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

Pa
ck

et
 L

os
s

(%
)

CPU Loss

Figure 3: CPU usage and packet loss measurements during data

reception (PC client – Intel Pentium Pro 233Mhz, Ethernet)

As it is expected, using a more powerful client system
(Intel Pentium II 433Mhz) the data is received without
losses at higher rates, while at the same time a much
smaller portion of the available processing power of the
client is used (figure 4).

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

Transmission Rate (Mbps)

C
PU

 U
sa

ge
 (%

)

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

Pa
ck

et
 L

os
s(

%
)

CPU Loss

Figure 4: CPU usage and packet loss measurements during data

reception (PC client – Intel Pentium II 433Mhz, Ethernet)

In the previous experiments the client’s CPU was
processing only data reception tasks. In real multimedia
applications the client’s software is responsible of
performing several other tasks.
For example a simple MPEG VoD client subsystem
includes software modules for receiving data over the
network, storing data in buffers or storage media,
decoding the MPEG data and finally displaying them on
output devices. Naturally, all these tasks reserve portions
of CPU time (especially MPEG decoding, if it is not
supported by hardware), affecting the overall client ability
in data reception. To prove this, we run a complete client
application that accepts data from the server, stores them
in a local disk, decodes and displays the requested media.
At the same time, we monitor at the client side the display
frame rate and the packet loss percentage for different
data transmission rates of the server. The results running
the client on an Ultra-1 machine are presented in figure 5.
As we can see, data transmission rates over 10Mbps result
in noticeable display frame rate degradation thus reduced
quality of service. From the experimental results we
conclude that the data reception tasks are consuming

much CPU time. Therefore, a client with a fast network
infrastructure must also have increased processing
capabilities, in order to accept data at high rates and
succeed to perform other necessary jobs simultaneously.

0

5

10

15

20

25

30

35

0 1 1,5 2 3 4 5 6 7 8 10 15 20 30 50

Transmission Rate (Mbps)

Fr
am

e
R

at
e

(fp
s)

0

1

2

3

4

5

6

7

8

9

10

Pa
ck

et
 L

os
s

(%
)

FPS Loss

Figure 5: Display frame rate and packet loss (%) vs.

transmission rate (Ultra-1 client, ATM)

Since we are interested in supporting heterogeneous client
systems we ran the same experiments using different
network infrastructure (Ethernet) and client systems
(Windows NT, PCs). Figures 6,7 show the results of these
experiments using 2 PCs, one Pentium Pro 233Mhz and
one Pentium II 433Mhz.

0

5

10

15

20

25

30

35

0 1 1,5 2 3 4 5 6 7 8 9

Transmission Rate (Mbps)

Fr
am

e
R

at
e

(fp
s)

0
1
2
3
4
5
6
7
8
9
10

Pa
ck

et
 L

os
s

(%
)

FPS Loss

Figure 6: Display frame rate and packet loss (%) vs.

transmission rate (PC client-Pentium Pro 233Mhz, Ethernet)

0

5

10

15

20

25

30

35

0 1 1.5 2 3 4 5 6 7 8 9

Transmission Rate (Mbps)

Fr
am

e
R

at
e

(fp
s)

0

1

2

3

4

5

6

7

8

9

10

Pa
ck

et
 L

os
s

(%
)

Frames Loss

Figure 7: Display frame rate and packet loss (%) vs.

transmission rate (PC client - Pentium II 433Mhz, Ethernet)

The first client faced difficulties while it was trying to
display the video object and at the same time receive the
video data at 1.5 Mbps. When we forced the server to
send data at higher rates we observed noticeable reduction
at presentation frame rate and substantial increase in
packet losses. On the contrary, in the second client we did
not monitor any changes in display frame rate even at
high transmission rates. Studying the graphs we can

conclude that clients with smaller CPU power (figure 6)
need special attention by the server, since they require
stable data rate transmission with low jitter in order to
receive services at satisfactory levels.
On the other hand, powerful clients (figure 7) that can
accept and store data at high rates can be exploited by the
server for better results, as we describe later.

3 The system architecture
In order to develop a high performance system, such as
the stream service, the choice of the software
development tools and techniques is an important and
substantial factor. Based on our previous experience in
system development ([24], [25], [26]), we wanted to
avoid the existence of many processes, which can lead in
excessive IPC overhead and implement an immediate data
flow path through the subsystems. Having the above in
mind and trying to exploit the benefits of the
multithreading technology we present the architectural
design of the stream service.
The basic tasks that the stream service must take care and
are logically independent are the following. (1) The
request management task is the input gate of the system.
Tasks such message acceptance, decoding, and storing in
appropriate data structures are included in this category.
(2) Every new service that a new client requests from the
system forms a different new task. (3) Another
independent category of tasks is associated with the
storage media. It is obvious that the operation of a disk
drive can be viewed as an autonomous execution flow or
in other words the management of a disk drive resembles
of a micro-server. (4) Finally one more task that must be
handled by the stream service is the data transmission to
the client sites. The existence of a central software
scheduler module is necessary for managing the access to
critical resources, synchronizing multiple storage media
and defining the timing execution order of different
system tasks. If we map each one of the different tasks
that we mentioned above with an independent execution
flow, thus with a different thread, we have the first step in
our multithreading design that is graphically showed in
figure 8. Each ellipse in the figure corresponds to an
independent thread of execution. Next we briefly describe
the responsibilities of each thread.
Stream Service Interface: This thread is the front end of
the stream service. It is permanently at a waiting stage to
accept, decode new messages from clients and exchange
information with them.
Main Scheduler: The scheduler thread holds the
responsibility of central processing for request execution
scheduling. It gathers the necessary information from the
appropriate subsystems, checks the ability of the system
to serve new requests and is always informed about the
status of each request service. Whenever a new request
must be processed, the main scheduler fires a new thread

(Process Request Thread), which works independently
and returns the results to the scheduler.
RT-Controller: The real-time controller is a special
thread that aims to provide timing information to internal
modules of the system. The RT-Controller periodically
and in small intervals takes time stamps from the system
clock and drives the scheduling, synchronizes the storage
media and guides the operation of the transmission server
(Xmt-Server).
D-Servers: Each one of these threads is responsible of
managing the operation of one disk drive. The disk server
thread (D-Server) reads the appropriate disk sub-requests,
executes them and transfers the retrieved data to the
system buffer.
Xmt-Server: This server thread with the appropriate
scheduling mechanism takes over the transmission of
stream data over the network to the clients that requested
service. The scheduling mechanism that must be applied
to the transmission of packets is a critical factor for the
overall system performance.

Figure 8: Threads executing different tasks in the stream service

The next step in the design is the attentive tuning and the
appropriate synchronization of thread execution. For
example the response of each thread must be within
certain time limits, depending on how critical the
execution of each task is for the system performance.

3.1 The scheduling mechanism for data retrieval

The scheduling mechanism that was developed for stream
retrieval implements a scheme of servicing requests in
rounds. This technique is often used and follows the
periodic nature of stream data. In each service round, data
blocks for each stream are retrieved from storage devices
and are transmitted over the network to clients.
The RT-Controller thread continuously watches the
system clock and helps in keeping the system rounds
accurate. The main scheduler determines the tasks that
must be performed during a service round, processes all
active streams and produces the appropriate disk retrieval
subrequests. These subrequests are written in a special
memory space shared among the threads that is called
DSR-Channel (D-Server Request channel). The system

round is stable and common for all D-Servers. For
performance reasons we store the stream data in such a
way so that each data block (that must be retrieved in one
round) is stored physically in contiguous storage. The
above model of retrieval operation is graphically
presented in figure 9 and is an open approach since the
appropriate data placement and scheduler operation
allows the easy application of both coarse and fine
striping techniques, as well as priority and prefetching
schemes.

Figure 9: The scheduling mechanism of data retrieval

3.2 The scheduling mechanism for stream data
transmission

One of the most important goals of a stream server is to
provide quality of service, and at the same time to
maximize its throughput. Therefore, the task of delivering
the retrieved stream data to clients is critical since it
immediately affects the way each client is served.
For the experiments that follow in this section, we
isolated the storage subsystem (supposing that data
retrieval is done on time) and focused on the transmission
subsystem, trying to apply different scheduling policies
for packet transmission and to monitor the results at the
client side.

We assume that several MPEG1 video streams (CBR-
1.5Mbps) are stored (in data blocks of 192Kbytes) in the
server, which is running on an Ultra-1 machine connected
to the local ATM network. For the delivery of data the
server sends each retrieved block continuously in FIFO
order (among the blocks), using 48KB packets. During
the experiment we monitored the first client (Sparc-20,
ATM) that requested a video playback and we measured
the data arrival rate, while at the same time new clients
were inserted in the system. The results are shown in
figure 10 and as we can see the monitored client is served
poorly, since the measured data arrival rate is below the
expected one for satisfactory service. The obvious reason
for this is that due to bursty transmission of data blocks,
the client faces a great amount of packet losses.

Figure 10: The scheduling mechanism of data transmission

Trying to improve the service of clients, we apply the
EDF scheduling policy in the transmission process. A
deadline is dynamically assigned to each new packet,
based on the bite rate that each client must receive data
(in this experiment we assume 1.5Mbps for all clients).
The transmission server multiplexes data packets for
different clients and keeps a deadline queue sending each
time the packet with the earliest deadline that is available.

0

50000

100000

150000

200000

250000

1 30 55 79 101 123 145 170 201

Time (secs)

A
rr

iv
al

 R
at

e
(B

yt
es

/s
ec

)

0

10

20

30

40

50

60

70

80

90

100

N
o

C
lie

nt
s

Rate Expected Clients

Figure 11: Arrival data rate at first client vs number of active
clients in server (Scheduling scheme: transmission of data

blocks in FIFO order)

We repeated the experiment by applying the EDF policy
and from figure 11 we conclude that multiplexing and
prioritizing the stream packets during transmission gives
better service to the clients. This is due to the fact that
packet multiplexing creates delays in the transmission of
successive packets for the same client resulting in a more
smooth arrival rate. However it is worth noticing that
when the number of clients that are served by the system
is small, these delays are not enough, so we face again
packet loss problems.
Defining jitter as the variations of the packet arrival times
from the expected ones for smooth transmission rate, we
graph the jitter measured at the client side during the
same experiment (figure 12). From this graph we observe
that the transmission jitter is reducing as new clients are
inserted in the system.

0

50000

100000

150000

200000

250000

1 24 40 56 72 88 105 121 137 153 169 186 203

Time (secs)

A
rr

iv
al

 R
at

e
(B

yt
es

/s
ec

)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

N
o

C
lie

nt
s

Rate Expected Clients

Figure 12: Arrival data rate at first client vs. number of active

clients in server (Scheduling scheme: transmission of data
packets with the EDF policy)

Taking into account the above results and those from the
transmission experiments that we performed in
heterogeneous clients, we conclude that the stream server
should transmit the data to each client with specific
maximum rate, which depends on the hardware
configuration and the processing power of the clients.

-400000

-200000

0

200000

400000

600000

800000

1000000

1200000

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800

Packet No

Va
ria

tio
n

(n
se

cs
)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

N
o

C
lie

nt
s

Jitter Clients

Figure 13: Transmission jitter monitored at first client side

(Scheduling scheme: transmission of data packets with the EDF
policy)

Figure 13 describes how the transmission of stream data
is performed in the server. The scheduling mechanism is a
non work-conserving approach. Each time a new stream
block is retrieved in the buffer (Communication Pool), the
D-Servers inform the Xmt-Server that new data is
available for delivery. The Xmt-Server forms the
transmission packets (each client may accept different
packet sizes) and assigns the appropriate deadlines. The
RT-Controller periodically enables the execution of
Dservers with period the service round. In subdivisions of
this round, the RT-Controller continuously takes time
stamps and informs the Xmt-Server about the current

time. A deadline queue (a min-heap tree) is maintained.
The nodes of the tree point to data packets. The Xmt-
Server starts sending the packets, the deadlines of which
are near to the current time. When the deadline of the next
packet is far enough that can be serviced in the next
subround, it blocks its execution and waits the RT-
Controller to wake it up with the next time stamp.

Graph TRA

0

50000

100000

150000

200000

250000

0 17 32 49 65 81 97 113 129 145 161 177 194 212

Time (secs)

A
rr

iv
al

 R
at

e
(B

yt
es

/s
ec

)

0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85

N
o

C
lie

nt
s

Rate Expected Clients

Figure 14: Arrival data rate at first client vs. number of active

clients in server

With this technique we exploit the benefits of
multiplexing different stream packets, while at the same
time we insert delays when this is necessary. The
application of the above mechanism leads to stable
transmission rates with low jitter, as it is shown in the
next experiment, and the mechanism was embodied in the
stream server. We ran the transmission server with the
new scheduling scheme and we measured (at the first
client) the arrival rate, which was near the expected one
without any packet loss problems. From figure 14, it can
be seen that the maximum throughput of the transmission
server is 81 clients (121.5 Mbps), which approximates the
maximum transmission throughput (122 Mbps) of the
system measured in the experiments in section 2.2.

Graph TJA

-500000

-250000

0

250000

500000

750000

1000000

1250000

1500000

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750

Packet No

V
ar

ia
tio

n
(n

se
cs

)

0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85

N
o

C
lie

nt
s

Jitter Clients

Figure 15: Transmission jitter monitored at first client side

The graph in figure 15 shows that the application of our
transmission mechanism led to low jitter even under
heavy load conditions. This has a positive impact to
clients resulting in satisfactory service quality without
packet loss problems.
The previous experimental results showed that this
transmission mechanism is capable of supporting the
delivery of multiple data streams by properly adjusting
the transmission rate to network and client capabilities, if
they are known.

3.3 The complete system architecture

In sections 3.1 and 3.2 we presented the scheduling
mechanisms of data retrieval and transmission. In figure
16 is shown the complete multi-threaded architecture of
the stream service with all the task threads, the software
modules that support them, as well as the way they
interact and cooperate with each other.

The stream service interface thread accepts the
requests and stores them in a waiting queue. The
scheduler (through the executor module) fires threads to
process new requests and the processed results are
returned back to the scheduler’s appropriate table
(processed request table). The scheduler keeps the
necessary information for request service (active streams
table) and is supported by several managers and the
stream storage system (which manages the storage of
streams in disks and maintains the necessary indexing
information). Finally the RT-Controller drives the
operation of the D-Servers and the Xmt-Server
proceeding in time rounds.
Several experiments were performed using the
architecture shown below that are not presented here due
to lack of space. Although the results were satisfactory at
the client side, the overall system performance appeared
reduced, compared to the performance that the
transmission and storage subsystems achieved
independently. It is obvious that the combination of all
tasks running in real conditions was not optimal and
possibly time critical tasks were being delayed by other
non-critical. We have made an effort to overcome such
problems by fine-tuning the system design, focusing in
thread scheduling and real time response of critical tasks.

3.4 Improving system performance

The first step in trying to fine tune the stream service, was
to assign priorities to threads dynamically. Two levels of
priorities were used, one low priority level which
indicates that the current thread is not as critical, and a
high one which indicates that the fast processing of the
thread is important for system performance.

Figure 16: The complete architecture of the stream service

A high priority thread is favored by the operating system
during the reservation of an available lightweight process
(LWP) in the kernel (a LWP can be considered as a
bridge between user-level and kernel level threads). But
this is not enough, especially when we have to deal with
time critical tasks such as packet transmission and
retrieval of stream data. These tasks should have special
treatment at kernel level for better results. In order to
achieve this goal we tried to exploit the real time services
of the Solaris 2.x operating system, on which we
developed the stream service. The Solaris operating
system permits privileged users to run their processes in
the real-time (RT) scheduling class and thus have the
highest possible software dispatch priority in the system
(even higher than the system tasks), and at the same time
the OS guarantees bounded dispatch latency for RT
processes. This fact is very important and it helped us to
built a stream server capable of providing real time
service guaranties.
Figure 17 shows in more detail the changes that took
place to exploit the real-time benefits of the OS. Time
critical threads (RT-Controller, Dservers, Xmt-Server)
were bounded to a LWP for exclusive use. By doing this,
it was possible to change the scheduling class of the
bounded threads to the RT class. As we can see in the
figure, the scheduling of critical threads is now performed
at the kernel level with high priority, while the rest of the
threads remain under the applied user-level scheduling
scheme. Proper synchronization techniques and blockage
for system service prevent RT threads from monopolizing
the CPU resource.

Figure 17: The thread-scheduling scheme applied in the stream

service

By running experiments with the new complete system
(all subsystems active), we had encouraging results.
Figure 18,19 show the arrival rate of stream data and the
monitored jitter in the first client, while new clients were
continuously inserted in the system. The stream server
succeeds to serve 70 clients, since the storage subsystem
appeared to be the bottleneck with the current experiment
configuration (with a data retrieval block size of 192KB).
One of the interesting characteristics of the system was
that it experimentally proved to have also the same
performance under heavily loaded processing conditions
(running at the same time other CPU consuming
processes together with the stream server). This fact
drives us to the conclusion that the system is capable of
providing real time service guarantees.

120000

140000

160000

180000

200000

220000

240000

4 24 44 64 84 104 124 144 164 184 204 224 245 270

Time (secs)

A
rr

iv
al

 R
at

e(
B

yt
es

/s
ec

)

0

10

20

30

40

50

60

70

80

90

N
o

C
lie

nt
s

Rate Expect AvgRate Clients

Figure 18: Arrival data rate at first client side using the complete
system vs the number of active clients in server

-400000

-200000

0

200000

400000

600000

800000

1 71 141 211 281 351 421 491 561 631 701 771 841 911 981 1051 1121

Packet No

Va
ria

tio
n

(n
se

cs
)

0

10

20

30

40

50

60

70

80

90

N
o

C
lie

nt
s

Variation Clients

Figure 19: Transmission jitter monitored at first client side
running the complete system

The same experiments were run many times for other
random users (not only the first), in order to check that
service quality was stable for all clients, and all gave
similar results.

4 Buffer Space Requirements
In the development of the stream service we embodied a
well-known and widely accepted scheduling scheme for
disk data retrieval in which the service of streams is
performed in rounds and in each round the SCAN policy
is applied in order to minimize disk seek overhead.
Memory management is an important issue in stream
server operation [CM97]. Assuming that S bytes are
retrieved for each stream in each round, eventually we
need the double buffer space (2S) due to the round-SCAN
scheme. Thus, the stream server in order to serve N
clients should reserve 2NS space using a double buffering
scheme.
On the other hand in order to improve the storage media
performance to approach maximum device throughput,
we have to use very large retrieval data block sizes. This
method, as expected, leads to excessive memory space
requirements. Thus, the system designers are often forced
to under-utilize the storage subsystem, in order to reduce
the buffering demands.
In the previous experiments we used a retrieval block size
of 192KB and system round 1sec. If we run the server
with the same configuration, inserting gradually up to 70
clients, and we measure the space that is dynamically
reserved during the experiment we will see that the
highest values (bytes of memory reserved) are equal to

26.25MB (2NS) that corresponds to the double buffering
scheme. If we increase the block size to 1MB, in order to
improve the performance of the storage subsystem so as
to serve 80 clients, the server will need 160MB of buffer
space. Following the same technique if we want to fully
exploit our storage subsystem and support 90 clients we
have to use 8MB block size, resulting in memory
requirements of 1440MB.
The allocation-deallocation scheme that is used in our
system to manage the buffer space is presented
graphically in figure 20 (steps 1-5).

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60 70 80 90

No Clients
M

em
or

y
U

se
 (M

by
te

s)

ClBufRate DblBuf

Figure 20: Buffer space reservation measurements using double
buffering scheme (DblBuf) or exploiting the client capabilities

(ClBufRate)

One solution to reduce the memory size needed is to
exploit the buffering and data reception capabilities of
powerful clients. Due to the round-SCAN scheme, the
transmission of the first block is delayed (in the server)
until the end of the current round. Instead of forcing the
server to buffer and delay the transmission, we could send
immediately the first block and force the client to buffer
the data and delay the presentation of media. It is easily
understood that this action could save half of the buffer
space at the server side. If we also assume that a set of
powerful clients is available, which can receive data with
high transmission rates without problems, then the server
can take advantage of it by sending the available data to
clients with the maximum rate. Thus, it would succeed to
free space in buffers faster than the normal scheduling
scheme. We experimentally proved that the above
technique leads to drastic reduction of memory space
requirements (figure 21, ClBufRate). In the experiment
we used data block size 1MB and we assumed that a set
of powerful ATM clients able to receive data at 100Mbps
were available. The experimental results show that the
system accomplished to serve up to 79 clients with less
than 20MB of buffer space. The stream server in this
experiment exploited 100% of the CPU, 97,13% of the
network equipment and 87,7% of the storage subsystem,
according to performance values we recorded from
independent tests to each subsystem (section 2.2). This is
an encouraging result, since it shows that the integrated
system schedules many tasks efficiently and succeeds to
approximate the maximum throughput that the physical
configuration allows.

0

10

20

30

40

50

60

70

80

90

100

0,19 1 8

Block Size (Mbytes)

N
o

C
lie

nt
s

0

6

12

18

24

30

36

42

48

54

60

M
em

or
y

U
se

 (M
by

te
s)

Normal ClBuf ClBufRate MemUse

Figure 21: System throughput comparison under limited buffer
space (60MB) and different scheduling approaches (Normal,

ClBuf, ClBufRate)

Assuming that we solved the CPU and network
bottleneck (by using a faster or multiprocessing machine
and additional network cards), we ran an experiment
using 60MB of buffer size and three different versions of
servers. One that follows the normal round-SCAN
scheduling scheme (Normal), one that exploits client’s
buffer space capabilities (ClBuf) by forcing it to delay the
presentation of the first block and one that exploits both
buffer space and data reception capabilities of powerful
clients (ClBufRate).

Graph THRS

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200

8 64 128 512 1024

Block Size (KBytes)

N
o

C
lie

nt
s

0
365
730
1095
1460
1825
2190
2555
2920
3285
3650
4015

M
em

or
y

U
se

 (M
by

te
s)

Clients ClBufRate DblBuf

Figure 22: Number of audio clients supported for various
retrieval block sizes and memory space requirements using

double buffering or exploiting client capabilities

In figure 22 we compare the three schemes and observe
large performance variations when we increase the
retrieval block size. From the figure it becomes evident
that the last technique maximizes system throughput since
it significantly reduces the memory size requirements.
In fact the first two approaches (normal, ClBuf) result in
system throughput reduction due to the memory space
constrains. On the contrary, the last technique
(ClBufRate) presents high performance, since it exploits
the increase in storage device throughput (large blocks),
by reducing the buffer space requirements.
The memory requirements are significantly increased
when we have to deal with audio clients. In this case the
stream data demands are reduced but the system has to
support a much greater number of clients. Trying to
utilize the storage devices, the memory space
requirements grow rapidly to unacceptable sizes for
conventional server machines (DblBuf line, figure 23). If
we assume that a set of clients (capable of receiving data

at 10Mbps max) is available, then the stream server can
apply the same technique previously described to reduce
memory space demands by exploiting their capabilities.
In figure 23 is shown experimentally that the stream
server (ClBufRate) succeeded in supporting 2000 audio
clients (64Kbps) using extremely low buffer space,
compared to the normal approach (DblBuf) that would
need several Gbytes of memory for the same task.

5 Supporting heterogeneous clients
One of the conclusions of the work we presented so

far is that heterogeneous clients have different demands
and the scheduler of the stream server must be informed
of client configuration and processing capabilities, in
order to serve properly thin clients and exploit powerful
ones.
The first step in the effort to support many clients
efficiently is to collect the characteristics of clients that
wish access to the server.
We could face the following cases: (1) clients with large
memory capacity (disks or buffers), (2) clients with small
buffer space, (3) clients with different network hardware,
and (4) clients with different processing power.
According to the experimental results, the server must
send the data packets with a maximum rate specific for
each client; otherwise the possibility of packet losses is
increased. It is obvious that the system scheduler must be
aware of these rates for all the clients it serves.
This can be accomplished if each client that wishes to be
serviced downloads a small application and runs it
locally. Through this application the user inserts the
hardware characteristics of his system and asks the server
for registration. A special thread is fired at the server side
and takes over the client configuration process. During
this process small tests are ran to identify the reception
capabilities of the new client in real conditions. All the
necessary info, which is gathered during configuration, is
stored in the client profile manager (figure 13).
The client profile manager helps the scheduler to drive
properly the stream data retrieval and transmission
process for each client, through the scheduling
mechanisms we described in this paper (section3.2).
The knowledge of client characteristics gives also the
opportunity to the server to decide whether is going to
apply prefetching mechanisms or techniques to reduce the
buffer requirements, with main goal to maximize its
throughput.

6 Scalability
Multimedia servers must be developed to be flexible and
independent from resource limits, so that can guarantee
scalability, while keeping the response times, availability
and reliability within satisfactory levels.

Figure 23: An example of scaling stream service using a cluster of three servers

The multithreaded design of the stream service that was
presented in this paper gives the capability of effective
system scaling after the addition of new resources (new
disks, CPUs, network devices). The scaling of the server
in shared-memory multiprocessing environments is
straightforward, since the addition of new storage media
or network devices can be handled by new threads that
will run on different processors.
 The system is also able to scale over a distributed
environment, using a cluster of workstations. On each
machine we can run an instance of the stream service. In
such a scheme we can use replication techniques or we
can apply striping methods on network level to achieve
load balancing across server nodes.

Figure 24: Allocation and deallocation of space in CP during

system operation

The architecture of the system uses the RT-Controller
thread, which is responsible for providing timing
information that drives the system operation. By
synchronizing these threads of the different server nodes
over the network (using existing network time
synchronization protocols), each node can operate
independently without the overhead of passing media data
to other nodes or circulating synchronization messages, as
we see in other approaches in the literature. In figure 24
we present graphically an example of scaling the system
using a cluster of three servers. If we assume that a stream
object is stored striped across the servers in round-robin
manner, then each node can operate independently
retrieving and transmitting the stream data at the proper

intervals (based on the assumption that the server nodes
are accurately synchronized). Some preliminary
experiments that were performed using the above schema
of multiple servers, produced encouraging results. More
experimentation and research on this scalable schema is
in our future plans.

7 Summary and conclusions
In this paper we presented the process of designing and
developing a real stream server system, which is capable
of providing stream services to a great number of clients.
We have tried to identify the impact that the need of
supporting heterogeneous clients would impose on server
system design. We performed a large number of
experiments both at client and server side, using different
hardware, configurations and conditions. Thin clients
with limited processing capabilities and small buffer
capacities, need an attentive data delivery with the
appropriate rate and low jitter, in order to be serviced with
acceptable quality. On the other hand, the existence of
clients with large storage capabilities, fast network
equipment and powerful processors can be exploited by
the server in order to reduce the internal memory
demands, utilize the storage subsystem and maximize its
throughput. Thus, the server should be informed about the
profiles of the clients.
Experiments showed that data transmission needs
increased processing power, so CPU becomes a critical
resource and careful scheduling of task execution is
necessary.
Finally, we described the design and the process of
developing of the stream service, and tested
experimentally the performance of the embedded
complete scheduling mechanism that have the following
characteristics:
• Exploit the multithreading technology and real time

services of the OS
• Synchronize the execution of different tasks from the

retrieval to data transmission

• Drive the transmission server for supporting multiple
data streams over network with the appropriate rate
and low jitter.

• Provide real time service guarantees
• Experimentally achieve the maximum performance

that the system configuration and the hardware limits
allow

• Change their scheduling strategy based on the
characteristics of their client mixes, in order to serve
heterogeneous client environment

• Exploit client capabilities in order to reduce buffer
space demands

• Have the ability to scale using cluster of servers
Summarizing, we believe that as the diversity of devices
that are attached to the network increases, proper
execution of a stream service demands knowledge of the
configuration and the processing power of the clients. The
client profile information can be used to optimise the
throughput of the server. Considerably more work is
needed in this area for supporting the great variety of
clients and networks that will be attached to the network
in the future.

8 References
[1] Reummler, C. and Wilkes, J. “An Introduction to Disk

Drive Modeling”. IEEE Computer 27(3): 17-28, 1994.
[2] Ghandeharizadeh, S., Stone, J. and Zimmermann, R.

“Techniques to Quantify SCSI-2 Disk Subsystem
Specifications for Multimedia”, Technical Report USC-
CS-TR95-610, University of Southern California, 1995.

[3] Tobagi, F.A., et. al. “Streaming RAID: A Disk Array
Management System for Video Files”, In Proceedings of
the ACM Conference on Multimedia, August 1993.

[4] Berson, S., Muntz, R., Ghandeharizadeh, S. and Ju, X.
“Staggered Striping in Multimedia Information System”,
In Proceedings of the SIGMOD Conference, May 1994.

[5] Vin, H.M., Shenoy, P. and Rao, S. “Analyzing the
Performane of Asychronous Disk Arrays for Multimedia
Retrieval”. In Proceedings of the 1st ISMM International
Conference on Distributed Multimedia Systems and
Applications, August 1994.

[6] Ghandeharizadeh, S. and Kim Seon H. “Striping in Multi-
Disk Video Servers”, In Proceedings of High-Density
Data Recording and Retrieval Technologies SPIE Vol.
2604, October 1995.

[7] Oezden, B., Rastogi, R. and Silberschatz, A. “Disk
Striping in Video Server Environments”, In Proceedings
of the IEEE International Conference on Multimedia
Computing and Systems (ICMCS), June 1996.

[8] Scheuermann P., Weikum, G., Zabback, P. “Data
Partitioning and Load Balancing in Parallel Disk
Systems”, VLDB Journal 7(1):48-66, 1998.

[9] Golubchik, L., Muntz, R., Watson, R.W. “Analysis of
Striping Techniques in Robotic Storage Libraries”, In
Proceedings of the 14th IEEE Symposium on Mass Storage
Systems, November 1994.

[10] Ghandeharizadeh, S. and Shahabi, C. “Personal
Computers and Hierarchical Storage Systems”, On

Multimedia Repositories, In Proceedings of the ACM
Multimedia Conference, 1994.

[11] Kienzle, M.G., Dan, A., Sitaram, D., and Tetzall, W.
“Using Tertiary Storage in Video-on-Demand Servers”,
COMPCON’95 Digest of Papers, IEEE-CS, 1995.

[12] Christodoulakis, S., Triantafillou, P., Zioga, F. “Principles
of Optimally Placing Data in Tertiary Storage Libraries”,
In Proceedings of the 23rd International Conference on
Very Large Data Bases, August 1997.

[13] Gemmell, D., Christodoulakis, S. “Principles of Delay
Sensitive Multimedia Data Storage Servers”, ACM
Transactions on Information Systems 10(1): 51-90, 1992.

[14] Vin, H.M., Rangan, P.V. “Designing a Multi-User HDTV
Storage Server”, IEEE Journal on Selected Areas in
Communications 11(1), 1993.

[15] Gemmell, D., Han, J., Beaton, R.J., Christodoulakis, S.
“Delay-Sensitive Multimedia on Disks”, IEEE
Multimedia 1(3): 56-67, 1994.

[16] Gemmell, J. and Han, J. “Multimedia Network File
Servers: Multi-channel Delay Sensitive Data Retrieval”,
Multimedia Systems 1(6):240-252, 1994.

[17] Gemmell, J., et. al. “Multimedia Storage Servers: A
Tutorial”, IEEE Computer 28(5): 40-49, 1995.

[18] Oezden, B., Rastogi, R. and Silberschatz, A. “On the
design of a low-cost video-on-demand storage system”,
Multimedia Systems 4(1): 40-54, 1996.

[19] Bolosky, W.J., et. al. “The Tiger Video Fileserver”, In
Proceedings of the 6th International Workshop on
Network and Operating Systems Support for Digital Audio
and Video (NOSSDAV), April 1996.

[20] Gemmell, J. “Disk Scheduling for Continuous Media”,
Multimedia Information Storage and Management, S.M.
Chung, Ed., Kluwer Academic Publishers, Boston 1996.

[21] Shenoy, P.J., Goyal, P., Rao, S.S., Vin, H. “Symphony:
An Integrated Multimedia File System”, In Proceedings
of SPIE/ACM Conference on Multimedia Computing &
Networking (MMCN), 124-138, 1998.

[22] Zimmerman, R., Ghandeharizadeh, S. “Continuous
Display Using Heterogeneous Disk Subsystems”, In
Electronic Proceedings ACM Multimedia, 1997.

[23] Johnson, T.V., Zhang, A. “Dynamic Playout Scheduling
Algorithms for Continuous Multimedia Streams”.
Multimedia Systems 7(4): 312-325, 1999.

[24] Chang, E., Garcia-Molina, H. “Effective Memory Use in a
Media Server”, In Proceedings of the 23rd International
Conference on Very Large Data Bases, 496-505, 1997.

[25] Christodoulakis, S. and Zioga, F. “Data Base Design
Principles for Placement of Delay-Sensitive Data on
Disks”, IEEE Transactions on Knowledge and Data
Engineering 11(3): 425-447, 1999.

[26] Christodoulakis, S., Pappas, N. et. al. “The KYDONIA
multimedia information server”. In Proceedings of the
European Conference on Multimedia Applications
Services and Techniques (ECMAST), May 1997.

[27] Mavraganis, Y., Maragoudakis, Y., Pappas, N., Kyriakaki,
G. “The SICMA multimedia server and the virtual
museum application”, In Proc. of the European Conf. on
Multimedia Applications Services & Techniques, 1998.

[28] Maragoudakis, Y., Mavraganis, Y., Meyer, K., Pappas, N.
“The SICMA Teleteaching Trial on ADSL and Intranet
network”. In Proc. of the 4th European Con.e on
Multimedia Applications Services & Techniques, 1999.

