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Abstract 
 
This paper presents the design of a vibration control mechanism for a beam with 
bonded piezoelectric sensors and actuators and an application of the arising smart 
structure for suppression of wind-induced vibrations. The mechanical modeling of 
the structure and the subsequent finite element approximation are based on the 
classical equations of motion, as they are derived from Hamilton’s principle, in 
connection with simplified modeling of the piezoelectric sensors and actuators. 
Various control schemes have been implemented in structural control (LQR, LQG, 
H2, and H ∞ ). The latter robust controllers are more flexible and lead to applicable 
design of smart structures. The numerical simulation shows that sufficient vibration 
suppression can be achieved by means of this general method. 
 
Keywords: active structural control, smart beam, composite structure, piezoelectric 
layer, wind engineering. 
 
1  Introduction 
 
Due to the increasing demand of high structural requirements, the modeling and 
control of flexible structures have received considerable interest among the research 
community. One attractive way for vibration control of space and earth flexible 
structures is the incorporation of a ‘‘smart’’ material actuator, such as a piezoelectric 
material, into the structure [1], [4], [7], [9]. 
Piezoelectric materials respond to mechanical forces/pressures and generate an 
electric charge/voltage. This phenomenon is called the direct piezoelectric effect. 
Conversely, electric charge/field applied to the piezoelectric material induces 
mechanical stresses or strains, and this phenomenon is called the converse 
piezoelectric effect. In ‘‘smart’’ piezoelectric structures, the direct effect is used for 
structural measurements (sensor) and the converse effect is used for active vibration 
controls (actuator).  
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Although some people believe that this class of smart systems are not sufficient for 
control of strong excitations, like earthquakes, most people agree that applications 
on wind engineering are meaningful.  
In this work a laminated beam with piezoelectric sensors and actuators is modelled 
by the finite element method. Furthermore, the problem of active control is studied 
using classical and robust optimal control (LQR and H2, respectively) [2], [8], [10]. 

 
2  Modeling of the electromechanical system 
 
2.1 Linear piezoelasticity 
 
The constitutive relations for a piezoelectric material are given by 
                            { } [ ] { } [ ] { }( )TQ d Eσ ε= − ,   (2.1) 

                            { } [ ][ ]{ } [ ]{ }D d Q Eε ξ= + ,  (2.2) 
where { }σ  is the stress tensor, { }ε is the strain tensor, { }D is the electric 
displacement, { }E is the electric field, [ ]Q is the elastic stiffness matrix, [ ]d  is the 
piezoelectric matrix and [ ]ξ  is the permittivity matrix.  
Equation (2.1) describes the inverse piezoelectric effect and equation (2.2) describes 
the direct piezoelectric effect. 
 
2.2 Engineering smart beam model 
 
2.2.1   Description of the smart beam 
 
A slender beam with rectangular cross section having length L, width b and 
thickness h is considered. Α pair of piezoelectric patches with thickness 

Sh  and 
Ah  is 

symmetrically bonded at the top (e.g. sensor) and the bottom (e.g., actuator) surfaces 
of the beam. 
 
We derive engineering models for piezoelectric sensors and actuators and decouple 
electric and elastic parts of system (2.1)-(2.2), with the electric part being treated in 
a simplified way. We assume that the piezoelectric sensors and actuators are 
polarized in z-direction and exhibit transverse isotropic properties in xy-plane. 
Under these assumptions the set of equations (2.1) and (2.2) is reduced as follows 

                            11 31

55

0

0 0
x x

z

xz xz

Q d
E

Q

ε

τ γ

σ
= −

        
               

  (2.3) 

                            11 31 33z x zD Q d Eε ξ= + .   (2.4) 
The electric field intensity zE  can be expressed as 

                            l
z

l

VE
h

=    (2.5) 

where lV  is the applied voltage across the l -layer and lh  is the thickness of the l -
layer. 
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2.2.2   Sensor modeling 
 
The direct piezoelectric equation (2.4) is used to calculate the output charge created 
by the strains in the beam. Since no electric field is applied to the sensor layer, we 
get 
                            11 31z xD Q d ε= .   (2.6) 
The charge measured through the electrodes of the sensor is given by [1] 

                            ( )
2 2

1
2

ef ef
S

z z

S Sh hz z h

q t D dS D dS
= = +

= +
                 
∫ ∫   (2.7) 

where efS  is the effective surface of the electrode of the sensor layer. 
The current on the surface of the sensor is given by 

                            ( ) ( )dq t
i t

dt
= .   (2.8) 

The current is converted into open-circuit sensor voltage output by 
                            ( )S

SV G i t= .   (2.9) 
where SG  is the gain of the current amplifier. The actuators are treated in a similar 
way. 
 
2.2.3   Equations of motion 
 
Let us assume that the composite beam is symmetric and that its centroidal and 
elastic axes coincide so that no bending-torsion coupling is considered. Furthermore 
we assume that the piezoelectric sensors and actuators are bonded perfectly on the 
host beam and they are much thinner than the host beam. The axial vibration of the 
beam centerline is considered negligible and the components of the displacement 
field { }u  based on the usual Timoshenko assumption can be expressed as: 

                             
( ) ( )
( )
( ) ( ),,,,,

,0,,,
,,,,,

1

2

1

twtzyu
tzyu

tztzyu

χχ
χ

χψχ

≈
≈
≈

    (2.10) 

where ψ  is the rotation of the beam cross section about the positive y-axis and w is 
the transverse displacement of the point of the centroidal axis (y=z=0). 
The strain-displacement relations are given by 

                            
x z

x
ψ

ε
∂

=
∂

,       xz

w
x

γ ψ
∂

= +
∂

.    (2.11) 

The simpler Euler-Bernoulli theory which considers zero transverse shear 
deformation xzγ has also been tested, see [4], [5]. 
In order to derive the equations of motion of the beam, Hamilton’s principle is used: 
                            ( )

2

1

0
t

t

T U W dtδ − + =∫      (2.12) 
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where δ  is the first variation operator, T  is the kinetic energy, U  is the potential 
energy and W  is the work done by the external loads or moments.  
 
The kinetic energy and the strain (potential) energy are known from classical 
structural analysis theories. If the only loading consists of moments induced by 
piezoelectric actuators and since the structure has no bending-twisting couple, then 
the first variation of the work has the form 

                            
0

L
AW b M dx

x
ψδ δ ∂ =  ∂ ∫    (2.13) 

where  MA is the moment per unit length induced by the actuator layer and is given 
by 

                            
2 2

11 31

2 2A A

h h

A A A
x z

h hh h

M z dz zQ d E dzσ
− −

− − − −

= =∫ ∫   (2.14) 

and 

                            
z

A A

A

VE
h

= .  (2.15) 

 
 
2.2.4   Finite element modeling 
 
The model is composed of beam elements in bending, which have two mechanical 
degrees of freedom (d.o.f.) at each node: one translation d.o.f. 1 2( )w w in direction z 
and one rotational d.o.f. 1 2( )ψ ψ . Using classical finite element interpolation 
functions and (2.12), the equations of motion for the discretized structure read [6]: 

  m eMX DX KX F F+ + = +&& &                   (2.16) 
where vector X contains the states of the system (vertical transverse deflection and 

rotations of the nodes), ( )..  stands for the second time derivative. M is the mass 

matrix, K is the stiffness matrix. Fm  is a mechanical point forces vector added a 
posteriori to the discretized system, F e  is the generalized electrical load vector 
provided by the applied voltages and proportional to them. D is a viscous damping 
matrix added a posteriori and X& is a velocity vector. 
 
 
 
3  Optimal control problem 
 
3.1 Preparation 
 
The second order system (2.16) can be written as the following state space one 
 
  x Ax Bu F= + +& ,  y Cx=                    (3.1) 
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where T T TXx X 
 = &  is the state vector, 

1 1

0 I
A

M K M D− −

 =  − − 
is the system matrix, 

1

0

e

B
M F− ∗

 
=  
 

with eF ∗  the voltage factored-out electrical loads vector,
1

0

m

F
M F−

 
=  
 

. 

Control input u is a column vector formed by the voltages applied to the actuators. 
The output vector y consists of measures formed from the state vector x by the 
output matrix C. 
 
3.2 Classical control (LQR, LQG) 
 
Consider the linear system (3.1) and the quadratic cost function  

  
0

1 ( )
2

T TJ x Qx u Ru dt
∞

= +∫ .                    (3.2) 

The problem consists of minimizing the functional J with respect to the control 
input u subject to the linear system constraints (3.1). This is known as the linear 
quadratic regulator (LQR) problem. 
This results in a linear controller of the feedback form  
  U = -Kx, K=R-1BTP                      (3.3) 
where the constant matrix P is a solution of the Algebraic Riccati Equation (ARE) 
  1 0T TA P PA Q PBR B P−+ + − = .                                            (3.4) 
Under technical assumptions, which can be found in classical control theory 
treatises, existence and uniqueness of the above controller is guaranteed. The main 
design parameters for the controller are the weight matrices Q, determining the 
weight of each state, and R, determining the weight of each actuator voltage (control 
channel).  
Without entering into details, we mention here that LQR problem requires the 
complete knowledge of the whole state for each time instance. This is a considerable 
deficiency for practical applications, since it requires expensive sensor 
instrumentation. If a limited number of measurements is available, as it is the case 
with the configuration of the smart beam treated here, a more realistic assumption 
can be used. From these measurements the whole system is first reconstructed, 
during the estimation phase, and then the optimal control problem is based on this 
reconstructed state vector. The assumption of Gaussian distribution for the unknown 
fields leads to the method known as LQG (linear quadratic Gaussian). Since a 
similar strategy of system estimation and control is used in the H2 model of the next 
section, no further details of LQG are discussed here. 
 
3.3 Robust modern control (H2, Hinfinity) 
 
Modern control involves more complicated optimization problems than the one of 
(3.2). Robustness with respect to external disturbances or uncertainties of the system 
or of the loading is the key issue. One of this models, known as H2 is tested here. 
Further models have been discussed, among others, in [2], [10]. The basic block 
diagram used in this paper is shown in Figure 1. 
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Figure 1: Closed-loop system diagram for H2 control. 
 
 
Here G is the generalized plant and K is the controller. Both G and K are real, 
rational and proper. The generalized plant G contains the plant plus all weighting 
functions, which may be used as scaling in order to make the numerical solution of 
the problem easier. The signal w contains all external inputs including disturbances, 
sensor noise and commands; the output z is an error signal; y is the measured 
variables; and u is the control input. The resulting closed-loop transfer function from 
w to z is denoted by Tzw.  
A popular performance measure in optimal control theory is H2 norm, defined in the 
frequency-domain for a stable transfer matrix G(s) as [10] 

[ ] 2
1

2
)()(

2
1









= ∫
∞+

∞−

∗ ωωω
π

djGjGtrG .            (3.5) 

If the transfer matrix in terms of state-space data is denoted by G(s) where 

                BAsIC
C

BA
sG 1)(

0
)( −−=








=                (3.6) 

2
G  can, in principle, be computed from the definition (3.1). An alternative useful 

characterization is the following. If Lc denotes the controlability Gramian of (A,B) 
and Lo the observability Gramian of (C,A) then 
 0=++ TT

cc BBALAL  , 0=++ CCALLA T
oo

T  
and  
  )()(2

2
BLBtrCCLtrG o

TT
c == .                 (3.7) 

Note that this computation involves the solution of a linear equation and can be done 
in a finite number of steps. 
Now we will discuss the assumptions on G that are used in H2 theory. Then we will 
show how to choose K which minimizes the H2 norm of Tzw.  To be admissible K is 
constrained to provide internal stability. In our application state models of G and K 

z  

G 

 

K 

w

uy
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are considered. Then internal stability means that the states of G and K go to zero 
from all initial values when w=0.  
 
The realization of the transfer matrix G is taken to be of the form 

   
















0
0

212

121

21

DC
DC
BBA

                         (3.8) 

After normalization, the system becomes 

  
( )
( )

( ) ( ) 

















−−

−

−

0

0

21
2
1

21212
2
1

2121

1
1212121

2
1

121221

DDDCDD

DDDC
DDBBA

TT

T

T

                          (3.9) 

Further technical assumptions which guarantee the existence of the solution can be 
found in the literature and are not discussed here. 
 
The solution of the H2 problem uses a state estimator and feeds back the estimated 
states. The controller and estimator gains are computed from two algebraic Riccati 
equations (ARE).  
 
Finally the feedback control is given by 
    xKu c ˆ= ,                     (3.10) 
where x̂  is the optimal estimate of x. The problem is to find an admissible controller 
Kc which minimizes 

2zwT  
 
Using Pontriagin's maximum principle for controller and observer, we obtain the 
two Hamiltonian matrices 

( ) ( )
( )[ ] ( ) 












+−−−
−−= −−

−−

TTTTTTT

TTTT

BDDDCACDDDDIC
BDDBCDDDBAH

2
1

1212121112
1

1212121

2
1

12122112
1

12122
2   (3.11) 

( ) ( )
( )[ ] ( ) 












+−−−
−−= −−

−−

2
1

2121211121
1

2121211

2
1

21212121
1

21212
2

CDDDBABDDDDIB
CDDCBDDDCAJ

TTTTT

TTTTTT

             (3.12) 

that belong to dom(Ric). Let X2=Ric(H2) and Y2=Ric(J2) are the corresponding 
positive definite solutions of the two ARE. Then the controller and observer gains 
are 

   ( ) ( )11222
1

12122 CDXBDDK TTT +−= −
             (3.13) 

   ( )( ) 1
2121211222

−+−= TTT DDDBCYL               (3.14) 
and the systems are 

 







+
+

=
02211

22

KDC
IKBA

Gc ,  






 ++
=

0
212122

I
DLBCLA

Gl .    (3.15) 
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The unique optimal controller is 

   






 −++
=

02

22222

K
LCLKBA

K c .             (3.16) 

Moreover 

( )
2

2
2

2
1

1212
2

21
2

2
min l

T
czw GKDDBGT += ( ) TTT KYKDDtrBXBtr 2221212121 (+= )    

The controller Kc has the well-known separation structure. It implies reducing the 
output feedback problem to a combination of the full information and the output 
estimation problems. The controller equations can be written in standard observer 
form as 

 
( ) ( )

xKu

yxCDDLuDDBxAx TT

ˆ

ˆˆˆ

2

2
2
1

21212
2
1

12122

=








 −++= −−&
 

 
For general thoughts about active structures the reader may consult the review 
article [9]. Both Timoshenko and Euler-Bernoulli technical beam theories have been 
tested cf. [1]. The H2 control design technique provides better robustness and allows 
for the control objectives to be conveniently defined in time domain [4]. Another 
theory of robust optimal control, based on the Hinfinity norm is discussed in Reference 
[7]. 
 
 
 
 
 
 
4  Numerical results 

A cantilever beam with four finite element nodes under ambient vibration and 
sinusoidal, wind-type loading is considered. Results for uncontrolled (green) and 
controlled (blue) vertical displacements for all nodes are given in Figures 2-6.  

The effect of using less measurements on the performance of the control scheme is 
shown in Figures 2,3. There all four elements have independent controllers 
(piezoelectric actuators), while the number of measurements, which are based on the 
available sensors, varies between four and two.  

Vibrations near the free end (bottom-right plot) can efficiently be suppressed. Worse 
results appearing near the fixed end (upper-left plot) are due to the fact that H2 
robust controller includes an estimation of the structural system from incomplete 
measurements and insufficient accuracy of the simplified finite element model in 
higher vibrational modes (compare Figures 5 and 6). 
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Figure 2: Vibration of the free end subjected to ambient vibration loading. Four 
controls and four sensors. 

 

Figure 3: Vibration of the free end subjected to ambient vibration loading. Four 
controls and one sensor. 
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Figure 4: The forced vibration of the beam under sinusoidal loading. 

 

 

Figure 5: Vibration of the beam without and with control, from near-support 
node to the free node. 
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Figure 6: Sufficient vibration suppression at the end of the beam. 

For demonstration purposes we assume a smart beam with length equal to 0,8 m; 
width 0,02 m and height equal to 0,01 m, respectively.  
 
Material constants are taken from the literature to be equal with: Modified Elastic 
modulus  (GPa) 73, Density (kg/m 3 ) 2700. Without having experimental data, a 
viscous damping coefficient equal to 0.0001 is considered. 

A sinusoidal loading, which approximates the wind loading on a structure is 
used (It corresponds to the technical recommendation with ρ=0.125 N/m; vm=28.0; 
g=2.504; cf=1.0; pw=0.5*ρ*vm

2(1+g)* cfsin(t) according to reference [3]). 

A detailed investigation of the dynamical response of active beams and other 
structures will give us confidence in order to propose concrete industrial 
applications. Among others, suppression of wind vibrations and noise reduction in 
leightweight (e.g., aluminium) facades in architecture and civil engineering can 
achieved by means of the proposed method. 
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