A Collaborative Continuous Media Proxy Cache System

L A S e

5 ““ﬂtllﬂu (#,1.””,[.
Aﬂ.,{d_.-\ 0'51

‘rnm?..‘ ium\“‘“

Kanela Kaligossi

Submitted to the Department of Electronic and Computer
Engineering in Partial Fulfillment of the Requirements for the
Diploma of Electronic and Computer Engineering at the
Technical University of Crete.

Guidance Committee
Professor Peter Triantafillou (supervisor)
Associate Professor Manolis Koubarakis

Assistant Professor Euripides Petrakis

September 2002

Acknowledgements

I would like to thank Prof Peter Triantafillou, for supervising this effort and for
his guidance and support. I would like to thank Associate Prof. Manolis Koubarakis
for participating in my jury and for accepting the typical role of the supervisor from
June 2002, when Prof Triantafillou left from Technical University of Crete. I also
would like to thank Assistant Prof Euripides Petrakis for participating in my jury and
for his help regarding the process of preparing the presentation of this work.

Moreover 1 would like to thank Dimitris Michail for the very important
discussions throughout the process of designing and implementing the system
presented in this text. I also would like to thank Costas Harizakis for his willingness
to participate in discussions that helped me solve various problems as well as for

offering me his ideas regarding the monitoring of popularities of videos.

[§9]

Abstract

The increasing popularity of media streams over the intemet and the high start up
delay that media steams typically experience, raised the urgent necessity of
developing proxy caching systems dedicated exclusively for continues media.

The distinct characteristics of the streaming media and the users’ access behavior
suggest that the delivering and caching of streaming media must be handled 1n a
different fashion than that of the traditional non-streaming objects such as HTML or
image files. Techniques such as prefix caching become popular, in order to cache
continuous media.

In this text, we present the design and implementation of a system for caching
streaming media near to the clients, using their own resources. The users of the
system form a hybrid peer-to-peer network and collaborate to become a large,

aggregate, user-created cache.

(93)

Contents

Abstract
Contents
1 Introduction
1.1 Overview
1 2 Traditional Caching is Not Appropriate
1 3 Streaming Audio and Video on Demand
1.3.1 Real-Time Transport Protocol (RTP)
1.3.2 Real-Time Control Protocol (RTCP)
1 3.3 Real-Time Streaming Protocol (RTSP)
1.4 Peer-to-Peer
2 System’s Design Overview
2.1 The Components of The System
2.2 Advantages and Disadvantages of the Architecture
2 3 Exchanging Summaries of Cached Titles
2.4 Cache Admission Policy and Replacement Policy
2.4.1 Prefix Size
2 4.2 Monitoring Popularities of the Titles
2.4.3 N Most Popular Videos
2.4 4 Placement and Replacement Algorithms
2.5 Demonstration of some Protocols
2.5.1 Cache Miss
2.5.2 Cache Hit
2.6 Joimning the System
2.7 Leaving the System
2.7.1 Intention to Leave
2.7.2 Leave Immediately
3 Implementation

3.1 Request Server

3.2 Resource Manager
3.3 RTSP/RTP client and server
3.3.1 Linking the Prefix and Suffix
3.4 Caching a Video
3.5 Bloom Filters and Tree Topology
4 Related Work
4.1 MiddleMan
4 2 Caching in Centralized Proxy Servers
43 Spreadlt

5 Conclusions and Future Work

A. An RTSP Session

References

Chapter 1

Introduction

1.1 Overview

The design of efficient systems for caching streaming media files 1s a challenging
open research problem. With the augmented growing rate of the Internet and the wide
availability of high-speed network access, an increasing number of streaming media
objects are being distributed over the Intemet. However, due to protocol overheads
and poor delay, throughput and loss properties of the Internet, multimedia streams
typically experience high start-up delay. One popular approach for reducing response
time and network traffic is to cache popular streams at proxies near the requesting
clients In this work we present the design and implementation of a system for caching
streaming media near to the clients using their own resources.

But is caching really useful? The answer would probably be yes if we considered
the main reasons that made the caching technique so widely used. Firstly, since
content is delivered from the proxy, which is closer to the client than the original
server, the content is sent over a short network path, thus reducing the request
response time, the total network resource usage and the probability of packets loss
(improving quality perceived by the end—user). Furthermore, 1t helps prevent server
from overloading, since the content can be delivered to users from a proxy and not
from the original server.

In our system we have user machines forming a group and collaborate with each
other to become a large, aggregate, user-created cache. In brief the system consists of
a central process that undertakes the coordination of the clients and is responsible for
making decisions such as, choosing the appropriate user where a stream should be
cached or choosing the victim stream when replacement is needed. Users become part
of the system by offering some space of their hard disk (actually this in not obligatory,
a user may not offer resources if he is not willing to do so). They run a program that 1s

capable, among others, of caching a stream in the hard disk, downloading a stream

from another client or from the distant Streaming Server and giving 1t to the player to
play it out. Furthermore in order to reduce coordinator’s load and reduce latency users
inform each other about which titles are cached. In order to represent the cached titles
we use “bloom filters™ [16].

In the next three paragraphs we briefly present some key issues, concerning
caching, streaming and peer-to-peer systems. Moreover, we will try to make clear the

motivation and the objectives of this study.

1.2 Traditional Caching is Not Appropriate

Web caching has been used to accelerate the delivery of web objects such as
HTML files and images. However streaming video objects differ from these web
objects in a way that existing techniques for caching text and 1mage object are not
appropriate for caching media streams.

In particular, first of all, the size of video files is usually larger than non-
streaming files by orders of magnitude and become larger as more network bandwidth
becomes available. Moreover, video objects are mostly static content with the WORM
(Write Once Read Many) property. User video access behavior and streaming media
workload show different characteristics than those of non-streaming objects as
reported in [17] and [18]. In particular users often view only the initial part of a video
in order to determine if they are interested or not. Finally videos exhibit strong
temporal locality. If a video has been accessed recently, chances are that it will be
accessed again soon.

Given the large size of multimedia files and limited disk space at each proxy,
storing the entire video file 1n a single proxy cache i1s therefore inefficient or even
impossible. Hence, only a few hot video objects should be cached entirely. Most
media objects should only be cached partially. In addition since users are likely to
playback only part of the video, a proxy could cache a set of frames from the
beginning of the stream. Therefore the proxy can serve a request by initiating
transmission to the client from the cache while concurrently requesting the remainder

of the stream from the server. This technique 1s called prefix caching [10].

1.3 Streaming Audio and Video on Demand

The technique, known as streaming, avoids having to download the entire
audio/video before beginning playback. A client (player) begins playback of the
multimedia stream a few seconds after it begins receiving the file from the player. In
most applications a user may pause, rewind or fast-forward the multimedia content.
Once playback of the multimedia begins, it should take place according to the original
timing of the recording.

Upon a client request the streaming server partitions the file into segments which
are typically encapsulated in RTP packets. Real-Time Transport Protocol (RTP) [15]
provides end-to-end network transport functions suitable for applications transmitting
audio or video. RTP is accompanied by RTCP a control protocol to allow monitoring
of the data delivery. The need of a client/server interaction, for example
pause/resume, led to the development of another protocol called Real-Time
Streaming Protocol (RTSP) [19], which allows a player to control the transmission of
a media stream (pause, fast-forward, rewind). RTSP messages use a different port
number (usually 554) than the media stream.

An overview of the three protocols under discussion is presented in the next

paragraphs.

1.3.1 Real-Time Transport Protocol (RTP)

RTP [I5] provides the basic functionality for transferring real-time data over
packet networks. Since RTP does not include mechanisms for reliable delivery or
flow control, transport of RTP packets must rely on underlying protocols such as UDP
and TCP. RTP typically runs over UDP, though TCP is sometimes used for reliable
transport or to stream across firewalls that discard UDP packets. RTP provides source
identification (randomly chosen SSRC identifier), payload type identification (to
signal the appropriate decoding and playback mformation to the client), sequence
numbering (for ordering packets and detecting losses), and timestamping (to control
the playback time and measure jitter). Packets contain a generic RTP header with

these fields, as well as payload-specific information to improve the quality of delivery

for specific media (e.g. MPEG). Interpretation of some header fields, such as
timestamp, is payload dependent. The RTP header may also identify contributing
sources (CSRCs) for the payload carried in the packet; such a list 1s typically inserted

by mixers or translators.

1.3.2 Real-Time Control Protocol (RTCP)

RTCP [15] monitors the delivery of RTP packets. The protocol provides feedback
on the quality of data distribution, establishes an identification (CNAME) for each
participant, scales the control packet transmission with the number of participants (to
avoid generating excessive feedback traffic in large multicast groups) and provides
minimal session control information. RTCP packets consist of source descriptors,
sender reports, receiver reports, BYE packets (signifying the end of participation in a
session) and APP packets (for application-specific functions). Recerver reports
include the stream’s SSRC, the fraction of the lost RTP packets, the sequence number
of the last RTP packet received and the packet interarrival jitter. Senders can use this
information to modify their transmission rates or to switch to a different encoder. The
sender reports include the stream’s SSRC, the sequence number of the last RTP
packet sent, the wallclock time of the last transmission and the number of RTP
packets and bytes sent. The client can use the RTP timestamp and wallclock time

information for media synchronization.

1.3.3 Real-Time Streaming Protocol (RTSP)

RTSP [19] coordinates the delivery of multimedia files and typically runs over
TCP, although UDP can also be used. While conceptually similar to HTTP/1.1 [20],
RTSP is stateful and has a number of different methods. The OPTIONS method
inquires about server capabilities (e.g. RTP version number, supported methods, etc.)
and the DESCRIBE method inquires about the properties of a particular file (e.g.

Last-Modified time and session description information, typically using SDP [14]).

Client and server state machines are created with the SETUP method, which also

negotiates transport parameters (e.g. RTP over unicast UDP on a particular port) The
client sends a SETUP message for each stream (e.g. audio and video) in the file
Streaming of the file is initiated with the PLAY method, which can include a Range
header to control the playback point. The TEARDOWN method terminates the
session, releasing the resources at the server and client sites. The protocol also

includes a number of recommended or optional methods.

1.4 Peer-to-Peer

The Internet as originally conceived in the late 1960s was a peer-to-peer system.
The goal of the original ARPANET was to share computing resources around the U.S.
The first few hosts on the ARPANET were already independent computing sites with
equal status. The ARPANET connected them together not in a master/slave or
client/server relationship, but rather as equal computing peers.

In recent years, the Internet has become more and more restricted to client/server
type applications. But as peer-to-peer applications become common again, maybe
Internet will revert to its initial design.

Peer-to-Peer systems seem to go hand-in-hand with decentralized systems. In
practice, building fully decentralized systems can be difficult and many peer-to-peer
applications take hybrid approaches to solving problems.

Napster is an example of a hybrid system. Its file sharing 1s decentralized. One
Napster client downloads a file directly from another Napster client’s machine, but the
directory of files is centralized, with the Napster servers answering search queries and
brokering client connections. This hybrnd approach seems to work well when the
number of peers is not very large. The directory can be made efficient and uses low
bandwidth and the file sharing can happen on the edges of the network.

Other systems, such as Freenet have addressed decentralized control as a goal.
All nodes are Peers and each Peer may function as router, client or server according to
the status of the query.

Our system is a Peer-to-Peer system in the essence of having a large cache built

out of clients’ resources (clients’ hard disk) and having clients directly contacting

10

each other in order to get a previously cached stream. The system follows the hybrid
model with a central process acting as a control and coordination unit. Although the
control is centralized we force clients do their utmost in order to avoid contacting
central coordinator, by having them exchanging their cache directory (the list of URLs

of cached streams) represented as a bloom filter. [16].

11

Chapter 2
System’s Design Overview

In this chapter we present the general system architecture and its operation as
well as the concepts and assumptions behind its design. Initially we outline the overall
system and its constituent components. In the following step, we present how users
exchange information about the cached content and describe the caching and
replacement policies. Then we show how the system responds to user requests and

finally we present how a user joins and leaves the system.

2.1 The Components of The System

Figure 1 shows an example configuration of the system. The distant Streaming

Server is also present in the figure.

Resource
Manager

Mam

Request

Serverp

user
cachep

Request
Serverp

Figure 1: An example congiguration.

The components constituting the system are the following:

e A central process Resource Manager that is responsible for organizing the whole
system. Resource Manager takes all the decisions concerning the managing of the
data, e.g. running replacement algorithm, as well how users will collaborate.

e Request Servers which are processes running at users’ machines. Request Servers
are responsible to contact Resource Manager when a user has requested a video
and get the necessary information to serve the request 1.e. where the video 1s
cached. Request Servers are also responsible for caching a video as well as give
an already cached video for playback.

e User's cache, which is the amount of disk space that the user offered to the system
and is where the videos are cached. A user may not offer disk space if he 1s not
willing to.

e A large Main Cache, not necessarily located in one machine. This main cache
guarantees that the system will offer the minimum of the services it is supposed
to, even if no user offers disk space to the system.

In the following paragraphs we further comment on the components of the
system, in order to clear out their role and their contribution to the operation of the
whole system.

Resource Manager is responsible for all the decisions that are to be taken in the
system. The decision, for example, of caching a video or not is taken by Resource
Manager after having examined if the specific video is useful to be cached, that 1s 1f
the caching of the video will probably increase the hit rate of the system. The decision
of where to cache a video, if it is to be cached, 1s the result of the
placement/replacement algorithm that Resource Manager runs upon a request for a
video. Not every video will be cached in our system. In order to be cached, a title
should satisfy some criteria set by the placement policy. Furthermore, although the
machine that made the request for a video is generally preferable to be the place

where the video will be cached, this i1s not always the case. If for example, this user

[e—
(95

cache is full and there is another user cache with enough space to cache the specific
video the video will be cached in the second user cache

Request Servers are responsible for carrying out a user's request for a video.
Upon a user request, Requests Servers either contact Resource Manager asking
whether this video is cached and if they receive a positive response, where it 1S
cached, or if they already know where to find it they contact directly the
corresponding Request Server. A Request Server always waits for receiving messages
either from Resource Manager with instructions, or from other Request Servers,
asking it, for example to stream them a video that is cached in his user cache.

The large Main Cache that we decided to include in our architecture, although it
guarantees that the minimum of the services will be offered, it has no special
treatment. Thus we could say that it looks like an ordinary user cache with the only

difference that it will “never” leave the system, at least not on purpose.

2.2 Advantages and Disadvantages of the Architecture

The above architecture provides us with a number of advantages. The most
important advantage is the reduction in the latency faced by the user when a video 1s
requested. This latency could be further reduced if the users where connected in a
local area network. In this case the data transfers between the users can take
advantage of the high bandwidth of a LAN.

By using users’ hard disks we attain a high aggregate storage space, possible by
orders of magnitude larger than that of a central proxy caching system.

Furthermore having the videos cached in different machines we distribute the
load of serving video requests over several machines. This is a better approach than
having a central proxy that services all the video requests and becomes a system
bottleneck.

The main problem of this architecture is that Resource Manager 1s a central point
of failure. Despite this fact, we preferred this approach by having in mind, that

searching for content in a pure peer-to-peer system requires an often very expensive

14

distributed search. Moreover, building fault tolerant central servers, 1s a well studied

problem

2.3 Exchanging Summaries of Cached Titles

In order to reduce the load of Resource Manager, and avoid that every request for
a video will pass through it as well as to save bandwidth resources, we adopt the
approach proposed in [21]. Every Request Server maintains a summary of the cached
content. In order to reduce memory requirements, we store each summary as a
“Bloom filter” [16]. Request Servers periodically exchange their summaries and every
Request Server keeps a bloom filter for each user cache describing the cached content.
Thus when a user requests a video that is not cached in its machine Request Server
checks all the bloom filters in order to identify if the video is cached somewhere else
and if it is, it directly contacts the corresponding Request Server. By doimg so, 1t 1s not
necessary for all requests to pass through the Resource Manager.

In order to avoid that a user contacts every body else when he wants to send his

summary we have users connected in a tree topology as shown in figure 2.

Figure 2: The tree topology.

Thus a user sends his summary cache only to his neighbors (parent and children)
and the summaries traverse up and down the tree and consequently every body 1s very
quickly informed about an update of a bloom filter.

The relevant algorithm works as follows:

- Requests servers maintain a bloom filter for every user in the system.

- Request Servers send their updated bloom filters, either periodically or after a

certain percentage of change in the contents of the cache. When a Request
Server wants to send an updated bloom filter, prepares the message and sends
it to his parent as well as to his children in the tree topology.

- If a Request Server receives a message with an updated bloom filter, updates
the data structure that keeps the bloom filters and checks if the message came
from its parent or from a child.

- If the message came from the parent, it forwards it to both of its children.

- If the message came from a child, it forwards it to the parent as well as to the

other child.

2.4 Cache Admission Policy and Replacement Policy

Research has shown that the popularity distribution of the videos, follows Zipf's
low [18]. In other words we could say that about 60% of requests are for a small
number of titles (about ten of them). This fact led us to the decision of caching these
very popular titles in their entirety. This is feasible since the number of those titles 1s
small. This simple decision will increase a lot the hit rate of the system.

Furthermore previous research has shown that the performance of a system that
caches videos is improved by having cached as many prefixes of videos as possible.

The placement and replacement of the videos take place by having the previous
goals in mind as well as by trying to keep the system load balanced. If for example we
decide that a very popular video should be cached, we choose the machine with the

least load as the place where the video will be cached. We represent the load of a

16

:
machine by the sum Zp, where p; represents the populanty of video 1. and k 1s the

1=1
number of titles cached in the corresponding machine.

At the procedure of caching a video we give the highest priority to the N most
popular videos. The next priority is given to the prefixes and if there is enough space
left we cache suffixes of the videos with popularities that have the next highest values
after the popularities of the N most popular videos. Therefore prefixes can only be
replaced by a videos belonging to the N most popular ones. Suffixes are replaced

either by prefixes or by a video belonging in the N most popular category.

2.4.1 Prefix Size

The size of the video prefix that should be cached depends on items such as
round-trip delay, server-to-proxy latency, video specific parameters (size, bit rate) and
transmission rate of lost packets. As paper [10] suggests, suppose that the delay from
the server to the proxy ranges from dmin t0 dmax T0 support discontinuity-free playback
with a start-up delay of s to the client, we store a prefix of at least max{dmax — s, 0}

frames.

2.4.2 Monitoring Popularities of the Titles

Request Servers keep track of the hits of every title and periodically send to
Resource Manager a message with the number of hits of every title. Resource
Manager keeps a sorted list of the titles in decreasing order based on their hits. Since
we are not interested in the exact popularities of the videos but rather in the relative
difference between popularities, Resource Manager uses a Zipf distribution with
constant theta in order to represent videos’ popularities. The distribution becomes
more skewed as the theta is increased. A theta for example of value 0.7 would help us
separate the most popular videos than the least ones. Resource Manager sets a cutoff
threshold in Zipf and the titles that have popularty beyond this threshold are not

eligible to be cached.

17

2.4.3 N Most Popular Videos

As we have already mentioned we have decided that the videos, to which the
greatest amount of requests refer, should be cached in their entirety. We refer to those
videos as the N most popular ones. In order to decide which of the titles belong to the
N most popular category, we choose a percentage a let us say, 60% and we take the
popularities of the first titles in Zipf and add up to this percentage. The N most

popular titles will be those that contributed to the summation.

2.4.4 Placement and Replacement Algorithms

Upon a user request for a title that 1s not already cached in the system, Resource
Manager runs placement and replacement algorithms. The placement algorithm
decides if the video should be cached and if it is yes, then if there 1s not enough space

to be cached, replacement algorithm chooses the victim stream.

2.5 Demonstration of some Protocols

In this section we describe how the system reacts to user requests. We use two
common scenarios, a cache miss which means that the requested video 1is not cached
in the system and a cache hit meaning that the requested video is already cached.

The following events occur when Playera asks Request Servers for video V.

2.5.1 Cache Miss

Let us assume that the video V 1s not cached.

e Request Servera checks its bloom filter, as well as the bloom filters that keeps
for the other users, to find out if this title 1s cached somewhere. It does not
find any information so,

e It contacts Resource Manager requesting the specified video. Resource
Manager replies negatively. It also runs placement and replacement
algorithms and gives instructions on what to do with this new title. These
instructions may say that Request Servera should cache the video (possible by
replacing an other video), or should give it to another Request Server to cache

it in its cache or do nothing more than give 1t to Player,

18

e So Request Server, requests the video from the Streaming Server and begins
downloading giving the video to Players , as well as follow the instruction

that he took from Resource Manager.

2.5.2 Cache Hit

Let us assume now that video V is cached in user cachep Players asks Request
Servery video V.

e Request Server, checks its bloom filter, as well as the bloom filters that keeps
for the other users, to find out if this title is cached somewhere.

e It finds out the video is cached in user cachep (The case may be that the
prefix is in user cachep and the suffix in user cachec) In either case it
contacts the corresponding Request Servers and gets the video.

e If the suffix is not cached, after getting the prefix it contacts the Streaming
Server and gets the suffix.

e Ifit does not know where the video 1s cached, it contacts Resource Manager
requesting the specified video.

e Resource Manager replies in affirmative and informs it that the prefix of video
is cached in user cacheg (and the suffix let’s say in user cachec).

e Request Server, contacts Request Servers and gets the prefix (and then
contacts Request Serverc and gets the rest of the video). If the video title 1s
partially cached Request Server, receives the suffix from the Streaming

Server.

2.6 Joining the System

A user that would like to join the system should firstly contact Resource Manager
declaring his intention to be part of the system and giving information about the
resources that he would like to offer. The resources concern the amount of disk space
that he would like to offer which will be managed by Resource Manager.

After a new user is encountered in the system, Resource Manager updates its
information concerning the state of the system and sends to the new user the bloom

filters of the users that already participate to the system, as well as their addresses. It

19

also informs all the users about the arrival of the new one giving them his address
The users, including the new one, update their data structures and find their new

neighbors 1n the tree topology.

2.7 Leaving the System

Users will not be part of the system “for ever “. Hence a user may leave the
system, either because his/her machine crashed, or because he/she does not want any
more to participate in the system. Two mechanisms are used in order to handle the
users’ departures. Intention to Leave is used when the user 1s willing to leave after
informing about his intention to leave and hence he leaves the system in valid state.
And Leave Immediately 1s used when user’s machine crashes or the power button 1s

simply pushed.

2.7.1 Intention to Leave

In this case Request Server of the corresponding user machine contacts Resource
Manager reporting its intention to leave. However, if 1t 1s already streaming a video to
another user, the user should wait until the transfer 1s complete.

e Resource Manager checks the record of that user.

- If there is an important title in that machine, it contacts Request Server of
another machine requesting 1t to download the specified video from the
machine that 1s going to leave the system.

- Ifit s already in charge of downloading data, which are still useful, 1t must
wait until downloading 1s completed and data are taken from that machine.

- Then the user 1s free to leave.

e Resource Manager updates its data structures and sends a message to
everybody else that the specific user left the system. The remaining Request
Servers update their data structures, including the removal of the bloom filter
that corresponds to the user that left the system and finding their new

neighbors in the tree topology used to exchange the bloom filters.

2.7.2 Leave Immediately

In this case the user leaves the system with out any previous warmning. The other
users can notify his absence in three ways. So let us assume that user, suddenly leaves
the system. Then userg can detect his absence in the following ways:

e Userg knows that the video that he wants 1s cached in users He contacts usera

and gets no response.

e Userp gets data from usera who suddenly left the system. Then users just does

not receive anything anymore.

e Userg is streaming a video to usery and suddenly he can not send him

anymore data.

e Userg fails to send a message with updated summaries to usera.

In all the above cases, userg informs Resource Manager about the failure. Then
Resource Manager after confirming that usera i1s no more part of the system
updates its data structures and informs the remaining users about the departure of
the specific user. They also update their data structures, including the removal of
the bloom filter that corresponds to the user that left the system and finding their

new neighbors in the tree topology.

Chapter 3

Implementation

The completion of our work includes the implementation of an initial prototype
that implements most of the main features of our architecture along with the basic
modifications necessary for interacting with the Apple’s streaming server named
“Darwing Streaming” Server and Apple’s multimedia player, “QuickTime Player”.
Using the basic implementation, we can cache a stream partially or in its entirety, and
we can successfully process client RTSP messages, requesting the full contents from
the server on a cache miss, or partial contents when a portion of the stream resides in
the cache. Moreover, clients can stream a previously cached video, one to each other,
and can find the location of a cached stream not only by requesting the corresponding
URL form Resource Manager but also through the mechanism of exchanging their

bloom filters.

3.1 Request Server

The Request Server process behaves as a media server to the clients and as a
media client to the servers. It also manages its local cache, collaborates with other
Requests Servers and communicates with the Resource Manager process either for
asking the location of a video or for getting instructions on what to do with a specific
title. Every client has a unique user id and the Request Servers use this user id in order

to address each other, as well as to be addressed by the Resource Manager.

3.2 Resource Manager

The Resource Manager process is responsible for running the placement and
replacement algorithms, as well as for coordimating the behavior of the Request
Servers. Resource Manager always waits for messages coming from the Request

Servers. A Request Server opens a TCP connection in order to contact Resource

to
S

Manager and sends a message. Resource Manager replies using the same TCP

connection.

3.3 RTSP/RTP client and server

Unlike HTTP, the control protocol RTSP, used for media streaming i1s not a
stateless protocol. The state for media streamed to the clients by the Request Server 1s
managed by the Request Server. For example the session identifier will be 1ssued and
managed by the Request Server for the sessions for which the Request Server is the
data source. This does not preclude the actual server from managing a session state
since Request Servers might go directly to the server for a non cached video

In the next paragraphs we will discuss about the sequence of RTSP messages
exchanged between a client (player), a Request Server and the streaming server. An
example i1s shown in figure 3 where the prefix is streamed from the cache and the
suffix 1s requested from the Streaming Server. In Appendix A the reader can find a

real RTSP session.

Amepru
/
>
pmspmmy HomComp
»
r ¥ l o
> T
pmeAmn

|
L] L .

Figure 3: RTSP messages exchange under prefix caching.

S
)

The handling of client requests depends on whether or not the requested video 1s
cached (partially or in its entirety).

The client begins requesting a video by sending a DESCRIBE message to
Request Server. With this message, the client requests information about the particular
video, which is usually described with the Session Description Protocol (SDP), RFC
2327 [14]. If the video resides in the local cache or in the cache of another machine,
its description is also cached and the proxy responds directly to the client either by
reading the description from the local cache or by requesting 1t from the Request
Server where the video is cached. If the video is not cached Request Server contacts
the streaming server and forwards the client’s DESCRIBE message and forwards the
server’s response to the client.

The SETUP request is used to negotiate the transport parameters, including the
transport protocol (e.g. RTP) and the TCP/UDP port numbers. Upon receiving the
client SETUP message, port numbers are generated for the Request Server’s end of
the RTP and RTCP connections, and a session identifier is selected. The port numbers
and session identifier are sent to the client. If the video is cached to another’s machine
cache, Request Server sends the SETUP message to the Request Server of the specific
machine, who gets prepared in order to stream the video. If the video is not cached,
Request Server generates a separate SETUP message which 1s being sent to the
streaming server. Each stream in the multimedia presentation results in separate
connections on both the Request Server — client and streaming server — Request
Server paths and it consists of UDP connections for RTP and RTCP. To coordinate
the transfer of RTP and RTCP messages, the Request Server maintains a mapping
table to direct messages to the appropriate outgoing connection (and with the
appropriate session identifier).

The client sends the PLAY message after receiving the Request Server’s response
to the SETUP request. If the video is cached in the local cache the Request Server
responds immediately to the PLAY request and initiates the streaming of RTP
messages to the client. If the video is cached in an other machine the Request Server
streams the video to the client, by receiving it from the Request Server of the machine

where the video is cached. If the video is not cached the Request Server forwards the

24

PLAY request to the streaming server that starts the streaming of the video and which
is forwarded to the client. If only a prefix is cached, the Request Server while
streaming the prefix prepares a SETUP and PLAY request to send to the streaming
server, with the appropriate Range header and asks the suffix from the streaming

server

3.3.1 Linking the Prefix and Suffix

When the entire stream resides in the cache, the Request Server acts as a server in
responding to the client PLAY request. When the cache does not contain any portion
of the requested video, the Request Server forwards the PLAY request to the server
and simply forwards RTP and RTCP packets from the server to the client and RTCP
packets from the client to the server acting as an application level router. The
operation of the Request Server becomes more interesting when the cache stores only
the prefix of the stream. In this case, the Request Server replies to the client PLAY
request and initiates transmission of RTP packets to the client and when prefix 1s
streamed, it requests the suffix from the server. Fetching the suffix requires the
Request Server to send a PLAY request to the server with the appropriate Range
header in order to ask the appropriate portion of the stream.

As part of caching multimedia content, the Request Server keeps track of the size
of the prefix in terms of the timestamps in the RTP packets. The RTSP Range Request
is defined for both SMPTE Relative timestamps and NPT. SMPTE has the format
hours minutes seconds:frames.subframes with the origin at the beginning of the clip.
In contrast, NPT time consists of a decimal fraction, where the left part of the decimal
may be expressed in either hours, minutes or seconds, and the right part of the decimal
point measures fractions of a second. These formats require the Request Server to
convert the RTP timestamps into time, by applying the payload-specific clock rate
[15].

In order to link the prefix and the suffix, all RTP headers must be consistent,
otherwise the client will not be able to associate the two parts to the same stream. The
sensitive fields are sequence numbers, timestamps, and source identifier (SSRC),

which have been selected separately by the Request Server (for the prefix) and the

server (for the suffix). In streaming the suffix, the Request Server overwrites the
SSRC field in each RTP packet with the value he has selected as part of initiating
transmission of the prefix. The Request Server knows the timestamp and sequence
number used in transmitting the last RTR packet of the prefix. The base timestamp
and sequence number for the server’s transmission of the suffix are provided in the
RTP-Info header in the PLAY response. The Request Server can then add/subtract the
appropriate constant for the timestamp and the sequence number fields of each packet

1n the suffix.

3.4 Caching a Video

When a user joins the system, he offers some specific amount of the disk space,
which will be used for caching videos. This space is actually a specific directory in
the user’s filesystem. It may for example be “C:\foo\bar\cache™. This directory 1s the
one that the Request Server will use in order to cache the various videos.

The caching of a video includes the creation of a directory (inside cache
directory) with a name that is a result of the MDS5 signature of the video’s URL. An
ordinary multimedia stream is consisted of two streams, one for the audio stream and
one for the video stream. These streams are cached inside the directory that
corresponds to the video, as files with a name that i1s the MDS35 signature of the
stream’s URL. Moreover, the name of a stream has as a prefix a string that denotes 1f
this file is the prefix or a suffix of the stream. Inside the video’s directory the Request
Server also caches metadata information about the video, i.e. the response to the
DESCRIBE request. Thus to give an example, an ordinary directory that corresponds
to a video with URL:

rtsp://panoramix softnet.tuc.gr/sample_S56kbit.mov
and with URLs for the audio and video tracks:

rtsp://panoramix.softnet.tuc. gr/sample_S6kbit. mov/trackID=3,

rtsp://panoramix softnet.tuc.gr/sample 56kbit. mov/trackID=4 respectively,
would be of the form:

e Directory’s name: 10daadc274e484c8bbdd5263ef01a222

26

e Files contained inside the directory:

Describe

- prefix08a36bfee71a5b5d60e6000fd%e522¢cd
- suffix08a36bfee71a5b5d60e6000fd9e522cd
- prefixc5d547eb9e2f2b22b8bcedf1dfbeca33]

- suffixc5d547eb9e2f2b22b8bedfl dféeca33]

The Request Server has specific procedures in order to map a URL to a filename
and vice-versa. In the previous example of a video directory we saw that the video 1s
cached in its entirety, since we have both the prefix and the suffix for the audio/video
streams. If only the prefix of a video is cached then the corresponding directory would
only have two files named for example “prefix08a36bfee71a5b5d60e6000fd9e522cd”
and “prefixc5d547eb9e2f2b22b8bedfl df6eca331” that correspond to the prefix of the
audio/video stream as well as the “describe” file with the metadata information.

Our goal was to make the system independent of the media encoding mechanism.
Hence we cache RTP packets rather than raw multimedia content. This obviates the
need to parse the body of the RTP packets and repacketize the content, at the expense
of additional storage overhead for RTP headers. Since packets sometimes arrive out of
order, we do not write to the disk, a packet as soon as it arrives, trying not to discard
some late packets. Instead we maintain a list of RTP packets in the main memory,
sorted by the packet’s sequence number and we insert a late packet in the appropriate

place in the list. When the list’s capacity is over, we write the packets to the disk.

3.5 Bloom Filters and Tree Topology

The Request Server maintains a data structure for keeping the bloom filter that
corresponds to the local cache directory as well as a data structure for keeping the
bloom filters of the other clients. The Request server also keeps the tree topology used
to exchange the bloom filters. The nodes of the tree contain a mapping from a user 1d
to the network address of the user’s machine.

The tree topology was maintained using the TreeMap class of Java, which 1s a

Red-Black tree based implementation. Thus it guarantees that the map will be in

(89
~

ascending key order. The keys of the mapping are the user ids. The implementation
provides guaranteed log(n) time cost for the searching, inserting and removing
operations

When a new user is encountered in the system, or a user leaves the system
Resource Manager informs all the Request Servers for this change. The Request
Servers rearrange the tree topology to be consistent with the new structure of the
system and then find their new neighbors (parent and children) in the tree topology.

The exchanging of the bloom filters takes place according to the procedure

described 1n section 2.3

(]
0

Chapter 4
Related Work

In the recent years, much work has been done on the subject of streaming
multimedia. Some recent work has focused on distributed media servers [5,2,8,9,12].
Furthermore, lot of techniques have been developed in order to improve the video
quality perceived by the end user, and to reduce the load faced by the streaming
servers. Among others, these techniques include caching, preffetching, batching and

multicasting. We present here some of the work done on those techniques.

4.1 MiddleMan

The work closest related to ours is that of Acharya and Smith in MiddleMan [1}].
They introduce the concept of having clients to act cooperatively in order to cache
video files. A video is partitioned in a number of equal blocks and caching takes place
on a block by block basis. The numerous blocks of a video may be cached in different
client machines. And in order to serve a request for a title, the process that handles the
request, sequentially asks the coordinator of the system for the location of every block
of the video.

Middleman suffers a lot from wasting bandwidth resources due to the big amount
of messages that have to be exchanged between clients and the coordinator of the
system. The messages exchanged, in order for a client to get a video, are in the order
of O(3n), where n is the number of blocks that the video is segmented. This amount of
messages can not be tolerated, therefore in our work we concentrated on having a
small and constant number of messages exchanged between clients and Resource
Manager in the procedure of getting a video.

Moreover, the partitioning of the video in numerous blocks and the caching of
each block in a different machine, introduces serious synchronization problems.
MiddleMan does not provide any mechanism in order to solve those synchronization

problems. We would dare to say that the design of Middleman is not (if we can use

such a term) “implementation oriented”. In our opmion the implementation of a
system based on Middleman’s design it is highly unlikely that it would ever work as 1t

was supposed to.

4.2 Caching in Centralized Proxy Servers

Other recent work has focused on having cached a fixed amount of frames of a
video in a centralized proxy server. Towards this goal, a lot of techniques have been
proposed, some of which are presented in the following paragraphs. We could say that
they are various aspects of the prefix caching technique and would be useful to any
system that caches videos.

Addressing the problem of high latency and loss rates i the Intemet, [10]
proposed a prefix caching technique whereby a proxy stores the initial frames of
popular clips. Storing part of each audio/video stream enables the proxy to reduce
client delay without sacrificing quality. Upon receiving a client request, the proxy
initiates transmission to the client from the prefix cache, while simultaneously it
requests the remainder of the frames from the server. The proxy can reduce the
network resource requirements by performing workahead smoothing into the client
playback buffer. Transmitting large frames in advance of each burst can substantially
reduce the peak rate and variability of the video stream. A detailed model of
workahead smoothing in the presence of a prefix buffer, is presented and it 1s showed
how to compute smoothed transmission schedules. They also introduce techniques for
allocating buffer and bandwidth resources across multiple clients, based on the
popularity and resource requirements of each stream. To further reduce the buffer
requirements, they describe how to multiplex access to a shared smoothing buffer
across multiple streams.

Another recent work has presented a segment-based buffer management approach
to proxy caching of media streams [13]. In this approach, blocks of a media stream
received by a proxy server are grouped into variable-sized segments. The cache
admission and replacement policies then attach different caching values to different

segments, taking into account the segment distance from the start of the media. These

caching policies give preferential treatments to the beginning segments. This
approach, although best applied to a centralized proxy server can be further extended
to work on a proxy system consisted of caches spread among several clients, as 1s our
system.

In [6] was suggested that the initial frames of a video should be cached in order to
prevent a jitter playback. They also propose that some additional frames should be
cached, if more space left in the cache. The two approaches are “additional 1nitial
caching” and “selective caching”. In the second approach, selective caching, selects
the frames to be cached based on the knowledge of user buffer and video stream
properties. It tries to give the maximum benefit to the user, in terms of increasing the
robustness of entire video stream against network congestion, while not violating the
user buffer size limit.

A network-conscious approach to the problem of end-to-end video delivery over
wide-area networks using proxy servers situated between local-area networks and a
backbone wide-area network was presented in [11]. The major objective of this
approach is to reduce the bandwidth requirement in the backbone wide-area network.
Their basic idea is to prefetch a predetermined amount of video data and store them a
priori at proxy servers. This operation is referred as staging. They focus on developing
video staging methods. Based on these methods, they developed heuristic algorithms
to solve the problem of determining the amount of video data to be staged at the proxy
server, so as to minimize the total backbone bandwidth requirement.

Techniques for improving cost/performance for on-demand video delivery
including multicast data delivery, segmented data delivery and proxy servers are
presented in [4] They show how the dynamic skyscraper technique [8] can be
modified such that proxy servers can cache just the first few segments of an object.
They also developed an optimization model that can be solved to determine the form
of the optimal proxy caching strategy in a system with homogeneous proxy caches.
The model computes the cache content that minimizes delivery cost, constrained by
the storage capacity and bandwidth available at the proxy servers.

The implications of congestion control and quality adaption on proxy caching

mechanisms are addressed in [7]. They investigate the use of layered encoding, in

order to adjust the quality of the playback of a multimedia stream. With the layered
codec, the compressed data is split into a base layer which contains the most essential
low quality information and other layers which provide optional enhancement
information. Thus, the more layers are played back, the better the quality becomes.
They present a fine-grain replacement algorithm for layered-encoded multimedia
streams at Internet proxy servers, and describe a pre-fetching scheme to smooth out
the variations in quality of a cached stream during subsequent playbacks. They also
extend the semantics of popularity and introduce the idea of weighted hit, to capture

both the level of interest and usefulness of a layer for a cached stream.

4.3 Spreadlt

A recent work has focused on finding a way to stream live media by using client
resources in order to reduce server’s load and to overcome the problem of the limited
server’s resources that do not permit the serving of an indefinite increasing number of
requests. This architecture called Spreadit presented in [3] suggests the streaming of
live media over a network of clients. Spreadlt builds an application level multicast
tree, over a set of clients which form a peer-to-peer network. Each client node 1s
enabled with a basic peering layer between the application and transport layers. A
node can function as server and a client simultaneously. As a client, it receives the
stream from some node in the network. As a server, it forwards the stream to other
nodes in the network. The player gets the stream from the peering layer on its local
machine. The peering layers at different nodes coordinate among themselves to
establish and maintain a multicast tree. Since the clients are autonomous and
subscribes and unsubscribes are unpredictable, the peering layer is responsible for

hiding changes in the multicast topology from the applications above.

(%]
[S]

Chapter 5

Conclusions and Future Work

The increasing popularity of media streams over the Internet and the high start up
delay that media streams experience, raised the urgent necessity of developing proxy
caching systems dedicated exclusively for continuous media.

In these work, we presented the design and implementation 1ssues of a system for
caching media streams. By trying to take advantage of previously unused resources
(user disk space), we developed an architecture whereby the cache of the system 1s
distributed over the client machines, that collaborate in order to cache and stream the
video objects. The collaboration takes place with the help of a central unit that
coordinates the system. We also tried to reduce the load of the central process and the
response time by having the users to exchange their cache directory represented as a
bloom filter. Therefore, not every request for a video has to pass through the central
process, reducing in that way its load. Moreover, by avoiding to contact the
coordinator for every request, the response time and latency faced by the user are
reduced

Throughout the procedure of designing and implementing the system we realized
that in a system whereby the cache is distributed, there is a tradeoff between efficient
managing of the cache space and the quality perceived by the end user. Due to the
large size of the video files, their partitioning in segments that are cached where ever
there is available space would lead to a more efficient cache management. But on the
other hand this partitioning leads to serious synchronization problems, even to the
total disruption of the playback procedure.

Regarding the implementation of the system, the most of the difficulties we
faced, concerned the streaming part of the system. Fetching a video from a streaming
server, stream a video from the cache to the player and moreover stream a video from

an other’s machine cache to the local player, was not a simple task. These difficulties

W
(98]

may be the main reason, that until the moment that this text 1s written, there 1s not any
commercial or not commercial product for caching multimedia streams.

Moreover, and this may sound ordinary, we faced the problem of the “enormous
distance between theory and practice”. Much work has been done on caching video
streams in theory but few of these ideas look like implementable.

As a future work we intend to realize a simulation and gather experimental results
regarding the hit rate of the system, the latency and response time and other
parameters that characterize proxy caching systems.

Moreover, we intend to design more efficient placement and replacement
algorithms that better fit to the distributed nature of the cache space.

Finally to find mechanisms that better support the unpredictable subscribes and

unsubscribes of the peers.

Appendix A
An RTSP Session

DESCRIBE rtsp://panoramix.sofinet tuc. gr/sample_S6kbit. mov RTSP/1.0
Cseq: 1

Bandwidth: 56000

Accept-Language: en-US

Accept: application/sdp

User-Agent: QTS (qtver=5.0.2;0s=Windows 98 A)

RTSP/1.0 200 OK

Content-Type: application/sdp

Expires: Sat, 24 Aug 2002 15:07:46 GMT

Date: Sat, 24 Aug 2002 15:07:46 GMT

Server: DSS/4.0 [v410]-Linux

Cseq: 1

Content-Length: 338

X-Accept-Retransmit: our-retransmit
Content-Base: rtsp://panoramix softnet.tuc.gr/sample_S6kbit. mov/
Last-Modified: Sun, 26 May 2002 15:16:19 GMT
Cache-Control: must-revalidate

v=0

o=StreamingServer 3239190466 1022426179000 IN IP4 147.27.7.101
s=/sample S6kbit. mov
u=http:///

e=admin(@

c=INIP4 0.0.0.0

t=0 0

a=control:*

b=AS:33

a=range npt=0- 59.76000
m=audio 0 RTP/AVP 96
b=AS:14

a=rtpmap:96 X-QT/22050/1
a=control:trackID=3
m=video 0 RTP/AVP 97
b=AS:19

a=rtpmap:97 X-QT/600
a=control:trackID=4

)
n

SETUP rtsp://panoramix.softnet tuc.gr/sample_S6kbit. mov/trackID=3 RTSP/1.0
Cseq: 2

Transport: RTP/AVP;unicast;client_port=6970-6971

X-Transport-Options: late-tolerance=1.500000

X-Retransmit: our-retransmit

Accept-Language: en-US

User-Agent: QTS (qtver=5.0.2;0s=Windows 98 A)

RTSP/1.0 200 OK

X-Transport-Options: late-tolerance=1.500000
Expires: Sat, 24 Aug 2002 15:07:46 GMT
X-Retransmit: our-retransmit

Date: Sat, 24 Aug 2002 15:07:46 GMT

Server: DSS/4.0 [v410]-Linux

Transport: RTP/AVP;unicast;client port=8000-
8001 ;source=147.27.7.101 ;server_port=6970-6971;ssrc=4894AF31
Cseq: 2

Session: 8421241561181371392

Last-Modified: Sun, 26 May 2002 15:16:19 GMT
Cache-Control: must-revalidate

SETUP rtsp://panoramix.softnet. tuc.gr/sample_S6kbit. mov/trackID=4 RTSP/1.0
Cseq: 3

Transport: RTP/AVP;unicast;client_port=6972-6973

X-Transport-Options: late-tolerance=1.500000

Session: 8421241561181371392

X-Retransmit: our-retransmit

Accept-Language: en-US

User-Agent: QTS (qtver=5.0.2;0s=Windows 98 A)

RTSP/1.0 200 OK

X-Transport-Options: late-tolerance=1.500000
Expires: Sat, 24 Aug 2002 15:07:46 GMT
X-Retransmit: our-retransmit

Date: Sat, 24 Aug 2002 15:07:46 GMT

Server: DSS/4.0 [v410]-Linux

Transport: RTP/AVP;unicast;client - port=8002-
8003 :source=147.27.7.101 ;server_port=6970-6971;ssrc=47F9C8EO
Cseq: 3

Session: 8421241561181371392

Last-Modified: Sun, 26 May 2002 15:16:19 GMT
Cache-Control: must-revalidate

PLAY rtsp://panoramix.softnet.tuc.gr/sample_56kbit.mov RTSP/1.0
Cseq: 4

Range: npt=0.000000-59.760000

Session: 8421241561181371392

X-Prebuffer: maxtime=2 000000

User-Agent: QTS (qtver=5.0 2;0s=Windows 98 A)

RTSP/1.0 200 OK

Cseq: 4

Server: DSS/4.0 [v410]-Linux

Session: 8421241561181371392

Rtp-Info:
ur1:tracle=3;seq:7245;rtptime:529540800,ur1:trackID=4;seq:64484,rtptime:1-13
7627664

References

[1] S. Acharya and Brian Smith. Middleman: A video caching proxy server.

Proceedings of the NOSSDAV 2000, Chapel Hill, NC, June 2000.

[2] Stergios V. Anastasiadis, Kenneth C. Sevcik, and Michael Stumm. Modular and
efficient resource management in the EXEDRA media server. In 3% USNIX
Symposium on Internet Technologies and Systems, San Francisco, California, March

2001.

[3] Hrishikesh Deshpande, Mayank Bawa, and Hector Carcia-Molina. Streaming live

media over a peer-to-peer network.

[4] Derek L. Eager, Michael C. Ferris, and Mary K. Vernon. Optimized regional
caching for on-demand data delivery. In Proc. Of Multimedia Computing and

Networking, Jan 1999.

[S] Zihui Ge, Ping Ji, and Prashant Shnoy. A demand adaptive and locality aware

(DALA) streaming media server cluster architecture.

[6] Zhourong Miao and Antonio Ortega. Proxy Caching for Efficient Video services
over the internet. In Ninth International Packet Video Workshop (PVW'99), New
York, April 1999.

[7] R. Rejaie, M. Handley, H Yu, and D. Estrin. Proxy caching mechanism for
multimedia playback streams in the intemet. 4" Web Cache Workshop, San Diego,

CA., March 1999.

[8] Olav Sandsta, Stein Langorgen, and Roger Midtstraum. Video server on an atm
connected cluster of workstations. In International Conference of the Chilean

Computer Sciecnce Society, pages 207-217, 1997.

38

[9] J R Santos and R.Muntz. Performance analysis of the RIO multimedia storage
system with heterogeneous disk configurations. /n 6" ACM International Multimedia

Conference, Bristol, United Kingdom, Sep. 1998.

[10] Subhabrata Sen, Jennifer Rexford, and Donald F. Towsley. Proxy Prefix Caching
for Multimedia Streams. Proc. IEEE INFOCOM, March 1999

[11] Yuewei Wang, Zhi-Li Zhang, David Hung-Chang Du, and Dongli Su. A
network-conscious approach to end-to-end video delivery over wide area networks

using proxy servers. In Proc. Of IEEE INFOCOM, pages 660-667, April 1998

[12] W.Bolosky, J. Draves, R Fitzgerald, G. Gibson, M. Jones, S. Levi, N. Myhrvold,
and R_ Rashid. The Tiger video fileserver. In NOSSDAV 96, April 1996.

[13] Kun-Lung Wu, Philip S. Yu, and Joel L. Wolf, Segment-based proxy caching of
multimedia streams. In World Wide Web, pages 36-44, 2001,

[14] M. Handley and V. Jacobson, “SDP: Session Description Protocol,” Request for
Comments (Proposed Standard) RFC 2327, Internet Engineering Task Force, Apr.

1998.

[15] H.Schulzrine, “RTP profile for audio and video conferences with minimal

control”, February 1999. Internet Draft ietf-avt-profile-new-05 txt, work in progress.

[16] Burton Bloom. Space/time trade-offs in hash coding with allowable errors.

Communications of ACM, pages 13(7):422-426, July 1970.

[17] S. Acharya, B. Smith, and P.Parnes, “Charactenizing User Access To Videos On
the World Wide Web”. Proceedings of the SPIE’ACM MMCN 2000, San Jose,CA,
January 2000, pages 130-141.

[18] M. Chesire, A. Wolman, G. M. Voelker, and H. M. Levy, “Measurement and
Analysis of a Streaming-Media Workload”, Proceedings of the USITS'01, San

Francisco,CA, March 2001.

[19] H. Schulzrine, A. Rao, and R Lanphuer, “Real time streaming protocol (RTSP)”,
Request for Comments 2326, April 1998.

[20] R. Fielding, J. Gettys, J.C. Mogul, H. Frystyk, L. Masinter, P. Leach, and T.
Berners-Lee, “Hypertext transfer protocol — HTTP/1 17, Request for Comments 2616,

June 1999.

[21] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z. Broder, “Summary cache: a
scalable wide-area web cache sharing protocol” "IEEE/ ACM Transactions on
Networking" , 2000

&"n.

[x

40

