loannis Papaefstathiou
Ellemedia Technologies
Technical University of Crete

Stylianos Perissakis
Theofanis G.
Orphanoudakis
Nikos A. Nikolaou
George Kornaros
Nicholas A. Zervos
Ellemedia Technologies

George Konstantoulakis
InAccess Networks

Dionisios N.
Pnevmatikatos
Technical University of Crete

Kyriakos Vlachos
University of Patras

THE PRO3 REDUCES THE OVERHEAD INCURRED BY COMMON “BRUTE-FORCE"

ARCHITECTURES BY USING THE LEAST-REQUIRED HARDWARE RESOURCES FOR

CERTAIN COMMON WELL-DEFINED TASKS.

e e o 0 oo As the telecommunications industry
recovers from the severe downturn of recent
years, data traffic continues to exhibit a rate of
increase that outpaces advances in VLSI tech-
nology. Therefore, lowering overall system cost
at network processing nodes and maximizing
network utilization—hence revenues—remain
extremely important objectives. To address
these issues, new semiconductor devices called
network processing units (NPUs) have
emerged. They are optimized to provide pro-
grammable processing of protocol data units
(PDUg) in networks with diverse requirements
while efficiently supporting current and
emerging protocols and services. NPUs
promise to deliver an ASIC’s speed with a
CPU’s programmability, thus augmenting the
capacity and features of network nodes that
forward and manipulate data traffic.

An NPU often accommodates hardwired
components that have only a few hardware
configuration options, have no software pro-
grammability support, and are dedicated to
well-defined tasks such as framing, cyclic
redundancy code and checksum checking and
calculation. Furthermore, a number of NPUs
incorporate reduced-instruction-set-comput-
ing (RISC) microengines that provide spe-
cialized operations for network processing,
such as bit field manipulation, and extensive
software programmability features. Because
NPUs play an important role in today’s het-
erogeneous networks, efficient support of the
entire service-offering path, with a focus on

Published by the IEEE Computer Society

providing acceptable quality of service (QoS),
is critical.

Our Programmable Protocol Processor
(PRO3) system is a hybrid approach to the
demanding network processing puzzle compre-
hensively described by Comer.! PRO3 provides
the necessary processing power for network pro-
cessing with minimal hardware complexity by
following a more delicate approach than that of
most NPUs. That is, the architecture uses spe-
cial hardware modules for specific computation-
intensive tasks; special-purpose processors with
low hardware complexity, optimized for certain
functions; and high-performance, general-pur-
pose CPU cores only when absolutely needed.
The special-purpose processors and dedicated
hardware blocks handle most of the computa-
tion-intensive and real-time protocol functions,
and a pair of on-chip general-purpose proces-
sors optimized for fast context switching handle
the remaining functions, including higher-layer
protocols. PRO3 combines wire-speed process-
ing up to the network layer with best-effort pro-
cessing for higher-layer protocols. Finally, an on-
or off-chip control processor handles computa-
tion that is not on the fast path, such as control-
plane or exception processing. These
components are interconnected very efficiently.

The resulting system on a chip achieves
high performance in terms of processing
capacity and number of supported flows, pro-
viding additional functionality for differenti-
ated QoS and traffic shaping. Operating at
200 MHz, PRO3 supports complex packet

0272-1732/04/$20.00 © 2004 IEEE

Related work

Many companies have developed high-end NPUs, using proprietary
architectures with various programming models. Most commercial, high-
end NPUs fall into two categories: those using a large number of simple
RISC CPUs and those using a few high-end, special-purpose CPUs opti-
mized for processing network streams. The first category includes solu-
tions from big semiconductor companies, such as

e Intel’s IXP family, which uses from 8 to 16 very simple micro-
processors, together with a standard general purpose processor;'

e Freescale’s C-5, which uses 16 simple, general-purpose CPUs and
five very simple special-purpose coprocessors;” and

e (isco's Toaster family, which uses 16 simple microcontrollers.?

These NPUs claim to handle data rates from 2.5 to 10 Gbps, but the
actual bandwidth they can service depends heavily on the application.?
Thus, for complex applications, their performance degrades dramatical-
ly. Moreover, their performance is often limited by their intercommuni-
cation overhead and limited off-chip memory bandwidth.

The second category includes

e Broadcom’s BCM1250 with two two-way, superscalar, ultra-high-
speed CPUs that incorporate special-purpose processing units;®

e (learwater's CNP810SP, with an eight-thread, 10-issue CPU that
can simultaneously process eight packets and includes special-
purpose processing units;*

e E/Chip's NP1 0 with a number of very simple processing units, spe-
cialized for ultra-high speed memory lookups;” and

e an academic device that uses reconfigurable, complicated proces-
sors, presented by Memik, Memik, and Mangione-Smith.®

Although these NPUs pravide higher processing power for some com-
plex network protocals, they lack the first category’s parallelism. There-
fore, their performance for processing large numbers of independent flows

is very often lower in terms of bandwidth serviced than that of the first
category.

HiFn's (formely IBM's) PowerNP is probably the only device that follows
an approach similar to PRO3's. The PowerNP integrates many dedicated
hardware modules for queue handling, memory management, traffic sched-
uling, and so forth. However, it differs markedly from our architecture in
that its dedicated hardware modules consist of general-purpose proces-
sors augmented for specific tasks, whereas PRO3 uses hardware modules
that are designed and optimized for executing only the specific tasks. More-
over, PRO3 performs protocol processing using special-purpose program-
mable processing units designed especially for packet field manipulation,
whereas the PowerNP uses general-purpose CPUs.

References

1. S. Lakshmanamurthy et al., “Network Processor Performance
Analysis Methodology,” Intel Technology J., Aug. 2002, vol.
6, no. 3.

2. D.E. Comer, Network Systems Design Using Network
Processors, Prentice Hall, 2003.

3. Broadcom Corporation, BCM1250 Integrated 64-Bit MIPS
Multiprocessor, http://www.broadcom.com/products/product.
php?product_id=BCM1250&category_id=27.

4. Clearwater Networks CNP810SP Simultaneous Multithreading
(SMT) Core, http://www.zytek.com/~melvin/clearwater.html.

5. G. Memik, S.0. Memik, and W.H. Mangione-Smith, “Design
and Analysis of a Layer Seven Network Processor Accelerator
Using Reconfigurable Logic,” Proc. 10th Annual IEEE Symp.
Field-Programmable Custom Computing Machines (FCCM
02), IEEE Press, 2002, pp. 131-140.

6. J. Allen et al., “PowerNP Network Processor Hardware,
Software and Applications,” IBM Journal of Research and
Development, vol. 47, no. 2/3, March/May 2003, pp. 177-194.

processing at up to 2.5 Gbps. The PRO3
architecture’s main innovations are the use of
special-purpose, low-complexity program-
mable processors and sophisticated interface
hardware modules (memory managers and
schedulers), as well as the efficient microar-
chitecture of hardware blocks that implement

common functions and reduce software work-

load. (The “Related work” sidebar summa-
rizes other NPUs.)

PRO3 architecture

The initial NPU approach, focused on
high-speed switching and routing systems,
usually results in multi-chip solutions com-
prised of dedicated classifiers, traffic managers,

and switch fabrics. In contrast, PRO3 targets
systems that require increased packet manip-
ulation power for many concurrent connec-
tions at very high link rates. Typical systems
with these requirements include traffic con-
centrators supporting enhanced per-flow ser-
vices, such as security systems performing
packet filtering and protocol-aware connec-
tion tracking; signaling controllers; and traf-
fic-policing, metering, and statistics-collecting
systems. PRO3’s main goal is to accelerate par-
ticular bottlenecks in processing communi-
cation protocols.

Through detailed protocol analysis and
profiling, we developed a taxonomy of
protocol-processing requirements for which

SEPTEMBER—OCTOBER 2004

[EEE MICRO

HYBRID NPU ARCHITECTURE

most existing approaches face certain prob-
lems. Among all the protocols we examined,
we found a common set of frequently used
functions that generic RISC processors can-
not execute efficiently. We classify these func-
tions as follows:

* bit- and byte-level operations for header
parsing and modification;

* efficient memory management functions,
requiring specialized memory controllers
for maximum memory throughput, and
requiring intelligent operations for effi-
ciently handling structures accessed by
software;

* complex task- and traffic-scheduling
algorithms to support QoS;

* more frequent context switching than in
desktop processors (in the worst case,
once for every packet arrival); and

* robust on-chip interconnecton of vari-
ous processing modules without intro-
ducing bottlenecks.

PRO3 addresses these critical issues by
including special-purpose CPUs for the head-
er’s field extraction and modification, a high-
ly sophisticated memory management
hardware block, and two highly efficient hard-
ware scheduling modules to facilitate fair and
balanced packet processing and to control
data streams generated by internal modules.
Moreover, PRO3 uses two general-purpose
processors optimized for fast context switch-
ing to handle parts of the protocol processing
that the special-purpose processors and hard-
ware modules cannot efficiently execute.

Figure 1 illustrates the PRO3 architecture.
PRO3 classifies PDUs into up to 512,000
flows. The preprocessor integrates a special-
purpose processor that performs header pars-
ing, checksum calculation, and classification,?
based on a user-defined (through microcode)
set of the header’s fields, and generates a flow
ID, obtained by the external ternary content-
addressable memory (CAM). The special-
purpose processor assigns to each received
packeta flow ID that specifies in which queue,
handled by the data memory manager
(DMM), the packet belongs. The flow ID also
specifies the internal processing unit needed
and the piece of software that the unit should
execute. From the flow ID, the task scheduler

(TSC) identifies the appropriate destination
for further processing—that is, the repro-
grammable pipeline modules (RPMs), a gen-
eral-purpose CPU (either the internal RISC
core control CPU or an external host CPU), or
the output if the flow is configured in that way.

As Figure 1 illustrates, when a PDU arrives
at PRO3, it goes to the DMM; when the flow
ID is available, the PDU is segmented and
stored in the respective queue, and the DMM
notifies the TSC. At a certain time, the TSC
commands the DMM to send the PDU for
processing. At that point, the processing stage
starts. The TSC defines the processing unit
that will process the PDU, as well as the part
of the PDU to be sent for processing (usually
the first few segments containing protocol
headers), taking into account the need for load
balancing and efficiently controlling the
RPMs’ pipeline.

After processing the PDU, PRO3 can mod-
ify the PDU and append it to another queue
to undergo further processing by a higher-
layer protocol. This is the case when PRO3
implements a protocol stack and a user PDU
must be processed by several protocol layers.
It is the current processing task’s responsibil-
ity to assign a new flow ID, on the basis of
which PRO3 continues the processing. The
outgoing-traffic scheduler (TRS) handles
transmission, the final PDU-processing stage.

All PRO3 modules communicate over a
12.8-Gbps-bandwidth internal bus, coordi-
nated by a central arbiter. Bus transactions
transfer a segment of up to 64 bytes accompa-
nied by a 64-bit control word that indicates
the transfer source, destination, and other con-
trol information. Modules can exchange con-
trol messages using a control word without a
segment payload. A transaction’s request/grant
phase is pipelined with the data transfer phase,
to avoid idle bus cycles.

PRO3 huilding blocks

The PRO3 building blocks consist of the
packet preprocessor, the data memory man-
agement unit, the scheduler modules, and the
reprogrammable pipeline module. The first
three blocks are optimized for handling a very
large number of independent queues while
the last one executes very efficiently the major-
ity of today’s network protocol processing.
Moreover, the first three blocks can support

TCAM o | Extermalfost | Control RAM
(classification) I E_ _(optional) _E (state)
_________________ | *A¢ﬂ
! PRO3 Y v : Y ;
i SoC t(;,:\fM RISC |emrmnnmss : tCEU | Control RAM interface | :
: interface CPU sinterface A A A :
' i : \ i
: Timers i
5 RPM1 : RPM1 :
1 ' Insert/ :
: FEX|PPE [FMO| | i extract FEX|PPE |FMO i
YT Erpe 1 :
; R A A :
5 o Yy V. y Yy 5
: v D A : Internal bus A Y i
; Preprocessing N S : Y Post . :
] ATM/AAL Rx processing, ' Bus control, %ﬁ.ﬁ;ﬁiis.?:g i
] header processing and H task and traffic ; :
N flow classification Y ; scheduling processing e =
g ! Y ' \ i out Le &
8 _.» In - Data memory manager - g
a H P =
e Ll I sEmsssss| s s s s Ef s s EEEsEAEssEAsEEEssEASsSEsEEEEEEEEEEEEE - =
= . . D
R L S LI S S :
Y (AR Y
Pointer Storage Scheduling
RAM DRAM memory
AAL ATM adaption layer RPM Reprogrammable pipeline module
ATM Asynchronous transfer mode Rx Receive
FEX Field modification engine TCAM Ternary content-addressable memory
FMO Field modification engine Tx Transmit
POS-Phy Packet over Sonet, physical layer Ulll UTOPIA L3
PPE Protocol-processing engine

Figure 1. PRO3 architecture and packet-processing paths (dashed lines).

traffic processing at a constant rate of 2.5
Gbps under any conditions. The supported
network rate of the reprogrammable pipeline
module heavily depends on the application
running on it.

Packet preprocessor

The packet classifier in the ingress exploits
the features of the programmable field-
processing engine, which has the same fea-
tures as the protocol-processing engine, while
still is a different entity and the external
TCAM with 144-bit-wide classification key
entries. This block is responsible for lookup
of address or other fields, employed by most
network applications.

Data memory management unit

The DMM implements per-flow queuing for
up to 512,000 flows, enabling efficient queue
handling, variable-length packet storage, and
access to specific packet segments by the pro-
cessing engines. The DMM'’s main functions
are storing incoming traffic, retrieving packet
data, and forwarding that data to either the pro-
cessing units or the output interface. It operates
on both fixed-length cells and variable-length
packets. To achieve efficient memory manage-
ment, the DMM partitions incoming data
items into fixed-size segments of 64 bytes each.
It supports two incoming and two outgoing
ports of 2.5-Gbps bandwidth each—one port
for receiving traffic from the network (input),

SEPTEMBER—OCTOBER 2004

ld

HYBRID NPU ARCHITECTURE

[EEE MICRO

one for transmitting traffic to the network (out-
put), and a bidirectional port for receiving and
sending traffic from and to the internal bus. The
unit uses double-data-rate (DDR) DRAM for
data storage and zero bus turnaround (ZBT)
SRAM for segment and packet pointers. Thus,
all data structure manipulations occur in parallel
with data transfers, keeping DRAM accesses to
a minimum. Although hardware implementa-
tion of packet pointers may reduce performance
on small packets (40 to 64 bytes) by increasing
pointer RAM accesses, it reduces software over-
head and ultimately increases performance for
multisegment packets, which are much more
common in practice.

To support an aggregate throughput of 10
Gbps, we optimized the DMM’s free list orga-

nization and memory access ordering.

Efficient free list organization. The DRAM pro-
vides high throughput and capacity at the cost
of high latency and throughput limitations
caused by bank conflicts. Hence, we gave spe-
cial care to buffer allocation and deallocation.
Using two separate free lists reduces memory
accesses during buffer releasing (deleting or
dequeuing a large packet requires a fixed num-
ber of accesses to pointer memory).> Our
highly efficient allocation-deallocation scheme
reduces the number of DRAM bank conflicts
by 70 percent during writes and 46 percent
during reads.?

Memory access reordering. The execution of an
incoming operation might send read and
write commands to the data memory to
update corresponding data structures, thus
causing bank conflicts. By effectively reorder-
ing the read and write accesses (and keeping
a small list of accesses waiting to be serviced),
we reduced overall latency caused by DRAM
conflicts and increased system performance.
This reordering achieves a 30 percent reduc-
tion in mean access latency.’

Table 1 shows the 18 commands provided
by the DMM to support the diverse protocol-
processing requirements of a device that han-
dles queues. The latency of these commands
varies from 4 to 13 clock cycles. The complete
instruction set’s mean latency, when running
a large number of real networking applica-
tions, such as Internet Protocol (IP) forward-
ing, DiffServ metering, firewalling, and

multi-protocol encapsulation, is slightly more
than seven clock cycles.

As described in detail elsewhere,’ the DMM
meets its performance requirements (10 Gbps
equally shared by its four ports), even under
worst-case traffic. In any case, the DMM is
idle at least 25 percent of the time and uses at
most 75 percent of the available 13-Gbps sus-
tained DRAM throughput and 55 percent of
the available SRAM bandwidth. Therefore,
the DMM can service an overall throughput
even higher than 10 Gbps.

Scheduler modules

The requirement for processing-task sched-
uling emerges when the RPM engines process
packets at a rate lower than the packet arrival
rate. Hence, PDUs must be stored and sched-
uled for processing after the target processing
block has become available. For this purpose, we
use an internal scheduler, the task scheduler. The
TSC resembles the process-scheduling func-
tionality found in operating systems. It main-
tains priority queues to schedule the forwarding
of packets for processing according to a config-
urable priority per flow or per QoS class. The
network administrator sets up the priorities. In
the outgoing path, cells or packets processed or
generated by PRO3 must comply with specific
traffic profiles. Thus, we use a traffic scheduler
(TRS) to shape transmitted traffic according to
traffic management specifications. Figure 2 (on
p- 26) shows the organization of the scheduler
blocks. Scheduling is based on command and
status messages issued by the DMM, the CPU,
and the classifier (preprocessor). The Service and
Redirect block routes these commands to the
appropriate scheduling queue.

The TSC supports 32 hierarchical schedul-
ing queues, which load the PRO3 processing
resources (the two RPMs, the on-chip RISC,
and the external CPU) in a weighted-fair-
queuing order.* Multiple flows are multiplexed
round-robin in one scheduling queue. The
TSC treats the first queue with strictly highest
priority over the others. It can either treat the
remaining 31 scheduling queues with one pri-
ority or organize them into two sets with dif-
ferent priorities. Scheduling queues of the same
priority are served in a weighted-round-robin
(WRR) fashion. The TSC uses a connection
table, where it stores per-flow state informa-
tion, as well as connection-specific parameters

Table 1. DMM commands (/N is the number of segments in a packet).
Clock Input parameters/
Segment commands cycles Return values Action
Enqueue_Segment 10 Flow_id, Segment/None Enqueue single segment at end of a queue
Read_Segment 5 Flow_id/Segment Copy data of a single segment from head or tail of
specified queue (without deleting it)
Read_N_Segments 5+ N Flow_id, N/N Segments Read N segments from head or tail of specified
queue (without deleting it)
Dequeue_N_Segments 13+ N Flow_id, N/N Segments Dequeue N segments from head of specified
queue
Overwrite_Segment b Flow_id, segment/None Overwrite first or last segment of a queue with
new segment
Overwrite_Segment_length 7 Flow_id, New_segment_ Overwrite length attribute of
length/None last segment of flow id's queue
Dequeue_Segment 10 Flow_id/Segment Dequeue single segment at beginning of flow id's
queue
Ignore_Segment 4 None/None Ignore or delete single segment received from
input
Ignore&Overwrite_Segment_length 7 Flow_id, Ignore or delete received segment (from input)
New_segment_length/ and overwrite length of packet at tail of queue
None
Overwrite_Segment_length&Append 11 Src_Flow_id, Overwrite length at head of Source queue and
Dst_flow_id, append segment at Destination queue
New_segment_length/
None
Overwrite_Segment&Append 11 Src_Flow_id, Overwrite head of Source queue with new
Dst_flow_id, segment and append this segment at tail of
Segment/None Destination queue
Packet commands
Enqueue_Packet IxN+3 Flow_id, Packet/None Enqueue a single packet received from input
(after segmentation) at tail of queue
Read_Packet Ax N+ 2 Flow_id/Packet Copy data of a packet from head of flow id’s
queue (without deleting it)
Dequeue_Packet 8xN+7 Flow_id/Packet Dequeue a single packet from head of flow id's
queue
Append_Packet 11 Src_Flow_id, Append a single packet from head of Source
Dst_Flow_id/None queue to tail of Destination queue
Ignore_Packet 4 None/None Ignore or delete packet received from input
Ignore&Delete_Packet 9 None/None Ignore last segment (received from input) and
delete packet from tail of queue
Delete_Packet 9 None/None Delete packet received from input

such as the flow’s priority weight. Flows that
map to the same scheduling queue are grouped
in a linked list. Overall, the TSC and the TRS
share the same memory, which contains
512,000 traffic descriptors corresponding to
the number of supported flows. The TSC sup-
ports up to 2.5 Gbps while introducing a mean
latency of 217 ns per packet.”

The TRS performs WRR and shaped-

virtual-clock scheduling of outgoing asyn-
chronous transfer mode (ATM) cells or IP pack-
ets. Each flow’s peak rate PR is compiled to
minimum transmission interval M77 through
the following equation, where the predefined
data segment size PDS is 53 bytes for ATM,
while for IP it coincides with the segment size
supported by the DMM (64 bytes) and Slot

represents the time required for the transmis-

SEPTEMBER—OCTOBER 2004

HYBRID NPU ARCHITECTURE

On-chip bus
(]V]
Preprocessor > Y] . External traffic
. - Scheduling memory arbiter -+—»| descriptors
Service and RAM
redirect Iy i
DMM - B

- R RPN R ,
E — > L :! o ! ! Traffic |
' inked- || 1 i 3 scheduler !
' Dispatcher é list s fegc'i\g'z\aﬂck L'rl'iﬁd :
: manager || ! ;
| B I | manager | | manager !
| rpmi1, 2 rpmi, 2 - Y 1 b + + '
' | OUT manager 0123 _
i ‘ 0| Head | Tail [cB | cBent|| | | | | i1| Timers controller 5
1 . . : : | Timers and flags | :
: : e :
E 31 | Head | Tail | cB | CBent | | | | | | E CB Credit balance
] Destinations ' | CBent Credit balance counter
] SIDQ manager p CU Connection unit
E Task i MTI Minimum transmission interval
1 scheduler i | SIDQ Scheduling queue

Figure 2. Scheduler organization.

[EEE MICRO

sion of an ATM cell, in the ATM case, or for
the transmission of the Minimum packet size,
in the case that variable size packets are trans-
mitted:

PR=PDSI(MTI+ 1) * slot)

The TRS implements 32 scheduling queues
in total, each associated with the appropriate
group of flows and corresponding to a certain
peak rate, and it uses the same data structures
as the TSC. For a line rate of 2.5 Gbps, 32
discrete rates are adequate,” and the rate res-
olution becomes finer as peak rate decreases,
as the following equation shows:

Granularity = PDSI(MTI + 1)* *slot)

The network administrator configures the 32
rates during system initialization by loading spe-
cific configuration registers; he also assigns flows
to rate groups during flow setup by properly ini-
tializing the scheduling memory. The TRS
achieves per-flow shaping for ATM connections

and aggregate per-group shaping for IP flows.

Reprogrammable pipeline module

The RPM is the PRO3’s main protocol-
processing element, depicted in Figure 3. The
RPM’s core is the PPE, which has a modified
Hyperstone E1-32XS RISC-CPU core
(htep://www.hyperstone.com) and external
control logic. The main processor modifica-
tion is the partitioning of registers into two
sets. While the processor core accesses one set,
the PPE control logic can access the other, to
place packet information or retrieve updated
data directly into or out of the register file.
Processor switches register sets and informs
the external logic, via a special instruction,
every time it has finished processing a packet.
Similarly, direct I/O can be performed
through the processor’s dual-ported on-chip
data memory. By overlapping I/O operations
with packet processing, we manage to hide the
latency of these operations and substantially
accelerate network processing.

The PPE is surrounded by the field extrac-

To/from context RAM

CPU bus A
\i
é E Commands
PPE Control
From Data RAM Message control logic unit
Bus || | Barrel fields ~+—{ DP |
o ||||| shifter > 10 10 New BC
Registers fields :
1/0 port Instruction
— 5 RAM
: PC Registers o Modified Barrel .
. Cc:r;]ti:ol ; RISC B chiftor E|Registers ‘
n < 1
Insltqrxi}llon o Data | Instruction ” m_
RAM| RAM
Data RAM
FEX Protocol processing engine (PPE) FMO
- | | | | | | PC Program counter

Figure 3. RPM architecture.

tion and field modification engines. The FEX
parses packet headers and directly loads the
required protocol fields to the PPE for pro-
cessing. The FMO performs packet con-
struction or reconstruction and header
modification. All form a powerful three-stage
pipeline that constitutes the PRO3’s software-
processing heart.

We optimized both the FEX and the FMO
for bit and byte processing.® Figure 3 shows
their basic architectures. The FEX instruction
set includes nine basic instructions and four
commands (instructions without arguments),
which operate on data stored in a first-in, first-
out (FIFO) buffer of 32-bit words. The FEX
instruction set supports variable-length field
extraction, backward and forward movement
in the data FIFO, conditional branches, and
addition. FEX conditional branches are based
on extracted fields and header parsing. The
FMO instruction set includes 16 basic instruc-
tions and six commands, which support both
field extraction and insertion/modification.
Instructions can be combined and executed in
parallel with any command, reducing code size
and increasing performance.

The FEX and the FMO use only four and
five generic registers, respectively, plus a spe-
cial-purpose register and a data pointer (DP).
They execute up to 2,000-instruction

Packet bypass FIFO

firmware, which is sufficient for common net-
work applications. Both components process
data with a maximum throughput of 6.4
Gbps at 200 MHz.® The sustained through-
put might be lower because some instructions
need more cycles, and because one 32-bit
word can contain several fields that should be
extracted or inserted separately. The average
cycle-per-instruction ratio in executing real-
world network applications was 1.6 for the
FEX and 1.7 for the FMO.¢

Development tools and implementation
details

To facilitate software development and con-
figuration for the PRO3, we built a develop-
ment suite that configures registers, initializes
memory locations, and loads software mod-
ules into the PRO3. Figure 4 shows this tool’s
overall architecture. The user interacts with
the tool through the configuration GUI (CG).
For each PRO3 hardware module, the CG
contains a separate page on which the user
configures or develops code for that module.

The tool’s core is the configuration library
(CL), which maintains an internal register map
of the chip. The CL implements and exports a
set of functions, which the CG uses to set and
get the values of configuration registers and
internal memory locations. Additionally, the

DP Data pointer

SEPTEMBER—OCTOBER 2004

To
IBus

/l

External PC

Pool

files

configuration
and software

Low-level
read/write driver

A

HDL model of the PROS3 chip

Figure 4. PRO3 software development and configuration tool.

TCP/IP R — i

f' 1 iy
Con gt’rlatlon . MPC-860 (on-board control processor)
\ : : Configuration library
Configuration library : ; TCP/IP

with the configuration server

“ RN TR ITE RSB LR IR IS E RN RN T O B AT R EE R R N BT A e e T |i—
—@i | 1 R Timers e e]
e 1
el ¢ Insert/ | Internal
= Ll
it extract — CPU
C1a)s el
|. = Ik
el »

o RPM,

1

I

r P
— | Preprocess
— Others

TSC
and
TRS

(Arbiter, interfaces, misc.)

running on the on-chip or on-
board control processor. As a

i result, configuration com-
' mands initiated by this tool
arrive at the CS, which in turn
uses the software API offered
by the low-level read/write dri-
ver to access the PRO3’s mem-
ories and registers.

e

—
'

An innovative and useful
characteristic of the tool is that
it can configure either the
actual PRO3 chip residing on
the development board or a
hardware description language
model or netlist. This feature
considerably reduced the time
spent testing the fabricated
chip and facilitated the collec-

DMM Post

Debug

tion of measurements.

The PRO3 is fabricated in

process

United Microelectronics’ 0.18-

Figure 5. PRO3 layout.

[EEE MICRO

T

CL reads, parses, and compiles the configura-
tion files and software programs for all pro-
cessing units (mainly the FEX, FMO, and
PPE). Finally, the CL maintains a Transmis-
sion Control Protocol (TCP)-based session

um, 1.8-V process. It occupies
a 10 x 10 mm? die and is pad
limited. Figure 5 shows the
chip’s layout. The core occu-
pies a central 7.3 x 7.3 mm?
area, and the periphery holds
912 pads arranged in a stag-
gered dual-row pattern.

Table 2 lists the PRO3 prototype’s main char-
acteristics. Note that the sum of the individual
cores’ areas is only 36.95 mm?, but because the
design was pad limited, we expanded the lay-
out to fill a 53 mm? area to limit wiring con-

gestion and improve overall performance. Table
3 shows the complexity of all blocks. Evident-
ly, the most complicated custom core is the
DMM because it supports a complete instruc-
tion set for manipulating queues. However, the
DMM is still less expensive than similar mem-
ory management systems.” It is also worth not-
ing that the two custom 32-bit processing
engines (the FEX and the FMO) cover asilicon
area similar to that of an 8051-compatible, 8-bit
microcontroller core,” but, as we will show, they
are more efficient for certain applications than
some state-of-the-art 32-bit processors com-
monly found in NPUs.

Performance measurements

We evaluated the PRO3’s performance in
terms of the processor’s sustainable data
throughput, measured in packets per second
(PPS). We derived the detailed results pre-
sented here from extensive simulations of the
PRO3’s RTL model (which we also verified
against the actual chip) executing two repre-
sentative NPU applications: TCP stateful
inspection with network address translation
(NAT) and User Datagram Protocol (UDP)
stateful inspection (without NAT). We devel-
oped complete firmware for these applications
using the tools described earlier and executed
them in typical IP traffic.

The maximum packet arrival rate from the
2.5-Gbps input link is about 6.75 million PPS,
taking into account the minimum IP packet
size (40 bytes) plus at least 6 more overhead
bytes introduced by the off-chip PRO3’s
incoming interface. The PRO3’s dedicated
hardware units, such as the schedulers and the
DMM, perform fixed functions and can sup-
port 2.5 Gbps even when the input stream con-
sists of minimum-size packets. The internal
control CPU is used primarily for system con-
figuration, initialization, and handling excep-
tional cases, so its impact on application
performance is limited. In general, the time
needed for PDU processing depends on the
performance of the RPMs, which, given their
three-stage pipelined architecture, is limited by
the part that has the heaviest workload. PDU
processing varies for different applications and
protocols. In our experiments, the mean laten-
cy a PDU suffers from the time its first bit
enters the PRO3 until that bit is transmitted
on the output link is about 4.8 us (or 960 clock

Table 2. PRO3 characteristics.

Feature Description

Process 0.18-um, six metal

Supplies 1.8V (core), 3.3V (I/O)

Area 100 mm? (563 mm? core)

I/Os 912 (690 signals, 222 supplies)
Package 1,096-1/0O fine-line BGA

On-chip memory 1 Mbit (mainly dual-ported RAMs)
Logic gates 865,000

Transistors 12 million

Table 3. Complexity of PRO3 cores.

No. of logic Area
Hardware block gates (thousands) (mm2)
DMM 152.9 5.7/
TSC 47.8 0.86
TRS 53.3 0.86
CuU 9% 0.23
PPE (each) 90.3 6.8
FMO (each) 19.8 2.24
FEX (each) 8.3 1.16
Timers 7.9 0.13
Arbiter 5.8 0.08
Debugger /Al 0.58
Internal CPU 59.2 2.56
Packet preprocessor 56.3 1.38
Packet postprocessor 27.4 0.52
Insert/Extract 15.6 0.57
Host interface 9'b) 0.12
Context RAM interface 18.9 0.71
Miscellaneous 62.8 2.08
Total 865 36.95

cycles). This number does not include queu-
ing delay due to QoS support, which can be
very high for a low-priority packet when the
PRO3 is heavily loaded with high-priority traf-
fic. In those 4.8 us, the PRO3 receives about
12 Kbits of traffic, arriving at at 2.5 Gbps. But
the DMM acts as an elastic input buffer (and
supports several Mbytes of memory), ensuring
that the latency introduced by the various pro-
cessing components does not adversely affect
the processor’s mean throughput.

Performance results
Table 4 displays the number of executed

instructions and the corresponding latency in
clock cycles for the FEX, FMO, and PPE when

SEPTEMBER—OCTOBER 2004

HYBRID NPU ARCHITECTURE

Table 4. Performance comparison: PRO3 versus IXP2400 (KPPS: thousand packets per second).
TCP/NAT application UDP application (no NAT)
Clock Throughput Clock Throughput

Processor Instructions cycles (KPPS) Instructions cycles (KPPS)
PRO3
FEX 58 94 31 58
FMO 70 112 5) 93
PPE 108 113 19 20
RPM (slowest stage) 113 1,770 93 2,150
PRO3 (2 RPMs) 3,640 4,300
IXP2400
One microengine 132

(FEX program) 227 297 (together with 198

PPE program)

One microengine

(FMO program) 272 326 159 231
One microengine

(PPE program) 170 230 N/A N/A
Microengine complex 326 1,840 231 2,608

(slowest engine) (3 engines) (3 engines) (2 engines) (2 engines)
IXP (8 microengines) 4,571 9,567

3” [EEE MICRO

executing the IP firewall applications. Clearly,
in the TCP/NAT application, the pipeline
stages are very well balanced and the slowest
one is the PPE. Moreover, in the UDP appli-
cation, the slowest stage is the FMO, whereas
the PPE stage has many idle cycles because the
RPMs are optimized for more complex proto-
col processing. To compare the measured RPM
performance to that of state-of-the-art NPUs,
we ported the IP/NAT filter application to the
IXP2400 using the Intel development platform
and tools. We used three of the IXP2400’s
microengines, executing the equivalent of the
FEX, FMO, and PPE programs. We connect-
ed the microengines in a three-stage pipeline
because this configuration, dividing the work-
load almost equally among the three engines,
produces the best results for the IXP as well as
the PRO3. The UDP case doesnt require
address translation and recalculation, and the
optimal configuration proved to be two IXP
microengines forming a two-stage pipeline.
We obrtained the instruction counts shown
in Table 4 for the IXP2400 by applying the
highest compiler optimizations for perfor-
mance and handcrafting the produced code,
further increasing execution speed. The
throughput numbers also include the inter-
communication and scheduling overheads of

executing these applications, which are
unavoidable in the IXP but are handled by the
TSC in the PRO3. As the table shows, the two
RPMs support up to 3,540 KPPS in total in
the TCP/NAT case, while the entire IXP sys-
tem supports up to 4,571 KPPS. We mea-
sured the aggregate IXP performance with
eight microengines; one executes both the
FEX and PPE code while the other seven are
running a single program. Similarly, in the
UDP case, the two RPMs handle 4,300 KPPS
in total, whereas the entire IXP2400 supports
up t0 9,567 KPPS. These results show the pre-
sented architecture’s advantages in such appli-
cations, since, by utilizing two RPM engines
operating at 200 MHz, the PRO3 can achieve
throughput comparable to that of eight opti-
mized IXP microengines operating at 600
MHz. The optimization stems from the effi-
ciency of the FEX and FMO instruction sets
for certain protocol-processing tasks, for
which the IXP’s microengines need about
three times more instructions and clock cycles.
Additionally, the PPE’s low instruction count
and low latency show the efficiency of the
innovative direct-register-access I/O scheme.

To directly compare the throughput results
with those provided for the IXP family, we
attempted to estimate the PRO3’s equivalent

MIPS (million instructions per second), which
is the only metric for the IXP available in the
literature. The IXP2400 provides 4,800 MIPS
according to its datasheet, and as Table 4
shows, it executes the TCP/NAT application
at a maximum rate of 4,571 KPPS. Since the
PRO3 RPMs support up to 3,540 KPPS when
executing the same application, we can express
their equivalent protocol-processing capacity
as (3,540/4,571) x 4,800 or about 3,700
IXP2400 MIPS. The RPMs efficiency is also
demonstrated by the fact that the two RPMs,
on their own, are three times more powerful
in certain network applications than the entire
IXP1200 commodity NPU, even though they
have about the same complexity.®

In the preceding computation, we took only
the filtering and NAT processing into account.
To extend our computation to the scheduling
modules’ equivalent processing power, we
implemented the WRR scheduling algorithm
on the IXP2400 (in software) and measured
the MIPS needed to achieve the required
throughput. According to our results and to
Lakshmanamurthy et al.,® the IXP2400 needs
about 900 MIPS for WRR of 512,000 flows
at a rate of 4.8 MPPS, or 1,800 MIPS to sched-
ule both packet processing and transmission at
that same rate. In contrast, the PRO3 task and
traffic schedulers perform this function without
consuming RPM processing resources at a rate
of 6.75 MPPS, providing an equivalent pro-
cessing power of 2,530 IXP2400 MIPS. This
processing power should be added to that of
the RPMs (and that of the DMM and the pre-
processor which are, though very difficultly,
expressed in MIPS) in order to calculate the
overall power of the PRO3. The PRO3 archi-
tecture’s performance gains are also apparent
when we compare them with the PowerNP
family. According to Allen et al., the Pow-
erNP4GS3 (also manufactured in a 0.18-um
CMOS technology) supports up to 2.5 Gbps
or 6.1 MPPS of incoming TCP/IP traffic, con-
sisting of minimum-size packets, when exe-
cuting simple IPv4 forwarding.” Moreover,
according to Allen et al., to achieve this
throughput, the PowerNP4GS3 requires from
50 to 80 percent of its total processing power
(provided by 16 “picoprocessors”), depending
on the complexity of the application’s extensive
error-checking functions and on the required
robustness. We implemented the basic IPv4

packet-forwarding functionality in PRO3. The
two RPMs support the maximum packet input
rate of 6.75 MPPS, while consuming about 80
percent of their processing power. The RPM
bottleneck in this application is the FMO,
whereas the PPE is utilized less than 50 percent
of the time, leaving significant processing
power for additional packet processing. Final-
ly, the PowerNP’s additional coprocessors for
enqueuing, classification, checksumming,
policing, and scheduling acceleration are sim-
ilar, according to their specifications, to the
PRO3’s preprocessor/classifier module, the
DMM engine, and the scheduling modules,
which support packet classification, queuing,
and QoS functions at 6.75 MPPS. In the new
0.13-um PowerNP4GX, which operates at 500
MHyz, the PowerNP coprocessors aggregately
provide the equivalent of 8,250 MIPS when
processing traffic at a rate of 6 MPPS."
Summarizing our comparisons with state-of-
the-art NPUs, for the real network applications
examined, the PRO3 architecture is more effi-
cient than other common NPU architectures.
The PRO3 provides higher processing power
for certain QoS-aware applications than the
IXP2400, is more efficient, for a certain appli-
cation, than the PowerNP4GS3, and has com-
parable functionality with the PowerNP4GX.
Strengthening the advantages of its architectural
approach, the PRO3 is implemented in 0.18-
um technology and operates at 200 MHz,
whereas the IXP2400 is implemented in 0.13-
micron technology and operates at 600 MHz.
Finally, the PRO3 is about five times smaller
(12 million transistors) than the IXP2400 (60
million transistors), showing the efficiency of
the PRO3’s approach in terms of the hardware

resources needed.

Scaling

To scale the PRO3 architecture to higher
rates, such as 10 Gbps, we must increase both
the clock rate and the processing parallelism.
Shrinking the PRO3 design to the next tech-
nology generation would allow twice as much
logic capacity, and it is reasonable to expect a
clock rate of 400 MHz, for a fourfold net
increase in nominal performance. The obvi-
ous obstacle to those end-to-end performance
gains is the increasing memory bandwidth
required. We expect to overcome this obstacle
in two ways: first, using higher-performance

SEPTEMBER—OCTOBER 2004

HYBRID NPU ARCHITECTURE

32 [EEE MICRO

RAM architectures such as quad-data-rate
(QDR) SRAM and DDR-2 DRAM or fast-
cycle RAM (FCRAM); and second, by imple-
menting caching schemes. Since the DMM
handles most of the memory management in
PRO3, we can add a caching scheme to it,
which would be transparent to the rest of the
system. In addition, caching can be effective
for the most heavily utilized external RAM,
the control and context RAM, because access
bandwidth to the flow context increases pro-
portionally to the packet arrival rate, but stor-
age requirements do not. Therefore, caching
the context of high-bandwidth flows can
relieve off-chip bandwidth significantly, with-

out excessive on-chip storage requirements.

he PRO3 network processor is based on

a novel architecture, which demonstrat-
ed high performance when executing real-
world applications. Our experience with this
architecture, summarized in the experiments
presented here, suggests that tight coupling of
the processing elements and hardware support
in specific areas, such as queue management
and packet scheduling, can yield more effi-
cient platforms than the alternative approach
of combining large numbers of simple pro-
cessing units on a single chip. PRO3 has been
developed for the target application domain of
core network processing, supporting link
speeds of up to 2.5 Gbits/sec. Applying the
same design principles, we are currently
extending our design approach to the area of
lower speed access networks, where we expect
to see similar benefits. MCRD

Acknowledgments

We performed this work in the framework
of the Information Society Technologies IST-
1999-11449 PRO3 project, cofunded by the
European Union. We acknowledge contribu-
tions from Lucent Technologies, Hyperstone
AG, IMEC, the National Technical Univer-
sity of Athens, and Ellemedia Technologies.

References
1. D.E. Comer, Network Systems Design

Using Network Processors, Prentice Hall,
2003.

2. P. Gupta and N. McKeown, “Packet Classi-
fication on Multiple Fields,” Computer Com-
munication Rev., vol. 29, no. 4, Sept. 1999,

pp. 147-160.

3. G. Kornaros et al., “A Fully Programmable
Memory Management System Supporting
Queue Handling at Multi-Gigabit Rates,”
Proc. 40th Design Automation Conf. (DAC
03), ACM Press, 2003, pp. 54-59.

4. |. Papaefstathiou, et al., “An Innovative
Scheduling Scheme for High-Speed Net-
work Processors,” Proc. 2003 IEEE Int'l
Symp. Circuits and Systems (ISCAS 03), vol.
2, IEEE Press, 2003, pp. 93-96.

5. D.C. Stephens, J.C.R. Bennett, and H.
Zhang, "Implementing Scheduling Algo-
rithms in High-Speed Networks,” [EEE J.
Selected Areas in Communications, vol. 17,
no. 6, June 1999, pp. 1145-1158.

6. |. Papaefstathiou et al., “Packet Processing
Acceleration with a 3-Stage Programmable
Pipeline Engine,” IEEE Communication Let-
ters, vol. 8, no. 4, Mar. 2004, pp. 183-185.

7. B. Finch and W. Miller, “A New Reference
Design Development Environment for JPEG
2000 Applications,” System-on-Chip and
ASIC Design Conf. (DesignCon 03), 2003,
http://www.cast-inc.com/info/pr/materials/
cast_JPEG2K-paper_DCon03.pdf.

8. S. Lakshmanamurthy et al., “Network
Processor Performance Analysis Methodol-
ogy,"” Intel Technology J., vol. 6, no. 3, Aug.
2002.

9. J. Allen et al., “PowerNP Network Proces-
sor Hardware, Software and Applications,”
IBM J. of Systems and Development, vol.
47, nos. 2/3, March/May 2003, pp. 177-194.

10. IBM PowerNP4GX Product Brief, http:/
www.bellmicro.com/vendorshowcase/
ibmmicro/downloads/NP4GX.pdf.

Ioannis Papaefstathiou has recently been elect-
ed an assistant professor at the Technical Uni-
versity of Crete, Greece. He is also a technical
consultant at Ellemedia Technologies, Athens,
and a research associate at the Institute of
Computer Science, Foundation for Research
and Technology-Hellas (ICS-FORTH). His
research interests include architectures for net-
work processors and specific-purpose net-
working systems. Papaefstathiou has a BSc
from the University of Crete, an MSc from
Harvard University, and a PhD in computer
science from the University of Cambridge.

Stylianos Perissakis designs data transmission
and network-processing ICs at Ellemedia
Technologies. His research interests include
full- and semicustom IC design with empha-
sis on reconfigurable and embedded DRAM
architectures. Perissakis has a diploma in elec-
trical and computer engineering from the
National Technical University of Athens and
MSc and PhD degrees in computer science
from the University of California, Berkeley.

Theofanis G. Orphanoudakis leads R&D
activities in broadband networking compo-
nents at Ellemedia Technologies. His research
interests include network processors, perfor-
mance evaluation of broadband access
networks, and resource management.
Orphanoudakis has a Dipl-Ing in electrical
and computer engineering and a PhD in
telecommunications, both from the Nation-
al Technical University of Athens. He is a
member of the IEEE and the Technical
Chamber of Greece.

Nikos A. Nikolaou is a Technical Manager at
Ellemedia Technologies. His research inter-
ests mainly include Communication proto-
cols and QoS. Nikolaou has a diploma in
computer engineering and information sci-
ence from the University of Patras and a PhD
in electrical and computer engineering from
the National Technical University of Athens.
He is a member of the IEEE and the Techni-
cal Chamber of Greece.

George Kornaros is an acting technical man-
ager of the Broadband Networking Compo-
nents Group at Ellemedia Technologies. His
research interests include high-speed network
processors and communication architectures,
and VLSI design. Kornaros has a BS in com-
puter engineering from Patras University,
Patras, Greece, and an MS in computer sci-
ence from the University of Crete. He is a
member of the Technical Chamber of Greece.

Nicholas A. Zervos is managing director of
Ellemedia Technologies. His research inter-
ests include exploratory development of core
network technologies in home networking,
wireline/wireless systems, and broadband net-
working components. Zervos has a diploma
in electrical and mechanical engineering from

the National Technical University of Athens,
an MSc in systems and computing science
form Carleton University, Ottawa, and a PhD
in electrical engineering from the University
of Toronto. He is a member of the IEEE.

George Konstantoulakis is cofounder and
CTO of InAccess Networks. His research
interests include residential networks and high-
speed networking devices. Konstantoulakis has
a diploma in electrical and computer engi-
neering and a PhD in telecommunications,
both from the National Technical University
of Athens. He has initiated and managed the
PRO3 project. He is a member of the IEEE
and the Technical Chamber of Greece.

Dionisios N. Pnevmatikatos is an associate
professor of electrical and computer engineer-
ing at the Technical University of Crete and a
research associate at ICS-FORTH. His research
interests include the architecture and design of
computer systems, networking systems, and
system software. Pnevmatikatos has a BS in
computer science from the University of Crete
and an MSc and a PhD, both in computer sci-
ence, from the University of Wisconsin-
Madison. He is a member of the IEEE.

Kyriakos Vlachos is a professor in the Com-
puter Engineering and Informatics Depart-
ment of the University of Patras. Earlier, he
was a member of the technical staff of Bell
Laboratories, Lucent Technologies, the
Netherlands, where he participated in the
work described in this article. His research
interests include high-speed communication
systems, network processors, optical packet
switching, and optical labeling techniques.
Vlachos has a Dipl-Ing and a PhD, both in
electrical and computer engineering, from the
National Technical University of Athens. He
is a member of the IEEE.

Direct questions and comments about this
article to Ioannis Papaefstathiou, Ellemedia
Technologies, 223, Syggrou Av. 17121,
Athens, Greece; ygp@ics.forth.gr.

For further information on this or any
other computing topic, visit our Digital

SEPTEMBER—OCTOBER 2004

