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Abstract

Recent developments in computational and hardware systems enabled the development

of more complex artificial systems. In particular, this has brought to life new challenges

in the field of robotics, such as the development of humanoid robots with the ability to

interact with complex environments, like those where humans live and act. Research has

addressed the locomotion of such robots and the way they interact with humans. Howe-

ver, the increasing complexity in the design of the body of humanoid robots, necessitates

the development of more satisfactory control methodologies than the existing ones. For

that purpose, research in robotics has attempted to get inspired by the study of living

organisms, which demonstrate robust and adaptable locomotor behavior. Key compo-

nents of their motion control are neural networks, called Central Pattern Generators

(CPGs), such as those located on the spine of the vertebrate bodies, and are responsi-

ble for the production of rhythmic control signals during walking, running, swimming

or flying, even in the absence of sensory feedback. Reproducing robustly such motion

control schemes in humanoid robots represents a significant challenge, made even mo-

re important from the requirement of controlling fast and efficiently a large number of

degrees of freedom in such robots.

In this thesis, we examined through robotic experiments on the NAO humanoid robot,

the robustness of its built-in walking behavior on steps, inclines, as well as on rugged and

granular substrates. The robot and its built-in walking behavior are developed by the

company Aldebaran Robotics. The analysis of the experiments showed that the robot

has some difficulty in dealing with such substrates. At this point, the idea of using a

completely different approach to create a walking behavior for the robot, came up. An

attempt is made to set up and exploit a CPGs-based motion control scheme, as an alter-

native way of achieving a stable walking locomotion for the simulated humanoid robot

NAO, using the Webots simulator. The type of Central Pattern Generators selected is

based on the Hopf nonlinear oscillator, which has properties useful for the control of the

joints of the robot during walking, and is able to reproduce them in a satisfactory way.

The procedure followed starts with the recording of the joint trajectories of the robot

during walking, then these are learned by the CPGs via a Hebbian learning process,

and, then, the CPGs provide desired joint trajectories to the robot, in order to reprodu-

ce the walking gait. Furthermore, an optimization process based on genetic algorithms

is employed, to achieve the fine tuning of the CPGs via a well-defined objective function.
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Περίληψη

Οι πρόσφατες εξελίξεις, τόσο σε υπολογιστικά συστήματα, όσο και στα μηχανικά μέρη των

ρομποτικών συστημάτων, επέτρεψαν την ανάπτυξη πιο σύνθετων συστημάτων, επιτρέποντας

τη διερεύνηση και νέων προκλήσεων. Μια τέτοια πρόκληση είναι η δημιουργία ανθρωποειδών

ρομπότ, με τη δυνατότητα να αντιμετωπίζουν περίπλοκα περιβάλλοντα, όπως αυτά στα οποία

κινείται ο άνθρωπος. Σημαντικές μελέτες επικεντρώνονται στην κίνησή τους, στον έλεγχό

της, όπως και στον τρόπο που αλληλεπιδρούν με ανθρώπινα εργαλεία, αλλά και με τον ίδιο

τον άνθρωπο. Η αυξανόμενη πολυπλοκότητα στο σχεδιασμό του σώματός τους, καθιστά

αναγκαία την χρήση ακόμη πιο εξελιγμένων μεθόδων ελέγχου της κίνησης από τις ήδη υ-

πάρχουσες. Στην αναζήτηση τέτοιων μεθόδων, οι επιστήμονες της ρομποτικής στράφηκαν

προς την μελέτη έμβιων οργανισμών, οι οποίοι μπορούν να επιδείξουν αξιοσημείωτη ευρω-

στία και προσαρμοστικότητα στην κίνησή τους. ΄Ενα βασικό συστατικό του ελέγχου αυτής

της κίνησης είναι τα νευρωνικά δίκτυα, που ονομάζονται Κεντρικές Γεννήτριες Προτύπων

(Central Pattern Generators – CPGs), όπως αυτά που βρίσκονται στην σπονδυλική στήλη

των σπονδυλωτών οργανισμών, και τα οποία είναι σε μεγάλο βαθμό υπεύθυνα για την πα-

ραγωγή των σημάτων ελέγχου κατά την διάρκεια ρυθμικών κινήσεων των οργανισμών. Η

αναπαραγωγή αντίστοιχων μηχανισμών ελέγχου κίνησης σε ανθρωποειδή ρομπότ συνιστά

μία σημαντική πρόκληση. ΄Ενα από τα βασικά χαρακτηριστικά αυτών των δικτύων είναι ότι

μπορούν να αναπαράγουν εύρωστες ρυθμικές συμπεριφορές, ακόμη και χωρίς την παρουσία

αισθητηριακής πληροφορίας.

Σε αυτή την διπλωματική εργασία, έγινε μελέτη με ρομποτικά πειράματα στο ρομπότ NAO

της εταιρίας Aldebaran Robotics, πάνω στην ευστάθεια του περπατήματος που έχει υλο-

ποιηθεί από την κατασκευάστρια εταιρία, σε περιβάλλοντα με σκαλιά, επικλινείς επιφάνειες,

καθώς και επιφάνειες με εμπόδια και άμμο. ΄Επειτα, γίνεται απόπειρα, με τη χρήση κεν-

τρικών γεννητριών προτύπων, να επιτευχθεί η αναπαραγωγή σταθερού περπατήματος στον

εξομοιωτήWebots, για το ανθρωποειδές ρομπότ NAO. Το είδος των CPGs, που επιλέχθη-

κε να χρησιμοποιηθεί, έχει σαν βάση του τον μη-γραμμικό ταλαντωτή Hopf, ο οποίος έχει

τις δυναμικές ιδιότητες που συσχετίζονται με τα σήματα των αρθρώσεων του ανθρωποειδο-

ύς που παράγονται κατά το περπάτημα, και μπορεί να τα αναπαράγει σε ένα ικανοποιητικό

βαθμό. Η διαδικασία που ακολουθήθηκε ξεκινάει από την καταγραφή των τροχιών των αρ-

θρώσεων με κατάλληλους αισθητήρες, την εκμάθηση των σημάτων αυτών μέσω του CPG,

και, στη συνέχεια, του ελέγχου των αρθρώσεων του ρομπότ μέσω των CPGs, με σκοπό

την αναπαραγωγή του περπατήματος. Η παραπέρα βελτιστοποίηση των CPGs έγινε μέσω

κατάλληλης εξελικτικής διαδικασίας, με τη χρήση γενετικού αλγορίθμου. Για την επίτευξη

της διαδικασίας αυτής έγινε αναλυτικός ορισμός του προβλήματος, με την διατύπωση αντι-

κειμενικής συνάρτησης, που εξελίσσει τα CPGs, με σκοπό τη βελτίωση της απόκρισης του

συστήματος ελέγχου της κίνησης του ανθρωποειδούς ρομπότ κατά το περπάτημα.
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Chapter 1

Introduction

During the last decade, one of the major research directions in robotics has been to

develop robots that can assimilate seamlessly within human environments. A significant

development in this direction is the transition from wheel-based robots to ones with

anthropomorphic bodies [7], due to their ability to deal with non-planar and rugged

environments, especially environments where humans live and work [8], [9].

In contrast to wheel-based robots, in bipedal locomotion the stability of the robot can be

easily disturbed. The robot’s feet are continuously impacting the ground in a unilateral

and under-actuated way [10], therefore, even small disturbances may cause problems to

the postural stability of the robot. To produce a stable gait, a controller must be able

to respond accurately to these disturbances, in a timely manner, taking into account

sensory information.

Moreover, anthropomorphic robots encompass a large number of degrees of freedom

(DOFs) and are characterized by complex dynamics and non-linearities, which may be

difficult to model accurately and control [11]. To reduce the complexity of the control

problem, researchers in robotics have sought inspiration from other fields, including

biology and neuroscience. One such idea towards reducing the complexity of controlling

a large number of DOFs is to replicate the function of Central Pattern Generators

(CPG), namely of neuronal circuits that reside in the spinal cord of various vertebrates,

and have been shown to actively participate in the generation of rhythmic locomotion

patterns. From a computational perspective, the CPGs can encode complex control

signals in a distributed manner, have well-described dynamics and response properties

that resemble, to a large extent, to the properties of animal locomotion. Therefore, they

are an efficient tool, which can be used to study the issues that arise from locomotion

characteristics like the unpredictability of the unstructured environments or the delays

2



inherent in robotic sensors.

1.1 Thesis Contribution

In this thesis, we examine how a stable gait can be reproduced on the simulated NAO V4

humanoid robot, using biologically-inspired CPG neural networks. Models of the CPGs

have well described dynamics, exhibiting oscillatory behavior. This oscillatory behavior

is very similar to the gait patterns exhibited by several animals [8], and is exploited here

to specify the desired joint trajectories which achieve walking on the NAO humanoid

robot. In addition, we use an optimization methodology, based on Genetic Algorithms

(GA), to optimize the CPG network’s performance with respect to the properties of its

dynamic interaction with the environment. In order to document the need for improved

walking behavior of the NAO, we test experimentally the limits of its built-in walking

behavior in environments with steps, inclines, sand and rugged substrates.

1.2 Thesis Outline

The structure of this thesis is as follows: In Chapter 2, information about humanoid

robots, the Aldebaran NAO v4 robot and experiments implemented on the real NAO

V4 robot, in order to test the robustness of its built-in walking behavior in non-planar

environments, is presented. In Chapter 3, the essentials of Central Pattern Generators

(CPG) and of Genetic Algorithms (GA) is reviewed. In Chapter 4, the design, learning

process and optimization via GAs of a CPG network is presented. Chapter 5 shows

results from the simulation studies performed. Chapter 6 presents conclusions and some

ideas for future work.
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Chapter 2

The Humanoid Robot NAO and

its Walking Behavior

2.1 Humanoid Robots and the Aldebaran Robotics NAO

robot

As robots gradually take the role of human assistants, they must be able to confront

the complexities of environments where humans live. One way to make that happen is

to create human-like robots, called humanoids. The humanoids are designed in such a

way that they resemble the morphology of the human body (Figure 2.1.1), and posses

behaviors like grasping with hands [12] and bipedal locomotion [13]. Every robot has

a specific number of DOFs, depending on the features and complexity of the tasks one

wishes it to perform [1]. However, higher DOFs lead to an increase in the complexity of

the control problem, and this is not always beneficial or desired.

Figure 2.1.1: The left three figures show the Honda P2, P3 and Asimo humanoid
robots. The right figure shows the robot Justin. [1]
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After the middle of the 20th century, researcher groups started to give their systems mul-

tiple abilities for sensing, control and actuation. It was at this time that roboticists tried

to developed behaviors inspired by human abilities. They started to develop systems

with sensors, motion and manipulators. In 1973, the group of Ichiro Kato at Waseda

University in Japan, created the first humanoid robot which integrated all those tasks,

called WABOT-1 (Figure 2.1.2). After that, many companies and researchers started

working in the field of humanoid robots. In 1996, the Honda company built the Honda

humanoid P2 (Figure 2.1.1), which was the first autonomous humanoid capable of stable

bipedal walking with on-board power and processing. Since that time, many bipedal hu-

manoid robots came about, such as the P3 and ASIMO (Figure 2.1.1), the Justin robot

which is an autonomous two-armed humanoid robot with 7-DOF-torque-controlled arms

and 12-DOF hands (Figure 2.1.1), the Atlas robot of DARPA’s projects (Figure 2.1.2)

which is a 2 m humanoid robot designed for a variety of search and rescue tasks, and

the industrial robot Baxter of Rethink Robotics (Figure 2.1.2), which is a two-armed

robot with an animated face, that is used for simple industrial jobs such as loading,

unloading, sorting and handling of materials. Some current challenges for humanoid

robots include walking and running in rugged terrains, the whole body control problem,

large disturbance handling, etc.

Figure 2.1.2: The top figures show the robots WABOT-1 (1973) and WABOT-2
(1984) [1]. The bottom left figure shows the robot Atlas of Boston Dynamics. The

bottom right figure shows the robot Baxter of Rethink Robotics.
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In 2006, the French company Aldebaran Robotics developed a humanoid robot called

NAO. It is an autonomous, medium-size humanoid robot which has low cost and is

easy to program [1]. Since its first public release in 2008, many new versions have been

produced (V1,V2 ... and, recently, V5). This thesis focuses on the NAO version V4.

Figure 2.1.3: The left figure shows a NAO robot. The right figure shows a
schematic of the NAO V4 sensor and joint placement. [2]

The NAO humanoid robot (Figure 2.1.3) has 25 degrees of freedom (DOFs), with 2

DOFs in the head, 6 DOFs in each arm, 5 DOFs in each leg and 1 DOF at the pelvis

(it has a pair of pelvis joints, but they cannot work separately from each other). The

configuration and names of these DOFs are shown in Figure 2.1.4. The NAO V4 is a

robot of 57.3 cm in height, 27.5 cm in width and 31.1 cm in depth humanoid robot,

weighting 5.18 kg. It is also equipped with a variety of sensors. It has four Force

Sensitive Resistors (FSRs) in each sole (Figure 2.1.5), which provide force information

with a delay of about 50 ms. The mean estimate of the FSR sensors gives the Center

of Pressure (COP) in each sole. The FSRs evaluate the pressure applied to each foot

(Table 2.1), and their working range is from 0 N to 25 N. Also, there is a 2-axis gyroscope

and a 3-axis accelerometer. This inertial measurement unit is located in the torso of the

robot, embedded with its own processor.

Embedded in the robot are an Intel ATOM z530@1.6 Ghz CPU, with 1 GB RAM and

2 GB Flash memory, with built-in Linux operating system. The robot is electrically

powered by a lithium-ion battery located at its back and capable of keeping the NAO

operational for about 60 minutes in active use. The NAO is capable of both wireless

and wired communication with remote computer using the IEEE 802.11 protocol. It

can also be connected with Kinect or Asus 3D sensor, or with an Arduino device via its
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Figure 2.1.4: NAO V4 joints in the three axis convention and their names. [2].

Figure 2.1.5: The left and right sole FSRs.

USB port. The NAO also has a variety of interaction devices and sensors: the head has

2 loudspeakers as left and right ears, 2 microphones in the front upper head and 2 in

the back upper head, 2 identical video cameras located in the forehead and in the chin,

which provide video with up to 1280x960 pixel resolution at 30 frames per second, 2

infrared (I/R) sensors, one in each eye, with wavelength 940 nm and power consumption

8mW/sr, and some LEDs in the upper head and in the eyes. Other sensors are a sonar

with 2 emitters and 2 receivers each one in the left and right side of the chest. The

robot has 3 tactile capacitive sensors, 1 chest button and 2 feet bumpers in each feet;

it also has 36 Magnetic Rotary Encoders (MRE) at each joint using Hall-effect sensor

technology, to provide information on each joint angle [2].
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FSR Name Position X(m)
[Ankle Frame]

Position Y(m)
[Ankle Frame]

LFsrFL 0.07025[LEFT] 0.0299[LEFT]
LFsrFR 0.07025[LEFT] -0.0231[LEFT]
LFsrRL -0.03025[LEFT] 0.0299[LEFT]
LFsrRR -0.02965[LEFT] -0.0191[LEFT]
RFsrFL 0.07025[RIGHT] 0.0231[RIGHT]
RFsrFR 0.07025[RIGHT] -0.0299[RIGHT]
RFsrRL -0.03025[RIGHT] 0.0191[RIGHT]
RFsrRR -0.02965[RIGHT] -0.0299[RIGHT]

Table 2.1: Force Sensitive Resistor (FSR) positions in the Ankle Frame. [2]

2.2 Robotic Experiments regarding the Stability of the

Built-in NAO Walking Behavior

This was a first attempt to acquire knowledge from the bipedal NAO robot. So it is

considered as preliminary work, aiming to test the built-in functionalities of the robot.

The Aldebaran Robotics company have implemented a NAOqi function, which com-

mands the robot NAO to walk, designed primarily for walk on flat terrain. This section

is an evaluation of this gait behavior on non-planar terrains, and examines the ability

of the robot to adjust its gait and balance despite the terrain anomalies. A series of

tests were performed in different terrains, like sand, grass, inclines and rough terrain.

The NAO succeeded to descend a 1 cm-high step, many other tests were performed,

but this was the test with the most successful results. When the steps were lower, the

NAO descended them very easily, but as the height of the steps was increased, the NAO

started to fall (Figure 2.2.1).

Figure 2.2.1: NAO descending from a 1 cm-high step.

The NAO succeed to walk on 4-degree (Figure 2.2.2) and 6-degree (Figure 2.2.3) inclines.

In the first, the NAO had no problem, and all tests were successful. In the higher slope,

the NAO started having difficulties, and had a 50% success ratio.
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Figure 2.2.2: The NAO walking on a 4-degree incline.

Figure 2.2.3: The NAO walking on a 6-degree incline.

In a planar terrain full of thin wires, the NAO had no problem in most of the tests

(Figure 2.2.4). It was observed however that, when the wires became thicker, the NAO

started to fall down even from the beginning of the attempt.

In compact sand, the NAO succeeded to walk quite well (Figure 2.2.6). Also, when

the sand was softer, even if the NAO was not as steady as before, it still succeeded to

walk relatively well (Figure 2.2.7). However, in sandy terrain, the NAO fell when it

encountered holes in the sand.

In outdoor environments, as in an inclined driveway with bricks, the NAO managed to

walk successfully in almost all tests (Figure 2.2.8). In grass, the robot found it difficult

to make progress and fell most of the times, unless the grass was very dry and hard

(Figure 2.2.9).
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Figure 2.2.4: Planar terrain full of wires.

Figure 2.2.5: Failed attempt on planar terrain of wires.

Figure 2.2.6: Compacted sand terrain.
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Figure 2.2.7: Soft sand terrain.

Figure 2.2.8: Rough slope terrain outdoor.

Figure 2.2.9: Grass terrain.
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Chapter 3

Background

3.1 Central Pattern Generators (CPGs) and Nonlinear Os-

cillators

3.1.1 Central Pattern Generators

Central Pattern Generators or CPGs are neuronal circuits found in both vertebrate

and invertebrate animals [14], [15], which can produce rhythmic motor patterns, even

in the absence of sensory feedback. Some of the most common such motor patterns

are walking, breathing, flying and digesting. Some of their intrinsic properties, which

make them appealing for engineering applications, are: distributed control, the ability

to deal with redundancy and disturbance, fast control loops, and allowing modulation

of locomotion by simple control signals. Also, because the CPGs have the ability to

adjust their behavior to account for variations of the environment, based on sensory

information, they may be used to produce robust locomotion control in robots.

Each type of locomotion has its own properties, which can differ according to the species

and their environment. This has led researchers to explore different types of CPGs, in

order to be used in different types of problems ( [16], [17], [18], [8], [19], [20], [21], [22],

[14], [15], [23]). There are some properties that must be noted for the CPGs. Firstly,

the limit cycle behavior, which provides to the system an embedded mechanism for auto-

recovery from environment perturbations. In addition, because there are only few control

parameters, they can easily be used in order to produce different desired behaviors in

the implemented robot, such as forward locomotion, backward gait or speed control.

CPGs are distributed networks and, as a result, they can be used in modular robots [24],

12



snake robots ( [16], [17], [18]) or reconfigurable robots [25]. CPG models are able to

create smooth transitions to the produced trajectories. Thus, if a perturbation causes

a big change in the trajectory of the system, the system will be made to return to its

periodic behavior by the CPG. Also, sensory feedback can be integrated to the model,

so this can improve the locomotion of the system. Most of the CPG models have the

potential to be integrated in learning and optimization algorithms, in order to adapt

to different environments or system conditions. In hexapod and octopod robots, CPG

models that have been used were inspired by insect locomotion [22]. CPG models in-

spired from the lamprey anguilliform swimming circuit are mostly used for controlling

swimming robots. They reproduce the undulation of the elongated body from head to

tail [15]. Researchers have discovered that, integrating sensory feedback in the locomo-

tion control, in cooperation with the CPG model, can lead to a more robust gait. This

approach leads to more stable locomotion in non-planar terrain. The sensory feedback

that is selected for reinforcement of the CPG model is a criterion for the robustness of

the robot [23].

CPG models can also be used for the control of biped locomotion in humanoid robots [4],

as an alternative way for controlling the locomotion of robots, which previously was

based exclusively on finite-state machines, sine-generators, prerecorded reference trajec-

tories (e.g. for ZMP-based control [11]) or heuristic control laws (e.g. Virtual Model

Control [26]).

3.1.2 Nonlinear Oscillators

The presentation of the mathematical background on CPG models employed in this

work may start by considering the simple planar linear system :

ẋ = −y (3.1)

ẏ = x (3.2)

which corresponds to the harmonic oscillator. Representing the system in polar coordi-

nates (r, θ), where x = r cos θ, y = r sin θ, we get :

ṙ = 0 (3.3)

θ̇ = 1 (3.4)

Thus, the trajectories of this system form closed circular orbits, but these orbits are not

isolated (Figure 3.1.1). If a perturbation occurs, while the system moves on a specific
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closed orbit, it will be deflected from its current orbit and will move along another orbit,

where it will remain until another perturbation occurs. This linear system does not have

the structural stability property, i.e. its qualitative properties are not maintained in the

presence of perturbations. Therefore, stable oscillations can not be produced by this

linear system.

Figure 3.1.1: Phase portrait of the harmonic oscillator. [3]

Nonlinear systems may display oscillatory behavior of fixed amplitude and frequency,

irrespective of their initial state and despite the occurrence of perturbation. This type

of oscillation is known as a limit cycle, and corresponds to an isolated closed trajectory

of the nonlinear system, which is called, the nonlinear oscillator. If all neighboring

trajectories approach the limit cycles, we say that the limit cycle is stable or attracting

(Figure 3.1.3). Stable limit cycles can be used to model systems that exhibit sustainable

oscillations, i.e. which have the property to oscillate even in the absence of external

forces, like the CPGs. A characteristic example is the beating of the heart, which can

be described by an oscillation with a specific waveform and amplitude. If an external

perturbation occurs, the system may momentarily move away from its limit cycle, but

it will return eventually to it.

Consider first the planar non linear system :

ẋ = −y + x(1− x2 − y2) (3.5)

ẏ = x+ y(1− x2 − y2) (3.6)

derived from the harmonic oscillator, by the addition of the nonlinear terms on the right.

Representing this system in polar coordinates, we get the equations:

ṙ = r(1− r2), r >= 0 (3.7)

θ̇ = 1 (3.8)
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Here, the radial and angular dynamics of the system are uncoupled. This provides

the possibility to analyze them separately. The motion in the θ-direction is simply a

rotation with constant angular velocity. From the radial dynamics, we see that r∗ = 0

is an unstable fixed point and r∗ = 1 is a stable one (Figure 3.1.2). In the phase plane,

for any trajectory other than r∗ = 0, we can see that all trajectories of the system spiral

asymptotically towards the limit cycle at r = 1 (Figure 3.1.3). Perturbations of the

system, while it evolves on the limit cycle, will return the system to the limit cycle.

Therefore, the system exhibits stable oscillatory behavior, and is an example of a non

linear oscillator.

Figure 3.1.2: Radial dynamics of the non linear system. [3]

Figure 3.1.3: Phase portrait of the non linear system. Trajectories converge to the
limit cycle. [3]

A generalization of the above nonlinear oscillator is the Hopf oscillator defined as follows:

ẋ = −ωy + γ(µ− (x2 + y2))x (3.9)

ẏ = ωx+ γ(µ− (x2 + y2))y (3.10)

where x and y are the state variables, γ controls the speed of recovery after a perturba-

tion, ω controls the intrinsic frequency and µ determines the steady state amplitude of

the oscillation. In polar coordinates, we get the equations :

ṙ = γr(µ− r2), r ≥ 0 (3.11)

θ̇ = ω (3.12)
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For µ > 0, the oscillator possesses a unique stable periodic solution (r∗ =
√
µ) namely a

limit cycle, described by the following equations:

x(t) =
√
µ sin(ωt+ θ0) (3.13)

y(t) =
√
µ cos(ωt+ θ0), (3.14)

where θ0 is an initial condition.

The Adaptive Hopf oscillator [19] is a generalization of the Hopf oscillator, to which a

Hebbian-type learning rule is added, as described in the following equations:

ẋ = −ωy + γ(µ− (x2 + y2))x+ εF (t) (3.15)

ẏ = ωx+ γ(µ− (x2 + y2))y (3.16)

ω̇ = −εF (t)
y√

x2 + y2
(3.17)

The two state equations are modified to receive a periodic input signal F (t), which adds

a perturbation to the x-state dynamics. Also, the intrinsic frequency ω of the system

appears, in the dynamics of equation 3.17, which is the tool for frequency adaptation:

when the Hopf oscillator’s intrinsic frequency is close to one frequency component of the

periodic input F , the oscillations will synchronize to the frequency of the periodic input

(entrainment). The learning rule (equation 3.17) ensures this synchronization. In the

equations above, r =
√

(x2 + y2), γ controls the speed of recovery after a perturbation,

µ controls the amplitude of the oscillator, F (t) is a periodic input to which the oscillator

will adapt its frequency and ε > 0 is a learning constant. The signal F (t) may have

more than one frequency component, but the oscillator has the ability to adapt to only

one frequency (state ω), which will depend on the initialization of the frequency of the

oscillator. In polar coordinates, this system takes the form :

ṙ = γr(µ− r2) + εF cos θ (3.18)

θ̇ = ω − ε

r
F sin θ (3.19)

ω̇ = −εF sin θ (3.20)

3.1.3 Network of CPGs Controlling the Joints of a Humanoid Robot

We consider here a CPG model composed of a chain of N Adaptive Hopf oscillators

presented in [4] and shown in Figure 3.1.4. Each oscillator learns one frequency com-

ponent of a periodic input signal, in our case data from one joint encoder of the NAO
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humanoid robot during walking. Therefore, the whole CPG learns to reproduce the

periodic behavior of this particular joint during walking. Several such CPGs could be

used, one for each joint of a humanoid robot, to learn a particular walking behavior.

Figure 3.1.4: Structure of a CPG composed of a chain of N Adaptive Hopf oscilla-
tors and associated to one joint of the humanoid robot. [4]

The equations describing each oscillator of the CPG are (i = 1, . . . , N):

ẋi = −ωiyi + γ(µ− r2i )xi + εF (t) + τ sin(θi − φi) (3.21)

ẏi = ωixi + γ(µ− r2i )yi (3.22)

ω̇i = −εF (t)
yi
ri

(3.23)

α̇i = ηxiF (t) (3.24)

φ̇i = sin(
ωi

ω0
θ0 − θi − φi) (3.25)

When the system has converged, the states xi and yi evolve on the limit cycle of the

system ri =
√
x2i + y2i . After convergence, each oscillator has converged to one of the

dominant frequencies contained in the input signal. Each oscillator converges to one

frequency and the total output Qlearned of the CPG is the weighted sum of the output

xi of its oscillators, weighted by the variables αi: Qlearned =
N∑
i=1

αixi. Also, there is

knowledge for the phase difference between the oscillators, and this gives the possibility

of reproducing any phase relationship between them. The parameters ε > 0 and τ are

17



coupling constants, where ε affects the frequency of the ith oscillator ωi. The variable

Pteach is the input signal that the CPG has to adapt to and Qlearned it is the CPG’s

output. The difference F (t) = Pteach–Qlearned, is the remaining periodic input signal,

to which the CPG has to adapt its frequency components. Each oscillator is coupled

to the first oscillator in the chain. The parameter τ determines the strength of this

connection between the 1st oscillator and the ith oscillator, in order to keep correct phase

relations between oscillators, using the Kuramoto coupling scheme for achieving phase

synchronization [27]. The parameter η is the coupling constant, which affects αi and, as

a result, the time of the full adaptation of the teaching signal. The parameter αi is the

amplitude associated with the frequency of the ith oscillator. In the learning process,

the amplitude of each oscillator will be maximized only if the frequency components ωi

converge to a frequency component of F (t). The parameter γ controls the speed of the

system’s recovery after a perturbation occurs. The parameter µ controls the amplitude

of each oscillator. The parameter θi is the instantaneous phase of the i oscillator. The

parameter φi is the phase difference between oscillators i and 1. It should be mentioned

that the oscillators can acquire any arbitrary phase relationship, as in our case.

This CPG model of coupled nonlinear oscillators has the ability to learn a large class of

periodic signals provided. Once the teaching signal is removed from the system, when

the learning process is completed, its trajectories stay in the vicinity of the limit cycle

of the dynamical system. A humanoid controlled by a network of such CPGs (Figure

3.1.5) could learn a prerecorded walking behavior and execute it in a relatively robust

manner.

After the learning process ends, the CPG has fully adapted to the Pteach learning signal.

The CPG is now capable of reproducing the adapted signal, having all its dynamic

properties.

The equations describing each oscillator of CPG, after the leaning process (F = 0), are

(i = 1, . . . , N):

ẋi = −ωiyi + γ(µ− r2i )xi + τ sin(θi − φi) (3.26)

ẏi = ωixi + γ(µ− r2i )yi (3.27)

φ̇i = sin(
ωi

ω0
θ0 − θi − φi) (3.28)
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Figure 3.1.5: Structure of the network of CPGs for the NAO humanoid robot
legs. [4]
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Figure 3.1.6: The signal is the output of the CPG, and the figure shows the CPG
recovery after perturbation applied from time t = 2 sec until time t = 2.5 sec. x - axis

time in seconds and y-axis x angles in radians.

The behavior of the CPG is shown in Figure 3.1.6 and 3.1.7, where we demonstrate the

ability of its attractor to recover efficiently after a perturbation by simulating the dy-

namical system (3.21) - (3.25) in Matlab. As Figure 3.1.7 shows, the CPG corresponding

to the LShoulderPitch joint, after learning, has a stable limit cycle. At time t = 2sec, a

perturbation is applied, which causes the CPG to deviate from the limit cycle. However,

as the figure demonstrates, as soon as this perturbation is removed, at t = 2.5sec, the

oscillator trajectory is capable of approaching again rapidly the limit cycle. This prop-

erty clearly becomes important when designing a robotic controller using a CPG neural

network, in which case, the recovery of a predefined rhythmic behavior is important, in

order to attenuate possible interference from the environment.
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Figure 3.1.7: Phase portrait of the CPG response (the x-axis is the angle and
the y-axis is the angular velocity of the joint): (Left) before the perturbation (CPG
trajectory in blue for time = 0 - 2 sec), (Center) during the perturbation (CPG tra-
jectory in red for time = 2 - 2.5 sec), (Right) after the perturbation is removed (CPG

trajectory in green for time = 2.5 - 5 sec).

3.2 Genetic Algorithms

A Genetic algorithm (GA) is a stochastic optimization technique, able to solve optimiza-

tion problems residing in both convex and non-convex manifolds [28], [29]. It is a search

heuristic, that mimics the process of natural selection, and belongs to a larger class of

evolutionary algorithms, which apply different forms of operations, in order to generate

possible candidate solutions to a problem. The GA repeatedly changes a population of

individual solutions, each one called a single chromosome. In every step of the evolution,

the GA applies various operations on a given set of chromosomes, such as the mutation

and crossover operations. In that way, the algorithm carries information from all of the

evolution through the evolution of the generations. As the evolution goes through the

population, the GA moves be closer to finding a good solution to the problem. This

method can be used for solving a variety of optimization problems, in which the standard

optimization methods are not well suited, including problems with discontinuous, non-

differentiable, stochastic, or highly nonlinear objective functions. Due to their ability

to traverse non-convex manifolds without falling into local minima, genetic algorithms

have been widely used in the literature of robotics, in order to optimize parameters in

various problems [30], [31], [32].

In its most typical form, a genetic algorithm generates a single point at each iteration,

which evaluates given an objective function that describes the problem, and then re-

shuffles the chromosomes in search for solutions that minimize or maximize this objective

function. The sequence of points approaches a good, possibly optimal solution. The

GA, generates a number of solutions depending on the population at each iteration.

Solutions with a higher score are selected by the algorithm for the next iterations.
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There are various selection schemes, the most popular of which is the roulette wheel

scheme, where chromosomes are ranked against their evaluation, and are selected by a

rule. The GA uses three main types of rules at each step of its routine for creating the

next generation from its current population. Those rules are inspired by the natural

evolution like the inheritance, mutation, selection and crossover.

• The Selection rule chooses some individuals, called parents, from the current popu-

lation, in order to create the population of the next generation.

• The Crossover rule combines two parents, in order to create the children for the next

generation.

• The Mutation rule applies random changes to specific parents to create the children.

Besides these operators, there are various other ones available, that address different

features of the parametric space of the optimization problem.

At the beginning of the process, a population of individuals is created randomly. As

the process continues, the individuals are evaluated and a score is assigned to each one.

The score is based on the evaluation of the optimization function that the programmer

selected. After that, based on their score, two of the best individuals are selected. The

individuals with higher fitness value have higher probability to be selected. Those indi-

viduals are combined to create one or more offspring, which are then mutated randomly.

The procedure continues until a certain number of generations pass or the optimal so-

lution is found, depending on the GA mechanism.

There is an extended nomenclature associated with genetic algorithms. In the following

we provide the basic terminology, and a brief description of their meaning.

Fitness function: The fitness function is a function to be optimized. It may have

certain constraints and certain variables that need to be minimized or maximized by

GA. It is also known as the ‘objective function’.

Individuals: Besides the selection of the objective function, candidate solutions, which

arise from the evolution of the GA and are called individuals, are also vitally important.

The solution of the objective function for every individual is its score. The individuals

are referred to as ‘genomes’ or atoms.

Populations and Generations: The collection sum of the individuals creates a popu-

lation. The individuals that appear in a population are not necessarily unique. While the

populations evolve via new iterations of the GA, a series of computations are performed

in order to produce a new population called the ‘new generation’.
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Figure 3.2.1: Genetic Algorithm flowchart [5].

Figure 3.2.2: Mutation [6].

Encoding: Encoding is usually used in connection with the chromosomes. Types of

encoding are binary, permutation value encoding or tree encoding.

Selection: The selection of the individuals in order to create offspring is crucial for the

evolution of the algorithm. There are some types of selections that can be chosen, but it

all depends on the problem, the most common of which is the proportional roulette. The

main point is that, as the generations pass, the members of the population must be closer

and closer to the solution of the problem, so the algorithm only keeps the individuals

that best fit the solution. The selection mechanisms is shown in Figure 3.2.1.

Cross over: The step after selecting the propriety individuals is called ‘crossover’. It is

a genetic operator that mates two individuals called parents to create a new offspring,

which has the best characteristics from its parents (Figure 3.2.2).

Mutation: In order to create more unique individuals, that have most of their charac-

teristics from their parents, but also have something new, which will make them fit the

solution of the problem better, some small changes are made to the chromosome called
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Figure 3.2.3: Single Point Crossover [6].

‘mutations’. The mutation helps the algorithm to search over a larger range for the best

solution, avoiding convergence to local minima (Figure 3.2.3).
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Chapter 4

Implementation

In this chapter we outline the developments carried out, in order to design and optimize

a walking gait controller for the simulated Nao humanoid. The interrelationship of the

implemented modules is depicted in Figure 4.0.1, and can be summarized as follows:

The first step consists of the analysis of the sensory information from the joint encoders

of the robot, in order to derive the qualitative characteristics of the signals in module

”Prerecorded Joint Trajectories” (Section 4.1). Results from this analysis were used

to design the architecture and derive the learning parameters for the CPG associated

with each joint, which is composed of a chain of coupled Adaptive Hopf oscillators in

module ”CPG Learning Process” (Section 4.2). To control the robot, a network of

CPGs was designed, trained and evaluated in the Webots simulation environment, in

order to derive quantitative metrics regarding its stability (Section 4.3.1). These metrics

were employed by a genetic algorithm (module ”GA”), which evaluated a population

of different solutions, in an attempt to optimize the stability of the controller (Section

4.3.2). The various software packages employed throughout the Thesis are described in

Section 4.4.

Figure 4.0.1: Components of the implemented system.
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4.1 Recordings and Characteristics of Joint Trajectories

The robot which was used in our simulation studies is the NAO v4 H25 robot, a hu-

manoid consisting of 25 DOFs. From a preliminary investigation of the trajectories

of the NAO, produced by the built-in NAOqi walking gait function (Section D, Equa-

tion D.1) as a sequence of joint angles, we observed that a large number of joints had

minimal involvement in this gait . To reduce the computational requirements from pro-

cessing the joint trajectories, we have excluded these joints from the learning process,

and locked them in a standard angle. The following analysis involves the eighteen re-

maining joints, which contribute significantly in the walking behavior. Those joints are

(L:Left - R:Right) L-RShoulderPitch, L-RShoulderRoll, L-RElbowYaw, L-RElbowRoll,

L-RHipRoll, L-RHipPitch, L-RKneePitch, L-RAnklePitch, L-RAnkleRoll.

For recording the joint angles of the simulated robot, the corresponding Naoqi function

was used (Section D, Equation D.2). The robot walked on a planar surface of WEBOTS

and the period of sampling was between 15µs and 20µs. From the joint angle trajectory

recordings obtained, it was observed that the angles of the eighteen joints exhibited

large variations during various sampling periods. These variations are mostly evident

in the peaks of the oscillatory signals (Figure 4.1.1), and are possibly due to external

disturbances being introduced into the system by the environment e.g. gravity. As the

figure indicates, there seems to be some inherent variability between different gait cycles,

which is also reflected in the simulated output, where in many cases the gait appears

unstable.

To gain a better insight into the characteristics of the trajectories produced by these

joints, our first action was to reduce the gaps in the sampling values caused by the

large sampling intervals. For this reason, we employed a lowpass interpolation method,

the MATLAB function interp [33], in order to generate intermediate points between

those sampling intervals. Interpolation is a well known mathematical process, that

uses an iterative method, in which a series of discrete points is approximated through

some analytical function (e.g. polynomial). This function is then used to generate

intermediate points within the given discrete set. The result of the interpolation can

be seen by comparing (Figure 4.1.2) with (Figure 4.1.3). On the former figure, there

are plots with no interpolation, while, on the latter, the plot shows the interpolated

trajectory.

The Fourier properties of the target signal have an important role in the CPG learning

process, as they are the frequencies to which the CPG oscillators will converge. Conse-

quently, prior determination of these frequencies will enable us to evaluate the quality of

the learning process. To determine these values, we have carried out a Fourier analysis
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Figure 4.1.1: Joint angle trajectories of the Left Shoulder Pitch, Left Elbow Roll,
Left Hip Roll and Left Hip Pitch joints. The x-axis is time (sec) and y-axis is the
joint angle (radians). The legend indicates the minimum and maximum angle in all 4

periods of the joint trajectories presented.

of the recorded joint trajectories, which was used to empirically determine the number

of neurons needed and initialize the oscillators. As it can be be seen in (Figure 4.1.4),

about 8-10 dominant frequencies appear for each joint trajectory, which fall in the range

of 0-40 Hz. To allow our network to adapt to these frequencies, we have used 9 neurons,

and distributed their initial frequencies uniformly in the range of 0 - 90 Hz.
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Figure 4.1.2: Joint angle trajectories of the Left Shoulder Pitch, Left Elbow Roll,
Left Hip Roll and Left Hip Pitch joints. The x-axis is time (sec) and the y-axis is the
joint angle (radians). The legend indicates the minimum and maximum angle in all 4

periods of the joints, with no use of interpolation method.
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Figure 4.1.3: Joint angle trajectories of the Left Shoulder Pitch, Left Elbow Roll,
Left Hip Roll and Left Hip Pitch joints. The x-axis is time (sec) and the y-axis is the
joint angle (radians). The legend indicates the minimum and maximum angle in all
4 periods of the joints with use of interpolation method, which adds 4 intermediate

points.
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Figure 4.1.4: The fast Fourier transform of the Left Shoulder Pitch, Left Elbow
Roll, Left Hip Roll and Left Hip Pitch joint angles. Under each signal, the corre-
sponding Fast Fourier Transform (FFT) is shown. The x-axis shows the correspond-
ing time (sec) and the y-axis shows the joint angles (radians). For the FFT plots, the

x-axis shows the frequency (Hz) and the y-axis shows the power.
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4.2 Training of the Central Pattern Generators

From the analysis carried out in the previous section, we have derived various important

characteristics of the joint angle signals produced by the robot during walking, the most

important being the oscillatory trajectory followed by each joint, and the form of this

trajectory (Figure 4.1.1). To approximate and reproduce these signals on the robot, we

have used appropriately trained CPGs. In the following, we outline some design choices

made for the architecture of the CPGs, and details regarding their learning process.

4.2.1 Architecture and Initialization of the CPG

The selected CPG model controlling the movement of each robot joint (see chapter 3.1.3)

consists of a chain of Adaptive Hopf oscillators (Equations : 3.21 - 3.25), each one of

which is responsible for learning a specific frequency component of a given input signal.

Learning is accomplished through an iterative gradient descent method, in which the

cumulative output of all neurons of the CPG is adjusted, by iteratively reducing some

error norm on the teaching signal. For the selected CPG network, these adjustments

are implemented using Hebbian associative learning.

Due to the gradient descent nature of learning, the initialization of the parameters of

the network will have a strong effect on the learning process. One important part of

this initialization is to assign correctly the frequencies of each neuron in the network.

There are various ways to distribute these values; however, from our investigation, it was

concluded that a uniform initialization (10, 20, ..., 90Hz), within a range that contains

all dominant Fourier frequency components of the signal, is the best way to ensure

convergence.

Another important part of the CPG design was the selection of the number of neurons.

This number is positively correlated to the time required to learn a given signal, and

has a strong effect on the qualitative characteristics of the signal that will be produced

by the network. To determine this number, we carried out an empirical investigation,

from which we concluded that a large number of neurons, e.g. around 20, will lead to

smaller errors in the learning process; however, it will also require significantly larger

processing times. As an acceptable trade-off, it was chosen to use 9 neurons per CPG.
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4.2.2 Learning for the CPGs

The error of the learning process is calculated as the absolute value of the teaching

signal minus the output of the CPG: |Pteach−Qlearned|. The error rate is high at the

beginning of the learning process (indicating a large deviation between the two), and

decreases progressively with time, as gradient descent performs changes to the neurons.

This decrease is dependent on the parameters ε, η, µ, γ of the network and the error of

the learning. However, we note that the value of this error is not the only indicator

of the quality of learning. If the error falls rapidly to a very low level, the dynamic

properties of the signal will not be adequately adapted by the CPG. To prevent this,

one can reduce the values of the learning rate constants to a lower level.

Furthermore, the effect of the constants in equations 3.21 - 3.25 on the behavior of the

CPG needs to be understood. These affect, not only the quality of the learning process,

but also the time required for convergence. If the learning rate ε and coupling constant

η are high, the CPG is going to converge to the learning signal faster. In Figures 5.1.5

- 5.1.8 (Chapter 5.1), we demonstrate the effect of these parameters on the learning

process of the CPG. When high values, like ε = 10.9 and η = 10.4, are used, then the

CPG network adjusts rapidly to the properties of the given teaching signal, but fails

to generalize. To prevent this, we have experimented with a large number of values for

these parameters. Lower values like ε = 0.08 and η = 0.02, where found to be more

appropriate. Results using these values are shown in Figures 5.1.1 - 5.1.4.

Apart from the above parameters, a significant role in the learning process of the model

is attributed to the parameter tspan, which specifies the interval of integration used by

the ode45 solver of Mathworks to solve the differential equations [34]. The value of tspan

needs to be larger than two, because of the structure of the ode45 solver. The effect of

this parameter on a specific joint angle is shown in Figure 4.2.1. In our implementation,

tspan = 3 was selected. If the value of tspan increases too much, differentiation will

occur over a larger dt, leading to worse approximation of the oscillations, which in turn

can cause vibrations in the joints.

During the learning process, the Hebbian learning reduces the value of the error sig-

nal, and allows the output of the CPG to approximate the teaching signal. When the

learning process comes to an end, the learning signal is set to zero, and the CPG can

reproduce the initial trajectories in the absence of any teaching feedback. To determine

whether the learning process has come to an end, we have used three empirical rules:

small rate of change of the final error, small rate of change of the frequency of each

oscillator, and visual inspection of the teaching and output signals of the network. After

learning, this teaching signal can be reproduced sufficiently well by storing the number

31



Figure 4.2.1: Plots of the Left Shoulder Pitch joint trajectory, shows the effect of
the tspan parameter, for four different time values, namely for tspan = 3, 6, 9, 12. In
each plot, the x-axis shows the time in seconds and the y-axis shows the angle of the

joint in radians.

N of oscillators, the coupling constants τ and η, the parameter µ, and the state of all

oscillators xi, yi, ωi, αi, φi, for i = 1 . . . N , at the final time step of the procedure.

4.3 Optimization of the CPGs with Genetic Algorithm

To optimize the CPG gait behavior, we have employed a Genetic Algorithm (GA), from

the GAUL open library [5], specifically the Darwinian GA [35], an iterative stochastic

optimization method. The implementation of the GA involved two aspects: (i) formu-

lation of the objective function, (ii) design of the evolutionary procedure. These are

outlined below.

4.3.1 Objective Function

To optimize the CPG, we evaluate an objective function which is related to the distance

that the NAO robot travels for each CPG iteration. This metric is required to be
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maximized. This objective function is:

1

walkDistance+ 0.01
(4.1)

4.3.2 Evolutionary Procedure

In accordance to general guidelines of genetic algorithm design, a population of 30 chro-

mosomes and 20 generations was considered sufficient. This is also evident from the

optimization process, which required a small amount of generations to converge. To

initialize the chromosomes, for the ε and η parameters we used values 0.001 to 1 and

for the γ and µ parameters values from 0.001 to 2. A general guideline when creating

a chromosome is to represent it as a binary number, but the GAUL library gives the

possibility to use a floating number representation of the chromosome.

To design our evolutionary procedure, we have used 3 genetic operators: mutation and

crossover, as well as a migration scheme. Crossover is useful for exploitation, i.e. travers-

ing locations of the parametric space that are closed to the region defined by the two

parent chromosomes. To implement this, we have used a single point crossover rule, in

which a point is selected in the two parent chromosomes, and all data beyond that point

are swapped, in order to create two children (Figure 3.2.3). Mutation is a mechanism

that reinforces the randomness of the chromosomes (Figure 3.2.2), by adding a small

variation to each value. It is useful for traversing unknown locations of the parametric

space, and can prevent the optimization procedure from getting stuck in local optima.

For the given experiments, a mutation value of 0.2, migration 0.1 and crossover value

0.9 was used. In addition, to ensure that some of the higher score solutions will be car-

ried onwards across generations, we have used a migration scheme. For this reason, the

best chromosomes from each population were transfered to the next generation without

applying any changes to them.

4.4 Software Tools

For the implementation of this Thesis, a variety of different software tools used. Starting

from the Webots, which is a mobile robotic simulation software, and provides an emulator

of the NAO V4 robot. This robot is fully customized with the real robot’s sensors,

dimensions, links, masses and joints. The problem faced up with the use of this tool was

the delay, which was at a range of 60%-70% of the real robot speed (see Appendix A).

33



The C++ language was used for the communication with the simulated robot NAO,

via the NAOqi OS (Appendix C), which is the operating system of NAO. All the joint

trajectories were recorded and the sensory values of the robot obtained (COM, CoP,

WalkDistance). For the calculation of the gait distance, a capture of position was oc-

curred, before the start of the gait and at the end of the gait. The norm of those two

points gave the distance of the gait. For this operation the getPosition() function was

used [2]. This function is a built-in NAOqi operation that gives the 3D coordinates of the

robot’s position (x, y, z); only the x, y data were used. The multi-paradigm computing

environment Matlab was the main tool used for processing. All the plots and the coding

for the CPG model was made here in Matlab.

The first attempt with the optimization process was made with the Matlab genetic

algorithm functions. A communication was established between the Matlab environment

and the Microsoft Visual Studio. Matlab had the control of the learning process, at the

time that the CPG network fully adapt the learning signal the process stops and Matlab

passes the joint angles from the CPG network to the Visual Studio(VS). VS works

like a middle layer tool, it communicates with the Webots and passes the new joint

trajectories to the simulated NAO robot. NAO executes the gait locomotion, parallel

sensory feedback is captured and evaluated from the VS. When the locomotion stops,

a new instance of the objective function is created for the Genetic Algorithm. This

process, proved inefficient, because the time needed for specifying optimal solutions was

large (approximately 5 days for 20 generations of 30 populations). The solution adopted

was to implement both the Genetic Algorithm and the CPG learning process in a C++

environment.

A compatible with C++, Genetic Algorithm library used called GAUL, the CPG was

implemented in C++ and the whole system gained significant in speed. A run with

the same population and generation is now taking approximately 30 hours. A graphical

display of the system while the CPG is in learning mode, and the emulator is in standInit

position waiting for the CPG reproduce mode, is shown here Figure 4.4.1.
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Figure 4.4.1: Learning process for the CPG model. The top left window plots the
group of oscillators used to control NAO’s joints. The bottom left window shows the
robot’s center of mass and pressure points for each foot, plotted against its support
polygons. The right window is the simulation of the robot, in the Webots simulator.
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Chapter 5

Results

In this chapter, we outline the results from the computational experiments carried out

throughout this Thesis. Results obtained during the training of the CPG controller are

shown in Section 5.1 and results from its optimization using GAs in Section 5.2.

5.1 Learning in the CPG

As discussed before, the learning process in the CPG model is dependent on the ε, η, µ

and γ parameters. To determine their values, we have carried out a series of simulation

trials. In the implementation of the CPG learning process, 18 joints participate. This

was proved a time consuming process, and it was chosen to present only 4 characteristic

results of those simulations, i.e the ones for the LShoulderPitch, LElbowRoll, LHipRoll

and LHipPitch joints. During the early analysis of the simulation results, it was observed

that from the four parameters, only the two have the most significant impact in the

adaptation of the learning process. For this reason, it was decided to keep stable values

in the µ and γ parameters, and vary the ε and η parameters. Further analysis showed

that, as the ε and η values became high, the learning process may converge faster, but the

qualitative characteristics of the output signal was not good enough. In contrast, when

the values of these parameters were kept relatively low, the learning process lasted longer,

in order for the CPG model to fully adapt to the learning signal, but the qualitative

characteristics of the output signal was better.

As detailed below, we analyzed further the learning process by reviewing some key points

in the simulation. Plots in Figure 5.1.1 - 5.1.4 shows the training in four different phases

of the process for the LShoulderPitch, LElbowRoll, LHipRoll and LHipPitch joints, using

learning rate ε = 0.08 and coupling constant η = 0.02. Each row of these figures contains
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two sub-figures, the one on the left shows a piece from the timeline of the adaptation

process, in green color shows the output of the CPG signal and with blue color shows

the Teaching signal at the same period of time. The one the right sub-figure shows

the error rate of the learning process between the two signals that appears on the left

sub-figure. The error is calculated as the absolute value of the Teaching signal minus

the CPG output. The error at the beginning of the learning process is high, as it can

be seen in the first 4 sub-figures; at this time, the Learning signal is not yet adapted to

the frequency of the Teaching signal. In sub-figures five and six, the CPG model starts

to converge slowly to the Learning signal and the error of the process starts to fall. In

sub-figures seven and eight, at time > 4000sec, the CPG model is fully adapted to the

Learning signal. As a result, the learning process is stopped and the Teaching signal is

set to zero. In the last two sub-figures, the CPG network is capable of reproducing the

adapted signal even if the error rate of the system may not be continuously low.

In Figures 5.1.5 - 5.1.8, we set the learning rate to ε = 10.5 and the coupling constant

to η = 10.9, which are higher values than above. As the learning process begins, it

is observed that in the first six sub-figures, the CPG signal converges rapidly to the

Teaching signal. The same observation is made for the error rate, which falls in low

values. At this time, the CPG model is fully adapted to the Learning signal. At

time = 80sec, the learning process is stopped and the Teaching signal is set to zero.

However, in the last 4 sub-figures it is observed that, the CPG model is not able to

reproduce the teaching signal in the absence of the learning process. There is an obvious

problem in the reproduction for both the amplitude and the frequency of the Learning

signal.

Therefore, relatively low values of the parameters ε and η are necessary for the learning

process to be successful.
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Figure 5.1.1: Left plots show the Left Shoulder Pitch signal, the blue color signal
is the prerecorded joint trajectory (Pteach signal) and the green color signal is the
CPG output (Qlearned). The right plots show the evolution of the Error Rate in the
specific times corresponding to the left plot. The learning occurred with low learning

rate and coupling constant value.
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Figure 5.1.2: Left plots show the Left Elbow Roll signal, the blue color signal is
the prerecorded joint trajectory (Pteach signal) and the green color signal is the CPG
output (Qlearned). The right plots show the evolution of the Error Rate in the spe-
cific times corresponding to the left plot. The learning occurred with low learning

rate and coupling constant value.
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Figure 5.1.3: Left plots show the Left Hip Pitch signal, the blue color signal is the
prerecorded joint trajectory (Pteach signal) and the green color signal is the CPG
output (Qlearned). The right plots show the evolution of the Error Rate in the spe-
cific times corresponding to the left plot. The learning occurred with low learning

rate and coupling constant value.
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Figure 5.1.4: Left plots show the Left Hip Roll signal, the blue color signal is the
prerecorded joint trajectory (Pteach signal) and the green color signal is the CPG
output (Qlearned). The right plots show the evolution of the Error Rate in the spe-
cific times corresponding to the left plot. The learning occurred with low learning

rate and coupling constant value.
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Figure 5.1.5: Left plots show the Left Shoulder Pitch signal, the blue color signal
is the prerecorded joint trajectory (Pteach signal) and the green color signal is the
CPG output (Qlearned). The right plots show the evolution of the Error Rate in the
specific times corresponding to the left plot. The learning occurred with high learning

rate and coupling constant value.
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Figure 5.1.6: Left plots show the Left Left Elbow Roll, the blue color signal is the
prerecorded joint trajectory (Pteach signal) and the green color signal is the CPG
output (Qlearned). The right plots show the evolution of the Error Rate in the spe-
cific times corresponding to the left plot. The learning occurred with high learning

rate and coupling constant value.
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Figure 5.1.7: Left plots show the Left Hip Pitch signal, the blue color signal is the
prerecorded joint trajectory (Pteach signal) and the green color signal is the CPG
output (Qlearned). The right plots show the evolution of the Error Rate in the spe-
cific times corresponding to the left plot. The learning occurred with high learning

rate and coupling constant value.
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Figure 5.1.8: Left plots show the Left Hip Roll signal, the blue color signal is the
prerecorded joint trajectory (Pteach signal) and the green color signal is the CPG
output (Qlearned). The right plots show the evolution of the Error Rate in the spe-
cific times corresponding to the left plot. The learning occurred with high learning

rate and coupling constant value.
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5.2 Optimization of the System by Genetic Algorithms

As discussed earlier (Section 4.3), to optimize the CPG controller we use a genetic

algorithm. The Genetic Algorithm used is part of the Gaul library, which is an open

source programming library released under the GNU general public license [5].

During the evolutionary process, chromosomes encoded the parameters ε, η, γ, µ from

equations 3.21 to 3.25. To evaluate the chromosomes, we used an objective function

that is proportional to the distance traveled by the robot. However, we note that this

metric alone cannot guarantee the production of a stable gait. Evolution was run for 20

generations, while the population consisted of 30 chromosomes. As discussed previously,

18 joints of the robot were used in order to reproduce the gait. The upper body joints

have no contact with the ground; as a result no forces occur to the encoders. Because

such a large number of joints slows the optimization process, it was chosen to leave

the upper body joints out of the optimization process. To reduce computational costs,

we included only the lower body of the robot, locking the upper part joints in the

configuration of the standInit pose. Doing that, the simulation runs 50% faster. The

joint angle trajectories that were evaluated are from the (R:Right - L:Left) R-LHipRoll,

R-LHipPitch, R-LKneePitch, R-LAnklePitch, R-LAnkleRoll joints.
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Best fitness :1.3919 e : 0.76319 n = 0.8458

Figure 5.2.1: First optimization experiment with the Genetic Algorithm: fitness
function is the walking distance, parameters evolved ε, η. The x-axis shows the

iterations of the genetic algorithm, and the y-axis shows the fitness function.

Figure 5.2.1 presents the results from the first experiment using the GA. The objective

function chosen is the 1
walkDistance+0.01 . As the graph demonstrates, chromosomes in

the initial generations fluctuated strongly around large values, however, as evolution
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progressed, the genetic algorithm was able to converge to lower values of the objective

function. We also notice the jump in the objective function at generation 7, caused by

a built-in mechanism in GAUL, which introduces additional noise in the chromosomes

when the rate of change of the objective function is small. This helps evolution avoid

getting stuck into local minima. For the given experiment, after the evolutionary process,

the best values found are ε = 0.76319 and η = 0.8458. This corresponds to a walking

distance of 15 steps.
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Figure 5.2.2: Second optimization experiment with the Genetic Algorithm: fitness
function is the walking distance, parameters evolved ε, η, µ, γ. The x-axis shows the

iterations of the genetic algorithm. The y-axis shows the fitness function.

Figure 5.2.2 shows a second experiment, where the evolution is using four parameters

in the encoding of the chromosome. It is evident that the genetic algorithm requires

more iterations to converge. However, the inclusion of additional parameters apparently

precluded the GA from finding a solution better than before. The best chromosome had

fitness function value 2.8318 and chromosome values ε = 2, η = 0.96229, γ = 0.43712

and µ = 0.31136. This corresponds to a walking distance of 10 steps. Again we notice

the jump in the objective function at generations 7 and 18.

As can be seen, there is little correlation between the results. In the first experiment,

the GA converges to a minimum that corresponds to the parameter values ε = 0.76319

and η = 0.8458. In the second experiment, the GA converges in different values :ε = 2,

η = 0.96229. This can be explained from two facts: first, the system in both ex-

periments is pre-programmed to be executed for specific times, 20 generations of 30

population. Moreover, in the second experiment, the GA had to investigate the values

for a chromosome of 4 parameter, unlike the first experiment where the chromosome has
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Figure 5.2.3: One step of the walking behavior with random parameters
ε = 0.59874, η = 0.36548 and fitnessfunction = 62.5768, at the begin of

the first optimization experiment.

only 2 parameters. So, the GA may need more generations and bigger populations in

order to converge to a better result; this means more simulated time. The second fact is

that the GA in the beginning of the procedure is creating a random population, which

affects the evolution of the simulation. So for this two experiments, the GA starts the

simulation from two different manifolds to investigate for the best solution.

Comparing those 2 GA experiments, the system has converged to a better solution in

the first experiment, since the robot was able to walk 5 steps longer.

In figures 5.2.3 - 5.2.6 presents the walking behavior of the NAO robot at the beginning

of the optimization process, and, after that, at the end of the process with the best

parameter values of the GA. In Figure 5.2.7 a closer view of the resulting gait can be

seen; each sub-figure shows the left foot of the robot, and the plot above shows the

evolution of the angle value of the left knee pitch joint. Also, Figure 5.2.8, shows that

the NAO robot is able to walk multiple steps with the use of the CPG network. In this

attempt, the best parameter values were used, based on the optimization process.
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Figure 5.2.4: One step of the walking behavior with random parameters
ε = 0.55465, η = 0.65465, γ = 0.65749, µ = 0.24194 and
fitnessfunction = 69.4963 at the begin of the second optimization experiment.

Figure 5.2.5: Two steps of the walking behavior with known parameters from the
first optimization experiment ε = 0.76319, η = 0.8458, γ = 8.0, µ = 1.0 and

fitnessfunction = 1.3919.
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Figure 5.2.6: Two steps of the walking behavior with the best fitness function’s Ga
result with parameters ε = 2, η = 0.96229, γ = 0.43712, µ = 0.31136 and

fitnessfunction = 2.8318.

Figure 5.2.7: Closer observation of the walking. The evolution of the value of the
Left Knee Pitch joint, can be observed in the plots.

50



Figure 5.2.8: 12 steps of the walking, using the best parameter values based on the
optimization process.
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Chapter 6

Conclusions and Future Work

In the present thesis, we have investigated how CPGs can be used as parts of the control

system for the NAO humanoid robot. The CPGs are neuronal circuits, which can

produce rhythmic output patterns, compatible with those found in animal locomotion.

As we have demonstrated in Figure 3.1.6, they exhibit significant additional properties,

such as the ability to recover from perturbations, adapt quickly to a given signal and

integrate sensory information. All these properties render them useful controllers for

bipedal locomotion.

The robot control scheme was designed, based on a network of CPGs, each one of which

was assigned to a specific joint in the humanoid robot. Each CPG is composed of

a chain of adaptive Hopf oscillators, which have the ability to adjust to a specific sub

frequency of a learning signal. After learning, the controller is capable of reproducing the

learned signal, despite the possible presence of perturbations. However, the CPG model

alone cannot compensate for all types of disturbances from the environment. To increase

further the adaptability of the control, we have used a genetic algorithm, to optimize the

CPG performance using information from the execution of the simulated gait. Genetic

algorithms are a search heuristic that mimics the process of natural selections, in order to

specify possible optimal solutions to a problem. Our main contribution in this context is

the creation and assessment of an objective function capable of evaluating the controller,

based on information from the robot’s posture. As the results indicate, the genetic

algorithm was able to increase the distance traversed by the humanoid.

For the future, we plan to investigate additional objective functions for the genetic

algorithm, giving the controller the ability to compensate for disturbances in the postural

balance of the robot during gait execution. The distance that the robot travels without

falling is not the only rule able to support significant improvement of the gait. A
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combination of several objective functions, which take advantage of additional sensory

information of the robot, e.g. from the Center of Mass, the Center of Pressure or

the FSRs, is believed to be a promising direction. For example, we believe that the

measurement of the distance of the COP from the edges of the support polygon can

be easily combined with the distance rule, yielding better results. Moreover, the CPG

network should be tested further regarding its robustness, and this can be done by using

forces that will cause disturbances to the robot, to test whether the CPG network will

absorb these perturbations.
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Appendix A

Webots

Webots is a mobile robot simulation software developed by Cyberbotics a spin-off of

EPEL. It provides the user with a rapid prototyping environment for simulating a variety

of mobile robots. Many universities and industrial research centers worldwide are using

this software for research and educational purposes.

The simulation system uses virtual time, so it gives the opportunity of much faster

experiments than when employing the real robot. This also depends on the complexity

of the step and the power of the computer. Webots can be connected with integrated

development environments (IDEs), like Microsoft Visual Studio and Choregraphe. The

IDEs connect with the robot as third party software via the NAOqi operating system. A

library of sensors is provided, so the programmer can plug into any of the sensor devices

of his robot and tune it individually (range, noise, response, field of view, etc.). A variety

of sensor devices are provided, such as distance sensors (infra-red and ultrasonic), range

finders, light sensors, touch sensors, global positioning sensor (GPS), inclinometers,

compass, cameras (1D, 2D, color, black and white), receivers (radio and infra-red),

position sensors for servos and incremental encoders for wheels. Also, an actuator library

is provided, including wheeled motor units, independent wheel motors, servos (for legs,

arms, etc.), LEDs, emitters (radio and infra-red) and grippers.

A version of Webots called Webots for NAO has been released for the NAO developers,

in order to help them develop new ideas and behaviors for the robotic platform without

risking to damage their robot. This version of Webots provides the user with predefined

NAO simulation with their ready-to-use controllers and sensors. It is a light version of

Webots, so it does not allow the user to create either a robot or new robot controllers

[36].
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Appendix B

Choregraphe

Choregraphe is a visual programming interface implemented by Aldebaran Robotics.

It is a multi-platform desktop application, which allows the user to create simulations,

animations, behaviors and dialogs in a straightforward way, based on drag-and-drop

operations on library without having to write code, as it is already provided with libraries

of implemented behaviors. The user can program via a drag-and-drop mechanism, which

allows to place modules from the library to the Choregraphe desktop. Also, it allows

testing behaviors on a simulated robot, as it can be connected to the Webots simulator.

This gives the programmer the freedom to create various scenarios fast and with no fear

of damaging the real robot. It provides monitoring and control of the robot, and even

the possibility of creating unique behaviors by programming in Python code [2] [9].

55



Appendix C

NAOqi OS

This is the operating system of the robot. In general, it is a virtual machine governed by

the open standards of OVF/OVA. It is a GNU/Linux distribution, based on Gentoo and

is embedded in GNU/Linux distribution, which has been specifically developed to fit the

Aldebaran Robotics needs. It provides and runs a number of programs and libraries,

among these are all the ones required by NAOqi. NAOqi comes with a list of modules,

each of which comes with a list of default parameters. The only way to manage the

robot is through NAOqi OS, so it is very important for the connection to be stable. The

NAOqi OS provides a virtualized NAO environment with no graphical front end, just a

console [2].
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Appendix D

NAOqi Functions

The implemented walk function for NAO is :

void ALMotionProxy :: moveTo(constfloat&x, constfloat&y,

constfloat&theta)
(D.1)

The x and y parameters define the distance in meters on the x axis and y axis, while

theta states the rotation in radians to the z axis. In the trajectory record of the gait

the robot moved only in the x axis, with y = 0, z = 0. [2].

To record joint trajectories the following function was used [2] :

void AL :: ALV alueALMemoryProxy :: getData(conststd :: string&key) (D.2)

The following implemented function is used for reentering the recorded angles to the

joints:

void ALMotionProxy :: setAngles(constAL :: ALV alue&names, constAL ::

ALV alue&angles, constfloat&fractionMaxSpeed)
(D.3)

The parameter ‘names’ refers to the joint of the NAO robot, and ‘angles’ to the new

angle of the joint. The ‘fractionMaxSpeed’ is set at 0.3 for two reasons: firstly, it was

a number which was chosen after several tests, as it was found to be the speed of the

joint, and also because, at this speed, the joint motion is smooth [2].
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