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Preface 
It was a master course assignment, back in 2010, that led me to the semi-supervised machine 

learning field. The assignment required the development of an appropriate methodology for 

visual surveillance of industrial assembly lines, in a user friendly way; i.e. the development of 

an appropriate Decision Support System (DSS), able to handle complex data, in a cost effective 

way, avoiding long initialization processes. 

DSSs is a broad term utilized in many cases (Geertman and Stillwell, 2012; Knijnenburg et al., 

2012; Martínez et al., 2010). Regardless the application scenario, the main goal is always the 

same: Provide information to the user, in a meaningful way, supporting the decision making 

process. DSSs exploit a variety of methods from the machine learning field. They utilize 

available data in order to create appropriate structures and inference mechanisms. In the end, 

created structures produce an outcome for specific data, at a user’s request. 

It is evident that available data induce DSS performance (H. Chen et al., 2012; Demirkan and 

Delen, 2013); the more we have the better the performance, assuming that we have data of 

good quality. Nowadays, data availability is not such a problem. However, data abundance 

does not imply good features quality, neither explicit information over them. Semi-supervised 

learning (SSL) deals directly with these two major disadvantages. 

SSL approaches emerge naturally, as the data availability grow bigger over the years. We need 

approaches that utilize a small portion of data, processed by an expert, with a many times 

greater portion, available online. SSL exploits experts’ knowledge on a minimum amount of 

data, minimizing both the effort and the cost. Simultaneously, it take into account the rest of 

the available data in order to create high quality DSSs.  

In this thesis, various real life applications are presented, where SSL was necessary for the 

development of an appropriate DSSs. The first chapter is dedicated in SSL history, for the sake 

of completeness. If you are interested in the semi-supervised learning field, an excellent start 

would be the work of (Zhu and Goldberg, 2009a). The rest of the thesis chapters are dedicated 

to specific real-life application scenarios.  

Each of the chapters follows a similar structure. A brief description of the problem is provided 

at first. Then, the related work section describes the most recent approaches on the field1. As 

such, we can identify weak points and extend current research. Finally, a mathematical 

formulation is formed and applied. The end of each chapter contains experimental results and 

conclusions.  

 

 

 

  

                                                           
1 To the best of our knowledge, by the time published either as journal or conference paper.  
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Chapter I: A Bit of History 

Quality over quantity. 
Aristotle, Greek philosopher 

 

1 Introduction 
In this section we try to grasp, briefly, the notion behind Semi-Supervised Learning (SSL). As we will see, the 

core idea lies in the need for evolution, of existing techniques, in a cost effective way. It is extremely important 

to handle the data abundance, in a meaningful way, in order to: (a) improve model’s performance and (b) 

minimize experts’ interventions. As such, the first steps on the SSL field begun around 1960 when scientists 

started exploiting new (i.e. unseen so far, unlabeled) data to advance their models’ abilities. Since then, and 

up to date, SSL field continues to involve, motivated by the data abundance of our age. 

1.1 Definition of semi-supervised machine learning 
SSL is the machine learning task of inferring a function from labeled and unlabeled data. Thus, SSL falls 

between unsupervised learning, e.g. (Ranzato et al., 2007; Konstantinos Makantasis et al., 2013), and 

supervised learning, e.g. (Doulamis et al., 2003; Kosmopoulos et al., 2011). The main idea lies in the usefulness 

of unlabeled data (Seeger, 2001); when used, in conjunction with a small amount of labeled data, can 

considerably improve the model’s performance in terms of accuracy, precision, etc. 

Unlabeled data exploitation is based on various assumptions, regarding their structure and the feature space 

properties. There are in total three main assumptions, which can be used either alone or as a combination. 

Given an assumption, at least one appropriate regularizer over the unlabeled data is formed and utilized. Then, 

the model is trained and the overall performance is evaluated. 

SSL is used, mainly, for classification (Olivier Chapelle et al., 2006; Zhu, 2005). Other approaches involve 

feature reduction (Cheng et al., 2008) and hybrid hashing techniques (J. Wang et al., 2012), regression (Cortes 

and Mohri, 2006), and clustering (Anand et al., 2014; Grira et al., 2004) problems. There are, also, cases outside 

previous categories, e.g. metric learning (Q. Y. Wang et al., 2012); the work of (Hoi et al., 2008) utilized SSL to 

appropriate calculate a distance metric, applied in an image retrieval scenario. 

1.2 A brief history 
Usage of unlabeled data, in classification problems, is documented in 1965-1970 period. These approaches 

were using self-training techniques (Agrawala, 1970; Fralick, 1967; Scudder, H., 1965). The concept of such 

approach was rather simple; train a model, use it over new data to produce results, and use the new results 

to further train the model. Latter appeared transductive learning (Vapnik and Chervonenkis, 1974; Vapnik and 

Sterin, 1977). In this case the labeling procedure occurs only on the currently available (unlabeled) data. In 

contrast to inductive inference, no general decision rule is inferred. 

In the 1970s appeared the estimation problem of Fisher linear discriminant rule with unlabeled data (Hosmer, 

1973; McLachlan, 1977; McLachlan and Ganesalingam, 1982; O’neill, 1978). The main approach involved 

mixture of Gaussians and the expectation maximization algorithm into an iterative algorithm (Dempster et al., 

1977). The goal was the maximization of likelihood in both labeled and unlabeled data. Such approaches used 



 

 

2 Decision Making via Semi-Supervised Machine Learning Techniques 

Eftychios Protopapadakis | TECHNICAL UNIVERSITY OF CRETE 

one-component-per-class setting. Yet, it is possible to use multiple components (Miller and Uyar, 1996; 

Shahshahani and Landgrebe, 1994) or different mixture models (Cooper and Freeman, 1970).  

Theoretical analysis over the SSL field first took place in 1980. The work of (Ratsaby and Venkatesh, 1995), 

over a mixture of two Gaussians, produced learning rates in a probably approximately correct framework. 

Additionally, if we have an identifiable mixture, with an infinite number of unlabeled points, the probability of 

error has an exponential convergence to the Bayes risk (Castelli and Cover, 1995). Theoretical analysis is still 

an active field (Lafferty and Wasserman, 2007; Nadler et al., 2009). 

 

Figure 1.1. The SSL field evolution through the years.. 

After 1990, SSL has been extensively used in natural language problems (Collins and Singer, 1999; Yarowsky, 

1995) and text classification (McCallum and Nigam, 1998; Nigam et al., 2000). The co-training approach was 

introduced by (Blum and Mitchell, 1998); the two classifiers (or hypotheses) must agree on the much larger 

unlabeled data as well as the labeled data. Evaluating results over generative mixture models and EM are 

shown in (Nigam and Ghani, 2000). 

At the same time emphasis where given in discriminative decision boundaries and their placement away from 

dense regions. That problem led to transductive support vector machines, a method that is NP-hard. Primary 

researchers had focused on efficient approximation algorithms. Early algorithms (Demiriz and Bennett, 2001) 

(Fung & Mangasarian, 1999) either cannot handle more than a few hundred unlabeled examples, or did not 

do so in experiments. The SVM-light TSVM implementation (Joachims, 1999) is the first widely used software. 

In the 2000s graph-based methods (Goldberg and Zhu, 2006) emerged. The data are represented by the nodes 

of a graph, the edges of which are labeled with the pairwise distances of the incident nodes (and a missing 

edge corresponds to infinite distance). The SSL concept in a graph minimum cut problem was used by (Blum 

and Chawla, 2001) for binary classification. Since then, research has focused on different regularizers 

exploitation (Niu et al., 2013) and effective weight matrix construction (Liu et al., 2010), in order to deal with 

scalability issues. 

The last decade emphasis is given on synergies. At first the methodology of (Ratle et al., 2010) constitutes a 

general framework for building computationally efficient semi-supervised methods on hyperspectral image 

classification problems. The work of (Kingma et al., 2014) is based on deep generative models and approximate 

Bayesian inference, exploiting recent advances in variational methods. Deep hybrid Boltzmann machines and 

deep noising auto encoders are described in (Ororbia II et al., 2015). 
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1.3 Practical value of SSL 
The acquisition of labeled data for a learning problem often requires a skilled human agent (e.g. to transcribe 

an audio segment, annotate background in an image, etc.) or a physical experiment (e.g. determining the 3D 

structure of a protein ,determining whether there is oil at a particular location). The cost associated with the 

labeling process, thus, may render a fully labeled training set infeasible, whereas acquisition of unlabeled data 

is relatively inexpensive. In such situations, SSL can be of great practical value2. SSL is also of theoretical 

interest in machine learning field and as a model for human learning. 

One major advantage is the easy implementation on existing techniques; SSL can be directly or indirectly 

incorporated in any machine learning task. Semi-supervised SVMs approaches are a classical example of direct 

usage of SSL assumptions into the minimization function (Qi et al., 2012). Indirect utilization of SSL can be 

found in multi-objective optimization (MOO) frameworks (Alok et al., 2015; Cheng et al., 2012; Kobayashi et 

al., 2012). In MOO we have multiple fitness evaluation functions; many of them are based on SSL assumptions. 

Then, from a large pool of possible solution we peak those over the Pareto front. Thus, SSL is involved in the 

best individual selection procedure. 

In real life, there are literally countless fields of testing, assuming that there is data availability. Some examples, 

further developed in the following chapters, are provided: The work of (E. Protopapadakis et al., 2015)  

evaluates the foundation piles structural situation using graph based approaches. A scalable graph based 

approach was used in (Makantasis et al., 2015c) for the initialization of a maritime surveillance system. The 

SSL cluster assumption was used in (Makantasis et al., 2015b) for the initialization of a fall detection system 

for elder people. A self-training approach is adopted by (Protopapadakis et al., 2012) for industrial workflow 

surveillance purposes in Nissan factories. In cultural heritage, SSL has been exploited by (Protopapadakis and 

Doulamis, 2014) in order to develop image retrieval schemes suitable to the user preferences. 

                                                           
2 There are, of course, other approaches dealing with the labeling cost; active learning (Demir et al., 2014), noisy labelers 
(Ipeirotis et al., 2013), etc. 
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Chapter II: The Basics 

You can't cross the sea merely by standing and staring at the water.  
Rabindranath Tagore, Bengali polymath 

 

2 Understanding the SSL field 
In this section, we move deeper into the world of SSL using mathematical notations and formulation. 

Additionally, we provide further information regarding the main assumptions of the field, the various 

regularizers and the techniques’ taxonomy. In order to understand the utilized techniques and proposed 

approaches of this thesis, someone needs to grasp the basic formulations on the field3. At very fist, we start 

with some basic notations, most of them are in accordance with (Zhu and Goldberg, 2009a). 

Let us denote as 𝓧 ∈ ℝ𝑑 the space of input values (i.e. features originating from available data) and 𝒴 ∈ ℝ𝑚, 

the space of output values. 𝑿 = {𝑥1, … , 𝑥𝑛} . The space of input values is divided in two sub sets 𝑿𝐿 =

{𝑥1, … , 𝑥𝑙}  and 𝑿𝑈 = {𝑥𝑙+1, … , 𝑥𝑛} . We also have 𝒀𝐿 ⊂ 𝒀  available outputs. Generally, the decision 

mechanism is a function 𝑓: ℝ𝑑 → ℝ𝑚, that maps any given 𝑥𝑖 ∈ 𝓧 to an appropriate 𝑦𝑖̂ ∈ ℝ𝑚. We want 𝑦𝑖̂ ≅

𝑦𝑖 , ∀𝑖 = 1, … , 𝑛, i.e. the models’ outputs be similar to an expert’s decision. At this point, let us explain why we 

prefer 𝑦𝑗̂ ≅ 𝑦𝑗, rather than 𝑦𝑗̂ = 𝑦𝑗, ∀𝑗 = 1, … , 𝑙. There is always the possibility of labeling errors among the 

labeled data set.  

2.1 Inductive vs. transductive learning 
Please note a very important detail at this point; SSL may refer to either transductive learning or inductive 

learning. If 𝑿 ⊂ 𝓧 then we may have transductive or inductive learning (depending on the method). If 𝑿 = 𝓧 

we have transductive learning: we have a set of observations and we do not expect any more. Thus, we utilize 

all of them. The goal of transductive learning is to infer the correct labels for the given unlabeled data 

𝑥𝑙+1, … , 𝑥𝑙+𝑢 only (i.e. current subspace). The goal of inductive learning is to infer the correct mapping from 

𝑋 to 𝑌 (i.e. entire space 𝓧). Put it simply, inductive techniques can generalize to unseen data and transductive 

cannot. Thus, according to (Zhu and Goldberg, 2009a) we have: 

Inductive semi-supervised learning: Given a training sample, {(𝒙𝑖, 𝒚𝑖)}𝑖=1
𝑙 , {𝒙𝑗}

𝑗=𝑙+1

𝑛
, inductive semi-

supervised learning learns a function 𝑓: 𝓧 → 𝓨 so that 𝑓 is expected to be a good predictor on future data, 

{𝒙𝑘}𝑘=𝑛+1
𝑚 . Like in supervised learning, one can estimate the performance on future data by using a separate 

test sample {𝒙𝑘 , 𝒚𝑘}𝑘=𝑛+1
𝑚 , which is not available during training. 

Transductive learning: Given the same training sample, as before, transductive learning trains a function 

𝑓: 𝓧 → 𝓨 so that 𝑓 is expected to be a good predictor on the unlabeled data, {𝒙𝑗}
𝑗=𝑙+1

𝑛
. Note 𝑓 is defined only 

on the given training sample, and is not required to make predictions outside. It is therefore a simpler function. 

                                                           
3 Rest assured these formulations are repetitive and very consistent among the researchers on the SSL field. After a while, 
you will be able to follow such notations with ease.  
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2.2 Exploitation of unlabeled data 
Unlabeled data provide further information during the models initialization phase. Available information is 

utilized through regularizers (Bousquet et al., 2004). The regularizer is a functional, defined by the user and 

the adopted SSL assumption(s). As such, there are many alternatives to be used for a given problem. 

2.2.1 Assumptions 
In order to make any use of unlabeled data, we must assume some structure to the underlying distribution of 

data. SSL algorithms make use of at least one of the following assumptions. 

1. Smoothness assumption: Points which are close to each other are more likely to share a label. This is also 

generally assumed in supervised learning and yields a preference for geometrically simple decision 

boundaries. In the case of semi-supervised learning, the smoothness assumption additionally yields a 

preference for decision boundaries in low-density regions, so that there are fewer points close to each 

other but in different classes (Zhou et al., 2004). 

2. Cluster assumption: The data tend to form discrete clusters, and points in the same cluster are more likely 

to share a label (although data sharing a label may be spread across multiple clusters). This is a special 

case of the smoothness assumption and gives rise to feature learning with clustering algorithms (Li et al., 

2008). 

3. Manifold assumption: The data lie approximately on a manifold of much lower dimension than the input 

space. In this case we can attempt to learn the manifold using both the labeled and unlabeled data to 

avoid the curse of dimensionality. Then learning can proceed using distances and densities defined on the 

manifold. Manifolds are usually estimated using graphs (Belkin and Niyogi, 2004). 

2.2.2 Regularization 
Regularization, in the fields of machine learning and inverse problems, refers to a process of introducing 

additional information in order to solve an ill-posed problem or to prevent overfitting. This information is 

usually of the form of a penalty for complexity, such as restrictions for smoothness or bounds on the vector 

space norm. This section focuses on gasping the regularization notion by providing few characteristic 

examples, exploited in SSL. Thus, depending on the assumption, we may have smoothness, cluster or manifold 

based (Niyogi, 2013) regularizers. There are, also, approaches that utilize multiple regularizers (Chapelle and 

Zien, 2004; Chen and Wang, 2011).  

Smoothness regularization involves around significant changes in 𝑓  values, for closely located feature 

vectors 𝒙. To put it simply, we do not want a function that does too many jumps (Belkin et al., 2004), especially 

in dense areas. A typical smoothness functional is the following (Belkin et al., 2004):  

𝑆(𝑓) = ∑ 𝑾𝑖𝑗(𝑓𝑖 − 𝑓𝑗)
2

𝑖~𝑗

 (2.1) 

In eq. (2.1) the sum is taken over the adjacent vertices of a given graph. For “good” functions 𝑓 the functional 

𝑆(⋅)  takes small values. A natural extension of this idea is the cluster assumption. Cluster regularization 

involves around decision boundaries. The boundaries are forced away from high density regions. As such, a 

cluster based regularizer is also, expected to create a smooth function. 

Cluster based approaches assume that the data contains clusters, which have homogeneous labels, and the 

unlabeled observations are used to identify these clusters. This idea can be put in practice in several ways, 

giving rise to various methods. The simplest is: estimate the clusters, then label each cluster uniformly. Most 

of these methods (Hartigan and Wong, 1979) use definition of clusters , namely the connected components 

of the density level sets. However, they use a parametric -usually mixture- model to estimate the underlying 
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density which can be far from reality. An investigation on generalization error bounds has been provided by 

(Rigollet, 2006). 

The cluster assumption can be interpreted in another way, that is, as the requirement that the decision 

boundary has to lie in low density regions. This interpretation has been widely used in learning since it can be 

used in the design of standard algorithms such as Boosting (d’Alché-Buc et al., 2002; Hertz et al., 2004) or SVM 

(Chapelle and Zien, 2004), which are closely related to kernel methods mentioned above. In these algorithms, 

a greater penalization is given to decision boundaries that cross a cluster. 

Manifold regularization is a different approach from the previous two, supported by a much larger collection 

of algorithms. Manifold regularization involves two steps: the creation of an appropriate manifold and the use 

of a regularizer over it. The most common approach for manifold creation is the data adjacency graph, which 

can be calculated in many ways (Belkin and Niyogi, 2004; Luo et al., 2013). Any regularizer applied over the 

graph is a manifold regularizer. 

Manifold learning has been widely used for capturing the local geometry (Fan et al., 2011) and conducting 

low-dimensional embedding (L. Chen et al., 2012). In manifold regularization, the data manifold is 

characterized by a nearest-neighbor-graph 𝒲, which explores the geometric structure of the compact support 

of the marginal distribution. The Laplacian ℒ  of 𝒲  and the prediction 𝐟 =  [ 𝑓 (𝑥1), … , 𝑓(𝑥𝑛)]  are then 

formulated as a smoothness constraint ‖𝑓‖𝐼
2 = 𝐟T . The manifold regularization framework minimizes the 

regularized loss: 

argmin
𝑓∈ℋ𝑘

1

𝑙
∑ 𝐿(𝑓, 𝑥𝑖, 𝑦𝑖)

𝑙

𝑖=1

+ 𝛾𝐴‖𝑓‖𝑘
2 + 𝛾𝐼‖𝑓‖𝐼

2 (2.2) 

where 𝐿 is a predefined loss function, 𝑘 is the standard scalar valued kernel, i.e., 𝑘 ∶ 𝒳 × 𝒳 → ℝ, and ℋ𝑘 is 

the associated reproducing kernel Hilbert space (RKHS). Here, 𝛾𝐴 and 𝛾𝐼 are trade-off parameters to control 

the complexities of 𝑓  in the ambient space and the compact support of the marginal distribution. The 

representer theorem (Belkin et al., 2006) ensures the solution of eq. (2.2) takes the form 𝑓∗(𝑥) =

∑ 𝑎𝑖𝑘(𝑥, 𝑥𝑖)𝑛
𝑖=1 , where 𝑎𝑖 ∈ ℝ  is a coefficient. A pair of close samples means that the corresponding 

conditional distributions are similar, so that the manifold regularization ‖𝑓‖𝐼
2 helps the function learning.  

While many semi-supervised algorithms have been derived from this perspective and many have enjoyed 

empirical success, there are few theoretical analyses that characterize the class of problems on which manifold 

regularization approaches are likely to work (Niyogi, 2013). In particular, there is some confusion on a 

seemingly fundamental point. Even when the data might have a manifold structure, it is not clear whether 

learning the manifold is necessary for good performance (de Sousa et al., 2015). 

2.2.3 The importance of feature selection 
Feature extraction is a special form of dimensional reduction. Transforming the input data into the set of 

features is called feature extraction. This procedure involves reducing the amount of resources required to 

describe a large set of data. When performing analysis of complex data one of the major problems stems from 

the number of variables involved. Analysis with a large number of variables generally requires a large amount 

of memory and computation power or a classification algorithm which overfits the training sample and 

generalizes poorly to new samples. Feature extraction is a general term for methods of constructing 

combinations of the variables to get around these problems while still describing the data with sufficient 

accuracy. 

In other words, bad features harm the accuracy of the model. The work of (Makantasis et al., 2015a) 

demonstrates that low level features are not sufficient for complex visual recognition tasks. Yet, the selection 

of good features does not guarantee a good performance. The work of (E. E. Protopapadakis et al., 2015) on 
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credit risk assessment demonstrates the impact of labeled data selection. Although the features utilized were 

statistically significant, the random selection of few as representative ones, could jeopardize models’ 

performance. Actually, depending on the core SSL method, a different sampling approach performed best. It 

is therefore crucial not only the quality of features, but also the selection of the most descriptive data, to serve 

as a training set. 

2.2.4 Possible risks 
SSL techniques facing various threats from the usage of unlabeled data. The possible problems depend on the 

technique utilized and can be categorized as theoretical foundation problems and implementation problems. 

1. Model’s related assumption(s) correctness. It is a common approach to make some assumptions regarding 

the unlabeled data distributions (especially when we are working with generative models (Vandewalle et 

al., 2013).  

2. Degeneration in non- informant function: (Nadler et al., 2009) have shown that graph Laplacian methods 

(and more specific the regularization approach (Zhu, 2003) and the spectral approach (Belkin and Niyogi, 

2002)) are not well posed in spaces ℝ𝑑 , 𝑑 > 2, and as the number of unlabeled points increases the 

solution degenerates to a non-informative function. 

3. High dimensionality related problems: or simply stated as the curse of dimensionality. In few words, if we 

have a feature space of many dimensions we will face a significant decline in the performance. Let us 

explain that using a paradigm (Hein et al., 2005). Let 𝒏 and 𝒎 be points drawn from a d-dimensional 

Gaussian distributions, so that 𝒏~𝑁(𝜇1, 𝜎1
2 ⋅ 𝑰)  and 𝒎~𝑁(𝜇2, 𝜎2

2 ⋅ 𝑰) . Then their expected distance 

satisfies: 

 
𝐸{‖𝒏 − 𝒎‖2 } = 𝐸 {∑|𝑛𝑖 − 𝑚𝑖|2

𝑑

𝑖=1

}     

= ∑{𝑉𝑎𝑟(𝑛𝑖 − 𝑚𝑖) + 𝐸{𝑛𝑖 − 𝑚𝑖}2} 

𝑑

𝑖=1

  

= 𝑑(𝜎1
2 + 𝜎2

2) + ‖𝜇1 − 𝜇2‖2 
 

(2.3) 

Thus, if 𝑑 is large, the noise term 𝑑(𝜎1
2 + 𝜎2

2) will always dominate the “informative term” ‖𝜇1 − 𝜇2‖2; 

i.e. the model will not perform well. 

4. Scalability: most SSL methods scale badly with the data size 𝑛. The classical TSVM (Joachims, 1999) scales 

exponentially with 𝑛. CCCP-TSVM approach (Collobert et al., 2006) has the lowest complexity, but it scales 

as at least 𝑂(𝑛2). Graph-based SSL usually has a cubic time complexity 𝑂(𝑛3) since the inverse of the 𝑛 ×

 𝑛 graph Laplacian is needed, thus blocking widespread applicability to real-life problems that encounter 

growing amounts of unlabeled data. To temper the cubic time complexity, recent studies seek to reduce 

the intensive computation upon the graph Laplacian manipulation or deal with other possible issues 

(Delalleau et al., 2005; Fergus et al., 2009; Karlen et al., 2008; Tsang and Kwok, 2006; Zhu and Lafferty, 

2005). However, these methods require filed knowledge or make assumptions that is not always 

applicable. 

2.3 Taxonomy of techniques 
Starting from early 1960 and up to date, many techniques were conceived, evaluated and improved. It is most 

fortunate that the majority of them can be categorized using some basic filters: learning inference and model 

basis. In the following we present a brief taxonomy of these techniques. If necessary, we will provide further 

mathematical notations and formulations.  
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2.3.1 Generative models 
Models that randomly generate observable data, typically given some hidden parameters, are called 

generative. Such model specifies a joint probability distribution over observation and label sequences, 𝑃(𝒙, 𝑦). 

Generative models are used in machine learning for either modeling data directly (i.e., modeling observations 

drawn from a probability density function), or as an intermediate step to forming a conditional probability 

density function. Recent examples, in the fields of computer vision and text analysis, is the work of (Beecks et 

al., 2011; Kang et al., 2012; Lücke and Eggert, 2010; Rauschert and Collins, 2012; F. Zhuang et al., 2012). 

Generative models recognize the semi-supervised learning problem as a specialized missing data imputation 

task for the classification problem. Existing generative approaches based on models such as Gaussian mixture 

or hidden Markov models (Zhu and Ghahramani, 2002), have not been very successful due to the need for a 

large number of mixtures components or states to perform well. Yet, there is also evidence that generative 

models can converge faster than discriminative, as shown by (Ng and Jordan, 2002)Ng and Jordan (2002), and 

so are valuable when dealing with small data sets. 

Assuming that there is a data set 𝑿𝐿 = {(𝒙1, 𝒚1), … , (𝒙𝑙 , 𝒚𝑙)}, we wish to fit a model parameterized by some 

set of parameters 𝜃 to the set’s distribution, using maximum likelihood method: 

𝜃∗ = 𝑎𝑟𝑔max
𝜃

∑ log(𝑃(𝒙𝑖 , 𝑦𝑖|𝜃))

𝑙

𝑖=1

 (2.4) 

However, there is no guarantee that eq. (2.4) produces a good solution; i.e. which generalize well to unseen 

data, 𝑿𝑈 = {𝒙𝑙+1, … , 𝒙𝑙+𝑢}, especially if the model is rich or the feature space 𝓧 high dimensional (Fox-

Roberts and Rosten, 2014). Thus, incorporating the unlabeled data, we have the following equation: 

𝜃𝑆
∗ = 𝑎𝑟𝑔max

𝜃
[∑ log(𝑃(𝒙𝑖 , 𝑦𝑖|𝜃))

𝑙

𝑖=1

+ ∑ log(𝑃(𝒙𝑖|𝜃))

𝑙+𝑢

𝑖=𝑛+1

] (2.5) 

Yet, eq. (2.5) has proven to give mixed results, sometime improving model fitting, other times worsening it. 

Various solutions have used non-parametric density models, either based on trees (Kemp et al., 2004) or 

Gaussian processes (Adams and Ghahramani, 2009), but scalability and accurate inference for these 

approaches is still lacking. Variational approximations for semi-supervised clustering have also been explored 

previously (Li et al., 2009; Wang et al., 2009). In order to guarantee the decrease of the misclassification risk 

the distribution should be identifiable (Castelli and Cover, 1996). 

The asymptotic behavior of semi-supervised learning where the model is miss-specified has been further 

studied by (O. Chapelle et al., 2006), where no assumptions are made about the parametric model being close 

to the underlying distribution. In particular, they show that the limiting value of the optimum parameters, 

when performing ML semi-supervised learning in such a scenario are: 

𝜃∗ = 𝑎𝑟𝑔max
𝜃

[(1 − 𝜆)𝐸𝑃(𝑋,𝑌)(log 𝑃(𝒙, 𝑦|𝜃)) + 𝜆𝐸𝑃(𝒙)] (2.6) 

where 𝜆 is the probability of a sample being unlabeled and 𝐸(⋅) is a combination of objective functions. If 𝜆 

varies (say by adding unlabeled samples) then this will likely change the optimal parameters 𝜃∗, and so the 

associated error rate. In the limit, as 𝜆 → 1, we will tend towards the solution found training entirely on 

unlabeled data. They argue that with a few assumptions on the modelling densities, 𝜃∗  is a continuous 

function of 𝜆. They also show that an instance where the asymptotically optimal parameters are not changed 

by 𝜆 comes, as might be expected, when the model is “correct” and can be fitted exactly to the underlying 

distribution; i.e., the true distribution 𝑃(𝒙, 𝑦) is a member of the family of distributions that can be modelled 

by 𝑃(𝒙, 𝑦|𝜃). 
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2.3.2 Self-training and multi-view learning 
In self-training a model is first trained with the small amount of labeled data and then is used to classify the 

unlabeled data. Typically the most confident unlabeled points, together with their predicted labels, are added 

to the training set. The classifier is re-trained and the procedure repeated by using its own predictions. 

Mathematical foundation on convergence was given for specific learners in (Culp and Michailidis, 2008; Haffari 

and Sarkar, 2012). 

Self-training has been applied to several natural language processing tasks: word sense disambiguation 

(Yarowsky, 1995), identification of subjective nouns (Riloff et al., 2003), Self-training has also been applied to 

parsing and machine translation as shown in work of (Rosenberg et al., 2005) who applied self-training to 

object detection systems from images. The work of (Protopapadakis et al., 2012), on industrial surveillance, 

utilized a similarity based mechanism to refine self-trained classifier’s outputs. 

 

Figure 2.1. A typical illustration of the self-training approach. At first the model is trained using only the few labeled data. Then, it 
actuates over the unlabeled ones, selects the most confident predictions and retrains itself. That procedure repeats until certain criteria 
are met. 

The demand for redundant views of the same input data is a major difference between multi-view and single-

view learning algorithms. Thanks to these multiple views, the learning task can be conducted with abundant 

information. However if the learning method is unable to cope appropriately with multiple views, these views 

may even degrade the performance of multi-view learning. Through fully considering the relationships 

between multiple views, several successful multi-view learning techniques have been proposed (Xu et al., 

2013). many of them have been modified in order to use SSL assumptions (Sun, 2013). A very common 

approach in Multi-view learning is co-training. 

Co-training has been proposed by (Blum and Mitchell, 1998), in which the description of each samples can be 

partitioned into two distinct views. The basic idea is to train two learners separately on each view, and then 

each learner predicts unlabeled samples to enlarge the training set for the other. However, there is a drawback 

in co-training algorithms: the repeated loop of learning process reduces the learning speed and reinforces the 

error. Co-training makes a strong assumption that the two feature sets involved should be conditionally 

independent given a class. Although some studies have been done to relax this assumption with weaker ones 

(Balcan et al., 2004), a basic intuitive requirement, that the involved classifiers should be different enough 

from each other, should be met so that they can complement each other (S. Li et al., 2011). 
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Figure 2.2. Illustration of the multi-view training. Over the initial set of labeled data various classifiers are formed. Their performance 
is evaluated for a sub set of features, in both labeled and unlabeled data. Then, what appears to be a robust decision for one of the 
classifiers, is used to further train the rest. 

How to select basic learners is extremely important in co-training (Li et al., 2013). Extreme Learning Machine 

(ELM) is a new supervised learning method, proposed by (Huang et al., 2006) for single-hidden layer feed 

forward networks. ELM has received considerable attention in computational intelligence and machine 

learning communities, and a few variants have been proposed, e.g., fully complex ELM, online sequential ELM, 

incremental ELM and ELM ensembles (Huang et al., 2011). Some researchers have paid attention to semi-

supervised ELM and there have been appeared graph-based semi-supervised ELM method (J. Liu et al., 2011) 

and ternary reversible Extreme Learning Machines (Tang and Han, 2009). 

2.3.3 Low-Density separation 
The low-density separation assumption pushes the decision boundary in regions where there are few data 

points (labeled or unlabeled). The most common approach to achieving this goal is to use a maximum margin 

algorithm such as support vector machines. The method of maximizing the margin for unlabeled as well as 

labeled points is called the transductive SVM (TSVM). However, the corresponding problem is non-convex and 

thus difficult to optimize (Singla et al., 2014). 

The training process is actually an iterative algorithm (Sindhwani and Keerthi, 2006). Starting from the SVM 

solution as trained on the labeled data only, the unlabeled points are labeled by SVM predictions, and the 

SVM is retrained on all points. This is iterated while the weight of the unlabeled points is slowly increased. 

Another interesting fact is that, despite the name, TSVM are used for inductive reasoning (Pang and Kasabov, 

2004). They can handle unseen data because they are defined over the whole problem space (Qi et al., 2012). 

An illustration of the S3VM is shown in Figure 2.3. 

Low density separation (LDS) is a combination of transductive SVMs (Bruzzone et al., 2006), trained using 

gradient descend, and traditional SVMs using appropriate kernel defined over a graph using SSL assumptions 

(Chapelle and Zien, 2004). Similar to the SVM approach the TSVM need to maximize then margin (i.e. the 

minimum distance between a hyperplane and the closest example vectors in 𝑿. Thus the following formulation 

is adopted: 

min
𝒘,𝑏

[∑ max(1 − 𝑦𝑖(𝒘𝑇𝒙𝑖 + 𝑏), 0) + 𝜆1‖𝒘‖ + 𝜆2 ∑ max(1 − (𝒘𝑇𝒙𝑗 + 𝑏), 0)

𝑙+𝑢

𝑗=𝑙+1

𝑙

𝑖=1

] (2.7) 



 

 

11 Understanding the SSL field 

DECISION MAKING VIA SEMI-SUPERVISED MACHINE LEARNING TECHNIQUES | Ph.D. Thesis 

where 𝒘 ∈ ℝ𝑛is the parameter vector that specifies the orientation and scale of the decision boundary and 

𝑏 ∈ ℝ is an offset parameter. The above formulation exploits both labeld, 𝑿𝐿, and unlabeled 𝑿𝑈 data, leading 

to a non-convex optimization problem.  

 

Figure 2.3. The impact of unlabeled data in the creation of the decision boundaries. Unlabeled data guide the plane towards non dense 
areas, if possible. As such, there are few, if any, points between the margins of the separation boundaries (image right), in contrast to 
the traditional SVM approach (left image). 

The problem can be rewritten in the following form, in order to perform a standard gradient based approach: 

min
𝒘,𝑏

[
1

2
𝒘2 + 𝐶 ∑ 𝐿2(𝑦𝑖(𝒘𝑇𝒙𝑖 + 𝑏))

𝑙

𝑖=1

+ 𝐶∗ ∑ 𝐿∗(|𝒘𝑇𝒙𝑗 + 𝑏|)

𝑙+𝑢

𝑗=𝑙+1

] (2.8) 

where 𝐿(𝑡) = max(0,1 − 𝑡) and 𝐿∗(𝑡) = exp(−3𝑡2).  

Such formulation allow the use of a non-linear kernel (i.e. a mapping procedure to a different space). The 

kernel creation requires the computation of the 𝜌-distances. Then a fully connected matrix,𝑾, is formed as 

𝑤𝑖𝑗 = exp(𝜌 − 𝑑𝑖𝑠𝑡(𝑖, 𝑗)) − 1. Dijkstra’s algorithm (Dijkstra, 1959) is employed to compute the shortest path 

lengths, 𝑑𝑆𝑃(𝑖, 𝑗) for all pairs of points. The matrix 𝓓 of squared 𝜌 -path distances is calculated, for all pairs of 

points, as: 

𝒟𝑖𝑗 = (
1

𝜌
log(1 + 𝑑𝑆𝑃(𝑖, 𝑗)))

2

 (2.9) 

The final step towards the kernel’s creation, involves multidimensional scaling (Cox and Cox, 2008), or MDS, 

to find a Euclidean embedding of 𝓓𝜌(in order to obtain a positive definite kernel). The embedding found by 

the classical MDS are the eigenvectors corresponding to the positive eigenvalues 𝑼𝚲𝑼𝑇 = −𝑯𝓓𝜌𝑯, where 

𝐻𝑖𝑗 = 𝛿𝑖𝑗 −
1

𝑙+𝑢
. The final representation of 𝒙𝑖 is 𝑥𝑖𝑘 = 𝑈𝑖𝑘  √𝜆𝑘, 1 ≤ 𝑘 ≤ 𝑝.  

2.3.4 Graph based methods 
Graph-based semi-supervised methods define a graph over the entire data set, 𝑿 = 𝑿𝐿 ∪ 𝑿𝑈, where, 𝑿𝐿 =

{(𝒙1, 𝒚1), … , (𝒙𝑙 , 𝒚𝑙)} , is the labeled data set and 𝑿𝑈 = {𝒙𝑙+1, … , 𝒙𝑙+𝑢}  the unlabeled data set. Feature 

vectors, 𝒙𝑖 ∈ ℝ𝑚, 𝑖 = 1, … , 𝑙 + 𝑢 , are available for all the observations and 𝒚𝑖 ∈ ℝ𝑘 , 𝑖 = 1, … , 𝑙 , are the 

corresponding classes of the labeled ones, in a vector form; 𝑘  denotes the available classes. The nodes 

represent the labeled and unlabeled, examples in the dataset; edges reflect the similarity among examples. 

These methods usually assume label smoothness over the graph. That is, if two instances are connected by a 

strong edge, their labels tend to be the same. 

Graph methods are non-parametric (i.e., number of parameters grows with data size), discriminative, and 

transductive in nature. Intuitively speaking, in a graph that various data points are connected, greater the 

similarity greater the probability of having similar labels. Thus, the information (of labels) propagates from the 
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labeled points to the unlabeled ones. Researchers utilized such methods because some datasets are naturally 

represented by a graph (e.g. web, citation networks, and social networks). An illustration of data connection 

in graphs is shown in Figure 2.4. 

 

Figure 2.4. A graph constructed from labeled instances 𝑥1, 𝑥2, 𝑥3 and unlabeled instances. The label of unlabeled instance 𝑥𝑖 will be 
affected more by the label of 𝑥1, which is closer in the graph, than by the labels of 𝑥2 or 𝑥3, which are farther in the graph, even though 
𝑥3 is closer in Euclidean distance. 

An indicative paradigm of graph based SSL is the harmonic function approach (Zhu, 2003). This approach 

estimates a function 𝑓 on the graph which satisfies two conditions. Firstly, 𝑓 has the same values as given 

labels on the labeled data, i.e. 𝑓(𝒙𝑖) = 𝒚𝑖, 𝑖 = 1, … , 𝑙. Secondly, 𝑓 satisfies the weighted average property on 

the unlabeled data: 

𝑓(𝒙𝑗) =
∑ 𝑤𝑗𝑘𝑓(𝒙𝑗)𝑙+𝑢

𝑘=1

∑ 𝑤𝑗𝑘
𝑙+𝑢
𝑘=1

, 𝑗 = 𝑙 + 1, … , 𝑙 + 𝑢 (2.10) 

where 𝑤𝑖𝑗 denotes the edge weight. Those two conditions lead to the following problem: 

min
𝑓:𝑓(𝒙)∈ℝ

∑ 𝑤𝑖𝑗 (𝑓(𝒙𝑖) − 𝑓(𝒙𝑗))
2

𝑙+𝑢

𝑖,𝑗=1

 

𝑠. 𝑡. 𝑓(𝒙𝑖) = 𝒚𝑖, 𝑖 = 1, … , 𝑙 

(2.11) 

In the following, we introduce some notations in order to present the close form solution of (2.11). Let 𝑾 be 

an (𝑙 +  𝑢)  × (𝑙 +  𝑢) weight matrix, whose 𝑖, 𝑗 -th element is the edge weight 𝑤𝑖𝑗. Let 𝐷𝑖𝑖  =  ∑ 𝑤𝑖𝑗
𝑙+𝑢
𝑗=1  be 

the weighted degree of vertex i, i.e., the sum of edge weights connected to 𝑖. Then we create a diagonal matrix 

𝑫 ∈ ℝ(𝑙 + 𝑢)× (𝑙 + 𝑢) by placing 𝐷𝑖𝑖 on the diagonal. The unnormalized graph Laplacian matrix 𝑳 is defined as: 

𝑳 =  𝑫 − 𝑾. Matrix 𝑳 is rearranged in the form: 

𝑳 = [
𝑳𝑙𝑙 𝑳𝑙𝑢

𝑳𝑢𝑙 𝑳𝑢𝑢
] (2.12) 

Let 𝐟 =  (𝑓 (𝑥1), . . . , 𝑓 (𝑥𝑙+𝑢))
𝑇

 be the vector of 𝑓 values on all vertices arranged in a way that 𝐟 = (𝐟l, 𝐟u) 

and let 𝒀𝑙  =  (𝒚1, . . . , 𝒚𝒍)𝑇. The harmonic solution is: 

𝐟l = 𝒀𝑙  (2.13) 
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𝐟u = 𝑳𝑢𝑢
−𝟏𝑳𝑢𝑙𝒀𝑙   

Thus, we are able to estimate (soft label) output vectors for all the edges of the graph. Each labeled edge, 𝑖, is 

guaranteed to have the output vector, 𝒚𝒍, as it was provided by the expert.  

2.3.4.1 Points of interest 

In graph based approaches, weight matrix, 𝑾, has to be well-defined so that the graph Laplacian matrix, 𝑳, 

will be invertible. In order to create an appropriate weigh matrix we first need to define the graph among the 

available points. The following heuristic approaches have been used extensively: 

1. Fully connected graph, where every pair of vertices 𝒙𝑖, 𝒙𝑗  is connected by an edge. The edge weight 

decreases as the Euclidean distance ‖𝒙𝑖 − 𝒙𝑗‖  increases. One popular weight function is: 𝑤𝑖𝑗 =

exp (−
‖𝒙𝑖−𝒙𝑗‖

2

2𝜎2 ) where 𝜎 is known as the bandwidth parameter and controls how quickly the weight 

decreases. This weight has the same form as a Gaussian function. It is also called a Gaussian kernel or a 

Radial Basis Function (RBF) kernel. The weight is 1 when 𝒙𝑖 = 𝒙𝑗 , and 0 when ‖𝒙𝑖 − 𝒙𝑗‖ approaches 

infinity. 

2. 𝒌NN graph. Each vertex defines its 𝑘 nearest neighbor vertices in some distance. Note if 𝒙𝑖 is among 𝒙𝑗 

’s kNN, the reverse is not necessarily true: 𝒙𝑗 may not be among 𝒙𝑖 ’s kNN. We connect 𝒙𝑖, 𝒙𝑗 if one of 

them is among the other’s kNN. This means that a vertex may have more than 𝑘  edges. If 𝒙𝑖, 𝒙𝑗 are 

connected, the edge weight 𝑤𝑖𝑗 is either the constant 1 (i.e. unweighted graph), or a function of a distance 

(e.g. RBF kernel). If 𝒙𝑖, 𝒙𝑗 are not connected, 𝑤𝑖𝑗 = 0.  

3. 𝝐NN graph. We connect 𝒙𝑖 , 𝒙𝑗 if 𝒙𝑖 − 𝒙𝑗 ≤ 𝜖. The edges can either be unweighted or weighted. If 𝒙𝑖 , 𝒙𝑗 

are not connected, 𝑤𝑖𝑗 = 0. Generally, 𝜖NN graphs are easier to construct than kNN graphs. 

A comparative study in graph creation can be found in (L. Zhuang et al., 2012). There is no dominant 

methodology. Empirically talking, the matrix creation approach depends on the given problem and the 

computational cost. Usually graph construction employs the Euclidean distance. Also, keep in mind that 𝑘 

should be small (e.g. 3 or 5). Otherwise, we will have a bad estimation of the manifold and the label 

propagation will cause many errors. 𝑘NN graph automatically adapts to the density of instances in feature 

space: in a dense region, the kNN neighborhood radius will be small; in a sparse region, the radius will be large. 

Another point of interesting is the nature of the graph based approaches. Thus we have two major issues: 

1. Data correctness; what if some labeled data are by mistake misclassified? That is a common case, 

especially when we have manually annotation of image collections; e.g. as in (Makantasis et al., 2015c). 

2. New (unseen) data handling; how can we handle new data, without having to recreate the entire graph 

each time? 

Those two issues led to manifold regularization approach; we can have an inductive learning algorithm 

defining 𝑓 in the whole feature space: 𝑓: 𝒳 → ℝ, allowing 𝑓(𝑥𝑖) ≠ 𝑦𝑖, 𝑖 = 1, … , 𝑙 in some cases; we may skip 

any constraints and try to optimize a generalized (manifold) problem of the form: 

min
𝑓:𝒳→ℝ

(∑ 𝑐(𝑓(𝑥𝑖), 𝑦𝑖)

𝑙

𝑖=1

+ 𝜆1‖𝑓‖2 + 𝜆2𝒇𝑇𝑳𝒇 ) (2.14) 

where 𝑐(𝑓(𝑥), 𝑦) is a convex loss function, ‖𝑓‖2 = ∫ 𝑓(𝑥)2
𝑥∈𝒳

𝑑𝑥 is a regulization term over the entire space 

𝒳, and 𝜆2𝒇𝑇𝑳𝒇 is the traditional smoothness regularizer over the existing manifold. Equation (2.14) is just a 

specific case of eq. (2.2). 
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Chapter III: Techniques of Reference 

To know, is to know that you know nothing. That is the meaning of true 
knowledge.  

Socrates, classical Greek philosopher 
 

3 Other machine learning, clustering & sampling approaches 
This thesis is application oriented; the SSL approaches are utilized synergistically to other machine learning 

approaches. Thus, for the sake of completeness, various machine learning techniques are briefly described in 

this section. Additionally, various sampling schemes are explained. Sampling is used in all SSL methodologies, 

since all techniques require a small data set of labelled instances; rather than providing a random selection 

we employed various sampling schemes; their core mechanisms are also explained here. Finally, most of the 

case studies correspond to a classification problem. Consequently, an analytic description of the traditional 

performance metrics is provided. 

3.1 Machine learning techniques 
In this section we will provide a brief description of various supervised/ unsupervised machine learning 

techniques. These techniques are utilized, primary, for performance comparisons through this thesis. They 

were also utilized in conjunction with SSL approaches for the creation of advanced DSS, depending on the 

application scenario. 

3.1.1 Linear Regression 
Linear regression (LinReg) analysis is the study of linear, additive relationships between variables. Let 𝑦𝑖  

denote the “dependent” variable whose values you wish to predict, and let 𝒙𝑖 = [𝑥1, … , 𝑥𝑚], 𝑖 = 1, … , 𝑛 

denote the “independent” variables from which we wish to predict 𝑦𝑖. Then the equation for computing the 

predicted value of 𝑦𝑖  is: 

𝑦̂𝑖 = 𝑏0 + ∑ 𝑏𝑗𝑥𝑖,𝑗

𝑚

𝑗=1

 (3.1) 

This formula has the property that the prediction for 𝑦𝑖  is a straight-line function of each of the 𝑥𝑖,𝑗 variables, 

holding the others fixed, and the contributions of different variables to the predictions are additive. The slopes 

of their individual straight-line relationships with 𝑦𝑖  are the constants 𝑏1, … , 𝑏𝑘, the so-called coefficients of 

the variables. That is, 𝑏𝑖 is the change in the predicted value of 𝑦̂𝑖  per unit of change in 𝑥𝑖,𝑗, other things being 

equal. The additional constant 𝑏0, the so-called intercept, is the prediction that the model would make if 𝒙𝑖 =

0 (if that is possible). The coefficients and intercept are estimated by least squares, i.e., setting them equal to 

the unique values that minimize the sum of squared errors within the sample of data to which the model is 

fitted.  

3.1.2 𝑘 nearest neighbors 
In pattern recognition, the 𝑘 -nearest neighbors ( 𝑘 nn) algorithm is a non-parametric method used for 

classification (Bhatia and Vandana, 2010). Input consists of the 𝑘 closest training examples in the feature 

space. Output is a class membership. An object is classified by a majority vote of its neighbors, with the object 



 

 

15 Other machine learning, clustering & sampling approaches 

DECISION MAKING VIA SEMI-SUPERVISED MACHINE LEARNING TECHNIQUES | Ph.D. Thesis 

being assigned to the class most common among its 𝑘 nearest neighbors (k is a positive integer, typically 

small). If 𝑘 =  1, then the object is simply assigned to the class of that single nearest neighbor. 𝑘nn is a type 

of instance-based learning, or lazy learning, where the function is only approximated locally and all 

computation is deferred until classification.  

With previously labeled samples as the training set 𝑆, the 𝑘nn algorithm constructs a local subregion 𝑅(𝒙) ⊆

𝑅𝑚×𝑚  of the input space, which is situated at the estimation point 𝒙. The predicting region 𝑅(𝒙𝑖), which 

contains the closest 𝑘 training points to 𝒙𝑖, is written as follows: 

𝑅(𝒙𝑖) = {𝒙̂|𝑑(𝒙𝑖, 𝒙̂ ) ≤ 𝑑𝑡ℎ𝑟𝑠} (3.2) 

where 𝑑𝑡ℎ𝑟𝑠 is a predefined threshold. Given all points 𝒙̂𝑖 ∈ 𝑅(𝒙), 𝑖 = 1, … , 𝑘 and their corresponding outputs 
𝑦̂𝑖, point 𝒙𝑖 is assigned with classification label 𝑦 that has smallest expected misclassification cost among the 
values 𝑦̂𝑖.  

3.1.3 Decision trees 
Decision tree learning uses a decision tree as a predictive model which maps observations about an item to 

conclusions about the item's target value. In classification tree structures, leaves represent class labels and 

branches represent conjunctions of features that lead to those class labels. Each internal (non-leaf) node is 

labeled with an input feature. The arcs coming from a node labeled with a feature are labeled with each of the 

possible values of the feature. Each leaf of the tree is labeled with a class or a probability distribution over the 

classes.  

Algorithms for constructing decision trees usually work top-down, by choosing a variable at each step that 

best splits the set of items (Rokach and Maimon, 2005). Different algorithms use different metrics for 

measuring "best". These generally measure the homogeneity of the target variable within the subsets. These 

metrics are applied to each candidate subset, and the resulting values are combined (e.g., averaged) to provide 

a measure of the quality of the split.  

Given a set of items, suppose 𝑖 ∈ {1, … , 𝑚}, and 𝑝𝑖  the portion of the items labeled with 𝑖  among the 𝑚 

alternatives. The most common algorithm for split evaluation is Gini impurity: 

𝐼𝐺 = 1 − ∑ 𝑝𝑖
2

𝑚

𝑖=1

 (3.3) 

3.1.4 Adaptive boosting 
Adaptive boosting (AdaBoost) is an ensemble learning algorithm, which is more resistant to over-fitting, but it 

is often sensitive to noisy data and outliers (Woźniak et al., 2014). AdaBoost creates a strong learner (a 

classifier that is well-correlated to the true classifier) by iteratively adding weak learners (a classifier that is 

only slightly correlated to the true classifier). During each round of training, a new weak learner is added to 

the ensemble and a weighting vector is adjusted to focus on examples that were misclassified in previous 

rounds. The result is a classifier that has higher accuracy than the weak learners’ classifiers. A boost classifier 

is a classifier in the form: 

𝐻𝑇(𝒙𝑖) = ∑ ℎ𝑡(𝒙𝑖)

𝑇

𝑡=1

 (3.4) 

where each ℎ𝑡 is a weak learner that takes an object 𝒙 as input and returns a real valued result indicating the 

class of the object. The sign of the weak learner output identifies the predicted object class and the absolute 

value gives the confidence in that classification. Each weak learner produces an output, hypothesis ℎ(𝒙𝑖), for 
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each sample in the training set. At each iteration 𝑡, a weak learner is selected and assigned a coefficient 𝛼𝑡 

such that the sum training error 𝐸𝑡 of the resulting 𝑡-stage boost classifier is minimized: 

𝐸𝑡 = ∑ 𝐸[𝐻𝑡−1(𝒙𝑖) + 𝛼𝑡ℎ(𝒙𝑖)]

𝑖

 (3.5) 

Term 𝐻𝑡−1(𝒙) is the boosted classifier that has been built up to the previous stage of training, 𝐸(𝐻) is some 

error function and 𝑓𝑡(𝑥) = 𝛼𝑡  ℎ(𝒙)  is the weak learner that is being considered for addition to the final 

classifier. At each iteration of the training process, a weight is assigned to each sample in the training set equal 

to the current error 𝐸(𝐻𝑡−1(𝑥𝑖)) on that sample. These weights can be used to inform the training of the weak 

learner, for instance, decision trees can be grown that favor splitting sets of samples with high weights. 

3.1.5 Support vector machines 
Support vector machines (SVMs) are supervised learning models with associated learning algorithms that 

analyze data and recognize patterns, used for classification analysis (Abe, 2010). An SVM model is a 

representation of the examples as points in space, mapped so that the examples of the separate categories 

are divided by a clear gap that is as wide as possible. New examples are then mapped into that same space 

and predicted to belong to a category based on which side of the gap they fall on. The mappings used by SVM 

schemes are defined through a kernel function 𝑘(𝑥, 𝑦) selected tos suit the problem.  

Given a training set of 𝑁 data points {𝒙1, … , 𝒙𝑘}𝑘=1
𝑁 , where 𝒙𝑘 ∈ ℝ𝑛 is the k-th input pattern and 𝑦𝑘 ∈ ℝ is 

the k-th output pattern, the classifier can be constructed using the support vector method in the form: 

𝑦(𝑥) = 𝑠𝑖𝑔𝑛 [∑ 𝛼𝑘𝑦𝑘𝐾(𝒙, 𝒙𝑘) + 𝑏

𝑁

𝑘=1

] (3.6) 

where 𝛼𝑘  are called support values and b is a constant. The 𝐾(𝑥, 𝑥𝑘) is the kernel, which can be either 

𝐾(𝒙, 𝒙𝑘) = 𝒙𝑘
𝑇𝒙  (linear SVM); 𝐾(𝒙, 𝒙𝑘) = (𝒙𝑘

𝑇𝒙 + 1)
𝑑

 (polynomial SVM of degree d); 𝐾(𝒙, 𝒙𝑘) =

tanh[𝜅𝒙𝑘
𝑇𝒙 + 𝜃] (multilayer perceptron SVM), or 𝐾(𝒙, 𝒙𝑘) = exp{−‖𝒙 − 𝒙𝑘‖2

2/𝜎2} (RBF SVM), where 𝜅, 𝜃, 

and 𝜎 are constants. 

The kernel parameters, i.e.  for RBF kernel, can be optimally chosen by optimizing an upper bound on the VC 

dimension. The support values k are proportional to the errors at the data points in the LS-SVM case, while 

in the standard SVM case many support values are typically equal to zero. When solving large linear systems, 

it becomes needed to apply iterative methods. 

A common SVM formulation is the 2 class linear separation problem. Let us assume that the classes of negative 

and positives samples, described by feature vectors 𝒇, are linear separable. This means that there exists a 

hyperplane 𝒫 = 𝔀 ⋅ 𝒇 − 𝑏 = 0 that separates the two classes (𝔀 is the normal vector to the hyperplane). 

SVM classifier tries to estimate and maximize the distance between two other hyperplanes, 𝒫𝑝 = 𝔀 ⋅ 𝒇 − 𝑏 =

1 and 𝒫𝑛 = 𝔀 ⋅ 𝒇 − 𝑏 = −1, that separate the two classes with no sample existing between them. This can 

be expressed by the following constraints: 

𝔀 ⋅ 𝒇𝑖 − 𝑏 ≥ 1 𝑖𝑓 𝑙𝑖 = 1  

𝔀 ⋅ 𝒇𝑖 − 𝑏 ≥ 1 𝑖𝑓 𝑙𝑖 = −1 
(3.7) 

Exploiting the value of labels the pair of constraints, eq. (3.8) can be rewritten as: 

𝑙𝑖(𝔀 ⋅ 𝒇𝑖 − 𝑏) ≥ 1 𝑖𝑓 𝑙𝑖 ≥ 1, 𝑖 =, … , 𝑛 (3.8) 
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The equality of constraint of eq. (3.8) holds for the samples that lie on the hyperplanes 𝒫𝑝 and 𝒫𝑛. These 

samples are called support vectors. The distance between these two hyperplanes is 2/‖𝔀‖ , which implies 

that SVM try to solve the following optimization problem: 

min
𝔀,𝑏

1

2
‖𝔀‖2 

𝑠. 𝑡. 𝑙𝑖(𝔀 ⋅ 𝒇𝑖 − 𝑏) ≥ 1 𝑓𝑜𝑟 𝑖 = 1, … , 𝑛 

(3.9) 

This formulation ensures that the maximum margin classifier classifies each example correctly, which is 

possible since we assumed that the data is linearly separable. In cases where the two classes are not linearly 

separable, to allow classification errors, the optimization problem of eq. (3.9) is transformed to (Cortes and 

Vapnik, 1995): 

min
𝔀,𝑏,𝝃

1

2
‖𝔀‖2 + 𝑐 ∑ 𝜉𝑖

𝑛

𝑖

  

𝑠. 𝑡. 𝑙𝑖(𝔀 ⋅ 𝒇𝑖 − 𝑏) ≥ 1 𝑓𝑜𝑟 𝑖 = 1, … , 𝑛 𝑎𝑛𝑑 𝜉𝑖 ≥ 0 

(3.10) 

where 𝜉𝑖 ≥ 1 are variables that allow a sample to be in the margin or to be misclassified and 𝑐 is a constant 

that weights these errors. 

3.1.6 Artificial neural networks 
Artificial neural networks are non-linear mapping structures, inspired by animal central nervous systems that 

are capable of machine learning and pattern recognition (Bahrammirzaee, 2010; Haykin, 1994; H. Li et al., 

2011). ANNs are universal approximators which however have multiple local minima (i.e. solutions), due to 

their structure; they are composed from multiple hierarchical layers of interconnected nodes. Their structure 

consists of weights, biases and activation functions, imitating the real brain's neurons and synapses. Therefore 

simple computational units called neurons, which are highly interconnected are used. The work of (Hagan et 

al., 1996) provides a clear and detailed survey of basic neural network architectures and learning rules. The 

most widely used learning algorithm in an ANN is the back-propagation algorithm or its variations (Chakraborty 

and Ghosh, 2012).  

Let us denote as 𝑓 a non-linear function (relationship) that indicates the status of a given datum (e.g. structural 

capacity of a pile, corresponding class, system’s response, etc.). This non-linear relationship is approximated 

by a Feed Forward Neural Network (FFNN) architecture. Denote as 𝑓𝒘 the approximated function of 𝑓 as has 

been produced by the FFNN structure, where 𝒘 denotes the neural network weights. Actually, function 𝑓 

maps to a compact subset 𝐴  of 𝑛 -dimensional Euclidean space, ℝ𝑛  to a bounded subset, 𝑓[𝐴],  of 𝑚 -

dimensional Euclidean space, ℝ𝑚. Denote, also, as 𝑆 = {(𝒙1, 𝒚1), … , (𝒙𝑘 , 𝒚𝑘) } a training set of 𝐾 elements 

used to find appropriate parameters to approximate the unknown function 𝑓𝒘 by estimating the weights 𝒘.  

The weights 𝒘 are initially set as random numbers; they are adjusted, during training, in order to generate a 

mapping between input-output training patters. To estimate these weights, a reliable training set 𝑆 is needed. 

It has been shown in (Hornik et al., 1989) that a feed-forward neural network can approximate any non-linear 

function within any degree of accuracy. One of the most important problems, during network training, is 

overfitting, a situation in which the network can memorize training samples, providing a very small error on 

data of training set, without being able to generalize to new situations, i.e. bad generalization performance 

(Doulamis et al., 2000). One method for addressing this problem is to use the cross validation technique.  
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Figure 3.1. An illustration of artificial neural network unit. 

The network performance, however, depends on a number of parameters, such as the network size, the 

number of neurons and the attributes used as inputs to the network. There is, also, the adopted training-

algorithm impact. Apparently, proper selection of the network size is "art" in the sense that there are no 

concrete mathematical rules to define the structure, apart from proposing worst bounds. A typical approach 

during topology set up is the use of genetic algorithms, as shown in (Protopapadakis et al., 2016b). 

3.2 Sampling & clustering techniques 
The main purpose of data sampling is the selection of appropriate representative samples in order to provide 

a good training set and, thus, improve the classification performance of risk assessment models. The most 

important factor in data selection is the distance metric function definition. For any two given data points 𝒙𝑖 

and 𝒙𝑗, let 𝑑(𝒙𝑖, 𝒙𝑗) denote the distance between them. In order to compute the distance, let 𝑨 ∈ 𝑅𝑚×𝑚 be 

a symmetric matrix, we define the formula of distance measure as: 

𝑑𝑨(𝒙𝑖 , 𝒙𝒋) = √(𝒙𝑖 − 𝒙𝑗)
𝑇

𝑨(𝒙𝑖 − 𝒙𝑗) (3.11) 

The majority of the proposed approaches are Euclidean based (i.e. 𝑨 = 𝑰). Sampling algorithms are used over 

the entire data set 𝓧 and create a new set, 𝓧𝑟 ⊂ 𝓧 , of the most representative samples. In this thesis, we 

need at least one sample for every possible class, in order for the smooth functionality of the applied 

techniques. As such, 𝓧𝑟 is examined by an expert and additional data are used if necessary.  
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Figure 3.2. A random dataset of four classes. It will serve for illustration purposes when describing various approaches in this chapter. 
The set consists of randomly generated data (a), distributed around 4 points: (0.45.0.45). (0.45.-0.45). (-0.45.0.45). (-0.45.-0.45). Data 
follow the normal distribution, 𝑁(𝜇. 𝜎); mean and variance were set as 𝜇 = 0.293 and 𝜎 = 0.212, respectively.  

A typical dataset is presented in Figure 3.2. The set consists of randomly generated data (a), distributed around 

4 points: (0.45.0.45). (0.45.-0.45). (-0.45.0.45). (-0.45.-0.45). Data follow the normal distribution, N(μ. σ); 

mean and variance were set as μ = 0.293 and σ = 0.212, respectively. Such set contains outliers of all kinds; 

away from any distribution center, closer to a different class, or overlapping with different class data. 

3.2.1 OPTICS algorithm 
Ordering points to identify the clustering structure (OPTICS) is an algorithm for finding density-based clusters 

in spatial data (Ankerst et al., 1999); i.e. detect meaningful clusters in data of varying density. In order to do 

so, the points of the database are (linearly) ordered such that points which are spatially closest become 

neighbors in the ordering. A typical output of the algorithm is shown in Figure 3.3. 

OPTICS requires two parameters: ε, which describes the maximum distance (radius) to consider, and 𝑀𝑖𝑛𝑃𝑡𝑠, 

describing the number of points required to form a cluster. A point 𝑝 is a core point if at least 𝑀𝑖𝑛𝑃𝑡𝑠 points 

are found within its ε - neighborhood, 𝑁𝜀(𝑝). Once the initial clustering is concluded, we may proceed with 

any sampling approach (e.g. random selection among clusters). 
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Figure 3.3. OPTICS output illustration for a given data set of four classes (Figure 3.2). Points marked with ‘o’ describe local extrema. In 
this case, four valleys are formed among local maxima, indicating that there are four main classes among the data. Local fluctuations 
correspond to subclasses according to the data density.  

3.2.2 𝑘-means algorithm 
𝑘-means clustering (Wu, 2012) aims to partition 𝑛 observations into 𝑘 clusters in which each observation 

belongs to the cluster with the nearest mean, serving as a prototype of the cluster. It is a classical approach 

that can be implemented in many ways and for various distance metrics. The main drawback is that the 

number of clusters should be known a priori. A typical mathematical formulation of such problem is the 

following: 

min ∑ ∑ 𝑤𝑖𝑙𝑑(𝒙𝑖 , 𝑄𝑙)

𝑛

𝑖=1

𝑘

𝑙=1

 

𝑠. 𝑡. ∑ 𝑤𝑖𝑙

𝑘

𝑙

= 1, 1 ≤ 𝑖 ≤ 𝑛 

              𝑤𝑖𝑙 ∈ {0,1}, 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑙 ≤ 𝑘 

 

(3.12) 

where 𝑾 is an 𝑛 × 𝑘  partition matrix, 𝑸 = {𝑄1, … , 𝑄𝑘} is a set of objects in the same domain, and 𝑑(⋅) a 

distance measure as in eq. (3.11). A brief survey of 𝑘-means extensions can be found in (Huang, 1998). 

3.2.3 Sparse representative selection 
In order to extract the most important, i.e. descriptive, data, the work of (Elhamifar et al., 2012) around sparse 

modeling, is employed. Sparse representative selection (Sparse) focus on the identification of representative 

objects. Their work is summarized through the following formulation: 

min 𝜆‖𝑪‖1,𝑞 +
1

2
‖𝑿 − 𝑿𝑪‖𝐹

2  

𝑠. 𝑡. 𝟏𝑇𝑪 = 𝟏𝑇 

(3.13) 
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where 𝑿 and 𝑪 refer to data points and coefficient matrix respectively. This optimization problem can also be 

viewed as a compression scheme, where we want to choose a few representatives that can reconstruct the 

available data set. A typical illustration, for the data set of Figure 3.2, is shown in Figure 3.4.  

 

Figure 3.4. SMRS descriptive data selection. Selected data are the on the edge of spanning volume. 

3.2.4 Kennard–Stone algorithm 
The classic KenStone algorithm (Kennard and Stone, 1969) is a uniform mapping algorithm; it yields a flat 

distribution of the data. It is a sequential method that should cover the experimental region uniformly. The 

procedure consists of selecting as the next sample (candidate object) the one that is most distant from those 

already selected objects (calibration objects). As starting points we either select the two objects that are most 

distant from each other, or preferably, the one closest to the mean.  

From all the candidate points, the one is selected that is furthest from those already selected and added to 

the set of calibration points. To do this, we measure the distance from each candidate point 𝒙0 to each point 

𝒙, which has already been selected and determine which is smallest, i.e. min
𝑖

𝑑(𝒙, 𝒙0). From these we select 

the one for which the distance is maximal: 

𝑑𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 = max
i0

(min
𝑖

𝑑(𝒙, 𝒙0)) (3.14) 

In the absence of strong irregularities in the factor space, the procedure starts first by selecting a set of points 

close to those selected by the D-optimality method, i.e. on the borderline of the data set (plus the center 

point, if this is chosen as the starting point). It then proceeds to fill up the calibration space. A typical 

illustration, for the data set of Figure 3.2, is shown in Figure 3.5. 
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Figure 3.5. KenStone sampling results. Selected data span a uniform area over the originally distributed samples. 

3.3 Performance metrics 
Most of the application scenarios, presented in this thesis, were actually classification problems. As such, the 

primary tool for performance evaluation was the confusion matrix. Other, significant performance metrics 

were the execution time, algorithms’ complexity and features’ dimensionality and separability. In all of the 

developed systems ordinary desktop computers were used. 

Usually we have two possible classes; defaulted / non-defaulted companies, defects / non-defects, detection 

/ non-detection, etc. named positive (P) and negative (N) class, respectively. Given the outputs4, we form the 

table of confusion, which is a 2 × 2 matrix that reports the number of false positives (FP), false negatives (FN), 

true positives (TP), and true negatives (TN). Given these values we are able to calculate various performance 

metrics regarding the defect detection performance. Metrics formulation is shown in Table 3.1. Metrics of 

special interest are: Sensitivity (proportional to TP) and miss rate (proportional to FN), which are both strongly 

connected to defect detection. 

 

Figure 3.6. A typical 2 × 2 confusion matrix, for a binary classification problem. 

                                                           
4 Integer values in the form {-1,1} or {1,2}. If the techniques produce soft labels (e.g. 0.92, -1.06, etc.) we round them 
towards the closest integer. 
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Table 3.1. Metrics for quantitative performance evaluation. 

Metric Formulation Description 

Sensitivity (TPR) TPR = TP / P 
Also known as recall: the fraction of the positive samples that are 

relevant to the query that are successfully retrieved. 

Specificity (SPC) SPC = TN / N 
It can be looked at as the probability that a non-relevant class is 

correctly identified by the model. 

Precision (PPV) PPV = TP / (TP + FP) 
In binary classification known as positive predictive value. How 

many correct positive predictions we have. 

Negative predictive 
value (NPV) 

NPV=TN/(TN+FN) How many correct negative predictions we have. 

False pos. rate (FPR) FPR = FP / N 
It is the probability that a non-relevant class is incorrectly identified 

by the model. 

False discovery rate 
(FDR) 

FDR=FP/(FP+TP) It conceptualize the rate of type I errors. 

Miss Rate (FNR) FNR = FN / P 
It is the probability that a relevant class is incorrectly identified by 

the model. 

Accuracy (ACC) 
ACC = (TP + TN) / (P + 

N) 
Percentage of correct classification for ALL classes. 

F1 score (F1) F=2TP/(2TP+FP+FN) The weighted harmonic mean of precision and recall. 

 

Additionally, when we deal with a binary classifier concept, a receiver operating characteristic (ROC), or ROC 

curve, could provide further information over the performance. ROC is a graphical plot that illustrates the 

performance as classifier’s discrimination threshold is varied. The curve is created by plotting the true positive 

rate against the false positive rate. However, if there are many alternative model combinations jeopardizing 

any graphical illustrations, we use the area under the ROC curve (AUC). 
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Chapter IV: The Sampling Impact 

Beware of little expenses. A small leak will sink a great ship.   
Benjamin Franklin, one of the Founding Fathers of the U.S. 

 

4 Labeled data selection impact in credit risk assessment 
In this chapter, we emphasize on credit risk assessment of Greek firms (commercial sector), over the period 

2006–2009. Suggesting approach involves synergistically models from both sampling and classification fields. 

In particularly, we demonstrate the sampling influence over the models’ performance. A great variety of 

sampling approaches are used to evaluate the descriptive abilities of small training sets, given a classifier 

raging from traditional models, e.g. logistic regression, to advanced soft computing techniques, e.g. artificial 

neural networks. 

Results provide an extensive joint performance evaluation of sampling-classification models’ synergies. 

Comparisons are based on various quantitative performance metrics, including the initialization time required. 

Simulation outcomes suggest that no optimal choice, regarding the data sampling, neither for the 

classification approach, exists. There is a variety of synergistic assessment models; the best alternative is 

always defined by the user preferences (e.g. execution time, accuracy, precision, etc.). 

Finally, due to the abundance of unlabeled data, SSL approaches were investigated, regarding the applicability 

on the credit risk assessment field. There was no limitations at the selection of the labelled data, except from 

labeled/unlabeled ratio. However, there are some points where attention is required: 

1. We need representative samples. The labeled samples should be able to describe (reproduce) the original 

data set as good as possible. 

2. At least one sample per classification category is required. We need an instance per class, so that model 

will be able to adjust at the class properties.  

3. Outlier consideration. Most data sets contain outliers which could lead to poor performance especially 

when used as labeled data (all by themselves) 

4.1 Introduction 
Credit risk analysis is a fundamental and challenging issue in financial risk management, and has been the 

major topic of financial and banking industry in the last decades. Credit scoring models have been extensively 

used to evaluate the credit risk of enterprises, and they can classify the applicants as either accepted or 

rejected according to the examined criteria. Over the past decades, a great sum of credit risk decision models 

have been proposed and evaluated (Marqués et al., 2013; Thomas, 2000).  

Existing approaches in credit risk assessment, mainly, include linear discriminant analysis and logistic 

regression (Vojtek and Kocenda, 2006; Zeng and Gao, 2009), nearest neighbor analysis (Henley and Hand, 

1996), Bayesian networks (Pavlenko and Chernyak, 2010), artificial neural networks (Baesens et al., 2003), 

decision trees (Zhang et al., 2010), genetic algorithms (Abdou, 2009), multiple criteria decision making (J. Li et 

al., 2011; Niklis et al., 2013; Yu et al., 2009; Zhang et al., 2014), support vector machines (Bellotti and Crook, 

2009; Martens et al., 2007) and so on. Recently, increasing interests in the synergies of optimization and data 
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mining can be observed (Corne et al., 2012; Meisel and Mattfeld, 2010; Niklis et al., 2013; Olafsson et al., 

2008). 

Regardless the core method for the credit assessment, all possible sources of variation, which will be 

encountered later, must be included in the training data set; the model will be used for the prediction of new 

samples. In other words, the training data should have a greater variation in feature attributes than the data 

to be analyzed. As such, before applying any assessment model, we should provide with a good data set; 

important factors affecting the overall performance of such models can be the class imbalance, outliers and 

low quality features.  

(Abdou and Pointon, 2011) review 214 previous studies on credit scoring applications, emphasizing on the 

statistical techniques used for evaluation. Results indicate that there is not an overall best technique for 

building assessment models. It appears that assessment models setup is usually heuristically defined, 

depending on the data availability, application field and various other factors. Current literature provides 

extensive comparison results among credit scoring methods; e.g. the review of (Marqués et al., 2013) 

advocates the benefits of using evolutionary computation for credit scoring.  

However, due to the great variation of factors in model assessment performance there is always room for 

further analysis and comparative studies. Thus, in section 4.4.2 we perform a comparative study among 

various, well-known, sampling techniques and predictive models, trying to identify the best possible 

combination for the credit risk assessment problem in Greek commercial sector. 

4.2 Related work 
The rapid development in information and computer technology has created new techniques, which are 

appearing under the name of data mining. Advanced data analysis techniques are currently used to evaluate 

risk in credit approval (Huang et al., 2004) and fraud detection (Ngai et al., 2011). Recent literature in the 

search of trends, in data mining applications, for the banking industry can be found in (Moro et al., 2015).  

Data mining methods, especially pattern classification, using real-world historical data, is of paramount 

importance in building such predictive models (Yu et al., 2008). Other approaches involve hybrid data mining 

techniques, filtering algorithms, attribute relevance, etc. in the following lines we present a brief description 

over recent approaches. 

For example, (W. Chen et al., 2012) proposed a hybrid data mining technique which contains two processing 

stages. The proposed model was a two-stage approach: k-means cluster, support vector machines 

classification and computation of feature importance. Experimental results based on the credit data set 

provided by a local bank in China showed that by choosing a proper cut-off point, super classification accuracy 

of the good and the bad credit is obtained. In (Yap et al., 2011) data mining techniques were used to improve 

the assessment of credit worthiness of credit scoring models. More specifically, three models were examined: 

credit scorecard model, logistic regression model and decision tree model. Results show the performances of 

the three models are quite similar. Scorecards are relatively much easier to deploy in practical applications. 

The work of (García et al., 2012), investigated whether the application of filtering algorithms leads to an 

increase in accuracy of instance-based classifiers in the context of credit risk assessment. The experimental 

results show that the filtered sets perform significantly better than the non-preprocessed training sets when 

using the nearest neighbor decision rule. (Khashman, 2011), investigate the efficiency of emotional NNs and 

compare their performance to conventional NNs when applied to credit risk evaluation. Experimental results 

suggest that both neural models can be used effectively for credit risk evaluations, however the emotional 

models outperform their conventional counterparts in decision making speed and accuracy, making them ideal 

for implementation in fast automatic processing of credit applications. 
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A very popular problem, among these studies, is the attribute relevance by using new and existing feature 

selection algorithms (Chen and Li, 2010; Liu and Schumann, 2005; Shukai et al., 2010). Few studies address the 

problem of credit data with noise and outliers. (Kotsiantis et al., 2006) present a survey of data preprocessing 

techniques for financial prediction, including discretization, feature selection and instance selection. (Tsai and 

Chou, 2011) use a genetic algorithm to perform feature selection and data filtering for bankruptcy prediction. 

(Tsai and Cheng, 2012) explore the performance of artificial neural networks, decision trees, logistic regression 

and support vector machines after removing different amounts of outliers from credit data sets. 

4.3 Proposed methodology 
In this chapter, a two-step process is adopted, in order to assess commercial firms’ credit risk. The first step 

involves data sampling; i.e. the selection of the most descriptive representatives in the available data set. The 

second step, employs popular data mining algorithms; i.e. predictive models are trained over the descriptive 

subsets of the previous step. Generated models’ performance is calculated for a set of evaluation metrics, plus 

the computational cost (in terms of time spend during initialization process), in order to analyze both the 

efficiency of sampling schemes and the synergies’ outcomes.  

The selection of a subset of individuals, from within a currently available data set, to estimate characteristics 

of newly appeared data, is a crucial step. Such an approach is able to identify the most representative cases 

and handle class imbalances in an effective manner, as the infrequent nature of defaults affects the 

performance of predictive models. There are many sampling approaches, varying from random sample 

selection to more complicated techniques. Sampling can be used in many ways (i.e. outliers removal (Janssens 

et al., 2012), feature subset selection (Daszykowski et al., 2002a), representative data selection (Elhamifar et 

al., 2012), etc.). In our case, sampling approach moderates the effects of two common problems; i.e. class-

imbalanced data sets and training/evaluation ratio. 

Table 4.1. Proportion of training / evaluation datasets (%). 

Related work Train Test 

(Abdou et al., 2008)  80 20 

(Boros et al., 2000)  71 29 

(Hsieh, 2005) 68 32 

(Baesens et al., 2003; Kim and Sohn, 2004; Tsai and Wu, 2008) 70 30 

(Šušteršič et al., 2009) 69 31 

(Setiono et al., 2008) 67 33 

(Atiya, 2001)  62 38 

(Sakprasat and Sinclair, 2007) 50 50 

(Khashman, 2011)  44 56 

Class-imbalance is a major and very common problem, many studies show that a classifier tends to over-fit 

the observations of majority-class and simultaneously under-fit the observations of minority-class (Akbani et 

al., 2004; Yang et al., 2008; Zeng and Gao, 2009). Additionally, even in class-balanced data sets, there are no 

explicit rules regarding the data amount allocated between training and test sets. As we can see in Table 4.1, 

there is no census over the proportion for the training set over the currently available data. However, there is 

a general trend in utilizing around 70% of the data for the training process and evaluating the performance 

with the remaining 30%. 

Regarding the classification models, a variety of them was utilized, ranging from traditional approaches (e.g. 

logistic regression) to soft computing techniques (e.g. artificial neural networks). These models required set 

up for at least one parameter. These parameters were defined using heuristic approaches, or they were 

remain intact at their original values, as provided by the software developers. The SSL techniques were low 

density separation (Chapelle and Zien, 2004) and Harmonic functions (Zhu et al., 2003). 
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4.4 Experimental setup 
We are interesting in evaluating both the sampling approaches performance as well as the classification 

accuracy of the models. An efficient sampling technique should accurately select few representative samples, 

which support a smooth model training. Additionally, we investigate the behavior of various predictive models 

given different training data sets. Specifically, we examine the predictive performance over a year, 𝑁 

(evaluation year), given a small training set from previous years, 𝑁 − 1, 𝑁 − 2, … . 

More than 200 experiments were performed using various combinations of sampling techniques and 

classification approaches, over the data set. Every experiment had three characteristic steps (Gorunescu, 

2011), described below: 

1. Exploring the data: At first we normalize values in [0,1] according to the minmax approach. Then, a 

sampling approach, over the normalized values, separates data into training and evaluation (test) sets.  

2. Building the model: We select the classification model. Training and validation sets are used for the 

parameters tuning. We also change the cost function (if applicable) in order to handle the unbalanced 

classes. 

3. Applying the model: The trained model predicts the labels over the evaluation (test) data set. Various 

performance metrics are calculated.  

The data mining performance is evaluated regarding both the sampling techniques and the classification 

approaches. Emphasis is given over the classification performance indexes over the defaulted companies. All 

applied techniques were implemented in MatLab. A standard quad core, 8GB ram, desktop computer was 

used. 

4.4.1 Dataset description 
The sample consists of 10716 firm-year observations for non-listed Greek firms from the commercial sector, 

over the period 2006–2009. The data were obtained from the financial database of ICAP, as described in (Niklis 

et al., 2014). All observations in this sample are classified as default or non-default on the basis of the definition 

of default employed by ICAP, which considers a range of default-related events such as bankruptcy, protested 

bills, uncovered cheques, payment orders, etc. Table 4.2 presents the number of observations per year and 

category. 

Table 4.2. Sample observations by year and category. 

Years Defaulted Non-defaulted Total 

2006 2,748 52 2,800 

2007 2,846 53 2,899 

2008 2,731 99 2,830 

2009 2,143 44 2,187 

Total 10,468 248 10,716 

On the basis of data availability and the relevant literature seven financial ratios are used to describe the 

financial status of the firms in both samples. The selection of the appropriate financial ratios is a challenging 

issue. In fact, there is a big variety of ratios that can be used as proxies of the same financial dimensions 

(leverage, liquidity, profitability, etc.). Furthermore, time and cost issues arise when using a large number of 

ratios and this can also cause multi-colinearity problems. Table 4.3 presents the selected ratios together with 

their expected relationship (sign) to the creditworthiness of the firms. A positive sign (+) is used to indicate 

ratios which are positively related to the creditworthiness of the firms, in the sense that higher values in these 
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ratios are expected to improve the creditworthiness of the firms. The rest of the ratios are assigned a negative 

sign (–) indicating their negative relationship with the performance and viability of the firms (i.e., as these 

ratios increase the likelihood of default is also expected to increase).  

Table 4.3. Selected financial ratios description.  

Category Variables Short title 
Relationship 

to default 

Management 
efficiency 

Short-term liabilities*365 / 
Cost of Sales 

STL/CS + 

Accounts receivable*365 / 
Sales 

AR/S + 

Inventories / Cost of sales I/CS + 

Profitability 
Profit before tax / Total assets PBT/TA – 

Financial expenses / Sales FE/S + 

Solvency 
Quick assets / Short-term 

liabilities 
QA/STL – 

Total liabilities/Total assets TL/TA + 

 

We have four categories of financial ratios (efficiency, profitability, liquidity and financial leverage) and four 

non-financial indicators that are crucial for commercial companies. Management efficiency ratios are typically 

used to analyze how well a company uses its assets and liabilities. Efficiency ratios are important because an 

improvement in the ratios usually translates to improved profitability. We have selected three ratios in this 

category, which are positive related to credit risk, in the sense that the higher their value, the higher is the 

probability of default. 

The profitability indicators are used to assess firm’s ability to generate earnings, compared to its expenses and 

other relevant costs incurred during a specific period of time. The profitability ratios considered in this study 

include the return on assets ratio and ratio of financial expenses to sales. The first one is negative related to 

credit risk in contrast with the second one which is positively associated to the probability of default.  

Finally, the category of solvency indicators includes two ratios related to the liquidity and the financial leverage 

of the firms. Liquidity determines a company’s ability to pay off its short-term debt obligations. In this study 

the quick ratio (Current assets-Inventories/Short-term liabilities) is used which is negative related to credit 

risk. On the other hand, financial leverage provides an indication of the long-term solvency of a firm. Here the 

ratio of total liabilities to total assets is used which is positive related to credit risk.  

Apart from financial indicators there should be a consideration of other factors that affect the operation of a 

firm. In our case, two factors are examined: 

1. Logarithm of employees (LOGE). This is an indicator of the size of a company, which has been shown in 

past studies to be negatively associated to the probability of default. 

2. Activity indicator. For commercial companies it is important to take into consideration the type of their 

activities. In this study, in accordance with ICAP’s modeling approach, the activities of the companies in 

the sample are characterized by the following three binary indicators: exports indicator (EXP), imports 

indicator (IMP), and Representations indicator (REPR); i.e., companies that are local resellers of products 

of foreign companies. 

Table 4.3 summarizes the numerical values of the selected financial ratios, for each group of observations (i.e., 

default, non-default). The differences between the defaulted and non-defaulted firms from the sample of non-

listed companies, they are all found significant at the 1% level under the Mann-Whitney test. For the 
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significance of the binary attributes regarding the business activity of the firms was tested with a 𝜒2 test and 

all three indicators were found significant at the 1% level5. 

Table 4.4. Selected financial ratios description numerical attributes. 

 Non Defaulted Defaulted 

 Average values Standard deviation Average values Standard deviation 
 2007 2008 2009 2007 2008 2009 2007 2008 2009 2007 2008 2009 

STL/CS 425.68 458.06 466.89 368.28 400.95 404.59 529.86 647.85 731.53 384.29 451.51 443.96 
AR/S 221.42 213.11 214.82 209.87 220.26 236.82 324.90 255.48 188.25 324.53 246.97 281.78 

I/CS 104.47 112.77 117.14 164.31 175.70 183.70 154.68 198.47 239.15 233.74 294.97 319.81 
PBT/TA 0.04 0.04 0.03 0.13 0.12 0.11 -0.03 -0.03 -0.07 0.17 0.12 0.13 

FE/S 0.03 0.03 0.03 0.03 0.04 0.04 0.06 0.07 0.08 0.06 0.06 0.06 
QA/STL 1.13 1.14 1.23 0.85 0.87 0.93 0.87 0.86 0.84 0.76 0.56 0.69 

TL/TA 0.73 0.80 0.70 0.27 0.39 0.27 0.84 0.85 0.89 0.27 0.30 0.16 

 

4.4.2 Sampling approaches 
Given the financial assessment problem, the primary goal of sampling approaches is the redundant data 

removal. Thus, such approaches exclude a large amount of non-defaulted companies. The proposed sampling 

approaches utilize many of the previously described algorithms in various ways.  

When many samples are available, we can first measure their spectra and select a representative set that 

covers the calibration space (x-space) as well as possible. Normally such a set should also represent the y-

space well, this should preferable be verified. The chemical analysis with the reference method, which is often 

the more expensive step, can then be restricted to the selected samples. 

Several approaches are available for selecting representative calibration samples. The simplest is random 

selection, but it is open to the possibility that some sources of variation will be lost. These variation sources 

are often represented by samples that are less common and have little probability of being selected. A second 

possibility is based on knowledge about the problem. If one is confident that we are aware of all the sources 

of variation, samples can be selected on the basis of that knowledge. However, this situation is rare and it is 

very possible that some source of variation will be forgotten. 

Given an evaluation year, 𝑁, sampling approaches actuate over years 𝑁 − 1, 𝑁 − 2, … . Bellow we present a 

brief description of the proposed approaches. The size of the final train set can be found in Table 4.5. Training 

data sets consist of all defaulted firms plus an indicative number of non-defaulted ones. 

1. OPTICS extrema: We perform Optics algorithm on the entire data set. Then we locate local maxima and 

minima, over OPTICS calculated distances. All the extrema indexes are considered as labeled instances 

and the rest as unlabeled. The proposed approach results in a very limited train set; OPTICS approach 

results in the minimum possible sum of outliers, given a feature set and a distance metric. Selected points 

location can be anywhere in the data spanning area. The code of this algorithm was provided by the 

authors of (Daszykowski et al., 2002b). 

2. Sparse modeling representative selection (SMRS): we perform the SMRS approach over the entire data 

set. The proposed approach results in a very limited train set, which is, however, greater than OPTICS 

extrema approach. In contrast to OPTICS, selected points are located only on the exterior cell of the 

available data volume. The algorithm has the same implementation as in (Elhamifar et al., 2012). 

3. Combination of OPTICS and SMRS (OPTICS SMRS). In this case SMRS is used among the sub-clusters 

indicated by OPTICS algorithm. This approach is similar to the work of (Protopapadakis et al., 2014). It 

                                                           
5 Inventories / Cost of sales ratio was significant at 5%. 
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creates a small subset of representative samples. This approach locate the most descriptive data among 

each subcluster, as indicated by OPTICS output. 

4. Combination of 𝑘-means and SMRS (k-means SMRS). We first divide the set into 𝑘 sub clusters. For each 

sub cluster we run SMRS algorithm to get the representative samples among each subcluster. As such, 

outcome results in surrounding points for each of the subclusters. 

5. Kennard and Stone (KenStone) sampling data points. We execute KenStone algorithm over years 𝑁 −

1, 𝑁 − 2, … . Thus, we have data entries spanning uniformly the entire data space in each of the given 

years. The code was provided by the authors of (Daszykowski et al., 2002a). 

6. Random selection. A random selection that picks 40% of the previous years’ data as training samples.  

7. An alternative approach is the creation of 𝑘 clusters (using k-means) and a random selection of 𝑚 samples 

from each cluster (k-means RANDOM). It can be seen as an improvement of random selection, without 

involving any advanced techniques. Similar instances are, likely, clustered together. Thus, the few random 

samples from each cluster are expected to provide adequate information, over the data set. 

Almost all previously mentioned methods require some parameters as input. These parameters were 

estimated using heuristic approaches. For instance, the number of clusters, 𝑘, was defined using the rule: 𝑘 =

⌈√𝑛/2⌉ , where 𝑛 denotes the number of available samples. The minimum number of data within a cluster, 

𝑚𝑐, was defined as: 𝑚𝑐 = ⌊𝑛/𝑘⌋. Regardless the selected data instances, at the end of the sampling process, 

an additional step includes all non-defaulted data entries within the sampling set.  

Table 4.5. Illustration of the training set data size per sampling approach 

EVALUATION 
YEAR 

ENTIRE SET6 KENSTONE 
KMEANS 
RANDOM 

KMEANS 
SMRS 

OPTICS 
EXTREMA 

OPTICS 
SMRS 

RANDOM SMRS 

2007 2800 707 340 310 63 111 1148 72 

2008 5699 1450 695 648 127 231 2349 145 

2009 8529 2197 1084 995 237 399 3534 262 

 

Table 4.6. Training Set creation time (mins), using the sampling algorithms. 

EVALUATION 
YEAR 

ENTIRE SET KENSTONE KMEANS 
RANDOM 

KMEANS 
SMRS 

OPTICS 
EXTREMA 

OPTICS 
SMRS 

RANDOM SMRS 

2007 0.00025 0.42472 0.00701 0.65417 0.06346 2.16183 0.00063 14.84835 

2008 0.00028 0.94954 0.01198 1.16747 0.09685 4.97662 0.00026 36.53702 

2009 0.00028 1.39297 0.02380 1.60534 0.16518 7.48545 0.00121 52.40785 

 

                                                           
6 For evaluation year 2007, data from year 2006 are used. Similarly, for evaluation year 2008 models are trained using 
data of 2006 – 2007; for the evaluation year 2009 data span from 2006 to 2008. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

 

Figure 4.1. Illustration of sampling approaches for randomly generated data (a), distributed around 4 points: (0.45.0.45). (0.45.-0.45). 
(-0.45.0.45). (-0.45.-0.45); All data ~𝑁(𝜇. 𝜎). 𝜇 = 0.293. 𝜎 = 0.212. Data are represented with ‘o’. Selected samples are marked with 
‘x’. The sampling approaches are: (b) KenStone, (c) kmeans Random, (d) kmeans SMRS, (e) OPTICS extrema, (f) OPTICS SMRS, (g) SMRS, 
(h) Random. 
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Table 4.7. Average time for the assessment model training, using various sampling approaches (mins). 

 LinReg knn FFnet Ctree Adaboost 
knn 

Lin SVM Poly SVM Rbf SVM LDS Harmonic 

EntireSet 0.0032 0.0010 0.1615 0.0020 0.0106 0.0253 0.0408 0.0415 26.2818 0.2502 

Kenstone 0.0030 0.0010 0.1016 0.0015 0.0079 0.0030 0.0026 0.0030 2.8251 0.1024 

kmeansRandom 0.0026 0.0010 0.0775 0.0012 0.0070 0.0004 0.0006 0.0007 1.5645 0.0873 

kmeansSMRS 0.0026 0.0010 0.0799 0.0013 0.0069 0.0005 0.0005 0.0007 1.4640 0.0743 

Optics extrema 0.0028 0.0010 0.0914 0.0011 0.0067 0.0008 0.0001 0.0001 0.9235 0.0637 

Optics SMRS 0.0625 0.0306 0.4706 0.0112 0.0295 0.0025 0.0011 0.0014 1.0319 0.0709 

Random 0.0078 0.0025 0.1372 0.0029 0.0113 0.0085 0.0070 0.0073 5.2051 0.1264 

SMRS 0.0028 0.0010 0.0729 0.0012 0.0068 0.0001 0.0001 0.0002 0.9374 0.0622 

4.5 Classification results 
The following classifiers were implemented using native code included in MatLab toolboxes: linear, 𝑘NN, 

trees, adaptive boosting and ANN. For the SVMs the LIBSVM implementation (Chang and Lin, 2011) was 

utilized. The ANN adopt a two hidden layer topology (Angelini et al., 2008) with 8 neurons per layer. SSL 

approaches used (Chapelle and Zien, 2004; Zhu, 2003) implementations; for both cases 5 nearest neighbors 

graphs were constructed.  

Under sampling the majority class resulted in less data (see Table 4.5). However, that cannot guarantee a 

balanced train set. Thus, we had to adjust the weights in cost functions, during training. In particular, we 

emphasize the default class by reducing the weigh value of the non-defaulted class. 

4.5.1 Performance evaluation 
In this section, extensive results tables are provided, covering all possible aspects of the assessment synergies 

proposed so far. At first the impact of sampling schemes is investigated, separately for each year. Comparative 

results are shown in  

Table 4.8. Consequently, the same evaluation is performed, for the classification algorithms, as shown in Table 

4.9. Table 4.10 was explicitly created to demonstrate the detection abilities over defaulted companies. Finally, 

in order to facilitate the synergies impact over the assessment performance AUC scores are provided in Table 

4.11.  

Table 4.8. Performance scores values per data sampling approach. 

 Accuracy Sensitivity Specificity Precision 
2007 Train Test Train Test Train Test Train Test 

EntireSet 0.882 0.870 0.726 0.311 0.888 0.880 0.611 0.042 

Kenstone 0.791 0.757 0.738 0.464 0.800 0.763 0.619 0.052 

Optics extrema 0.823 0.748 0.836 0.581 0.819 0.751 0.717 0.055 

Random 0.770 0.644 0.854 0.649 0.736 0.644 0.656 0.055 

SMRS 0.906 0.402 0.922 0.909 0.755 0.393 0.974 0.031 

Kmeans SMRS 0.799 0.429 0.820 0.753 0.761 0.423 0.877 0.022 

Kmeans Random 0.837 0.825 0.755 0.368 0.844 0.833 0.542 0.051 

Optics SMRS 0.893 0.249 0.924 0.909 0.735 0.237 0.950 0.022 

2008     

EntireSet 0.860 0.834 0.754 0.298 0.864 0.853 0.600 0.077 

Kenstone 0.819 0.778 0.776 0.373 0.825 0.792 0.640 0.073 

Optics extrema 0.843 0.757 0.864 0.537 0.835 0.765 0.734 0.098 

Random 0.815 0.702 0.845 0.517 0.803 0.709 0.698 0.072 

SMRS 0.922 0.451 0.934 0.872 0.805 0.436 0.980 0.061 

Kmeans SMRS 0.849 0.397 0.925 0.815 0.724 0.381 0.859 0.047 

Kmean sRandom 0.848 0.818 0.764 0.347 0.855 0.835 0.571 0.127 

Optics SMRS 0.910 0.240 0.950 0.911 0.700 0.216 0.946 0.041 

2009     
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EntireSet 0.864 0.860 0.766 0.323 0.869 0.871 0.573 0.080 

Kenstone 0.805 0.770 0.785 0.414 0.809 0.777 0.600 0.039 

Optics extrema 0.831 0.751 0.883 0.625 0.807 0.753 0.729 0.059 

Random 0.817 0.706 0.838 0.550 0.807 0.709 0.727 0.040 

SMRS 0.929 0.416 0.939 0.895 0.806 0.406 0.985 0.034 

kmeansSMRS 0.863 0.362 0.933 0.916 0.718 0.350 0.879 0.029 

kmeansRandom 0.846 0.830 0.782 0.414 0.854 0.839 0.556 0.088 

Optics SMRS 0.923 0.265 0.951 0.945 0.726 0.251 0.962 0.026 

 

Data set compression is crucial especially for large data sets. In our case, data compression was feasible and 

meaningful, i.e. there is an acceptable trade-off among initialization time, data variance and model 

performance.  

Table 4.8 suggest so, since sampling approaches achieve similar performance to a traditional training 

approach, by selecting few data. The combination of OPTICS with SMRS provide a good tradeoff between data 

sample size and models performance. 

Table 4.9. Performance scores values per data classification technique. 

 Accuracy Sensitivity Specificity Precision 

2007 Train Test Train Test Train Test Train Test 

Ctree 0.951 0.674 0.956 0.488 0.974 0.678 0.890 0.040 

FFnet 0.918 0.681 0.590 0.474 0.846 0.685 0.892 0.032 

Harmonic 1.000 0.672 1.000 0.550 1.000 0.674 1.000 0.077 

knn 0.802 0.606 0.944 0.774 0.771 0.603 0.621 0.051 

LDS 1.000 0.688 1.000 0.528 1.000 0.691 1.000 0.039 

Lin SVMs 0.730 0.668 0.748 0.788 0.721 0.665 0.528 0.045 

LinReg 0.848 0.671 0.438 0.450 0.713 0.675 0.716 0.044 

Poly SVMs 0.465 0.300 0.836 0.833 0.312 0.291 0.460 0.019 

Rbf SVMs 0.714 0.650 0.709 0.764 0.700 0.648 0.509 0.040 

Adaboost knn 0.949 0.547 1.000 0.533 0.885 0.547 0.817 0.027 

2008     

Ctree 0.979 0.682 0.993 0.509 0.977 0.688 0.911 0.083 

FFnet 0.912 0.722 0.606 0.462 0.880 0.732 0.873 0.093 

Harmonic 1.000 0.680 1.000 0.496 1.000 0.687 1.000 0.119 

knn 0.854 0.640 0.950 0.634 0.859 0.640 0.666 0.075 

LDS 1.000 0.729 1.000 0.458 1.000 0.739 1.000 0.091 

Lin SVMs 0.761 0.670 0.775 0.713 0.744 0.669 0.543 0.077 

LinReg 0.858 0.661 0.464 0.434 0.713 0.669 0.788 0.049 

Poly SVMs 0.519 0.250 0.970 0.933 0.219 0.225 0.423 0.042 

Rbf SVMs 0.752 0.647 0.760 0.687 0.753 0.645 0.539 0.069 

Adaboost knn 0.946 0.541 1.000 0.511 0.870 0.542 0.792 0.045 

2009         

Ctree 0.963 0.673 0.977 0.585 0.973 0.674 0.899 0.058 

FFnet 0.885 0.673 0.641 0.534 0.830 0.676 0.778 0.045 

Harmonic 1.000 0.662 1.000 0.577 1.000 0.663 1.000 0.111 

knn 0.857 0.598 0.969 0.722 0.836 0.596 0.677 0.047 

LDS 1.000 0.706 1.000 0.511 1.000 0.710 1.000 0.044 

Lin SVMs 0.747 0.702 0.784 0.719 0.729 0.702 0.576 0.050 

LinReg 0.851 0.649 0.489 0.463 0.686 0.652 0.734 0.037 

polynomial SVMs 0.585 0.334 0.932 0.974 0.334 0.321 0.475 0.029 

Rbf SVMs 0.768 0.658 0.804 0.739 0.752 0.656 0.581 0.045 

Adaboost knn 0.943 0.545 1.000 0.528 0.856 0.545 0.792 0.029 

 

Table 4.9 suggests that SVMs and neural networks perform better than most classification approaches. 

However, neural network topology was not optimized, which could lead to further classification performance 

improvement. In this work, emphasis is given over the detection of defaulted companies. Thus, an appropriate 
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performance metric would be the false negative rate, which demonstrates how the misclassification of 

defaulted firms as non-defaulted. According to Table 4.10 SVMs score better than the other approaches. 

Table 4.10. False negative rates results; the smaller the value the better the model’s performance. Average values for the years 2007-
2009. 

 
Entire Set KenStone 

k means 
Random 

k means 
SMRS 

OPTICS 
extrema 

OPTICS SMRS Random SMRS 

 Train Test Train Test Train Test Train Test Train Test Train Test Train Test Train Test 

Ctree 0.000 0.860 0.000 0.668 0.023 0.572 0.008 0.502 0.041 0.125 0.051 0.190 0.000 0.740 0.073 0.123 

FFnet 0.298 1.000 0.633 0.830 0.287 0.521 0.296 0.514 0.003 0.045 0.047 0.175 0.853 0.942 0.019 0.053 

Harmo
nic 0.000 0.914 0.000 0.734 0.000 0.596 0.000 0.501 0.000 0.042 0.000 0.037 0.000 0.822 0.000 0.026 

Knn 0.000 0.610 0.000 0.311 0.002 0.282 0.000 0.167 0.228 0.287 0.036 0.098 0.000 0.470 0.100 0.098 

LDS 0.000 1.000 0.000 0.724 0.000 0.420 0.000 0.527 0.000 0.111 0.000 0.231 0.000 0.920 0.000 0.072 

Lin 
SVMs 0.206 0.232 0.305 0.357 0.219 0.231 0.242 0.292 0.148 0.182 0.266 0.277 0.209 0.250 0.253 0.259 

Linreg 0.000 1.000 0.330 1.000 0.571 0.598 0.663 0.702 0.000 0.000 0.073 0.107 0.989 0.992 0.000 0.006 

Poly 
SVMs 0.105 0.104 0.029 0.021 0.042 0.037 0.036 0.028 0.057 0.084 0.039 0.354 0.041 0.044 0.015 0.021 

Rbf 
SVMs 0.237 0.270 0.372 0.397 0.246 0.293 0.297 0.358 0.204 0.202 0.227 0.244 0.237 0.276 0.122 0.122 

Adabo
ost knn 0.000 0.904 0.000 0.788 0.000 0.638 0.000 0.689 0.000 0.000 0.000 0.006 0.000 0.780 0.000 0.000 

 

Table 4.11. AUC performance (test set) for the suggested models. 

 Entire Set Kenstone k means 
Random 

k means 
SMRS 

OPTICS 
extrema 

OPTICS 
SMRS 

Random SMRS 

Ctree 
0.555 0.602 0.655 0.650 0.631 0.577 0.602 0.559 

2007 
0.553 0.651 0.612 0.635 0.636 0.535 0.557 0.521 

2008 
0.544 0.568 0.638 0.652 0.660 0.568 0.575 0.542 

2009 
0.568 0.585 0.713 0.663 0.596 0.630 0.673 0.615 

FFnet 
0.712 0.753 0.795 0.739 0.747 0.670 0.787 0.640 

2007 
0.612 0.794 0.815 0.762 0.753 0.584 0.792 0.681 

2008 
0.738 0.699 0.766 0.706 0.700 0.678 0.779 0.612 

2009 
0.785 0.767 0.805 0.748 0.790 0.747 0.790 0.626 

Harmonic 
0.735 0.728 0.798 0.741 0.787 0.758 0.784 0.703 

2007 
0.832 0.798 0.850 0.797 0.828 0.814 0.844 0.745 

2008 
0.665 0.644 0.749 0.678 0.753 0.701 0.730 0.665 

2009 
0.707 0.742 0.797 0.748 0.780 0.759 0.778 0.700 

kNN 
0.663 0.685 0.755 0.706 0.746 0.651 0.700 0.592 

2007 
0.711 0.764 0.795 0.751 0.767 0.652 0.743 0.592 

2008 
0.613 0.635 0.722 0.660 0.737 0.644 0.655 0.595 

2009 
0.664 0.657 0.747 0.709 0.733 0.655 0.702 0.588 

LDS 
0.785 0.695 0.728 0.680 0.777 0.709 0.779 0.718 

2007 
0.822 0.721 0.722 0.657 0.808 0.740 0.773 0.693 

2008 
0.773 0.692 0.686 0.693 0.779 0.700 0.796 0.691 

2009 
0.760 0.671 0.776 0.691 0.743 0.687 0.768 0.769 

Lin SVMs 
0.826 0.765 0.827 0.765 0.811 0.718 0.825 0.680 

2007 
0.853 0.799 0.853 0.790 0.828 0.741 0.853 0.672 

2008 
0.807 0.736 0.807 0.742 0.813 0.679 0.806 0.650 

2009 
0.817 0.762 0.820 0.762 0.793 0.734 0.815 0.717 

LinReg 
0.817 0.746 0.821 0.758 0.801 0.733 0.815 0.739 

2007 
0.840 0.791 0.841 0.808 0.815 0.755 0.838 0.739 

2008 
0.800 0.707 0.803 0.719 0.795 0.699 0.798 0.686 
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2009 
0.809 0.739 0.820 0.745 0.793 0.745 0.808 0.790 

Poly SVMs 
0.752 0.715 0.752 0.721 0.745 0.688 0.750 0.687 

2007 
0.787 0.764 0.786 0.775 0.762 0.734 0.786 0.706 

2008 
0.726 0.696 0.725 0.695 0.722 0.659 0.724 0.656 

2009 
0.744 0.684 0.746 0.693 0.752 0.672 0.741 0.700 

Rbf SVMs 
0.800 0.759 0.800 0.754 0.803 0.736 0.800 0.727 

2007 
0.820 0.792 0.820 0.783 0.820 0.757 0.822 0.720 

2008 
0.781 0.729 0.779 0.735 0.801 0.705 0.781 0.687 

2009 
0.799 0.755 0.802 0.744 0.789 0.745 0.796 0.775 

Adaboost 
knn 0.619 0.631 0.614 0.591 0.628 0.612 0.638 0.576 

2007 
0.641 0.695 0.651 0.617 0.621 0.554 0.666 0.595 

2008 
0.596 0.591 0.632 0.615 0.608 0.657 0.605 0.578 

2009 
0.620 0.607 0.559 0.542 0.653 0.626 0.643 0.556 

 

4.6 Conclusions and future work 
Appropriate train data sets greatly improve the classification performance of any model. Sampling approaches 

results were exceptionally, despite the heuristic rules over parameters’ definition. Further research regarding 

parameters’ set up will lead to even better performance. Additionally, there are many possibilities in exploiting 

unlabeled data, as long as there are good features available.  

These positive preliminary results indicate that there is much room for future research that has the potential 

to provide many new capabilities and insights into credit risk modeling. A first, obvious, direction would be to 

employ a richer set of predictor attributes taking among others into account variables related to the business 

sector of the firms, variables related to non-financial characteristics of the firms (e.g., age, board member 

composition), stock market data, corporate governance indicators, macroeconomic variables, as well as 

variables indicating the dynamics of the financial data of the firms (e.g., growth ratios). 

It is also necessary to examine the applicability of this modeling approach to developed international markets 

and consider the relationship of the results in comparison to credit ratings issued by major rating agencies. 

Finally, it is worth to investigate possible additional effects related to the recent debt crisis and other events 

that had significant impact on the international markets. 
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Chapter V: Vision Based Tunnel Inspection 

The real problem is not whether machines think but whether men do.  
B. F. Skinner, American psychologist 

 

5 Deep-learning, vision-based tunnel inspection 
In this chapter, we consider the detection of tunnel concrete defections through visual cues. It is a typical two 

class identification problem, where we investigate the performance of various approaches, using the raw input 

from a single monocular camera.  

In particular, we exploit a Convolutional Neural Network (CNN) to construct high-level features and as a 

classifier we choose to use a Multi-Layer Perceptron (MLP) due to its global function approximation properties. 

Following the aforementioned approach, our method achieves real-time predictions due to the feed-forward 

nature of CNNs and MLPs. The CNN is evaluated against a variety of machine learning approaches, including 

SSL techniques. 

The tested SSL paradigms were not suitable for the specific task, as shown below. There was three major 

drawbacks: low feature quality, long execution times and hardware requirements. In particular, for the 

problem at hand low level features fail to appropriate describe the defected regions on the image. Also, SSL 

even for a small size image require the construction of large scale matrices, which is time consuming. Even if 

we have sparse matrices, their inversion requires a significant amount of RAM and a quick processor.  

5.1 Introduction 
Civil infrastructures are progressively deteriorating (e.g. ageing, environmental factors), calling for inspection 

and assessment. Presently, structural tunnel inspection is predominantly performed through tunnel-wide 

visual observations by inspectors, who identify structural defects, rate them and then, based on their severity, 

categorize the liner. This visual inspection (VI) process is slow, labor intensive and subjective (depending on 

the experience and fatigue). Additionally, it occurs while working in an unpleasant environment and 

uncomfortable conditions (Yu et al., 2007). Moreover, the liner condition evaluation is empirical and 

incomplete and lacks any engineering analysis; it is therefore, unreliable. 

Approaches that utilize automated procedures for VI of concrete infrastructures aim specifically to defects 

detection and structure evaluation. Towards this direction, such methods exploit image processing and 

machine learning techniques. Initially, low-level image features are used towards the construction of complex 

handcrafted features, which are used to train learning models, i.e. the detection methods. Automated 

approaches have been applied in practical settings including roads, bridges, fatigues, and sewer-pipes (Kim 

and Haas, 2000; Sinha and Fieguth, 2006; Tung et al., 2002). 

Recent research in robotics and relevant sectors, such as computer vision and sensors, have significantly 

increased the competitiveness of components needed in automated systems. Such components can perform 

quick and robust inspection/assessment, in general transportation and tunnel infrastructures. However, such 

an integrated and automated system is not yet available. The work that will be presented in this chapter, 

involves the core mechanism of such system; a computer vision scheme, easy to integrate with all the required 

components (e.g. laser scanners) for the inspection and assessment of tunnels in one pass. 
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5.1.1 Related work 
Intensity features and SVMs for crack detections on tunnel surfaces where used in (Liu et al., 2002). Color 

properties, different non-RGB color spaces and various machine learning algorithms are also investigated in 

(Son et al., 2012). Edge detection techniques are applied in (Abdel-Qader et al., 2003) for detecting concrete 

defects. Edge detection algorithms (i.e. Sobel and Laplacian operators) and graph based search algorithms are 

also utilized in (Yu et al., 2007) to extract crack information. 

An image mosaic technology for detecting tunnels surface defects was further extended in (Mohanty and 

Wang, 2012). A pothole detection system (Koch and Brilakis, 2011), based on histogram shape-based 

thresholding and low level texture features, has been used in asphalt pavement images. A concrete spalling 

measurement system for post-earthquake safety assessments, using template matching techniques and 

morphological operations, has been proposed by (German et al., 2012). 

The exploitation of more sophisticated features has also been proposed. Histograms of Oriented Gradient 

features and SVMs are utilized in the work of (Halfawy and Hengmeechai, 2014), to support automated 

detection and classification of pipe defects. Shape-based filtering is exploited in the work of (Jahanshahi et al., 

2013) for crack detection and quantification. The constructed features are fed as input to ANN or SVM 

classifiers in order to discriminate crack from non-crack patterns. 

The conventional paradigm of pattern recognition consists of two steps: complex handcrafted feature 

construction and classifiers training. However, variety in defect types makes difficult the feature 

construction/selection task. Deep learning models (Hinton et al., 2006; Hinton and Salakhutdinov, 2006) are a 

class of machines that can learn a hierarchy of features by building complex, high-level features from low-level 

ones, automating the process of feature construction for the problem at hand. 

 The work of (Makantasis et al., 2015a) exploits a CNN to hierarchically construct high-level features, describing 

the defects, and a Multi-Layer Perceptron (MLP) that carries out the defect detection task in tunnels. Such an 

approach offers an automated feature extraction, adaptability to the defect type(s), and has no need for 

special set-up for the image acquisition. Nevertheless, there is a major drawback regarding the applicability in 

real life scenarios: resources spend for data annotation. Data annotation is a time consuming job that requires 

a human expert; it is therefore prone to segmentation errors.  

The aforementioned approach has been further enriched by (Protopapadakis and Doulamis, 2015a); they 

incorporated a prior, image processing, detection mechanism, facilitating the initialization phase. Such 

mechanism stands as a simple detector and is only used at the beginning of the inspection. Possible defects 

are annotated and then validated by an expert; after validating few samples, the required training dataset for 

the deep learning approach has been formed. From this point onwards, a CNN is trained and, then, utilized for 

the rest of the inspection process.  

In their most recent approach (Protopapadakis et al., 2016a) the same initialization mechanism, as in the 

previous paragraph. However, the CNN detector is directly utilized over raw data. These data are image 

patches, which allow us to bypass the low level feature extraction process, preserving from wrong feature 

selection adverse impact. Finally, since most of defects result in crack appearance, the CNN is specifically 

utilized for crack detection. 

5.2 Approach overview 
We consider the detection of concrete defects in tunnels using monocular camera's RGB images. Seen as an 

image segmentation problem, the detection of defects entails, to a great extent, the classification of each one 

of the pixels in the image into one of two classes; defection class and no defection class.  
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Classification requires the description of pixels by a set of highly discriminative features that fuse visual and 

spatial information. However, the features extraction is inherently depended on the problem at hand. Such 

drawback can be eliminated through a hierarchical construction of complex, high-level features, following the 

deep learning paradigm. Concretely, a CNN is proposed for feature construction, followed by a MLP, which 

conducts the classification task. While visual information is derived using the RGB values of each pixel, spatial 

information is obtained by taking into consideration a neighborhood around each pixel.  

Fusing spatial and visual information is aligned with the exploitation of CNNs, which, typically, handle 2D 

inputs. Instead of using as input to the network a single pixel 𝑝𝑥𝑦, located at (𝑥, 𝑦) point on image plane, we 

feed it with a patch centered at point (𝑥, 𝑦). Particularly, in order to classify a pixel 𝑝𝑥𝑦 and successfully fuse 

visual and spatial information, we use a square patch of size 𝑠 × 𝑠 centered at pixel 𝑝𝑥𝑦. 

If we denote as 𝑙𝑥𝑦 the class label of the pixel at location (𝑥, 𝑦) and as 𝑏𝑥𝑦 the patch centered at pixel 𝑝𝑥𝑦, 

then, we can form a dataset 𝐷 = {𝑏𝑥𝑦, 𝑙𝑥𝑦} for 𝑥 = 1, … , 𝑤  and 𝑦 = 1, … , ℎ; parameters 𝑤  and ℎ refer to 

image width and height respectively. Patch 𝑏𝑥𝑦 is 3D tensor, who is divided into 𝑐 matrices of dimensions 𝑠 ×

𝑠 (2D inputs) which are fed as input into a CNN. Parameter 𝑐 refers to the channels of visual information, i.e. 

for a typical RGB image, 𝑐 = 3. Then, the CNN hierarchically builds high-level features that encode visual and 

spatial characteristics of pixel 𝑝𝑥𝑦.  

The output of the CNN is sequentially connected with a MLP. Thus, obtained features are used as input by the 

MLP classifier, which is responsible for detecting defections. The overall architecture of the CNN is shown in 

Figure 5.1. 

 

Figure 5.1. Proposed CNN detector. 

5.2.1 Data acquisition and processing challenges 
Ideally, during image acquisition, no special setup should take place; we aim towards the development of a 

generic optic inspection method. In other words, images should be taken from any angle and distance from 

the tunnel surfaces. However, even if we have the ideal conditions, during acquisition, the defect types make 

the problem increasingly difficult for the detection mechanism. The term "defect" can be interpreted in many 

ways; deformations, cracks, surface disintegration, and other defects are widely known and commonly appear.  

Discreet, parallel cracks that look like tearing of the surface are caused by shrinkage while the concrete is still 

fresh, called plastic shrinkage cracks. Fine random cracks or fissures that may only be seen when the concrete 

is drying after being moistened are called crazing cracks. Cracking that occurs in a three-point pattern is 

generally caused by drying shrinkage. Large pattern cracking, called map-cracking, can be caused by alkali-
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silica reaction within the concrete. Structural failure cracking may look like many other types of cracking; 

however, in slabs they are often associated with subsequent elevation changes, where one side of the crack 

is be lower than the other. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e)  

(f) 
Figure 5.2. Illustration of various defect types: (a) small patches of flaking, (b) map-cracking, (c) shrinkage 

crack, (d) bugholes, (e) honeycombing, and (f) raveling or spalling at joints. These are some of the major defect 

types, appear in almost all concrete infrastructures. 

Disintegration of the surface is generally caused by three types of distress: (a) dusting, due to carbonation of 

the surface by unventilated heaters or by applying water during finishing, (b) ravelling or spalling at joints, 

when pieces of concrete from the joint edges are dislodged and, (c) breaking of pieces from the surface of the 

concrete, generally caused by delaminations and blistering. Popouts are conical fragments that come off the 

surface, typically leaving a broken aggregate at the bottom of the hole. Popoffs, or mortar flaking, is similar to 

popouts, except that the aggregate is not broken and the broken piece is generally smaller. Flaking of the 

concrete surface over a widespread area is called scaling. 

Other defects include discoloration of the concrete; bugholes, which are small voids in the surface of vertical 

concrete placements, and honeycombing, which is the presence of large voids in concrete caused by 

inadequate consolidation. At this point, we are able to understand the defect identification problem: it is 
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extremely difficult to extract features suitable for the accurate description of such a large number of defect 

alternatives, simultaneously. 

5.2.2 Visual Information Modeling for Tunnel Inspection 
In this section we describe the process for encoding visual information. This process takes place exploiting 

low-level features. There are two main reasons we used such features. Firstly, similar features were used by 

many researchers (e.g. (Abdel-Qader et al., 2003; German et al., 2012; Halfawy and Hengmeechai, 2014; Koch 

and Brilakis, 2011; Son et al., 2012)). Secondly, such low-level features are calculated over raw-data and are 

computationally less-expensive than other high-level features. It has to be mentioned that these features are 

used by the CNN to hierarchically construct high-level features. They are not used directly for classification 

purposes.  

Using low-level feature extraction techniques, each pixel 𝑝𝑥𝑦  is described by a feature vector 𝒇𝑥𝑦 =

[𝑓1,𝑥𝑦, … , 𝑓𝑘,𝑥𝑦]
𝑇

, where 𝑓𝑖,𝑥𝑦, 𝑖 = 1, … , 𝑘 are scalars correspond to the presence and magnitude of the low 

level features detected at location (𝑥, 𝑦). Feature vectors along with the class labels of every pixel are used to 

form a dataset for training, validating and testing our learning model. In the following we describe, which 

features are used to form feature vector 𝒇𝑥𝑦. 

5.2.2.1 Edges 

In order to successfully exploit images edges, on the one hand the system must be able to detect them, in a 

very accurate way and, on the other, it must preserve their magnitude. For this reason we combined the Canny 

and Sobel operators. Canny (McIlhagga, 2011) operator is a very accurate image edge detector, which outputs 

zeros and ones for image edges absence and presence respectively. On the other hand, Sobel (Yasri et al., 

2008) operator measures the strength of detected edges.  

Multiplying pixel-wise the output of two operators the system is able to detect edges in a very accurate way, 

while at the same time it preserves their magnitude. If we denote as 𝐶𝐼 and 𝑆𝐼 the Canny and Sobel operators 

for image 𝐼 then the edges 𝓔𝐼 are defined as: 

𝓔𝐼 = 𝐶𝐼 ⋅ 𝑆𝐼 (5.1) 

Matrix ℰ𝐼 has the same dimensions with image 𝐼 and its elements 𝓔𝐼(𝑥, 𝑦) correspond to the magnitude of an 

image edge at (𝑥, 𝑦) location.  

5.2.2.2 Frequency 

Frequency feature is utilized to emphasize regions of high frequency in the image and at the same time 

suppress low frequency regions. Frequency components of 𝐼 are computed as: 

𝓕𝐼 = ∇2 ⋅ 𝐼 (5.2) 

The matrix 𝓕𝐼 has the same dimensions with image I and its elements 𝓕𝐼(𝑥, 𝑦)correspond to the frequency's 

magnitude at location (𝑥, 𝑦) on image plane. 

5.2.2.3 Entropy 

Image entropy quantifies the information coded in an image, i.e. the amount of information which can be 

coded by a compression algorithm. Image entropy can be interpreted as a statistical measure of randomness, 

which can be used to characterize the texture of the input image. 
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Images that depict large homogeneous regions7, present low entropy, while highly textured images will 

present high entropy. Entropy 𝓗𝑟 of a region 𝑟 of an image is defined as: 

𝓗𝑟 = ∑ 𝑃𝑖
(𝑟)

⋅ log (𝑃𝑖
(𝑟)

)

𝑘

𝑗=1

 (5.3) 

where 𝑃𝑗
(𝑟)

 is the frequency of intensity 𝑗 in an image region 𝑟. For a grayscale image, variable k is equal to 

256. In order to compute entropy for a pixel 𝑝𝑥𝑦, we apply eq. (5.3) on a square window centered at (𝑥, 𝑦). 

Applying this relation on every point of an image 𝐼 results to a matrix 𝓗𝐼, which can be interpreted as a pixel-

wise entropy indicator. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

  

                                                           
7 Imagine that you have a fresh applied concrete coating; no stripes, holes or other defects. The texture is homogenous 
and, thus, the image block over this area presents low entropy. Similar examples is a clean sky, or the surface of a lake a 
calm sunny day. 
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(e) (f) 
Figure 5.3. Illustration of the extracted low level features: (a) Original image, (b) edges, (c) frequency, (d) entropy, (e) texture and (f) 
HOG. 

5.2.2.4 Histogram of Oriented Gradients 

HOG is a popular dense feature descriptor (Dalal and Triggs, 2005) used for the task of object detection. It 

exploits image gradients to capture contour, silhouette and texture information, in order to produce an 

encoding that is sensitive to local image content while remaining resistant to small changes in pose or 

appearance. 

5.2.2.5 Texture 

For texture identification we used Gabor filters, which is a linear filter used for edge detection. A Gabor filter 

is characterized by a frequency and an orientation. Frequency and orientation representations of Gabor filters 

are similar to those of the human visual system, and they have been found to be particularly appropriate for 

texture representation and discrimination. In the spatial domain, a 2D Gabor filter is a Gaussian kernel function 

modulated by a sinusoidal plane wave. In our implementation we used Gabor filters with different frequencies 

and orientations, in order to extract low level features from the image. Specifically, we used twelve Gabor 

filters with orientations 0∘, 30∘, 60∘and 90∘ and frequencies 0.0, 0.1 and 0.4. 

Following the aforementioned procedure we construct 16 low level features for an image. By combining these 

features with the raw pixels intensity, feature vector 𝒇𝑥𝑦 takes the form of a 1 × 17 vector containing visual 

information that characterizes each one of the image's pixels. 

5.2.3  Leaning model 
As it has mentioned before, CNNs apply trainable filters and pooling operations on their input resulting in a 

hierarchy of increasingly complex features. Convolutional layers consist of a rectangular grid of neurons 

(filters), each of which takes inputs from rectangular sections of the previous layer. Each convolution layer is 

followed by a pooling layer that subsamples block-wise the output of the precedent convolutional layer and 

produces a scalar output for each block.  

Formally, if we denote the 𝑘-th output of a given convolutional layer as ℎ𝑘 whose filters are determined by 

the weights 𝑊𝑘 and bias 𝑏𝑘, then the ℎ𝑘 is obtained as: 

ℎ𝑖𝑗
𝑘 = g ((Wk ∗  x)

ij
 +  bk) (5.4) 

where 𝑥 stands for the input of the convolutional layer and indices 𝑖 and 𝑗 correspond to the location of the 

input where the filter is applied. Star symbol (∗) stands for the convolution operator and 𝑔(⋅) is a non-linear 

function. Max pooling layers simply take some 𝑘 × 𝑘 region and output the maximum value in that region. For 

instance, if their input layer is a 𝑁 × 𝑁 matrix, they will then output a 
𝑁

𝑘
×

𝑁

𝑘
 matrix.  

Max pooling layers introduce scale invariance to the constructed features, which is a very important property 

for object detection/recognition tasks, where scale variability problems may occur. However, For the problem 

of tunnel defects detection, we involve CNNs to construct features that spatio-visual encode information that 

indicates the presence or absence of a defection to a specific pixel and thus scale invariance does not consist 

a significant property for our learning model. Due to this fact, we do not involve pooling layers into learning 

architecture. 

5.2.3.1 Learning model parameterization 

The visual information of each raw image is encoded using the techniques described in sec. 5.2.2, resulting to 

a 3D tensor of dimensions 17 × 𝑤 × ℎ, where 𝑤 and ℎ stand for the width and height of the raw input image. 

This tensor is divided into 1 × 5 × 5 overlapping windows, which are fed as input to the CNN. 
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The input is convolved with 30 trainable filters of dimension 3 × 3. The output of the first convolutional layer 

is a 3D matrix of dimension 30 × 3 × 3 since we do not take into consideration the border of the window during 

convolution. The output of this layer is fed as input to the second convolutional layer and convolved with 60 

trainable features of dimension 3 × 3. The output of the second convolutional layer is a 60 dimensional vector, 

which is fed as input to the MLP. The MLP contains one hidden layer with 60 neurons and an output layer with 

two neurons (one for each class). 

5.2.4 Possible limitations 
The defects visual complexity varies significantly among inspection sites, as such there is no guarantee that 

the initial preprocessing (i.e. low level extracted features) suffice as initial (base) descriptors. Also, it requires 

extra computation effort. Such drawback is addressed in the work of (Protopapadakis and Doulamis, 2015b), 

where input patches originate from the raw image.  

Another issue is the initialization setup; a carefully-annotating image set is required for the detectors 

initialization, since we have pixel level assessment. Such a process is time consuming and prone to 

segmentation (human) errors. SSL annotation schemes, as in sec. 8.4 are not applicable in this case due to low 

descriptive abilities of extracted features. 

5.3 Performance evaluation 
The proposed system was developed on a conventional laptop with i7 CPU, 8GB RAM using MatLab software, 

and Theano library (Bastien et al., 2012) in Python. The CNN was compared against well-known techniques in 

pattern recognition (as described in sec. 3.1 ), which are based on handcrafted features. To conduct a fair 

comparison we used the same features, as in sec. 5.2.2, for each of these techniques. 

5.3.1 Dataset description 
All the images originate from the tunnels of Egnatia motorway in Greece. There was a great diversity of 

available tunnels for recording. Raw captured tunnel and annotated ground truth images of resolution 800 ×

600 pixels were provided.  

During image acquisition no special setup took place, i.e. images are taken from any angle and distance from 

the tunnel surface. Since defects spans very few areas, we had to balance the train and test sets. In total, over 

100000 samples were classified; evaluation (test) set was 30% of those. 

Performance metrics are shown in Table 5.1, for all of the proposed approaches. Metrics description can be 

found in sec. 3.3, Table 3.1. Illustrations of the models outputs can be found in Figure 5.5. In this case we have 

two possible classes; cracks or non-cracks, named positive (P) and negative (N) class, respectively. Confusion 

matrix and calculated performance metrics are explained in sec. 3.3. 
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Figure 5.4. Images from Metsovo tunnels, Egnatia motorway, Greece 

5.3.2 Experimental results 
Table 5.1 results suggest that for the general defect recognition task low level features are adequate. As such 

traditional machine learning approaches can support a tunnel inspection process. However, Figure 5.5 suggest 

against that. The explanation of such contradictory results lies at the features descriptive abilities. Low lever 

features, which form the training and evaluation sets, are calculated over a set of initial images. Yet, the 

slightest change in image acquisition process cases significant change in low level feature values. As such, 

angle, luminosity or focal lenses alters the detector’s output. 

Table 5.1. Quantitative performance metrics for the defect recognition problem over RGB images. 

 Quantitative Performance Metrics 

 TPR SPC PPV NPV FPR FDR FNR ACC F1 score 

CNN 0,890 0,883 0,883 0,890 0,117 0,117 0,110 0,886 0,886 

Ctree 0,721 0,591 0,751 0,553 0,409 0,249 0,279 0,673 0,736 

Knn 0,845 0,575 0,773 0,685 0,425 0,227 0,155 0,746 0,807 

Ab kNN 0,492 0,586 0,671 0,403 0,414 0,329 0,508 0,527 0,568 

Ffnn 0,854 0,554 0,766 0,689 0,446 0,234 0,146 0,743 0,808 

Linsvms 0,833 0,514 0,746 0,643 0,486 0,254 0,167 0,716 0,787 

Polysvms 0,877 0,036 0,609 0,146 0,964 0,391 0,123 0,567 0,719 

Rbfsvms 0,864 0,470 0,736 0,669 0,530 0,264 0,136 0,719 0,795 

Harmonic 0,668 0,534 0,710 0,485 0,466 0,290 0,332 0,619 0,689 

LDS 0,875 0,524 0,759 0,710 0,476 0,241 0,125 0,746 0,813 

Anchorgraph 0,890 0,530 0,764 0,737 0,470 0,236 0,110 0,757 0,822 

A larger data set is not the solution, since the possible combinations of image capturing parameters are 

infinite; we have not the resources, neither the time required for such a task. Adding additional features does 

not help since we have the “curse of dimensionality” as illustrated in sec. 2.2.4. The CNN are a good alternative, 

since the high level features utilized deal with all the aforementioned problems and can be extracted in a 

rational amount of time. As such they produce far more accurate results. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

Figure 5.5. Classification models output. Areas of defect are denoted over the initial image. Top left is the original image (a). The rest 
are some of the classifiers results: (b) CNN, (c) Ctree, (d) kNN, (e) polynomial SVM. 

5.4 Conclusions & future work 
In this chapter, we point the suitability for deep learning architectures for the tunnel defect inspection 

problem. The proposed approach surpass a variety of well-known approaches without making any 

assumptions on the given images (e.g. minimum resolution, camera angle, etc.). Hierarchical construction of 

complex high-level features in an automated way result in better classification than the conventional 

handcrafted features, while at the same time it minimized the feature construction effort, compared to the 

traditional approaches. 
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Chapter VI: Industrial Workflow Monitoring 

If everyone is thinking alike, then somebody isn't thinking. 
George S. Patton, United States Army officer 

 

6 A hybrid, self-trained model for industrial workflow monitoring 
In this case, we propose an ANN based scheme for assembly process classification, based on video data taken 

from Nissan factory. This is a self-trained SSL approach. The procedure is based on (a) a nonlinear classifier, 

formed using an island genetic algorithm, (b) a similarity-based classifier, and (c) a decision mechanism that 

utilizes the classifiers’ outputs in a semi-supervised way, minimizing the expert’s interventions. Such 

methodology will support the visual supervision of industrial environments by providing essential information 

to the supervisors and supporting their job. 

6.1 Introduction 
Visual supervision is an important task within complex industrial environments; it has to provide a quick and 

precise detection of the production and assembly processes. When it comes to smart monitoring of large-

scale enterprises or factories, the importance of behavior recognition relates to the safety and security of the 

staff, to the reduction of bad quality products cost, to production scheduling, as well as, to the quality of the 

production process. 

In most approaches, the goal is either to detect activities, which may deviate from the norm, or to classify 

some isolated activities (Kim and Ling, 2009; Turaga et al., 2008). Modern techniques are based on supervised 

training, using large data sets (Kim et al., 2015). The need of a significant amount of labeled data during the 

training phase makes classifiers data expensive. In addition, that data demands an expert’s knowledge that 

increases further the cost. 

Modern industry is based on the flexibility of production lines. Therefore, changes occur constantly. These 

changes call for appropriate modifications to the supervising systems. A considerable amount of new training 

paradigms is required in order to adjust the system (Bashir et al., 2007) at the new environment. In order to 

provide all the training data an expert, whose services will not be at a low-cost, is needed. 

A variety of methods has been used for event detection and especially human action recognition, including 

semi-latent topic models (Wang and Mori, 2009), spatial-temporal context (Hu et al., 2010), optical flow and 

kinematic features (Ali and Shah, 2010), and random trees and Hough transform voting (Yao et al., 2010). 

Comprehensive literature reviews regarding isolated human action recognition can be found in (Hu et al., 

2004; Poppe, 2010). 

In this chapter we focus on creating of a decision support mechanism for the workflow surveillance in an 

assembly line that would use few training data, initially; as time passes could be self-trained or, if it is 

necessary, ask for an expert assistance. That way, the human knowledge is incorporated at the minimum 

possible cost. The innovation can be summarized to the following sentence: We propose a cognitive system 

which is able to survey complex, non-stationary industrial processes by utilizing only a small number of training 

data and using a self-improvement technique through time. 
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6.2 Proposed methodology 
The presented approach employs an innovative self-improvable cognitive system, which is based on a semi-

supervised learning strategy as follows: Initially, appropriate visual features are extracted using various 

techniques. Then, visual histograms are formed, over these features, to address temporal variations in 

executing different instances of the same industrial workflow. The created histograms are fed as inputs to a 

non-linear classifier. 

The heart of the system is the automatic self-improvable methodology of the classifier. In particular, we start 

feeding the classifier with a small but sufficient number of training samples (labeled data). Then, the classifier 

is tested on new incoming unlabeled data. If specific criteria are met, the classifier automatically selects 

suitable data from the set of the unlabeled data for further training. The criteria are set so that only the most 

confident unlabeled data will be used on the new training set.  

If a vague output occurs, for any of the new incoming unlabeled data, a second classifier, which exploits 

similarity measure among the in-sampled and the unlabeled data, is used. If classifiers disagree, an expert is 

called to interweave at the system to improve the classifier accuracy. The intervention is performed, in our 

case with a totally transparent and hidden way without imposing the user to acquire specific knowledge of 

the system and the classifier. 

6.2.1 The island genetic algorithm 
The usefulness of the genetic algorithms (GAs) is generally accepted (Whitley et al., 1999). The island GA uses 

a population of alternative individuals in each of the islands. Every individual is a FFNN. While eras pass 

networks’ parameters are combined in various ways in order to achieve a suitable topology.  

A pair of FFNNs (parents) is combined in order to create two new FFNNs (children). Children inherit randomly 

their topology characteristics from both their parents. Under specific circumstances, every one of these 

characteristics may change (mutation). The quartet, parents and children, are then evaluated and the two best 

will remain, updating that way the island’s population. An era has passed when all the population members 

participate in the above procedure. In order to bate the genetic drift, population exchange among the islands, 

every four eras. The algorithm terminates when all eras have passed. Initially, the parameters’ range is 

described in Table 6.1; the main steps of the genetic algorithm are shown in Figure 6.1. The algorithm is used 

to parameterize the topology of the non-linear classifier (described in the next session). 
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Figure 6.1. The island genetic algorithm flowchart. 

Regarding the activation functions, the alternatives were five: Hyperbolic tangent or logarithmic sigmoid, 

saturating linear, hard-limit, and symmetric hard-limit. Individuals may mutate at any era. Mutation can 

change any of the, previously stated, topology parameters therefore individuals’ parameters outside the 

initially defined range may occur. The fitness of a network is evaluated using the following equation: 

𝑓𝑖 = 𝜆𝑝𝑖 + (1 − 𝜆)𝛼 (6.1) 

where 𝑓𝑖 denotes the network’s fitness score, 𝑝𝑖  is the percentage of the correct in-sample classification and 

𝛼 is the average percentage difference, between the two greatest prices, among all the individual’s outputs. 

Table 6.1. Island genetic algorithm parameters' range. 

Parameter Min value Max value 
Training epochs 100 400 
Number of layers 1 3 
Number of neurons (per layer) 4 10 
Number of islands 3 3 
Number of eras 10 10 
Population (per island) 16 16 

6.2.2 The nonlinear classifier  
For the proposed approach, the nonlinear classifier is a genetically optimized (i.e. topologically) feed forward 

neural network, according to the training sample. The neural network’s topology is defined by the number of 

hidden layers, the neurons at each layer, and the activation functions (as described in sec. 3.1.6). All of the 

above as well as the number of training epochs were optimized using an island genetic algorithm.  

Once the training phase is concluded, we start feeding the optimal network unlabeled data. Since the output 

vector of the classifier contains various values (its actual size is 1×7 as the number of the possible tasks), the 

output element with the greatest value will be turned into 1 while all the other ones will be set to 0. This is 

performed only if the greatest value is reliable. The conditions for the reliability are explained at the following 

section. 



 

 

49 A hybrid, self-trained model for industrial workflow monitoring 

DECISION MAKING VIA SEMI-SUPERVISED MACHINE LEARNING TECHNIQUES | Ph.D. Thesis 

6.2.3 The semi-supervised approach 
The main issue, in order to improve network’s performance, is the reliability of labeling the new data, deriving 

from the pool of the unlabeled ones, exploiting network’s performance in the already labeled data. In this 

approach, output reliability is performed by comparing the absolute value of the greatest output element with 

the second greatest, according to some criteria. If these criteria are not met, the output is considered vague, 

otherwise the classifier output is considered as reliable.  

An unsupervised algorithm (e.g. 𝑘-means) is used in case of ambiguous results to support the decision. In 

particular, the unlabeled input vector that yields the vague output, say 𝒖, is compared with all the labeled 

data, say 𝒍𝑖, based on a similarity distance and then the distance values are normalized in the range of [0 1] so 

that all comparisons lie within a pre-defined reference frame, say 𝑑(𝒖, 𝒍𝑖). Then, the k-means algorithm is 

activated to cluster, in an unsupervised way, all the normalized distances 𝑑(𝒖, 𝒍𝑖) into a number of classes, 

equal to the number of available industrial tasks (7 in our case). 

In the sequel, the cluster that provides the maximum similarity (highest normalized distance) score, of the 

unlabeled data that yield the vague output and the labeled ones, is located. Let us denote as K the cardinality 

of this cluster (e.g., the number of its elements). In the following, the neural network output for the given 

unlabeled datum is linearly transformed according to the following formula: 

𝒏𝑓 = 𝒏𝑝 + ∑ 𝑑(𝒖, 𝒍𝑖) ⋅ 𝒗𝑖

𝐾

𝑖=1

 (6.2) 

where 𝒏f is the modified output vector, np the previous network output before the modification, while 𝑑(𝒖, 𝒍𝑖) 

is the similarity score (distance) for the 𝑖-th labeled datum 𝒍𝑖 and the unlabeled datum 𝒖 within the cluster of 

the highest normalized distance, while 𝒗𝑖is the neural network output when input is the i-th labeled vector 𝒍𝑖 

and 𝐾 is the cardinality of the cluster of the maximum highest similarity. 

The modified output vector 𝒏 which is the base for the decision is created using both manifold, i.e. nearest 

neighbors similarity mechanism and cluster assumption, i.e. network output indications (Kumar Mallapragada 

et al., 2009). 

6.2.4 The decision mechanism 
According to the nonlinear classifier output, there are three possible cases (Scenarios): 

1. The network made a robust decision that should not be defied. Therefore, the unlabeled data is used for 

further training but it is not incorporated at the initial training set. 

2. The output is fuzzy, in other words, the difference among the two greatest prices does not exceed the 

threshold values. The similarity-based classifier is activated. If both systems indicate the same then the 

unlabeled data is used for further training but it is not incorporated at the initial training set. 

3. The two classifiers do not agree. Therefore, an expert is called and specifies where the video should be 

classified. That video is added to the initial training data set.  

The combination of these cases leads to a semi-supervised decision mechanism. Threshold values define which 

from the above scenarios will occur. The threshold value is defined as the percentage of the difference 

between the two greatest prices at the output vector. The overall process for the decision making is shown in 

Figure 6.2.  

Initially, the first threshold value is set to 0.6. That value means that if the percentage difference of the two 

greatest values is above or equal to 60% we will be at scenario No 1. The second threshold value is set to 20%. 

If the percentage difference of the two greatest values is less than that, the system is unable to make a decision 
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and an expert is needed to interfere. Therefore, scenario No 3 will occur. Any value between these two 

thresholds activates scenario case No 2. 

Since the model is self-trained, the first threshold value does not need to be so strict. The model learns through 

time, thus a reduction at that value would be acceptable. Nevertheless, at the beginning small threshold value 

could lead the model to wrong learning. Using simulated annealing method, the threshold descents to a 40% 

through time. 

 

 

Figure 6.2. The decision mechanism flowchart. 

6.2.5 Possible limitations 
Features’ characteristics cannot guarantee a smooth performance; due to the similarity in worker movement 

for many of the activities there will be a trade off in discriminative abilities among tasks. Such a drawback can 

be solved by either incorporating past frames information (Protopapadakis et al., 2013). 

Additionally, system initialization requires descriptive data from all tasks. In different case, the involved 

classifiers will likely make wrong classification and will retrain the model with them. As such, a significant 

deterioration in performance is expected. Different camera positions, or data from multiple cameras can 

further improve the model’s performance. 

6.3 Feature extraction 
From all videos, holistic features such as Pixel Change History (PCH) are used. These features remedy the draw-

backs of local features, while also requiring a much less tedious computational procedure for their extraction 

(Ahad et al., 2010). A very positive attribute of such representations is that they can easily capture the history 

of a task that is being executed. These images can then transformed to a vector-based representation using 

the Zernike moments (Hwang and Kim, 2006), up to sixth order, in our case, as it was applied in (Kosmopoulos 

et al., 2011). 

The video features, once exported, had a 2 dimensional matrix representation of the form m×l, where m 

denotes the size of the 1×m vectors created using Zernike moments, and l the number of such vectors. 
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Although m was constant, l varies according to the video duration. In order to create constant size histogram 

vectors, which would be the system’s inputs, the following steps took place: 

1. The hyperbolic tangent sigmoid transformation was applied to every video feature. As a result the prices 

of the 2-d matrices range from -1 to 1. 

2. Histogram vectors of 33 classes were created. The number of classes was defined after various 

simulations. Higher number of classes leads to poor performance due to the small training sample (in our 

case 48 vectors). Fewer classes also caused poor performance probably due to loss of important 

information from the original features. Each class counts the frequency of the appearance of a value 

(within a specific range) for a particular video feature. 

3. Finally, each histogram vector value is normalized. Thus, the input vectors were created. 

It is clear that each histogram vector describes a specific job among seven different. These histograms, one at 

a time, are the inputs for a feed forward neural network (FFNN). The target vectors are seven-element arrays. 

The value at each array will be either one or zero. The number one denotes in which category is categorized 

the video (e.g., [0 0 0 1 0 0 0]𝑇 corresponds to assembly procedure number four). 

 

Figure 6.3. Feature extraction process. Initially, a frame pair is selected and a background subtraction algorithm is applied. Then, a pixel 
change history image is created and transformed, using Zernike moments, into a histogram vector. 

6.4 Performance evaluation 
The proposed system was developed on a conventional laptop with i3 CPU, 4GB RAM using MatLab software. 

The results displayed below are the average numbers after a total of 150 simulations. In every simulation a 

different set of labeled data was selected. 

6.4.1 Data set description 
The proposed system was tested using the NISSAN video dataset (Voulodimos et al., 2011), which refers to a 

real-life industrial process videos regarding car parts assembly. Seven different, time-repetitive, workflows 

have been identified, exploiting knowledge from industrial engineers. Challenging visual effects are 

encountered, such as background clutter/motion, severe occlusions, and illumination fluctuations.  
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Figure 6.4. Depiction of a work cell along with the position of camera 1 and the racks #1-5. 

The production cycle on the industrial line included tasks of picking several parts from racks and placing them 

on a designated cell some meters away, where welding took place. Each of the above tasks was regarded as a 

class of behavioral patterns that had to be recognized. The behaviors (tasks) we were aiming to model in the 

examined application are briefly the following: 

1. One worker picks part #1 from rack #1 and places it on the welding cell. 

2. Two workers pick part #2a from rack #2 and place it on the welding cell. 

3. Two workers pick part #2b from rack #3 and place it on the welding cell. 

4. One worker picks up parts #3a and #3b from rack #4 and places them on the welding cell. 

5. One worker picks up part #4 from rack #1 and places it on the welding cell. 

6. Two workers pick up part #5 from rack #5 and place it on the welding cell. 

7. Workers were idle or absent (null task). 

For each of the above scenarios, 20 videos were available. An illustration of the working facility is shown in 

Figure 6.4. 
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Figure 6.5. A typical execution of task No 2. 

6.4.2 Model initialization and adaptation in new data  
Initially, the best possible network is produced using the island genetic algorithm and 40% of the available 

data. The remaining data are fed to the network, one video at a time, and the overall out of sample 

performance is calculated. In every case, all the data that activated scenario No 3 is excluded. Then, we reefed 

the network, one by one, with the rest data. If the network’s suggestions were correct it will perform better 

since more training data (excluding these from scenario No 3) were used for further training. By doing so, the 

unlabeled data fall below 60% and training data increases further. The above procedure concludes after five 

iterations. At that time, the ratio between in sample data and out of sample data does not exceed 50%. 

 

Figure 6.6. Classification percentages for each of the 5 evaluation stages – test data. 
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Figure 6.7 Stage 5 results for each one of the 7 tasks – test data 

6.4.3 Performance 
It appears that a two hidden layers neural network using hyperbolic tangent sigmoid or log-sigmoid transfer 

function with an average of nine neurons in each layer is the most suitable solution. The proposed system is 

able to use the new knowledge to its benefit.  

The overall performance increases through iterations, using a small amount of data, as it is shown in Figure 

6.6. Actually, by using additionally 10% of the videos, the system reached a 75% correct classification. This is 

important because the system saves time and resources during the initialization and provides good 

classification percentages using less than 50% of the available data. 

The impact of the training epochs at the overall performance is shown in Figure 6.7. There appear to be a 

tradeoff between overall and individual task classification. Although 200 up to 300 training epochs provide 

significant classification accuracy further training increases partially the accuracy only on specific tasks in 

expense on others. 

6.5 Conclusions & future Work 
In this work, we have proposed a novel framework for behavior recognition in workflows. The above 

methodology handles with an important problem in visual recognition: it requires a small training sample in 

order to efficiently categorize various assembly workflows. Such methodology will support the visual 

supervision of industrial environments by providing essential information to the supervisors and supporting 

their job.  

Improvements at any stage of the system can be made in order to further refine the system’s performance. 

Future work will be based on the usage of different classifiers (e.g. neuro-fuzzy, linear Support Vector 

Machines) and decision mechanism (e.g. voting-based). In addition, instead of using all frames of a specific 

task to create classifiers’ input, only a subset of them may be used providing equivalent result. 
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Chapter VII: Supporting the Elder 

If society fits you comfortably enough, you call it freedom. 
Robert Lee Frost, American poet 

 

7 Life quality improvement for elder people  
In this chapter, we create a transductive classifier, in order to identify if we have a person’s fall or not. Falls 

have been reported as the leading cause of injury-related visits to emergency departments and the primary 

etiology of accidental deaths in elderly. Thus, the development of robust home surveillance systems is of great 

importance. In the work of (Makantasis et al., 2015b), such a system is presented, which tries to address the 

fall detection problem through visual cues.  

The proposed methodology utilizes a fast, real-time background subtraction algorithm, based on motion 

information in the scene and pixels intensity, capable to operate properly in dynamically changing visual 

conditions, in order to detect the foreground object. At the same time, it exploits 3D space's measures, 

through automatic camera calibration, to increase the robustness of fall detection algorithm which is based 

on semi-supervised learning approach. The above system uses a single monocular camera. 

As such, the system presented in this chapter is characterized by low computational cost and memory 

requirements, making it suitable for large scale implementations, let alone its low financial cost since simple 

low resolution cameras are used, making it affordable for large scale implementations. 

SSL is utilized for handling the training data set, supporting a smooth initialization process. Initially, clusters 

the data according to various features in order to estimate initial label values. A small subset from each cluster 

is randomly selected and evaluated by an expert (annotation process), in order to form a training set for the 

neural classifier. Also, they will be utilized as core samples for the 𝑘nn classifier, for future comparisons. Given 

new frame sequences, both classifiers outcomes, are calculated and compared. In case of disagreement an 

expert is summoned to further investigate. 

7.1 Introduction 
In order to understand the elderly fall problem, and try to prevent fall incidents, someone needs to examine 

where they occur. Recent studies show that 67% of fall incidents take place inside or in close proximity to 

patients' home and residential institutions (Government of Canada, 2014), where a medical alert system can 

be of immediate assistance. Taking into consideration the importance of humans' fall problem and the 

aforementioned statistics, the development of robust home surveillance systems is necessary. For this reason, 

a major research effort has been conducted in the recent years for automatically detecting persons' falls. 

One common way for automatic fall detection is through the use of specialized devices, such as 

accelerometers, floor vibration sensors, barometric pressure sensors, gyroscopic sensors, or 

combination/fusion of them (Le and Pan, 2009; Nyan et al., 2008; Wang et al., 2005; Zigel et al., 2009) or help 

buttons. However, most of these techniques require specific wearable devices that should be attached to 

human body. Thus, their efficiency relies on the persons' ability and willingness to wear them. External sensors, 

such as floor vibration detectors, require a complex setup and are still in their infancy. In the case of a help 

button, it is useless, if the person is unconscious after the fall. 
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A more challenging alternative is the use of visual cameras, like the system presented in this chapter, which is 

however a prime research issue due to the complexity of visual content, i.e. illumination variations, 

background changes and occlusions, and the fact that a fall incident should be discriminated over other 

ordinary humans' activities. The emergence of computer vision systems has allowed researchers to overcome 

the aforementioned problems. Vision based systems are less intrusive, can be installed on buildings and are 

not worn by users. 

Furthermore, cameras can provide a vast amount of information about person and environment making vision 

based systems suitable for different kind of applications, as they are able to detect several events 

simultaneously. For example, a vision based system can be used to detect fall incidents, while at the same 

time, is checking other daily life activities, like medication intake. Although, vision based systems can provide 

information about human activities, they can preserve persons' privacy by exploiting an event-based design 

that triggers alarms and/or enables video recording only after the occurrence of specific predefined events. A 

detailed survey of fall detection methodologies is presented in (Mubashir et al., 2013). 

Camera based approaches have also various limitations. Firstly, it is apparent that camera based falls detection 

is a more challenging process than using other types of sensors, due to occlusion issues, camera resolution, 

background clutter, visual complexity of the environment, etc. Secondly, camera positioning causes a lot of 

parallax problems that can affect falls' detection performance. Last but not least, privacy issues should be 

carefully examined. 

7.1.1 Place for improvement 
A new approach is presented that exploits both 2D image analysis (monocular cameras) and the relationship 

between camera coordinate system and the real 3D space. Such approach allows fall detection in real-time 

and in dynamically changing visual conditions, achieving robustness, through camera calibration and inverse 

perspective mapping, exploiting 3D physical space's measures. 

The fall detection scheme consists of a non Linear Warning System (nLWS), based on a semi-supervised 

learning (SSL) approach. The nLWS utilizes neural networks that are topologically optimized through the use 

of an Island GA. Once the GA is completed using a small training sample, a self-training procedure is utilized, 

based on the cluster assumption. The methodology is similar to the work of (Protopapadakis et al., 2012). 

In contrast to other 2D fall detection methods, the proposed system is very robust for a wider range of camera 

positions and mountings and its performance is not affected by the distance between camera and foreground 

object. Moreover, it extracts 3D features without using computationally expensive stereo-vision mathematics, 

which are necessary and compulsory for all multiple camera systems. 

7.2 Proposed methodology 
The proposed fall detection mechanism includes three phases: a) foreground/ background extraction and 

human detection, b) appropriate feature extraction and c) the decision mechanism utilization. System 

approach is presented in Figure 7.1. 

The first step of our algorithm is to detect the persons in a scene for every captured frame. This can be done 

by applying image segmentation and background subtraction methods. Once the persons have been detected, 

the system tracks them and estimates their height in order to calculate vertical motion velocity and to analyze 

their posture. 

Once humans have been detected, the system tracks them and estimates their height, in order to calculate 

vertical motion velocity, and to analyze their posture. Additionally, the primary concern of a fall detection 

system is to achieve low false negative rates, i.e. its goal is to detect all fall incidents even if some of them are 

not true (false alarms). Thus, we prefer to exclude the third feature from our analysis. 
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Finally, a decision mechanism uses the aforementioned features, in order to denote falls and trigger the alarm. 

The mechanism is initialized offline, using a semi-supervised approach. 

 

Figure 7.1. Fall detection proposed methodology flowchart.  

7.2.1 The self-training approach 
The self-training approach can also be seen as kNN refinement process. The process is, mainly, based on the 

cluster approach: the data tend to form discrete clusters, and points in the same cluster are more likely to 

share a label. The overall concept is similar to the work of (Protopapadakis et al., 2012). 

Initially, let us capture a sequence of 𝑛 frames. That set will be the training set 𝑋 = {𝑋𝐿 ∪ 𝑋𝑈} where 𝑋𝐿  =

{(𝑥1, 𝑦1), . . , (𝑥𝑙 , 𝑦𝑙) is the labeled frames set and 𝑋𝑈  = {𝑥𝑙+1, … , 𝑥𝑛} is the unlabeled frames set. Thus, each 

frame 𝑖 is described by a feature vector 𝑥𝑖 and its corresponding class (in a vector form), 𝑦𝑖 =  [𝑦1𝑖  𝑦2𝑖]𝑇 , if 

available. In our case, 𝑦𝑖 = [1 0]𝑇  for non-fall case, or 𝑦𝑖 = [0 1]𝑇  for the fall case. The classifier is firstly 

created using the island genetic algorithm (Figure 6.1) over 𝑋𝐿, and then further trained using 𝑋𝑈 set. 

Given an unlabeled instance 𝑥𝑗  , 𝑗 = 𝑙 + 1, … , 𝑛, FFNN generates an output 𝑦̂𝑗
(𝑛𝑒𝑡)

. At that time, 𝑥𝑗  is also 

compared to the elements of 𝑋𝐿 using a kNN approach, producing a new subset 𝑋𝐶 = {(𝑥1
𝐶 , 𝑦1

𝐶), … , (𝑥𝑘
𝐶 , 𝑦𝑘

𝐶)}, 

𝑋𝐶 ⊂ 𝑋𝐿. Subset 𝑋𝐶  contains the 𝑘 closest instances of 𝑋𝐿 to 𝑥𝑗. The kNN classifier, then, produces an output 

𝑦̂𝑗
(𝑘𝑛𝑛)

 according to the following equation: 

𝑦̂𝑗
(𝑘𝑛𝑛)

= {
[0 1]𝑇 , 𝑖𝑓 max{𝑦̂21

𝑐 , … , 𝑦̂2𝑘
𝑐  } = 1

[1 0]𝑇 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (7.1) 

In other words, even if one of the closest neighbors describe a fall the 𝑗-th frame, described by 𝑥𝑗 , corresponds 

to a fall incident. 
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In case that FFNN output, 𝑦̂𝑗
(𝑛𝑒𝑡)

, and kNN classifier output, 𝑦̂𝑗
(𝑘𝑛𝑛)

 , do not agree an expert is summoned to 

classify the j-th frame in the fall/non-fall category. When the entire set 𝑋𝑈 is labeled, the FFNN is retrained 

using the entire 𝑋 set. 

7.2.2 nLWS initialization 
Initially, the aforementioned calculated data are separated in two classes, i.e. falls and non-falls, using a 
combination of various metrics on a k-means algorithm. The variation of metrics includes: (a) squared 
Euclidean distance, (b) sum of absolute differences and (c) one minus the cosine of the included angle between 
data points. Then an assumption is made: the fewer element class is considered as the fall class. This 
assumption is justified by the fact that fall incidents occur far less frequently than other ordinary activities. A 
FFNN is topologically optimized using as inputs the previously generated data. 
 
Inputs of size 3x1 are used to produce corresponding outputs of size 2x1. Output vector's elements values are 

associated with the probability an event to be a fall and non-fall. The event is classified according to the higher 

output element's value. High diference between output element's values suggests a robust performance and 

solid adaptation to falls and non-falls. A plain weighted sum model is used for the class definition of each 

observation. Model has the following form: 

𝒚𝑐 = ∑ 𝑤𝑖𝒚𝑖

∀𝑚𝑒𝑡𝑟𝑖𝑐

 (7.2) 

where 𝑤𝑖  stands for the trade-off value for metric 𝑖  and 𝒚𝑖 is a 2 × 1  binary vector whose elements 

correspond to non-fall and fall classes and their values can be one or zero according to 𝑘-means clustering, 

based on metrric 𝑖. Only a small portion of them is used to form the initial training set 𝑿𝐿for the nLWS. 

The nLWS is then created based on labeled examples, using the island GA. Once the genetic operation is 

concluded, the fittest FFNN is evaluated and further trained over the entire data set 𝑿𝐿 ∪ 𝑿𝑈. It has to be 

mentioned that initialization procedure takes place offline. 

7.2.3 nLWS operation 
The operation of nLWS is based on a simple scheme. Inputs are provided for the FFNN, if its output element 

that corresponds to the fall class presents higher value than the element corresponds to the non-fall class, 

then a fall incident occurred, or will occur, in the following 0.9 seconds, which, as mentioned before, is the 

average duration of a fall incident. 

7.2.4 Possible limitations 
In complex environmental conditions, such as the ones encountered in bathrooms, the performance of our 

system should be further investigated. This is due to the fact that in such environments, severe occlusions are 

expected (bath curtains, steams) let alone humidity factors that may affect the performance of any visual 

sensor. We expect that using normal activities, same as within other house rooms (crossing, walking), our 

system can yield almost the same performance. But for specific bathing conditions special care should be taken 

into account. One important issue is also the privacy. People are very reluctant to install monitoring devices 

(especially cameras) in such private spaces. 

Please note that other type of sensors (e.g. depth sensors) can potentially improve system performance. 

However, currently these sensors are applicable for close range cases (few meters), making them not so 

reliable for monitoring elderly people in their homes, especially for large rooms. In addition, their cost, though 

very affordable, is few times greater than our low-cost optical devices, implying that our system is much more 

suitable for wide scale implementations, like health-care premises and elderly nursing homes. 
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7.3 Feature extraction 
In this section, we provide a description for both 2D features and 3D features, utilized by the proposed 

methodology. 2D features include person's projected width-height ratio and person's body orientation, while 

3D features include vertical motion velocity based on person's actual height estimation. All features are 

extracted using a simple monocular camera. Generally, there are no limitations regarding the maximum 

distance of the camera from the falling scene, neither for the resolution, as long as the human spans an area 

of more than 40 pixels in each frame, in order to achieve robust segmentation of foreground objects. 

7.3.1 Image segmentation 
The first step is the image segmentation procedure in order to separate foreground (i.e. human) and 

background (i.e. all else). We have, both, indoor environment and outdoor environment operation 

requirements. Illumination conditions can dramatically and suddenly change in indoor environments, due to 

artificial light sources, while in outdoor environments illumination, usually, changes progressively and slow. 

Furthermore, outdoor environments present more complicated background with higher background motion 

and more moving objects compared to indoor environments. 

We test the following algorithms: a) Iterative Scene Learning algorithm (ISL) presented in (N. Doulamis, 2010), 

b) Adaptive Student's-t Mixture Model background subtraction (ASMM), presented in (Makantasis et al., 2012) 

and c) non-Parametric Background Generation (nPBG), presented in (Liu et al., 2007). This choice is justified 

by the fact that ISL algorithm extracts the foreground by using motion information in the scene, ASMM 

subtracts the background by using a parametric approach to learn background pixels intensities and nPBG 

learns the same intensities in a non-parametric way. 

 

Figure 7.2. Precision and Recall diagrams for indoor-outdoor environments. 

7.3.2 Describing a fall 
The features that are used to discriminate fall incidents than other ordinary activities are: vertical motion 

velocity, based on actual person's height, person's projected width-height ratio and body orientation. All of 

them are calculated over the foreground pixels. You may find the details of such process in (Makantasis et al., 

2015b). 

Vertical motion velocity can be defined as the time derivative of human height: 𝑉 = ∇ℎ𝛼(𝑡), where ℎ𝛼(𝑡) 

stands for the actual height of a human in 3D space at a time instance 𝑡. Denser the change, greater the 

possibility of a fall. However, height estimation from a single camera requires a self-calibration process. 

Additionally, In contrast to ordinary human activities, during which human posture changes slowly, during a 

fall human posture changes suddenly. On the one hand, human posture can be characterized by person's 

width-height ratio, and this is valid as this ratio is bigger in value when a fall event occurs than the same ratio 
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with the person in standing position, and on the other by the orientation of person's body (Foroughi et al., 

2008). 

Width-height ratio is determined by person's projected width and height. So, the first step for the computation 

of this ratio is the estimation of these two measures. Both of these measures can be estimated by the four 

corners of a minimum bounding box that includes the person. By using the four corners of the minimum 

bounding box the points 𝑞𝑏𝑚, 𝑞𝑡𝑚, 𝑞𝑙𝑚 and 𝑞𝑟𝑚, which correspond to foreground object's bottom-most, top-

most, left-most and right-most points, can be obtained. By using these four pints, width-height ratio can be 

expressed as:  

𝑅 =
𝑤𝑝

ℎ𝑝
=

𝑞𝑟𝑚 − 𝑞𝑙𝑚

𝑞𝑡𝑚 − 𝑞𝑏𝑚
 (7.3) 

where 𝑤𝑝 and ℎ𝑝 stand for the projected width and height of the foreground object. 

Orientation of a person's body can be successfully described by the orientation of an ellipse that best bounds 

the person. The approximation of such an ellipse requires to define its center (𝑥̅, 𝑦̅) , its orientation, which is 

the angle 𝜙 of its major semi-axis and the lengths 𝑎 and 𝑏 of its major and minor semi-axes. 

As described in (Foroughi et al., 2008), a bounding ellipse can be approximated by image moments. Having 

estimate the bounding box that contains a foreground object, as shown in (Spiliotis and Mertzios, 1998) the 

computational cost for computing image moments is linear to the number of foreground object pixels. Thus, 

the complexity is independent on the size of the image, depending only on the size of the foreground objects. 

7.4 Experimental results 
For the experimentation process, we had to simulate a person’s fall, in every direction according to the camera 

position and normal every day activities. There are, also, cases that may look like but they are not real falls 

(Figure 7.3). The fall detection algorithm was tested in dynamically changing visual conditions, including 

illumination changes, cluttered background and occlusions 

In-sample and out-of-sample algorithm's performance is presented in Figure 7.4; results correspond to a video 

sequence of 1000 frames that contain 19 fall incidents. Since most of the time the actor was walking or 

standing, we keep few characteristic keyframes of the original footage for visualization purposes. Its 

performance is affected by the quality of extracted features and subsequently by foreground extraction. For 

this reason, our system presents more robust performance for indoor environments.  

However, it should be mentioned that its performance is not affected by humans' height, because the 

threshold for discriminating fall incidents than normal activities, is estimated through a learning procedure 

and, thus, is adapted to individual's height. In addition, the impact of occlusions is being reduced as camera's 

height is being increased. 
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Figure 7.3. Simulated activities during experimentation process: Falls (above) and normal activities (bellow). 

Finally, in Table 7.2 false positive rates are presented with regard to different activities. The biggest false 

positive rate is presented when the human lies on the floor, however, this activity cannot be thought as 

"normal". False positive rates, associated with the "lying on the floor" activity, can decrease by relaxing vertical 

velocity threshold, used to discriminate fall incidents than normal activities. Relaxing this threshold, however, 

can increase false negative rates, which are of a primary concern for a fall detection system. 
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Figure 7.4. (a) In-sample performance - unsupervised and semi-supervised training results and (b) out-of-sample performance. 

Table 7.1. Proposed system's overall performance. 

Camera’s  
Height (cm) 

 Proposed 
system 

Indoor 
No occlusion 

Indoor 
With occlusion 

Outdoor 

40 Falls detected 90% 98% 76% 83% 

Wrong detections 4 2 5 9 

220 Falls detected 93% 97% 92% 82% 

Wrong detections 6 4 7 8 

260 Falls detected 97% 97% 94% 82% 

Wrong detections 3 3 4 6 
Table 7.2. Total false positive rate divided in regard to human activities. 

Activity Lie down Sit on the floor Other 

False Positive 62.5% 25% 12.5% 
 

7.5 Conclusions & future work 
This chapter presents a fall detection scheme that uses a single low-cost monocular camera. Through camera 

self-calibration and perspective transformations, our system is capable to exploit 3D measures to increase its 

robustness. It operates in real-time and is capable to detect over 90% of fall incidents in complex and 

dynamically changing visual conditions, while it presents very low false positive rate. Its low computational 

cost and memory requirements making it suitable for large scale implementations, let alone its low financial 

cost since simple low resolution cameras are used, making it affordable for a large scale implementation.  
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Chapter VIII: Sea Border Surveillance 

Intelligence is the ability to adapt to change.  
Stephen Hawking, English theoretical physicist 

 

8 Maritime surveillance  
This chapter presents a vision-based system for maritime surveillance, using moving PTZ cameras. The 

proposed methodology fuses a visual attention method that exploits low-level image features appropriately 

selected for maritime environment, with appropriate tracker. Such features require no assumptions about 

environmental nor visual conditions. The offline initialization is based on large graph semi-supervised 

technique in order to minimize user’s effort.  

In particular, the scalable SSL approach actuates over the initially annotated training data set; it is, therefore, 

utilized only once, at the initialization offline phase. The main goal is the minimization of possible annotation 

errors, occurred during the training dataset creation stage. 

System’s performance was evaluated with videos from cameras placed at Limassol port and Venetian port of 

Chania. Results suggest high detection ability, despite dynamically changing visual conditions and different 

kinds of vessels, all in real time. Analytical description for the system implementation can be found in 

(Makantasis et al., 2015c). 

8.1 Introduction 
Management of emergency situations, known to the maritime domain, can be supported by advanced 

surveillance systems suitable for complex environments. Such systems vary from radar-based to video based. 

The former, however, has two major drawbacks (Zemmari et al., 2013); it is quite expensive and its 

performance is affected by various factors (e.g. echoes from targets out of interest). The latter, consists of 

various techniques, each one with specific advantages and drawbacks. The majority of such systems are 

controlled by humans, who are responsible for monitoring and evaluating numerous video feeds 

simultaneously.  

Advanced surveillance systems should process and present collected sensor data, in an intelligent and 

meaningful way, to give a sufficient information support to human decision makers (Fischer and Bauer, 2010). 

The detection and tracking of vessels is inherently depended on dynamically varying visual conditions (e.g. 

varying lighting and reflections of sea). So, to successfully design a vision-based surveillance system, we have 

to carefully define both its operation requirements and vessels’ characteristics. 

On the one hand there are minimum standards concerning operation requirements (Szpak and Tapamo, 2011). 

At first, it must determine possible targets within a scene containing a complex, moving background. 

Additionally, the system must not produce false negatives and keep as low as possible the number of false 

positives. Since we are talking about surveillance system, it must be fast and highly efficient, operating at a 

reasonable frame rate and for long time periods using a minimal number of scene related assumptions. 

On the other hand, regardless of vessel type’s variation, there are four major descriptive categories. First 

comes the size, which ranges from jet-skis to large cruise ships. Secondly, we have the moving speed. Thirdly, 
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vessels move to any direction, according to the camera position, and thus their angle varies from 0o to 360o. 

Finally, there is vehicles’ visibility. Some vessels have a good contrast to the sea water while others are 

intentionally camouflaged. A robust maritime surveillance system must be able to detect vessels having any 

of the above properties. 

8.1.1 Related work 
This chapter focuses on detection and tracking of targets within camera’s range, rather than their trajectory 

patterns’ investigation (Lei, 2013; Vandecasteele et al., 2013) or their classification in categories of interest 

(Maresca et al., 2010). The system’s main purpose is to support end-user in monitoring coastlines, regardless 

of existing conditions.  

Object detection is a common approach with many variations; i.e. an-isotropic diffusion (Voles, 1999), which 

has high computational cost and per forms well only for horizontal and vertical edges, foreground object 

detection/image color segmentation fusion (Socek et al., 2005). In (Albrecht et al., 2011a; Albrecht et al., 2010) 

a maritime surveillance system mainly focuses on finding regions in images, where is a high likelihood of a 

vessel being present, is proposed. Such system was expanded by adding a sea/sky classification approach using 

HOG (Albrecht et al., 2011b). Vessel classes’ detection, using a trained set of MACH filters was proposed by 

(Rodriguez Sullivan and Shah, 2008).  

All of the above approaches adopt offline learning methods that are sensitive to accumulation errors and 

difficult to generalize for various operational conditions. (Wijnhoven et al., 2010) utilized an online trained 

classifier, based on HOG. However, retraining takes place when a human user manually annotates the new 

training set. In (Szpak and Tapamo, 2011) an adaptive background subtraction technique is proposed for 

vessels extraction. Unfortunately, when a target is almost homogeneous is difficult, for the background model, 

to learn such environmental changes without misclassifying the target. 

More recent approaches, using monocular video data, are the works (Makantasis et al., 2013) and (Kaimakis 

and Tsapatsoulis, 2013). The former, utilizes a fusion of Visual Attention Map (VAM) and background 

subtraction algorithm, based on Mixture of Gaussians (MOG), to produce a refined VAM. These features are 

fed to a neural network tracker, which is capable of online adaptation. The latter, utilized statistical modelling 

of the scene’s non-stationary background to detect targets implicitly. 

The work of (Auslander et al., 2011) emphasize on algorithms that automatically learn anomaly detection 

models for maritime vessels, where the tracks are derived from ground-based optical video, and no domain-

specific knowledge is employed. Some models can be created manually, by eliciting anomaly models in the 

form of rules from experts (Nilsson et al., 2008), but this may be impractical if experts are not available, cannot 

easily provide these models, or the elicitation cost may be high. 

8.1.2 Place for improvement 
A careful examination of the proposed methodologies suggest that specific points have to be addressed. 

Firstly, a system needs to combine both supervised and unsupervised tracking techniques, in order to exploit 

all the possible advantages. Secondly, since we deal with vast amount of available data, we need to reduce, as 

much as possible, the required effort for the initialization of the system. The innovation of our approach lies 

in the creation of a visual detection system, able to overcome the aforementioned difficulties by combining 

various, well tested techniques and, at the same time, minimizes effort during the offline initialization using a 

Semi- Supervised Learning (SSL) technique, appropriate for large data sets. 

In contrast to the approach of (Makantasis et al., 2013), the user has to roughly segment few images, i.e. use 

minimal effort, in order to create an initial training set. Such procedure is easily implemented using the 

suggested areas according to the unsupervised techniques’ results. Collaboration of visual attention maps, 
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that represents the probability of a vessel being present in the scene, and background subtraction algorithms 

provides to the user initially segmented parts, over which user further actuates. 

Then, SVMs are used as the additional supervised technique, in order to handle new video frames. The 

significant amount of labelled data for the training process originates from the previously generated roughly 

segmented data sets. In order to facilitate the creation of such training set and further refine it (i.e. correct 

some user errors), SSL graph-based algorithms need to be involved. Unfortunately, SSL techniques scale badly 

as the available data rises. Consequently, a semi-supervised procedure, suitable for large data sets is exploited 

for the offline initialization, significantly reducing the effort required. 

8.2 Proposed methodology 
The main goal is the real-time detection and tracking of maritime targets. Towards this direction, an 

appearance-based approach is adopted to create visual attention maps that represent the probability of a 

target being present in the scene. High probability implies high confidence for a maritime target’s presence. 

Visual attention maps creation is based exclusively on each frame’s visual content, in relation to their 

surrounding regions or the entire image. Consequently, they do not take into consideration neither the 

temporal relationship between subsequent frames, nor any motion information presented in the scene. Due 

to this limitation, high probability is assigned, frequently, to image regions that depict non-maritime targets 

(e.g. stationary land parts). In order to overcome such drawback, our system exploits the temporal relationship 

between subsequent frames.  

Concretely, video blocks, containing a predefined number, ℎ, of frames and covering a time span, 𝑇, are used 

to model the pixels’ intensities. Thus, the temporal evolution of pixels intensities is utilized to estimate a pixel-

wise background model, capable to denote each one of the pixels of the scene as background or foreground. 

By using a background modelling algorithm, system can efficiently discriminate moving from stationary objects 

in the scene. In order to model pixels’ intensities, we use the background modelling algorithm presented in 

(Zivkovic, 2004). This choice is justified by the fact that this algorithm can automatically fully adapt to 

dynamically changing visual conditions and cluttered background. 

 

Figure 8.1. The offline initialization process. The SSL approach tries to minimize annotation errors due to human factor. 
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8.2.1 Problem formulation 
Maritime target detection can be seen as an image classification problem. Thus, we classify each one of the 

frame’s pixels in one of two classes, 𝐶𝑇  and 𝐶𝐵. If we denote as 𝑙𝑥𝑦
(𝑖)

 the label of pixel 𝑝𝑥𝑦
(𝑖)

, then, for a frame 𝑖, 

the classification task can be formulated as: 

𝑙𝑥𝑦
(𝑖)

= {
1 𝑖𝑓 𝑝𝑥𝑦

(𝑖)
∈ 𝐶𝑇 𝑓𝑜𝑟 𝑥 = 1, … , 𝑤 𝑎𝑛𝑑 𝑦 = 1, … , ℎ 

−1 𝑖𝑓 𝑝𝑥𝑦
(𝑖)

∈ 𝐶𝐵 𝑓𝑜𝑟 𝑥 = 1, … , 𝑤 𝑎𝑛𝑑 𝑦 = 1, … , ℎ
 (8.1) 

where ℎ and 𝑤 stand for frame’s height and width.  

Although, a binary classifier, SVM in our case, can successfully transact the classification task, a classifier 

training process should precede. Training process requires the formation of a robust training set composed of 

appropriate pixel descriptors, along with their associated labels. Such a set can be formed by the user, through 

a rough segmentation of a frame 𝑡 into two regions, that contain positive and negative samples, i.e. pixels that 

belong to 𝐶𝑇
(𝑡)

 class, labelled as 1, and pixels that belong to 𝐶𝐵
(𝑡)

 class, labelled as -1. The union of 𝐶𝑇
(𝑡)

and 𝐶𝐵
(𝑡)

 

consists the initial training set 𝑆. 

8.2.2 Possible limitations 
Low level features extraction consists the main computational bottleneck of our system. However, the 

proposed approach can be expanded for video frames of greater resolution, since each feature can be 

extracted independently. Thus, feature extraction process can be easily parallelized using multiple processing 

units (e.g. multiple CPU threads or GPU implementation). 

The vision approach is able to detect targets in a similar way to the human eye. As long as the camera is able 

to capture a vessel (i.e. spans an area of more than 40 pixels in the frame) the system will likely detect it, 

regardless the weather conditions (e.g. rain, fog, waves etc.). Apparently, system's performance declines badly 

in cases of low luminosity due to sensor related sensitivity constraints. Better sensors can partially deal with 

such issues, but resulting in greater hardware costs. 

Finally, the SSL is used for refinement of the initial training test; it is not an image annotation mechanism. 

Therefore, if initial annotations are poorly made, the refinement process will not work.  

8.3 Feature extraction 
The feature extraction procedure needs first to address the scale variance issue. Potential targets in maritime 

environment vary in sizes, either due to their physical size or due to the distance between them and the 

camera. Despite that, most of the feature detectors operate as kernel based method and thus they prefer 

objects of a certain size. As presented in (Alexe et al., 2010; T. Liu et al., 2011) images must be represented in 

different scales in order to overcome this limitation. In our approach, a Gaussian image pyramid is exploited 

in order to provide scale invariance and to take into consideration the relationship between adjacent pixels. 

Then, we have the traditional Low-level features analysis. As described in (Albrecht et al., 2011a, 2011b) 

different low-level image features respond to different attributes of potential maritime targets. Thus, a 

combination of features should be exploited in order to reveal targets' presence. The selected low-level 

features do not require a specific format for the input image. These are: edges, horizontal and vertical lines, 

frequency, color and entropy. 

The density of image edges can successfully describe the overall structure of an image, horizontal and vertical 

lines are able to denote man-made structures, making the system able to suppress large image regions, 

depicting sea and sky. Frequency can successfully emphasize objects in noisy conditions, such as vessels in a 
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wavy sea. Color feature can successfully emphasize objects colored different than sea and sky and, finally, 

entropy quantifies the amount of information coded in an image. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 8.2. Original captured frame (a) and feature responses (b)-(f); (b) edges, (c) frequencies, (d) vertical and horizontal lines, (e) color 
and (f) entropy. All feature responded to the land part and the boat (maritime target). 

Utilization of the exported low-level features leads to the creation of visual descriptors. Visual descriptors are 

computed to encode visual information of captured images. These descriptors are utilized for constructing the 

visual attention maps. Their computation, instead of pixel-wise, takes place block-wise, in order to reduce the 

effect of noisy pixels during low-level features extraction. Three different descriptors are computed: 

a. Local descriptors that take into consideration each one of the image pixels separately. Local descriptors 

indicate the magnitude of local features for each one of image pixels. 

b. Global descriptors that are capable to emphasize pixels with high uniqueness compared to the rest of the 

image. To achieve this they indicate how different local features for a specific pixel are, in relation with 

the same features of all other image pixels. 

c. Window descriptors that compare local features of a pixel with the same features of its neighboring pixels. 
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Figure 8.3. Visual attention maps for each local, global and window descriptors. Using give low level features and three descriptor, each 
one of the frames pixels is described by a 15-dimensional vector. The presented visual attention maps correspond to the original frame 
of Figure 8.2. 
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8.3.1 Local descriptors 
One local descriptor is computed for each one of the extracted low-level features. Let us denote as 𝐹 the 

feature in question, which can correspond to image edges, frequency, horizontal and vertical lines, color or 

entropy. For the feature 𝐹, the computation of local descriptor is derived by feature's response image. As 

mentioned before, descriptors are computed block-wise. So, firstly the feature's response image is divided 

into 𝐵 blocks of size 8 × 8 pixels. Then, the local descriptor for a specific block 𝑗 is defined as the average 

magnitude of the feature 𝐹 in the same block. More formally, for a block 𝑗, with 𝑏ℎ height and 𝑏𝑤 width, the 

local descriptor of feature 𝐹 is computed as follows: 

𝑙𝐹𝑗 =
1

𝑏ℎ ⋅ 𝑏𝑤
∑ 𝐹(𝑥, 𝑦)

(𝑥,𝑦)∈𝑗

 (8.2) 

where 𝐹(𝑥, 𝑦) is the response of feature in question at pixel (𝑥, 𝑦). This kind of descriptor is capable to 

highlight image bocks with high feature responses. 

8.3.2 Global descriptors 
The local descriptors handle each image block separately and, thus, are insufficient to provide useful 

information when features' responses are quite similar along all image blocks. Consider, for example, an image 

full of edges, like a wavy sea. In this case, local descriptor 𝑙𝓔, which is associated with the image edges, is not 

able to provide useful information about salient objects in the scene, since all blocks will present high edge 

responses. The proposed system can overcome this problem by using global descriptors. 

Uniqueness of a block 𝑗 can be evaluated by the absolute difference of the feature response between this 

block and the rest blocks of the image. The global descriptor for a feature 𝐹 and image block 𝑗 is defined as: 

𝑔𝐹𝑗 =
1

𝐵
∑|𝑙𝐹𝑗 − 𝑙𝐹𝑖|

𝐵

𝑖

 (8.3) 

8.3.3 Window descriptors 
Local and global descriptors are capable to emphasize image blocks that are highly distinctive, in terms of 

features' responses, or have a unique presence in the image. However, if potential targets are presented in 

more than one block the aforementioned descriptors will emphasize the most dominant target and will 

suppress the others. In order to overcome this problem, system exploits a window descriptor, which compares 

each image block with its neighboring blocks. 

Window descriptor for an image with 𝑁 × 𝑀  blocks uses an image window 𝑊 , which is spanned by the 

maximum symmetric distance, 𝑑ℎ and 𝑑𝑣 along horizontal and vertical axes respectively. Symmetric distances 

are defined as 𝑑ℎ = min(𝑙, 𝑘ℎ , 𝑁 − 𝑘ℎ)  and 𝑑𝑣 = min(𝑙, 𝑘𝑣, 𝑀 − 𝑘𝑣) , where 𝑙  is the default symmetric 

distance, 3 blocks in our case, and 𝑘ℎ and 𝑘𝑣 stands for block coordinates on image plane along horizontal and 

vertical axes respectively. The window descriptor for a feature 𝐹 and image block 𝑗 with coordinates (𝑗1, 𝑗2) is 

defined as: 

𝑤𝐹𝑗 =
1

2𝑑ℎ ⋅ 2𝑑𝑣
∑ ∑ |𝑙𝐹𝑗 − 𝑙𝐹𝑗1+𝑘,𝑗2+𝑙|

𝑑𝑣

𝑙=−𝑑𝑣

𝑑ℎ

𝑘=−𝑑ℎ

 (8.4) 

8.3.4 Background subtraction  
For the maritime surveillance case, most state-of-the-art background modeling algorithms, like (Doulamis and 

Doulamis, 2012; Makantasis et al., 2012), fail either due to their high computational cost or due to the 

continuously moving background, and moving cameras. However, if the background modeling algorithm 
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output is fused in a unified feature vector with the previously constructed visual attention maps, our system 

will be able to emphasize potential threats and at the same time to suppress land parts that may be appeared 

in the scene by implicitly capture motion presence. 

The proposed system uses the Mixtures of Gaussians (MOG) background modeling technique, presented in 

(Zivkovic, 2004). This choice is justified by the fact that MOG is fast, robust to small periodic movements of 

background, and easy to parameterize algorithm. An illustration of MOG technique is shown in Figure 8.4. 

By fusing together the outputs of visual attention maps and the output of a background modeling algorithm, 

camera motion temporarily increases false positives detections, but false negatives, that comprises the most 

important characteristic of a maritime surveillance system, are not affected. 

 
(a) 

 
(b) 

Figure 8.4. Original frame (a) and the output of background modeling algorithm (b). 

8.4 Training set creation, classifier initialization and adaptation 
In order to be able to exploit a binary classifier, a process of classifier training should be preceded. Training 

process requires the formation of a robust training set which contains pixels along with their associated labels. 

Let us denote as 𝑍(𝑡) the set that contains all the pixels of frame 𝑡, 𝐶𝑇
(𝑡)

 the set that contains pixels that depict 

some part of a maritime target and as 𝐶𝐵
(𝑡)

 the set that corresponds to background.  

The creation of a training set 𝑆 requires from the user to roughly segment the frame 𝑡 into two regions, which 

contain positive and negative samples (i.e. pixels that belong to 𝐶𝑇
(𝑡)

 and 𝐶𝐵
(𝑡)

 class respectively). This 

segmentation results in a set 𝑆 = {(𝑝𝑥𝑦
(𝑡)

, 𝑙𝑥𝑦
(𝑡)

)}, and labels are defined as: 

𝑙𝑥𝑦 = {
   1 𝑖𝑓𝑓 𝑝𝑥𝑦 ∈ 𝐶𝑇

−1       𝑒𝑙𝑠𝑒
 (8.5) 

where 𝑝𝑥𝑦 is a pixel at location (𝑥, 𝑦). 

The next step is the accurate description of any pixel 𝑝𝑥𝑦. Based on image low level features (described in sec. 

8.3), we create visual attention maps that indicate the probability a pixel to depict a part of a maritime target. 

In addition, based on the observation that a vessel must be depicted as a moving object, we implicitly capture 

the presence of motion by exploiting a background modeling algorithm. Using the output of visual attention 

maps and the background modeling algorithm we can form appropriate feature vectors.  

By using three descriptors and five low-level image features, each image block is described by a 1×15 feature 

vector. Each feature of this vector corresponds to a different visual attention map. For blocks of size 8×8 pixels 

the visual attention maps are sixty four times smaller than the original captured frame. In order to create a 

pixel-wise feature vector, we rescale visual attention maps to the same dimensions with the original captured 
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frame. Thus, each pixel, 𝑝𝑥𝑦
(𝑖)

, of a frame 𝑖, at location (𝑥, 𝑦) on image plane, is described by an appropriate 

feature vector 𝒇𝑥𝑦
(𝑖)

: 

𝒇𝑥𝑦
(𝑖)

= [𝑓1,𝑥𝑦
(𝑖)

, … , 𝑓𝑘,𝑥𝑦
(𝑖)

]
𝑇

 (8.6) 

where 𝑓1,𝑥𝑦
(𝑖)

, … , 𝑓𝑘−1,𝑥𝑦
(𝑖)

 stand for scalar features that correspond to the probabilities assigned to the pixel 𝑝𝑥𝑦
(𝑖)

 

by different visual attention maps, while 𝑓𝑘,𝑥𝑦
(𝑖)

 is the binary output of background modeling algorithm, 

associated with the same pixel. Thus, the training set 𝑆 can be transformed to: 

𝑆 = {(𝒇𝑥𝑦
(𝑡)

, 𝑙𝑥𝑦
(𝑡)

)} (8.7) 

However, human centric labeling, especially of large image data sets, is an arduous and inconsistent task, 

mainly due to the complexity of the visual content and the huge manual effort required. To overcome this 

drawback, we refine the initial training set through a semi-supervised approach. SSL allow the rough initial 

segmentation facilitating the expert and reducing the time required. 

In order to refine the initial user-defined training set, we partition the set 𝑆 into two disjoint classes, 𝑅 and 𝑈. 

The class 𝑅 contains the most representative samples of 𝑆, i.e. the samples that can best describe the classes 

𝐶𝑇 and 𝐶𝐵, while class 𝑈 contains the rest of the data. Samples of class 𝑅 are considered as labeled, while 

samples belonging to 𝑈 are considered as unlabeled. Then, via a semi-supervised approach the samples of 𝑅 

are used for label propagation through the ambiguously labeled data of 𝑈. In the following we describe in 

detail the labeling process. 

8.4.1 Representative data selection through simplex volume expansion 
In order to select the most representative samples for each one of the classes𝐶𝑇 and 𝐶𝐵, we consider each 

sample as a point into an 𝜇-dimensional space. In our case 𝜇 is equal to 16, because the dimension of the 

space is equal to the dimension of the feature vectors that describe the pixels. The process for representatives 

selection is conducted twice, once for class 𝐶𝑇 and once for 𝐶𝐵. In the following, we describe the process for 

representative samples selection for one of the classes, let's say 𝐶𝑇. Exactly the same process is followed for 

selecting representatives for the other class. 

We assume that the 𝜇  -dimensional volume formed by a simplex with vertices specified by the most 

representative points (pixels), belonging to class 𝐶𝑇 , should be larger than that formed by any other 

combination of points of the same class. Let us denote as 𝝂(𝑖) the 𝑖th representative sample, as 𝛽 the number 

of representatives to be generated, as 𝐶𝑇,𝑅 = {𝝂(𝑖), … , 𝝂(𝛽) } ⊆ CT the set that contains the representative 

samples and as vector 𝒘(𝑗) = 𝝂(𝑗) − 𝝂(𝑖) for 𝑗 = 1, … , 𝛽. Then the volume, 𝑉(𝐶𝑇,𝑅), of the simplex whose 

vertices are the points 𝝂(𝑖) for 𝑖 = 1, … , 𝛽 can be computed as: 

𝑉(𝐶𝑇,𝑅) =
|det(𝑾𝑾𝑇)|1/2

(𝛽 − 1)!
 (8.8) 

where 𝑾 is an (𝛽 − 1) ×  𝜇 matrix whose rows are the row vectors 𝒘(𝑗). 

The estimation process involves several steps. Initially the set 𝐶𝑇,𝑅  is constructed by randomly selecting 𝛽 

samples from set 𝐶𝑇 and the volume of the simplex, formed by the elements of 𝐶𝑇,𝑅, is calculated. Then, an 

iterative approach is adopted to test every sample in the set 𝐶𝑇 as a candidate representative. Each one of the 

samples of 𝐶𝑇,𝑅  is replaced, one at a time, with a sample 𝝂̂  from 𝐶𝑇  that is being tested as candidate 

representative. Then, the algorithm evaluates if replacing any of the elements, of 𝐶𝑇,𝑅 with the sample being 

tested, results in a larger simplex volume. If this is true, let's say for the point 𝒗(𝑖) ∈ 𝐶𝑇,𝑅, then the 𝒗(𝑗) point 
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is replaced by the image point 𝒗̂ and the process is repeated again until each one of the samples of 𝐶𝑇 set is 

evaluated.  

The selection method is scalable to large datasets, using an incremental approach. Let us assume that β 

representatives are known. Then, the problem of selecting 𝛽 + 1 representatives can be reduced to finding 

𝛽 + 1 representatives given 𝛽 of them. This way, only the volumes of simplices formed by the elements of the 

sets 𝐶𝑇,𝑅 ∪ 𝒙(𝑖) for 𝒙(𝑖) ∈ 𝐶𝑇 need to be evaluated. 

8.4.2 Graph-based semi-supervised label propagation 
The aforementioned procedure results to two sets of representative samples, 𝐶𝑇,𝑅  and 𝐶𝐵,𝑅 , one for each 

class. The samples of 𝐶𝑇,𝑅 and 𝐶𝐵,𝑅 are considered as labeled, while the rest samples of the classes 𝐶𝑇 and 𝐶𝐵 

are considered as ambiguously labeled. More formally, we have: 

𝑅 = 𝐶𝑇,𝑅 ∪ 𝐶𝐵,𝑅 

𝑈 = 𝑆 − 𝐶𝑇,𝑅 − 𝐶𝐵,𝑅 
(8.9) 

At this point, we need to refine the initial training set, 𝑆, using a suitable approach for the label propagation, 

through the ambiguously labeled data. 

Thus, we need to estimate a labeling prediction function 𝑔: ℝ𝜇 → ℝ defined on the samples of 𝑆, by using the 

labeled data 𝑅. Let us denote as 𝒓𝑖  the samples of set 𝑅 so that 𝑅 = {𝒓𝑖}𝑖=1
𝑚 , where 𝑚 is the cardinality of the 

set 𝑅 . Then, according to (Liu et al., 2010), the label prediction function can be expressed as a convex 

combination of the labels of a subset of representative samples: 

𝑔(𝒇𝑖) = ∑ 𝑍𝑖𝑘 ⋅ 𝑔(𝒍𝑘)

𝑚

𝑘=1

 (8.10) 

where 𝑍𝑖𝑘  denotes sample-adaptive weights, which must satisfy the constraints ∑ 𝑍𝑖𝑘
𝑚
𝑘=1  =  1 and 𝑍𝑖𝑘 ≥ 0 

(convex combination constraints). By defining vectors 𝒈 and 𝒂 respectively as 𝒈 = [𝑔(𝒇1), … , 𝑔(𝒇𝑛)]𝑻 and 

𝒂 = [𝑔(𝒓1), … , 𝑔(𝒓𝑚)]𝑻 eq. (8.10) can be rewritten as 𝒈 = 𝒁𝜶 where 𝒁 ∈ ℝ𝑛×𝑚. 

The designing of matrix 𝒁 , which measures the underlying relationship between the samples of 𝑈  and 

representative samples 𝑅 (were 𝑅 ⊂ 𝑈), is based on weights optimization; actually non-parametric regression 

is being performed by means of data reconstruction with representative samples. Thus, the reconstruction for 

any data point 𝒇𝑖 , 𝑖 = 1, … , 𝑛  is a convex combination of its closest representative samples. In order to 

optimize these coefficients the following quadratic programming problem needs to be solved: 

min
𝒛𝒊∈ℝ𝑆 

ℎ(𝑧𝑖) =
1

2
‖𝒇𝑖 − 𝑹𝑆 ⋅ 𝑧𝑖‖2 

𝑠. 𝑡. 𝟏𝑇𝑧𝑖 = 1, 𝑧𝑖 ≥ 0 

(8.11) 

where, 𝑹𝑆 ∈ ℝ𝜇×𝑠 is a matrix containing as elements a subset of 𝑅 = {𝒓1, … , 𝒓𝑚} composed of 𝑠 < 𝑚 nearest 

representative samples of 𝒇𝑖 and 𝑧𝑖  stands for the 𝑖th row of 𝒁 matrix. 

Nevertheless, the creation of matrix 𝒁 is not sufficient for labeling the entire data set, as it does not assure a 

smooth function 𝒈. As mentioned before, a large portion of data are considered ambiguously labeled. Despite 

the small labeled set, there is always the possibility of inconsistencies in segmentation; in specific frames the 

user may miss some pixels that depict targets. In order to deal with such cases the following SSL framework is 

employed: 
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min
𝑨=[𝒂1,…,𝒂𝒄]

𝒬(𝑨) =
1

2
‖𝒁 ⋅ 𝑨 − 𝒀‖𝐹

2 +
𝛾

2
𝑡𝑟𝑎𝑐𝑒(𝑨𝑻𝑳̂𝑨) (8.12) 

where 𝑳̂ = 𝒁𝑇 ⋅ 𝑳 ⋅ 𝒁 is an memory-wise and computationally tractable alternative of the Laplacian matrix 𝑳. 

The matrix 𝑨 = [𝒂1, … , 𝒂𝑐] ∈ ℝ𝑚×𝑐  is the soft label matrix for the representative samples, in which each 

column vector accounts for a class. The matrix 𝒀 = [𝒚1, … , 𝒚𝑐] ∈ ℝ𝑛×𝑐  is a class indicator matrix on 

ambiguously labeled samples with 𝑌𝑖𝑗 = 1 if the label 𝑙𝑖 of sample 𝑖 is equal to 𝑗 and 𝑌𝑖𝑗 = 0 otherwise.  

In order to calculate the Laplacian matrix 𝑳, the adjacency matrix 𝑾 needs to be calculated, since 𝑳 = 𝑫 − 𝑾, 

where 𝑫 ∈ ℝ𝑛×𝑛 is a diagonal degree matrix (defined in sec. 0). In our case 𝑾 is approximated as 𝑾 = 𝒁 ⋅

𝚲−𝟏 ⋅ 𝒁𝑇, where 𝚲 ∈ ℝm×m is defined as: 𝚲 = ∑ 𝑍𝑖𝑘
n
i=1 . The solution of the eq. (8.12) has the form of: 

𝑨∗ = (𝒁𝑇𝒁 + 𝛾𝑳̂)𝒁𝑇 ⋅ 𝒀 (8.13) 

Each sample label is, then, given by: 

𝑙𝑖 = 𝑎𝑟𝑔 max
𝑗∈{1,…,𝑐}

𝒁𝑖 ⋅ 𝑎𝑗

𝜆𝑗
 (8.14) 

where 𝒁𝑖 ∈ ℝ1×𝑚  denotes the 𝑖-th row of 𝒁, and the normalization factor 𝜆𝑗  =  𝟏𝑇 𝒁 𝜶𝑗  balances skewed 

class distributions. 

8.4.3 Target detection  
Having constructed a training set, 𝑆 = {(𝒇𝑖, 𝑙𝑖)}𝑖=1

𝑛 , a binary classifier, capable to discriminate pixels that 

depict some part of a maritime target from pixels that depict the background, can be trained. Here, we choose 

to utilize linear SVMs to transact the classification task.  

In the framework of maritime detection, SVM must be able to handle unbalanced classification problems, due 

to the fact that maritime target usually occupy the minority of captured frames' pixels let alone their total 

absence from the scene for large time periods. To address this problem, the misclassification error for each 

class is weighted separately. This means that the total misclassification error of eq. (3.10) is replaced with two 

terms: 

𝑐 ∑ 𝜉𝑖

𝑛

𝑖

→ 𝑐𝑝 ∑ 𝜉𝑖

{𝑖|𝑙𝑖=1}

+ 𝑐𝑛 ∑ 𝜉𝑖

{𝑖|𝑙𝑖=1}

 (8.15) 

where 𝑐𝑝  and 𝑐𝑛  are constant variables that weight separately the misclassification errors for positive and 

negative examples. The solution of eq. (3.10) with the classification error of eq. (8.15) results to a trained SVM, 

which is capable to classify the pixels of new captured frames. 

8.4.4 Detector adaptation to new visual conditions 
A robust maritime surveillance system must retain high performance for long time periods. Thus, an SVM 

adaptation mechanism has to be developed, allowing the classifier to be adapted to dynamically changing 

visual conditions. 

Let us denote as 𝑉1, … , 𝑉15 the fifteen visual attention maps described in sec. 8.3. We define the average visual 

attention map, 𝑉𝑎𝑣𝑔, as: 

𝑉𝑎𝑣𝑔 =
1

15
∑ 𝑉𝑖

15

𝑖=1

 (8.16) 
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The elements' value, from eq. (8.16), express the overall probability a pixel to depict some part of a maritime 

target. Then, we define the refined visual attention map 𝑉𝑟 as the outcome of the element-wise multiplication 

between 𝑉𝑎𝑣𝑔 matrix and background modeling algorithm output 𝐵. 

Classifier adaptation process is triggered by an automated decision mechanism. Let us define as 𝑉𝑟,𝑛 and 𝑇𝑛 

the refined visual attention map and the output of the classifier, respectively, at frame 𝑛. When the difference 

between 𝑉𝑟,𝑛 and 𝑇𝑛 exceeds a predefined threshold the decision mechanism triggers the adaptation process. 

During the adaptation process the SVM classifier is retrained. We form a new training set that contains as 

elements the support vectors of the previously trained classifier, the 𝜅 elements of 𝑉𝑟 that present the highest 

probability (positive samples) and have denoted as belonging to the negative class, and the 𝜅 elements of 𝑉𝑎𝑣𝑔 

that present the lowest probability and have been denoted as background by the background modeling 

algorithm (negative samples).  

Finally, we assume that visual conditions in a maritime environment are smoothly and gradually changing. This 

implies that the values for 𝔀, 𝑏 and 𝝃 of the adapted classifier should be close to the estimated values, 𝔀̅̅̅, 

𝑏̅ and 𝝃̅ , of the previously trained classifier. To reduce the time required for classifier retraining, the 

aforementioned assumption, allows us to speed up the convergence of the optimization algorithm, which 

seeks for a solution to the problem defined in eq. (3.10), by restricting the feasible solutions region (set the 

initial values of the under optimization parameters to the values of 𝔀̅̅̅, 𝑏̅and 𝝃̅). 

8.5 Experimental results 
Most of the algorithms were developed exclusively in C++ to achieve high performance; the overall system 

works almost in real time, 17fps, for frames with dimensions 384 × 288 pixels. There is, also, code in Python8, 

concerning visual attention maps construction, available to download. The performance of each system's 

component have been checked separately; extracted features were evaluated in terms of discriminative ability 

and importance, semi-supervised labeling for the predicting outcome and, finally, the binary classifier for its 

performance. 

The data sets describe real life scenarios, in various weather conditions. Data consists of recorded videos from 

cameras mounted at the Limassol port, Cyprus and Chania old port, Crete, Greece. Monocular cameras were 

recording videos streams depicting maritime traffic for over one year. Unfortunately, for the vast majority of 

the video frames, maritime targets are absent from the scene. In order to deal with such cases, we manually 

edited the videos and kept only the tracks that depict intrusion of one or more targets in the scene. Then, we 

manually labeled the pixels of key video frames, keyframes, to create a ground truth dataset for evaluating 

our system.  

Keyframes originate from raw video frames, on a constant time span equals to 𝑡  frames i.e. frames that 

correspond to time instances 𝑡, 2𝑡, 3𝑡, … . The time span is selected to be 6 seconds, which means that one 

frame out of 150 is denoted as keyframe. We followed this approach for practical reasons. Firstly, it would be 

impossible to manually label all video frames at a framerate of 25 fps. Also, the time interval of 6 seconds is 

small enough to allow the detection of the intrusion of a maritime target in the scene. At this point it has to 

be clarified that feature extraction task, as well as the binary classification are performed for all frames of a 

video track. Keyframes are used only for system's performance evaluation.  

8.5.1 Evaluation of extracted features 
In this section, we examine if the extracted features are able to describe appropriately frame's pixels and, 

consequently, provide useful information that will facilitate the classification task. In addition, the extent that 

                                                           
8 https://github.com/kmakantasis/poseidon_features.git 
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each one of the features affects the classification task (i.e. how important a feature is) is examined. Results 

concerning the importance of features, may allow us to discard some of them, in order to speed up system's 

performance. To evaluate features information, we utilized the keyframes' ground truth data. The feature 

extraction task results in a 16-dimensional feature vector for each pixel in a frame. The quality of features' 

information is evaluated through dimensionality reduction and samples plotting, in order to visually examine 

their distribution in space, see Fig.5. The two classes, as shown in Fig.5, are linearly separable, which suggests 

high quality features. The small amount of positive samples, which lie inside the region of the negative class, 

correspond to maritime targets' contours and probably occurred due to segmentation errors during manual 

labeling. 

 
Figure 8.5. Positive and negative samples plotted in 3-dimensional space. Randomized PCA was used to extract the three dominant 
components of the dataset. The class containing positive samples can be linearly separated from the class containing negative 
samples. The small amount of positive samples that lie inside the region of the negative class, correspond to maritime targets' 
contours. 

8.5.2 Evaluation of semi-supervised labeling 
In order to evaluate semi-supervised labeling, we assume that manual labeling of keyframes contains no 

segmentation errors. The ratio of the representative samples in relation with the ambiguously labeled samples 

is the only factor that affect the performance of labeling algorithm. 

As shown in Figure 8.6, the labeling error is lower than 2% when the ratio of the representative samples in 

relation with the ambiguously labeled samples is over 40%. When the ratio is smaller than 40% the labeling 

error is linearly increasing and it reaches the value of 5.7% when the ratio of representative samples is 10%. 

The choice for an appropriate value for the ratio of representatives is inherently dependent on the quality of 

human based labeling. If labeling is the result of a rough image segmentation, a lot of the labeled pixel will 

carry the wrong label. In such cases the aforementioned ratio must be set to a small value. The most 

representative samples from each class is assumed that carry the right label, while the labels of the rest of the 

samples must be reconsidered. In our case, we required the user to segment the frame in a very careful way, 

which implies that the vast majority of the pixels will carry the right label. For this reason we set the ratio value 

to 40%. The semi-supervised labeling algorithm with 40% of representatives is expected to re-label 1.7% of 

the samples. 
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Figure 8.6. Semi-supervised labeling performance. When ratio of representative samples is over 40% the labeling error is lower than 
2%. When the ratio of representatives is lower than 40% the error is linearly increasing till the value of 5.7% for 10% of representatives. 

 

8.6 Conclusions & future work 
A vision based system, using monocular camera data, is presented. The system provides robust results by 

combining supervised and unsupervised methods, appropriate for maritime surveillance, utilizing an 

innovative initialization procedure. The system offline initialization is achieved through graph based SSL 

algorithm, suitable for large data sets, supporting users during segmentation process. Another advantage is 

the automated adaptation of the system to new environments, in real time. 

Extensive performance analysis suggest that the proposed system performs well, in real time, for long periods 

without any special hardware requirements and the without any assumptions related to scene, environment 

and/or visual conditions. Such system is expected to significantly support the local authorities, or anyone 

interested in maritime surveillance without any significant additional cost. 

Further extensions of the system are possible in many fields. At first, incorporation of a target recognition 

system would be intriguing. Another idea would be the operation in parallel with other proposed 

methodologies in a voting-based system. 
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Chapter IX: Searching for Foundation Flaws 

I do not fear computers. I fear the lack of them.  
Isaac Asimov, American author 

 

9 Non-destructive flaws detection in foundation piles 
In this chapter, we exploit the unlabeled data in order to improve detection accuracy for defect detection in 

foundation piles. In order to do so, we employ a graph based approach and noise modeling techniques for the 

mapping of the waveforms onto a new manifold. Given a set of waveforms, an experts’ help is required only 

for a small subset (i.e. ≤ 40% of the available samples).  

The proposed approach reduces labeling effort, which is both costly and time consuming. Such an approach 

encourages the data sampling, since larger the data base better the classification accuracy. Data availability 

was not an issue, since we used numerical simulation in order to create various pile types with defects. 

9.1 Introduction 
Structures foundation in the form of concrete piles is a commonly adopted approach in many cases. These 

piles are usually built by using precast and cast-in-situ techniques. Sometimes, "necks" or "bulbs" may be 

created in the process of drilling. These defects may affect the bearing capacity of the piles. Hence the 

structural evaluation and monitoring of new and existing piles are becoming increasingly important. In this 

chapter we deal with the detection of such defects using a graph based approach. Piles’ surfaces’ oscillations, 

produced through numerical simulation, serve as row data for the detection mechanism.  

Surface oscillation is non-destructive testing (NDT) approach (Garnier et al., 2011), adopted for many practical 

reasons. The test is based on wave propagation theory; the impact generates a compression wave that travels 

down the pile at a constant wave speed. Changes in cross sectional area (e.g. reduction in diameter) produce 

wave reflections. Engineers would desire the use of an intelligent software tool, able to automatically analyze 

these complex waveforms generated as a result of a pile integrity test (PIT) testing and produce classification 

outputs, regarding piles’ condition states. 

Towards that direction, an innovative work for the NDT of piles is employed using a mixture of state of the art 

soft computing techniques, appropriate feature extraction and data generation procedures. Regarding the 

classification process, a graph based label propagation approach is adopted over a graph, which is constructed 

under SSL assumptions (Zhu and Goldberg, 2009b). The innovation of the current methodology is the fully 

automatic post processing technique, which results in high classification performance, easy implementation 

and noise tolerance, using a limited training sample.  

The results have been obtained on experimental data originating from numerical experiments. These data, as 

described below, simulate as much as possible real-life phenomena of "neck" or "bulb" type structural defects. 

Application of novel intelligent classification algorithms for defects' prediction should be first experientially 

validated and tested under laboratory conditions to guarantee the successful performance of the classifier 

and then to be validated on real-data, which requires huge financial effort while it is also risky in such 

infrastructures. 
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9.1.1 Related work 
Surface reflection techniques are a common approach in the foundation assessment field. The work of (Huang 

and Ni, 2012) investigates the relative performance of the sonic echo (SE), impulse response (IR), and parallel 

seismic (PS) tests using a field constructed pile foundation incorporating simulated defects. The work of (Hola 

and Schabowicz, 2010) presents the state of the art approaches of NDT on building structures. Such studies 

suggest the NDT approach appropriateness. 

Numerical simulation of NDT cases (Haddad, 2010) is an alternative approach, which allow the investigation 

of various defect types, providing accurate results very close to real life situations. The work of (Huang et al., 

2010) focuses on drilled shaft defects identification. Other approaches focuses on the testing conditions, such 

as the effects of the source on wave propagation (Chai et al., 2010). Generally, the quality of numerically 

generated waveforms is close to the actual ones. Thus, accurate interpretation of such waveforms could be 

extremely beneficial. 

There are many methods for the analysis of such waveforms; artificial neural networks (ANNs) is a common 

one. Relating work on inverse analysis and defect identification problems solved by optimization and ANNs 

can be found in (Stavroulakis et al., 2003, 2004; Stavroulakis, 2000). Relative work can be, also, found in (Tam 

et al., 2004; Zhang and Zhang, 2009). These approaches exploit relatively simple ANN topologies, using a few 

selected inputs. Therefore, the users must have quite extended experience in order to choose the 

measurements to use, while the effectiveness of the neural network cannot be guaranteed or optimized. 

9.2 Proposed methodology 
The proposed approach is suitable for low strain integrity tests, carried out in time domain. In time domain 

reflectometry, the wave is generated by a hand held hammer blow impact and the response as a function of 

time is picked up by multiple accelerometers, placed on piles’ head and around it, on a circle base, close to 

the location of hammer blow. Monitoring and analysis of these reflections form the basis of PIT (Schauer and 

Langer, 2012).  

In our case similar tests, with the ones performed in the laboratories, are modelled by employing a coupled 

finite element method (FEM) together with scaled boundary finite element method (SBFEM) approach 

(Schauer et al., 2012). Numerical simulation is used for the data generation. Graph label propagation (Wang 

and Zhang, 2008) is, then, used for the defect identification. Data generation involves the generated 

waveforms (time domain), while graph detectors provide results regarding the integrity testing, by exploiting 

the information of all available data provided, following a specific feature extraction. 
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Figure 9.1.Time dependent plots for displacement, velocity and acceleration for pile configuration: ideal, Fi34, Fi4, Fa34 and Fa234. 
More information about piles’ defects can be found in sec. 3.1. 

9.2.1 Piles numerical simulation 
In order to simulate the wave propagation through the piles a coupled FEM and SBFEM approach is used. This 

approach satisfies Sommerfeld's radiation condition and allows simulating an infinite half space. This ensures 

that the applied impulse will not be reflected at the artificial boundary which is introduced by the boundary 

of the numerical discretization. The coupled approach proposed here requires only the discretization of a small 

domain compared to a purely FEM-based approach. 

FEM and SBFEM are used to model the near field and far field, respectively. The equation of motion at an 

arbitrary time step can be written as: 

[
𝑴𝑛𝑛 𝑴𝑛𝑓

𝑴𝑓𝑛 𝑴𝑓𝑓
] 𝒖̈ + [

𝑲𝑛𝑛 𝑲𝑛𝑓

𝑲𝑓𝑛 𝑲𝑓𝑓
] 𝒖 = [

𝒑𝑛𝑛

𝒑𝑓𝑓
] − [

𝟎
𝒑𝑏

] (9.1) 

where the vector 𝒖 represents the nodal displacement, 𝒖̈ the nodal acceleration, and 𝒑 denotes the applied 

nodal forces. 𝑴 is the mass matrix and 𝑲 stands for the stiffness matrix. Here, matrix blocks with subscript 𝑛𝑛 

contain the nodes of the near field while blocks with subscript 𝑓𝑓 comprise the nodes of the far field. The 

coupling of near and far field nodes is reflected in those blocks subscribed with 𝑛𝑓 and 𝑓𝑛. Vector 𝒑𝑏 denotes 

the far field influence on the near field, so that the behavior of the infinite half space can be applied to the 

FEM sub-domain as a load. 

The far field is represented by the forces of the far field 𝒑𝑏 at the interface given by the convolution integral: 

𝒑𝑏(𝑡) = ∫ 𝑴∞(𝑡 − 𝜏)

𝑡

0

𝒖̈(𝜏)𝑑𝜏 (9.2) 
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where 𝑴∞ is the acceleration unit-impulse response matrix. Detailed information on how the acceleration 

unit-impulse response matrices are assembled are published in (Schauer et al., 2012; Wolf et al., 2003). An 

illustration of the generated waveforms at the piles’ surface is shown in Figure 9.1. 

9.2.2 Feature extraction 
Once a load 𝑝 is applied, at the top and center of the pile an oscillation occurs as a result of wave propagation 

through the piles' structure. For a predefined time duration 𝑇𝑡 the oscillating patterns 𝑶𝑝,𝑖 are recorded for 

every node 𝑖. These patterns have the form of: 

𝑶𝑝,𝑖 = [

𝑥𝑑,i 𝑦𝑑,i 𝑧𝑑,i

𝑥𝑣,𝑖 𝑦𝑣,i 𝑧𝑣,i

𝑥𝑎,i 𝑦𝑎,i 𝑧𝑎,i

] (9.3) 

where d, v and a stand for displacement, velocity and acceleration respectively. So all information regarding a 

piles' behavior is expressed by: 

𝑺𝑝𝑖𝑙𝑒 = [𝑶𝑝,1 ⋯ 𝑶𝑝,𝑚] (9.4) 

where 𝑺𝑝𝑖𝑙𝑒 denotes the available information about the waveform in any of the 𝑚 nodes for a total time 𝑇𝑡. 

A waveform that describes the oscillating behavior (or recorded observation 340 for simplicity) for each node 

represents the base for our analysis. However, the recorded observations for each of the piles' nodes are too 

large to be processed and it is suspected to be non-informative after a time period. The simplification of the 

amount of resources, required to describe a large set of data accurately, is possible taking two main 

assumptions into account: 

1. Ideal pile behavior is known. That can be achieved through CAD models and numerical simulation. Every 

one of the investigating nodes has its corresponding ideal waveform. As we will see that is of major 

importance during the feature extraction of the data. 

2. There is a transient period with sufficient information, for every observed node. In other words, a short 

period of time includes most of the important signal variations, needed by the model in order to recognize 

the type of the defect. 

The feature extraction is based on signal subtraction, a common technique applied in noise modelling 

(Lipponen and Tarvainen, 2013). Thus, the first step is the subtraction stage, so that: 

𝑺𝑝𝑖𝑙𝑒
𝑛𝑒𝑤 = 𝑺𝑝𝑖𝑙𝑒

𝑐ℎ𝑒𝑐𝑘 − 𝑺𝑝𝑖𝑙𝑒
𝑖𝑑𝑒𝑎𝑙  (9.5) 

where 𝑺𝑝𝑖𝑙𝑒
𝑖𝑑𝑒𝑎𝑙 denotes the generated signal from a pile without defects. We also define: 

1. The transient period time 𝑇𝑡𝑟𝑎𝑛𝑠. During this period the wave propagates from the pile's top to the bottom 

and then to the top again. After 𝑇𝑡𝑟𝑎𝑛𝑠, waveforms get a complicated form due to the waves deflections 

and reflections. 

2. Feature space dimension, 𝑛𝑣. We map each oscillation pattern to a new space ℝ𝑛𝑣×1. Values of 𝑛𝑣 less 

than 6 are unable to create descriptive feature vectors, while values greater than 40 may require 

additional training (labeled) data for a smooth classification performance. 

3. The mapping function from oscillation space to feature space. In our approach, we used three alternatives: 

Mean absolute error, mean square error and difference in specific time steps. 
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Figure 9.2. Input vector creation process for the neural detector. The process exploits the differences between the investigated and the 
ideal pile. 

9.2.3 Possible limitations 
The entire process is based on signals comparisons and spans a very limited range of defect cases. Thus, there 

is the possibility of feature ineffectiveness in different defect scenarios. Additionally, this chapter case study 

involves numerically simulated pile signals; no noise is expected as a result of minor voids, surface fluctuations, 

etc., which is a common case in actual foundation piles. The adopted feature extraction process (sec. 9.2.2) 

could partially deal with such noise via averaging operators. However, this has not been tested on actual field. 

9.3 Experimental results 
The defect recognition can be seen as a classification problem. Assume that a pile is separated in 𝑞 parts. Also, 

the available information is limited in few waveforms, recorded on the pile’s surface. We have to classify each 

of these parts in one out of three categories. The "neck"-category indicates the existence of a "neck", i.e. 

smaller radious than expected. The "bulb"-category indicates the existence of a "bulb", i.e. greater radious 

than expected. There is, also, the "no-defect"-category, where there are neither "bulbs” nor "necks”. Feature 

extraction and defect recognition routines are written in MatLab code.  

 

Figure 9.3. Left: The FEM near field discretization includes pile and surrounding soil; Right: Top view at the piles surface and the 
corresponding node numbers. 
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9.3.1 Piles set description 
Different three-dimensional pile configurations are analyzed. All investigated piles are modelled as floating 

piles, since no bedrock is taken into account. One clean pile without defects, Figure 9.4 (ideal), is discretized. 

Length 𝑙0 and radius 𝑟0 are chosen as 2.1𝑚 and 0.1𝑚, respectively. The surface of the ground is defined at 

0.0𝑚, the pile's head is located +0.1𝑚 over the surface, while the piles’ toe is at −2.0𝑚 in the ground. 

Additional piles with defects are discretized as well, the geometries of these modified piles are shown in Figure 

9.4. The finite element mesh is shown in Figure 9.3. The near field is discretized by 116974 tetrahedral 

elements and 28140 hexahedral elements and 151833 degrees of freedom. The attached far field is discretized 

by 549 quadrangular elements and 1794 degrees of freedom. All elements are using linear finite and scaled 

boundary finite elements. The minimum elements length is 𝑙𝑚𝑖𝑛 = 7.10347 × 10−3 𝑚 and the maximum 

length is 𝑙𝑚𝑎𝑥 = 6.46424 × 10−1 𝑚. 

 

Figure 9.4. Pile geometries and naming of the cases, half the longitudinal section of the pile is pictured. The pile is divided into 4 sections 
enumerated from 1 to 4 top down. The “a” stands for additional pile material and the “i” inner distortion of pile cross section. So, “Fa2” 
gives additional material in section 2. The last five geometries in the second row have an internal distortion, which is represented with 
a soil inclusion in the concrete body of the pile. 

9.3.2 Training, validation and evaluation sets 
Let us first focus on the data creation. The data, for the graph construction, originates from the subtraction 

between two signals (i.e. the ideal and the examined pile) in the process shown in Figure 9.2. Although the 

signal duration is 2000 time steps (or 0.012 seconds), only the first 400 time steps of the transient period were 

utilized, since after that period the wave signal is backward propagated causing interference in the signal 

altitude. This way, we would create an input signal of size 400 × 1, which causes misclassification issues, due 

to the high dimensionality. To handle this problem, we equally downsample the input signal by 10. Thus, input 

vector is of size 40 × 1.  

For every input vector there is a corresponding output vector of size 𝑘 × 1, where 𝑘 denotes the number of 

pillar parts that are investigated (in our case 𝑘 =  4). The number of parts was selected to facilitate the 

numerical simulations, in terms of computational complexity. However, division into greater number of parts 

is feasible, for simulating more complex structures. The first part is located above the ground.  

Specific nodes were used to form the training data, while the remaining formed the evaluation data. The two 

different data sets are described in Table 9.1. For each node, waveforms of nine different cases were available: 

1. 𝑥-axis: displacement (𝑥𝑑), velocity (𝑥𝑣) and acceleration (𝑥𝑎) 

2. 𝑦-axis: displacement (𝑦𝑑), velocity (𝑦𝑣) and acceleration (𝑦𝑎) 
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3. 𝑧-axis: displacement (𝑧𝑑), velocity (𝑧𝑣) and acceleration (𝑧𝑎). 

However, due to modelling assumptions, regarding the boundary conditions of the FEM-SBFEM approach, 

specific nodes oscillation patterns had to be excluded from the data generation (as non-informative 

waveforms). These oscillations refer to 𝑥 and 𝑦 axes, but not to 𝑧-axis. Due to symmetry boundary conditions 

these 𝑥 and 𝑦 data should be equal to zero. If not they are practically zero. 

Table 9.1. Training and evaluation nodes for each of the created data sets. 

Data set Training nodes Evaluation nodes 

TS1 {1, 15, 25 } { 2, 3, 4, 5, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27 } 

TS2 {17, 25 } { 1, 2, 3, 4, 5, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27 } 

TS3 {2, 19 } { 1, 3, 4, 5, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27 } 

TS4 {1, 21 } { 2, 3, 4, 5, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27 } 

  

9.3.3 Classification performance 
The proposed approach has been evaluated against two well-known classification approaches: 𝑘  nearest 

neighbors (Bhatia and Vandana, 2010) (kNN) and ANNs (Tan et al., 2011). All methods are characterized as 

soft labeled; corresponding outputs are not integers. Thus, we adopt a mapping procedure. For a given pile, a 

specific output vector, 𝑷𝑖 = [𝑝1, 𝑝2, 𝑝3, 𝑝4], is generated. The 𝑝𝑖  values, 𝑖 = 1, … ,4, correspond to a certain 

defect type, 𝑑𝑓 , according to the following transformation: 

𝑑𝑓 = {

−1   , 𝑝𝑖  ∈ (−∞, −0.5)
 0   , 𝑝𝑖 ∈ [−0.5,0.5]

  1   , 𝑝𝑖  ∈ (0.5, ∞)   
 (9.6) 

For the 𝑖 -th part, value 𝑑𝑓 =  −1  suggests the existence of a “neck”, while value 𝑑𝑓 = 1  suggests the 

existence of a “bulb”. Value 𝑑𝑓 =  0 corresponds to non-detection of any defect. Range selection for the 

value intervals in eq. (9.6) stems from equal division of the detectors’ interval range of [−1, 1] into three 

examined defect types.  

Table 9.2. Classification accuracy over the evaluation set. The simulation’s results correspond to average values over the different data 
sets, as described in Table 9.1. 

 ANN knn Harmonic 

Descriptor MSE MAE Diff MSE MAE Diff MSE MAE Diff 

𝒙𝒅 0.366 0.369 0.362 0.359 0.363 0.370 0.356 0.377 0.382 

𝒙𝒗 0.224 0.225 0.222 0.247 0.259 0.265 0.252 0.255 0.260 

𝒙𝒂 0.345 0.361 0.376 0.364 0.381 0.400 0.347 0.362 0.375 

𝒚𝒅 0.468 0.490 0.486 0.488 0.500 0.508 0.498 0.508 0.515 

𝒚𝒗 0.287 0.300 0.310 0.292 0.307 0.310 0.241 0.242 0.238 

𝒚𝒂 0.452 0.480 0.502 0.442 0.454 0.481 0.380 0.382 0.394 

𝒛𝒅 0.706 0.715 0.723 0.764 0.743 0.738 0.831 0.839 0.837 

𝒛𝒗 0.725 0.736 0.758 0.704 0.706 0.710 0.817 0.819 0.830 

𝒛𝒂 0.689 0.691 0.696 0.735 0.736 0.732 0.787 0.764 0.789 
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ANNs and kNN were available through MatLab toolboxes. Harmonic label propagation function and weight 

matrix creation functions where provided by (Zhu et al., 2003) and (Liu and Chang, 2009) respectively. A 

random search among a variety of ANN topologies was performed. ANNs parameters’ range is shown Table 

6.1. The number of nearest neighbors was set to 4, for both kNN and Harmonic function approaches. Indicative 

classification results are shown in Table 9.2. 

 

(a) 

 

(b) 

 

(c) 

Figure 9.5. Defect Classification accuracy for each one of the 4 pile’s parts. Results are based on displacement observations 

in 𝒙,𝒚,𝒛 axes using: (a) Difference in values (b) MAE and (c) MSE as quality metric. 

SSL graph based approaches limitations do not apply in our case, although such methods scale badly as the 

number of data raises (i.e. 𝑂(𝑛2)). In this particular field, we expect no more than few hundreds of samples 

(i.e. waveforms), even in real life cases. Another possible limitation is the transductive nature of the approach; 

graph based approaches are unable to handle new data. In such case, we have to recreate the graph and all 

the corresponding matrices. 
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The proposed approach performs better than the other commonly used techniques. Compared to the ANN, 

harmonic function needs a considerably smaller amount of labeled data and requires less heuristic approaches 

for the best topology definition. Generally, ANN performance highly depends on various parameters regarding 

the detector structure, such as number of hidden layers, neurons and training epochs. Compared to the kNN, 

Harmonic function exploits additional information of the unlabeled data. Thus, as labels propagate, edges’ 

labels match the 𝑘 closest ones from the entire data space. 

Results suggest that bulb or neck cases are easily identifiable. However, normal radius is classified either as 

neck or bulb more frequently (see Figure 9.5). The misclassification of non-defective pile parts can be partially 

explain by the waveform, which has a specific form defined by the defect(s) type. Such form doesn’t change 

significantly if the defective pile part is followed by a non-defective part. Thus, we have a waveform, indicating 

a defect, crossing a non-defective part. According to the similarity mechanism of the proposed methodology, 

such form is more likely to indicate a defection, resulting in wrong classification. The misclassification rates 

grow as more defects appear in the same pile. 

9.4 Conclusions & future work 
One method to assess the behavior of a pile is to apply non-destructive testing through the use of low strain 

integrity tests in time domain. The wave is generated by a hand held hammer blow impact and the response, 

as a function of time, is picked up by multiple accelerometers, placed on pile head and around it, on a circle 

base, close to the location of hammer blow. Then we need to apply signal processing methods on the 

waveforms generated in order to detect the defects. 

Initially, appropriate features were extracted in order to map piles' waveforms to meaningful short-length 

signals. Then, these features form a graph, where the labels propagate among the edges utilizing both labeled 

and unlabeled data. The performed experiments provide very promising results; the defect recognition rate is 

above 80%, when z-axis observations are used. On the contrary, the performance based on x and y axes 

behavior patterns is severely low. The problem formulation can easily be expanded in piles with more divisions 

(i.e. more than 4) and varying defects' diameters. Although, a greater misclassification error is likely, as long 

as we deal with “neck” or “bulb” detection, the performance is expected to remain high.  

Finally, we observe that high detection rates are achievable using only a handful set of samples for training. 

The detection rates are also affected by the shape and the depth; deeper the defect harder to locate. Piles 

with more complex structure will be evaluated in future work. Furthermore, new adaptation strategies and 

detection techniques will be investigated to handle non-stationary waveforms cases. 
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Chapter X: Adaptive Filtering in Accordance 
to User’s Needs 

In the end, the character of a civilization is encased in its structures.  
Frank Gehry, American architect 

 

10 Image meta-filtering techniques in cultural heritage applications 
In this chapter a novel idea for additional filtering (meta-filtering) is proposed. The main purpose is the further 

refinement of existing data sets, obtained using various CBIR techniques. The reason behind the proposed 

mechanism lies in the need of multiple uses of the same data sets in different applications (e.g. subsets of the 

same data can be used for 3D reconstruction, tourism promotion, book publications, etc.). The model utilize 

a SSL approach for the creation of an appropriate distance metric, which is used for the filtering. User’s 

feedback is involved only for a minor set of data, defined using OPTICS algorithm and sparse modeling 

representative selection. Such approach facilitates the refinement of retrieval results always under the scope 

of the end user needs. 

10.1 Introduction 
Cultural heritage (CH) digitization is a complex task that involves data retrieval and filtering from many 

alternative sources. Our work, described below, examines the filtering abilities of an innovative system 

(described below), over a given set of acquired images. The system exploits both user feedback and SSL 

assumptions, in order to capture the user’s needs and minimize annotation effort. 

effectiveness of any content-based image retrieval (CBIR) system (Valle and Cord, 2009) is severely depended 

on the selection of the appropriate distance metric. A common approach may involve, the well-known, 

Euclidean metric for computing distances between images, which are represented in some vector space. 

Unfortunately, such metric is often inadequate because of the well-known semantic gap between low-level 

features and high-level semantic concepts (Datta et al., 2005). 

Currently, there are many approaches trying to deal with the semantic gap (Kumar K. and Gopal, 2014; Tang 

et al., 2012; Wang et al., 2008). One of them is the user feedback, which may be inefficient or exhausting in 

large data bases. In addition, user’s needs change constantly, even over the same data base. In cultural 

heritage applications, there is always the need for data variations, especially when talking about 3D 

(Manferdini and Galassi, 2013) or 4D (Ioannides et al., 2013) reconstruction. Definitely, there are specific 

techniques to deal with the selection of appropriate images for reconstruction (e.g. (Konstantinos Makantasis 

et al., 2013)). Nevertheless, term “appropriate” is always defined by someone’s needs. 

User’s needs or preferences may vary, from simple object detection (A. Doulamis, 2010; Lalos et al., 2014) 

(e.g. images of a specific statue), complex human motions (Doulamis, 2014) (e.g. images of children running 

around the fountain). Nowadays, such images, most likely, will be available given a large image data set 

retrieved from the internet using various techniques. However, it is very difficult, for the user, to search the 

entire data set, in order to select the specific images. In this chapter, we propose a suitable approach towards 

the retrieval of the appropriate images, given an initial data set, with respect to the user’s preferences. 
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A mechanism that actuates over an initially retrieved set, given the user’s preferences, can be beneficial in 

many ways. At first, such mechanism allows data sets to be further enriched/modified a priori, by using state 

of the art techniques and thus exploiting existing knowledge. Secondly, the user can change the features 

utilized, by the filtering mechanism, at any time in order to get more personalized results. Thirdly it handles 

outliers; chances are that totally irrelevant images will be in the originally retrieved set. In that case, it is very 

likely to be detected, during representative objects selection, and excluded. Finally, the semi-supervised 

approach minimizes user’s feedback and, at the same time, captures current needs. 

10.1.1 Place for improvement 
A novel idea for additional filtering (meta-filtering) is proposed. The main purpose is the further refinement 

of data sets, obtained using various CBIR techniques. The reason behind the proposed mechanism lies in the 

need of multiple uses of the same data sets in different applications (e.g. subsets of the same data can be used 

for 3D reconstruction, tourism promotion, book publications, etc.). 

Meta-filtering creates an appropriate image ranking mechanism, according to the user’s requirements. The 

entire data set is presented to the user through few representative samples. The user has to annotate some 

of them, either as relevant or irrelevant to his current search. Then, in a fully automated way, an appropriate 

distance metric is calculated. Such metric is used by a ranking approach to assign a score for every image of 

the set. Images with high scores are presented to the user as the most relatives to his/her needs. 

All the images of the set are employed to the calculation of the appropriate distance metric according to a 

graph based SSL scheme (a very common approach in SSL (Belkin et al., 2004; Goldberg et al., 2007; Goldberg 

and Zhu, 2006; Liu et al., 2010)). Thus, non-annotated images support the regularization creating a smooth 

distance metric (i.e. images with similar features will have similar ranking, given the user preferences as 

constraint). Such an approach minimizes users’ efforts and is easily implemented in any dataset, given 

appropriate feature vectors. 

10.2 Proposed methodology 
The meta-filtering approach is based on three main phases. The first stage of the methodology aims at the 

detection of representative samples and their annotation, by the user, as relevant or irrelevant. The second 

stage involves the distance metric learning, according to the user defined relevance sets. The final stage ranks 

the rest of the images using both similarity and dissimilarity rankings, based on the previously stated distance 

metric. 

10.2.1 Data collection and feature extraction  
Initially, a large data set of images is collected from Flickr. The data retrieval was based in various parameters 

(including tags, location, etc.). Once the data set for a specific monument is gathered, additional features from 

the images are extracted. Feature selection is crucial; low-quality features can lead to low performance, since 

we utilize Euclidean based approaches. 

Three MPEG-7 visual descriptors have been employed, as in (Kyriakaki et al., 2014), for the purposes of this 

research: Color Layout Descriptor (CLD), Scalable Color Descriptor (SCD) and Edge Histogram Descriptor (EHD). 

The specific descriptors were chosen due to their simplicity and small size, high processing speed, robustness, 

scalability and interoperability (Serna et al., 2011). 

The CLD is a very compact one that captures the spatial layout of dominant colors of an image with coefficients 

of the Discrete Cosine Transform. The SCD is derived from an HSV color histogram with fixed color 

quantization, and its coefficients are encoded through a Haar transformation, while the EHD is a texture 

descriptor that detects edges of different angles by dividing the image into smaller blocks. 
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10.2.2  Mathematical formulation 
The meta-filtering approach, based on a total raking approach for every image 𝑥𝑗, is described by the following 

equation: 

𝑟𝑗 = ∑
1

𝒘𝑖
𝑝

𝑑𝑨(𝑥𝑖, 𝑥𝑗)

|𝑃|

𝑖=1
𝑖≠𝑗

− ∑
1

𝒘𝑖
𝑛𝑑𝑨(𝑥𝑖, 𝑥𝑗)

|𝑁|

𝑖=1
𝑖≠𝑗

 (10.1) 

where 𝑟𝑗is the overall ranking score for an image 𝑗, given its feature vector 𝑥𝑗, |𝑃| and |𝑁| denotes the size of 

user annotated images as positive and negative to current search respectively, 𝒘𝑖
𝑝(𝒘𝑖

𝑛) is a weight value for 

the importance of the i-th annotated positively (negatively) image, and 𝑑𝑨(𝑥𝑖, 𝑥𝑗) is a distance metric defined 

in both user’s annotated and the non-annotated images of the data set. 

For any two given data points 𝑥𝑖 and 𝑥𝑗, let 𝑑(𝑥𝑖, 𝑥𝑗) denote the distance between them. To compute that 

distance, let 𝑨 ∈ 𝑅𝑚×𝑚 be a symmetric matrix, we can then express the formula of distance measure in a 

generic form as in eq. (3.11). 

Similar to the approach of (Hoi et al., 2008), the distance metric learning (DML) problem is to learn an optimal 

𝑨 from a collection of data points 𝐶 on a vector space 𝑅𝑚 together with a set of similar pairwise constraints 𝑆 

and a set of dissimilar pairwise constraints 𝐷. Both sets of constraints should be provided by the user as a 

relevance feedback in order to guide the problem to an acceptable solution.  

At first, consider two sets of user defined pairwise constraints among data points:  

𝒮 = {(𝑥𝑖, 𝑥𝑗)|𝑥𝑖  𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑡𝑜 𝑥𝑗} 

𝒟 = {(𝑥𝑖, 𝑥𝑗)|𝑥𝑖 𝑖𝑟𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑡𝑜 𝑥𝑗} 
(10.2) 

Given the above sets we can formulate a loss function of the form:  

min
𝑨

𝛾𝒮 ∑ ∑ ‖𝑥𝑖 − 𝑥𝑗‖
𝑨

2
 

(𝑥𝑖,𝑥𝑗)∈𝒮𝑞

𝑑

𝑞=1

− 𝛾𝒟 ∑ ∑ ‖𝑥𝑖 − 𝑥𝑗‖
𝑨

2
 

(𝑥𝑖,𝑥𝑗)∈𝐷𝑞

𝑑

𝑞=1

+ 𝑡𝑟(𝑿𝑳𝑿𝑇𝑨) (10.3) 

The last term is a regularizer defined on the unlabeled data, where L = D−W is the Laplacian matrix, D is a 

diagonal matrix whose diagonal elements are equal to the sums of the row entries of W, and tr stands for the 

trace function. The weight matrix, W, is defined over all n images of the data set as: 

𝑊𝑖𝑗 = {
1, 𝑥𝑖 ∈ 𝒩(𝑥𝑗) 𝑜𝑟 𝑥𝑗 ∈ 𝒩(𝑥𝑖)

0,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       
 (10.4) 

where 𝒩(𝑥𝑗) denotes the nearest neighbor list of the data point 𝑥𝑗. The aforementioned problem can be, 

alternatively, formulated as (Hoi et al., 2008): 

min
𝐴

𝑡 + 𝛾𝑠𝑡𝑟(𝑨 ⋅ 𝑺) − 𝛾𝑑𝑡𝑟(𝑨 ⋅ 𝑺) 

𝑠. 𝑡.  𝑡𝑟(𝑿𝑳𝑿𝑇𝑨) ≤ 𝑡 
𝑨 ∈ 𝑆+ 

(10.5) 

Thus, the DML problem has been approached as a semi-definite problem (SDP), which can be solved efficiently 

with global optimum using existing convex optimization packages. 

10.2.3 User involvement 
Instead of providing random samples to the user, or letting him scan quickly the retrieved images, a more 

suitable, yet complicated, approach is adopted for the best paradigms selection. Thus, OPTICS algorithm 

(Daszykowski et al., 2004) is employed for finding density-based clusters in spatial data. The density values are 
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used for the identification of sub clusters within retrieved data, by searching for local maxima as illustrated in 

Figure 10.1 (a). OPTICS algorithm requires as parameter, 𝑘, the number of objects in a neighborhood. We used 

the heuristic rule: 𝑘 = ⌈log(𝑛𝑢𝑚 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠) / log(2)⌉. Operator ⌈(⋅)⌉ rounds the value of (⋅) to the nearest 

integer greater than or equal to (⋅). 

Each sub cluster is expected to be a large data collection of images. In order to extract the most important 

(descriptive) ones, the work of (Elhamifar et al., 2012) around sparse modeling for finding representative 

objects is employed. Their work is described in sec. 3.2.3. 

The representative objects retrieved (Figure 10.2) are shown to user, who can define the relevance to his current 

search. The selection order defines, also, the importance of the datum; ranking scores depend on the order of 

selection through the 𝒘𝑖
𝑝

 and 𝒘𝑖
𝑛 weights values. User can select any number of the representative images 

for annotation, as long as there is at least one relevant and one non-relevant image in the end. The small 

amount of images, provided by the sparse modeling approach, requires minimal effort for the annotation, 

even if user decides to annotate all the suggested images.  

 
(a) 

 
(b) 

Figure 10.1. (a) Optics algorithm results on the original data set of Porta Nigra. Points with ‘o’ mark the separation between sub-

clusters. (b) The corresponding images of the marked points. 

Given the two sets of user defined pairwise constraints, the SDP’s solution of eq. (10.5) provides the 

appropriate distance metric that is used in eq. (3.11). The ranking score sums both accordance and discordance 

to the user’s selection in order to deal with features similarity issue (e.g. color histogram may be the same in 

two totally different images). Images with ranking close to zero are considered ambiguous, since those are 

similar to both relevant and non-relevant user defined images. 
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10.2.4 Possible limitations 
Generally, it is very difficult for to distinguish among different images (in terms of content) with similar feature 

vectors. The proposed methodology partially deals with such problems, given that the features used can 

describe the user’s needs. The feature selection is left to the user; there is a variety from low-level (K. 

Makantasis et al., 2013) to high-level (Makantasis et al., 2014) or combination of both. 

However, if data lies in high density manifolds, due to bad feature selection, distance matrix 𝑨 will not capture 

adequately the user’s requirements. In the opposite occasion (where features can describe the user’s needs), 

we have a high retrieval rate as described in (Protopapadakis et al., 2014). Finally, it is possible that the 

representative images do not show what user searches for. In that case, we repeat the process using different 

image features or different parameters’ values for the selection algorithms. 

10.3 Experimental results 
The code has been implemented using MatLab software. The code, for all the utilized methods, is available 

online. A typical quad-core, 8GB RAM, desktop PC was used. The evaluation data sets were initially obtained 

using the work of (Ioannides et al., 2013). 

10.3.1 Dataset description 
Evaluation data is specifically build around three cultural monuments; Knossos, Porta Nigra and Fontana dei 

Quatro Fummi. Knossos is the largest Bronze Age archaeological site on Crete, Greece and is considered 

Europe's oldest city. The set consists of 1392 images and the special category refers to wall drawings. Porta 

Nigra (black gate) is a large Roman city gate in Trier, Germany. It is today the largest Roman city gate north of 

the Alps. The set contains 690 images and the special category refers to interior images. Fontana dei Quatro 

Fummi (Fountain of the Four Rivers) is a fountain in the Piazza Navona in Rome, Italy. It was designed in 1651 

by Gian Lorenzo Bernini for Pope Innocent X. The set contains 133 images and the special category refers to 

night shots and grayscale images. 

For every monument, four cases of image filtering are simulated. The four filtering scenarios can briefly 

described as: a) need for exterior images of the monument, b) special attributes (depending on the 

monument), c) people around the monument and d) various images (e.g. animal pictures, night sky, signs, 

etc.). In every scenario the relevant images are taken from one category and the non-relevant from the rest 

three in order to construct the pairwise constraints shown in eq. (10.2). In every case, the ratio was 6 relevant 

to 18 irrelevant. Leading to user feedback of 24 images in total. 
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Figure 10.2. Illustration of the representative objects retrieved, using sparse modeling approach, on Porta Nigra for the 3rd sub-cluster. 

User may select any number and annotate them as relevant or non-relevant. 

10.3.2 Performance scores  
Retrieval evaluation, in order to test the filtering capabilities, consist of four scenarios, in three different 

locations (Table 10.1). It is intriguing that, despite the multiple feature descriptors utilized, a great variance in 

the content appears; such values suggest low retrieval abilities for the traditional, Euclidean distance based, 

approaches.  

Table 10.1. Average precision of top ranked images in each of the monuments; 6 images were defined as relevant and 18 as irrelevant 
through user feedback. 

  
Precision results 

Application Scenario   

  Exterior Special People Various Overall 

M
o

n
u

m
en

t 

Knossos 0,56 0,50 0,44 0,63 0,53 

Porta Nigra 0,38 0,25 0,31 0,50 0,36 

Fontana dei Quatro 

Fummi 
0,69 0,44 0,44 0,38 0,48 

  Overall 0,54 0,40 0,40 0,50  
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Figure 10.3. Final ranking score using both accordance and discordance, based on user’s selections. A predefined number of images 
with the higher values are retrieved as relevant. Dashed line indicates minimum value among these images. 

The threshold for the retrieval is set as the minimum ranking value among the n images with the higher score. 

In our case 𝑛 = 16 images. The weight value for an image i was defined using a formula of the form: 

𝑤𝑖 =
𝑟𝑖

|𝑅|
 (10.6) 

where 𝑟𝑖  denotes i-th image ranking among the |𝑅| user-annotated relevant images. The final values are 

normalized so that ∑ 𝑤𝑖
|𝑅|
𝑖=1 = 1. The same scheme is employed for the non-relevant images. 

Given a set of relevant and non-relevant user defined images (Figure 10.4), the relevant results are defined as 

the n images with higher score over the final ranking (Figure 10.3). The results of retrieval are shown in Figure 

10.5. 

 

 
(a) 
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(b) 
Figure 10.4. Illustration of user defined sets of images as relevant (a) to current search results and non-relevant (b), for the Porta 
Nigra monument. In this case user’s interests appears to be around drawings (category: special attributes). 

 

Figure 10.5. Meta-filtering results given by the system, using the user defined sets of Figure 10.4. It is an extreme case of high 
retrieval ratio, which is explained mainly due to the distinctive feature values regarding texture. 

10.4 Conclusions & future work 
In this chapter, a meta-filtering approach, supporting multiple uses of the same vast data sets in Cultural 

heritage applications, is presented. The problem is formulated as an SDP problem, appropriately adjusted for 

the field of semi-supervised learning. The system exploits robust, and already tested, techniques in order to 

support a smooth understanding of user’s behavioral patterns.  
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At first, user selects among the most descriptive data, selected by the system. Then, few of the data are labeled 

as relevant or irrelevant and are used for the construction of an appropriate distance metric. Once the 

feedback is concluded, system is able to distinguish the data set’s variations and produce results that comply 

with user’s needs. 

The impact of the feature vectors is crucial; CLD, SCD and EHD are easily implemented but may be insufficient. 

Therefore, alternative descriptors should be tested in future approaches. Additionally, future work will 

emphasize in more sophisticated distance learners in order to capture more complex behavioral patterns of 

the user. 
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Chapter XI: In the End 

Life is the art of drawing sufficient conclusions from insufficient premises.  
Samuel Butler, English poet 

 

11 Concluding remarks  

 

Figure 11.1. SSL applicability in a wide range of scenarios, demonstrated in this thesis. 

This thesis emphasized on the applicability of SSL techniques in a variety of practical applications (Figure 11.1). 

The applications fields were: (a) industrial assembly lines monitoring, (b) sea border surveillance, (c) elders’ 

falls detection, (d) transportation tunnels inspection, (e) concrete foundation piles defect recognition, (f) 

commercial sector companies financial assessment and (g) image advanced filtering for cultural heritage 

applications. 

The main contribution lies in the complex synergistically schemes created from scratch, depending on the 

application scenario. SSL approaches favor the development of hybrid models; they can be used with, almost, 

any traditional machine learning approach, facilitating the creation of robust DSSs. Additionally, SSL 

techniques were used for the system initialization, the detection mechanism formulation, feedback schemes 

setup, etc. Such advantages are ideal for holistic, user-feedback, information systems. Minimal effort, from 

user’s side is required during trivia steps such as annotation, selection and data labeling. At the same time, 

minor mistakes can be tolerated by the proposed systems.  

The first approach is a hybrid, self-training approach for the industrial workflow recognition. The core 

mechanism is a topologically optimized feed forward neural network, created using less than 40% of the 

available data. Then, given new data the classifiers labels them and retrains itself using the most appropriate 

ones. In order to avoid labeling errors a secondary similarity based classifier is activated, when specific criteria 

are met. If classifiers did not agree, an expert was summoned via a feedback scheme. 

Sea border surveillance is another vision based approach. In that case SSL was used exclusively for training 

data set creation purposes. The system utilizes a pixel level classification mechanism based on SVMs. In order 

to correct man made annotation mistakes, which could jeopardize the SVM classifier performance, the initial 

annotated image data set was re-annotated according to a scalable graph based SSL approach.  
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Elders’ falls detection is an important topic. In this case, the SSL techniques were used for both system 

initialization and adaptation. At first, under the cluster assumption, extracted feature vectors form two 

classes: fall and non-fall. Then the classifier is initialized and adopt to the new data using a self-training 

approach, similar to the industrial monitoring one, previously described. Despite being a vision based 

approach, no actual video over 3 seconds duration is recorded, preserving the people’s privacy. 

Applicability over extremely complex data cases was evaluated in tunnel surface defect identification 

scenarios. It is a typical two class identification problem; SSL approaches could not compete other state of the 

art techniques in detection performance neither for execution times. There was three major drawbacks: low 

feature quality, long execution times and hardware requirements. Deep learning hierarchical schemes (i.e. 

convolutional neural networks) detection abilities outperformed all other approaches.  

The structural integrity of foundation piles was also evaluated using graph based approaches. Using wave 

propagation theory and noise modeling the entire set of foundation piles can be assessed simultaneously. In 

particular the similarity of the waveforms is projected in a nearest neighbor graph. Then, given the status of 

few piles, the information propagates through the edges to all connected nodes. The proposed approach 

reduces labeling effort, which is both costly and time consuming. Such an approach encourages the data 

sampling, since larger the data base better the classification accuracy. 

The labeled data selection impact was evaluated, using data from the Greek commercial sector. A great variety 

of sampling approaches are used to evaluate the descriptive abilities of small training sets, given a classifier 

raging from traditional models, e.g. logistic regression, to advanced soft computing techniques, e.g. artificial 

neural networks. Simulation outcomes suggest that no optimal choice, regarding the data sampling, neither 

for the classification approach, exists. 

Finally, a novel idea for image meta-filtering is proposed. An appropriate distance metric is calculated via SSL 

assumptions which models user’s behavior over image selection. Such an approach allows multiple uses of the 

same data sets in different applications (e.g. subsets of the same data can be used for 3D reconstruction, 

tourism promotion, book publications, etc.). User’s feedback is involved only for a minor set of data. The 

proposed scheme facilitates the refinement of retrieval results always under the scope of the end user needs. 

Experimental outcomes are in accordance with existing literature suggestions: The unlabeled data can be used 

in order to improve models’ performance (i.e. accuracy, precision, etc.). Yet, there are no optimal solutions 

regarding the model and feature selection, nor for the data sampling techniques. Heuristic approaches or 

empiric rules are not always sufficient, although they provide a good starting point during the first stages of a 

DSS development. 

However, there is no “free-lunch”. In particular, in real applications the data abundance creates many 

implementation issues9; among them are the memory issue and the time issue. The former directly affects the 

scalability of the models in datasets with thousands of entries, although there are studies dealing with such 

an issue. The latter, limit the models applicability in on-line systems (e.g. pixels classification in video 

sequences). Finally, low feature quality can jeopardize models performance; in the SSL framework bad 

features result in even more severe performance loss. The model propagates the knowledge to new data and 

adapt itself to the new wrong labels. 

 

The end.

                                                           
9 Generally speaking, since the SSL field spans a great variety of methodologies.  
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