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ABSTRACT

In this paper we propose the combination of hashing
and use of memory to achieve low cost, exact matching of
SNORT-like intrusion signatures. The basic idea is to use
hashing to generate a distinct address for each candidate pat-
tern, which is stored in memory. Our implementation, Hash-
Mem, uses simple CRC-style polynomials implemented with
XOR gates, to achieve low cost hashing of the input patterns.
We reduce the sparseness of the memory using an indirec-
tion memory that allows a compact storing of the search pat-
terns and use a simple comparator to verify the match. Our
implementation uses in the order of 0.15 Logic Cells per
search pattern character, and a few tens of memory blocks,
fitting comfortably in small or medium FPGA devices.

1. INTRODUCTION

The area of NIDS pattern matching has been very active re-
cently. Several architectures have been proposed to imple-
ment SNORT-like pattern matching in FPGA. The architec-
tures differ in the approach (finite automata or CAM-like),
internal organizations, and of course in their cost-performance
tradeoffs [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. The common fac-
tor of these efforts however is the continuous drive for lower
cost, at the same or better performance. This work builds on
two distinct ideas: (i) of the use of hashing of the input to
retrieve approximate match information used in the Bloom
filters [5, 10], and (ii) on the use of memories to provide
exact match with fewer gates used by Cho and Magnione-
Smith [8], and earlier by Burkowski [12].

Dharmapurikar et al. proposed the use of Bloom filters
for low cost pattern matching [5]. Bloom filters are very
elegant in representing set membership, but have two poten-
tial drawbacks: (i) they require multiple hash functions and
memories, and (ii) they give an approximate match answer
since they allow false positives. Attig et al. proposed the
use of external SDRAM memory to augment the bloom fil-
ters with exact match, but at extra cost, and without offering

worst case guaranteed bandwidth since the external memory
is not pipelined [10].

Cho and Magnione-Smith used a CAM to match short
patterns and to match unique prefixes of longer search pat-
terns [8]. They choose the CAM width so as to provide
unique prefix signals for each possible match. The match
signals for all prefixes are then encoded to provide a mem-
ory address where the candidate suffixes are stored. The re-
maining input is compared against the expected suffix, and
the result is the overall match for the pattern. Their approach
offers very good memory density and low gate count. The
cost of this approach however increases if the patterns have
many and long common prefixes.

Our proposed architecture attempts to strike a different
balance between memory and logic usage. We use simple
hash functions to generate sparse but distinct addresses for
each of the search patterns, giving us a hint of whether there
is a possible match (with probability proportional to the den-
sity of the hash space). We then use an indirection table
to “gather” the search patterns in a compact memory, and
compare the input against the single possible search pattern
to eliminate false positives. Our implementations achieve
processing throughputs between 1.95-2.7 Gbps processing
a single input character per cycle, for a cost of 0.15 logic
cells per search pattern character and a few tens of mem-
ory blocks, fitting comfortably in small or medium FPGA
devices.

The rest of the paper is organized as follows. In sections
2 and 3 we describe the proposed HashMem architecture,
and extend it to achieve better cost and performance. In sec-
tion 4 we present the implementations results and compare
with other published results, and we conclude in section 5.

2. THE HASHMEM ARCHITECTURE

The basic idea of HashMem is to use the input pattern to
generate a unique candidate pattern address. Lets assume
we want to match a set of patterns of lengthL characters.
We feedL input bytes into a hashing module to generate the
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Fig. 1. (a) The basic HashMem idea. To search for a pat-
tern of length N characters, we hash N input characters and
produce a memory address. If the stored pattern matches the
input pattern, we have a match, otherwise no.(b) Detailed
HashMem Architecture. The Index memory rearranges the
addresses of the possible match patterns into the smaller (but
wider) Pattern Memory.

unique address of the candidate pattern. We then read the
candidate pattern from the memory and compare it with the
(delayed) input to verify the match.

This overall structure, shown in Figure 1(a), has been
used by Cho et al. using prefix match logic, and an encoder
to generate the unique address. Unlike this work, we use a
CRC-type computation on the entire length of the match and
avoid the use of encoders. CRCs have two advantages: first
they are simple functions with small implementation cost.
Second, they produce a “randomized” result, with a uniform
distribution of all possible patterns of a specific width into
each CRC value. Depending on the polynomial used, each
CRC function will produce a different mapping of patterns
to locations. This gives us a way of adapting to different
pattern sets. Given a set of patterns, we can select a polyno-
mial that produces distinct CRC values for every search pat-
tern. Since a match can begin anywhere in the input stream,
for our L character search, we have to check each of the L-
character substrings starting at offsets 0, 1, ..., up to the end
of the input packet. To achieve this, we pipeline the CRC
generator.

Finding a polynomial that guarantees distinct addresses
for each search pattern is easier when the density of the hash
space is smaller. Experimentally we found that using 12
bits for Snort patterns, we can use simple polynomials that
achieve this guarantee. However, a small memory density
means that many memory locations are not used. This prob-
lem is exacerbated for longer patterns since the memory is
as wide as the search patterns. To alleviate this overhead,
we introduce a level of indirection, using 12 bits of CRC
address, and packing the search patterns in a shorter mem-
ory to improve its utilization. The width of the indirection
memory is related to the number of stored patterns, with 8
bits being more than enough for patterns of a given width

Until this point we discussed patterns of equal width (L).
Dealing with multiple width patterns requires to (i) know
the width of the possible matches, and (ii) the ability to read
all these possible patterns. Since any given character of the
input stream can be the last character of a pattern of arbitrary
width, we use the simple approach of replicating the entire
structure once for each of the different pattern widths. The
resulting architecture is show in Figure 1(b).

Sourdis et al. [13] are working on improving this archi-
tecture, placing their emphasis on using aperfecthashing
function, i.e. one that achieves a 1-to-1 mapping between
search patterns and memory locations. While their work
shares the use of indirection memory compared to ours, their
contributions are different as they use a centralized, banked
memory for efficient pattern storage, and they trade logic to
reduce the memory size.

3. HASHMEM IMPLEMENTATION AND
IMPROVEMENTS

For the construction of a HashMem system, we first group
the search patterns according to their width L. Then, for each
group, we identify a CRC polynomial that produces distinct
addresses for each pattern in the group. The search patterns
are packed in a pattern memory of width L without any re-
striction on their location. Finally the indirection memory is
initialized. Initially the indirection memory is initialized to
a special value “No-Match”. Then for each search pattern
P that is stored in location PMAddr(P) in the pattern mem-
ory, we set location CRC(P) of the indirection memory to
PMAddr(P). This essentially creates a pointer to the stored
search pattern, if there is one.

3.1. Efficient CRC Generation

The HashMem architecture uses one CRC generator for each
search pattern width, and each generator has to produce the
CRC of L characters in one cycle. To achieve a CRC im-
plementation according to these requirements, we first im-
plemented a fully parallel, unpipelined generator, and then
we pipelined it to achieve (i) throughput of one full hash per
cycle, and (ii) good cycle time.

While each CRC generator is relatively simple, its cost
is proportional to the input width. Some Snort search pat-
terns exceed 50 characters or 400 input bits, for which even
simple CRC generators use many gates. To reduce the cost
of wide CRC generators, we produce the hash value for wide
patterns reusing the narrower CRC values as partial hashes.
We implement full CRC generators for the widths of 3, 4, 5
and 6 bytes. Then, to produce a CRC value for say 7 char-
acter wide pattern, we perform a CRC function on the CRC
results for the first 4, and the next 3 input stream characters.
The partial CRC values should be delayed appropriately so
that they arrive at the same time to the second level CRC
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Fig. 2. Hierarchical CRC generation for a 7 character pattern
using the partial CRC results for the first 4 and the next 3
input characters.

generator. Figure 2 illustrates this 7-character wide exam-
ple. This hierarchical CRC calculation and the reuse of par-
tial CRC values results in significant area savings reducing
the input of the generators to a more manageable width.

Another parameter affecting the cost of the CRC compu-
tation is the width of the CRC value. Smaller widths reduce
the size of indirection memory, but make it harder to guar-
antee distinct addresses for each search pattern. We exper-
imented with various CRC widths, and found that a larger
space density, increases the cost (in number of LUTs) of the
CRC generators. In practice, we found that the best compro-
mise between CRC implementation cost and memory size is
at 12 bits (i.e. using polynomials of degree 12). For small
pattern widths, we can use smaller degrees (10 and 11), but
in general we used 12 bits.

3.2. Handling Very Short Patterns

Very short patterns (1-2 characters) offer very few input bits,
making the CRC calculation an overkill. Furthermore, the
total pattern characters are very few, underutilizing the indi-
rection and pattern memories. To address this inefficiency,
we use a simple lookup table of 256 entries to match the
single character patterns.

For the two character patterns, we notice that the total
distinct patterns characters are less than 64, allowing an en-
coding with 6 bits. Based on this observation, we added a
recoding function in the unused bits of the single character
lookup table, recoding the 8 bits input into a 7 bit code (6
bits for the encoded value and 1 bit for the single character
match). Then, two input recoded characters amount to 12
bits, and we use a 4Kx1 lookup table to determine any two
character matches. Each of these two lookup tables uses one
memory block.

3.3. Reusing Logic and Memory for Wide Patterns

Very long strings on the other hand are few but use very
wide pattern memories. The widest Xilinx memory block
has 512 entries of 36 bits. The few wide patterns will leave
almost the entire memory empty. In addition, most of the
logic in the HashMem architecture comes from CRC gen-
erators, and the pattern comparators. Long patterns, due
to their small number in the Snort rule set, offer us with
this opportunity to reuse these pieces instead of replicating
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Fig. 3. A 7 character pattern (“abcdefg”) is partially
matched as two patterns of 3 (“abc”) and 4 (“defg”) char-
acters. The partial matches are then combined to determine
the overall match.

them. The idea is that instead of matching a wide pattern
in a separate structure, we split it in smaller pieces, match
each of them in existing narrower structures, and use extra
glue-logic to combine the partial matches into the complete
match.

Figure 3 depicts a short example where a 7 character pat-
tern in matched as two sub-patterns of 3 and 4 characters.
Note that we use this small pattern width only for reasons
of clarity and brevity; we actually used this technique for
widths 17 and up. The two sub-patterns are added into the
existing structures for widths 3 and 4, reusing the CRC gen-
erators, memory, and comparators. There are two issues that
we have to address in order to make this approach work.

First, in order to add a new pattern in an existing struc-
ture, the CRC of that pattern should not conflict with any
preexisting pattern in the set. This restriction is addressed
in two ways: first, the density of the hash space is small,
so probabilistically our chances are good. Second, if we are
indeed unlucky, we can always change the CRC polynomial
and find one that removes the conflict. Should both of these
options fail, we still have alternatives. We can partition the
pattern in a different way (in our example perhaps in 4+3 or
2+5 characters instead of the 3+4 used in our example). The
reuse of the resources can happen in many different ways
increasing our chances of finding a convenient mapping. In
our experience, the complicated options are not needed and
it is straightforward to add the sub-patterns in existing struc-
tures.

The other issue is the glue logic that combines the partial
matches into overall matches for the pattern. Since each of
the two sub-patterns are detected at offset 0, we must delay
the match signal for the first sub-pattern to AND it with the
match of the second sub-pattern and determine the overall
match. In our example we must delay the first 3 characters
match by 4 clock cycles.

3.4. Sharing Memory Structures between Different Pat-
tern Widths

To further reduce the amount of memory needed, we can ex-
ploit two facts: (i) the low density of the indirection and data



memories, and (ii) that the Xilinx memories are dual ported.
The idea for sharing the data memory is simple: we partition
the memory in two independent portions. The “upper” por-
tion is used for patterns of widthX and the “lower” portion
is used for patterns of widthY (usuallyX + 1). Consider
for a moment the data memory for say width 3. The mini-
mum dimension of a single Xilinx memory block is 512x36
bits (enough for 4 characters), while the number of patterns
of widths 3 and 4 is 33 and 72 patterns respectively. It is
clear that both these sets of patterns can coexist in the same
memory block,without any overhead. However, since we
use different CRC generators for 3 and 4 characters, the ad-
dresses for each of the widths will be different. Here we can
use the two read ports of the memory: we statically assign
each read port to a given size, and arrange the patterns in
two separate portions of the memory space.

While sharing the data memories is fairly straightfor-
ward, sharing the indirection memories is a bit more in-
volved. Consider a simple example where there is only one
string for each of the widths 3 and 4. Each of the indirection
memories for widths 3 and 4 will have a single non-empty
entry at the location determined by the CRC function of the
corresponding width. These non-empty locations will point
to the data memory locations that the actual strings will be
placed, say X and Y. If the locations of the two non-empty
entries are distinct, we can merge the two memories, creat-
ing a simple indirection memory, withtwo non-empty loca-
tions, with contents X and Y at their original locations. Now
we can use the two read port for each of the pattern widths.

To show that this scheme does work, we consider two
cases, of a pattern match and of a pattern mismatch. First, if
a pattern match input appears for say size 3, the hash value
will point to the location containing X. The data memory
string will be read for width 3, and a match will be reported.
For an arbitrary non-match input, the CRC value will most
probably point to an empty location, resulting in a mismatch.
However, there is the possibility that for some 3 character
input, the CRC value will point to the location initialized
to the 4 character pattern. To avoid any false matches, we
augment the comparator with an additional bit that indicates
the portion of the memory that the pattern belongs to. In
this way, when we read location Y of the data memory that
contains in a 4 character pattern, it is impossible to report
a 3 character match. Figure 4 outlines the sharing of both
levels of memory in our architecture.

If the two sets have conflicts, then we have to change
one or both of the CRC polynomials to avoid the conflict. In
practice, in all the cases we found that the two sets didnot
conflict, and we used a simple merging of the memories.

3.5. Processing Two Characters per Cycle

The performance of a HashMem system can be doubled ex-
ploiting the fact that Xilinx memory blocks provide two read
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ports. Hence, we can double the processing throughput to 2
input characters per cycle, processing two patterns at off-
sets 0 and 1 per cycle. To achieve this, we need to provide
two addresses into the memories per cycle. This means that
the CRC generator logic has to be replicated, for offsets 0
and 1 in the input stream. The two addresses are fed to the
two ports of the same memory (as they refer to the same
pattern width). The indirection provides two pattern mem-
ory addresses, and the two possible search patterns must be
match against the input for offsets 0 and 1, requiring two
copies of the comparators. The overall structure for a given
pattern width is shown in Figure 5. The advantage of this
technique is that the throughput is doubled, without increas-
ing the memory requirements, while the disadvantage is a
2x increase in the logic cost. Unfortunately, this technique
cannot be used in conjunction with the memory sharing de-
scribed in the previous subsection, since both techniques use
both read ports of the Xilinx memories.

4. EXPERIMENTAL EVALUATION RESULTS

We evaluate the HashMem architecture and our implemen-
tations using the official Snort rule set [14] dated early 2004
that consists of 1474 rules and a total of 18,636 characters.
We implemented the HashMem architecture in VHDL using
the Xilinx ISE 6.2 tools using Spartan 3, Virtex 2 and Vir-
tex2Pro devices, all in the highest speed grades (-5, -6, and
-7 respectively). We also used automated tools that given a
set of patterns generated the VHDL code for the CRC gen-
erators and the corresponding mapping of patterns to mem-



Table 1. Comparison of the HashMem architecture variants.

Design
Input Freq. Throughput Logic LC/ MEM

PEM
bits MHZ (Gbps) Cells char (blocks)

HashMem (2 chars/cc) 16 285 4.560 10,160 0.55 181 8.4

HashMEM + Reuse
8 333 2.664 2,632 0.14 66 18.9
16 322 5.152 5,219 0.28 66 18.4

HashMem + Reuse
8 338 2.704 2,570 0.14 35 19.6

+ Share

HashMem + Reuse
8 339 2.712 2,759 0.15 31 18.3

+ Share + Small CRCs

ories. In our results, we use the number of Logic Cells, i.e.
ReportedSlices× 2.

Table 1 compares the variants of the HashMem architec-
ture for a Virtex2Pro device. The first is the basic architec-
ture that uses a full structure for each of the search pattern
widths. This variant is complete and scalable and can pro-
cess two characters per cycle, but with a significant logic
and an excessive memory cost (181 memory blocks). Still
this designs fits in a medium Virtex2Pro device.

Adding memory reuse (+Reuse) for wide patterns re-
duces the number of memory blocks to 66, and requires only
∼2,400 logic cells of logic for processing of a single charac-
ter per cycle, or 0.14 logic cells per character. At a frequency
of ∼330MHz, the processing throughput exceeds 2.5 Gbps.
Doubling the processing throughput doubles the logic cost,
but without additional memory use. The Performance Effi-
ciency Metric (PEM, i.e. ratio of performance over the area
cost per character) for both designs is around 18.5.

Adding memory sharing between patterns of different
widths (+Share) offers a big improvement in the memory
use, reducing the number of required blocks to 35. The logic
cost remains about the same, due to the additional glue logic
for the overall match determination. The smaller design size
pushes the frequency up to about 340 MHz, slightly increas-
ing the processing throughput and the PEM value (19.6).

The last line of Table 1 uses smaller indirection tables
for the smaller pattern widths (3-6). For these widths we can
identify CRC polynomials of degree 10 and 11 that provide
distinct addresses for all patterns. With fewer address bits
the indirection memories use 1 instead of 2 memory blocks
(2Kx9 instead of 4Kx9 memory), saving a total of 4 mem-
ory blocks. This is our best design, and achieves an operat-
ing frequency of∼340MHz at a cost of 0.15 logic cells per
character, and a PEM value of 18.3. The area cost of the
design is divided as follows: CRC generators 32%, com-
parators 42%, Glue logic 13% and SRLs 13%.

Table 2 offers a comparison between the best HashMem
variants and other published results. For reasons of com-
parison we also used Spartan3 and Virtex2 devices. Our
HashMem implementations achieve similar operating fre-
quencies and use significantly less logic cells per charac-
ter compared to earlier published results. The efficiency of
our designs is also clear considering the PEM metric, where

HashMem achieves a value of 13-19 compared to∼6 of pre-
vious works, and∼9 that is reached by Sourdis et al. [13].
However it is also clear from Table 2 that the HashMem ar-
chitecture uses more memory than other approaches. The
occupied memory however offers the opportunity to accom-
modate future expansions in the pattern sets without any in-
crease in the amount of memory or logic. Our memory use
is slightly lower compared to the Bloom filter implementa-
tion [10], that also has potential to add more patterns without
increasing the cost, and about 3.4 times larger than the mem-
ory used by Cho and Magnione-Smith [8]. Finally, the PH-
mem implementation [13] that has similar architecture with
HashMem, achieves the half memory use than ours but with
almost double cost in logic cells per character. Still, our de-
signs fit in medium sized Spartan3 1500 and small Virtex2
500 and Virtex2Pro 7 devices.

5. CONCLUSIONS

The goal of this work was to combine hashing and memo-
ries in order to perform cost effective, exact pattern match-
ing. The HashMem architecture is indeed very effective
in achieving low logic cost for snort-like pattern matching,
with about half the cost of logic that other approaches. The
amount of memory used though is clearly larger that the
minimum necessary (19Kbytes, or 152Kbits). The occupied
memory however, is not necessarily wasted. It offers the op-
portunity to accommodate future expansions in the pattern
sets without any increase in the amount of memory or logic.
Evidence of this potential is the almost “for-free” inclusion
of the wide patterns described in section 3.3. We plan to
verify this hypothesis implementing the newest Snort rule
set with∼2,200 more characters than the one we used.

While in practice we found it is easy to find small and
efficient CRC polynomials to achieve the desired property
of unique addresses for the search patterns, this is a criti-
cal requirement of HashMem. We are investigating ways to
further improve the flexibility of the structures and combine
patterns of different widths in the same memory using a sin-
gle CRC generator and memory port. Such an improvement
would also allow the doubling of the processing throughput
using the second read memory ports.
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