23rd International Conference on Very Large Databases (VLDB)
Athens, August 1997
(Accepted to appear).

Principles of Optimally Placing Data in
Tertiary Storage Libraries

Stavros Christodoulakis, Peter Triantafillou and Fenia Zioga !
Multimedia Systems Institute of Crete (MUSIC) and
Department of Electronics and Computer Engineering

Technical University of Crete
Crete, Greece

Abstract

Recently, technological advances have resulted in the wide availability of com-
mercial products offering near-line, robot-based, tertiary storage libraries. Thus, such
libraries have become a crucial component of modern large-scale storage servers, given
the very large storage requirements of modern applications. Although the subject of
optimal data placement (ODP) strategies has received considerable attention for other
storage devices (such as magnetic and optical disks and disk arrays) the issue of op-
timal data placement in tertiary libraries has been neglected. The latter issue is more
critical since tertiary storage remains three orders of magnitude slower than secondary
storage. In this paper we address this issue by deriving such optimal placement algo-
rithms. First, we study ODP in disk libraries (jukeboxes) and, subsequently, in tape
libraries. In our studies we consider different scheduling algorithms, different config-
urations of disk libraries, and different tape library technologies (reflecting different
existing commercial products) and show how these impact on the ODP strategy.

1 Introduction

In large scale storage servers which are configured to include multiple on-line and
off-line storage media and which deal with a large number of requests with unpre-
dictable access patterns, the problem of minimizing the cost of accessing data stored
in all media is critical for the performance of the system.

! Authors address: MUSIC, P.O. Box 133, Chania Crete 73100 Greece. Email: {stavros, peter,
fenia}@ced.tuc.gr. Support for this work was provided by the European Community through the
ESPRIT Long Term Research Project HERMES no. 9141

In this paper we examine tape and disk libraries for which we derive data place-
ment algorithms in order to optimize the access cost. Typical tape or disk libraries
include a few drives and many more (typically a few hundreds) disks or tapes. Disks
(tapes) are loaded onto the drives or unloaded from them by a robotic mechanism
which typically consists of one arm. When a particular “loaded” object is requested
the disk (tape) drive head first places the read head onto the disk (tape) location
where the object resides and then reads the object. The components of the access
cost which reflect this sequence of actions during an object access are:

e Robot cost, i.e., the time needed for the robot arm to unload an online device
and load a requested offline one (777%).

e [ead Positioning cost (T"**%), i.e., the delay due to the placement of the disk

(tape) drive head on the appropriate disk (tape) location. In the case of disks,
the positioning cost includes a seek (T/%%) to the appropriate track and rotation
(Thead.) to the appropriate sector of the track. In the case of tapes, the
positioning cost includes only a search operation (77¢%

search) to the appropriate
tape location where the objec resides.

o Transfer cost, i.e., the time needed for the head to read the object (Trens/er),

When a request arrives for an object stored in the library the following events
occur:

a) first the tape (or disk) that contains the requested object must be located and if
it is offline it must be exchanged with an online “victim” tape. The selection of
the “victim” tape (disk) is determined by a replacement algorithm. This tape
exchange process takes 77! seconds and depends on the particular hardware
of the library while it has been found to be independent of the particular tape
(or disk) that is requested each time and the distances traveled by the robot
arm ([3]). Typical values for the total robot delay range from 10 to 30 seconds.

b) secondly, the tape (or disk) head locates the requested object within the tape
(disk) in T7e2d, (or Thead 4 Thead. Y seconds.

search rotation

c) finally, the object is read by the head in T *"*/¢" seconds.

The alternative placement schemes impact on some of the components of the
access cost, not all of them: the transfer and the head rotation costs are always
paid regardless of the placement and hence are not taken into account in the cost
minimization '. On the contrary, T7cad Thead —and Tt depend on the distance
traveled by the head and therefore change whenever the placement changes.

1Since the rotation component of the head positioning cost does not depend on the placement,
the term head positioning delay will refer to the seek delay only.

1.1 The Problem

Accessing tertiary libraries is typically at least 3 orders of magnitude costlier than
accessing secondary storage. Yet, related research has neglected the issue of optimal
data placement in tertiary storage while the issue has received considerable attention
for disk based secondary storage ([5],[8],[9],[1] and [10], [11]). In this paper we address
optimal data placement in tertiary storage in order to minimize the expected access
cost.

The access cost in disk libraries is dominated by the disk exchange operation since
it takes many seconds (while head positioning takes less than 20 ms). In tape libraries
both the head positioning delay and the robot delay (as defined above) participate in
the estimation of the access cost. Even high-end tape library products have a seek
delay of more than one second per GB.

This paper focuses on the issue of minimizing the delay of random accesses in
both tape and disk libraries. We consider a disk (or tape) library consisting of N
disks (tapes) and M drives and a set of O objects with different access probabilities.
The access cost depends on the placement strategies that

1. determine which objects are placed onto which media and
2. determine the order with which the objects of some media are placed in it ([10]).

We show that for disk libraries only placement strategies that determine which objects
are placed on which disks are relevant. For tape libraries placement strategies must
solve the problem at both levels.

The paper is organized in five sections. In section (2) an overview is provided
describing the mathematical tools that are used throughout the paper and which are
based on the Majorization theory and the theory of Schur functions. In section (3)
the optimal placement problem for single and multi-drive libraries and under different
scheduling algorithms is examined and solved and optimal schemes are provided for
both equi-sized and variable sized objects. In section (4) the problem is solved for tape
libraries and optimal algorithms are derived for different tape library technologies.
Finally, section (5) contains concluding remarks and summarizes the importance of
the results.

2 Mathematical Tools

2.1 Majorization Theory and Schur Functions
Let us consider two decreasing probability vectors p = (p1,...,p,) and q =
(¢1,-..,¢s). Formally, we say that p majorizes q, which is symbolized as q < p,

J J n n
if Zpi > Z% for all j < n and Zpi = ZQi' Intuitively, p majorizes q implies
=1 =1 =1 =1
that p is “more skewed vector” than . The concept of majorization can be used to
compare the values of functions of vectors that are of a specific kind (Schur functions).
If a function ¢ : R — Ris Schur convex (or Schur increasing) and p majorizes

d, then ¢(p) > ¢(q). If a function ¢(z) is a Schur concave (or Schur decreasing)

and P majorizes q, then ¢(p) < #(q). Thus, it is easy to describe how a Schur
function will behave for more uniform or more skewed probability distributions.

A necessary and sufficient condition for a continuously differentiable function
¢ : R" — R to be Schur convex (concave) is that for all ¢ # j:

(wi—a) (52— 52) = ()0

where each z; is a component of the probability density vector X = (z1,...,2,) (see
for example [2]).
The following lemmas will be applied throughout the paper:

Lemma 1: Consider X real-valued, Schur-convex (Schur-concave) functions
o;: R — R, v=1,...,\. Then, their sum i.e. the function F': R* — R,

F =Y ¢ is also a Schur-convex (Schur-concave) function.
Proof

Since for all ¢ = 1,..., A, ¢; is Schur-convex (Schur-concave), then for all vectors
TeR", ye R™ such that ¥ < 7 it holds that:

Adding the inequalities yields:

Z¢ <Z¢ F() (or F(¥ qu 7) >Z¢ F()

for all ¥eR", yeR” such that ¥ < . Therefore F' is a Schur convex (Schur concave)
function. O

2.2 Minimization of }_j - p;

J
Lemma 2: Let p, GeR" be two decreasing real-valued vectors and assume that p
majorizes ¢, that is § < p. Then

Yipi <Y
7=1 7=1

i.e. the sum of the products j - p; is minimized for the most skewed vector.

Proof

Let p= (p1,...,pn) and ¢= (q1,...,¢n). Since we assumed that the vectors are
decreasing the following inequality holds:

Let ¢(p) :Z 1p; be our objective function which must be examined in terms of
=1
minimization. The derivative of ¢(p) on p; is:

00(F) _
Ip: B

and 'V 2,7, 1<y

=) (252 - D) iy <0 2)

The latter inequality holds because the vectors are decreasing as is showed by in-
equality (1). The relationship (2) is a sufficient condition for our objective function
to be Schur-concave according to the theory of Majorization and the theory of Schur
functions. Therefore, our objective function is minimized for the most skewed vector,
i.e.,if@%ﬁthean-pi ng-qj O

i=1 i=1

3 Disk Libraries

We have derived the cost function for a first configuration consisting of one disk
drive and multiple disks and a second configuration with two disk drives and three
disks. These results were based on the Majorization theory and Markov chains,
respectively. A generalized configuration, including an arbitrary number of drives
and disks, is also presented and an optimal placement scheme is derived. Different
analysis is provided for two different request scheduling algorithms: FCFS and Bypass
scheduling.

3.1 Problem Definition

Let D denote the number of disk drives in our system and 7' be the total number
of disks. The disks have identical storage and functional characteristics. The identical
storage characteristics mean that all disks have the same storage capacity which is
denoted as C (bits). The functional characteristics refer to the disk operations such
as the data transfer rate and the positioning (seek and rotational) delays. Since the
latter are the same for all disks, the access cost within each disk is the same regardless
of the particular disk that is involved in the access operation.

There are O objects in total each having access probability ¢;, : = 1,...., O, that
must be placed onto the T" identical disks of the library. We assume that each object

must be uniquely mapped in the library and that no replication of objects is allowed.
We also assume a steady system state in which all drives are loaded, either being idle
or not. Since the disks have equal capacities, the number K° of objects stored per
disk, depends on whether the objects have the same length or not. In the case that

C
all objects have size equal to 7 bits, each disk can hold K = LiJ objects. Thus, each

disk can be thought of as containing K separate storage locations, with one storage
location for each object. Let d' denote the " disk of the library (+ = 1,...,T) and
l; be the the j* storage location within the :** disk d'.

Table 1 summarizes the parameters of our system. We denote pé the probability

number of drives in the system.

number of disks in the system.

number of objects that must be placed on disks.

number of objects stored in the %" disk.
the size of the :*" object.
disk capacity (bytes), assumed to be equal for all disks.

I; | the 7/ location within any disk.

d" | the " disk of the library.

It | the 7' location within the %" disk.
¢; | access probability of the :*" object.

p' | cumulative probability of the " disk.

p; | cumulative probability of the j* objects in all T disks.

p: | access probability of the 5t object stored in the ™" disk.

Pr | (p*,...,p") row probabilities.

P, (p1,...,pr) column probabilities.
Pi | (p,...,pk,) probabilities of i'" tape.
]3j (pi,. .. ,pf) probabilities of ;¥ column.

Table 1: The parameters of our system.

that the object stored at location l; is requested. The cumulative probability p’ that
a disk d' is requested is the probability that any of the objects stored on disk d is
requested and it is equal to the sum of these probabilities:

. I"/y .
=0 (3)
=1

We define p; to be the cumulative probability that an object stored at any of the [;
locations of the T' disks is requested. The probability p; is equal to the sum of these
probabilities:

T
pi =27 (4)
=1

The disks of the library can be viewed as a 2-dimensional array d :e¢T' x K, such
that d[:][j] = l;, forall:i =1,...,7, 5 =1,...,K. Then we can define the vector

6

consisting of the row probabilities Pr= (p',...,p") and the vector consisting of the
column probabilities P. = (p1,...,pK) of the array.

We wish to determine the optimal placement of the O objects onto the T - K
storage locations of the disk library. This placement problem can be viewed as a
two-level problem:

e at the first level of the problem, the contents of each disk are determined, i.e.,
which objects must be placed onto which disk.

e at the second level of the problem, given the objects to be placed within each
disk the precise mapping of these objects to the storage locations of the disk is
required, i.e., which objects go to which disk locations.

For disk libraries, the expression “placement problem” refers to the first level problem
of allocating objects to disks. As for the second level problem the related literature
(see [1], [5], [8]) provides various solutions.

We characterize as optimal the placement scheme which results in the minimum
expected number of disk exchanges for a random request.

We should note that there are two factors that affect the minimization of the
disk exchange cost:

a) the placement strategy itself of the O objects across the T disks.

b) the algorithm employed in selecting the next disk to load (i.e., given a number
of requests in a queue waiting for tertiary storage service, which request will
be selected for service next and hence which one of the referenced disks will be
loaded next.)

3.2 Disk Library with a Single Drive

Let us first consider the case of D =1 and T' > 1, that is, there is only one disk
drive in the system, and many disks. This means, that each time only one from the
T" disks can be on-line. We will first try to minimize the access cost Cc(hls)k when there
is only one drive.

3.2.1 Optimal Placement with FCFS Scheduling

The access cost Cc(hls)k is the expected disk exchange delay that is caused by a
random request. Let Ti,.pange be the time taken for an on-line disk to be removed
from its drive and be replaced by an off-line disk. 7., p4nge 15 independent from the
relative position of disks on the shelves ([3]).

Let peychange be the probability that a disk exchange is triggered by a random
request. Then:

T
Pexchange = ZPZ(l - pl) (5)
=1

The product p‘(1—p') is the probability that the disk d' is requested (which occurs with
probability p') and it is not on-line because the previous request had not requested it

(which occurs with probability (1—p')). The summation over all disks expresses the
fact that the requested disk may be any one of the T'—1 disks in the shelves.
The expected disk exchange delay is:

T
1 D 7 7
Cc(lzs)k(P) — Texchange * Pexchange = Lexchange ZP (]- —p) (6)

=1

Theorem 1: Function Cc(hls)k(ﬁT) is Schur concave. In other words,

(pi _ pj) (aciﬁik _ aciﬁik) <0

Ip; Ip;
Proof

In our case, the partial derivative of the cost function p'(1 — p‘) on p' is calculated to

be: 0 ' ,
s O = 1) :
1R — - =1-29 7
Oy oy P (7)

The product that needs to be evaluated to determine if a function is concave, can be

calculated for our cost function by substituting the derivative of the cost as follows:
(v =) (W _ 2) = (P =p)(1=2p") = (1=2p")] = 2(p'=p")(p'—p') < O
The above equation holds for all ¢, .
O
This result is interpreted as follows: since the row probability vector P ¢ RT has
as components the cumulative probabilities of the disks (ﬁT = (pt,...,ph)), if Sy,
Sy are two different placement schemes which result in the row probability vectors
]37"1, P and P <]37"2, then the cost function is minimized when placement 5,
is enforced. This is true, since the row probability vector which is produced by S5
majorizes the corresponding vector of 57 scheme and thus Cc(lis)k(ﬁﬂ) < Cc(lis)k(ﬁ“).
The optimal placement scheme S, is then the scheme with row vector ﬁgpt such that

P o< ﬁgpt where P is the row vector that any placement scheme other than S,
produces. In other words, we must place the objects in the disks in such a way that
the resulting row vector majorizes all other possible row vectors. Such an optimal
placement algorithm is presented below.

Optimal Placement Algorithm

Initialize FreeDisks to include all system disks: FreeDisks=(d", ..., d").

Initialize UnallocatedObjects to include all system objects: UnallocatedObjects=(Oy, . ..

Set d™e*t to d*.
while UnallocatedObjects and FreeDisks sets are not empty do
begin
Select from the set UnallocatedObjects those K objects that

have the maximum cumulative probability
Place the selected objects on disk d"**.

,00).

Remove the selected objects from the set UnallocatedObjects.
Remove disk D; from the set FreeDisks.
Set dnext to dneact—l—l.

end

3.2.2 Optimal Placement with Bypass Scheduling

So far we have assumed that requests are serviced with First Come First Served
(FCFS) scheduling. FCFS scheduling is fair for all requests and simple to implement
but different alternatives of request scheduling which take advantage of the on-line
disk are likely to perform better.

Bypass scheduling is such a sophisticated scheduling policy. It gives highest pri-
ority to all the pending requests in the queue that reference the on-line disk regardless
of the arrival times of the requests. That is, if the :*" disk is on-line, all the requests
in the queue that hit d' are serviced next. The disk d' is replaced only when there
is no unserviced request for it in the queue. The new disk ¢’ that will eventually
replace d' might be any one of the disks that are referenced by one or more requests
of the queue.

Assume that the queue of pending requests contains N unserviced requests for
any of the T disks of the library and the drive of the system is loaded with a disk
d'. Let R be the set of all these pending requests. Then, we define the reference
set B C R of disk d’ to be the set of pending requests that hit disk ¢’. If X such
non-empty different sets exist in the queue then the number of disk exchanges will
be X if the reference set R' of the on-line disk is empty, otherwise it will be X —1.
This means that the expected number of disk exchanges to service the N requests in
the queue is equal to the expected number of different reference sets that exist in the
queue:

T
E (no of disk exchanges) = E (no of non empty reference sets) = Z (1 -(1- pi)N) (8)
i=1
The " term 1— (l—pi)N
requests hitting the disk d’ have entered the queue or, in other words, the probability
that the reference set I of disk d' is non-empty. Recalling that the definition of the
access cost 1s the product of the expected number of disk exchanges times the average
delay of a disk exchange T, ,chunge, We can derive the access cost Cé;;ass when bypass
scheduling is employed:

in the summation is the probability ' that one or more

C(l)

bypass = Lewchange * B (no of disk exchanges) (9)

or substituting the expected number of disk exchanges from equation (8):

T T
C(E;]))ass - Texchange * Z (]- - (]- - pZ)N) = Texchange * (T - Z (]- - pZ)N) (10)

LA selection with replacement modeling is clearly suitable for our system.

The access cost of equation (10) is then our cost function which will be examined
for minimization. In particular, we will determine the distribution of the probability

vector P’ = (p',...,p") which minimizes our cost function.
Theorem 2
The function ¢(P") = > (1—p')" is Schur-convex.
=1
Proof

Differentiating ¢ with respect to p' we obtain:
9o

N-1

(11)
For all p* # p’ we have:

=) (gf) %) = =) (N =) TN =)) 50 (12)

We can verify that if for example p' < p/ then: 1—p' > 1—p) < N(l—pi)N_1 >
N1-—p) e Na—p) T - Na—p) T <0

0.

According to equation (10) the cost is minimized when the function 45(137’) =
ZZTZI (]‘_pl)N

abilities distributed across all T' disks compose a]30]; vector which majorizes the

is maximized. This occurs when the placement is such, that the prob-

vector of any other placement scheme since according to the above theorem 45(137’)
is Schur convex. This result is the same as the one that we proved for the case of
FCFS scheduling of requests. Therefore, the optimal placement algorithm for By-
pass scheduling is the same to the algorithm that we provided for the case of FCFS
scheduling of requests.

3.2.3 Optimal Placement of Variable Sized Objects
We will now examine the problem with objects of variable sizes.

3.2.3.1 Objects with the Same Access Probability 1

Let the O objects have equal access probabilities, ¢ = 0’ (l=1,...,0)

and that K is the number of objects placed on the " disk by a random placement
scheme. The aggregate probability p' of the :** disk is then:
. K :
0
The probability of a disk exchange (and hence the cost function (') is then:
gy LK K’
Pewchangezczzpl(l_pl)zz O (1_ O) (]‘4)

We will compute the exchange cost for all possible disk population vectors K =

P (13)

(K',...,KT) and determine the one with the minimum cost.

10

Theorem 3

. T [fi [’i
The function ¢(K) = i (1 _2

) is Schur-concave.

Proof

The derivative of qﬁ([{;) on K; is:

and

K K (agf,(f) - a;ﬁff)) -k (-2 -5)

The latter inequality holds always for all K* # K7,
O

Therefore, the optimal placement scheme should allocate objects to disks, so that the
resulting disk population vector K = (K',..., KT) majorizes the vector of any other
placement scheme.

In particular, the optimal placement algorithm should operate as follows:

a) Sort the objects in increasing size order.

b) Starting at the beginning, place as many objects as can fit in the first disk.

)
¢) Remove these objects from the list of unallocated objects.
)

d) Repeat (b) for all disks and objects left until either the list of unallocated objects
is empty or no space is left on the devices.

3.2.3.2 Objects with Variable Access Probability
In this section, we will study the optimal placement of objects that have

both different sizes and different access probabilities.

We assume that each object has probability ¢; to be accessed and that its size
is z; bits (I = 1,...,0). Let K' (= 1,...,T) be the number of objects that are
allocated to disk d' by a random placement policy. The cumulative probability of the
objects allocated to disk d' is the probability p' of accessing disk d':

K
pr=>p Vi=1,...,T (17)
7=1
and the expected number of disk exchanges is:
T . .
C=>p(1-p) (18)
=1

11

where the p's are given by (17). The summation of (18) has been shown in Theorem
1 to be minimal when the vector P’ of the p's majorizes all others. In our case,
K! KT
P = (plv"'va) = ZP}V"’ZP? :
j=1 j=1

In other words, if an algorithm can place the objects onto the disks, so that
the resulting ﬁgpt majorizes the P vector of any other placement scheme, then this
algorithm has accomplished the minimum number of disk exchanges and thus it is
optimal.

For equi-sized objects it was sufficient to accumulate as big a probability as
possible onto the first disk, then onto the second and so on. The objective is the
same in this case as well, i.e. for each disk we must accumulate the biggest probability
possible from the objects left and allocate it to the disk. However, since the object
sizes vary, the algorithm should take them into consideration. The construction of
the most skewed vector ﬁgpt is reducible to the well-known knapsack problem of the
algorithmic literature ([12]) which has been solved with dynamic programming. In
addition, we have constructed an efficient heuristic algorithm which determines the

placement of variable-sized objects within the disk library in polynomial time. The
heuristic algorithm is omitted due to space limitations but can be found in ([4]).

3.3 Multiple Disk Drive Configuration
We now study a system with multiple disk drives and multiple disks. We define

the probability p("/) such that:
p3) : probability that the ¢ and j disks are on-line fori,j=1,...,T

Furthermore, we assume that the row probability vector PR = (p1,p2,s...,pr) 18
increasing, 1.e.,

p<pt<. . <pt (19)
That is, without loss of generality we assume an ordering of disks according to their
popularity, such that for any 1 < ¢ < j < T, p' < p’ holds. Among the placement
algorithms which produce an increasing ! PP vector we will determine the one with
the minimum cost.

3.3.1 Disk Replacement Algorithm

The scheme that is proposed below is based on the assumption that when a miss
occurs (i.e., a request refers to a disk that is off-line), a disk replacement algorithm
is employed which, based on the popularity of disks (how frequently the disks were
accessed in the past), decides to replace the on-line disk with the smallest probability
of access. In other words, if d', d’ are on-line and idle when a miss occurs, the :*" disk
is replaced and exchanged with the desired disk. This replacement algorithm that we
employ is called the Least Popular Disk Replacement Algorithm (LPR). In
the following sections we will derive a placement strategy such that when combined
with the LPR the average access cost is minimized.

!The fact that we consider placements with increasing PE is not limiting. The same results are
obtained when considering all placements with decreasing P%.

12

3.3.2 Access Cost Minimization for the Case of Two Disk Drives and
Three Disks

We first concentrate on a restricted example where D=2 drives and T'=3 disks
while in the following section a generalized optimal placement scheme for an arbitrary
number of disks and drives will be derived.

Since D = 2 and 7' = 3 the row probability vector is PR = (p', p*, p*) with
p' < p? < p*. Figure (1) shows the corresponding Markov chain state diagram. The
arrows show transitions among the states along with the probability of occurrence of
the transition.

p2+p3

1+p3
<_/Ap1+p2 pip

Figure 1: Diagram of Markov-chains for 2 drives and 3 disks (p' < p* < p?).

The node labeled (i, 7) represents a system state, in which disks ¢ and j are on-
line. The Markov chain contains a closed subset of states, namely, {(2,3), (1,3)},
since no one-step transition from any of the states in the subset to state (1,2) is

possible. Therefore, the Markov chain is reducible. The probabilities p(3), p(23) can
be calculated by solving the system:
pP = pp? 4 p@ s (p? 4 p?) (20)
P = p3) s pl 1 p3) 4 (pl g p?)
p(173) _I_ p(273) — 1
Thus,
(1,3) p' (2,3) P’ (21)
p - pl + p? p pl 4 p?
Now the exchange cost 1s given by:
Clik = PP sp +p0Vup? & (22)
2 1 1,2
(D) P 1 p 2 _ 1 w (ol % p2 19\ 2pp
isk T + * -
T (P p?) (p' +p?) (r' +p?) UM (p1+122))
23

13

Theorem 4: The function Cc(lg,l(ﬁT) is Schur concave.
Proof

It can be easily verified that the partial derivative of the latter cost function is:

act) 2(p?)’

I 2

The Schur condition for concavity is:

o 00 0O (207 2
_ 2(p" +p°), 4 o2 1
- (p1 _I_p2)2 (p p)(p p) S 0

for all p' # p.

O

Therefore, our cost function is minimized when the row probability vector PR is
the one that majorizes all other possible vectors that correspond to other placement
schemes of the same objects. The optimal placement algorithm therefore, places the
objects so that the resulting]301; majorizes the row vector PE that any other place-
ment produces. This placement policy is combined with the replacement algorithm,
which maintains the p® disk always on-line on the first drive, and switches between
the p! and p? disks on the second drive.

Intuitively, this replacement policy has as result that the disk with the highest
probability remains on-line, in the steady system state, continuously. This is why the
Markov chain is reducible. In the steady state therefore, the system behaves as if it
had one on-line disk drive and two disks to be exchanged, and therefore it behaves
like the one-on-line drive system.

3.3.2.1 Generalizing the Cost Derivation for T disks and D drives

These results can naturally be expanded to apply to more general configurations
of D drives and T'> D disks. The corresponding Markov chain will also contain a
subset of closed states and will be reducible. In the steady system state, the D—1 drives
will be continuously occupied by the D—1 disks with the highest probabilities. The one
drive left will be used to keep one of the T'—D+1 remaining disks. Hence, the optimal
placement policy, continues to place the probabilities in such a way that the resulting
PE vector majorizes all others and combines this scheme with the replacement policy
which maintains the D—1 most popular disks active always, and performs exchanges
in the one remaining disk drive. Such a policy minimizes disk exchanges due to the
skewed arrangement of the probabilities within disks.

14

4 Tape Libraries

The factors that influence the estimation of the cost of accessing the tape objects
are the head positioning delay and the robot delay. The head delay that is associated
with an object access is attributed to two factors: a) the search delay, which is the
time taken by the head in order to locate the requested object within the tape, and
b) perhaps, the rewind delay, which is the time taken for the tape to perform the
rewind operation. Thus,

head delay = search delay + rewind delay (26)

The robot delay is the delay introduced when a loaded tape is removed from its
tape drive and placed on the shelf and an off-line tape containing the newly requested
object is subsequently placed on that particular drive.

Given current technology, two alternatives exist for the estimation of the access
cost:

1. Only the head delay can be taken into account in the cost determination.

This is meaningful for environments where the robot delay is negligible as com-
pared to the head delay and can therefore be ignored in the cost calculations
with negligible error. Such an environment could for example be the AMPEX
DST series tape library systems with tape capacities up to 165 GB, search speed
equal to 800 MB/sec and resulting average search time of approximately 100
sec. The latter value of the head delay is dominant when compared to the
typical value of the robot delay which is reported to be less than 6 sec.

2. Both the head delay and the robot delay contribute to the cost determination.

This is the case of tape library systems where both the robot and the head
delay contribute significantly and must therefore both participate in the cost
calculations. The AMPEX DST 810 with catridge capacity 3 GB is such an
example. In this environment, the average search time is 1.5-2.0 sec which is
smaller than the robot delay. Hence, exchanges must also be considered in the
cost derivation.

Furthermore, the determination of the access cost can vary depending on the
operational characteristics of the devices. Omne key issue is the rewind operation.
Two alternatives are currently supported:

e In some technologies tape drives must essentially rewind to the PBOT !, before
being ejected ([7], [6]). This is the case for example for the Exabyte tapes. In
the Ampex DST series this feature of rewinding to the physical beginning of a
tape before eject is only optional.

e Other tape drives, such as the AMPEX DST series define “zones” at multiple
locations along the tape, enabling rewind to proceed alternatively to any of the
zones ([6]) before ejection. Most frequently, the zone nearest to the head is
selected in order to minimize rewind time.

! Physical Beginning of Tape.

15

4.1 Problem Formulation
The following table summarizes the notations that are used throughout the sec-
tion:

number of objects that must be stored in the library

number of objects stored per tape

number of tapes

size of each object (in bits)
the ¢'" tape 1 =1,...,T
I; | the j object location within any tape

@)
K
D | number of tape drives
T
VA
7

It | the j* object location within the :** tape ¢’

pi | access probability of the object stored at location l;
qr | access probability of the k" object (k= 1,...,0)
p' | probability that one of the objects stored

in tape 1’ is requested P’ = 25‘21 pé

p; | probability that one of the objects residing at
location [; of all T tapes is requested P; = 327, pé

" (p',...,p") row probabilities.
P, (p1,...,pK) column probabilities.
p (pl,... ,p%i) probabilities of i** tape.

_; (- - ,pf) probabilities of 7" column.

We are interested in determining the optimal placement of the T K objects across
all 7K possible locations of the 7' tapes !. Optimality of placement is achieved when
the expected delay of accessing a random object is minimized.

We consider tapes with dominant head delay and therefore the cost function is
equal to the expected head delay incurred in a random access. The case when both the
robot and the head delay contribute in the access cost is studied in ([4]). According
to the definition of the head delay (26), our cost function is the summation of the
search and the rewind delay. Let the average search speed of the tape head be SchSp,
and let RwSp be the average rewind speed. Let also deq,.p, be the expected distance
(in number of bits) traveled by the head with SchSp to reach a desired tape location.

search dsearch

hSp (search delay) plus Ruwsp
(rewind delay). In general RwSp > SchSp. Thus, if Rwf, 1< Rwf <2 is a constant

searc dSeaTC dSeaTC . .
such that (Rwf) ho_ h + " then our cost function is:

SchSp SchSp = RwSp

Then, our cost function will be the summation of

AceCst = (Rwf) (dsearen/SchSp) (27)

I'We assume that the number of object locations across all tapes and the number of objects that
need to be placed in them are equal. We also assume that each object is uniquely mapped in the
library and that no replication of objects is allowed. Furthermore, the system is in a steady state
i.e., all drives are loaded, either being idle or not.

16

Since SchSp and Rwf are constant the cost function depends only on the expected
value of the distance of the requested object from the current head position (dseqreh)-

As explained before, the current tape technology supports two alternatives for
tape rewinding. Naturally, the methodology of estimating the cost of a random
tape access and the corresponding optimal placement algorithm differ depending on
the tape rewinding technology, since the search distances are different for different
rewinding technologies. Section (4.2) provides the cost analysis and the optimal
scheme for tapes which rewind to the nearest zone, while section (4.3) examines
tapes which rewind to the PBOT. Both analyses are then further specialized in two
cases for FIFO and SCAN ([4]) scheduling algorithms which represent systems under
light and heavy load, respectively.

We should note that similar optimal placement problems with disks have been
examined and solved. In [5] the optimal placement of objects within a magnetic disk in
order to optimize the random access cost is proved to be the organ-pipe arrangement.
The organ-pipe arrangement of a set of n probabilities py,...,p, places the largest
p; at the middle point. Then, it repetitively places the next largest p;, alternating
between the position immediately to the left (right) of those already placed and the
position immediately to the right (left). Similar placement algorithms have been

developed for CLV disks ([8]) and multi-zoned CAV disks ([9]).

4.2 Tapes that Rewind to the Nearest Zone.

We examine tapes which enable tape rewinding to the nearest tape zone as op-
posed to tapes which require to be rewound to their physical beginning before they
can be ejected. Cost analysis is different depending on the request scheduling policy.
Therefore, we have separately examined the cases of FCFS and Scan scheduling which
are the most efficient for lightly and heavily loaded systems respectively and have de-
rived optimal placement algorithms. In the following, we present the cost analysis and
the optimal placement for FCFS scheduling only, due to space limitations. Detailed
analysis and results for Scan scheduling are included in our complete paper ([4]).

4.2.1 Placement of Objects within a Tape

The cost function for a single tape is the expected distance that must be traveled
by the tape head in order to serve a random request for an object of this tape and it
is derived as follows: let [', and I/ be two locations within a random tape #'. Assume
that [is the current head location (i.e., the location of the object that was previously
requested from #') and [is the location where the head must be moved to access the
object of the next request for #*. The distance dsemch(liu — l;) that must be traveled
is then:

(w—z+1)7, ,Jifw>z
dsearch(liu - ZZZ) = (Z —w —].)Z7 s if w<z (28)
0

, Jifw =z

17

The definition of dsemch(liu — l;) is such that the distance when moving from the
tape location [, to [, is 0, while the distance when moving from the tape location
[}, to location [!_,1s 2 7.

The expected distance d'_,.
request that hits ¢' is derived by summing the distances of all possible events of

, that must be traveled within ' to serve a random

moving between any [, [’ tape locations:

diearch = Z pzuplz(z —w—]‘)Z + Z pzuplz(w —Z+]‘)Z (29)
w<z wW>z
= Y ppilw—zZ = ZY Pt + 7Y pupt
W,z w2 w>z

= Y piplw—2Z+ 23 (b))

)

In the search distance function the term ZZ:(piU))2 is independent from the

relative placement of probabilities within the tape. Therefore, the only relevant dis-
tance component is » pip. |w — z| Z. This is exactly the cost function that must

(w,z)
be minimized when considering the traditional problem of placing objects on a disk.

Wong has shown ([5]) that this function is minimized when objects are placed in an
organ pipe arrangement. Therefore, given the information about which objects must
be placed on which tape, the optimal placement of objects within each tape is the
one that performs an organ-pipe arrangement of the probabilities.

4.2.2 Assignment of Objects to Tapes

We are now left with the problem of optimally determining the contents of each
tape, i.e., how much aggregate probability must be allocated to each tape. The cost
function is the expected total distance dy.,,c;, traveled within all tapes when each of
the tapes serves a random request for one of the objects that it holds. In other words,
the cost function is dgeqrer, = ZL di . ., or from equation (29)

b = 3" (zp;pi w0224+ 2Y <p;>2) (30)

=1 W,z w

and
DD i lw—z=3" (Zpiupl |w — ZI) =Y |w—z (Zpiupl) (31)
1=1 w,z w,z \i1=1 W,z =1

Theorem 5: The function qﬁ(ﬁw) =L pipi is Schur convex for all w=1,..., K
and it is minimized when the column vectors P, are as uniform as possible for all
w=1,..., K.

18

Proof

ds6(P,) . . 9d(P, .
i .) = p, and M = p.'. Assuming, for example, de-
Ipl, Ipiy , ,

creasing column vectors ' it holds that for all ¢ < m, p', > p™, p' > p™ and therefore
(p',—p™)(p.—p™) > 0. Thus, ¢(P,) is Schur convex.

Differentiating we get

0.
Therefore, for each column vector P, = (pL,p2,...,pr) the sum -7, p' p' is mini-
mum when the vector P, = (pl,p?,...,pl) is majorized by all other possible vectors

(i.e., has as equal components as possible).

A consequence of the “P,, uniform” optimality condition that we just derived is
the placement the biggest probabilities in the middle locations of each tape. Since we
have shown that within each tape the organ pipe placement is optimal we know that
the ¢; probability (assuming ¢; > g2 >...>¢qo) will be placed in the middle location
of one tape say in t for 1 < ¢ < T'. Then, the only way to produce the most uniform

2

Px column vector is to fill the rest of its components with ¢,...,¢qp. Thus, T will
have the T' most popular objects in the middle location of each tape. The same holds
for the rest of the tapes and objects.

The optimal placement scheme is shown in figure (2) for a library consisting of 3
tapes assuming that each tape can hold 5 equi-sized objects that have different access
probabilities.

= =
2 Tapes with Zone-rewind 2 Tapes with PBOT-rewind
[=¥ [=¥
rpet| B, | B | R | B | B rpe| B | B | B | B | B
= =
o o
& &
=¥ =¥
Tape2| P, F P K P, Tape2| P P, E B, | P,
= =
o o
& &
=¥ =¥
Tape 3| B, b, P B B, Tape3| B R K Fo B,
B >E>........ >P, B >E >...... >P,
Figure 2: Optimal placement Figure 3: Optimal placement

4.3 Tapes that Rewind to the PBOT
In this section, we examine tapes which always rewind to their beginning before
being ejected. As we have already mentioned the analysis is different depending on

!The fact that we consider placements with decreasing column vectors is not limiting. The
same results are obtained when considering all placements which result in increasing columns. Our
objective is to determine the placement with the minimum cost among the all placements which
produce decreasing columuns.

19

the request scheduling policy. In the following, we derive the optimal placement for
systems with FCFS scheduling while the analysis for SCAN scheduling can be found
in ([4).

Let ' be a single online tape and assume that the j* object of that tape is
requested. The distance dsemch(li — l;) that will be traveled by the head during
searching for the j'* object is equal to the total space occupied by the j —1 objects
that are placed in front of the requested object:

. . j
dsearch(li - Z;) - ZZ = (] - 1)Z (32)

=1

assuming that the initial head position is at the PBOT (i.e., location /}). The expected

distance for randomly accessing any of the K objects located on the tape #*is d'_,, .,

) K) K
Zsearch = 7 Z]) p; - Zp; (33)
7=1 7=1

The cost function d ..., 1s the sum of the expected distances traveled in all T' tapes
in order for each tape to serve a request for a random object on the tape:

T K K
dsearch = Z Z - (Z] ’ p; - Z p;) (34)
=1 7=1 7=1

which can be simplified as follows:

T K T K

dsearch = ZZZJP;_ZZZP; (35)
=1 j5=1 =1 7=1
T K)
= 222007
=1 j5=1

If we set p; = S0, pé then p; expresses the probability that one of the ;' objects of
the T tapes is requested and equation (35) can be rewritten as follows:

K

dsearch = Z- Z] “Pj— Z (36)

i=1

The expected distance of equation (36) and hence our cost function is minimized when
the summation 2?21 J-p; 1s minimized. Consider the column vector P = (p1y-- s PK)
in which the component p; is the aggregate access probability of the objects stored
at location l; of all tapes. As we have proved in Lemma 2 the summation >, j-p; is

minimized when when the vector P. majorizes all others (i.e., is as skewed as possible).
The optimal placement scheme must therefore arrange the objects within the tapes so
that the resulting P. vector is as skewed as possible. One such scheme for example, is
the one which stores each of the T' most popular objects first in each of the T' tapes,
each of the next 7" most popular objects second in each of the tapes and so on.

20

An Optimal Placement Algorithm for Lightly Loaded Systems with
Rewind to PBOT.

Sort the UnallocatedObjects in decreasing probability order.
while the set UnallocatedObjects is not empty do
begin
Scatter randomly the first T objects of the set UnallocatedObjects
onto the first free location of each of the T' tapes.
Remove the first T objects from the set UnallocatedObjects.
end

The optimal placement is depicted in figure (3) for a simple case of 15 objects with
different access probabilities that are allocated onto the 3 tapes (each tape holding 5
objects) of a tape library.

5 Summary

In this paper, we studied the problem of data placement in disk and tape k-
braries. This problem is important since tertiary storage is much slower to access
than secondary storage.

In the case of disk libraries with one on-line drive the major cost to be optimized
is the expected number of disk exchanges, since each disk exchange costs somewhere
between 5 and 15 seconds. (To find the data on the on-line disk is much less expensive
due to the random access mechanism of disks). We showed using the theory of
Majorization and Schur functions that the optimal data placement is obtained by
placing as many of the most popular objects as can fit on one disk and by repeating
this process for the remaining objects and disks. These results are generalized for the
case of more than one on-line disk drives.

In the case of tape libraries, the tape exchange cost is still significant, but another
important cost (which can be the dominant cost when the library stores tapes with
very large capacities) is the cost of sequentially searching throughout the tape to find
the data that is needed. We separately considered tapes of two rewind technologies:
zone and PBOT rewind, since the expected distance searched (and the analysis for its
minimization) is different depending on the rewind technology. For each tape tech-
nology, the analysis was further specialized depending on whether the implemented
scheduling policy of requests is Scan or FCFS. However, the analysis under Scan
scheduling has been left out since it produces the same results with FCFS scheduling
(it can be found in ([4])).

We showed that when tapes rewind to the nearest zone, the optimal placement
must randomly distribute the 7" highest probabilities in the middle location of each
tape, the second and third 7" highest probabilities to the left and right of the middle
location of each tape and continue likewise. For tapes that rewind to the PBOT it
is optimal to place the T highest probabilities on the first location of each tape, the
second T highest probabilities on the second location of each tape and so on. The

21

above analysis considered only head positioning cost. The exchange cost was omitted
for space reasons and because its effect to the optimal data placement strategy is
equivalent to that shown for disk libraries. The analysis for head and exchange cost
of the same order of magnitude can be found in ([4]).

References

1]

2]

[11]

[12]

S. Christodoulakis and D. Ford, “Optimal Data Placement on CLV Optical
Disks”, ACM Transactions on Information Systems (ACM TOIS), 1991.

Albert Marshall and Ingram Olkin, “Inequalities: Theory of Majorization and
its Applications”, Academic Press, University of Southern California, 1979.

Ann Louise Chervenak, “Tertiary Storage: An Evaluation of New Applications”,
Doctor of Philosophy Thesis, Department of Computer Science, University of
California, Berkeley, 1994.

S. Christodoulakis and F. Zioga, “Optimal Data Placement in Robotic Disk and
Tape Libraries”, MUSIC Technical Report, No 14.

C. K. Wong, “Algorithmic Studies in Mass Storage Systems”, IBM, Thomas J.
Watson Research Center, Computer Science Press, 1983.

Personal Communication with Ampex Co.

Personal Communication with Exabyte Co.

P. Triantafillou, S. Christodoulakis, and C. Georgiadis, “Optimal Data Place-
ment on Disks: A Comprehensive Solution to Different Technologies”, IEEE
Transactions on Knowledge and Data Engineering (conditionally accepted.) Also
available from www.ced.tuc.gr/hermes.

S. Christodoulakis, P. Triantafillou, and K. Poutos, “Dependencies of Scheduling
on Optimal Data Placement in CLV Optical Disks”, (submitted). Also available
from www.ced.tuc.gr/hermes.

P. Triantafillon and C. Faloutsos, “Overlay Striping and Optimal Parallel 1/0
in Modern Applications”, Parallel Computing Journal, Special Issue on Parallel
Data Servers and Applications, (accepted to appear).

S. Christodoulakis and F. Zioga “Principles of Striping and Placement
of Delay-Sensitive Data on Disks”, (submitted). Also available from
www.ced.tuc.gr/hermes.

E. Horowitz, Sartaj, Sahni, “Fundamentals of Computer Algorithms” Computer
Science Press, 1978.

22

