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ABSTRACT 

 

 

The objective of this paper is to investigate the efficiency of 

optimization algorithms, based on evolution strategies, for the solution 

of large-scale structural optimization problems. Furthermore, the 

structural analysis phase is replaced by a neural network prediction for 

the computation of the necessary data for the ES optimization procedure. 

The use of NN was motivated by the time-consuming repeated analyses 

required by ES during the optimization process. A back propagation 

algorithm is implemented for training the NN using data derived from 

selected analyses. The trained NN is then used to predict, within an 

acceptable accuracy, the values of the objective and constraint functions. 

The proposed methodology has been applied in sizing structural 

optimization problems of large-scale three dimensional roof trusses. The 

numerical tests presented demonstrate the computational advantages of 

the proposed approach which become more pronounced for large-scale 

optimization problems. 

 

 

 

Keywords: structural optimization, evolution strategies, neural 

networks. 
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1. INTRODUCTION 

 

The sizing optimization of large-scale three dimensional trusses which 

are often used to cover wide span column-free areas is a computationally 

intensive task. In sizing optimization the aim is to minimize the weight 

of the structure under certain restrictions imposed by design codes. 

When a gradient-based optimizer is used the most time-consuming part 

of the optimization process is devoted to the sensitivity analysis phase 

which is an important ingredient of all mathematical programming 

optimization methods [1,2]. On the other hand the application of 

probabilistic search methods, such as evolution strategies (ES), do not 

need gradient information and therefore avoid to perform the 

computationally expensive sensitivity analysis step [3,4]. Furthermore, it 

is widely recognized that probabilistic search optimization techniques 

are in general more robust and present a better global behaviour than 

mathematical programming methods. They may suffer, however, from a 

slow rate of convergence towards the global optimum.  

 During the last fifteen years there has been a growing interest in 

problem solving systems based on algorithms which rely on analogies to 

natural processes. The best known algorithms in this class include 

evolutionary programming (EP) [5], genetic algorithms (GA) [6,7] and 

evolution strategies (ES) [8,9]. Another important technique that follows 

natural processes, and in particular human brain functions, is artificial 

neural networks which simulate the structure of the biological neural 

network of the human brain. The use of artificial intelligence techniques, 

such as neural networks, to predict analysis outputs has been studied 

previously in the context of optimal design of structural systems [10,11], 

and also in some other areas of structural engineering applications. In 

the review papers of Berrais [12] and Waszczyszyn [13] a number of 

references can be found on the application of neural networks (NN) in 

computational mechanics. The principal advantage of a properly trained 

NN is that it requires a trivial computational effort to produce an 
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acceptable approximate solution. Such approximations appear to be 

valuable in situations where the actual response computations are 

intensive in terms of computing time and a quick estimation is required.  

In this work the efficiency of ES combined with NN in sizing 

structural optimization problems is investigated in an effort to increase 

the robustness as well as the computational efficiency of the 

optimization procedure. The use of NN was motivated by the time-

consuming repeated analyses required for ES during the optimization 

process. The suitability of NN predictions is investigated in a number of 

structural problems optimized using ES and the computational 

advantages of the proposed approach are demonstrated. In addition a 

thorough investigation is performed on the selection of the training set 

used for the NN learning procedure in order to ensure the generality and 

robustness of the proposed methodology. In a recent study [4] a similar 

methodology was proved very efficient in sizing optimization of multi-

storey 3-D frames and shape optimization of 2-D mechanical parts. 

 For each optimization problem a NN is trained utilizing 

information generated from a number of properly selected analyses. The 

data from these analyses are processed in order to obtain the necessary 

input and output pairs which are subsequently used to produce a trained 

NN. The trained NN is then used to predict the response of the structure 

in terms of objective and constraints function values due to different sets 

of design variables. The predicted values of the optimization functions 

should resemble closely to the corresponding values of the conventional 

analyses, which are considered exact. The NN type considered here is 

based on the feed-forward architecture trained by the algorithm known 

as Back-propagation [14].  

 

 

2. SIZING OPTIMIZATION 
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In sizing optimization problems the aim is usually to minimize the 

weight of the structure under certain behavioural constraints on stresses 

and displacements. The design variables are most frequently chosen to 

be dimensions of the cross-sectional areas of the members of the 

structure. Due to engineering practice demands the members are divided 

into groups having the same design variables. This linking of elements 

results in a trade-off between the use of more material and the need of 

symmetry and uniformity of structures due to practical considerations. 

Furthermore, it has to be to taken into account that due to fabrication 

limitations the design variables are not continuous but discrete since 

cross-sections belong to a certain set. 

 A discrete structural optimization problem can be formulated in 

the following form: 

 

min              F(s)

subject to     g (s) 0   j = 1,...,m

                  s     i = 1,...,n

j

i



Rd ,

 (1) 

where F(s) and g(s) denote the objective and constraints functions 

respectively. Rd  is a given set of discrete values and design variables si 

(i=1,...,n) can take values only from this set. In the present study the 

sizing optimization of large-scale 3-D trusses is investigated. These type 

of structures is very common in engineering practice in order to cover 

long and/or wide span and column-free spaces such as stadiums, 

exhibition halls, airplane hangars, etc. The performance of these  type of 

structures has been investigated in terms of economy, structural safety, 

aesthetic quality and optimum design in a number of papers [15-19].  

 Space truss structures usually have the topology of single or 

multi-layered flat or curved grids that can be easily constructed in 

practice. Most frequently the objective function is the weight or the 

volume of the structure and the constraints are the member stresses, 

nodal displacements, or frequencies. The stress constraints can be 

written as ó óa , where ó
Ñ

Á
  is the maximum axial stress in each 
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element group for all loading cases, a =0.60Fy is the allowable axial 

stress and Fy is the yield stress and A is the cross-sectional area. 

Similarly, the displacement constraints can be written as d da , where 

da  is the limiting value of the displacement at a certain node, or the 

maximum nodal displacement. 

 Euler buckling occurs in truss structures when the magnitude of a 

member’s compressive stress is greater than a critical stress which, for 

the first buckling mode of a pin-connected member, is equal to  

 


b
bP

A A

EI

L
  

1 2

2
( ) (2) 

where Pb  is the computed compressive axial force, I is the moment of 

inertia, L is the member length. For thin-walled tubular members with a 

diameter-to-thickness ratio ñ=D/t=10-20 the cross-sectional area is 

approximately equal to A Dt  , and the moment of inertia is 

approximated by I
Dt D t


 ( )2 2

8
. The expression for the buckling 

stress can, therefore, be written as a function of the cross-sectional areas, 

which are the design variables of the optimization problem, as follows 

 ó
AE

L

ñ

ñ
b   


2

2 1

8

( )
 (3) 

Thus, the compressive stress should be less (in absolute values) than the 

critical Euler buckling stress ó ób . The values of the constraint 

functions are normalized in order to improve the performance of the 

optimization procedure as 

 σ/σa  1 for tension member σa = 0.6FY 

 σ/σb  1 for compression member σb = E(π/(l/r))2 

 d/da  1 

 The sizing optimization methodology proceeds with the following 

steps: (i) At the outset of the optimization the geometry, the boundaries 

and the loads of the structure under investigation have to be defined. (ii) 

The design variables, which may or may not be independent to each 

other, are also properly selected. Furthermore, the constraints are also 

defined in this stage in order to formulate the optimization problem as in 
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eq. (1). (iii) A finite element analysis, is then carried out and the 

displacements and stresses are evaluated. (iv) If a gradient-based 

optimizer, like the sequential quadratic programming (SQP) algorithm, 

is used then the sensitivities of the constraints and the objective function 

to small changes of the design variables are computed either with the 

finite difference, or with the semi-analytical method. (v) The design 

variables are being optimized. If the convergence criteria for the 

optimization algorithm are satisfied, then the optimum solution has been 

found and the process is terminated, else the optimizer updates the 

design variable values and the whole process is repeated from step (iii). 

 

3. EVOLUTION STRATEGIES (ES) 

 

Evolution strategies were proposed for parameter optimization problems 

in the seventies by Rechenberg [8] and Schwefel [9]. ES imitate 

biological evolution in nature and have three characteristics that make 

them differ from other conventional optimization algorithms: (i) in place 

of the usual deterministic operators, they use randomized operators: 

mutation, selection as well as recombination; (ii) instead of a single 

design point, they work simultaneously with a population of design 

points in the space of variables; (iii) they can handle continuous, 

discrete or mixed optimization problems. The second characteristic 

allows for a natural implementation of ES on parallel computing 

environments. The ES, however, achieve a high rate of convergence 

than GA due to their self-adaptation search mechanism and are 

considered more efficient for solving real world problems [20]. In the 

case of ES no difference exists between genotype (encoding) and 

phenotype (appearance). The ES were initially applied for continuous 

optimization problems, but recently they have also been implemented in 

discrete and mixed optimization problems. The ES algorithms used in 

the present study are based on the work of Thierauf and Cai who applied 
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the ES methodologies in sizing structural optimization problems having 

discrete and/or continuous design variables [21,22]. 

 

3.1 ES for discrete optimization problems 

 

In engineering practice the design variables are not continuous because 

usually the structural parts are constructed with certain variation of their 

dimensions. Thus design variables can only take values from a 

predefined discrete set. For the solution of discrete optimization 

problems a modified ES algorithm has been proposed by Thierauf and 

Cai [21]. The basic differences between discrete and continuous ES are 

focused on the mutation and the recombination operators. The mutation 

operator ensures that each parent sp
g( )  of the current generation g 

produces an offspring so
g( ) , whose genotype is slightly different from 

that of the parent: 

 s s zo
g

p
g g( ) ( ) ( )    (4) 

where  z( ) ( ) ( ) ( ), ,...,g g g
n
g

T
z z z 1 2 is a random vector. The mutation 

operator in the continuous version of ES produces a normally distributed 

random change vector z g( ) . Each component of this vector has small 

standard deviation value ói and zero mean value. As a result of this there 

is a possibility that all components of a parent vector may be changed, 

but usually the changes are small. In the discrete version of ES the 

random vector z g( ) is properly generated in order to force the offspring 

vector to move to another set of discrete values.  

 The fact that the difference between any two adjacent values can 

be relatively large is against the requirement that the variance ó i
2  should 

be small. For this reason it is suggested that not all the components of a 

parent vector, but only a few of them (eg. ) should be randomly 

changed in every generation. This means that n- components of the 
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randomly changed vector z g( )will have zero value. In other words, the 

terms of vector z g( )are derived from  

 

 z
äs

i
g i( ) (ê )






1

0

  for  randomly chosen components

         for n -  other components        




 (5) 

 

where äsi is the difference between two adjacent values in the discrete 

set and ê is a random integer number which follows the Poisson 

distribution 

 p
ã

ê
e

ê
ã(ê )

( )

!
 

 (6) 

 

ã is the standard deviation as well as the mean value of the random 

number ê. The choice of  depends on the size of the problem and it is 

usually taken as the 1/5 of the total number of design variables. The  

components are selected using uniform random distribution in every 

generation according to eq. (5). 

 In both versions, continuous and discrete, of multi-membered ES 

there are two different types of selection: 

 

(ì+ë)-ES: The best ì individuals are selected from a temporary 

population of (ì+ë) individuals to form the parents of 

the next generation. 

 

(ì,ë)-ES: The ì individuals produces ë offsprings (ìë) and the 

selection process defines a new population of ì 

individuals from the set of ë offsprings only. 

 

In the second type, the life of each individual is limited to one 

generation. This allows the (ì,ë)-ES selection to perform better on 

dynamic problems where the optimum is not fixed, or on problems 

where the objective function is noisy [23]. 
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 For discrete optimization the procedure terminates when one of 

the following heuristic criteria is satisfied [21,22]: (i) when the best 

value of the objective function in the last 4nì/ë generations remains 

unchanged, (ii) when the mean value of the objective values from all 

parent vectors in the last 2nì/ë generations has not been improved by 

less than a given value åb (=0.0001), (iii) when the relative difference 

between the best objective function value and the mean value of the 

objective function values from all parent vectors in the current 

generation is less than a given value åc(=0.0001), (iv) when the ratio ìb/ì 

has reached a given value åd (=0.5 to 0.8) where ìb is the number of the 

parent vectors in the current generation with the best objective function 

value. 

 

3.2 ES in structural optimization problems 

 

So far comparatively little effort has been spent in applying probabilistic 

search methods to structural optimization problems [3,4,24]. Usually 

this type of problems are solved with a mathematical programming 

algorithm such as the sequential quadratic programming method SQP 

[25], the generalized reduced gradient method (GrG) [26], the method of 

moving asymptotes (MMA) [27], which need gradient information. In 

structural optimization problems, where the objective function and the 

constraints are particularly highly non-linear functions of the design 

variables, the computational effort spent in gradient calculations is 

usually large.  

 In two recent studies by Papadrakakis et. al. [3,4] it was found 

that probabilistic search algorithms are computationally efficient even if 

greater number of analyses are needed to reach the optimum. These 

analyses are computationally less expensive than in the case of 

mathematical programming algorithms since they do not need gradient 

information. Furthermore, probabilistic methodologies were found, due 

to their random search, to be more robust in finding the global optimum, 
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whereas mathematical programming algorithms may be trapped in local 

optima. Finally, the natural parallelism inherent in probabilistic search 

algorithms makes them very attractive for application in parallel 

computer architectures.  

 The ES optimization procedure starts with a set of parent vectors 

and if any of these parent vectors gives an infeasible design then this 

parent vector is modified until it becomes feasible. Subsequently, the 

offsprings are generated and checked if they are in the feasible region. 

According to (ì+ë) selection scheme in every generation the values of 

the objective function of the parent and the offspring vectors are 

compared and the worst vectors are rejected, while the remaining ones 

are considered to be the parent vectors of the new generation. On the 

other hand, according to (ì,ë) selection scheme only the offspring 

vectors of each generation are used to produce the new generation. This 

procedure is repeated until the chosen termination criterion is satisfied.  

The computational efficiency of the multi-membered ES 

discussed in this work is affected by the number of parents and 

offsprings involved. It has been observed that values of ì and ë equal to 

the number of the design variables produce best results [3]. The ES 

algorithm for structural optimization applications can be stated as 

follows : 

 

1. Selection step : 

     selection of si  (i = 1,2,...,ì) parent vectors of the design variables 

2. Analysis step : solve K s u fi i( )   (i=1,2,...,ì) 

3. Constraints check : all parent vectors become feasible 

4. Offspring generation : 

 generate sj , (j=1,2,...,ë) offspring vectors of the design variables 

5. Analysis step :  solve  K s u fj j( )   (j=1,2,...,ë) 

6. Constraints check : 

 if satisfied continue, else change sj  and go to step 4 
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7. Selection step : 

 selection of the next generation parents according to (ì+ë) or (ì,ë) 

selection schemes 

8. Convergence check : If satisfied stop, else go to step 3 

 

4. ELEMENTS OF ARTIFICIAL NEURAL NETWORKS 

THEORY 

 

The aim of the present study is to train a neural network to provide 

computationally inexpensive estimates of analysis outputs required 

during the optimization process. A trained network presents some 

distinct advantages over the numerical computing paradigm. It provides 

a rapid mapping of a given input into the desired output quantities, 

thereby enhancing the efficiency of the redesign process. This major 

advantage of a trained NN over the conventional procedure, under the 

provision that the predicted results fall within acceptable tolerances, 

leads to results that can be produced in a few clock cycles, representing 

orders of magnitude less computational effort than the conventional 

computational process. The learning algorithm which was employed for 

the training is the well known Back Propagation (BP) algorithm [14,28]. 

 

4.1 The NN training 

 

In the present implementation the objective is to investigate the ability 

of the NN to predict accurate structural analysis outputs that are 

necessary for the ES optimizer. This is achieved with a proper training 

of the NN. The NN training comprises the following tasks: (i) select the 

proper training set, (ii) find a suitable network architecture and (iii) 

determine the appropriate values of characteristic parameters such as the 

learning rate and momentum term.  

 The main limitation of a NN training algorithm is the fact that its 

efficiency depends on the learning rate, momentum term and network 
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architecture. Unfortunately, there are not any general rules on the 

selection of these parameters. They usually depend on the type of the 

problem and the experience of the designer and sometimes they can be 

chosen with a trial and error approach. The appropriate selection of I/O 

training data is one of the most important features of NN training. The 

number and the distribution of training patterns is of great importance 

especially for the BP algorithm which provides good results only if the 

training set includes data over the entire range of the design space. 

 The output of the sigmoid function used in the conventional BP 

algorithm lies between 0 and 1, to produce meaningful results the output 

values of the training patterns should be scaled within the same range. 

As the network is trained, the weights can become adjusted to very large 

values. This can force all or most of the neurons to operate at large 

output values in a region where the derivative of the activation function 

is very small. Since the correction of the weights depends on the 

derivative of the sigmoid function the network may come to virtual 

standstill. Initializing the weights to small random values would help to 

avoid this situation, however it is more appropriate to normalize the 

input patterns to be also between 0 and 1. 

 The learning rate coefficient and the momentum term are two user 

defined BP parameters that affect the training of NN. The learning rate 

coefficient, employed during the adjustment of weights, can speed-up or 

slow-down the learning process. A bigger learning coefficient increases 

the weight changes, hence large steps are taken towards the minimum 

error level but may lead to oscillation, while smaller learning 

coefficients increase the number of steps taken to reach the desired error 

level and may trap the process at a local optimum. If an error curve 

shows a downward trend but with poor convergence at the latest stages a 

decrease of the learning rate coefficient is likely to accelerate the 

convergence.  

 The momentum term  when used with batch training affects the 

learning procedure in such a way that if the gradient points lie at the 
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same direction for several consecutive iterations, it increases the step 

size by a factor of approximately 1/(1-). Therefore, a momentum term 

close to one is useful when a small learning rate is used. However, a 

large momentum term can exacerbate divergence problems when a large 

learning rate is used. In this study the initial values for the momentum 

term and the learning rate are taken equal to 0.6 and 0.05, respectively. 

Then, when the error curve starts to oscillate the value of the learning 

rate coefficient is divided by two. If a flat error curve is obtained the 

value of the momentum term is increased to the value 0.99 while the 

value of the learning rate coefficient remains unchanged. 

 The basic NN configuration employed is fully connected with two 

hidden layer. Tests performed for more than one hidden layer showed no 

significant improvement in the obtained results. Based on this 

configuration various NN architectures are tested in order to find the 

most suitable one in terms of the smallest prediction error. This is done 

either with a direct comparison of predicted with "exact" results, or by 

means of the Root Mean Square (RMS) error which is given by 

 

 
 


P outN

1i

N

1j

2
j,ij,i

outP
RMS )outtar(

NN

1
e  (7) 

 

 

where NP is the total number of I/O pairs in the training set and Nout is 

the number of output units. “Exact” results are those computed by a 

conventional structural analysis. 

 

4.2 Selection of the training set 

 

An important factor governing the success of the learning procedure of a 

NN architecture is the selection of the training set. A sufficient number 

of input data properly distributed in the design space together with the 

output data resulting from complete structural analyses are needed for 
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the BP algorithm in order to provide satisfactory results. Overloading 

the network with unnecessary similar information results to overtraining 

without increasing the accuracy of the predictions. A few tens of 

structural analyses have been found sufficient for the examples 

considered to produce a satisfactory training of the NN. Ninety percent 

of those runs is used for training and the rest is used to test the results of 

the NN. 

 Most researchers split the design space into subregions and try to 

combine randomly the values within each subregion in order to obtain a 

training set which is representative of the whole design space. This 

procedure leads frequently to a huge number of training patterns in order 

to ensure that the whole design space is properly represented. In an 

effort to increase the robustness as well as the computational efficiency 

of the NN procedure various types of training set selection were 

investigated in a previous study [4]. In this study two types of training 

set selection are used: (i) the training set is chosen automatically based 

on a Gaussian distribution of the design variables around the midpoints 

of the design space, (ii) the training set is chosen using data from the 

structural analyses carried out in a number of ES optimization steps until 

the design reaches stationarity near the optimum. This happens when the 

value of objective function remains unchanged for a number of ES 

generations. 

 The first type of the training set selection was motivated from the 

fact that usually the searching for the optimum and its location lies in 

the region near the midpoints of the design space. A Gaussian 

distribution was therefore used for the random selection of input data in 

order to cover the whole design space and enforce the selection of most 

input patterns around the midpoints of the design space. This approach 

proved to be more efficient than choosing randomly combinations of 

input data from the whole range of the design space using a uniform 

distribution of the design variables [4]. The second type of the training 

set selection is based on the fact that in most cases the ES optimizer very 
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fast tracks the path to the optimum and then it may oscillate around it 

until convergence in a slower rate. Therefore it is more efficient to 

produce the training sets in the vicinity of the design point where the 

optimizer has reached a stationary point. This way a smaller number of 

training sets is required and the NN training is performed much faster 

and accurately. 

 

5. STRUCTURAL OPTIMIZATION BASED ON ES AND NN 

 

After the selection of the suitable NN architecture the training procedure 

is performed using a number (M) of data sets, selected as described 

previously, in order to obtain the I/O pairs needed for the NN training. 

Since the NN based structural analysis can only provide approximate 

results it is recommended that a correction on the output values should 

be performed in order to alleviate any inaccuracies entailed, especially 

when the constraint value is near the limit which separates the feasible 

and the infeasible region. This is achieved with a relaxation of this limit 

during the NN testing phase before entering the optimization procedure. 

A “correction” of the allowable constraint values was therefore 

performed proportional to the maximum testing error of the NN 

configuration. The maximum testing error is the largest average error of 

the output values among testing patterns. Whenever the predicted values 

were found smaller than those derived from a conventional structural 

analysis the allowable values of the constraints were decreased 

according to the maximum testing error of the NN configuration and 

vice versa. 

 The proposed ES-NN methodology can be described with the 

following algorithms according to the two types of training set selection 

schemes that were previously described: 

 

5.1 Algorithm 1  
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The combined ES-NN optimization procedure is performed in two 

phases. The first phase includes the training set selection, the structural 

analyses required to obtain the necessary I/O data for the NN training, 

and finally the selection, training and testing of a suitable NN 

configuration. The second phase is the ES optimization stage where the 

trained NN is used to predict the response of the structure in terms of 

constraints function values, due to different sets of design variables, 

instead of the standard structural analysis computations. The proposed 

methodology ES-NN can be described with the following algorithm: 

 

 NN training phase : 

 

1. Training set selection step : select si  (i = 1,2,...,M) input patterns. 

2. Structural analysis step :  solve  K s u fi i( )   (i=1,...,M). 

3. Training step : selection and training of a suitable NN architecture. 

4. Testing step : test NN and “correct” allowable constraint values. 

 

 ES-NN optimization phase : 

 

1. Selection step : 

     selection of si  (i = 1,2,...,ì) parent vectors of the design variables. 

2. Prediction step : using NN to compute optimization function 

values for the  parent vectors. 

3. Constraints check : all parent vectors become feasible. 

4. Offspring generation : 

 generate sj , (j=1,2,...,ë) offspring vectors of the design variables. 

5. Prediction step : using NN to compute optimization function 

values for the  offspring vectors. 

6. Constraints check : 

 if satisfied continue, else change sj  and go to step 4. 

7. Selection step : 
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 selection of the next generation parents according to (ì+ë) or (ì,ë) 

selection schemes. 

8. Convergence check : If satisfied stop, else go to step 3. 

  

5.2 Algorithm 2 

 

According to the second type of training set selection the proposed ES-

NN methodology can be described with the following algorithm: The 

combined ES-NN optimization procedure is performed in three phases. 

The first phase is the ES optimization stage until a stationary point is 

obtained. This is the case when the mean value of the objective values 

from all parent vectors in the last nì/ë generations has not been 

improved by less than a given value åd (=0.05). The second phase 

includes the training set selection in the vicinity of the stationary point 

from the previous structural analyses during previous ES steps. This way 

the necessary I/O data required for the NN training are obtained, and 

finally the selection, training and testing of a suitable NN configuration. 

The third phase is identical to the second phase of algorithm 1. The 

second algorithm is described as follows: 

 

 ES optimization phase : 

 

1. Selection step : 

     selection of si  (i = 1,2,...,ì) parent vectors of the design variables 

2. Analysis step : solve K s u fi i( )   (i=1,2,...,ì) 

3. Constraints check : all parent vectors become feasible 

4. Offspring generation : 

 generate sj , (j=1,2,...,ë) offspring vectors of the design variables 

5. Analysis step :  solve  K s u fj j( )   (j=1,2,...,ë) 

6. Constraints check : 

 if satisfied continue, else change sj  and go to step 4 
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7. Selection step : 

 selection of the next generation parents according to (ì+ë) or (ì,ë) 

selection schemes 

8. Stationarity check : If satisfied continue, else go to step 3 

 

 NN training phase : 

 

1. Training set selection step : choose si  (i = 1,2,...,M) I/O data. 

2. Training step : selection and training of a suitable NN architecture. 

3. Testing step : test NN and “correct” allowable constraint values. 

 

 ES-NN optimization phase : as in algorithm 1 

 

6. NUMERICAL EXAMPLES 

 

Test example 1 

The performance of the optimization methodology discussed in previous 

sections is investigated for a characteristic test example in sizing 

structural optimization of three dimensional roof trusses. The NN 

method used in this study is the back propagation algorithm META-

NETS [29]. In the tables containing the results of the test examples the 

following abbreviations are used: ES refers to the standard evolution 

strategies optimization procedure, in which structural analyses are 

performed in the conventional way. ES-NN refers to the combined NN 

and ES optimization procedure, where the structural analysis response is 

predicted by a trained NN. For the two different types of training set 

selection that have been compared in this study the following 

abbreviations are used: (i) GT stands for the random selection of training 

set based on a Gaussian distribution of the design variables in the design 

space according to Algorithm 1, (ii) AT stands for the “automatic” 

training set selection using the results obtained at the initial stages of the 

ES optimization procedure according to Algorithm 2. The symbol “(c) ” 
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is used when the allowable limits of the constraints have been adjusted, 

as discussed previously, in order to “correct” the NN predictions near 

the feasible region limits, while symbol “(v) ” indicates that the final 

design is violating the constraints and thus it is infeasible. All examples 

were run on a Silicon Graphics Power Challenge computer. 

 The test example of a typical double-layered space truss structure 

has been considered to illustrate the efficiency of the proposed 

methodology in sizing optimization problems with discrete design 

variables. This configuration has been tested for a number of different 

curvatures as shown in Figure 1, in order to investigate the influence of 

the curvature in the optimum design. Four different topologies were 

tested corresponding to 0ï, 5ï, 10ï, 15ï inclination of the curved surface at 

the supports. The modulus of elasticity is 200 GPa (29,000 ksi) and the 

yield stress is Fy=250 MPa (36 ksi). Each member is assumed to have a 

thin-walled tubular cross section. The cross-sectional area is considered 

to be the design variable of each member. Members are divided to forty 

eight groups according to their position. For all test cases the finite 

element model consists of 8,000 members, 2,071 nodes and 6,183 

degrees of freedom. The loads are taken as uniform vertical forces 

applied at joints equivalent to uniform load of 0.10 kN and a 

concentrated vertical load 50 kN at the center of the structure which 

corresponds to the maximum load of a crane and it is equally distributed 

to the central nodes of the roof. The objective function in all test cases is 

the weight of the structure. The constraints are imposed on the 

maximum nodal displacement and the maximum axial and buckling 

stresses in each element group. The values of allowable axial stress is 

óa=150 MPa, whereas the maximum allowable displacement is limited to 

3 cm. The space truss with 5ï inclination is susceptible to bifurcation 

buckling at lower loads as compared to 10ï, 15ï inclination when there is 

imperfection. In this study only the buckling of the individual members 

is checked, not the overall buckling. 
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 For all test cases the (ì+ë)-ES approach is used with ì=ë=20. The 

number of NN input units is equal to the number of design variables, 

whereas the output units are ninety eight corresponding to the two 

values of axial and buckling stresses for the forty eight element groups 

and the value of the maximum nodal displacement. The NN 

configuration has two hidden layers each one consisting of 35 nodes, 

which results in a 48-35-35-97 NN architecture used for all runs. The 

performance of the Gaussian and the “automatic” NN training set 

selection with 480 and 200 training sets, respectively, is shown in 

Tables 1-4 for the four configurations of the roof. The 200 training 

patterns that were used for the “automatic” NN training set selection 

were selected from the initial structural analyses of the ES procedure as 

described in section 4.2. The iteration history of the value of the 

objective function for the first test case is shown in Figure 2. It is 

obvious from the results that the performance of the proposed ES-NN 

methodology is superior to the performance of the conventional ES 

optimization procedure, since a dramatic improvement in total 

computing time required by ES-NN over ES is observed in all test cases 

examined. A significant improvement is also observed in the 

performance, both in terms of computing time and optimum values of 

the objective function, of the proposed ES-NN methodology when the 

“automatic” type of NN training is used over the Gaussian type of NN 

training. As it can be observed from the results obtained the curved type 

of structure is more economical from the flat roof type eventhough the 

surface of the structure is longer. For greater slopes, however, the 

overall weight grows since the surface of the structure increases 

significantly. 

 

Test example 2 

The performance of the optimization methodology is also investigated 

for the typical double-layered space truss roof of Figure 3. The optimum 

design of this space structure is based on a limit state analysis. Each 
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member is assumed to have a thin-walled tubular cross section. The 

modulus of elasticity is 210 Gpa, while the permissible tension and 

compression forces at the ultimate limit state for each element type are 

given in Tables 5-7. The design variable of each member is considered 

to be its cross-sectional area. Members are divided: (i) into three groups, 

top-bottom-diagonal elements (test case 1); (ii) into eleven groups (4 

subgroups for the top elements, 4 subgroups for the diagonal elements 

and 3 subgroups for the bottom elements) according to their stress 

values of a preliminary linear analysis (test case 2). For both test cases 

the finite element model consists of 584 members and 189 nodes with 

527 degrees of freedom. The objective function in this test example is 

also the weight of the structure. For this test example the (ì+ë)-ES 

approach is used with ì=ë=10. The results for the two test cases are 

shown in Table 8. 

 

7. CONCLUSIONS 

 

The implementation of a hybrid optimization procedure, based on the 

combination of Evolution Strategies and Neural Networks for large-

scale sizing optimization problems of 3-D truss structures was found to 

be very effective. The time-consuming requirements of repeated 

analyses associated with the optimization procedure using Evolution 

Strategies motivated the use of Neural Networks. The computational 

effort involved in the optimization procedure using Evolution Strategies 

becomes excessive in large-scale problems. The capability of Neural 

Networks to “predict”, within acceptable tolerance, the necessary data 

for Evolution Strategies can practically eliminate any limitation on the 

size of the problem. The methodology presented is an efficient, robust 

and generally applicable optimization procedure capable of finding the 

global optimum design of complicated structural optimization problems. 

It was also found that the proposed hybrid optimization methodology 

can reach the optimum for large and computationally intensive problems 
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at a substantially reduced computing time compared to the standard 

Evolution Strategies optimization algorithm and conventional methods 

based on mathematical programming techniques [4]. 

 The study performed on the NN training scheme showed that the 

technique of using the conventional ES optimization procedure until a 

stationary point of the optimization problem is located followed by NN 

training, using previously computed data, is superior to the rule of 

choosing randomly combinations of input data with a Gaussian 

distribution around the midpoints of the design space. This approach 

was motivated by the fact that the searching for the optimum by the ES 

optimizer proceeds very fast in the initial stages and eventually starts to 

slow down. Thus, when ES reach a stationary point then it can be 

replaced by the hybrid ES-NN methodology in order to speed-up the 

optimization procedure. The proposed NN training scheme makes the 

ES-NN methodology more robust and efficient since it restricts the 

space of interest and permits the use of smaller number of training sets 

from a narrower region. This results in a cost-effective and accurate NN 

training as it was shown in the test examples presented. 
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Analysis 

type 

Number 

of FE 

analyse

s 

Number 

of NN 

analyse

s 

Computing time (s) 
Optimum 

Weight (tn) 

   Analysis Training  NN-ES  Total   

ES 4,150 - - - - 93,125 460.8 

NN-ES-GT 480 3,827 10,771 1,546 131 12,448 416.8(v) 

NN-ES-GTc 480 4,094 10,771 1,546 140 12,457 466.3 

NN-ES-A 472 3174 10,591 345 109 11,045 453.7(v) 

NN-ES-Ac 472 3515 10,591 345 120 11,056 466.3 

 

 

Table 1 - Test case 1 (0o inclination): Performance of the optimization methods 

 

 

 

 

Analysis 

type 

Number 

of FE 

analyse

s 

Number 

of NN 

analyse

s 

Computing time (s) 
Optimum 

Weight (tn) 

   Analysis Training  NN-ES  Total   

ES 3,940 - - - - 88,220 349.3 

NN-ES-GT 480 4,017 10,771 1,493 138 12,402 368.2 

NN-ES-GTc 480 3,862 10,771 1,493 133 12,397 350.9 

NN-ES-A 512 3116 11,489 361 106 11,956 328.9(v) 

NN-ES-Ac 512 3406 11,489 361 117 11,967 351.7 

 

 

Table 2 - Test case 2 (5o inclination): Performance of the optimization methods 

 



 

 

Analysis 

type 

Number 

of FE 

analyse

s 

Number 

of NN 

analyse

s 

Computing time (s) 
Optimum 

Weight (tn) 

   Analysis Training  NN-ES  Total   

ES 4,210 - - - - 95,640 402.7 

NN-ES-GT 480 4,132 10,771 1,575 140 12,486 435.7 

NN-ES-GTc 480 4,256 10,771 1,575 147 12,493 405.8 

NN-ES-A 423 3213 9,492 337 109 9,938 420.1 

NN-ES-Ac 423 3147 9,492 337 107 9,936 405.1 

 

 

Table 3 - Test case 3 (10o inclination): Performance of the optimization methods 

 

 

 

Analysis 

type 

Number 

of FE 

analyse

s 

Number 

of NN 

analyse

s 

Computing time (s) 
Optimum 

Weight (tn) 

   Analysis Training  NN-ES  Total   

ES 4,280 - - - - 96,035 426.9 

NN-ES-GT 480 4,021 10,771 1,631 138 12,540 404.3(v) 

NN-ES-GTc 480 4,267 10,771 1,631 147 12,549 428.6 

NN-ES-A 437 3613 9,806 356 124 10,286 433.3 

NN-ES-Ac 437 3221 9,806 356 110 10,272 428.6 

 

 

Table 4 - Test case 4 (15o inclination): Performance of the optimization methods 

 

 



 

Diameter 

(mm) 

Thickness 

(mm) 

Allowable 

compression (kN) 

Allowable tension 

(kN) 

42.4 3.25 44.12 123.97 

48.3 3.25 62.26 142.65 

60.3 3.65 116.44 201.46 

76.1 4.50 224.49 313.92 

88.9 4.85 315.14 397.16 

114.3 3.65 350.23 393.49 

 

Table 5 - Test example 2: Permission tension and compression in top chords 

diagonally laid out and bracing diagonal members 

 

 

Diameter 

(mm) 

Thickness 

(mm) 

Allowable 

compression (kN) 

Allowable tension 

(kN) 

42.4 3.25 24.70 123.97 

48.3 3.25 36.33 142.65 

60.3 3.65 74.23 201.46 

76.1 4.50 159.47 313.92 

88.9 4.85 241.28 397.16 

114.3 3.65 299.91 393.49 

 

Table 6 - Test example 2: Permission tension and compression in top edge chords 

and bottom chords 

 

Diameter 

(mm) 

Thickness 

(mm) 

Allowable 

compression (kN) 

Allowable tension 

(kN) 

42.4 3.25 12.95 123.97 

48.3 3.25 19.45 142.65 

60.3 3.65 41.81 201.46 

76.1 4.50 97.06 313.92 

88.9 4.85 157.11 397.16 

114.3 3.65 221.66 393.49 

 

Table 7 - Test example 2: Permission tension and compression in bottom corner 

chords 

Test case Optimum Weight 

(tn) 

Number of 

Generations 

Number of FE 

analysis 

1 4.25 11 52 

2 4.09 42 146 

 

Table 8 - Test example 2: the two test cases 



 

 


