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 Introduction  
 
 
 Piezoelectric materials respond to mechanical forces and generate 

an electric charge. This is the direct piezoelectric effect. Conversely, 

electric charge applied to the piezoelectric material induces mechanical 

stresses or strains, and this is the converse piezoelectric effect. In 

‘‘smart’’ piezoelectric structures, the direct effect is used for structural 

measurements (sensor) and the converse effect is used for active 

vibration controls (actuator). 

 One attractive way for vibration suppression of flexible structures 

is bonding to the surface of host structures active piezoelectric sensors 

and actuators, which operate according to a chosen control law. The 

choice of the control technique is important in designing controllers, 

which ensure the suitable functioning of the structures under required 

conditions.  

 In this work a laminated beam with piezoelectric sensors and 

actuators is modelled by the finite element method. Furthermore, the 

problem of active control is studied using classical and robust optimal 

control (LQR and H2). Numerical results show the effectiveness of the 

proposed methods. 
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Modeling of the electromechanical system 
 

Smart beam model 

 
 The configuration of a beam with surface bonded sensors and 

actuators is shown in the Figure above. The linear theory of 

piezoelectricity is employed due to small structural vibrations. This 

theory assumes quasi-static motion indicating that the mechanical and 

electrical forces are balanced at any given instant. The linear 

constitutive equations of piezoelectric material are given  

                                     { } [ ] { } [ ] { }( )TQ d Eσ ε= −   (2.1) 

                                    { } [ ][ ]{ } [ ]{ }D d Q Eε ξ= +   (2.2) 

{σ}6x1 −stress vector,    {ε}6x1 −strain vector,  

{D}3x1 − electric displacement,   {E}3x1 − applied electric field,  

[Q]6x6 − elastic stiffness matrix,  

[d]3x6 − piezoelectric matrix,   [ξ]3x3 − permittivity matrix.  
 

Eq. (2.1) describes the inverse piezoelectric effect (actuator). 

Eq. (2.2) describes the direct piezoelectric effect (sensor). 



4 

 The equations for piezoelectric sensors/actuators (S/A) are based on 

the following assumptions  

1. S/A are thin compared with the beam thickness. 

2. Poling direction of the S/A is the positive z-direction. 

3. Electric field loading of the S/A is uni-axial in the x-direction. 

4. Piezoelectric material is homogeneous, orthotropic and elastic. 

Under these assumptions the set of equations (2.1) and (2.2) is reduced 

as follows 

                           
11 31

55

0

0 0
x x

z

xz xz

Q d
E

Q

ε

τ γ

σ
= −

        
                  (2.3) 

                                   11 31 33z x zD Q d Eε ξ= +            (2.4) 

 Eq. (2.4) is used to calculate the output charge on the sensor layer 

created by the strains in the beam. Since no electric field is applied to 

the sensor layer, we get 

                                             11 31z xD Q d ε= .  (2.5) 

The charge measured through the electrodes of the sensor is given by  

                      ( )
2 2

1
2

ef ef
S

z z

S Sh hz z h

q t D dS D dS
= = +

= +
                 
∫ ∫   (2.6) 

(Sef is the effective surface of the electrode placed on the sensor layer) 

The current   ( ) ( )dq t
i t

dt
=    on the surface of the sensor is converted 

into open-circuit sensor voltage output by   ( )S
SV G i t=    (GS is the gain 

of the current amplifier)  
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Equations of motion 
 
 The equations of motion are derived based on the following 

assumptions 

1 The cross-section of the beam is symmetric and its centroidal and 

elastic axes coincide so that no bending-torsion coupling is 

considered. 

2 S/A are bonded perfectly on the host beam. 

3 The axial vibration of the beam centerline is considered 

negligible. 

4 The components of the displacement field {u} are based on the 

Timoshenko theory written as 

                             

( ) ( )
( )
( ) ( ),,,,,

,0,,,
,,,,,

3

2

1

txwtzyxu
tzyxu

txztzyxu

≈
≈
≈ ψ

      (2.7) 

where ψ is the rotation of the beam cross section about the positive  

y-axis and w is the transverse displacement of the point of the centroidal 

axis (y=z=0). 

 The strain-displacement relations are given assuming they are small  

                         x z
x
ψ

ε
∂

=
∂

,       xz

w
x

γ ψ
∂

= +
∂

.      (2.8) 

 The dynamic equations of a piezoelectric continuum can be derived 

from the Hamilton principle.  

                                          ( )
2

1

0
t

t

T U W dtδ − + =∫       (2.9) 

T is the kinetic energy, U is the potential energy and W is the work done 

by the external loads or moments.  
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The kinetic energy and the strain (potential) energy are known from 

classical structural analysis theories.  
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If the only loading consists of moments induced by piezoelectric 

actuators and since the structure has no bending-twisting couple, then 

the first variation of the work has the form 

                                           
0

L
AW b M dx

x
ψδ δ ∂ =  ∂ ∫   (2.10) 

where MA is the moment per unit length induced by the actuator layer 

and is given by 

                 
2 2

11 31

2 2A A

h h

A A A
x z

h hh h

M z dz zQ d E dzσ
− −

− − − −

= =∫ ∫   (2.11) 
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Finite element modeling 
 
 
 The model is composed of beam elements in bending, which have 

two mechanical degrees of freedom at each node: one translational w1 

(w2) in z-direction and one rotational ψ1 (ψ2). Using classical finite 

element interpolation functions and (2.9), the equations of motion for 

the discretized structure are 

           m eMX DX KX F F+ + = +&& &        (2.12) 

X = [w1 ψ1 w2 ψ2]  −  states of the system, 

M  −  mass matrix,  

K  −  stiffness matrix.  

D  −  viscous damping matrix added a posterior,  

F m  −  mechanical point force added a posterior acting as external 

disturbance,  

F e  − generalized electrical load provided by the applied voltages and 

acts as a control force.  

 The main objective is to design an optimal control law for the 

described smart beam  
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Optimal control problem 
 
 
    BuAxx +=& ,          (3.1) 









= T

T
T

X
X

x
&

 
1 1

0 I
A

M K M D− −

 
=  − − 

, 
1

0

e

B
M F− ∗

 
=  
 

, 

We will restrict our attention to a regulator type problem. For this 

purpose a feedback control law is used.  

 Let us consider that measurements are included in the output vector 

DuCxy +=           (3.2) 

We consider the steady state case and the control law is a linear time 

invariant function of the outputs of the system  

    Kyu =            (3.3) 

where K is the controller we have to determine.  

 The objective below is to determine the vector of active control forces 

u(t) subjected to some performance criteria and satisfying the dynamical 

equations (3.1)-(3.2) of the structure, such that to reduce in an optimal 

way the external excitations and to meet good tracking and disturbance 

rejection and to keep the controller within specified limits.  

 Depending on the type of the considered optimal performance 

criteria, LQR and H2 optimal control problems are solved. 
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Classical control (LQR) 
 
First, the £2 performance problem in the time domain is studied. The 

objective function is a quadratic functional of the plant states and 

control inputs.  

      
0

1 ( )
2

T TJ x Qx u Ru dt
∞

= +∫      →    min       (3.4) 

Q ≥ 0 (Q = QT) and R > 0 (R = RT) represent weights on the different 

states and control channels and are the main design parameters. The 

problem (3.1)-(3.4) is known as the linear quadratic regulator (LQR) 

problem  

 Applying the Pontriagin’s maximum principle the solution results in a 

constant control gain  

   u = -KLQR x,   KLQR=R-1BTP        (3.5) 

The constant matrix P is a solution of ARE 

   1 0T TA P PA Q PBR B P−+ + − =         (3.6) 

 An advantage of the linear quadratic formulation of the problem is the 

linearity of the control law, which leads to easy analysis and practical 

implementation.  

 Another advantage is good disturbance rejection and tracking and 

good stability.  

 All these preferences are met when a complete knowledge of the 

whole state for each time instance is available. This is a considerable 

deficiency for practical applications. 
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Robust control (H2) 
 
 The major problem with LQR solution is the lack of robustness. 

Robustness with respect to external disturbances or uncertainties of the 

system or of the loading has been the main reason why the authors 

started studying techniques dealing with feedback properties and 

frequency domain machinery.  

 We assume that the exogenous signals are fixed or have fixed power 

spectrum.  

 Let us divide the system inputs in two groups: 

• exogenous input w that lumps external disturbances, sensor 

noise, and command signals, which cannot be manipulated  

• control input u that is the output of the controller and becomes 

the input to the actuators driving the plant.  

The plant outputs are also categorized in two groups: 

• measurements y that are fed back to the controller  

• regulated outputs z we are interesting in controlling.  

Then the plant (3.1)-(3.2) can be represented in the more general state 

space form as 

wDxCy
uDxCz
uBwBAxx

212

121

21

+=
+=
++=&

         (3.7) 
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 Let Tzw denotes the linear time invariant system from w to z and Tzw 

its transfer matrix.  

 We get as a performance criterion the minimization of the H2 norm of 

Tzw 

  

21

2
)](~*)(~[

2
1~









= ∫

+∞

∞−

ωωω djTjTtraceT zwzwzw        (3.8) 

over all internally stabilizing controllers K.  

 The H2 norm of Tzw minimizes the worst case root mean square value 

of the regulated variables when the disturbances are unit intensity white 

processes. 

 It can be shown that there exists an unique controller K2, which 

minimizes Tzw and depends on the solutions of two ARE 

     01122 =+−+ CCXBXBXAXA TTT           

                         01122 =+−+ TTT BBTCYCYAAY              (3.9) 

The controller K2 has a separation structure. From the measurements the 

whole system is first reconstructed in an optimal way using Kalman –

Bucy filter during the estimation phase, and then the optimal control 

problem is based on this reconstructed state vector. 
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Numerical results 

 
 For numerical simulations a slender cantilever beam with four finite 

elements is considered. A pair of piezoelectric patches is bonded 

symmetrically at the top and the bottom surfaces of each beam element.  

 The disturbances influence the displacements and the rotations.  

 The rotation of every node is controlled by the strains of the two 

adjoining piezoelectric actuators.  

 Three kinds of dynamic loading are used as disturbances: 

• Instantaneous transverse constant force distributed in the free end 

of the beam.  

• Periodic sinusoidal loading pressure acting on every node on one 

side of the structure simulating a strong wind.  

 

• Random white noise with zero mean acting along the transverse 

direction.  
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 We limit our discussion to the control of the transient response. The 

responses of the open-loop and closed-loop systems are compared based 

on the reduction of the magnitude of the maximum transverse 

displacements and rotations. 

 All simulation cases illustrate asymptotic stability of both control 

strategies. Combination of states available for measure is used to create 

the LQR control gain as well as for organizing the control and filter 

gains for H2 approach. This leads to heavy penalizing of the control in 

the LQR performance criterion (R = r.I4x4 , r = 0.000001).  

 Applying an impulsive constant load we observe that the two control 

laws very quickly suppress the vibrations. Better results are obtained 

with H2 control law. The plots of the displacements and rotations for the 

free (dot), LQR (dash) and H2 (solid) controlled beam tip are displaced 

in the Figure below. 
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 When H2 controller is applied without amplification of the control 

channels the vibrations near the free end can be efficiently suppressed. 

Worse results for the vertical displacement appearing near the fixed end 

are due to the fact that H2 robust controller includes an estimation of the 

structural system from incomplete measurements and insufficient 

accuracy of the simplified finite element model in higher vibrational 

modes. This deficiency can be improved amplifying the first control 

channel and accepting the fact that effectiveness of the suppression of 

the displacements of the free end then will be slightly less.  
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Displacements for the four nodes of uncontrolled (dot) and controlled H2 

law without (dash) and with (solid) amplifier due to random loading. 

 

Rotations for the four nodes of uncontrolled (dot) and controlled H2 law 

without (dash) and with (solid) amplifier due to random loading.  
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Displacements for the four nodes of uncontrolled (dot) and controlled H2 

law without (dash) and with (solid) amplifier due to sinusoidal loading.  

 
Rotations for the four nodes of uncontrolled (dot) and controlled H2 law 

without (dash) and with (solid) amplifier due to sinusoidal-like loading.  
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Responses of the free (dot) vibrating beam and controlled beam with 

LQR (dash) and H2 (solid) control due to impulsive-like wind loading. 

 

The vertical displacements and rotations for all nodes for uncontrolled 

(dot), LQR (dash) and H2 (solid) regulated beam due to white noise 

loading. 
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The response of the free end of the beam is shown in the Figure. 

 

The response of the free end of the beam subjected to random loading. 
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Conclusions 
 
 Mathematical formulation and the computational model for the active 

vibration control of a slender beam bonded with piezoelectric sensors 

and actuators are presented.  

 The problem of active control is studied by using the classical LQR 

and the robust H2 optimal approaches. 

 The comparison between the two proposed control laws shows that 

both strategies are effective. The second method is preferred due to the 

robustness properties.  

 The numerical simulations show that the proposed methods are usable 

for vibration suppression of a laminated beam subjected to different 

kind of loading. 

 A detailed investigation of the dynamical response of active beams 

and other structures will give us confidence in order to propose concrete 

industrial applications. Among others, suppression of wind vibrations 

and noise reduction in lightweight (e.g., aluminium) facades in 

architecture and civil engineering can be achieved by means of the 

proposed method. 
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