SClob - A load balanced P2P content sharing network

Dimitris V. Michail

Submitted to the
Department of Electronic and Computer Engineering
in Partial Fulfillment of the Requirements for
the Diploma of Electronic and Computer Engineering

at the Technical University of Crete.

Guidance Committee
Associate Professor Manolis Koubarakis (supervisor)
Professor Peter Triantafillou
Assistant Professor Euripides Petrakis

September 2002

Acknowledgments

I would like to thank Prof. Peter Triantafillou, for supervising this effort and
for his scientific guidance and support. Moreover I would like to thank Asso-
ciate Prof. Manolis Koubarakis for participating in my jury and for accepting
the typical role of the supervisor from June 2002, when Prof. Triantafillou
left from Technical University of Crete. Finally, I would like also to thank
Assistant Prof. Euripides Petrakis for participating in my jury.

Abstract

The unpredictable growth of the Internet community as well as the size
of information available, have overwhelmed the traditional models of dis-
tributed computing. Client/server computing seems unable to cope with the
constantly increasing need for larger systems.

The peer-to-peer (P2P) model, although originally conceived much ear-
lier, has recently emerged as a new way to create distributed environments.
The concept of peers which play both client and server roles seems very
attractive, especially in respect to scalability issues.

In this text, we shall present SC-lob, a scalable P2P content sharing sys-
tem which provides two fundamental properties, load balancing and short
query response times. Our work includes the design as well as the implemen-

tation of the system in the Java programming language.

11

Contents

Abstract ii
Contents iii
1 Introduction 1
1.1 Content distribution oo 1
1.2 The Peer-to-Peer model ool 2
1.3 Quality of Service (Q0S) 2

2 Architectural Overview 4
971 Clusterifif - - « o 5 = % « = s =« « = %4 w42 0w om =5 ¢ 5
2.1.1 Shared meta-data repository 6

2.1.2 Categories & related metadata 6

2.1.3 Model & performance issueso . 7

2.1.4 Clusters & peers communication 8

2.1.5 Cluster formationo 8

2.2 Load balancing 9
2.2.1 Dynamic cluster behavior 10

2.2.2 Popularities monitoring 11

2.3 Inter-cluster load balancing 12
923.1 Loadevaluation 14

2.3.2 “Flow” vector calculation 14

233 Loadselection oo 15

2.3.4 Peer migration e e 17

2.4 Intra-cluster load balancing 17

111

2.4.1 Replicas management

3 Implementation

3.1 CIUSLETING . - « v o o o o v e e e e
3.1.1 LCM repository - local cluster members
3.1.2 SDO repository - shared data objects

3.1.3 RC repository - remote clusters

3.2 Dynamic cluster behavior

3.3 USEr ACLIOMS . « « « = o o o v v o o v o v e m o m e e
331 Queries . « « s :wene-amms usa s on=n oy
3.3.2 Content retrieval

3.4 Control message routing oo e

3.5 Fault tolerance -« o oo oo s

3.6 Login, logout & cluster migration

3.7 Load balancing« « oo oo e e
3.7.1 Imter-cluster o o oo
372 Intra-cluster o« o oo

4 Related Work

4.1 NapPSEET . o o o o v v oo e e e e e e
4.2 Gnutella & Freenet o oo
4.3 Pastry, Tapestry & CANo oo e
44 Load balancing« e

5 Conclusions & Future Work
A Software Used

Bibliography

v

21
21
22
22
23
24
26
26
26
27
28
29
30
30
31

33
33
34
35
36

37

39

40

Chapter 1
Introduction

Over the past few years we have witnessed an unpredictable growth of the
Internet community. This growth includes not only the number of users but
also the technologies provided and the information available. Perhaps the
most impressive is the rate at which new "content" is being added to the
web every day. Making more and more information available to a rapidly
growing user population has become a challenging problem. As a result, the
Internet community constantly develops more efficient solutions regarding

content availability and distribution.

1.1 Content distribution

Regarding content distribution, the dominating model during the last decade
has been the client-server model. Due to it’s simple architecture and relative
good performance, this model has managed to take over almost every aspect
of the Internet infrastructure. Almost every Internet service is divided into
two parts, a server and a client. The server’s role is to register well known
services, while the client’s role is to use these services. Due to its simple
architecture, this model not only ensures good performance, but also requires
little development effort. However, the requirement for central control of
information and processing becomes one of its major disadvantages, when the

system’s size grows significantly. The servers’ delays form bottlenecks and

the provided services break down. As a result, new models for distributed

computing have emerged during the last few years.

1.2 The Peer-to-Peer model

The P2P model abolishes the need for roles, like server and client, by forming
a network where all nodes (peers) are equivalent. Each peer consists of
both a client and a server, called a servant. All underlying operations are
performed by the collaboration of various servants, without the need to rely
on any well-known dedicated peer. For this reason, the main disadvantages
of the client-server model® are minimized in P2P, since bottlenecks and single
points-of-failure are less possible to exist. This scalability offered is one of
the major reasons which made the Internet community target its research
towards P2P.

In practice the P2P model has been used for various application domains,
from file sharing and instant messaging, to distributed file systems and preser-
vation systems. All these different domains of use exploit different advantages
of the P2P model while at the same time tackle different problems. Each ap-
plication domain needs to be examined according to its specific requirements,
therefore each resulting design leads to a different use of the model. As a con-
sequence, various P2P architectures exist, from pure to hybrid where some

peers play different role than others.

1.3 Quality of Service (QoS)

A fundamental issue in order to classify the various P2P systems is the quality
of service (QoS) they provide. A distributed system’s success is strongly
dependent on its efficiency and ability to provide high quality services to the

users. More precisely, in a P2P network the efficiency of the system can be

1P2P networking is not a recent concept. Even the Internet was originally conceived as
a P2P network. However the client/server model managed to undertake its development,
and only recently the P2P model managed to show its advantages, especially due to the
need for wide-area systems.

summarized as:
e The response times, defined as the time taken to satisfy users’ requests.

e The throughput of the system, in other words the number of users

(requests) it can support in a time interval.
e The quality of the services offered to the users.

Few P2P systems address the issue of load balancing specifically; they
either just distribute the objects uniformly in the naming space, by using
an appropriate hash function, or just ignore it. A distributed system should
fully utilize all available resources, hence we believe that the problem of load
balancing is fundamental in this kind of networks. We study extensively the
issue of load balancing in dynamic P2P networks and propose a design which
uses some ideas from the theory of parallel processors.

The rest of this dissertation is organized as follows. Chapter 4 discusses
recent work on P2P systems and load balancing. Chapter 2 presents the
details of our SC-lob P2P system architecture. Chapter 3 presents SC-lob’s
implementation, and finally, chapter 5 discusses our conclusions and future

work.

Chapter 2

Architectural Overview

In this chapter we present our SC-lob P2P architecture. Our intention is
to create a scalable P2P content sharing system which provides additional
properties which have not been addressed by already existing designs. How-
ever, we believe that there is a trade-off between the system’s scalability and
the quality of services it provides. Our design falls into a middle-sized P2P
system which can provide services to thousands of peers, while simultane-
ously trying to divide these services and the available resources equally for
the benefit of the whole system and not only a small subset of it.

SC-lob is a content sharing distributed system which provides load bal-
ancing and efficient meta-data queries. As a hybrid-P2P system, SC-lob is
formed from simple and super peers. As we will see in section 2.1, super
peers have some additional responsibilities. However, unlike other systems,
this role assignment is not static, but rather done automatically, and redun-
dancy is used to prevent the appearance of single points of failure.

Many aspects of our work, which will be presented further on, are “in-
herited” by work done on [9] which address the same issues. More precisely,
many fundamental concepts are maintained, like clustering, division of load
balancing in inter and intra cluster phases and use of fairness index, while at
the same time significant changes like formation of clusters and differences

in load balancing policies result in a totally different system.

2.1 Clustering

SC-lob categorizes peers and groups them in clusters, logical sets of peers.
Consider a system with N peers denoted by Py, P,, ..., Py which can commu-
nicate through the TCP/IP protocol suite. These peers are logically divided
into M clusters, Cy, Cs, ..., Ci, where each peer belongs into only one cluster.
Each cluster C; is represented in the system by a small subset of its mem-
ber peers, which we call super-peers. In definition, this super-peers selection
takes into account mostly the processing capabilities of each peer and the
intention of the peer to remain logged on for a long period of time. By pro-
viding a self-automated fault-tolerant super-peers selection mechanism, the
system guarantees indefectible operation. The use of several super-peers on
each cluster provides some redundancy on the access point of each cluster,
and therefore reduces the chance for single point-of-failure. Moreover, the
super-peers selection takes into account the peers’ processing capabilities, 1s
self-adjustable and no critical operation is based on their existence.

Every peer in the system maintains a clusters-repository, where, for each
cluster, identification information about the relevant super-peers is kept. In
other words, super-peers are the representatives of each cluster to the rest of
the system, giving a first access point. Every possible change of the repre-
sentatives in a cluster, is automatically followed by a report to the rest of the
system’s clusters, therefore keeping global identification information consis-
tent. The report mechanism used will be discussed in more detail in chapter
3. In sort we could say that first the report is propagated to one super-peer of
each cluster (based on a virtual binary tree) and second is again propagated
inside each cluster by a super-peer to the other cluster peers (again based
on a virtual binary tree topology). One could argue that the super-peers of
many clusters could possibly crash simultaneously. We address this issue by
introducing a caching mechanism, where each peer keeps information about
various peers which are likely to belong to a cluster. These peers may have
been discovered from data transfers or by query redirection, issues which
will be discussed further on. When the super-peers of a cluster cannot be

addressed, then these cached entries are tried instead.

2.1.1 Shared meta-data repository

As in every content sharing system, each peer i possesses a number of |d;]
shared data objects! , and for each of these documents a small meta-data
description. Each cluster uses redundancy of the meta-data information as a
means to reduce the query execution time. More precisely, each peer main-
tains a meta-data repository, which contains the meta-data descriptions of
the whole cluster it belongs to. The meta-data repository is kept synchro-
nized by forcing each peer to announce the existence of its shared objects.
Although this operation introduces a small network overhead, the benefits,

such as cluster querying in O(1) complexity time, cannot be refuted.

2.1.2 Categories & related metadata

Query execution time is further reduced by SC-lob’s categorization of data.
All data objects are either automatically, or interactively (by the user), as-
signed to some predefined categories. This assignment, together with the
fact that each cluster announces to the rest of the clusters the categories it
possesses, reduces the search space of queries. The user can narrow down
the query’s search space by specifying the categories that interest him /her,
and consequently the query is submitted only to the clusters where such cat-
egories are known to exist. This categories-aware mechanism, combined with
the clustering, provides not only a fast global view of the system’s content,
but also guarantees an upper bound to the query execution time. We must
point out that this categorization of items 1s based on the type of its object
as used on the WWW (e.g filename extension) and is only used as a speed-up
on queries. No specific grouping of peers into cluster is performed based on

categories.

IThroughout the rest of this text, the terms data object and data item are used inter-
changeably, unless otherwise stated.

2.1.3 Model & performance issues

References to upper bounds on query execution times as well as complexity
issues are directly relevant with the distributed model assumed [14]. Our
system is a n-node directed graph G(V, E) formed from peers. Each peer is
a node in the graph, and is modeled as an I/O automaton, P;. P; has some
input and output actions by which it communicates with an external user.
In addition, P, has outputs of the form send(m); ;, where j is an outgoing
neighbor of 7 and m is a message, and inputs of the form receive(m),; where
j is an incoming neighbor of 7 and m is a message. We consider one kind of
faulty behavior on the part of peers: stopping failures. A stopping failure of
P, is modeled as a state where all tasks of P, are stopped. We do not currently
consider Byzantine failures which are directly related with security matters
(they are however on our future work plans). Regarding the communication
channels, we model each directed edge (7, j) of G as an I/O automaton Cj ;.
Its external interface consists of inputs of the form send(m);; and outputs
of the form receive(m); ;. The channel’s properties are directly related to
properties of TCP/IP, so messages cannot be damaged or lost without the
sender being notified. Our distributed model 1s asynchronous; each peer’s
actions are directly related only to its current state and not to any notion of
time or rounds.

Two measures of complexity are considered for our asynchronous dis-
tributed algorithms: time complexity and communication complexity. Time
complexity is measured in terms of an upper bound ! for each possible ac-
tion. We usually assume that sending a message through an edge (i, 7) takes
one time unit and that each action executed on a peer takes also one time
unit. It is assumed that link failures resulting on re-transmition of messages
add a constant amount of extra time units and don’t actually change the
complexity result. However, this assumption is only true if there is a max-
imum number of link or peer failures that can occur during an algorithm’s
execution. Communication complexity is typically measured in terms of the
total number of constant-size messages transmitted. Large messages may be

considered as many smaller ones.

2.1.4 Clusters & peers communication

The system can be seen as peers which form two kinds of networks. In-
side each cluster the member peers form a complete network, in definition
a network where links exist between each pair of peers. The various clus-
ters form a second complete network through their representatives (super
peers). Although they both are complete networks, the messages exchanged
between peers or between clusters (by super peers) exploit some form of vir-
tual topology. Various algorithms, like the synchronization of each peer’s
meta-data repository, use this virtual topology inside a cluster, as a route to
forward messages to all peers. This virtual topology routing mechanism was
designed while keeping in mind the scalability of the system, and therefore
should have logarithmic time complexity. Our implemented algorithm uses
a virtual binary tree in order to route messages, which results in O(loga(N))
time where N is the number of peers in a cluster, or the number of clusters in
the system. Details about the routing algorithm and implementation issues

will be discussed in section 3.4.

2.1.5 Cluster formation

We shall now discuss how clusters are formed. The login procedure for a peer
P, is just a matter of finding, by out-of-band means, another peer’s address,
Pj, which is already in the network, and submitting a login request. The
new peer automatically becomes a member of the cluster of which peer P;
is already a member. Although all peers are accepted in a cluster, there is a
maximum number of members in each cluster due to scalability issues’. When
a cluster reaches the maximum number of members, a cluster split event
occurs, resulting in two new clusters formed by the members of the original
one. The splitting follows various criteria based mostly on load distribution
and will be discussed in more detail in chapter 3. Similar to the maximum
peers there is a minimum number of peers that can be in a cluster at any

one time. When the number of members reaches this minimum number, the

2The performance of intra-cluster actions can become an overhead for the cluster’s
operation.

cluster members try to log into some other cluster with a valid number of
member peers. Except from the clusters participating in the join, the rest
of the system’s clusters are notified about any change through the message

routing mechanism, in order to keep the global identification information

consistent.

2.2 Load balancing

One of the most important issues on the efficiency of a content sharing system
is that of load balancing. When we refer to load balancing in a content shar-
ing system we mean that all peers should have equal normalized workloads,
according to their ability to serve. The notion of workload or popularity of
a resource is directly relevant with the probability of that resource being re-
quested. When we say that a resource has popularity equal to 10%, we mean
that 10% of the requests on the system will be pointed to this particular
resource. In practice, the services provided by a load-balanced system are
highly available to all users without any exceptions, while at the same time
the possibility of malfunction caused by an overloaded peer is minimized. It is
a fact that the system’s fault-tolerance and robustness are highly dependent
on the distribution of the workload across all peers forming the network.
The use of clustering allows us to divide the problem of load balancing

into two subproblems:

e Inter-cluster load balancing: In other words all clusters should have

equal workloads.

e Intra-cluster load balancing: All peers inside a cluster should have equal
normalized workloads. All requests for documents hitting the cluster,
either data-transfers or queries, should be equally divided between all

member peers, according to their ability to serve.

The metric we use for evaluating the system’s balanced state is “fairness”,

discussed in [15] and used in [9] for P2P load balancing. The fairness index

is defined as follows. Let a system allocate resources to n users, such that

the it" user receives an allocation z;. Then the fairness® index is

(o) = E=) 1)

We use equation 2.1 to evaluate the load distribution of clusters and peers,
when solving inter and intra-cluster load balancing respectively. Possible
values are always between 0 and 1. The closer the value to 1, the fairer the
load distribution becomes.

In sections 2.2.1 and 2.2.2 we first present various properties and mecha-
nisms of the system which are basic in our load-balance design, which is then

presented in 2.3 and in 2.4.

2.2.1 Dynamic cluster behavior

Our design follows directly the dynamic nature of our P2P network. We
assume that peers will enter or leave the system, either willingly or due
to failures and, at the same time, content will be added or deleted. This
dynamic nature constantly changes the workload distribution and requires a
monitoring mechanism. The various fundamental operations which can occur

in the network are summarized as follows:

e A peer can enter the system, by logging into a cluster.
e A peer can leave the system, either willingly or due to failure.
e Content is added by a peer.

e Content is deleted by a peer, either willingly or due to failure.

Except from these fundamental operations, our system makes decisions
in order to change the workload distribution and to maintain it’s scalability.

For this reason we introduce some other possible dynamic actions, which are:

3The fairness index can be interpreted as the percentage of users that share the used
resources equally.

10

e A peer can change clusters, by logging out from one and logging into

another.
e Content can be replicated between peers of the same cluster.

e A cluster can split or join with other clusters if the amount of member

peers exceeds some predefined threshold values.

We shall discuss these actions in the next sections. However, we must
point out that decisions about such actions are directly related with the

monitoring mechanism.

2.2.2 Popularities monitoring

As already mentioned the system is dynamic, therefore providing load bal-
ancing requires monitoring of popularities. In a content sharing system the
popularities measurement can be performed by counting the hits of various
data items and /or by estimating the future popularities from previous values.

Suppose a peer i has data items dy, do, ..., d,, with hit counts hg,, hd,, ---, Pd,,
respectively. A peer’s workload is calculated as the sum of the hits counts
of all data item it possesses. The popularity of a peer is the percent of its
workload with respect to the total workload of the system. However, since
the peers are heterogeneous, we assign to each peer a processing capacity,
pc;, either by a benchmarking tool or by the user’s selection, and normalize
the peer’s workload. This allows us to have a unique approach, regarding
load balancing, despite the differences and the nature of each peer since the
assigned processing capacity reflects the processing capabilities as well as
the network capabilities of the peer (maximum possible bandwidth). The

resulting workload formula 1s:

Wi = (Ei: hd},) e, (2.2)

where pe; is the processing capacity of peer 1. The peer popularity formula

is W divided by the total workload of the system. Subsequently, we can

11

calculate each cluster’s popularity by just summing the popularities of its
member peers, as follows from the fact that each peer belongs into only one
cluster.

Except from the monitoring mechanism, a reporting mechanism is also
used for the popularities. Each peer monitors the hit counts of its data
items, and every time a significant change occurs, a popularity report message
is forwarded to the other cluster members. Likewise, a popularity report
message is sent from the super-peers of each cluster to the other clusters
when and if the change of the cluster’s popularity is significant. Reporting
is not performed for very small changes since we do not wish to introduce
network delays by flooding the network with control messages. As of this,

each peer in the system is aware of:
e The popularities of the other members of its cluster.

e The popularities of all clusters.

2.3 Inter-cluster load balancing

By the term inter-cluster load balancing we mean that all clusters should have
equal workloads. Remember that the workload or popularity of a cluster is
measured as a sum of the workloads or popularities of its member peers. As
of this, changes in a cluster’s popularity can be achieved by moving peers
from one cluster to another, an operation which we call “peer migration”. We
describe next our approach in more detail.

Consider the following abstract distributed load balancing problem. We
are given an arbitrary, undirected, connected graph G(V, E) in which each
node v; € V contains a number /; of current workload. The goal is to deter-
mine a schedule to move an amount of workload across edges so that, finally,
the weight on each node is equal. This problem describes inter-cluster load
balancing in our distributed system when we associate a node with a clus-
ter, an edge with a communication link of unbounded capacity between two

clusters and I; with the popularity of cluster i. Since the system works on

12

top of tcp/ip we assume that the graph G(V, E) is complete, at least when
load balancing actions take place.

One way to re-balance the load 1s to repartition the peers into new clus-
ters. However, with this approach it 1s difficult to ensure that the new parti-
tioning will be “close” to the original partitioning. In case the new partition-
ing deviates significantly from the old one, the cost of large data transfers
becomes unacceptable. An alternative strategy to change the load distribu-
tion is to migrate peers (load) among clusters. Peer migration needs only
the meta-data of peers to be transmitted and can be considered a low-cost
operation, in respect to the amount of data that is moved during the normal
operation of the system.

A practical approach to dynamic load balancing is to divide the problem

into the following phases [16, 11]:

1. load evaluation: The load of each cluster must be known, or estimated,
so that an imbalance can be detected. Further actions are initiated if
the imbalance is above a threshold, e.g 90%. This imbalance is cal-
culated with the fairness metric and describes the percentage of the
clusters which share the resources equally. This means that a fair-
ness of 90% denotes that 90% of the clusters are equally sharing the

workload of the system.

2. “flow” vector calculation: Based on the measurements taken in the
first phase, the ideal load transfers necessary to balance the system are
calculated. Note that no actual movement is performed before the final
“fow” is calculated, since it may result in more data-migrations than

necessary.

3. load selection: Peers are selected for transfer or exchange, between

clusters, to best fulfill the “flow” vector calculated by the previous step.

4. load migration: Once selected, peers migrate from one cluster to an-

other.

13

2.3.1 Load evaluation

The load evaluation is performed from the monitoring component of the
system, as described in section 2.2.2. As mentioned, every peer is aware of all
clusters’ popularities so no actual extra work is needed for this phase. From
the measurements of load, the each cluster (by its super-peers) calculates
the current imbalance, by evaluating the fairness metric. However, when a
small imbalance exists, the system can waste resources without achieving any
significant progress. This is due to the non-negligible cost of peer migration,
and to the peers’ popularities granularity, which plays a significant role in
the maximum balance that can be achieved. Subsequently, a threshold value
is introduced, and only if the imbalance is above this threshold value any

subsequent load balancing actions are triggered.

2.3.2 “Flow” vector calculation

The flow calculation phase is responsible for the calculation of the amount of
load to migrate from each cluster in order to have a uniform load distribution.
A local iterative diffusion policy [10] is used, where the load of cluster 7 from

time ¢ to time ¢ + 1 is modeled by:

P =1t Y ot -1l) 1<i<n (2.3)
JEA(®)
1
S 2.4
T TAG + 1 B

where A(7) is the set of neighbors of cluster 7 and «;; is called the diffusion
parameter of 7 and j, which determines the amount of load to be exchanged
between the two clusters.

One iteration is needed in order for this approach to converge when the
graph G(V, E) is complete. Although our clusters’ topology is a complete
graph, a potential increase in the number of clusters will introduce commu-
nication overhead and, at the same time, can result in “flow” calculations
which will not be satisfiable. If the number of clusters is large, each cluster

may have to send a small amount of load to each of the other clusters, which

14

is likely to be possible. Thus, in such cases, in order to address scalability
issues as well as to perform better load balancing, we choose not to treat the
clusters as a complete network. We can use various virtual topologies, like a
tree, which result in slower convergence® of the “flow” vector calculation but
at the same time are more scalable and efficient. The introduction of small
neighborhoods of clusters, as the size of the system grows, is also helpful in a
highly dynamic environment. When the system behaves highly dynamically,
with respect to the peers and content, fast local load balancing actions are
preferred [16] to slower global actions.

Furthermore, the possible load movements between clusters are com-
pletely dependent on the load of the member peers on each of the clusters.
When load granularity is too coarse, it prevents any movement and does not
permit the achievement of good balancing. In order to prevent unnecessary
time-consuming calculations, with respect to load selection for migration, as
well as to minimize the network overhead for peer migrations, we filter the
calculated “flow” vector and rule-out very small load movements which will

not result in significant load balance improvements.

2.3.3 Load selection

After the “flow” calculation phase each cluster is aware of the amount of load
that should be transmitted through each of its outgoing edges. A cluster
i can send load to another cluster j by selecting some peers to migrate to
cluster j. The selection of the peers which should migrate from a cluster to
other clusters, in order to satisfy the “flow” vector, is the work done in this
phase of our load balancing algorithm.

Suppose we have two clusters C; and C; and that we want to move an
amount of load L;; from cluster ¢ to j. Suppose also that cluster’s ¢ members
is the set P = {P,, P,,..., Py} with load l,,ls,...,In respectively and that
the two clusters are interconnected with a communication link C; < Cj.

We want to find a subset of P with total load as large as possible but not

4Depending on the topology assumed, the second degree diffusion|[13] method may be
used to increase the convergence rate

15

[APPROX-SUBSET-SUM(S , t , €)

2 1 = [S];
s Lo = (0);
s for{ 1i =1; i <

=1 , i—t——?‘)
L; = MergeLists (Li-1 , Lioi+);
Li = Trim (L; , €/n);
remove from L; every element greater than t;
let z be the largest value in Ly;
return 2z,

© @ ~ = w

Figure 2.1: Subset Sum fully-polynomial approximation

larger than /;;. This problem is an instance of the subset-sum problem which
has been proved to be NP-complete. Subsequently we cannot use a naive
approach with exponential complexity, but rather some faster method with
an acceptable error rate. A fully-polynomial approximation scheme [17] is
used, in order to solve the problem in acceptable time, especially as the
number of peers becomes larger. The scheme used uses “trimming” in order
to reduce the search space of the problem. To trim a list L by a parameter
§, where 0 < § < 1, means to remove as many elements from L as possible,
in such a way that if L' is the result of trimming L, then for every element
y that was removed from L, there is an element z < y still in L' such that
(1-6)y < z < y. In other words we can say that z is “representing” y in the
new list L. Each y is represented by a z such that the relative error of z,
with respect to y, is at most §. Pseudo code for such an algorithm is shown
in Figure 2.1.

Actually our load selection problem is a multiple subset-sum, since for
each cluster we must select some load to send to more than one outgoing link.
The optimal solution in this particular problem requires time, and surely
cannot be calculated in an application which requires real-time response. In
order to decide which peers will migrate from a cluster to other clusters we
use a simple greedy algorithm, extended with simple heuristics® which are

likely to provide a good solution for this particular instance of the problem.

SExample of heuristics is the common categories possessed from the target cluster and
the candidate peers, the processing abilities of the final cluster (after the migration), etc.

16

The various load movements are sorted in descending order and a subset sum

approximation is executed for each of them in turn.

2.3.4 Peer migration

The final step of our algorithm is the actual peer migration from one cluster to
another. With peer migration, the load distribution of the clusters is changed,
resulting in a balanced state. The actual algorithm about peer migration 1s

implementation dependent and will be discussed further in chapter 3.

2.4 Intra-cluster load balancing

The second part of our algorithm is intra-cluster load balancing. Since we
have already balanced the workloads of the clusters we now wish to balance
the workloads of the peers inside each cluster®. Requests hitting a cluster,
either for a data object or for queries, should be equally distributed to all
member peers, according to the processing abilities of each peer. As discussed
in section 2.2.2 the abilities of each peer are represented by a processing
capacity, pc;, a measure of the peer’s overall performance.

Replication of data objects and redirection of requests are our main intra-
cluster load balancing actions. All query requests hitting a cluster through
a peer i are redirected or not to another peer according to the processing
capacities. All peers in the cluster can handle the query request, due to
the shared meta-data repository that is maintained. The probability that a

query request is handled by a peer 7 1s

yye;

— (2.5)
;y=1pcj

p(i) =
when pc; is the processing capacity of the peer i and N is the number of
peers in the cluster. A similar redirection is performed when a requested data

object from peer 7 has replicas located on other peers of the same cluster.

6 Actually the two load balancing subproblems are not exactly independent. This is
why we schedule both actions periodically on each peer which results in random execution
(the peers are not synchronized).

17

If {Py,.., P,} is the set of peers which contain a copy of the requested data
object d, then the data object is retrieved from peer 7, with probability as
shown in equation 2.5.

Each cluster in order to ensure load balancing replicates documents be-
tween peers. Each peer of the cluster is authorized to create replicas for the
documents it holds. A peer decides where and when to replicate a file, based
on knowledge about the workloads of the other members of the cluster, ob-
tained through the popularities’ reporting mechanism. Decisions about dele-
tions are also locally made, by peers which possess the respective replicas.
This approach ensures that our replica management mechanism is completely
decentralized and scalable.

Intra-cluster load balancing, achieved by replicas creation and deletion, is
not entirely independent with the inter-cluster load balancing actions. How-
ever when a date item is replicated in a cluster, the load is divided between all
owners of this item’s copies (if a data item is copied due to a user’s request,
it is not considered a replica and does not take any load), which results in
very small change of the workload of the cluster. However, this change is
small and we argue that the dynamic nature of the system has surely worse
effects. Due to the periodic execution of the load balancing actions and the
randomness imposed (each peer may login in different time and no global
time is assumed) there is no convergence problem due to a small dependence
between the two load balancing actions. Remember that our intention is to
load balance a dynamic system, which imposes continuous actions but it’s
goal is not to reach perfect load balance as this cannot be achieved due to

heterogeneously and granularity constrains.

2.4.1 Replicas management

A possible creation of new or the deletion of already existing replicas is an
operation which requires some identification information. Data objects’ de-
scriptions in the shared meta-data repository, which is kept at each peer,
contain explicit information about the identification of replicas, their loca-

tions, and popularities. Data objects are assigned into three categories based

18

on the state of replicas:

1. Original item: A data object which was published from a peer, and
can be replicated as needed. All data objects which were created from

data-transfers initiated by a user belong to this category.

2. Replica: A data object which is a replica of an original item, located on
a different peer from the original , and through redirection handles a
fraction of the requests. Replica chaining, that is creation of replicas of
replicas, is not permitted. Only original data objects can be replicated,

possibly to more than one peer in the same cluster.

3. Floating replica: A replica data object which was obtained from a peer
that no longer exists in the same cluster. The originating peer may have
disconnected, crashed or moved to another cluster through “peer migra-
tion” based on inter-cluster load balancing decisions. These replicas are
not automatically deleted when the original item is deleted. A possi-
ble deletion of this kind of item occurs by the replica creation/deletion

policy based on the intra-cluster load balancing actions.

Each peer in a cluster, based on its load, is authorized to make decisions
about replica creation or deletion. Suppose a cluster has average load Lg,g,
and peers have loads [y, [, ...,l,. Each peer i which has more load than the
average (l; > L,y,) can replicate a local data object to a target peer j which
has less load than the average (I; < Lgu). The replica is automatically
assigned, on creation, a fraction of the load of the other existing copies,
based on the processing capacities of the peers holding these copies. On
the other hand, a peer can also delete a replica, therefore reducing its load
and increasing the load of the peers which are holding copies of the same
object. Finally, floating replicas can also be deleted as a means to reduce
load, without affecting other peers’ load distribution.

Candidate data objects for replication are those who have high popu-
larity and at the same time their size is limited. A peer’s replica creation
algorithm sorts the available data items in descending order based on the
fraction I, /sizeq, where d; is a shared data object, [, is the load of the

19

object, and sizey, its size. The resulting greedy algorithm takes also into ac-
count that the popularities of the objects follow a zipf distribution meaning
that only a small fraction of them are quite popular to be worth of replica-
tion. The algorithm tries in turn the first 7n popular data objects, by testing
the resulting fairness of the system for every possible peer which could obtain
a replica. While the fairness index increases, new replica items are created.
Unfortunately, some restrictions exist on the maximum load balance that
can be achieved locally. These restrictions are based mostly on the available
disk space that each peer has for the creation of replicas. Furthermore, due
to the heterogenous nature of our system, not every replica can be created
on each peer. Peers with slow network connections can only replicate small
data objects. A possible solution to this problem, which is in our future work

plans, is to be able to replicate just a fraction of a data object.

20

Chapter 3
Implementation

Our work extends beyond just the design of a load balanced P2P system,
into implementation. We have chosen to implement a champion application
which will operate as discussed in chapter 2. The system’s implementation
is done in Java, resulting in a cross-platform application, and provides the
core system as well as a GUI front-end. This chapter discusses in more detail

various parts of the system’s design.

3.1 Clustering

Clustering requires various data structures to maintain information which 1s
crucial to the identification of peers and clusters. Each peer in the system

maintains three important repositories:

e A local cluster members repository: Here a peer keeps information
about the peers which belong to the same cluster. The information
kept is related to network communication (IP, port, etc.) as well as

processing capacity and free disk space for replicas.

e A shared data objects repository: This placeholder holds the meta-

data information of the cluster, in which a peer is a member.

e A remote clusters repository: For each of the clusters in the sys-

tem, one entry in this repository contains identification information.

21

Identification information for a cluster are the UIDs of the super-peers,

their IPs, port numbers, etc.

3.1.1 LCM repository - local cluster members

Information about a cluster and its members is kept in this repository. When
a peer logs into the system, through a peer which belongs into a cluster, sends
a message which instructs all the rest cluster members to add a new entry
into this repository. This entry describes the network address of the peer,
its processing capacity which is a constant number denoting performance
abilities, a 64 bits unique identifier which identifies the new peer, its intention
to remain in the system for a long period and the free space for replicas
creation.

All peers belonging to a cluster are kept sorted in this repository in de-
scending order, first by their processing abilities, second by their intention to
remain in the system and finally by their unique identifiers. This sorting 1s
exactly the same in all peers, thus allowing us to obtain the representatives
of the cluster by just selecting the first few peers. When a change of the
representatives occurs, a report message 1s forwarded to the rest of the clus-
ters. This report message reaches all peers in the system, by first reaching
the representatives of each cluster and secondly by reaching the peers in each
cluster, and is used to update the identification information about the cluster

which is stored in the RC repository described in section 3.1.3.

3.1.2 SDO repository - shared data objects

Each peer in the system has a file system layer which triggers automatic
events when files are either added or deleted. Addition or deletion of data
items can occur either by a user requested data-transfer, a automatically
created replica from load balancing or by external events on the file system.
All new files created are immediately considered shared. For each shared file
a meta-data description is kept in this repository. This meta-data description
contains various fields like name, title, size, category, hits count, etc. Each

shared file can be identified by a unique 32-bits identifier. Furthermore, the

22

meta-data kept provides information in order to identify replicas and their
corresponding original files.

A new-file event fired by the file system layer, results in storing meta-data
information into the repository, as well as transmitting this information to the
rest of the cluster members. Each peer in a cluster is aware of all the shared
objects which exist in various member peers in the cluster. Similarly, when a
file is deleted or the user no longer wishes to share it, its entry is deleted from
the repository, both locally and at the rest of the cluster members (with the
use of delete messages). In this way each peer has synchronized information
about the shared objects and can answer queries about the whole cluster.

Each peer keeps a hits count for each shared file which is locally stored.
This hits count is updated each time a new download request arrives. The
peer regularly checks the total hits count and when a significant change
occurs, a popularity report (containing the total hits count) is forwarded
to the rest of the cluster’s members. This significant change is defined to
be a fraction of the last reported value, for example when the hits count
changes by more than 5% of the previous forwarded popularity report. This
popularity report is also stored in this repository, allowing each peer to be
aware of the popularity of each member of the cluster, and consequently to
be able to decide about replicas creation or deletion.

The popularity reporting mechanism ensures that each peer has an al-
most up-to-date view of the popularities of the other cluster peers. However,
when a peer crashes and all other cluster peers remove its entry from their
repository (by a message arrived which was initially sent from the peer which
realized the crash), the hits of all replicas must be transferred to the appro-
priate items. For this reason, each peer periodically sends not only the total

hits count (popularity report), but also the hits of the replicas it possesses.

3.1.3 RC repository - remote clusters

Identification information for all the clusters of the system is kept in this
repository. For each cluster a small subset of its members as described in

section 3.1.1 is kept, synchronized through reports which are generated when

23

changes occur. Each cluster’s entry is uniquely identified by the cluster’s
unique identifier which is 32 bits long. Furthermore, other information is also
kept for each cluster, as a mean to reduce the query execution time, as well
as to perform load balancing actions. We could summarize the information

kept about each cluster of the system as follows:

e Unique identifier: A unique 32-bits identifier of the cluster.

¢ Representative peers: A small subset of the cluster member peers.

These member peers are the most stable and fast peers of the cluster.

e Categories: The categories in which the clusters data items can be
assigned. This information is used mostly for querying but can also be

used for other purposes.

e Total popularity: The total popularity of the cluster, which is the

sum of the normalized popularities of the cluster’s member peers.

Except for the unique identifier which is a constant, all other information
is updated when appropriate. Each cluster, through its representatives, sends
up-to-date information about representatives, categories and popularities.
These updates, through the forwarding mechanisms, eventually reach all the
peers of the system.

The RC repository keeps all clusters sorted by their unique identifier.
This sorting is useful in our message forwarding mechanism which will be

discussed in section 3.4.

3.2 Dynamic cluster behavior

The clusters, as discussed in chapter 2, have a maximum and a minimum
limit of member peers. When the number of peers exceeds these limits either
a cluster split or join occurs.

A cluster split occurs when the number of peers becomes more than al-
lowed. This is done to preserve the scalability of each cluster, since more

peers add additional delays, mostly in the forwarding of control messages. A

24

cluster split is decided by the leader (the first of the super-peers based on
their unique identifiers) of the cluster, which is the first peer in the sorted
array of peers kept in the LCM repository. In order to begin the cluster
split, the leader runs a subset sum algorithm (see figure 2.1), trying to di-
vide the cluster in half, based on the peers’ popularities. Finally, after the
new cluster has been determined, a cluster split message is forwarded to all
cluster members.

When a split message arrives, each peer checks whether it should stay at
the old cluster or move to the new one (the message contains information
which defines which peers should create a new cluster, all other peers stay
behind). In case the peer must stay at the old cluster, then a simple operation
is performed where the LCM repository is updated by deleting the peers of
the new cluster. On the other hand if the peer should belong to the new
cluster, then new empty data structures (LCM and SDO repositories) are
created and updated with the information of the other peers (also belonging
to the new cluster). Furthermore, a new cluster entry is added to the RC
repository and finally the leader peer announces the new cluster existence
to the other clusters. The information of the old cluster is not immediately
deleted since various messages about the old cluster could still be traveling
and not reach all of the old cluster’s members.

Cluster join is a much simpler operation. When the number of peers be-
comes less than the minimum allowed, one by one the member peers start
migrating to other clusters. The peers start to migrate in the reverse order
from that of the LCM repository. Each peer chooses randomly to migrate
to a cluster which has number of peers more than the minimum allowed. In
case all cluster have simultaneously less peers than minimum no migration
is performed. The number of peers of a cluster is known by the popularity
reports which are periodically sent. This prevents two clusters which auto-
matically run cluster join from exchanging members. Finally, the last peer
migrating, sends a message to instruct the rest clusters to delete the cluster
from their RC repository.

25

3.3 User actions

As in P2P content sharing systems, user actions can be divided into two main
categories; querying and data transferring. We will now discuss how these

user actions are executed and handled by the system.

3.3.1 Queries

Queries are submitted by a user through the GUI front-end of our application.
A user can specify keywords as well as the category which interests him and
expects to see the most popular files that match these criteria. Through the
RC repository, the clusters possessing documents in the query’s category are
found and a query request is submitted to them in turn. The local cluster
can be immediately queried by the peer since the SDO repository contains
all relevant meta-data descriptions.

A query is submitted to one of the super-peers of each cluster. However
these peers do not necessarily handle the query, but instead redirect (or not)
the request to another peer based on their processing capacities. The peer
which will handle the query, locates the most popular data items which match
the query and sends a query response. This redirection is a basic operation
of intra-cluster load balancing. Our query mechanism provides a fast global
view of the system’s content, resulting into O(M) time complexity where M
is the number of clusters of the system. As we can see, the number of clusters

consists an upper bound on the query’s execution time.

3.3.2 Content retrieval

A query can be followed by a request for retrieval of some data objects.
Except from identification information about the data objects, information
about the peers holding these objects is also included in query responses. As
follows, a retrieval request is not addressed to a super-peer but directly to
the appropriate owner.

Similarly to the query handling, intra-cluster load balancing is achieved
by a redirection mechanism. A peer checks whether replicas of the requested

26

object exist on the cluster and redirects the request appropriately based on
the processing capacities of the object holders. Replicas identification is
easily achieved by the SDO repository which maintains enough information

about their existence as well as their location.

3.4 Control message routing

We have already mentioned that our message forwarding mechanism pro-
vides O(logy(N)) time complexity, in both cases of intra and inter-cluster
forwarding. First of all, intra-cluster forwarding is the routing of messages
from peers inside a cluster. Similarly inter-cluster forwarding is the routing
of messages between clusters by their representatives (super-peers).

In both cases we keep a sorted representation of the various possible
recipients of messages. For example the LCM repository always keeps the
member peers of a cluster sorted. The same is also true about the RC
repository which always maintains a sorted list of the clusters. This sorting
is consistent between all peers of the system (at least when each peer has
received the same control messages). A peer, when forwarding a message to
its cluster or to remote clusters, uses either the LCM or the RC repository
to find the appropriate recipients.

Suppose a cluster has N peers, I, ..., P;, ..., Py_1, and that peer 7 sends
a message which should reach all the cluster members. The message is trans-
mitted in a form of binary tree, where peer ¢ is the root node. The set of
peers is divided into two subsets where in each subset the same algorithm
is executed recursively. This subset division is achieved with the use of a
field called uptoUID which is present in every message which is transmit-
ted. Figure 3.1 shows two examples for message routing. The routing is
accompanied by a duplicate identification mechanism, to avoid handling of
an already received message. Furthermore, each message has a hops-count
which is reduced by one in every peer. Both duplicate identification and
hops mechanisms are used to ensure correct message routing, in cases where
multiple peers crash simultaneously. We would like to point out that this

message routing mechanism does not always preserve the ordering of the

27

Figure 3.1: {inter,intra}-cluster routing. In the upper figure, the
initial sender is 1, while at the lower figure, the initial sender is 4. The
arcs’ numbers are the field uptoUID of the message, which denotes up to
where the message should be forwarded. Messages are always forwarded
to the right in a modulo N manner, when N is the number of peers or
clusters.

messages, however our algorithms do not require a total ordering in order to

work robustly.

3.5 Fault tolerance

Fault tolerance is achieved by correctly handling network timeouts and re-
tries. Each message transmition is tried several times with a small network
timeout (e.g 15 sec) and only after several unsuccessful attempts it is as-
sumed that the target peer has crashed. In case of transmition of messages
between clusters, a peer tries to send the message to every super-peer which
is known for the cluster, and only after failure in all attempts a cluster is
considered crashed. However before we actually consider the cluster as un-
reachable a peer tries to communicate with some cached peer entries which
were obtained either by query redirection or by a data-transfer.

When a peer realizes that either a peer or a whole cluster can not be
reached, an update message is immediately sent to the appropriate peers.

In case a local cluster peer is down a message is sent to the local cluster

28

members. In case a whole cluster is down a message is send globally to the

other clusters which is in turn transmitted to all peers of the system.

3.6 Login, logout & cluster migration

The login procedure is just a matter of finding another peer which is already
in the system (in a cluster), by out-of-band means. Subsequently a login
request is made, which is immediately followed by a response which describes
the current state of the system as well as of the cluster. Moreover, the
response contains the various clusters and their representatives, the local
cluster members and their popularities and the meta-data descriptions about
the shared items of the local cluster. By the end of the login procedure
the new peer is totally synchronized with the peer which received the login
request.

The routing mechanism used in the cluster (and between clusters), uses
two recipients for each message forwarded. The one recipient is the direct
right neighbor of each peer, in respect with the sorted representation of peers
in the LCM repository (see section 3.4). During the login procedure many
messages can flow in the network and we would not like the new peer to lose
any of them. This is why a login request is redirected from the peer made
to another peer in the cluster which is the one who will be the direct left
neighbor of the new peer, and therefore will forward all messages to the new
peer.

Logout is a much simpler operation than login. Each peer who wishes to
logout transmits a logout message to the cluster. Each peer who receives the
logout message, updates its repositories to reflect the deletion of the peer,
and the possible deletion of replicas or replicated items which existed at the
peer.

Cluster migration, a fundamental operation on the achievement of inter-
cluster load balancing, is performed by a login followed by a logout procedure.
The migrating peer first logs into the target cluster and then logs out from
the source cluster. The repositories of the old cluster are not immediately

deleted, since various messages could have already been forwarded. The

29

peer, although not anymore a member of the cluster, continues to forward any

messages it receives to ensure correct operation of the forwarding mechanism.

3.7 Load balancing

3.7.1 Inter-cluster

Our inter-cluster load balancing implementation follows directly our design
presented in chapter 2. The various steps which were earlier presented are
executed one by one, resulting in a load balanced system.

The popularities monitoring and reporting mechanism constantly pro-
vides the peers of the system with an almost up-to-date view of the load
balanced state of the system. Each peer periodically checks whether an
inter-cluster load balancing action should be performed. However since the
popularities reporting could be a little bit different from peer to peer (we do
not use strong consistency) we choose to use a somewhat centralized approach
for the step of the “flow” vector calculation.

The leader peer of each cluster is responsible for the calculation of the load
that should be moved to other clusters. The actual size of the system, that is
the number of clusters, is checked before choosing the actual topology for the
diffusion algorithm. As the number of clusters grows, we reduce the edges
of the graph G(V, E) where V are the clusters (nodes) and FE are the edges
(communication links). After the “flow” vector has been calculated the result
is filtered, and very small movements are removed, until a threshold (fairness)
is reached (e.g 90%). Finally, each cluster leader follows the diffusion results
and tries to select peers to migrate to other clusters in order to satisfy the
flow requirements. The selection is performed as outlined in section 2.3.3.
The peers selected are informed by a “migration” message to execute a cluster

migration procedure.

30

3.7.2 Intra-cluster

Each peer periodically executes the local load balancer, a thread which is
responsible for the creation or deletion of replicas in order to have a uniform
load distribution inside each cluster. If and when the calculated load state
is below a threshold value (e.g 90%), further intra-cluster load balancing
actions are initiated. The load balanced state is measured by the fairness
index, discussed in section 2.2.

In case the fairness of the load is below the threshold, each peer checks
for whether the resulting fairness will increase by performing some possible
actions. Each peer tries in turn the following actions in order to equalize the

load inside its cluster:

e Deletion of floating replicas: Each peer may possess a replica from a
peer which is no longer a member of the cluster. This replica is called
“floating” and has no dependency on any other items or peers, thus
its deletion affects only the load of the current peer. The peer tries
all floating replicas, one by one, sorted ascending by the fraction ;Z;Le
where p; is the popularity while size; is the size of the replica, and
deletes them if the resulting fairness of the cluster is better than the
current one. This particular sorting is preferred, since we would like to

free additional disk space for other possible replicas.

e Deletion of non-floating replicas: A peer may also possess items which
are replicas from other peers on the same cluster. For each of these
replicas, again sorted ascending by their ;ﬁla, the resulting fairness is
calculated and, if appropriate, the replica is deleted. Note that, unlike
floating replicas, a non-floating replica affects the load of other peers’

as well as the current peer’s.

e Creation of replicas: A peer may replicate a local item to another
peer of the cluster. This action will result in reducing the load of the
current peer and possibly increasing the load of other cluster peers.
The various local items are sorted descending by their #"ei, and one

by one are checked for replication. Each such data item is checked in

31

turn and the fairness index is calculated for every possible peer which
could hold the new replica. Not all peers can hold every replica, due to
space and network bandwidth restrictions. The item is then replicated
to a peer, with enough space and bandwidth, for which the maximum
fairness was achieved. Regarding space limitations information is kept
in the LCM repository. More details for the reasons of these actions

have already been given in section 2.4.1.

32

Chapter 4

Related Work

During the last few years the P2P model has been extensively used as a
model for collaboration of various peers, forming a distributed network. From
simple applications, which began from industrial companies and non-profit
organizations, to university research. The most common application domain

using P2P is that of content sharing.

4.1 Napster

Napster [2] was one of the first content sharing systems, focusing MP3 music
files, which brought the revolution of P2P computing. Napster, although a
hybrid-P2P system, became the most widely used content sharing applica-
tion. The actual model on which Napster, and several other similar systems,
based their operation, uses central servers in order to direct traffic between
individual registered users. The central servers maintain directories about
the shared files stored on the respective PCs of registered users of the net-
work, and are responsible for answering query requests and handling updates.
The fact that makes this system a peer-to-peer one is that all data routes
directly from one peer to another without implication of the central servers.
The main advantage of this system is its central index which handles queries
quickly and efficiently. On the other hand, the performance depends signifi-

cantly on the number of servers running and the number of users logged on

33

to each server. Many servers may be overloaded while simultaneously others

may be underloaded, leading to bottlenecks and vulnerability to failures.

4.2 Gnutella & Freenet

On the opposite side reside various systems which follow the pure-P2P model
and address the same issues in a totally different manner. Gnutella [3], the
first such pure-P2P system, operates in a completely decentralized way. All
peers forming the network have exactly the same responsibilities and execute
exactly the same algorithms. Every peer logged on to the system is aware of
the existence of various other peers, its neighbors, by maintaining a neighbor
list. Messages flowing in the system are routed from peer-to-peer until either
the destination or a maximum hops-count is reached. A query in Gnutella
is considered a push operation, since the source peer floods the network
with messages to all its neighbors. This operation continues recursively until
a maximum TTL hops value is reached, and the results are transmitted
backwards.

Due to its decentralized architecture Gnutella can scale better than Nap-
ster, but at the same time various limitations argue about the efficiency of its
design. Gnutella’s query mechanism is bounded by the T'TL value used, thus
exposing a certain locality. All queries reach a maximum network distance
from the originating node, equal to the TTL value used. Furthermore, query
flooding is quite expensive regarding the fact that in P2P systems querying
is the most frequent operation.

Freenet [4] is a P2P system which behaves more like a distributed file
system. The basic ideas are similar to the ones used in Gnutella, but Freenet
has more sophisticated algorithms regarding querying of information as well
as replication. Instead of just routing messages to neighbor nodes, Freenet
uses content based routing; each shared data object is assigned a unique ID,
obtained by some hash function, and this ID is used in order to route requests
from peer to peer. As the system operates, the routing tables of the peers
are updated in order to reflect the last known routes to data objects. Fur-

thermore while a data object is transmitted to a peer, all intermediate nodes

34

store replicas of this object locally. Finally, objects stored on Freenet nodes
contain no information about the original owners of the objects, guaranteeing

anonymity, a key design issue in Freenet’s development.

4.3 Pastry, Tapestry & CAN

Tapestry [5] is one of the second generation systems. Actually, Tapestry
is a wide-area location and routing infrastructure, on which P2P systems
can be build. Tapestry has an explicit notion of locality, providing location-
independent routing of messages directly to the closest copy of an object or
service using only point-to-point links and without centralized services. Lo-
cation and routing are not handled separately, but rather by an integrated
mechanism, thus meeting the goals for wide-scale resilience. Tapestry’s in-
spiration is Plaxton’s location and routing mechanism (introduced in [6]),
which is extended in order to overcome some problems, like scalability and
single points of failure.

Pastry|7| resembles Tapestry, since it is also a location and routing infras-
tructure. Much like Tapestry, Pastry routes requests for objects to neighbor
peers until the closest copy is discovered. Each peer has a unique identifier
and its routing table points to peers which have similar unique identifiers
(common prefix). Similar to Tapestry, the routing tables of Pastry are not
growing proportionally to the system’s size, thus providing scalability. A
query for an object requires logarithmic complexity on the number of hops
in order to reach its destination. Furthermore, Pastry tries to adapt its op-
erations with a locality metric, usually an IP routing hops count, and create
appropriate routing tables, thus minimizing the distance between neighbor
peers.

CAN [8] resembles much to Tapestry and Pastry because it is also a rout-
ing and location layer. The main difference from the above two systems is
that CAN does not base its routing infrastructure on Plaxton’s algorithm
or similar mechanisms. CAN uses a virtual d-dimensional Cartesian coor-
dinate space on a d-torus, and dynamically assigns each node to a unique

point. Each node routes messages to the best possible choice from the direct

35

neighbors in the d-dimensional space. CAN achieves scalability, much like
the above systems, by maintaining a routing table whose size does not grow
proportionally to the number of nodes. Furthermore CAN uses caching and
replication of key pairs in order to balance the load of certain nodes which

possess more popular keys than others.

4.4 Load balancing

The concept of load balancing is an open problem, at least in the case of P2P
systems. Tapestry and Pastry use cryptographic hash functions in order to
distribute the various keys inside their name-spaces as equally as possible.
CAN gets a little further and uses caching and replication to locally load-
balance the requests hitting a node with its neighbors. The problem of load
balancing, however, requires more than a fair distribution of objects since the
dynamic nature of these systems results in constant changes of popularities.
For this reason, continuous load balancing actions are essential in keeping the
load distribution as fair as possible. An approach which actually triggered
this work, for maintaining a P2P system in load balanced state, can be seen
in [9].

On the other hand, the dynamic load balancing problem has been exten-
sively studied in the field of parallel processing and generally in distributed
networks. The diffusion method which we use for inter-cluster load balanc-
ing was first discussed from Cybenco|10] and further extended from various
authors. Various optimality results for diffusion can be found in [11, 12]. Fur-
thermore the work done by Karagiorgos and Missirlis[13| discussed about the
number of iterations and the rate of convergence of local diffusion algorithms

on different topologies.

36

Chapter 5

Conclusions & Future Work

The Peer-to-Peer model has recently emerged as a new way for deployment of
distributed systems. Currently, work and research are mainly directed to the
scalability of these systems as well as searching and locating shared objects.

In this work we examined whether load balancing can be provided by
such large systems, and consequently whether the benefits are worth more
than the drawbacks. Furthermore we investigated how replication of data
and meta-data can be of aid, especially in achieving short query response
times. The use of redundancy is no longer prohibited due to today’s comput-
ing environments which are extremely capable of high-speed processing and
network transmition. Moore’s law surely gives a new essence in the design
of future distributed computing.

Load balancing has been extensively studied in the context of parallel
processors and various ideas seem to be also applicable in distributed sys-
tems. However, the biggest problem in achieving load balancing seems to be
the minimization of the constraints apposed by the granularity of the load.
Depending on the coarseness of the load granularity, the maximum balance
that can be achieved may vary. We intend to investigate in our future work,
the possibility of dividing large items into smaller ones, thus replicating only
fractions of the original items. It is likely that this granularity adjustment
will maximize the possible balance that can be achieved.

Until now clustering is performed with no direct relationship between

37

peers. A possible extension is to provide some locality inside the clusters,
meaning that all peers have a minimum distance between them. Since our
network is built on top of TCP/IP, a distance could be related to a ping
response time. This approach would create clusters which are formed from
peers which lie in the same geographical region, and therefore execute faster
intra-cluster actions.

Furthermore, until now we have paid little attention to the security of our
P2P system. We intend to work more on this subject by examining possible
behaviors under attacks as well as Byzantine failures. Our future efforts
will also try to develop various privacy related mechanisms, an extremely
important aspect in P2P networks.

Finally, in respect to our implementation, we would like to minimize the
possibility of peer fragmentation into multiple networks. Also various aspects
of our implementation need further work and enhancement. We intend to
keep on developing our system, in the form of free software (GPL-like license),

maximizing its performance and scalability.

38

Appendix A

Software Used

The following software systems or libraries were used to implement our cham-
pion application. The development was done in Java, resulting in a cross-

platform application.

e Java Development Kit v1.3.1 and v1.4
e Jakarta Log4j logging library

e File System API from Netbeans
The choice of this software was based mostly on the following reasons:

e They are based on the Java programming language, and consequently
are portable across all platforms for which a Java runtime environment

exists.

e They are distributed under the terms and conditions of free software,
either the General Public License or modifications, and therefore their

source code is freely available to the public domain.

e They have been severely tested under real conditions and are considered

reliable for extensive use.

39

Bibliography

[1] B. Yang and H. Garcia-Molina. Comparing hybrid peer-to-peer systems.

Proceedings of the 27th VLDB Conference, 2001. Roma, Italy.

[2] Napster Home Page. http://www.napster.com.

[3] Gnutella Home Page. http://gnutella.wego.com.

4]

[5]

6]

17l

18]

I. Clarke, O. Sandberg, B. Wiley, and T. Hong. Freenet : A distributed
anonymous information storage and retrieval system. In LNCS, editor,
Designing Privacy Enhancing Technologies: International Workshop on

Design Issues in Anonymity and Unobservability, volume 2009, New-
York, USA, 2001.

B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An in-
frastructure for fault-tolerant wide-area location and routing. Technical
Report UCB/CSD-01-1141, UC Berkeley, April 2001.

C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing nearby copies
of replicated objects in distributed environment. Proceedings of ACM
SPAA, June 1997.

A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems. Lecture Notes
in Computer Science, 2218:329-77, 2001.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scal-
able content addressable network. Technical Report TR-00-010, Berke-
ley, CA, 2000.

40

[9] P. Triantafillou, C. Xiruhaki, M. Koubarakis, and N. Ntarmos. Efficient

[10]

1]

[12]

[13]

[14]

[15]

|16]

[17]

content management in highly-dynamic p2p content sharing systems.

Internal Report, Technical University of Crete, 2002.

G. Cybenco. Load balancing for distributed memory multiprocessors.
Journal of Parallel and Distributed Computing, 7:279-301, 1989.

Y. F. Hu and R. J. Blake. The optimal property of polynomial based
diffusion-like algorithms in dynamic load balancing. Computational Dy-
namics, '98. K. D. Papailiou, D. Tsahalis, J. Périaux, D. Knorzer (Eds),
John Wiley & Son, (1998).

Y. F. Hu, R. J. Blake, and D. R. Emerson. An optimal migration
algorithm for dynamic load balancing. Concurrency: Practice and Ez-
perience, 10(6):467-483, 1998.

G. Karagiorgos and N. M. Missirlis. Iterative algorithms for distributed
load balancing. OPODIS, December 2000.

N. A. Lynch. Distributed Algorithms, chapter 14. Data Management
Systems. Morgan Kaufmann Publishers, Inc., 1996.

R. K. Jain, Dah-Ming W. Chiu, and W. R. Hawe. A quantitative mea-
sure of fairness and discrimination for resource allocation in shared com-
puter systems. Technical Report DEC-TR-301, Digital Computer Com-
poration, 1984.

A. Corradi, L. Leonardi, and F. Zambonelli. Diffusive load-balancing
policies for dynamic applications. IEEE Concurrency, 7(1):22-77, /1999.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algo-
rithms, chapter 37. The MIT electrical engineering and computer science
series. MIT Press, 1990.

41

