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Abstract

Coal is an important energy resource, especially for countries that have few

other energy resources. While the use of fossil fuels is linked to several en-

vironmental challenges, these problems can be mitigated. Coal reserves are

distributed in space. A better understanding of their spatial distribution

would improve exploitation plans and help to better assess financial risks.

This research attempts to supplement and improve existing methods of re-

serves estimation for coal and provide easy-to-use tools to assist in mine

planning. The methods proposed herein could also be used for different ore

deposits.

We introduce the spatial profitablity index (SPI) that evaluates the prof-

itability of mining each individual seam. As prices and mining costs change

during the lifetime of a mine, the profitabilty of different mine sectors or

lignite seams may change from profitable to unprofitable or vice versa. The

SPI is a flexible tool that can easily and quickly investigate different eco-

nomic scenarios. The SPI can be used to re-evaluate the pit limits and mine

reserves with the current prices and mining costs or near-future estimates.

The SPI is applied in the multiseam lignite mine of Mavropigi, Northern

Greece, to evaluate the different lignite seams based on data from 341 drill

holes provided by the Public Power Corporation (PPC). The differences in

the reserves estimation between the SPI-corrected data and the original data

are investigated with regression kriging. The uncertainty of the prediction is

investigated based on 5000 conditional simulations.

Based on the SPI, different economic scenarios are investigated that cover

a large range of revenue and cost changes. The estimated reserves and rev-

enue difference based for these scenarios are approximated by an empirical

function. This function or the resulting graph can give a quick and accurate

3



4 Abstract

approximation of the expected difference in reserves for specific mine sec-

tors or the entire mine. The uncertainty of the prediction is assessed with

conditional simulations.

In mining, reserves estimation is usually performed using the family of

kriging methods. While these methods are the best linear estimators for

Gaussian data, they require the computationally intensive inversion of a

large covariance matrix. To reduce the computational load, a user-defined

neighborhood radius is usually introduced. In this thesis, we investigate the

recently proposed method of the stochastic local interaction model (SLI) as

a possible alternative. This method avoids the inversion of the covariance

matrix. The bandwidth parameter required by the method is self-consistenly

defined by the geometry of the data-set without any input from the user.

SLI models are used with three different data-sets and compared with

kriging methods. The first data used for SLI estimation are the SPI-corrected

data from Mavropigi mine. The second data-set is from Campbell county,

in the state of Wyoming, USA to assess the distribution of the coal re-

serves there. The coal reserves of Campbell country constitute an important

economic and energy resource for the area. The third and final data set in-

vestigated by SLI and kriging, is a non-Gaussian dataset from a gray scale

photograph of Pluto. While this dataset does not involve coal deposits, it

is employed in this thesis to showcase the performance of SLI methods com-

pared to kriging methods in non-gaussian datasets.

In all three datasets SLI performs faster than the kriging methods and

performs as accurately or in the case of non-Gaussian datasets more accu-

rately than kriging methods.



 

 

 

Περίληψη 

Ο γαιάνθρακας αποτελεί σημαντικό ενεργειακό πόρο, ιδιαίτερα για τις 

χώρες που έχουν λίγες διαφορετικές πηγές ενέργειας. Παρόλο που η 

χρήση των ορυκτών καυσίμων συνδέεται με πολλές περιβαλλοντικές 

προκλήσεις, τα προβλήματα αυτά μπορούν να μετριαστούν. Η τιμή του 

γαιάνθρακα έχει σημαντικές διακυμάνσεις κατά την πάροδο του χρόνου. 

Για παράδειγμα, η τιμή του γαιάνθρακα που χρησιμοποιείται για 

παραγωγή ηλεκτρικής ενέργειας, υποδιπλασιάστηκε ανάμεσα στον 

Ιανουάριο του 2011 και τον Ιανουάριο του 2016. 

Τα κοιτάσματα του γαιάνθρακα κατανέμονται στον χώρο. Καλύτερη 

κατανόηση της χωρικής τους κατανομής αναμένεται να βελτιώσει τα 

σχέδια αξιοποίησης τους και να δώσει μια καλύτερη εικόνα του 

οικονομικού ρίσκου. Η έρευνα αυτή επιχειρεί να συμπληρώσει και να 

βελτιώσει τις υπάρχουσες μεθόδους εκτίμησης αποθεμάτων γαιάνθρακα.  

Επιπλέον, επιχειρεί να παρέχει ευκολόχρηστα εργαλεία που βοηθούν στον 

σχεδιασμό εκμετάλλευσης γαιάνθρακα, ειδικά σε περιπτώσεις 

πολυστρωματικών κοιτασμάτων. Οι μέθοδοι που εισάγονται στην 

παρούσα έρευνα θα μπορούσαν να χρησιμοποιηθούν και για κοιτάσματα 

διαφορετικών μεταλλευμάτων. 

Σε αυτή την μελέτη εισάγουμε το χωροταξικό δείκτη εκμεταλλευσιμότητας  

(SPI) που αξιολογεί την εκμεταλλευσιμότητα της εξόρυξης κάθε 

στρώματος σε πολυστρωματικά κοιτάσματα. Καθώς οι τιμές και το κόστος 

της εκμετάλλευσης αλλάζουν κατά την διάρκεια ζωής του ορυχείου, η 

εκμεταλλευσιμότητα του κάθε τομέα ή στρώματος μπορεί να μεταβληθεί 

από επικερδής σε μη εκμεταλλεύσιμη ή το αντίθετο. Ο δείκτης SPI είναι 

ένα ευέλικτο εργαλείο που μπορεί γρήγορα και εύκολα να διερευνήσει 

διαφορετικά οικονομικά σενάρια. Με αυτό τον τρόπο, ο SPI μπορεί να 

βοηθήσει στην επανεξέταση των ορίων της εκμετάλλευσης και τα 
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αποθέματα του ορυχείου με τις τρέχουσες τιμές ή τις προβλεπόμενες 

τιμές στο εγγύς μέλλον. 

Ο δείκτης SPI εφαρμόζεται στο πολυστρωματικό ορυχείο της Μαυροπηγής 

στην Μακεδονία για την αξιολόγηση στρωμάτων λιγνίτη από 341 

γεωτρήσεις της Δημόσιας Επιχείρησης Ηλεκτρισμού (ΔΕΗ). Οι διαφορές 

στην εκτίμηση ενεργειακών αποθεμάτων μεταξύ των διορθωμένων από 

τον SPI δεδομένων και των αρχικών δεδομένων διερευνώνται με kriging 

παλινδρόμησης (Regression kriging ή RK). Η αβεβαιότητα της εκτίμησης 

διερευνάται με βάση 5000 δεσμευμένες προσομοιώσεις. Με χρήση του 

SPI, το ενεργειακό περιεχόμενο του ορυχείου ανέρχεται σε 300-390 Pcal 

(349 - 454 TWh) με 90% επίπεδο εμπιστοσύνης.  

Με βάση τον SPI, διερευνώνται διαφορετικές οικονομικές εκδοχές που 

καλύπτουν μεγάλο εύρος αλλαγών σε τιμές εσόδων και κόστους. Οι 

εκτιμώμενες διαφορές στα οικονομικά εκμεταλλεύσιμα αποθέματα για 

αυτά τα σενάρια προσεγγίζονται με μία εμπειρική συνάρτηση. Η 

συνάρτηση αυτή  ή το γράφημα που προκύπτει μπορεί να δώσει μια 

γρήγορη και ακριβή προσέγγιση της αναμενόμενης διαφοράς στα 

ενεργειακά αποθέματα ανάλογα με τις μεταβολές στην τιμή του προϊόντος 

ή του κόστους εξόρυξης για συγκεκριμένους τομείς του ορυχείου, ή 

ολόκληρο το ορυχείο. Η αβεβαιότητα της πρόβλεψης αξιολογείται με 

δεσμευμένες προσομοιώσεις. 

Η εμπειρική συνάρτηση που προκύπτει, μπορεί να χρησιμοποιηθεί και για 

να γίνει προσεγγιστική εκτίμηση του συνολικού κόστους εξόρυξης του 

λιγνίτη του ορυχείου ή συγκεκριμένων τομέων.  

Στον τομέα της εξόρυξης, η εκτίμηση αποθεμάτων συνήθως 

πραγματοποιείται με χρήση των μεθόδων kriging. Ενώ αυτές οι μέθοδοι 

είναι οι καλύτεροι γραμμικοί εκτιμητές για γκαουσσιανά δεδομένα, 

χρειάζονται την υπολογιστικά απαιτητική αντιστροφή μεγάλων πινάκων 

συνδιασποράς.  Για την μείωση των υπολογιστικών απαιτήσεων, συνήθως 

εισάγεται μια ακτίνα εκτίμησης από τον χρήστη. Σε αυτήν την διατριβή, 

διερευνούμε την μέθοδο των στοχαστικών τοπικών αλληλεπιδράσεων (SLI) 

ώς μια εναλλακτική λύση. Η καινοτόμος αυτή μέθοδος αποφεύγει την 

αντιστροφή του πίνακα συνδιασποράς. Η παράμετρος εύρους ζώνης που 
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απαιτείται από τη μέθοδο είναι καθορίζεται αυτόματα από τη γεωμετρία 

των δεδομένων χωρίς οποιαδήποτε είσοδο από το χρήστη. 

Τα μοντέλα SLI χρησιμοποιούνται με τρία διαφορετικά σύνολα δεδομένων 

και σε συγκρίνονται με τις μεθόδους kriging. Το πρώτο σύνολο δεδομένων 

που χρησιμοποιούνται για εκτίμηση με τα SLI είναι τα διορθωμένα από 

τον SPI δεδομένα λιγνίτη της Μαυροπηγής. Το δεύτερο σύνολο δεδομένων 

είναι δεδομένα γαιάνθρακα από την κομητεία Campbell της πολιτείας 

Wyoming των ΗΠΑ. Τα κοιτάσματα γαιάνθρακα της κομητείας του 

Campbell αποτελούν μια σημαντική οικονομική και ενεργειακή πηγή για 

την περιοχή καθώς η κομητεία περιλαμβάνει τα δύο μεγαλύτερα 

ανθρακωρυχεία της Γης. Το τρίτο και τελευταίο σύνολο δεδομένων που 

διερευνώνται από τα μοντέλα SLI και kriging είναι ένα μη γκαουσσιανό 

σύνολο δεδομένων από μια ψηφιακή φωτογραφία του πλανήτη-νάνου 

Πλούτωνα. Το σύνολο δεδομένων αυτό, αν και δεν αποτελείται από 

δεδομένα γαιάνθρακα, διερευνάται για να εξεταστεί η 

αποτελεσματικότητα των SLI σε σχέση με τις μεθόδους Kriging σε μη 

Γκαουσσιανά δεδομένα. 

Και στα τρία σύνολα δεδομένων, τα μοντέλα SLI λειτουργούν γρηγορότερα 

από τις μεθόδους kriging. Επιπλέον δίνουν το ίδιο ακριβείς εκτίμησης με 

τις μεθόδους kriging για Γκαουσσιανά δεδομένα ή στην περίπτωση των μη 

Γκαουσσιανών δεδομένων, δίνουν πιο ακριβείς εκτιμήσεις. 

 

Η εργασία αυτή ακολουθεί την ακόλουθη δομή: 

Στο πρώτο κεφάλαιο, γίνεται η εισαγωγή που δίνει το κίνητρο, τους 

σκοπούς και την καινοτομία αυτής της μελέτης. Στο δεύτερο κεφάλαιο 

παρουσιάζεται η βασική θεωρία που απαιτείται για την κατανόηση αυτής 

της διατριβής. Στο τρίτο κεφάλαιο εισάγεται και επεξηγείται ο δείκτης 

εκμεταλλευσιμότητας και εφαρμόζεται στο λιγνιτωρυχείο της 

Μαυροπηγής στην Μακεδονία. Στο κεφάλαιο αυτό εισάγεται και η 

συνάρτηση της διαφοράς εκτιμώμενων αποθεμάτων (ERD). Εξετάζεται 

πως μπορεί να χρησιμοποιηθεί για να δώσει γρήγορες εκτιμήσεις των 

αποθεμάτων υπό διαφορετικές οικονομικές συνθήκες και το συνολικό 

κόστος εξόρυξης. Το τέταρτο κεφάλαιο παρουσιάζει τα μοντέλα 

στοχαστικών τοπικών αλληλεπιδράσεων και συγκρίνει την εφαρμογή τους 
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Chapter 1

Introduction

1.1 Motivation

In spite of environmental concerns related to fossil fuels, coal remains an

important energy resource which contributes to the energy independence

of countries that do not possess other energy resources. Currently, approxi-

mately 30% of the electricity generation in the European Union is coal-based.

The exploitation of coal contributes significantly to job creation; for exam-

ple, in 2012 the coal industry provided ≈ 240, 000 jobs within the European

Union [4]. The value of thermal coal variates significantly with time [5].

The exploitation of coal is linked to several environmental challenges.

The burning of coal in power plants releases large amounts of CO2 in the

atmosphere. Byproducts of the coal combustion are fly ash, bottom ash

and sludge. The coal may also contain sulfides that release sulfur dioxide

(SO2) when burned or contribute to toxic hydrogen sulfide (H2S) release [59].

Another issue of concern is the large quantities of waste that are disposed

in areas around the mine [71]. Yet, the environmental problems can be

mitigated, at least to some extent [12, 43]. For example, fly ash and harmful

gases can be captured and neutralized by means of various filters if the ash

and sulfide content are accurately estimated. In addition, suitable planning

strategies allow for waste to be disposed in exploited parts of the mine.

Both fossil-based and renewable energy resources share a common feature:

they are distributed in space (renewable resources are also distributed in

23
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time). It is necessary to understand quantitatively the variations in the

spatial distribution in order to optimize exploitation plans, correctly assess

investment risks, and timely compensate for spatial variations in the quality

of the energy product.

Kriging methods are the standard geostatistical tool used to estimate the

spatial variability of mineral reserves. These methods are commonly used

to estimate the quality and quantity characteristics of coal deposits. These

methods require the time consuming and computationally intensive inversion

of the covariance matrix. Kriging methods benefit from search neighborhoods

the researcher or engineer must determine independently. Furthermore, Krig-

ing methods work best if the data set is close to the normal distribution.

Geostatistical analysis is commonly used for reserves estimation and the

initial exploitation planning of coal or different resource mines. However,

the exploitation lasts for several years. The price of the product, the mining

costs, the environmental reclamation cost, the cost to expropriate the land

and other costs usually fluctuate significantly during the duration of the ex-

ploitation. For example, the price of thermal coal was nearly halved between

January 2011 and January 2016 [5]. Changes in costs or product price could

render unprofitable the exploitation of certain parts of the mine that were

considered profitable based on previous economic estimates [6] thus changing

the reserves.

Changes in the price of the product and cost of the exploitation can lead

to different mining plans and possibly change the pit limits of the mine. The

period that price estimates are considered reliable for most commodities has

a time horizon of three to five years, while the initial mining plans may have

been designed decades in the past with outdated price predictions. There

is a lack of geostatistical tools that can assist in revising the original mine

planning by incorporating current predictions of near-future prices that differ

from possibly outdated economic predictions made at the time of the initial

planning.
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1.2 Objectives

One of the goals of this research is to show that geostatistical tools [14,

60] can be used to efficiently analyze the spatial variability and estimate

uncertainties, and that this information can be used to investigate economic

scenaria, environmental concerns, and issues related to mine exploitation.

Kriging methods are the best linear estimators for Gaussian data [39, 23].

However, they require the computationally intensive inversion of covariance

matrices and are commonly applied with a neighborhood, the radious of

which must be chosen by the user. In this dissertation, a recently proposed

alternative method is tested, the stochastic local interaction model (SLI).

This method avoids the inversion of the covariance matrix. Instead, it is

based on a joint probability density function defined by an energy functional

which involves local interactions between the data. The SLI employs a band-

width parameter which is defined by the geometry of the data-set without

any input from the user.

An objective of this research is to provide flexible and easy-to-use tools

that can assist in defining the optimal pit limits during the initial mine plan-

ning and to also provide adjustments of those limits under evolving economic

conditions. Such tools should generate reliable estimates in the near future

(3-5 years). Motivated by this need, we introduce the spatial profitablity in-

dex (SPI) that evaluates the profitability of each individual seam and assists

in defining whether it is profitable to extract that seam, hence assisting in the

definition of the pit limits. In contrast with pit-limit delimitation algorithms,

the SPI algorithm does not evaluate blocks but individual seams. The spatial

estimations made using the SPI-evaluated drill-hole data can subsequently be

used by open-pit delimitation algorithms such as the Lerchs and Grossman

algorithm [34] to better estimate pit limits. Changing economic conditions

are investigated by using different economic scenarios and using the SPI to

re-evaluate the pit limits and reserves. The SPI is flexible enough to be used

for re-evaluation of pit limits in different sectors of the mine under changing

economic parameters.

As prices and costs change during the exploitation, so do the profitable

reserves of the product and therefore, the expected revenue. One of the

objectives of this research is to assist in the quick and efficient re-evaluation
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of the reserves and expected revenue of each sector or the entire mine. The

approach taken is the construction of an empirical function based on the

estimated reserves difference (ERD) resulting from application of the SPI.

The resulting graph quickly gives an accurate approximation of the reserves

and revenue difference in different economic scenarios for specific sectors or

the entire mine. In their current form, the SPI and ERD are limited to

reserves evaluation for already planed sectors. Their use could possibly lead

to change in the planned pit bottom of such sectors.

1.3 Innovation

The SPI is a new tool for evaluating the profitability of mining seams. Un-

like other indexes as the discounted cash flow which are either financial in

nature but do not account for spatial variability or incorporate the spatial

variability of physical variables but not their financial significance, SPI is

both spatial and financial in nature. The method to calculate the SPI is also

straightforward and can be easily applied to different multiseam deposits.

While estimations of reserves in different financial situations have been

conducted in the past [42], the change has not been modeled by equations,

nor it has been tied to changes in gross mine profit. The ERD is constructed

in a way that makes possible to get an accurate and fast estimation of the

total mining cost for the seams or sectors investigated.

The SLI interpolation method is used in mineral resources data for the

first time. This method gives significantly faster predictions of comparable

accuracy to the kriging methods for data close to the normal distribution. For

data sets in this study that deviate from the normal distribution, the SLI

gives more accurate predictions than kriging with reduced computational

times.

1.4 Structure

The remainder of this thesis is structured as follows:

The second chapter comprises preliminary information. It defines ran-

dom fields, which are used in geostatistics to represent spatial variability
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and some of their important properties, such as the covariance function and

the concepts of stationarity and isotropy. Further-more, the chapter briefly

describes the steps usually followed in spatial analysis studies. We give the

definition of the trend, variogram models, the Spartan covariance model and

finally a detailed synopsis of kriging methods. Next is a presentation of the

conditional simulation method used in this research, which is based on de-

composition of the covariance matrix combined with kriging conditioning.

The validation measures used to assess the estimation results and compare

between the various methods tested are presented next. This chapter con-

cludes with an explanation of the mining terms used in this research, as well

as the commonly used methods and financial indices this research attempts

to supplement.

The third chapter introduces the SPI and the case study of Mavropigi

lignite mine in Northern Greece. After a brief presentation of the Mavropigi

lignite mine, the SPI and the threshold it compares with are defined. Next,

the algorithm used to calculate SPI is given followed by an example that

illustrates the use of the algorithm. Different thresholds than the accepted

ratio of revenue by cost are investigated next. The exploratory analysis of

the drill-hole data of Mavropigi mine, broken in five sectors, follows. Two

sets of data are used in the calculations: the SPI corrected data and the

original data that have not been evaluated with SPI. Next, the spatial anal-

ysis based on regression kriging for both datasets is presented along with

uncertainty assessment based on conditional simulations. In this chapter,

we also present the construction of the estimated reserves difference (ERD)

empirical function and discuss how it can be used to generate accurate and

fast estimations of reserves changes and the total mining cost for the mine.

Finally an example is presented which illustrates the application of SPI could

change the pit bottom elevation during the long term or the mid term mine

planning.

The fourth chapter presents the SLI model, explores its application to

three case studies and shows comparisons with kriging methods. The theo-

retical background that describes the SLI and the precision matrix is given

first, followed by a description of spatial prediction using the SLI model.

The SLI model for the Mavropigi mine and the results are compared with

the kriging results of the previous chapter. The second case study inves-
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tigated involves coal drill-hole data from Campbell county in the state of

Wyoming in the USA. After exploratory spatial analysis is conducted, re-

gression kriging and SLI are utilized to generate estimates and the results

are compared. The third and final data set examined, is a non-Gaussian

dataset from a gray scale digital image of Pluto. SLI results are compared

to those obtained with ordinary kriging. While this dataset does not involve

coal deposits, it is employed in this thesis to showcase the performance of

SLI methods in non-gaussian datasets.

The fifth chapter focuses on the simulations of the Mavropigi data set that

are tested for uncertainty assessment of the reserves. Two transformations of

the data set (logarithm and square root) are investigated. Regression kriging

is applied to the two transformed data sets and the results are compared to

the kriging results obtained from the original data set. Since all datasets

exhibit similar performance with each other, simulations based on all three

datasets are conducted and their results are compared. The chapter closes

by an analysis of our decision to use the simulation results of the unmodified

data set.

The sixth and final chapter is comprises a synopsis of this research. It

details the progress achieved towards reaching the objectives set in the first

chapter and concludes with suggestions for further studies.

A list of publications that were produced as a result of this research is

presented next before the section that contains the bibliographical references.

An appendix with the matlab code used to calculate the SPI follows.



Chapter 2

Preliminary Information

2.1 Mathematical concepts

Earth science data are distributed through space or time [15, 14]. Geostatis-

tics comprises a collection of mathematical methods that can be used to

model and characterize spatial attributes, based on the theory of random

fields.

2.1.1 Random variables and random fields

A random variable X is a point-like variable that can take values, denoted

by x, from an ensemble of possible (probable) values. A random variable

is called discrete if takes values xi, where i=1, . . . , N, in a countable set,

i.e., the frequency of appearance of each value is determined by a probability

distribution function. A random variables X is called continuous if it takes

values x in a continuum set. Then, the probability that X takes values

in an infinitesimal interval around x is determined by a probability density

function (pdf)[49, 16].

The expectation E[X] of a random variable X is the mean value of the

random variable for all of its states. If the probability distribution of X has

a pdf f(x), then the expected value is

E[X] =

∫ ∞
−∞

xf(x) dx. (2.1)

29
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A stochastic process is a collection of random variables representing the

evolution of some system of random values over time. In a stochastic process

there are several (often infinite) directions in which the process may evolve.

This is the probabilistic counterpart to a deterministic system.

A random field Xs is a collection of random variables distributed over

the spatial domain of interest. The vector s corresponds to the position of

a point in the study area. At its most basic, discrete case, a random field

is a list of random numbers whose indices are mapped into a n-dimensional

space. More generally, the values might be defined over a continuous domain.

Values in a random field are often spatially correlated in one way or another.

Mathematical properties characterizing the random variables are extended

for the case of variables distributed in space. A random field consists of a set

of random variables that describe the spatial (or space–time) changes of an

attribute. Therefore, a random field may be viewed as a multidimensional

random variable. Due to the interdependence of physical quantities at dif-

ferent locations in space, random fields have unique mathematical properties

that distinguish them from a set of independent random variables. In this

study, a random field is denoted as Xs or X(s). Values corresponding to a

unique realization of random field Xs are denoted with x(s) [65, 32].

Fluctuation of the random field X(s) is a random field X ′(s) the values of

which are the fluctuations of the values of the X(s) around the expected value

in those locations. As such, fluctuation X ′(s) is X ′(s) = X(s)− E[X(s)].

Random variables and random fields are described by an ensemble of

states. Each state (realization) is also a sample of the field with a cor-

responding probability which is determined by the multidimensional joint

probability density function of the field [65, 32, 1].

2.1.2 Covariance

The Covariance function, or simply covariance cx(s1, s2) of a random field

X is a measure of how much the fluctuation of the field at point s1 influ-

ences the fluctuation of the field at the point s2. It is defined according to

equation (2.2).
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cX(s1, s2) = E [ (X(s1)− E[X(s1)])(X(s2)− E[(X(s2)]) ]

= E[X(s1)X(s2)]− E[X(s1)]E[(X(s2)] (2.2)

in the above E[·] denotes the expectation over the ensemble of the random

field states. If follows from equation (2.2) that c
X

(0) = σ2
X

, where σ2
X

is the

variance of the random field X.

For two random vectors X1,X2, the covariance matrix is

C(X1,X2) = E
[
(X1 − E[X1])(X2 − E[X2])T

]
= E

[
X1X

T
2

]
− E[X1]E[X2]T, (2.3)

where XT is the transpose of vector X. The element Ci,j of the covariance

matrix is equal to the covariance c(Xi, Xj) as defined in equation (2.2) [14].

2.1.3 Statistical homogeneity

A random field X(s) is statistically homogeneous in the weak sense if the

mean value (expectation) is constant, meaning that m
X

(s) = m
X

and the

covariance function depends only on the distance vector r = s1− s2 between

two points i.e., c
X

(s1, s2) = c
X

(r). The second condition guarantees that the

variance of a statistically homogeneous field is constant. Hence, the depen-

dance of the value of random field X(s) on other locations si, is determined

only by the distance between si and s and not by the actual coordinates of

these locations.

These above conditions define statistical homogeneity in the weak sense.

A random field is statistically homogeneous in the strong sense if the mul-

tidimensional pdf for N points, where N is any positive integer, remains un-

changed by transformations that change the location of the points without

changing the distances between them.

Practically, statistical homogeneity implies that there are no spatial trends,

so that the spatial variability of the field can be attributed to fluctuations

around a constant level equal to the mean value. In practice it is difficult
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to test homogeneity in the strong sense since the multidimensional joint pdf

of the random field is usually unknown while the covariance is easier to esti-

mate [32, 1].

2.1.4 Statistical isotropy

Isotropy implies uniformity in all directions. A field is statistically isotropic

if it is statistically homogeneous and its covariance function depends only on

the distance r, but not on the direction of the distance vector r. Therefore,

if the covariance function is isotropic, the field is by definition statistically

homogeneous, but not vice versa.

Anisotropy, on the contrary, implies that the spatial variability depends

on the direction. The covariance of an anisotropic random field depends on

both the distance r and the direction of vector r. A random field is consid-

ered anisotropic if the directional covariances have different sill or correlation

length values [48, 23].

2.2 Spatial analysis

Spatial analysis provides tools for resolving variations of various properties

at different scales and for identifying potentially useful correlations between

variables. Spatial analysis finds applications in energy resources exploita-

tion [20, 23, 58], earth sciences [15, 10], meteorology [41, 38] and agricul-

ture [19] among other fields similar to the way statistical analysis finds ap-

plications in numerous fields from material sciences to economics [24]. The

geostatistical viewpoint offers a good balance between flexibility and ease of

use [14, 52, 45].

In contrast with the simpler distance-based methods (e.g., inverse square

distance weighted [34], geostatistical methods also provide quantitative mea-

sures of uncertainty. In addition, distance-based methods do not account for

spatial correlations, the type of probability distribution followed by the data,

geological discontinuities, and the extent of the deposit [47]. Geostatistical

methods have successfully been used to investigate energy resources such as

solar energy [70, 69], wind speed [13], and geothermal potential [9] [57, pp. 6-
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14]. Geostatistics have found extensive applications in coal mining [47, 43]

as well as other mineral resources [23, 36]

Geostatistics was based on the work of Danie Krige [39] who developed a

linear optimal stochastic interpolator (named Kriging after him) for mineral

reserves estimation. Kriging methods have been widely used to estimate coal

reserves in multiseam mines [56, 46, 63]. Geostatistical analysis of drill-hole

lignite data allows estimating the quantity of inorganic material in lignite

seams, the local sulfide content [64], the location of methane gas sources in

underground mines, and the gas retained in such sources [37]. Using such

spatial information, it is possible to plan coal blending strategies, selective

exploitation, as well as enrichment and beneficiation of reserves to lessen the

environmental impact [8, 43].

2.2.1 Trend model

Random fields can be represented as X(s) = mX(s) + X ′(s). The function

mX(s) is the trend function that represents the deterministic spatial correla-

tions between the data, which are usually of long range. X ′(s) is a random

field that corresponds to the fluctuations of X(s) around the trend. The

expectation of the fluctuation is E[X ′(s)] = 0.

In most applications that involve mineral resources data, there is no the-

oretical evidence to suggest a particular type of analytical trend model. Be-

cause the concept of trend mX(s) is usually associated with a smoothly vary-

ing component of the variability of Xs in space, it is typically modeled with

low-order polynomials [14, 48, 23].

2.2.2 Variogram models

Geostatistical analysis is based on the variogram function γ(s, s+r), where s

is the position vector and r the lag (distance) vector. The variogram describes

the spatial correlations of the spatial random field X(s). It is defined by

means of the following equation in which E[·] denotes the expectation over

the ensemble of the random field states [45]

γ(r) =
1

2
E
[
{X(s)−X(s + r)}2

]
. (2.4)
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In equation (2.4) it is assumed that the random field is either statistically

stationary or that it has stationary increments, so that the variogram depends

only on r and not on s. For the quality parameters of coal this assumption

is generally true [43].

If the random field is stationary, the variogram function is connected to

the covariance C(r) as follows

γ(r) = C(0)− C(r). (2.5)

It follows from equation (2.4) that γ(0) = 0. As explained in section 2.1.2,

C(0) = σ2, where σ2 is the variance of the random field. As |r| → ∞,

C(r)→ 0, hence the variogram of a stationary random field has a sill equal to

the variance σ2 of the random field. In practice, the experimental variogram,

which is estimated from the data, may show a discontinuity at the origin

equal to C0. This represents unresolvable fluctuations or measurement errors

and is known as the nugget effect, where C0 is the nugget variance [23]. The

correlation length or characteristic length is a normalization parameter of the

distance r thus defining the interval within which the field value at one point

significantly affects the value at another point [45].

To emulate the variogram at any distance, theoretical variogram models

are fit on the experimental variogram [7, 45]. Some commonly used theoreti-

cal variogram models include the exponential, gaussian and spherical models.

Their respective equations are listed below. The symbol σ2
X

denotes the vari-

ance, ‖r‖ is the Euclidean norm of the lag vector r, and ξ is the correlation

length.

Exponential

γ
X

(r) = σ2
X

[1− exp (−‖r‖/ξ)] . (2.6)

Gaussian

γ
X

(r) = σ2
X

[
1− exp

(
−‖r‖2/ξ2

)]
. (2.7)
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Spherical

γ
X

(r) =

 σ2
X

[
1.5
(
‖r‖
ξ

)
− 0.5

(
‖r‖
ξ

)3
]

if ‖r‖ ≤ ξ

σ2
X

if ‖r‖ ≥ ξ.
(2.8)

Matern

γ
X

(r) = σ2
X

[
1− 21−ν

Γ(ν)

(
√

2ν
r

ξ

)ν

Kν

(
√

2ν
d

ξ

)]
. (2.9)

The parameter ν > 0 is the smoothness parameter, which controls the

continuity of the random field. Γ(·) is the gamma function, and Kν(·) is the

modified Bessel function of the second kind of order ν [67, 61].

2.2.3 Spartan spatial random field model

Spartan Spatial Random Fields (SSRFs) are a recently proposed family of

geostatistical models with environmental applications [67, 21, 72] as well as

applications with coal deposit evaluation [53, 51]. SSRFs are generalized

Gibbs random fields with a kernel function that acts as a filter for the fluc-

tuations. The term Spartan indicates parametrically compact models that

involve a small number of parameters. The SSRF are defined by means of

physically motivated spatial interactions between the field values [67, 31].

In three spatial dimensions the SSRF model is given by [67, 30, 33]

C(r) =


η0

2π∆
e−
|r|
ξ
β2

(
sin(

|r|
ξ
β1)

|r|
ξ

)
|η1| < 2,

η0
8π

e−
|r|
ξ η1 = 2,

η0
4π∆

(
e−
|r|
ξ
ω1 − e−

|r|
ξ
ω2

)
1

(ω1−ω2)
|r|
ξ

η1 > 2.

(2.10)

In equation (2.10), η0 is the scale factor that determines the magnitude of
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the fluctuations, η1 is the rigidity coefficient, and ξ is the characteristic length

that determines the range of spatial correlations. The remaining coefficients

are given by β1,2 = |2 ∓ η1|1/2, ω1,2 =
(
η1∓∆

2

)1/2
, and ∆ = |η2

1 − 4|1/2. The

correlation length of the Spartan model is determined by both η1 and ξ. For

η1 = 2 the Spartan covariance of equation (2.10), the exponential model of

equation (2.6) is recovered.

The SSRF model was shown to perform competitively in interpolation

studies that involved radioactivity dose rate [21], coal reserves [53, 51] and

groundwater level [66]. It is a flexible covariance model with two parameters

(η1, ξ). Motivated by the success of this model on environmental and coal

data, the Spartan Spatial Random Field (SSRF) covariance model is one of

the models tested in the geostatistical analysis of this research.

2.2.4 Kriging

Kriging involves a family of stochastic spatial interpolation methods that

can be used to estimate the value of a random field X(u) at an unmeasured

point u by means of a linear combination of the measurements at n nearby

points s1, . . . sn. These points ideally involve all the sampling locations. If

this choice leads to too-heavy computational load, the neighboring points are

restricted to those found within a kriging neighborhood which is defined by

the user. The estimation process is usually repeated at every node of a grid

suitably defined for the particular application. This allows the creation of

maps representing the isolevel contours of the random field. For example,

if the yearly precipitation is measured in a few stations distributed in an

area, kriging methods can be used to create a map of precipitation in a grid

that encompasses the entire area [1]. These maps can be accompanied by an

estimate of reliability, which determines the uncertainty of the estimation at

each point.

The predicted value of the field at the estimation point is expressed ac-

cording to the following linear combination:

X̂(u) =
n∑
i=1

λiX(si). (2.11)
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In equation (2.11), X̂(u) is the estimation at the unmeasured point u, and

λi are linear weights that correspond to each of the n points in the kriging

neighborhood. The prediction error is ε(u) = X(u) − X̂(u). In kriging

methods, the linear weights λi are calculated by minimizing the error variance

of equation (2.12)

σ2
E(u) = Var

[
X(u)− X̂(u)

]
. (2.12)

The variance may be minimized under constraints as in the case of ordinary

kriging.

This leads to a linear system of equations which is expressed in terms

of the covariance or the variogram. In contrast with deterministic methods,

such as inverse distance weights, Kriging provides a measure of prediction

uncertainty based on the kriging variance σ2
K(u) [39, 17, 43].

Simple Kriging

Simple kriging (SK) is applied if the meanm
X

is known and constant through-

out the random field, i.e. E[X(s)] = m
X

. If X
′
(s) = X(s)−m

X
the kriging

estimator is defined by the following equation:

X̂(u) = m
X

+

n(u)∑
i=1

λiX
′
(si). (2.13)

Since E[X
′
(s)] = 0, by definition the error variance of equation (2.12)

becomes

σ2
E,SK(u) = E

[{
X̂
′
(u)−X ′(u)

}2
]
. (2.14)

After minimization over the weights, the system of n(u) linear equations

used to calculate the linear kriging weights λi is expressed by the system of

equations shown in (2.15) [17, 39]

n(u)∑
j=1

λj cX (si − sj) = c
X

(si − u), i = 1, . . . , n(u). (2.15)

The above system of linear equations may also be expressed as the matrix
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equation

Ci,jλj = Ci,u. (2.16)

The matrix Ci,j, represents the covariance matrix between the data points.

The vector Ci,u represents the values of the covariance function between the

sample points si and the estimation point u. Since c
X

(0) = σ2
X

, the linear

system is equivalent to
σ2
X

. . . c
X

(s1 − sn)

c
X

(s2 − s1) . . . c
X

(s2 − sn)
...

...
...

c
X

(sn − s1) . . . σ2
X



λ1

λ2

...

λn

 =


c
X

(s1 − u)

c
X

(s2 − u)
...

c
X

(sn − u)

 (2.17)

The reliability of the prediction is determined by the square root of the

variance of the estimation error σ2
E,SK(u) which is determined from equa-

tion (2.18). The quantity σE,SK(u) is the standard deviation of the Gaussian

distribution that describes the random variable X̂(u) [23, 14].

σ2
E,SK(u) = σ2

X
−

n(u)∑
i=1

n(u)∑
j=1

Cu,iC
−1
i,j Cj,u. (2.18)

Ordinary kriging

Ordinary kriging (OK) is applied if the mean m
X

(u) is constant but unknown

inside the local neighborhood of the estimation point. The mean m
X

(s) may

vary from neighborhood to neighborhood if the ordinary kriging is not applied

over the entire domain.

The unknown local mean is removed from the linear estimator by forcing

the sum of the kriging weights to be equal to one. This constraint enforces

the zero bias condition. The ordinary kriging estimator X̂(u) is thus written

as

X̂(u) =

n(u)∑
i=1

λiX(si), (2.19)

with

n(u)∑
i=1

λi = 1. (2.20)
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In the case of ordinary kriging, the minimum mean square error should

be calculated using the constraint imposed by the zero bias condition of

equation (2.20). The minimization of the error variance under the zero bias

condition makes use of the Lagrange multiplier method for constrained op-

timization [18].

These conditions lead to the linear system of equations (2.21) and (2.22)

for the linear weights, where the constant µ is the Lagrange parameter.

n(u)∑
j=1

λj cX (si − sj) + µ = c
X

(si − u), i = 1, . . . , n(u), (2.21)

n(u)∑
i=1

λi = 1. (2.22)

The linear system of equations that gives the OK weights λi is written in

the form of matrices as shown in equation (2.23)
σ2
X

. . . cX (s1 − sn) 1

cX (s2 − s1) . . . cX (s2 − sn) 1
...

...
...

...

cX (sn − s1) . . . σ2
X

1

1 . . . 1 0




λ1

λ2

...

λn

µ

 =


cX (s1 − u)

cX (s2 − u)
...

cX (sn − u)

1

 (2.23)

The ordinary kriging error variance is respectively given by the equation

σ2
E,OK

(u) = σ2
X
−

n(u)∑
i=1

λi cX (u, si)− µ. (2.24)

The Lagrange parameter µ is always negative µ < 0. As such, σ
E,OK

(u) is

always greater than σ
E,SK

(u) implying greater uncertainty of OK estimations

compared to SK, because of the elimination of the requirement for E[X(s)] =

m [15, 23].

As shown in equation (2.5), for stationary random fields the variogram

is connected with the covariance. If only the variogram is known the OK

weights can be calculated simply by substituting c
X

in equation (2.21) with

γ
X

. As such, OK weights can be calculated by the equations (2.25) and (2.26)
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using only the variogram

n(u)∑
j=1

λj γX (si − sj)− µ = γ
X

(si − u), i = 1, . . . , n(u), (2.25)

n(u)∑
i=1

λi = 1. (2.26)

Similarly, the ordinary kriging error variance is given by the equation

σ2
E,OK

(u) =

n(u)∑
i=1

λi γX (u, si)− µ. (2.27)

Regression Kriging

Regression Kriging (RK) combines a trend function with interpolation of the

residuals. In RK the estimate is expressed as

X̂(u) = m
X

(u) + X̂
′
(u), (2.28)

where m
X

(u) is the trend function, and X̂
′
(u) is the interpolated residual by

means of OK [55, 14, 27].

The method of regression kriging is used in applications such as the mod-

eling of spatial variability in precipitation [1], modeling spatial distribution

of human diseases [54], and mapping of groundwater levels [68]. The advan-

tage of the method relies is its ability to combine a trend model between the

dependent variable and auxiliary variables (such as land surface parameters),

and allow separate interpretation of the two interpolated components [27].

2.2.5 Inverse distance weights

The Inverse distance weighting (IDW) technique is a deterministic predic-

tor [34]. The IDW methods are often applied using a neighborhood of a

user-determined radius around the prediction point u or a number of nearest

neighbors to u (i.e. 3 nearest neighbors) to determine a number of N nearby
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data points with known values. This simple linear method of estimation

assigns the linear weights λi, i = 1, 2, ..., N according to the inverse of the

distance rsi,u of si from the prediction point u. The greater the distance of

si from u, the lower the value of the linear weight λi that corresponds to the

data point si as shown in equation (2.29)

X̂(u) =

∑N
i=1

X(si)
rsi,u∑N

i=1
1

rsi,u

. (2.29)

Variations of the method use the inverse of the distance rsi,u raised to

a power n as shown in equation (2.30) to calculate the values of the linear

weights like the inverse distance squared weights (IDS) method that uses

r2
si,u

[34]

X̂(u) =

∑N
i=1

X(si)
r2si,u∑N

i=1
1

r2si,u

. (2.30)

The benefit of using IDW methods is their computing simplicity. How-

ever the assumption that dependence of the value X(u) on the values of its

neighbors is reduced with the square of the distance or some other power

leads to a less effective predictor than the kriging predictors. IDW methods

also do not give an estimate of the uncertainty of the estimation at each

point [39, 28].

2.3 Maximum likelihood estimation

Maximum likelihood estimation (MLE) is a method of estimating the param-

eters of a statistical model given observation data from an unknown distri-

bution. For a given model, the MLE calculates the values of the parameters

that maximizes the probability that the observations will be reproduced by

the chosen spatial model [14].

Suppose there is a sample x1, x2, . . . , xn of n iid observations, coming from

a distribution with an unknown pdf f0(x|k0), where k0 is the unknown true

value of the parameter vector. It is desirable to find an estimator k̂ which

would be as close as possible to the true value k0.
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To use the method of maximum likelihood, the joint pdf for all observa-

tions is calculated. For an independent and identically distributed sample,

this joint density function is

f(x1, x2, . . . , xn|k) = f(x1|k)× f(x2|k)× · · · × f(xn|k). (2.31)

The likelihood function for iid variables is

L(k ; x1, . . . , xn) = f(x1, x2, . . . , xn | k) =
n∏
i=1

f(xi | k). (2.32)

The method of maximum likelihood estimates k0 by finding the param-

eter vector k that maximizes the likelihood L(k;x1, x2, . . . , xn). Since the

logarithm is a monotonically increasing function, maximizing the likelihood

is equivalent to maximizing the logarithm of the likelihood function which is

given by the equation (2.33) [14].

lnL(θ ; x1, . . . , xn) =
n∑
i=1

ln f(xi | θ) (2.33)

2.3.1 Correlated random variables

The assumption in our data is that the variables of the random field are

correlated, not independent as was the assumption in section 2.3. In such

cases, the likelihood function shown in equation (2.32) must use the joint

pdf.

If the covariance matrix of a Gaussian random field Xs is denoted by CX
and E(Xs) is (µ1, . . . , µn) at n locations of the field, the joint probability den-

sity function of these n random variables is then given by equation (2.34) [25]

f(X1, . . . , Xn) =
1

(2π)n/2
√

det(CX)
e−

1
2

[(Xs−E(Xs)]C−1
X [(Xs−E(Xs)]T . (2.34)

In this and other cases where a joint density function exists, the likelihood

function is defined as shown in equation (2.35) using the joint pdf
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L(k ; x1, . . . , xn) = f(x1, x2, . . . , xn | k). (2.35)

2.4 Simulation

Uncertainty significantly contributes to the financial risk of mineral resources

exploitation. It is introduced by sampling limitations, experimental errors,

cost and price fluctuations, and geological factors such as the tectonic move-

ments and the weathering of an area which disrupts the structure and quality

features of the deposit. All these factors impact the estimation of total re-

serves [50]. The best available mathematical tool for exploring uncertainties

and the probabilities of different scenarios is geostatistical Monte Carlo sim-

ulation [14, 15, 53, 46]. Conditional simulations in particular can generate

different scenarios (realizations) that reproduce the statistical behavior of the

spatial variability and also respect the data [36, 28]. Conditional simulation

methods assume a given dataset D and a set of grid locations G where the

values of the random field X need to be simulated. The simulation set is

denoted by S = D ∪G.

We use the conditional simulation method which is based on covariance

decomposition combined with kriging conditioning (CDKC) [57, pp. 455-

459]. CDKC simulates the values of the random field X at the locations of

the simulation set S = D ∪G using the following steps

1. The covariance model C(r) is estimated from the data.

2. A vector X̂(S) = {X(D) ∪ X̂(G)} is derived by combining the data

X(D) with the kriging-based estimates X̂(G) at the points in G.

3. The covariance matrix CX is constructed for the points in S and then

the square root decomposition A is evaluated, i.e., CX = AT A.

4. A random vector u is generated from the standard (zero mean, unit

variance) normal distribution N(0, 1). The length of u is equal to the

number of points in S.

5. The unconstrained simulation Xu = A u is generated.
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6. Using the unconstrained simulation values Xu(D) as data, a second

application of kriging generates the interpolated vector X̂u(G).

7. We then construct the vector X̂u(S) = {Xu(D) ∪ X̂u(G)}

8. Finally, the constrained realization on S is generated by means of the

equation

Xc = Xu + X̂− X̂u. (2.36)

2.5 Spatial model validation

Validation methods provide the means for assessing the performance of dif-

ferent spatial models in terms of statistical measures. Validation typically

involves methods that measure the predictive performance of the model based

on the available data.

Assume the random field Xs with known values at the locations si, i =

1, 2, ..., N . In the Leave–one–out cross–validation (LOOCV or LVO) method,

the value x(si) is removed from the data set, and x̂(si) is estimated based

on the remaining data. This process is repeated for all N sampling points.

The performance of the predictor is assessed by comparing x(si) with x̂(si)

for i = 1, 2, ..., N according to the validation measures presented in section

2.5.1. It can be shown that the cross-validation (CV) error estimate is an

almost unbiased estimate of the true error expected on an independent test

set [62].

2.5.1 Validation measures

The spatial model’s performance is evaluated using certain statistical mea-

sures. These measures include the following: the mean error (bias) (ME), the

mean absolute error (MAE), the root mean square error (RMSE), Pearson’s

correlation coefficient (%) and Spearman’s (rank) correlation coefficient (rS).

For the following measures, x̂(si) and x(si) are the estimated (based on

the N − 1 data that do not include point si) and true value of the field at

point si. The quantity x(si) denotes the spatial average of the data and x̂(si)

the spatial average of the estimates [1].
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Mean error (bias) (ME)

The mean error is calculated as follows:

ME =
1

N

N∑
i=1

[x̂(si)− x(si)] . (2.37)

This measure calculates the bias of the predictor. Particularly high posi-

tive or negative values of this error imply a systematic error that leads to

inaccuracy.

Mean absolute error (MAE)

The mean absolute error is calculated as follows:

MAE =
1

N

N∑
i=1

|x̂(si)− x(si)| . (2.38)

This measure calculates the accuracy and precision of the predictor. All

individual differences are weighted equally by MAE.

Root mean square error (RMSE)

The root mean square error is calculated as follows:

RMSE =

√√√√ 1

N

N∑
i=1

[x̂(si)− x(si)]
2. (2.39)

RMSE also calculates the accuracy and precision of the predictor. Since

the errors are squared before they are averaged, the RMSE gives a higher

weight to large errors. As such, the RMSE is preferable to MAE when large

errors are particularly undesirable.

Pearson’s correlation coefficient (%)

The correlation coefficient, %, is the statistic that is most commonly used to

summarize the relationship between two variables. The formula for Pearson’s
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linear correlation coefficient % is [35]

%̄X,X̂ =

∑N
i=1

[
x(si)− x(si)

][
x̂(si)− x̂(si)

]
√∑N

i=1

[
x(si)− x(si)

]2
√∑N

i=1

[
x̂(si)− x̂(si)

]2
. (2.40)

The correlation coefficient % provides a measure of the linear relationship

between two variables. This relation can best be illustrated in terms of a

scatterplot. If % = +1, the scatterplot is a straight line with a positive

slope; if ρ = −1, the scatterplot is a straight line with a negative slope.

For |%| < 1 the scatterplot appears as a cloud of points that becomes more

diffuse as |%| decreases from 1 to 0. The value of ρ is often a good indicator

of how successful a linear prediction one variable from the other with a linear

equation would be [1, 35].

Spearman (rank) correlation coefficient (rS)

If the relationship between two variables is not linear, the correlation co-

efficient % may prove to be a poor summary statistic. Thus, it is useful

to supplement the linear correlation coefficient with another measure of the

strength of the relationship, the rank correlation coefficient. To calculate the

rank correlation coefficient, equation (2.40) is applied to the ranks of the data

values rather than to the original sample values as shown in equation (2.41).

rS = 1−
∑N

i=1(Rxi −Rx̂i)
2

N(N2 − 1)
, (2.41)

where Rxi is the rank of xi among all the other x values. The rank is calcu-

lated by sorting the x values in ascending order; the rank of a given value is

equal to its order of appearance in the sorted list.

Unlike the traditional correlation coefficient, the rank correlation coeffi-

cient is not strongly influenced by extreme pairs. Large differences between

the two may be due to the location of extreme pairs on the scatterplot. Dif-

ferences between % and rS may also reveal that although the variables are

correlated, their relation is not linear [1, 35].
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2.6 Coal mining terms

In this section, the mining terms used in this thesis are explained briefly.

Coal is a combustible black or brownish-black mineral primarily used as fuel

for power stations. Coal forms when dead plant matter through lengthy

biological and geological processes is converted into peat, which in turn is

converted into lignite. As millions of years pass more chemical and physical

changes occur and lignite increases in maturity. It is metamorphosed to sub-

bituminous coal, after that to bituminous coal, and lastly anthracite, the last

of the classifications used when the coal has reached ultimate maturation

bibliografia.

Most coal mines are surface mines. The depth at which mining stops,

either because the ore is exhausted or because mining becomes unprofitable,

is called pit bottom elevation [34].

Long term mine planning refers to exploitation planning for long periods,

usually over five years, such as the planning of a large mine sector. Medium

term or mid term mine planning refers to shorter periods of time, from six

months up to five years. Continuous mining methods involve equipment

such as bucket wheel excavators and conveyor belts which allow continu-

ous extraction and transport of the ore. Non-continuous or cyclic mining

methods imply asynchronous extraction and transportation of the ore.

Waste is the earth or rock that needs to be extracted, in spite of its

zero economic value, to expose the valuable product. Waste is classified as

overburden if it lies on top of the coal (or other mined product), or interbur-

den if it lies between ore seams in multiseam mines. Many coal mines are

multiseam mines [34].

Lower calorific value (LCV) is the total energy released as heat when

coal undergoes complete combustion with oxygen under standard conditions

subtracting the energy required to vaporize the water content. LCV depends

on several quality parameters (ash content, water content, volatile material

content, etc.) and usually exhibits intense variability within the coal de-

posit [51].

Lignite is lower quality coal in terms of ash content and LCV. There are

no universal criteria in the coal mining industry for geologically classifying

a seam as lignite [4]. For Mavropigi mine, a seam is characterized as lignite
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if its LCV exceeds 900 kcal/kg and the sum of CO2 and ash content is less

than 50% [52]. The coal of Powder River Basin has been characterized as

such by the USGS [26].

The lignite energy content per unit of surface area (LEC area density in

Gcal/m2), in this research is defined as follows

LEC(sp) = ρl

1∑
i=N(sp)

diEi, (2.42)

where Ei is the LCV (Gcal/t) of lignite seam i, ρl is the lignite density (1.2

t/m3), and di is the thickness of seam i (m).

2.6.1 Existing economic indices

Engineers are faced with the problem of optimizing ore production under

specified economic and environmental constraints. The mining industry uses

several indices that assist in this task. A short synopsis of common existing

indices is presented to show the state of the art that this research seeks to

supplement.

Discounted cash flow

Profitability is commonly measured by means of the discounted cash flow

method (DCF) which is based on the equation

NPV = −C0 +
T∑
i=1

Qi(Pi − Ci)
(1 + r)T

, i = 1, . . . , T. (2.43)

In the above, NPV is the net present value of the mine, C0 is the invest-

ment cost, T is the expected life of the mine in years, i the time period in

years, Qi is the annual production, Pi is the price per unit ton, Ci is the

production cost per unit ton, and r incorporates discount effects and risk

factors [34, p. 51], [11]. DCF analysis is a simple method for estimating

economic profit that provides a single value for the entire mine, but it does

not resolve variations across the mine or between the interchanging ore seams

and waste.
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Profitability index

The profitability index (PIR), refers to the revenue to investment ratio and

it is defined by

PIR =
PV

C0

, (2.44)

where PV is the present value of the mine. A value of PIR > 1 denotes a

potentially profitable investment, whereas PIR < 1 implies that the invest-

ment required exceeds the expected payoff. This index also lacks the ability

to account for different mine areas and individual seams [40].

Stripping ratio

The stripping ratio (R) is determined by the volume of waste that needs

to be disposed to mine a ton of ore [34, p. 389]. The marginal stripping

ratio is the maximum allowable stripping ratio beyond which the operation

becomes unprofitable. Pit limits can be defined by comparing the stripping

ratio for each part of the deposit to the marginal stripping ratio. Hence, the

stripping ratio incorporates spatial variability, but it does not account for

the profitability of individual seams.

2.6.2 pit limit optimization

Mining is a complex operation, with respect to both technological and plan-

ning aspects. In open-pit mining, blocks are extracted from the ground in

order to take the coal or other ore contained in them. This process leaves an

increasingly deeper pit until the mining operation ends [34].

The open-pit design problem is to find an optimal ultimate contour of

the pit based on estimates of mining costs, the price of coal or other ore, and

physical constraints on mining precedence and maximal pit slope. A com-

mon method for pit limit optimization is the Lerchs-Grossman algorithm [34].

This method is based on block evaluation (taking into account revenue and

costs) and technical constraints such as the maximum allowed slope. The

algorithm evaluates all combinations of blocks in order to determine the opti-

mal pit. This method and similar ones evaluate blocks, not individual seams,

based on block expected revenue and costs. Thus, the application of such
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methods in multi-seam mines becomes complicated unless the profitability

of individual seams is taken into account during the profitability evaluation

of individual blocks.



Chapter 3

Spatial Profitability Index

3.1 Introduction

This chapter focuses on the development of new geostatistical tools for the

analysis of lignite energy resources. The Spatial Profitability Index (SPI)

is introduced as a novel tool for evaluating the profitability of individual

seams in open-pit multiseam mines in order to provide pit limit optimization

algorithms with spatial estimates based on economic criteria. Coal price fluc-

tuates significantly with time. For example, the price of coal used for power

generation was nearly halved between January 2011 and January 2016 [5].

We use spatial interpolation to estimate the energy content locally and con-

ditional simulations to quantify the uncertainty of the estimates. Using the

SPI, it is straightforward to investigate how changes in economic factors im-

pact the estimated reserves and to better assess the costs and revenues of

different exploitation scenarios.

The SPI allows evaluating the impact of changes in market prices that

could alter the profit expected from mining certain seams. It also incorpo-

rates costs due to environmental regulations that can reduce the profitability

of deep seams. The SPI also helps to more effectively design the final open

pit bottom elevation in different areas of the mine as the grid estimates for

the LEC density are based on economic and quality criteria, thus improv-

ing the data used by pit limit optimization algorithms for block-evaluation.

With regard to medium term mine planning, SPI analysis may suggest can-

51
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celling the exploitation of deep benches or extraction using lower capacity but

less costly non-continuous mining methods. We also derive a semi-empirical,

explicit but mine-specific, SPI equation that captures the relation between

changes of the estimated reserves and economic scenarios.

A case study of the application of SPI in the Mavropigi lignite deposit is

investigated in this chapter. Lignite is a carbon-based fuel, mostly used for

power generation; it is considered low-quality coal with low calorific value

and low volatile content. The world-wide lignite production in 2012 was

0.9 billion tonnes whereas 3% of the global power generation was lignite-

based [3, 4]. Since lignite is almost exclusively used for power generation,

the most important quality parameter of lignite is its lower calorific value

(LCV). Important quality characteristics of lignite include the ash content of

the lignite and its sulfur content. These substances produce hazardous and

potentially toxic byproducts, the treatment of which increases the cost of the

power generation. These quality characteristics can show significant variation

within a deposit and thus can significantly affect the profitability of sectors

and individual seams of the mine. Changing product prices or environmental

regulations over time complicate the estimation of which parts of the mine,

seams or sectors, can be mined at a profit.

Matlab 2010b was used for implementation of the algorithms presented

in this chapter. The matlab code created to calculate and implement the

SPI is included in the appendix.

3.1.1 Mavropigi lignite deposit

The Mavropigi mining field is located in the northern part of the west bound-

ary of Ptolemais mining area. The area of the mine covers approximately

11 km2. In the NW–SE direction, it extends over approximately 5 km from

the Ptolemais power station to the Komanos village and in the NE–SW di-

rection from the former opencast mines (North Field and Komanos) to the

mountain front where pre-Tertiary slates and limestone seams occur near the

surface. The mining field includes administrative buildings of the opencast

mines, industrial facilities and parts of the Ptolemais power station. Inside

the planned mining area, the Mavropigi village is located in the southwest

of the field.
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From the beginning of the mining operations at the end of 2002 until

the end of 2014, 63 Mt of lignite were produced. The lignite reserves have

a mean LCV of 1.412 Gcal/t. The annual lignite production of the mine is

approximately 8 Mt.

The Mavropigi deposit has a multiseam structure. Besides a zone of

thin lignite–bearing strata in the south, the thickness of the lignite–bearing

series grows towards the northwest, where it mostly ranges between 50 and

150 m. The overlying strata thickness ranges mostly between 10 and 50 m.

The mining field is separated by NW–SE striking faults into individual fault

blocks. Towards the mountain front it is limited by one or several faults with

dips in the direction of the mine. Furthermore, sandy–gravelly seams of the

overburden strata locally incorporate consolidated seams [52, 51].

3.2 Spatial profitability index

This section introduces and explains the spatial profitability index (SPI). In

an open-pit multiseam mine the profitability of deep ore seams that are sep-

arated by large interburden waste or lie at the bottom of the deposit depend

on the overlying and the underlying seams (if the latter exist). If two lig-

nite seams are separated by a large seam of interburden, the exploitation

of the lower seam may not be profitable. The removal of thick interbur-

den seams may be economically feasible if more than one lignite seams are

found below the interburden. A higher market price of the produced min-

eral could change which seams could be mined at a profit and consequently

the estimated reserves. In contrast, updated environmental regulations or

initially unforeseen technical complications could increase costs thus making

unprofitable the exploitation of deeper seams.

The SPI aims to provide a quantitative tool for investigating the impact of

different choices and external changes on the profitability of individual seams.

Using the SPI, the change of estimated reserves according to market price and

cost fluctuations can be easily investigated. This knowledge helps engineers

to plan the mine and design the pit bottom elevation more effectively. It can

also be used to quickly re-evaluate the reserves or the pit-bottom elevation

of different mine sectors as economic conditions change. The SPI can also
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be used to reevaluate medium-term exploitation plans and select specific

subsectors according to the expected product demand, or to reevaluate the

profitability of lower benches in light of new economic conditions.

3.2.1 Definition

Let the vector s = (sp, z) denote the position vector within the mine, where

z is the depth along the vertical dimension and sp = (x, y) the map location

of the drill hole. Let i = 1, . . . , N(sp) number the lignite seams along a drill

hole at sp and Λi denote the specific seam; i = 1 corresponds to the top

seam. In general, Λi at sp may refer to a different seam than Λi at sq due to

geological discontinuities.

The spatial profitability index (SPI) is denoted by δi(sp) for Λi, i > 1. At

sp, the SPI is defined by

δi(sp) =

i∑
j=N ′(sp)

Pj(sp)

i∑
j=N ′(sp)

Cj(sp)

, i = N ′(sp), . . . , 1, (3.1)

where
i∑

j=N ′(sp)

Pj(sp) is the expected revenue per unit area from the exploita-

tion of Λi and all underlying seams that could be mined at a profit, whereas
i∑

j=N ′(sp)

Cj(sp) is the exploitation cost per unit area for the investigated seam

Λi and the underlying seams that could be mined at a profit. N ′(sp) is the

number of seams that can be exploited at a profit in location sp.

To investigate the profitability of the first seam, certain costs should be

included in C1 (costs for the first seam) like the cost of purchasing the land,

equipment setup costs, defoliating the area etc.

The extraction of a lignite seam is considered economically profitable if

the SPI exceeds a threshold value δc. As such, δc is the marginal SPI value at

which extraction of a seam is considered profitable. Typically δc = 1, except

if the threshold accounts for a risk factor for unforeseen and unaccounted

costs. For example, to account for 10% unforeseen costs, δc could be set to
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δc = 1.1, thus requiring expected revenues 10% higher than the expected

costs for a seam to be considered profitable.

The expected revenue per unit area for seam Λj is given by

Pj(sp) = T Ej(sp), (3.2)

where T is the energy price per Gcal (e/Gcal), and Ej(sp) is the energy

content per unit area (Gcal/m2) for the seam Λj.

Similarly, the costs Cj(sp) are given by

Cj(sp) = klj Lj(sp) + kwjWj(sp) + Cej(sp), (3.3)

where Lj(sp) is the weight per unit area (t/m2) of Λj, Wj(sp) is the weight

per unit area (t/m2) of the overburden —only of the single waste seam on

top of Λj(sp), not overburden of the mine— klj is the cost (e/t) for the

extraction, transfer and storage of the lignite for seam Λj, kwj is the cost

(e/t) of the extraction and disposal of the single overburden seam of Λj, and

Cej accounts for additional costs for the entire seam (e.g., extra extraction

costs for a seam with pyrite). The coefficients klj, kwj could have values that

depend on the mine sector and the depth of Λj if needed. In this study, klj
and kwj are considered uniform within the same sector for simplicity, i.e.,

klj = kl and kwj = kw for the entire sector.

We define the extraction index as a binary function that selects seams

that could be mined at a profit, i.e., Ii(sp) = 1 for seams that can be mined

at a profit and Ii(sp) = 0 for waste or seams that can’t be mined at a

profit. The profitability index takes into account only the seams below Λi.

Nevertheless, seam Λi is not extracted if it is unprofitable to extract any of

the superjacent seams (Λj, j < i). The extraction index is used to address

this issue. Provided that Ii(sp) = 1, the profitability of the seam Λi at

location sp is determined by the SPI. The extraction index helps to evaluate

the total thickness of seams that can be mined at a profit for two-dimensional

spatial analysis as well as the estimation of reserves and seams that can’t be

mined at a profit for three-dimensional analysis and mine planning.
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SPI and extraction index calculation algorithm

The calculation of the SPI, δ, and the extraction index, I, per seam is given

by Algorithm 1. For a given drill hole at location sp the algorithm initially

sets the number of lignite seams N ′ that can be mined at a profit equal to

the deepest seam at this location, i.e., N(sp).

Algorithm 1 Calculation of the SPI and the extraction index for seams at
location sp. For brevity the location sp is not shown explicitly.

N ′ = N
for i = N ′, N ′ − 1, . . . , 1 do (Begin Loop A)

δi =
N ′∑
j=i

Pj

/N ′∑
j=i

Ci

if δi < δc then
N ′ = i− 1
for k = i, i+ 1, . . . , N do (Begin Loop B)

Ik = 0
end for (Loop B)

else if δi ≥ 1 then
Ii = 1

end if
end for (Loop A)

The calculation proceeds sequentially to higher seams, up to the top seam.

For a given seam, if δ > δc, the respective extraction index is set to one;

otherwise, it is set to zero for the current and all the underlying seams. In

the latter case, the deepest seam that could potentially be mined at a profit

becomes the one above the current seam. According to Algorithm 1, a seam

with δ > δc is not extracted if an overlying seam has δ < δc. Then, the

extraction index is set to zero for both seams. This condition is fulfilled if

the waste removal costs exceed the expected revenue from both seams. For

example, assume that the seam ΛN has an energy content of 10 Gcal/m2

and is found just five meters below the superimposed seam ΛN−1 which has

an energy content of 8 Gcal/m2. If seam ΛN−1 is buried under 100 m of

interburden, the SPI may suggest that it is unprofitable to extract 105 m of

interburden to exploit 18 Gcal/m2.
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Example The schematic of Fig. 3.1 illustrates the evaluation of the SPI

and the extraction index for a lignite drill hole that crosses three seams. The

energy content per seam is given in Table 3.1 and the economic parameters

in Table 3.2.

E1 E2 E3

9 Gcal/m2 16 Gcal/m2 5 Gcal/m2

Table 3.1: Hypothetical energy content per lignite seam

T kl kw ρl ρw δc Ce1

7 e/Gcal 2.1 e/t 2.5 e/m3 1.2 t/m3 1.8 t/m3 1.1 4 e/m2

Table 3.2: Hypothetical economic parameters of the three lignite seams
shown.

The algorithm starts at Λ3 by setting N ′ = 3. The expected revenue is

P3 = T · E3 = 35 e/m2 and the expected cost C3 = (kl · L3 + kw ·W3) =

106.9 e/m2. The respective SPI is δ3 = 0.33 < 1.1 and thus I3=0. Since

Λ3 is deemed unprofitable, we set N ′ = 2 and calculate the indices for Λ2.

This leads to P2 = 112e/m2 and C2 = 32.0e/m2. Hence, the SPI for Λ2 is

δ2 = 3.5 > 1.1 leading to I2=1.

For the first seam, we have P1 = 63e/m2 and C1 = 91.5e/m2. Finally

the indices are calculated for the first seam as δ1 = P1+P2

C1+C2
= 1.4 > 1.1 leading

to I1=1. In the case of I1 = 0, then the whole drill-hole would be unprof-

itable indicating that the mine should not extend there if possible.

3.2.2 SPI and mid-term mine planning

Using the procedure described above, the SPI can be calculated for each

seam in a drill-hole. The product prices and mine costs are expected to

fluctuate significantly during the mine’s lifetime [5]. Similarly, the waste

extraction and disposal cost may depend on the specific sector, particularly

in a large mine or a mine with varying sulfur content at certain sectors. As

such, knowing the SPI for each seam assists in re-evaluating whether it is
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Figure 3.1: Schematic of drill-hole in multiseam lignite mine. The elevation
is measured in terms of meters above sea level.

profitable to mine the investigated seam or not, under different economic

situations, even over a period of three to five years.

Different values of the coefficients kw and kl of equation (3.3) can be

evaluated for each sector of the mine to reflect changes in transportation

costs and/or in the depth of the lignite-bearing strata or presence of pyrite

in specific sectors.

Additionally, a range of values for the parameters kw, kl, the coefficient

Ce that reflects other seam costs, or for the lignite price T could be investi-

gated during mine planning. Such an effort could help to quickly re-evaluate

the pit limit and the reserves held in a sector, or even the profit expected

from the investigated sector in the three-year plan, under different conditions

or unpredicted costs.

For example, to take into account a possible increase in waste disposal



3.2. SPATIAL PROFITABILITY INDEX 59

costs, different values of kw could be investigated for a specific sector of the

mine that will be exploited within three years. These scenarios could locate

areas near deposit outcrops which would not be profitable to mine in case of

a waste disposal cost increase, or product price drop. Further investigation

would suggest whether these areas should be mined with non-continuous

methods or even whether mining the lower seams should be avoided.

3.2.3 Supplementing thresholds for SPI

As defined in section 3.2.1, the SPI is a ratio of revenue to costs or δi = Ri/Ci
where Ri and Ci respectively are revenue and costs. The Profit Pi from

mining seam Λi and all profitable seams below it is Pi = Ri − Ci. Hence, it

is easy to prove [51] that

Pi(sp) = Ri(sp)
δi(sp)− 1

δi(sp)
, (3.4)

and

Ci(sp) =
Ri(sp)

δi(sp)
. (3.5)

Critical threshold δc has been defined in section 3.2.1 as the marginal

value of SPI for a seam to be considered profitable. Instead of using the

critical threshold δc, it is possible to use the SPI with a minimum profit Pc
(e/Gcal) threshold or maximum cost Cc (e/Gcal) threshold.

A maximum cost threshold Cc = T where T (e/Gcal) is the lignite price,

means that the cost to extract each unit of LEC (Gcal) must be less than the

price T of each such unit, i.e. Cc = T is equivalent with δc = 1. Similarly,

if the minimum profit threshold is Pc = 0, the profit to extract each unit of

LEC must be positive which is equivalent with δc = 1. Thus we can calculate

the supplemental thresholds if we substitute revenue Ri in equations (3.4)

and (3.5) with the lignite price T as shown in equations (3.6) and (3.7)

Cc =
T

δc
, (3.6)



60 CHAPTER 3. SPATIAL PROFITABILITY INDEX

Pc = T
δc − 1

δc
. (3.7)

Using the SPI with the minimum profit threshold accepts seams with

estimated profit per Gcal of energy equal to or greater than the minimum

profit threshold Pc or

Pi(sp) ≥ Pc. (3.8)

Using the SPI with the maximum cost threshold accepts seams with es-

timated cost per Gcal of energy equal to or less than the maximum cost

threshold Cc or

Ci(sp) ≤ Cc. (3.9)

A minimum zero profit or a maximum cost equal to the lignite price T

are equivalent with δc = 1. As such, the same seams would be rejected as not

profitable for mining. Greater minimum profit or less maximum cost both

are equivalent with δc > 1.

3.3 Data and exploratory analysis

The data used in this part of the research are from the Mavropigi lignite

mine in Greece. The lignite reserves of Greece are estimated at 4.9 billion

tonnes, 3 billion of which are considered economically exploitable [4]. Most

deposits (2.6 billion tonnes) are located in the north of the country. To

date, only 30% of the total reserves have been extracted, and it is estimated

that the existing reserves will contribute to electric power generation for at

least 40 years. Lignite is supplied to seven power stations owned by the

Public Power Corporation (PPC), comprising 16 generating units with a

total installed capacity of 4 802 MW. Greek lignite deposits usually have an

average total depth of 150 to 200 m, and they typically comprise alternating

seams of lignite and waste [4].

The case study comprises 10 280 drill-hole core sample data from 341

vertical drill-holes provided by the PPC. For each lignite core segment the

data involve surface coordinates sp, starting and ending depth (above sea

level) z along the core sample, ash water-free content, and water content.
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The CO2 content is provided for 3 933 core samples (≈ 38.5% of all samples),

whereas the lower calorific value (LCV) is available for 4 416 core samples

(≈ 43.3%). Missing data for the LCV are estimated using the statistical

method of multiple linear regression [14]. Most of the 10 208 sampled lignite

cores were also analyzed for the determination of moisture [52, 51].

In this study, each drill-hole core sample is considered to contain lignite

if it has LCV value greater than 900 kcal/kg and combined ash and CO2

content less than 50%. Continuous lignite core-samples in the same drill-

hole are united in lignite seams. Between the lignite seams is the interburden

waste [52]. This method of identifying lignite seams and interburden differs

from the more complicated methodology used by PPC and doesn’t take into

account the technical limitations of the equipment [22]. The choice to use a

simplified method of seam classification was motivated by the differing fuel

quality specifications and equipment used by different power stations and

mining companies.

The minimum distance between nearest-neighbor drill holes varies from

22.5m to 610.1m with the average at 138.9m. The locations of the drill holes

and the mine surface limits are shown in Fig. 3.2. The map coordinates

(xi, yi) of the drill holes are normalized by subtracting the respective mean

and dividing by the standard deviation. The normalization is used to avoid

numerical instabilities due to very large distance values.

The mine of Mavropigi is divided in five sectors as shown in Fig. 3.2

according to exploitation plans made by the PPC. Each of these sectors

have individual values for the parameters of SPI of equation (3.3). The cost

parameters for each sector have been estimated by the PPC and are given

in Table 3.3. The estimation of the values takes into account the equipment,

the equipment’s distance from the belt conveyors, the sector’s distance from

the waste dump area, lignite storage yards and the pit bottom elevation as

given by the PPC. The precise estimation of these parameters is beyond the

scope of this thesis.

For all sectors it is assumed that lignite density is ρl = 1.2 t/m3 and

interburden density is ρw = 1.8 t/m3. The selling price of lignite is assumed

to be T = 15 e/Gcal in this thesis and critical threshold is set as δc = 1.1.

The calorific content of the Mavropigi mine is estimated using spatial in-
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Sector kl kw Ce1

e/t e/m3 e/m2

S1 2.3 2.6 4
S2 1.3 1.2 4
S3 2.4 2.8 4
S4 1.4 1.2 4
S5 2.2 2.6 4

Table 3.3: Economic parameters of the Mavropigi mine sectors. The selling
price of lignite is T = 15 e/Gcal and the assumed critical threshold is δc =
1.1.

terpolation (based on regression kriging) and conditional simulations (based

on CDKC). More precisely, we estimate the lignite energy content per unit

of surface area (LEC area density in Gcal/m2), which is defined as follows

LEC(sp) = ρl

1∑
i=N(sp)

diEi, (3.10)

where Ei is the LCV (Gcal/t) of lignite seam i, ρl is the lignite density (1.2

t/m3), and di is the thickness of seam i (m).

The calculations are performed with two data sets: the first includes all

lignite seams, whereas the second contains only seams that can be mined at

a profit, as determined by means of the extraction index I and the SPI as

explained in section 3.2.1. Both data sets comprise values from the 341 drill

holes with LCV information. Missing LCV values from the core samples are

filled in by means of multiple linear regression [52].

The basic statistics of both data sets are given in Table 3.4. SPI-corrected

data are based on a threshold δc = 1.1. The SPI corrected data have lower

LEC area density because the area density depends on the summary of the

lignite seams below the investigated area unit as shown in equation (3.10).

As less profitable deeper seams are subtracted from the drill-hole, the number

of seams N ′(sp) that contribute to the LEC area density becomes lower. The

SPI ensures that the revenue lost by rejecting those deep seams is less than

the cost to mine them. As such, while the revenue decreases, the mining cost

decreases more for a net profit increase.
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Figure 3.2: Positions of drill holes and mine boundaries (blue online) in
Mavropigi mine and the lines dividing the sectors (red lines)

Na balw regression

Statistics LEC area density Corrected LEC area density
Mean (Gcal/m2) 39.9 37.8

Median (Gcal/m2) 35.0 33.7
Standard deviation (Gcal/m2) 27.2 28.6

Minimum (Gcal/m2) 2.6 0
Maximum (Gcal/m2) 122.6 122.6

Skewness 0.7 0.63
Sample size 341 341

Table 3.4: Statistics of lignite energy content (LEC) area density and SPI-
corrected LEC area density (Gcal/m2) for Mavropigi mine. SPI-corrected
data are based on a threshold δc = 1.1.
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3.3.1 Spatial data analysis

Each set of data was fit with a linear trend model. The resulting fluctu-

ations were investigated for geometric anisotropy. In the absence of strong

anisotropy the isotropic variograms and the variogram models were estimated

for both detrended sets. The estimation method of regression kriging was

applied to estimate the reserves.

Trend model

The following linear trend surface is fitted to both data sets

m
LEC

(sp,i) = a0 + a1 x̃i + a2 ỹi, i = 1, . . . , N, (3.11)

where m
LEC

(sp,i) is the mean LEC area density for drill-hole i, N = 341 is

the total number of drill-holes in the area of the mine, and x̃i, ỹi are the

normalized coordinates. Table 3.5 lists the optimal parameters of the trend

model and the Pearson correlation coefficient (R) between the trend and the

data. As shown in 3.5, the linear trend model fits both data sets well although

the unmodified data set performs slightly better than the SPI corrected data.

The difference in the correlation coefficient can be explained because the SPI

removes deeper seams from the drill holes altering the spatial distribution of

LEC area density.

Parameter LEC values SPI-corrected LEC values
a0 (Gcal/m2) 39.94 38.60
a1 (Gcal/m2) −18.57 −17.62
a2 (Gcal/m2) 0.73 1.80

R 0.70 0.66

Table 3.5: Optimal parameter values for the linear trend model (3.11). R is
the Pearson correlation coefficient between the data and the trend.

Anisotropy estimation

Both sets of detrended data were investigated for geometric anisotropy with

the maximum likelihood estimation method (MLE) to estimate the anisotropic

ratio and the direction of the anisotropy.
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At first directional experimental variograms with tolerance π/4 rad were

estimated in four directions: 0, π/4, π/2, 3π/4. The variograms for the two

data sets are shown in figure 3.3. The directional variograms do not suggest

the presence of strong anisotropy.
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Figure 3.3: Experimental directional variograms (tolerance π/4 rad) at the
directions 0, π/4, π/2, 3π/4 for a) the PPC data and b) the SPI corrected
data.

The MLE was performed on the exponential anisotropic model of equa-

tion (3.12) to estimate the parameter vector θ = {C0 , ξx, ξy, φ} that would
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maximize the likelihood L(θ; γ(r))

γ
X

(r) = σ2
X

[
1− e

√
( rxξx )

2
+
(
ry
ξy

)2
+
rx·ry
ξxξy

cos(φ)

]
. (3.12)

The nugget effect is C0 , the correlation length towards the horizontal x-

axis is ξx, towards the vertical y-axis is ξy and the direction of anisotropy is

φ. The ratio

ρ =
ξx
ξy

(3.13)

is the anisotropic ratio. Table 3.6 shows the estimated anisotropic ratio

and the direction of the anisotropy.

Data set ρ φ
LEC values 1.06 1.44

SPI-corrected LEC values 1.03 1.51

Table 3.6: Anisotropic ratio for both detrended data sets estimated with
MLE method. ρ is the anisotropic ratio estimated with MLE and φ is the
direction of the anisotropy in radians.

The MLE results are in agreement with investigation of the directional

empirical variograms with a tolerance of π/4. It is evident that there’s no

strong anisotropy in either set and they can be considered isotropic.

Variogram analysis

The omnidirectional variograms of the LEC area density for both datasets

were estimated in the absence of strong anisotropy. The empirical variograms

are fitted to the Spartan model of equation (2.10) with nugget effect using

the weighted least squares (WLS) method [14, pp. 114-116]. In WLS the

objective function S is equal to the sum of the squared differences between

the empirical and model variograms, weighted by the number of pairs used

at the respective lag as shown in equation (3.14)

S = ni

N∑
i=1

(γ(si)− γ̂(si))
2 , i = 1, ..., N, (3.14)
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where N is the total number of lags (25 in our case), γ(si) is the value of

the experimental variogram in distance si, γ̂(si) is the value of the variogram

model at distance si, ni is the number of pairs in lag i.

The WLS emphasizes empirical variogram values that are based on larger

number of distance pairs. The resulting variograms (empirical and theoret-

ical) are in good agreement as shown in Fig. 3.4. The optimal Spartan

variogram parameters are listed in Table 3.7.
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Figure 3.4: Experimental (markers) and optimal SSRF (lines) variogram
models for the two LEC area density datasets. The horizontal axis repre-
sents normalized distances. The function γin(r) (crosses for the empirical
variogram and dotted line for the SSRF model) corresponds to the SPI-
corrected LEC area density. whereas γPPC(r) (filled circles for the empirical
variogram and dash-dot lines for the SSRF model) corresponds to the LEC
area density based on the mine’s pit bottom elevation as determined by PPC.
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SSRF parameters γPPC(r) γSPI(r)
η0 (Gcal/m2)2 1.57 · 104 9.49 · 103

η1 2.00 −0.03
ξ 1.73 0.93

C0 (Gcal/m2)2 93.46 100.12

Table 3.7: Optimal parameters of the SSRF variogram models for LEC area
density (γPPC(r)) and SPI-corrected LEC area density (γSPI(r)) data. The
estimation of parameters was based on weighted least squares. The length
parameter ξ is non-dimensional because it is expressed in normalized coor-
dinates.

3.4 Regression kriging reserves estimation

The interpolation performance of the spatial models constructed in Sec-

tion 3.3.1 is tested by means of cross-validation analysis. Then, regression

kriging is used to generate maps of energy content and to estimate the total

energy content. In these calculations both the primary and the SPI-corrected

data are used. The uncertainty of the estimated energy content is investi-

gated using conditional simulation.

3.4.1 Cross-validation analysis of the spatial model

The method of leave-one-out cross-validation, described in Section 2.5 is

used to measure the performance of spatial models with respect to interpo-

lation [18]. In this method, we remove one of the LEC area density values

at a time, and we use regression kriging with the optimal SSRF variogram

model to estimate the missing value. This procedure is repeated for all the

sample points, and the estimates are finally compared with the respective

measurements at the drill holes. Common validation measures are listed in

Table 3.8. The mean error measures the bias of the estimates. The mean

absolute error and the root mean square error measure the overall deviation

between the estimates and the measured values. Pearson’s correlation coef-

ficient % is a measure of linear relation between the estimates and the true

values. For nonlinear dependence, Spearman’s ranked correlation coefficient

rS and Kendall’s τ are also used.

The results of Table 3.8 show that kriging methods perform well for both
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Measure Model 1 Model 2
% 0.86 0.84
rS 0.86 0.84
τ 0.69 0.66

ME −0.19 −0.19
MAE 9.54 10.54

MaxAE 62.67 62.65
RMSE 13.97 15.28

Table 3.8: Validation measures for regression kriging. Model 1 refers to
the original data with SSRF variogram and Model 2 to SPI-corrected data
with SSRF variogram model. % is Pearson’s correlation coefficient, rS is
Spearman’s correlation coefficient, τ is Kendall’s correlation coefficient, ME
is the mean error (Gcal/m2), MAE is the mean absolute error (Gcal/m2),
MaxAE is the maximum absolute error (Gcal/m2) and RMSE is the root
mean square error (Gcal/m2).

data sets giving accurate spatial predictions. Kriging on the SPI-corrected

data gives slightly less accurate predictions according to LOOCV validation

measures. This is caused by the removal of deeper seems by the SPI that

changes the value distribution of the data.

3.4.2 Estimation of the total energy content

To visualize the distribution of energy content in the mine, we interpolate the

drill hole data by means of regression kriging and the spatial model defined in

Section 3.3.1. The interpolation grid consists of 232 × 245 rectangular cells

with size 19.5 m × 22.5 m (East-West × South-East). The generated maps of

LEC area density and kriging error shown in Figs. 3.5a and 3.5b respectively.

The map of LEC area density exhibits higher values in the northwest section

of the mine and considerably lower values in the southeast and the northern

tip of the mine. The uncertainty of the estimates, measured by the kriging

error standard deviation, is inversely proportional to the sampling density.

The northern tip and the southeastern end of the mine have relatively higher

uncertainty than other areas.

The LEC area density prediction for each kriging cell is based on the

drill-hole data evaluated by the SPI in order to determine their profitability.
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As such, the LEC area density map could be utilized by pit-limit optimiza-

tion algorithms, such as the Lerchs and Grossman algorithm [34], to better

evaluate the profitability of the blocks selected by the algorithm.

In order to estimate the total energy content, we use a coarser cell size

of 140.6 m × 140.2 m. This choice is guided by the mean distance between

neighboring drill holes which is 139 m. Each grid cell has a specified area A,

in the case of our grid A = 19 712m2, and an estimated value X̂ for the LEC

area density. To estimate the total energy content of the entire mine or a

select sector, it is straightforward to add the energy content of the cells that

comprise it, as shown in equation (3.15)

LEC =
N∑
i=1

AX̂i, (3.15)

where N is the number of cells in the area of interest.

Thus, the energy content of the Mavropigi mine based on geological lignite

data and regression kriging is estimated at 353 Pcal (353 · 109 Gcal). The

energy content based on the SPI-corrected data, drops to 346 Pcal. Fig. 3.5c

shows the LEC area density difference due to the SPI correction. This map

identifies specific areas of the mine where application of the SPI has more

impact. In table 3.9, the LEC for each individual sector is given for both

datasets.

Sector LECPPC LECSPI

Pcal Pcal
Sector 1 141 140
Sector 2 26 26
Sector 3 84 82
Sector 4 39 39
Sector 5 64 59

Table 3.9: Lignite energy content for each sector of Mavropigi mine for the
original data and the SPI corrected data.
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(a) (b)

(c)

Figure 3.5: Regression kriging interpolation maps using orthogonal grid cells
of dimensions 19.5 m × 22.5 m. (a) Map of LEC area density in Mavropogi
mine based on geological lignite data. (b) Map of the kriging error standard
deviation. (c) Difference between LEC area density estimates based on the
original versus the SPI-corrected data.
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Moments & Quantiles Dataset 1 Dataset 2

X̄ (Pcal) 353 346
σX (Pcal) 19.0 19.9
x5% (Pcal) 310 300
x95% (Pcal) 397 390

Table 3.10: Simulation statistics. Dataset 1 corresponds to data without use
of the SPI while dataset 2 are the data corrected by the SPI. The following
symbols are used: X: average energy content; σX ; standard deviation of
energy content; x5%: 5% percentile; x95%: 95% percentile

3.4.3 Assessment of energy content uncertainty

To assess the uncertainty of the energy content reserves and to provide re-

spective confidence levels, we use the CDKC simulation method described in

section 2.4. Five thousand constrained simulations are generated from the

joint Gaussian distribution using (i) the original (without SPI correction)

data and (ii) SPI-corrected data for conditioning. Further information about

the parameters of the SSRF model is presented in chapter 5.6.

Table 3.10 lists the simulation statistics for both datasets. As evidenced in

Table 3.10, the 90% confidence interval of the LEC without SPI correction is

estimated at 310-397 Pcal. Similarly, the respective LEC confidence interval

after SPI correction is estimated between 300-390 Pcal. Figure 3.6 shows the

histograms of LEC obtained from the simulations. The histograms involve

all realizations giving LEC values between the 5% and 95% percentiles.

3.5 Empirical equation for reserves correc-

tion

The SPI determines if the exploitation of a seam is profitable in comparison

with the threshold δc which is typically equal to one. A threshold value of

δc = 1 means that the mining of a seam at this location to be considered

profitable, its expected revenue must be at least equal to the expected costs to

mine it according to revenue and cost equations (3.2) and (3.3). Since the SPI

is a revenue to cost ratio, changes in the estimates of reserves are identical
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Figure 3.6: Histograms of energy content (Pcal) based on 5 000 Monte Carlo
conditional simulations for (a) the original dataset and (b) the SPI-corrected
data. LEC values between the 5% and 95% percentile based on the 5000
simulations are shown.

if the revenue per Gcal decreases by 20% or if the mining costs increase

by 25% (1/1.25 = 0.8) due to price changes, environmental or technical

challenges, etc. since in both cases the same seams would be rejected as

non-profitable. The impact of financial conditions on the profitable energy

reserves can equivalently be investigated by directly evaluating the economic

factors or by means of equivalent changes in the threshold δc. For example,

δc = 1.25 represents an increase of the mining costs by 25% or a decrease

of the revenue by 20%. Thus, using the SPI with a critical threshold of

δc = 1.25 is equivalent to re-evaluating the SPI with the new cost-revenue

figures T ′ = 0.8 T (or k′w = 1.25 kw, k
′
l = 1.25 kl) and keeping δ′c = 1.

To investigate the dependence of LEC on δc, we generate nineteen dif-

ferent estimates of the profitable reserves with δc ranging between 0.35 and

3.05. The difference of the estimated reserves (ERD) with SPI compared

to the estimated energy reserves without applying the SPI, is fitted to the

sigmoid function defined in equation (3.16)

ERD =
b1

1 + e−b2 (δc−b3)
. (3.16)

In equation (3.16), ERD is the estimated reserves difference of the entire

mine or sector investigated, δc is the critical threshold, b1 is 100% and b2, b3

are dimensionless shape parameters. The function of equation (3.16) is just
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one of the possible sigmoid functions that could be fit in the ERD results.

Since the bounds of the sectors are known, it is possible to estimate the

ERD for each specific sector or the entire mine. The difference (in %) of

the estimated reserves (ERD) compared to the estimated 354 Pcal of energy

reserves is shown in Fig. 3.7a. In Fig. 3.7b the ERD of Sector 3 is shown.

For the investigated sector, the lignine seams that are profitable to be mined

decrease rapidly as δc increases. An increase of δc to δc = 3 could render the

whole sector unprofitable.

As an example, consider a potential waste dump failure that necessitated

the deposition of waste material from sector 3 several kilometers further

than initially planned. Assume that this extra distance would increase the

sector’s cost coefficient kw, that addresses the cost of removing and dumping

the waste, by 4 e/t. Such cost increase would raise δc to δc = 1.9. In this

hypothetical scenario, nearly 40% of the sector’s coal would be in seams that

would be unprofitable to mine. It should then be considered in medium term

planning whether it would be preferable and technically feasible to raise the

pit bottom elevation of the mine abandoning the deeper seams if the waste

dump failure could not be addressed.

The ERD model parameters for the Mavropigi mine and sector 3 were

calculated using the WLS method [14]. The ERD model parameters for

the limits of the 90% confidence intervals are calculated using WLS based

on 2 000 simulations for each δc. The estimated profitable energy reserves

are then fitted with the empirical model (3.16) to determine the optimal

parameters b2, b3). The parameters are shown in Table 3.11. The scaling

parameter b1 is 100% because the percentile of the rejected energy content is

investigated. However, b1 could be set equal to the total LEC (353 Pcal for

the entire mine, 84 Pcal for sector 3) if the difference in Pcal is investigated.

As can be seen in figure 3.7, although the parameters of Table 3.11 are the

best fit for the equation (3.16) the resulting empirical function still doesn’t

fit well the reserves difference or the limits for low values of δc. However the

inaccuracy has small impact on the reserves difference as the errors are small

(less than 5% of total LEC) in absolute value.

The empirical model allows fast estimates of the ERD due to changes of

δc. For example, if the revenue per Gcal sold is reduced by a third (i.e., if the
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Figure 3.7: Estimated difference of energy reserves versus δc (markers) plot-
ted against the theoretical model of equation (3.16) (solid red line) for the
entire mine (100% is 353 Pcal) and for sector 3 (100% is 82 Pcal). The enve-
lope defining the 90% confidence interval based on 2 000 simulations is also
shown (green online).

price T is reduced by about 5 e per Gcal from 15 e/Gcal to 10 e/Gcal),

revenues are reduced to 2/3. Hence, a lignite seam is profitable under the new

conditions if it brings
1

2/3
= 1.5 more revenue (i.e., δc = 1.5) than initially

planned. Based on equation (3.16) the profitable reserves are reduced by

about 9% since δc ≈1.5.
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Using the ERD it easy to give an estimate of the reserves of the Mavropigi

mine depending on the price of the lignite instead of relying on reserves esti-

mates calculated with different prices. Hence, while the deposit of Mavropigi

is estimated to have reserves of 300 Pcal to 390 Pcal at the 90% confidence

level based on the prices suggested in Table 3.2, if the lignite price drops

to T=7.5 e/Gcal (δc = 2) the reserves of Mavropigi drop to 240 Pcal to

290 Pcal with 90% confidence.

Parameter Main Lower Upper Main(S3) Lower(S3) Upper(S3)
b1 100% 100% 100% 100% 100% 100%
b2 1.6 1.6 1.7 3.0 1.8 4.0
b3 2.8 3.1 2.6 2.1 3.0 1.7

Table 3.11: Parameters of the ERD sigmoid function model (3.16) used to
estimate changes in energy reserves. “Main” corresponds to the ERD pa-
rameters of the model based on the SPI-corrected dataset for the different
critical thresholds. “Lower” corresponds to the ERD parameters for the
function representing the lower limit of the 90% confidence interval, whereas
“Upper” corresponds to the ERD parameters for the upper limit. The param-
eters for Sector 3 are denoted as “Main(S3)”, “Lower(S3)” and “Upper(S3)”.
The confidence intervals are based on 2 000 Monte Carlo simulations at each
investigated critical threshold.

3.5.1 ERD and gross mine profit

As discussed in section 3.2.3, the definition of the SPI makes it possible to

exchange the critical threshold δc with the maximum cost threshold Cc or

the minimum profit threshold Pc using equations (3.6) and (3.7) respec-

tively. Figure 3.8 shows the ERD according to the 19 different maximum

cost thresholds Cc that correspond to the ERD of the 19 different δc used

in section 3.5, given lignite price T = 15 e/Gcal. As such the maximum

cost threshold Cc ranges between 4.9 e/Gcal (equivalent of δc = 3.05) and

42.9 e/Gcal (equivalent of δc = 0.35).

To fit a theoretical model to the 19 kriging estimates of section 3.5, first

we calculated the maximum cost threshold Cc that corresponds to each of

the 19 thresholds δc. As explained in section 3.2.3, Cc = T
δc

. Assuming lignite

price price T = 15 e/Gcal, it is straightforward to calculate the maximum



3.5. EMPIRICAL EQUATION FOR RESERVES CORRECTION 77

cost threshold Cc for each of the 19 SPI thresholds δc. The kriging estimates

of reserves remain unchanged since as explained in section 3.2.3 the same

seams would be rejected whether we use δc or its equivalent Cc.

The 19 kriging estimates estimated of section 3.5 were fitted with the

theoretical model of equation (3.17). Parameter b1 represents the total LEC

in the area investigated regardless of profitablity. Parameters b2, b3 are shape

parameters. The parameters of equation (3.17) for sector 3 and the entire

mine are shown in table 3.12. Equation (3.17) allows a fast but accurate

estimation for the reserves difference with different maximum cost thresholds

(ERDc).

ERDc(Cc) =
b1

2

[
1 + erf

(
T
Cc
− b3

b2

)]
(3.17)

Coefficient Mine Sector 3

b1 (Pcal) 353 82
b2 1.6 3.0
b3 2.8 2.1

Table 3.12: Coefficients of equation (3.17) for the entire Mavropigi mine and
for Sector 3.

The red line in figure 3.8 shows the LEC that would be rejected as un-

profitable if the maximum mining cost allowed for mining a seam decreases.

For example, if the maximum cost threshold was 10 e/Gcal, the red line in

figure 3.8 shows that the seams that would be rejected as not profitable to

mine, would hold approximately 30 Pcal of energy content. With increased

maximum mining cost Cc (more costly seams are permitted to be mined) a

greater part of the deposit is considered profitable to mine. Similarly with a

decrease of Cc, only the less costly seams fulfil the condition of C(s) ≤ Cc.

Thus, decreasing Cc results in a smaller part of the deposit considered prof-

itable to mine.

Consider a small increase in the maximum cost threshold from a starting

Cc = C (black vertical line in figure 3.9), equal to δC, to C ′c = C+δC (green

vertical line in figure 3.9). As such, a small part of the deposit δR, that

with maximum cost threshold Cc = C was considered unprofitable to mine,
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Figure 3.8: Estimated difference of energy reserves versus Cc (markers) plot-
ted against the theoretical model of equation (3.17) (solid line) for the whole
mine and Sector 3, assuming lignite price T = 15 e/Gcal.

becomes profitable (marginally) as the less strict threshold C ′c = C + δC

allows more costly seams to be considered reserves. This means that the

part of the reserves δR have a mining cost between C and C + δC since

they are only considered profitable if the maximum mining cost threshold

increases to C ′c = C + δC and they are not considered profitable if it is just

Cc = C, .

As δC → 0 so does δR → 0. Hence for a very small increase dC of the



3.5. EMPIRICAL EQUATION FOR RESERVES CORRECTION 79

Figure 3.9: Estimated difference δR in the reserves of the Mavropigi mine
with an increase of the maximum mining cost threshold from Cc = C to
C ′c = C + δC.

maximum cost threshold from Cc = C to C ′c = C + dC, a very small part

of the deposit dR will become profitable. Thus, this part dR of the deposit

has a mining cost between C and C + dC, which can be considered to be C

since dC → 0. Hence the red line in figure 3.9 corresponds to the marginal

cost threshold C at which the expected mining costs to mine this dR part of

the deposit equal the expected revenue from this dR, with the assumed cost

parameters kw, kl, Ce1 and lignite price T [51].

Since the ERDc line in Figure 3.9 corresponds to the mining costs, the

area below of the ERDc line corresponds to the total mining costs for all the

lignite seams from Mavropigi mine with given parameters kw, kl, Ce1 and T .

Equation (3.18) gives the total mining costs with the given cost parameters.

MC =

∫ +∞

0

dC · ERDc(Cc) (3.18)

In equation (3.18), MC is the total mining costs for extracting all the

lignite within the mine limits. Equation (3.18) can be used with the entire

mine or for individual sectors.
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In the case of the Mavropigi mine with assumed kw, kl, Ce1 and T ,

equation (3.18) gives MC=2.31 · 109 e for the entire mine and for sector 3,

MC=0.64 · 109 e. With the mining costs and total LEC estimated and given

the price per Gcal, it is straightforward to estimate the total gross profit

(MP) with equation (3.19) where MP does not include taxes, depreciation,

etc. as

MP = (R− ERDc)T −MC (3.19)

where R is the estimated total LEC of the lignite deposit.

In the case of Mavropigi mine equation (3.19) gives MP=3.0 · 109 e and

for sector 3, MP=0.58·109 e. It is noted that the actual profit is significantly

lower than the total gross profit, since the LEC of the lignite that fulfils the

quality criteria of the stations is less than R, and the taxation, depreciation

as well as other costs have not been taken into account. As an example, using

a tax rate of 20% on the profits and that about 75% of the lignite would have

the quality characteristics required to be sent to the stations, the profit from

Mavropigi mine is expected at 1.3 · 109 e.

3.6 SPI-based pit bottom elevation

In this section, the suggested changes to pit bottom elevation by using the SPI

will be presented. As explained in section 3.5, increasing the critical threshold

δc causes progressively shallower seams to be rejected by the extraction index.

Thus, higher values of δc raise the pit bottom elevation for seams that can

be mined at a profit.

Six different δc thresholds from the 19 investigated in section 3.5 are

presented to illustrate the progressive change in suggested pit bottom eleva-

tion. The scenarios selected have thresholds that range between δc = 0.35 to

δc = 2.6.

The maps in Fig. 3.10 show the suggested pit bottom elevation for the

different δc selected. The estimated bottom elevation does not incorporate

technical constraints reflecting slope restrictions and the presence of faults.

Parts of the mine that are rejected as holding no profitable lignite seams are
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in some cases in the interior of the mine area, not the borders, which would

complicate their exclusion. However, these maps can serve as a guideline to

quickly re-evaluate the profitability of lower benches in case of price changes.

Substantial changes to the pit bottom elevation based on the SPI-evaluated

seam profitability can be used to locate sectors that should be re-evaluated

using pit-limit optimization algorithms. For example, in the case of δc =

2.6 in Fig. 3.10f, large parts of sector 5 of Mavropigi are rejected as non-

profitable, suggesting a re-evaluation of pit-limits or even a reconsideration

of whether the sector should be mined.

The above maps can be used to assist in designing subsequent phases of

the exploitation in case of revenue and cost fluctuations during the course of

the mine’s life along with technical considerations. For example, a 50% drop

in the price of coal during a period of 15 years from the original design, is

equivalent to raising the threshold to δc = 2. In this scenario application of

the SPI would suggest a significant raise of the pit bottom elevation in the

south-western part of the mine in order to avoid mining seams the exploita-

tion of which is no longer profitable. However, an increase of the price of

energy and more efficient mining equipment that would be equivalent to the

threshold dropping to δc = 0.5 would make the exploitation of deep seams in

the western area of Mavropigi mine profitable.

3.7 Summary

In this section, the spatial profitability index (SPI) that locally compares

costs and revenue for individual lignite seams was defined. The SPI was

illustrated using drill-hole data for the Mavropigi lignite mine. The resulting

changes in the reserves due to different economic criteria, both globally and

in specific sectors of the mine were investigated using regression kriging.

The SPI is herein defined for multiseam geological structures, but it can be

extended to energy reserves with continuously varying distributions.

The SPI is a straightforward mathematical tool with spatial resolution

abilities that can assist in the medium term and long term planning of en-

ergy reserves exploitation conducted with pit-limit optimization algorithms.

It enables engineers to investigate changes of estimated energy reserves in
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(a) δc=0.35 (b) δc=0.8

(c) δc=1.25 (d) δc=1.7

(e) δc=2.15 (f) δc=2.6

Figure 3.10: Suggested open pit bottom elevation (height above sea level) for
various δc values. The bottom elevation shown does not account for technical
constraints.
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response to market price trends (such as the coal price drop between 2011

and 2016 [5]) or increased extraction and processing costs. For example, the

SPI can help to more effectively determine the total mining cost for sectors

or the entire mine.

The SPI allows identifying non-profitable or marginally profitable sectors

that can be designated for exploitation using non-continuous, cost-effective

methods. With regard to medium term mine planning, the SPI can help to

re-evaluate the exploitation of deep benches in response to changes in costs

or market prices by providing LEC density estimates based on economic

parameters. Thus, the SPI can assist block-evaluation algorithms in deter-

mining pit limits for different scenarios. If energy demand is expected to rise

or if there is a temporary need to increase revenue, the SPI can be used to

determine the most profitable areas for immediate exploitation.

Sigmoid model functions are proposed that can be used to quickly esti-

mate the change of profitable reserves under different economic scenarios and

can generate fast, accurate estimations of total mining costs for the entire

mine or for specific sectors. The advantage of this approach is that spatial

analysis needs to be performed only once to determine the model parameters;

following that initial step, the sigmoid functions can be used to investigate

different scenarios without repeating the detailed spatial analysis. As such,

the energy reserves of the mine can be given at any time depending on cur-

rent product prices instead of relying on analysis conducted several years ago

with possibly very different economic conditions.
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Chapter 4

Stochastic Local Interaction

Model

4.1 Introduction

In this chapter, the Stochastic Local Interaction (SLI) model will be reviewed.

This new method will be applied to three different case studies and its per-

formance will be compared with that of kriging methods. The first data set

investigated is the Mavropigi lignite energy content data from chapter 3. In

particular, we use the lignite data generated by application of the Spatial

Profitability Index (SPI) as described in Section 3.3. The second case study

involves a large dataset from Campbell county, Wyoming, in the Powder

River Basin of the USA. The third case study involves a non-Gaussian data

set which comprises grayscale pixel values from a digital image of the dwarf

planet Pluto. While the third dataset does not involve coal deposits, it is

employed in this thesis to investigate the performance of SLI methods in

non-gaussian datasets and compare it with the performance of kriging.

4.2 Review of SLI theory

The Stochastic Local Interaction(SLI) model, employs a local representation

which can improve the computational efficiency of spatial prediction for cor-

related data [29]. It is based on a joint probability density function which

85
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is defined by an energy functional that involves local interactions between

neighboring sites. The energy functional represents the ”probability cost”

for specific spatial configurations (patterns) of field values, and it does not

correspond to actual energy levels. This energy functional implements the

local interactions by means of kernel functions [2] with locally adaptive kernel

bandwidths. The SLI is expressed mathematically by means of the respective

precision matrix (i.e. the inverse of the covariance matrix). This represen-

tation leads to a semi-analytical expression for prediction of the values of

random fields. This prediction avoids the computationally costly inversion

of the covariance matrix required by kriging methods.

A kernel function is an integrable, non-negative function. For a func-

tion K(u) to be considered a kernel function, it must satisfy the following

requirements [2]:

� The function K(u) must be a non-negative and symmetric function

(K(−u) = K(u) for all values of u).

�

∫ +∞
−∞ K(u) du = 1 .

� If K(u) is a kernel function, so is the function Kλ(u) = λK(λu) ,∀λ >
0.

Based on the kernel property of Kλ(u) = λK(λu), if λ is a linear weight,

kernels can be used as weighted functions in estimation techniques. Kernel

functions are often used in transformations as shown in equation (4.1).

T =

∫ t2

t1

dt K(t)f(t) (4.1)

4.2.1 Notation

We use the following notation in relation with the SLI model. The sample

data are denoted by means of the vector Xs which involves the field values

at the sample locations si, where i = 1, . . . , N . The predictions are denoted

by the prediction vector X̂sp which involves the unknown field values at the

prediction locations sp, where p = 1, . . . , P .



4.2. REVIEW OF SLI THEORY 87

The pdf fX of a Gibbs SRF can be expressed in terms of an energy

functional H(Xs; θ), where θ is a set of model parameters as shown in equa-

tion (4.2)

fX(Xs; θ) =
e−H(Xs;θ)

Z(θ)
. (4.2)

The constant Z(θ) is called the partition function. It represents the nor-

malization factor of the pdf, obtained by integrating e−H(Xs;θ) over all possible

values of the data vector Xs .

In order to define the local interactions in the energy functional, we need

to employ the kernel bandwidth which is related to the range of influence

of the kernel functions. The range of influence determines how far the in-

teractions spread around each point. Assume the sampling points si, sj
with Euclidean distance ri,j = ‖si − sj‖ , where i, j = 1, . . . , N . The ker-

nel bandwidth for each data point of si, where i = 1, . . . , N adapts to local

variations of the sampling pattern. The kernel bandwidth h is given by the

equation (4.3)

hi = ri,k · µ. (4.3)

The value hi represents the kernel bandwidth for the sampling point

si. The model parameter µ determines the local bandwidth. The distance

ri,k represents the distance between the sampling point si and it’s k-nearest

neighbor. The neighbor order k is usually chosen as 1 (nearest neighbor) for

infinitely supported kernels and as 2 (second nearest neighbor) for compactly

supported kernels [29].

If the normalized distance between the sampling points si, sj is defined

as ui = ri,j/hi, then kernel weights associated with each pair of points are

defined as shown in equation (4.4) [29].

λi,j = K(ui,j) (4.4)

Depending on the sampling grid, it is generally possible for the k-nearest

neighbor of si to be the sample point sj, while the k-nearest neighbor of

sj could be a different sample point sl. In such a case hi 6= hj. As such,
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ui,j 6= uj,i and λi,j 6= λj,i.

Examples of kernel functions are given in Table 4.1 [2]

Name Function

Triangular K(u) = (1− |u|) · I|u|≤1(u)
Quadratic K(u) = (1− u2) · I|u|≤1(u)
Tricube K(u) = (1− u3)3 · I|u|≤1(u)

Exponential K(u) = exp(−|u|)
Gaussian K(u) = exp(−u2)

Table 4.1: Examples of Kernel functions [2]. The normalized distance is
u = r/h, where r is the Euclidean distance and h is the kernel bandwidth.
IA(u) is the indicator funtion of set A. IA(u) = 1, if u ∈ A and IA(u) = 0, if
u /∈ A.

If GX(O) is any two-point function that depends on the the locations or

values of field X (O could be the distance between two points, the difference

between field values etc.) and h is the vector of the local bandwidths, we use

a local bandwidth extension over the network of sampling points [44]

〈GX(O)〉h =

∑N
i=1

∑N
j=1Ki,jGX(O)∑N

i=1

∑N
j=1Ki,j

. (4.5)

This notation will be used in relation with the SLI model in section 4.2.2.

4.2.2 The SLI model

Consider a sample Xs at the sample locations si, where i = 1, . . . , N . The

average of the square fluctuations is

S0(Xs) =
1

N

N∑
i=1

(xi −mX)2, (4.6)

where mX is the mean of X.

The average of the square gradient in an Euclidean space of dimension d

is defined as

S1(Xs; h) = d
〈
x2
ij

〉
h
, (4.7)
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where the field increments xij = xi − xj, i, j = 1, . . . , N refer to the

measured sample values at the sampling locations.

The average of the square curvature in an Euclidean space of dimension

d is defined as

S2(Xs; h) = c1

〈
x2
ij

〉
h
− c2

〈
x2
ij

〉
h
√

2
− c3

〈
x2
ij

〉
2h
, (4.8)

where the coefficients are given by c1 = 4d(d + 2), c2 = 2d(d − 1) and

c3 = d. The values of these coefficients are determined so that the respective

terms match the coefficients of the mean square curvature in the continuum

case as shown in [33].

For the SLI model, the energy functional HX(Xs; θ), of equation (4.2) is

expressed as follows

HX(Xs; θ) =
1

2λ
[S0(Xs) + a1S1(Xs; h) + a2S2(Xs; h), ] (4.9)

where θ = (mX , a1, a2, λ, µ, k) is the SLI parameter vector, h is the vector

of the local bandwidths and mX is the mean of the sample. The coefficients

a1, a2 control the relative contributions of the mean square gradient and mean

square curvature terms. The coefficient λ controls the overall amplitude of

the fluctuations. Finally, µ and k control the bandwidth values h as described

in section 4.2.1.

The joint pdf of the SLI model is determined by means of a specific energy

functional which is given in equation (4.9). This leads to a precision matrix

which is explicitly defined in terms of local interactions and thus avoids the

computationally costly covariance matrix inversion. The prediction is based

on maximizing the joint pdf of the data and the prediction point, which is

equivalent to minimizing the corresponding energy functional [29].

The energy functional is permissible if HX(Xs; θ) ≥ 0 for all Xs. This

condition ensures that the precision matrix, and thus its inverse, the covari-

ance matrix, are non-negative definite. As S0 and S1 are always non-negative,

provided that S2 ≥ 0 a sufficient permissibility condition is a1, a2, λ ≥ 0 [29].
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4.2.3 Precision matrix formulation

The energy functional of equation (4.9) can be equivalently expressed by

means of the precision matrix J(θ) as follows:

HX(Xs; θ) =
1

2
(Xs −mX)TJ(θ)(Xs −mX). (4.10)

In equation (4.10), the symmetric precision matrix J(θ) is given by the

following equation na pw brackets

J(θ) =
1

λ

{
I

N
+ a1dJ1(h) + a2

[
c1J2(h)− c2J3(h

√
2)− c3J4(2h)

]}
,

(4.11)

where I is the identity matrix and Jq (q = 1, ..., 4) are network matrices that

are determined by the sampling pattern, the kernel function, and the kernel

bandwidths.

The elements of the network matrices are given by equation (4.12) below

[J(hq)]i,j = −ui,j(hq,i)− ui,j(hq,j) + Ii,j

N∑
b=1

[ui,b(hq;i) + ub,i(hq;b)] , (4.12)

where hq = h, for q = 1, 2, h3 =
√

2h and h4 = 2h and the weights of the

network matrices are given by equation (4.13) below

ui,j(hq;i) =
K
(

si−sj
hq;i

)
∑N

i=1

∑N
j=1K

(
si−sj
hq;i

) . (4.13)

4.2.4 Model estimation

The SLI model of equation (4.9) requires the parameter vector θ = (mX , a1, a2, λ, µ, k)

described in section 4.2.2. The parameter k for the k-nearest neighbor is set

to k = 1 for infinitely supported kernels and as k = 2 (second nearest neigh-

bor) for compactly supported kernels. The remaining model parameters need

to be estimated from the data.
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The expected value mX of the random field X is calculated from the mean

value of the sample. The optimal values for the remaining parameters a1, a2, µ

can be estimated by means of maximum likelihood estimation. Alternatively,

they can be estimated by minimizing the cross validation functional

Φ(Xs; θ) =
N∑
i=1

|x̂i(θ)− xi|, (4.14)

where x̂i(θ) is the SLI prediction at point si, i = 1, · · · , N using the tested

parameter vector θ [29]. The parameter λ controls the overall amplitude of

the fluctuations as normalizing parameter and has a value of

λ =
I
N

+ a1dJ1(h) + a2

[
c1J2(h)− c2J3(h

√
2)− c3J4(2h)

]
N

, (4.15)

where I is the identity matrix and Jq (q = 1, ..., 4) are the network ma-

trices defined in section 4.2.3. The coefficients c1, c2, c3 are defined in sec-

tion 4.2.2.

We chose to use the method of minimizing the validation functional of

equation (4.14) because it is faster than MLE. The initial parameters a1, a2, µ

for the starting vector θ0 used for the estimation of the SLI model parameter

vector θ in this chapter were a1 = 1, a2 = 2, µ = 1. The minimization of the

validation functional of equation (4.14) was performed using the function

fmincon of matlab 2012b.

4.2.5 Prediction with SLI

Assume that the prediction point sp is added to the sampling points. This

point is then inserted in the energy functional. Then, the mode (the most

probable value) of the joint pdf with the prediction point inserted is deter-

mined by finding the value of the predictand that maximizes the joint pdf.

The calculations can be carried out analytically and they lead to the following

mode prediction equation

x̂p = mx −
∑N

i=1 Ji,p(θ)(xi −mx)

Jp,p
. (4.16)
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In equation (4.16), x̂p represents the prediction, (xi −mx) is the fluctu-

ation at the location si and Ji,p, Jp,p represent the elements of the precision

matrix. The elements that involve the prediction point are given by the

following equations [29]

[J(hq)]p,p =
N∑
i=1

[ui,p(hq;i) + up,i(hq;p)] , ∀ p = 1, . . . , P (4.17)

[J(hq)]i,p = − [ui,p(hq;i) + up,i(hq;p)] , ∀ p = 1, . . . , P and ∀ i = 1, . . . , N

(4.18)

The weights used in the precision matrices are given by the following

expressions

ui,j(hq;i) =
K
(

si−sj
hq;i

)
∑N

i=1

∑N
j=1K

(
si−sj
hq;i

)
+
∑N

i=1 K
(

si−sp
hq;i

)
+
∑N

i=1 K
(

si−sp
hq;p

) ,
(4.19)

and

up,j(hq;p) =
K
(

sp−sj
hq;p

)
∑N

i=1

∑N
j=1K

(
si−sj
hq;i

)
+
∑N

i=1K
(

si−sp
hq;i

)
+
∑N

i=1K
(

si−sp
hq;p

) .
(4.20)

4.3 Case study of Mavropigi mine

In this section SLI is applied to the LEC area density drill-hole data from

Mavropigi. The lignite data were evaluated using the Spatial Profitability

Index (SPI) with a critical threshold of δc = 1.1, as explained in chapter

3. The resulting LEC reserves and the validation measures of section 2.5.1

will be compared with the RK estimation of section 3.4. The validation

measures for the two methods are obtained with LOOCV and the reserves
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are estimated using a grid with 232 × 245 rectangular cells of section 3.4.2.

The time needed for to make the prediction map with both methods will also

be compared. A linear trend model has been removed from the data used for

kriging as explained in section 3.3.1. The SLI methodology does not assume

stationarity hence there is no need to remove a trend model from the data

set used by the SLI. As such, we use detrended data for kriging and the data

without removing trend for SLI.

4.3.1 Optimal kernel selection

In order to select the optimal kernel for the SLI model, all kernel functions

defined in Table 4.1 were tested by means of LVO cross-validation. The

parameters of the resulting SLI models are shown in Table 4.2. The resulting

validation measures for the SLI predictions at the 341 locations of the data

obtained with each kernel are shown in Table 4.3.

To compare the computational time required (using matlab 2012b) for the

prediction by each kernel and the energy content of the mine, the resulting

SLI models for all kernels were tested on the prediction grid used for krig-

ing in section 3.4. The prediction grid includes 20 497 prediction locations.

The required time and the reserves estimation for each kernel is included in

Table 4.3.

Kernel a1 a2 µ λ h̄ (m) hm (m)
Triangular 138.99 160.16 1.79 6655 315.48 303.59
Exponential 6.15 15.68 0.50 275.58 69.83 65.35
Gaussian 105.67 178.50 1.17 6423.28 161.85 151.47
Quadratic 125.73 168.65 1.56 6932.66 276.21 265.80
Tricube 43.99 61.28 2.06 2953.00 363.83 350.12

Table 4.2: Parameters of SLI for the tested kernels. h̄ is the mean bandwidth
and hm is the median of the bandwidth

It is evident from Table 4.3 that all kernels perform similarly well. How-

ever, the exponential and Gaussian kernels are faster and have slightly bet-

ter validation measures. The data are accurately estimated by means of

the Gaussian kernel using LVO cross-validation. However, when the SLI is

applied to the prediction grid using the Gaussian kernel, a few exception-
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Measure Trian Expo Gaussian Quad Tric
% 0.83 0.84 0.84 0.83 0.83
rS 0.83 0.84 0.84 0.83 0.83
τ 0.65 0.66 0.65 0.65 0.65
ME (Gcal/m2) -0.47 -0.66 -0.66 -0.48 -0.48
MAE (Gcal/m2) 10.70 10.59 10.55 10.68 10.72
MaxAE (Gcal/m2) 76.07 68.72 72.33 82.05 73.36
RMSE (Gcal/m2) 15.71 15.34 15.35 15.71 15.70
Time (s) 11.08 6.68 9.80 12.01 12.80
Reserves (Pcal) 349 355 405 346 349

Table 4.3: Validation measures of SLI for different kernel functions, using
LVO cross-validation. Time needed and reserves estimated are included. %
is Pearson’s correlation coefficient, rS is Spearman’s correlation coefficient, τ
is Kendall’s correlation coefficient, ME is the mean error, MAE is the mean
absolute error, MaxAE is the maximum absolute error and RMSE is the root
mean square error. Trian represents the triangular kernel function, Expo the
exponential kernel function, Quad the quadratic kernel function and Tric the
tricubic kernel function.

ally high values occur at some of the prediction points. Out of the 20 497

prediction points, 57 have estimated LEC density values that exceed 367.73

Gcal/m2 which is three times higher than the maximum LEC density value

present in the data (122.57 Gcal/m2). This happens because the Gaussian

kernel is more sensitive to rapid data value fluctuations introduced by the

faults or the SPI. These few outliers give a higher than expected estimate of

reserves. winsorizing, Robust Kriging, Cressie

Based on the fact that the exponential kernel gives better maximum ab-

solute error and is faster than the Gaussian kernel and exhibits more stable

performance at the grid locations, we chose chose to use the exponential

kernel in the comparisons between the SLI and kriging.

4.3.2 Method comparisons

The exponential kernel (defined in Table 4.1) with the optimal parameters

shown in Table 4.2 was chosen for the application of the SLI model. Using

this kernel, the reserves are estimated at 355 Pcal with the SLI compared to

the 341 Pcal estimate obtained by kriging as discussed in section 3.4.
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Figure 4.1: Histogram of the SLI bandwidth for the exponential kernel, ob-
tained for the Mavropigi mine data set using k=1 for the k-nearest neighbor.

The bandwidth histogram is shown in figure 4.1. The isolated high values

are depended on the few isolated drill-holes of Mavropigi mine, as shown in

figure 3.2. The minimum distance between nearest-neighbor drill holes varies

from 22.5m to 610.1m in Mavropigi mine as explained in section 3.3. The

SLI parameter µ adjusts the kernel bandwidth as shown in equation (4.3).

With the parameter µ = 0.5 and k = 1 for the k-nearest neighbor, the

kernel bandwidth is half the distance from the investigated drill hole to its

nearest-neighbor.

The maps created by means of the two estimation methods are shown

in figure 4.2. The validation measures are compared in Table 4.4. The

validation measures, maps and predictions of reserves are very similar for

both methods.

As shown in the Table 3.4, the LEC area density of the corrected by the

SPI data of Mavropigi is between 0 and 122.6 Gcal/m2 with a mean value

of 37.8 Gcal/m2. The very low values of the mean error shows that neither

method shows a significant bias. The mean absolute error and the root mean

square error are also significantly lower than the mean LEC area density

value. The value of Kendal’s τ rank correlation coefficient is satisfactory.

Both Pearson’s correlation coefficient % and Spearman’s rank correlation co-

efficient rS are at 84%, which is considered very strong correlation.
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(a)
(b)

Figure 4.2: Interpolation maps of the LEC area density in Mavropigi mine
using SPI with a critical threshold δc = 1.1. (a) Kriging map (b) SLI map.

Furthermore, SLI requires half the computational time required by kriging

for the estimation. Kriging uses a user-defined neighborhood radius of 640m

for each grid location to create the required covariance matrix, while SLI

uses the entire mine to make the precision matrix.

Measure SLI Kriging
% 0.84 0.84
rS 0.84 0.84
τ 0.66 0.66

ME (Gcal/m2) −0.66 −0.19
MAE (Gcal/m2) 10.59 10.54

MaxAE (Gcal/m2) 68.72 62.65
RMSE (Gcal/m2) 15.34 15.28

Time (s) 6.7 13.6

Table 4.4: Validation measures for the estimations with SLI compared to
Regression Kriging. % is Pearson’s correlation coefficient, rS is Spearman’s
correlation coefficient, τ is Kendall’s correlation coefficient, ME is the mean
error, MAE is the mean absolute error, MaxAE is the maximum absolute
error and RMSE is the root mean square error.
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Figure 4.3: Power River Basin location in southeast Montana and northeast
Wyoming, in the USA. The Campbell county is surrounded by the red line.

4.4 Coal reserves estimation in Campbell county

The second case study examined is a large dataset from Campbell county,

Wyoming, in the Powder River Basin of the USA. The Powder River Basin,

shown in figure 4.3, is a geologic structural basin in southeast Montana and

northeast Wyoming known for its rich coal deposits. In 2007, the Powder

River Basin produced 396 million tonnes of coal. Campbell county lies en-

tirely inside the basin and covers 13,400 km2. The estimated coal deposits in

the county amount to about 117 Gt. The Black Thunder Coal Mine and the

North Antelope Rochelle Mine, the two largest coal mines in the world are

located in Campbell county. North Antelope Rochelle Mine produced 101

Mt of coal in 2013 and Black Thunder Coal Mine produced 92Mt of coal in

the same year [3].

The data comprise the total coal seam thickness at 12,951 locations as

shown in fig. 4.4. The normal probability plot of the reserves is shown in

fig. 4.5 and were collected by the United States geological society (USGS).

The median distance from one drill hole to its nearest neighbor is 462 m.

However, as evidenced in fig. 4.4, this distance is shorter in some areas,
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Figure 4.4: Drill hole locations in Campbell county, Wyoming. Locations
above the dotted line belong to area 1 and locations below the dashed line
belong to area 2. There is a 7% overlap between the two areas.

which coincide with the areas of the mining activity. The normal probabilty

plot of the Campbell county data is presented in fig. 4.5. As evidenced, the

distribution of the data (blue dots) deviate from the normal distribution (red

line) below the 10% quantile and above the 90% quantile. The data from

Campbell county are considered sufficiently close to the normal distribution.

4.4.1 Coal reserves estimation with SLI

The SLI model was used in the dataset of the Campbell county to estimate

the total coal seam thickness over a dense square grid composed of 1338 cells

by 653 cells, with each cell having a side length of 125 m. Consequently,

the value of the total coal seam thickness is estimated at 873 714 locations.
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Figure 4.5: Normal probability plot of the coal data. The data (blue dots)
are sorted along the X-axis according to value. The Y-axis represents the
quantiles. The red line represents the theoretical normal distribution.

Due to the size of the grid and the dataset, the data for Campbell county

were broken up in two neighborhoods, Northern and Southern, as shown in

figure 4.4. The two neighborhoods overlap over a 7% of the entire county

area. The average of the two predictions was used as the estimation for the

locations that are contained in both areas.

SLI was tested using the kernel function of equation (4.21). The predic-

tion map of coal thickness is shown in figure 4.7. The reserves are estimated

at 117 Gt of coal. The SLI parameters for the two neighborhoods are shown

in Table 4.5. The histograms of the kernel bandwidths for both neighbor-

hoods are shown in figure 4.6. In both cases, the mode of the distribution of

the bandwidths has value close to the meian distance from one drill hole to

its nearest neighbor.

K(u) = exp(−u0.7). (4.21)
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model parameters Area 1 Area 2
λ 1.95 0.94
a1 5.51 7.42
a2 16.25 16.35
µ 0.50 0.50

Table 4.5: SLI parameters of equation 4.9 for the two neighborhoods of the
Campbell county
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Figure 4.6: Histogram of the bandwidth for Campbell county (a) Area 1 (b)
Area 2

4.4.2 Coal prediction with kriging

The Campbell county data set of coal thickness at 12 951 locations was mod-

eled with regression kriging, explained in section 2.2.4. The coordinates of

the locations were normalized as in section 3.3. The Campbell county lies

in a geological basin as noted in 4.4. Coal seam thickness is expected to be

affected by the shape of the basin over long distances which can be modelled

with a trend model. A quadratic trend model following equation (4.22) was

removed from the data. The trend coefficients are shown in Table 4.6. The

SSRF variogram model was fitted to the experimental variogram of the fluc-

tuations using the WLS method [14]. The experimental variogram and the

SSRF model are presented in figure 4.8. The parameters of the variogram

are given in Table 4.7.

mE(sp,i) = a0 + a1 x̃i + a2 ỹi + a3 x̃
2
i + a4 ỹ

2
i + a5 x̃iỹi, i = 1, . . . , N (4.22)
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Figure 4.7: SLI map for coal seam thickness (m) in Campbell county,
Wyoming in the USA.

a0 a1 a2 a3 a4 a5 R
11.48 −4.75 −0.41 −2.82 −0.70 −1.89 0.59

Table 4.6: Optimal parameter values α0, . . . , α5 for the quadratic trend model
of equation (4.22). R is the Pearson correlation coefficient between the data
and the trend.

Using the variogram and trend parameters estimated and a kriging neigh-

borhood of 7138 m, the kriging estimation map of figure 4.9 was made. The

choice of the kriging neighborhood radius was motivated by the correlation

length of the SSRF variogram of Table 4.7 and cross-validation performance

using different ranges. The grid used is the same with the SLI interpolation

grid in 4.4.1, with 1338 by 653 cells. The estimated coal reserves are 109 Gt.

The reserves are estimated by multiplying the prediction of the cell total coal
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thickness by the cell area (15 625 m2) for all cells.

η0 (m2) η1 ξ (m) C0 (m2)
43.47 -1.84 6 726 4.49

Table 4.7: SSRF variogram model parameters
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Figure 4.8: SSRF variogram model (equation (2.10)) for coal seam thickness
(m) in Campbell county (line) and experimental variogram values (circles).
The model parameters are in Table 4.7.

4.4.3 Method comparisons

Using LOOCV on the data, the validation measures presented in section 2.5.1

for SLI and kriging are calculated and the results are shown in Table 4.8.

The validation measures, maps and predictions of reserves are very close for

both methods as in the case of the Mavropigi mine of section 4.3.2.

The values of the thickness field are estimated at nearly 900 · 103 points,

which requires significant computational time. SLI requires approximately

an hour and half for the prediction while kriging requires over two and a

half hours . While SLI requires approximately one hour less than kriging

it has similarly good validation measures as shown in Table 4.8. Regression

kriging also requires detrending of the data, variogram estimation and fitting

as well as investigation for the optimal kriging neighborhood. It should be
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Figure 4.9: Regression kriging interpolation map for coal seam thickness (m)
in Campbell county, Wyoming in the USA.

noted that the time requirements for the estimation of the optimal kriging

neighborhood, trend model and variography are not included in Table 4.8.

As shown in figure 4.5, the dataset of Campbell county coal seam thick-

ness are closer to the normal distribution than the data from th Mavropigi

mine. Since kriging is the best linear unbiased estimator for Gaussian data

[14, 39, 23], the close performance of the SLI in shorted computational time

shows the significance of the method.
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Measure SLI Kriging
% 0.80 0.77
rS 0.72 0.74

MAE (m) 2.3 2.0
RMSE (m) 3.1 3.0
Time (h) 1.4 2.6

Table 4.8: Leave-one-out cross-validation measures for the estimations with
SLI compared to Regression Kriging for the coal reserves of Campbell county.
% is Pearson’s correlation coefficient, rS is Spearman’s correlation coefficient
MAE is the mean absolute error and RMSE is the root mean square error.
Time is the time required for the prediction.

4.5 Grayscale image of Pluto

The third case investigated does not follow the normal distribution. The

data are part of a grayscale digital image of the dwarf planet Pluto. The full

image (fig. 4.10) is 88 by 88 pixels (7 744 pixels). The data correspond to

discrete values of intensity ranging from xs = 0 to xs = 255. The histogram

of these values diverges significantly from the normal distribution evidenced

in the histogram of figure 4.11. This data set was investigated to compare

SLI prediction with kriging on non-Gaussian datasets of discrete values.

Figure 4.10: Image of the dwarf planet Pluto, 88 by 88 pixels.

We selected 1 535 points (20%) from the original data as the training set.

818 of these were randomly selected, while the other half are points that the

intensity Laplacian Ls = ∇2xs has a magnitude that exceeds the threshold

value of Lc = 30. Values of Ls < 0 are set to 0 and values of Ls > 255 are set
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Figure 4.11: Histogram of the Pluto intensity values.

equal to 255 before the threshold is tested. These points have significantly

different values from their neighbors. The threshold was chosen so that close

to half the training set would be comprised by these points designated as

significant with edge detection. The remaining 727 data points of the training

set were randomly selected. The resulting training data set image is shown

in figure 4.12 and the histogram of the Laplacian is shown in figure 4.13.

Figure 4.12: Image of the Training set, containing 20% of the pixels from the
original Pluto image.
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Figure 4.13: Histogram of the Laplacian Ls = ∇2xs of the intensity values
xs of the entire Pluto image of figure 4.10. Values of Ls < 0 are set to 0 and
values of Ls > 255 are set equal to 255.

4.5.1 Grayscale prediction with SLI

In order to estimate the missing values of the Pluto image using the SLI

model, the tricube kernel (table 4.1) was chosen. The model was applied on

the missing data image of figure 4.12. The SLI model parameters are given

in table 4.9 and the histogram of the bandwidths is given in figure 4.14. The

reconstructed image based on the 1 560 training points is shown in figure 4.15.

λ a1 a2 µ

1 712.4 59.7 191.0 1.65

Table 4.9: Parameters of the SLI model used for the Pluto image reconstruc-
tion.

4.5.2 Grayscale prediction with kriging

Ordinary kriging was used in the training set from the digital Pluto image

of 1 560 pixels of section 4.5 to estimate the 6 184 missing values. The same

training set used for reconstruction with SLI was used. The SSRF vari-

ogram model was fit on the experimental variogram of the 1 560 values of the
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Figure 4.14: Histogram of bandwidths for the Pluto image.

Figure 4.15: Pluto image reconstructed by the SLI model with the parameters
of Table 4.2 and the tricube kernel.

dataset using the WLS method. The experimental variogram and the SSRF

variogram model fitted to the data are shown in figure 4.16. The parame-

ters of the variogram are given in Table 4.10. The kriging neighborhood was

chosen at a 29 pixels. The recreated image from the 1 560 data points and

the OK is shown in fig 4.17.

η0 η1 ξ
69 481 -1.94 1.1332

Table 4.10: SSRF variogram model parameters fit on Pluto image training
set.
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Figure 4.16: SSRF variogram model (equation (2.10), line) and experimental
variorgram (circles) for pixel grayscale intensity for the training set of Pluto.
The model parameters are in Table 4.10.

Figure 4.17: Pluto image recreated by ordinary kriging

4.5.3 Method comparisons

The validation measures for the predicted values of the test set (6 184 pixels)

are shown in Table 4.11. SLI gives evidently better predictions for the missing

data of this non-Gaussian dataset as can be seen from Table 4.11 but also

from the visualization of the reconstructions in figures 4.17 and 4.15. SLI

also requires less computational time, 74 seconds instead of 146 for ordinary

kriging.
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Measure SLI Kriging
% 0.99 0.85

MAE (m) 7.6 36.4
RMSE (m) 13.0 45.8
Time (s) 74 146

Table 4.11: Validation measures for the predictions of the 6 184 missing points
with the SLI model compared to ordinary kriging for the reconstruction of
the Pluto image based on the 1 560 data points. % is Pearson’s correlation co-
efficient, MAE is the mean absolute error and RMSE is the root mean square
error. Time refers to the computational time required for the reconstruction.

4.6 Summary

We have compared the recently proposed SLI method with kriging using di-

verse data including data from coal mines. Based on our studies, we conclude

that the SLI method yields similar, and at times better, results to kriging.

At the same time, the computational time required by SLI is considerably

less than that required by kriging. This gives SLI an advantage over kriging,

especially if many exploitation scenarios need to be generated and studied.

If the distribution of the data values is close to the normal distribution

(like the data of Campbell county in section 4.4), SLI performs nearly as

well as kriging. If the distribution deviates from the normal distribution

(like the data from Mavropigi lignite mine), kriging estimations become less

accurate. In the case of Mavropigi mine, SLI gives as reliable estimations

as kriging. Finally, in cases where the distribution of the data is not even

approximately close to the normal distribution (like the data from the Pluto

image of section 4.5), SLI performs significantly better than kriging methods.

SLI models are faster than kriging methods since the precision matrix is

generated by construction and in contrast with kriging the inversion of the

covariance matrix is not required, unless one is interested in estimating the

prediction uncertainty.
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Chapter 5

Simulations

5.1 Introduction

For the Mavropigi mine in Northern Greece, we have estimated the lignite

energy content (LEC) in chapter 3 using regression kriging over drill-hole

data evaluated with the Spatial Profitability Index (SPI). To assess the un-

certainty of the estimation for the reserves estimated in section 3.4, we used

a conditional simulation method. Conditional simulation methods assume a

given dataset D and a set of grid locations G where the values of the ran-

dom field X need to be simulated. The method used is based on covariance

decomposition combined with kriging conditioning (CDKC) [57]. CDKC is

explained in section 2.4. The results of the uncertainty assessment for the

reserves are discussed in 3.4.3. This chapter presents different approaches

investigated than the one used in chapter 3.

The LEC area density is strictly non-negative. Nevertheless, the CDKC

generates a few negative values in each realization, which have no physical

meaning. Different transformations of data or the resulting simulation results

were tested in an attempt to address this problem. This chapter explains the

transformations tested for the original, not-SPI corrected data and includes

alternative transformations for the data-set. The method that was eventu-

ally used in chapter 3 which was using the unmodified simulation results, is

explained in section 3.4.3.

111
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5.2 Tested transformations

The simulation method used for the conditional simulation of the Mavropigi

drill-hole data was the method of covariance decomposition with kriging

conditioning (CDKC). This method is presented in Section 2.4. Using the

original (without SPI correction) data for conditioning, CDKC simulation

generates a few negative values in each realization, which have no physical

meaning. To address this problem different transformations of data or the

resulting simulation results were tested.

Setting the negative LEC values of the simulation artificially to zero adds

a positive bias in the estimated reserves. To address this problem, the data

were transformed by applying two symmetrizing transformations; the natural

logarithm and the square root of the LEC area density were tested. Both

transformations overcome the problem of negative LEC area density values

as the reverse transformation of the LEC area density of either gives only

positive values.

After applying the transformations on the data, a linear trend is removed

to obtain the fluctuations as shown in equation (5.1)

m
LEC

(sp,i) = a0 + a1 x̃i + a2 ỹi, i = 1, . . . , N, (5.1)

where m
LEC

(sp,i) is the mean LEC area density for drill-hole i, N = 341 is the

total number of drill-holes in the area of the mine, and x̃i, ỹi are the normal-

ized coordinates. The coefficients of the trend for all three transformations

are given in Table 5.1.

Parameter X
√
X ln(X)

a0 39.94 5.93 3.30
a1 −18.57 −1.57 −0.58
a2 0.73 0.08 38.60
R 0.70 0.73 0.73

Table 5.1: Optimal parameter values for the linear trend model (5.1) for the
non-transformed and transformed data. X: Non-transformed data (lignite
energy content);

√
X Square root transform of the data; ln(X): Logarithmic

transform of the data. R is the Pearson correlation coefficient between the
data and the trend.
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5.2.1 Regression kriging on the transformed data sets

The transformations of section 5.2 produce two data sets of transformed LEC

area density data. The CDKC method is explained in section 2.4. The first

step of CDKC is to estimate the covariance model C(r) from the data set

D. The exponential variogram model presented in section 2.2.2 was used

for both transformations and for the original, non-transformed, data set for

comparison. The distances are normalized as explained in section 3.3 and

the variogram model is fitted on the experimental variogram using WLS.

Table 5.2 lists the parameters of the exponential variogram models for the

non-transformed and the transformed data.

Variogram parameters X
√
X ln(X)

Correlated variance σ2 345.82 2.06 0.26
Correlation length ξ 0.81 0.81 0.81
Nugget variance C0 53.91 0.28 0.016

Table 5.2: Exponential variogram model parameters for the non-transformed
and transformed data. X: Non-transformed data (lignite energy content);√
X Square root transform of the data; ln(X): Logarithmic transform of the

data.

The second step is to use kriging on the grid locations (set G) to obtain

the kriging estimates vector X̂(G) to form the vector X̂(S) = {X(D)∪X̂(G)}
of the simulation set S. Regression Kriging (RK) was used for all three data

sets. RK was performed on a grid with cell size of 140.6 m × 140.2 m. This

cell size choice is guided by the mean distance between neighboring drill

holes which is 139 m as explained in section 3.4.2. The estimated LEC area

density for each data set is obtained by (i) adding the trend to the predicted

fluctuations and (ii) reversing the symmetrizing transformation.

The performance of RK on the transformed data sets was validated before

employing them for simulations. Leave-one-out cross-validation was used

for the validation measures presented in Table 5.3. The best correlation

coefficients are obtained using the square-root transformation which yields

an estimate of 347 Pcal. The other two data sets, however, yield similar

estimates.
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Statistic X
√
X ln(X)

Energy content (Pcal) 353 347 340
Pearson’s % 0.855 0.859 0.818

Spearman’s rS 0.861 0.863 0.857
Kendall’s τ 0.682 0.682 0.673

Table 5.3: Energy content for Mavropigi mine estimated with Regression
Kriging and cross-validation correlation coefficients for the three data sets of
section 5.2. X: Non-transformed data (lignite energy content);

√
X Square

root transform of the data; ln(X): Logarithmic transform of the data.

5.3 Conditional simulations

The transformations of section 5.2 perform similarly well when used in RK,

as explained in section 5.2.1. As such, NS = 5 000 conditional simulations

of the fluctuations are generated with CDKC [57] for each transformation to

assess the uncertainty of the LEC reserves prediction for each.

As explained in section 2.4, the simulation set S is S = D ∪ G, with D

the data set and G the set of the grid locations where the values of the LEC

area density need to be simulated. The selected grid has cell size of 140.6 m

× 140.2 m. In section 5.2.1 we have obtained the vector X̂(S) for all three

data sets.

The next step of CDKC is to construct the covariance matrix CX for the

points in S. The square root decomposition A of CX was evaluated, i.e.,

CX = AT A.

We generated 5 000 random vectors ui, i = 1, · · · , 5 000 from the standard

(zero mean, unit variance) normal distribution N(0, 1). The length of ui was

equal to the number of points in S. From these vectors u, 5 000 unconstrained

simulations were generated as Xu = A u.

We used the unconstrained simulation values Xu(D) as data for a second

application of kriging, which generated 5 000 interpolated vectors X̂u(G).

The vectors X̂u(S) = {Xu(D)∪X̂u(G)} was subsequently constructed. Each

constrained realization on S was generated by the equation

Xc = Xu + X̂− X̂u.

For the two transformations, the estimated LEC area density for each

simulation is obtained by (i) adding the trend to the simulated fluctuations
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Figure 5.1: Histograms of exponential variogram parameters based on 5 000
Monte Carlo conditional simulations of the square root transformation of
LEC data. For each simulation, the model parameters were obtained by
fitting the model to the experimental variogram using WLS.
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Figure 5.2: Histograms of exponential variogram parameters based on 5 000
Monte Carlo conditional simulations of the logarithmic transformation of
LEC data. For each simulation, the model parameters were obtained by
fitting the model to the experimental variogram using WLS.

and (ii) reversing the symmetrizing transformation. For the non-transformed

data, the estimated LEC area density for each simulation is obtained by (i)

adding the trend to the simulated fluctuations and (ii) changing negative

values of LEC area density to zero.

The exponential variogram model was used for kriging. For each simu-

lated realization, the parameters of the variogram model were obtained by

fitting the model to the respective experimental variogram using WLS. The

histograms of the exponential variogram parameters obtained from the sim-

ulated realizations are shown in Figs. 5.1–5.3.

These parameters were used in RK interpolation to estimate the energy

content for each of the 5 000 simulations. For all three datasets, the corre-

lation lengths are similar for the majority of the simulations. Zero nugget
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Figure 5.3: Histograms of exponential variogram parameters based on 5 000
Monte Carlo conditional simulations of the non-trasnformed LEC data. For
each simulation, the model parameters were obtained by fitting the model to
the experimental variogram using WLS.

variance is estimated for many of the simulated states, especially for the

logarithmically transformed data.

5.4 Simulated energy content reserves

The RK interpolations of section 5.3 were used to estimate the energy content

for each of the 5 000 simulations. To obtain the reserves from the grid for

each realization for the three data sets, the following procedure was used.Each

grid cell has a specified area A, in the case of our grid A = 19 712m2, and a

simulated value X̂ for the LEC area density. Multiplying the area with the

simulated value of the LEC area density, the LEC for each cell is obtained.

The sum of all the cells gives the LEC reserves for the mine for each real-

ization. CDCK was also used on the non-transformed data and the negative

LEC area density values were changed to zero.

The normal probability plots of the resulting LEC reserves are shown in

figure 5.4. It can be seen from figure 5.4b that the reverse transformation of

the logarithm can give significantly higher reserves estimates than the other

two methods. Subfigure 5.4c presents the normal probability plot of the

simulations before the artificial changing of negative results to zero.



5.5. ANALYSIS OF RESERVES SIMULATION RESULTS 117

3 4 5

x 10
8

0.003

0.05

0.25
0.50
0.75

0.95

0.997

Data

P
ro

b
a

b
ili

ty

 

(a) square root transformation
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Figure 5.4: Normal probability plots for the LEC reserves estimations. 5000
simulations were conducted using CDKC simulation for the three different
data sets.

5.5 Analysis of reserves simulation results

The statistics of the LEC energy content reserves based on 5 000 conditional

simulations for each of the three data sets introduced in section 5.2 are pre-

sented in Table 5.4. The table gives the comparison of the results for the

transformed data and non-transformed data after setting any simulated neg-

ative cell values to zero. The total mine energy content based on the square

root and the logarithm transformations does not follow the Gaussian distri-

bution as evidenced in the histograms of Figure 5.5 and Figure 5.4. Hence,

in addition to the mean and standard deviation of the energy content per

realization we also report the 2.5% percentile x2.5% and the 97.5% percentile

x97.5%. The difference X̄ − X̂OK (bias) compares the simulation average of

the energy content with the RK estimate (given in Table 5.3).
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Moments & Quantiles X
√
X ln(X)

X̄ (Pcal) 366 379 423
σX (Pcal) 41.6 46.7 80.7
x2.5% (Pcal) 287 293 296
x97.5% (Pcal) 449 474 607
bias (Pcal) 13 32 83

Table 5.4: Simulation statistics. X: average energy content; σX ; Standard
deviation of energy content; x2.5%: 2.5% percentile; x97.5%: 97.5% percentile;
bias = X̄ − X̂OK .
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Figure 5.5: Histograms of energy content (cal) based on 5 000 Monte Carlo
conditional simulations.

For the square root transformation, any negative predictions would be

turned to positive when the results are reversed to obtain the LEC area

density estimation. As such, the more negative the value X̂sd at location sd,

the higher the value of X̂2
sd

. This leads to positive bias and also gives false

high values.

For the logarithm transformation negative LEC area density estimates

would produce low estimates close to zero. However, high values of the

estimated logarithm would give very high values for LEC area density after

the transformation is reversed because of the exponent. This leads to very

high estimates for total LEC reserves in a significant number of cases, as

shown in figure 5.5b and high bias. RK also performs slightly worse with

this transformation as shown in Table 5.3.

Adjusting the negative values to zero gives low bias (Table 5.3) compared

to the transformations but requires artificial changing of simulation results.
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5.6 Summary

Starting with the drill-hole LEC area density data from Mavropigi mine, we

considered three different data sets for reserves estimation and uncertainty

assessment: The non-transformed data, the square root of the data and the

natural logarithm of the data. The validation measures of Table 5.3 show

that RK performs comparatively well with all three data sets.

The CDKC simulations of the original data contain a few negative values

for the LEC area density in each realization which have no physical meaning.

These values can be changed to zero, but this produces a positive bias as

shown in Table 5.4.

The CDKC of the two tested transformations produce only positive val-

ues for the LEC area density, overcoming the problem of the negative values

without artificially changing the data. However, as shown in Table 5.4 the

mine’s average energy content given by the simulations of both transfor-

mations is significantly higher than the energy content given by RK of the

data. Hence, none of these transformations were used to investigate reserves

estimates for Mavropigi mine and assess the uncertainty.

The histograms and results of the 5 000 simulations without any trans-

formation shown in chapter 3 have no bias nor produce any abnormally low

values because of the small number of negative numbers. Hence to assess

the uncertainty, it was decided to use the simulations made with the non-

transformed data without changing negative values. Once this decision was

made, it was followed with the SPI-corrected data.



120 CHAPTER 5. SIMULATIONS



Chapter 6

Conclusions

6.1 Conclusions

In this dissertation we introduced the spatial profitability index (SPI). SPI

is a straightforward mathematical tool that locally compares costs and rev-

enue for individual lignite seams. As shown with the drill-hole data from

the Mavropigi mine, the SPI can assist in the medium term and long term

planning of energy reserves exploitation. It enables engineers to investigate

changes of estimated energy reserves in response to market price trends or

increased costs. For example, the SPI can help to more effectively deter-

mine mine limits or total mining costs. In the medium term, SPI can assist

in re-evaluating mine limits to accommodate new prices and costs. If en-

ergy demand is expected to rise or if there is a temporary need to increase

revenue, the SPI can be used to determine the most profitable areas for

immediate exploitation. The SPI also allows identifying non-profitable or

marginally profitable sectors that can be designated for exploitation using

non-continuous, lower capacity methods in the long term mine planing.

Sigmoid functions are proposed to provide quick estimates of the change of

profitable reserves under different economic scenarios. These functions could

be used to generate fast and accurate estimates of total mining costs for the

mine or sector investigated. The advantage of this approach is that spatial

analysis needs to be performed only once to determine the model parameters.

Following that initial step, the sigmoid functions can be used to investigate
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different scenarios without repeating the detailed spatial analysis. As such,

the reserves of the mine can be given at any time depending on current

prices and costs instead of relying on analysis performed several years ago

with different economic situations.

The Stochastic Local Interaction (SLI) model employs a local represen-

tation to improve the computational efficiency of predictions. It is based on

a joint probability density function defined by an energy functional which

involves local interactions between the data points. This is achieved by

means of kernel functions with locally adaptive kernel bandwidths. SLI is

expressed by a respective precision matrix. This representation leads to a

semi-analytical expression for prediction, which avoids the computationally

costly inversion of the covariance matrix required by kriging methods.

SLI models performed reliably in all the datasets investigated in this re-

search. Their prediction accuracy is comparable to kriging methods when

used in lignite mine data from Mavropigi mine or coal thickness data from

Campbell county. The SLI method calculates the prediction faster than krig-

ing. If the distribution of the data values is close to the normal distribution,

SLI performs as well as ordinary kriging, which is the best linear estimator

for Gaussian data. However, SLI is faster than kriging. If the data proba-

bility distribution deviates from the normal distribution (like the data from

Mavropigi lignite mine), SLI still gives very reliable estimate while kriging

predictions become less accurate than SLI predictions. Finally, in cases where

the distribution of the data is not even approximately close to the normal dis-

tribution (like the data from the Pluto image), SLI gives significantly better

predictions than kriging with faster computation time.

6.2 Progress towards the objectives

In section 1.2 the objectives and goals of this that this dissertation sought to

address were presented. We present here a short synopsis of how these goals

and objectives were answered in this research.

The coal reserves estimates for Campbell county and Mavropigi mine

are reliable according to the validation measures used. The estimation un-

certainty is sufficiently assessed with conditional simulations. The SLI and
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kriging maps of energy content area density and the coal seam thickness are

informative, giving an accurate spatial representation of those properties. In

combination with the SPI, kriging maps created for Mavropigi mine can be

used reliably to assist the engineer to address economic concerns or mine

exploitation issues. We believe this research fulfilled the objective of proving

that geostatistical tools are sufficient to analyze the spatial variability and

the estimation of uncertainties related to mine exploitation.

SLI models proved to be faster predictors than kriging methods and per-

formed as well or even better in cases that the dataset diverges from the

normal distribution. As such, this research provides evidence that SLI mod-

els are a reliable and faster alternative to kriging, especially in addressing

non-Gaussian datasets.

An objective of this research was to provide simple tools that can as-

sist in defining the pit limits and especially to adjust them under evolving

economic conditions. SPI was shown to provide pit bottom elevation sugges-

tions quickly for a range of revenue to cost ratios. Although the suggested

pit bottom does not take into account technical and mechanical limitations,

suggestive solutions under the current economic conditions or near-future

predictions would assist in making more informed decisions regarding the

mid-term mine planing.

Another goal of this research was to provide tools for the quick and ef-

ficient re-evaluation of the reserves and expected revenue of each sector or

for the entire mine under different economic conditions. The ERD and the

resulting graphs, based on the SPI have been shown to provide an accurate

estimate of reserves changes as well as changes in total mining cost for the

entire mine or the sector investigated. By virtue of being represented with a

graph, ERD is very easy to use.

6.3 Suggestions for future studies

In future research, the SPI can be extended to single-seam deposits or dif-

ferent multi-seam deposits (like uranium or magnesite). With modifications

suitable for the more selective exploitation methods used in underground

mining, the SPI could be applied in underground mining, directing the ex-
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ploitation and helping with the medium term mine planning. Using accurate

3D predictions for blocks could further motivate the use of the SPI for un-

derground mining or to assist in defining the benches for open-pit mines.

Challenges in using the SPI in underground mining include the different

paths to physically approach the block targeted for extraction. Hence, the

different possible extraction costs will depend on the direction of the ex-

ploitation. However, by assessing these different costs to revenue ratios, the

SPI could provide assistance in the long term underground mine planning as

well as medium term mine planning.

The promising SLI models method could also be improved with further

research. At the time, SLI does not provide a map of prediction variance in

space similar to the kriging variance maps.

A method of conditional simulation based on the decomposition of the

precision matrix created by SLI could be developed in future studies. Such

a method would also require the precision matrix to be constructed in a way

that ensures it is positive definite for all sampling configurations.
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Appendix A

Appendix: SPI code

In this appendix the programs made to calculate SPI in matlab 2010b and

2012b are given.

Seam LCV estimation

This program takes the drill-hole coal core data for each drill-hole and com-

bines them into seams. Each seam’s average LCV is calculated from the core

data that correspond to it. The program Takes as input a matlab cell from

the mfile ”Data.mat”. This matlab cell contains the drill-hole core data.

Each column of the cell has a different drill-hole. As such, CGEO{1, 5}
corresponds to the 5th drill-hole.

The format of each drill-hole in the matlab cell of the data should follow

the format given in Table A.1.

% Requires:

% CGEO to input cell. exei #### X Y Z 0 0 0 0 0;

% #### orofh(m) dapedo(m) 0 ygras, CO2, tefra, K8D, paxos

% GEWT format:

% X Y Z 0 0 ...

% 1.Orof 2.Dap 3.Paxos 4.Apo 8alas 5.Ygras 6.Tefr+CO2 7.K8D ...
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ID X Y Z 0 0 0 0 0
ID-core ceiling floor 0 W% CO2% AWF% LCV thickness
ID-core ceiling floor 0 W% CO2% AWF% LCV thickness

...
...

...
...

...
...

...
...

...

Table A.1: drill-hole format. ID and ID-core are the ID numbers assigned
to the drill-hole and the drill-hole core data. Floor and ceiling correspond
to the height above sea level for the floor and ceiling of the core in question.
W%, AWF% and CO2% are the water content, ash water free content and
CO2 content for the core. LCV is the Lower Calorific Value (in kcal/kg) of
the core. X, Y, Z are the cardinal coordinates of the drill-hole head.

8.Pyknot

% 0... sto telos ths gewtrhshs

% GEWT to cell twn geotrhsewn. Sthn prwth grammh exei ta ...

cell olwn (steira + lign)

% kai sthn deuterh mono ton lignith

load Data.mat

ngeo=length(CGEO);

GEWT=cell(2,ngeo);

ADe1(1,8)=0;

for Geot=1:ngeo

%Geot h trexousa geotrhsh

% Daped, orof, h orofh kai dapedo sta samples ths geotrhshs

% strling o ari8mos twn lignitikwn strwmatwn

% B to mazemeno cell ths geotrhshs

A=CGEO{Geot};
[n m]=size(A);

Daped=A(2:n−1,3); Orof=A(3:n,2); Diaf=Daped−Orof; % ...

Diaf(i) = 0 an to dapedo tou i+1 sample einai iso me ...

thn orofh tou i+2

d=find(Diaf 6=0);

strlig=length(d); % ta strwmata lignith pera apo to prwto

B(strlig+3,8)=0;

B(1,:)=A(1,2:9);

lin=2; % 3ekinw apo thn 2rh grammh tou B, giati h prwth ...
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einai ta ths geot

B(2,1)=A(2,2); B(2,2)=A(2,3); B(2,3)=A(2,9); ...

B(2,5)=A(2,5); B(2,6)=A(2,6)+A(2,7); B(2,7)=A(2,8); ...

B(2:strlig+2,8)=1.20;

for i=2:n−1
if Diaf(i−1)==0; % moorw na to balw <0.1 gia na ...

enwnei strwmata me mono 10 pontous diafora.

B(lin,2)=A(i+1,3);

B(lin,3)=B(lin,3)+A(i+1,9);

B(lin,5)=(B(lin,5)*(B(lin,3)−A(i+1,9))+A(i+1,5)*A(i+1,9))/ ...

B(lin,3); % zygizw ka8e fora me to paxos tou ...

strwmatos. Gia na to kanw auto

% pollaplasiazw thn prohgoumenh ygrasia me to ...

paxos PRIN

% pros8esw to neo strwma (e3ou kai afairw to neo ...

paxos) kai meta

% pros8etw thn nea ygrasia x to paxos tou ...

strwmatos ths

B(lin,6)=(B(lin,6)*(B(lin,3)−A(i+1,9)) + ...

(A(i+1,6)+A(i+1,7)) *A(i+1,9)) / B(lin,3);

B(lin,7)=(B(lin,7)*(B(lin,3)−A(i+1,9)) + ...

A(i+1,8)*A(i+1,9))/ B(lin,3);

else

lin=lin+1;

B(lin,1)=A(i+1,2); B(lin,2)=A(i+1,3);

B(lin,3)=A(i+1,9);

B(lin,5)=A(i+1,5);

B(lin,6)=A(i+1,6)+A(i+1,7);

B(lin,7)=A(i+1,8);

end

end

B(2:strlig+2,3)=B(2:strlig+2,1)−B(2:strlig+2,2);
% Edw teliwnei to B ths ka8e gewtrhshs

C((strlig+1)*2+2,8)=0; % Gia na balw kai ta steira, pou ...

einai panw apo ka8e lignitiko

C(1,:)=B(1,:); % Ta ths gewtrhshs

C(2,1)=B(1,3); % To prwto steiro 3ekina sthn epifania

C(2,2)=B(2,1); % To dapedo tou prwtou steirou sthn orofh ...

ths prwths lignitikhs

C(2,3)=C(2,1)−C(2,2); C(2,8)=1.8; C(2,7)=−40;
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for i=3:2:(strlig+1)*2+1

C(i,:)=B((i+1)/2,:);

end

for i=4:2:(strlig+1)*2+1

C(i,1)=B(i/2,2);

C(i,2)=B(i/2+1,1);

C(i,3)=C(i,1)−C(i,2);
C(i,8)=1.8;

C(i,7)=−40;
end

ADe1=[ADe1;C];

GEWT{1,Geot}=C;
GEWT{2,Geot}=B;
clear A B C n m Daped Orof Diaf d strlig lin i

end

%% Fixing ADe1 gia to DedRep

% Exw mono ta lignitika sto ADe1 kai exw mia extra grammh me ...

0 sthn arxh.

ADe1(1,:)=[];

degeot=(sum(ADe1')==0)'; % ekei pou degeot=1 allazei geotrhsh

save Amyst GEWT ADe1

SPI calculation

The following algorithm Calculates the SPI for drill-holes, provided with the

initial pit limits and regions for sectors. The drill-hole core data needed are

provided by the previous program.
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% Deikths ekmetalleushmothtas gia esoda/e3oda

% O ari8mhths einai esoda/sq.meter kai o paranomasths ...

e3oda/sq.meter.

%

% mat files pou xreiazontai (Apo alla programmata)

% Pairnei to texniko Peras apo arxeio Texper.mat

% Pairnei apo to arxeio Amyst.mat to Ade1, Geot, GEWT

% Pairnei ta oria twn perioxwn kai tis times twn parametrwn ...

apo to arxeio Regions.mat

%

%

% To Ade1 exei ola ta dedomena

% Geot einai oi 8eseis twn gewtrhsewn

% deikded einai 1 opou teliwnei gewtrhsh sto Ade1

% GEWT einai to cell twn gewtrhsewn. Sthn prwth gramh exei ...

tis gewtrhseis

% me ola ta dedomena kai sthn deuterh gramh ths gewtrhseis ...

me mono ta

% lignitika strwmata kai sthn trith ta steira strwmata

%

% INPUT:

% To Krisimo Orio, ka8aros ari8mos

%

% OUTPUT:

% DEIK cell, opou sthn prwth grammh o deikths ...

ekmetalleushmothtas

% sth deuterh o indicator

% dcris to crisimo orio

% GEWT CELL:

% X Y Z 0 ...

% 1.Orof 2.Dap 3.Paxos 4.therm per 5.Ygras 6.Tefr 7.K8D 8.Pykn

% Bazw ena epipleon kostos, to COSTEXT, to opoio gia thn wra ...

einai 0. To

% kostos auto dinetai apo allou kai perilambanei "loipa" ...

kosth sto ka8e strwma lignith.

% PX mporei na einai pio akribh metafora apo thn perioxh ktl.

% Ena kostos gia mia perioxh, mporei na spasei omoiomorfa ...

stis gewtrhseis ths perioxhs

% kai sta strwmata ths ka8e gewtrhshs analoga me to pws to ...

8eloume.

% PX ena kostos 150Eurw/sq.m se mia perioxh me 10 gewtrhseis ...
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mporei na spasei san

% 150 Eurw/gewtrhsh ths perioxhs. An h ka8e gewtrhsh exei 5 ...

strwmata, 30 eurw sto strwma

function [DEIK]=Deikthsprwtostr(crisor)

% Parametroi se tonous h kwh kai eurw

% kwaste, klign h parametros/tn gia e3ory3h, metafora ...

apo8esh/apo8hkeush

% T to poso poulietai h MWh − to poso kostizei.

% nsta8m h apodosh tou sta8mou. P kanei ta gcal/sqm se MWh/sqm

t0=tic;

load Amyst.mat

load Texper % Tex peras DEH

kwaste=2.5/1.8; klign=2.5/1.2; T=15; nRetent=1; P=1; % ...

nRetent=0.35; P=4.184/3.6;

Cextra=4; % Kostos agoras gia prwto strwma 4 Euro/mˆ2

kdesulf=0/1.2; kbenefi=0/1.2; %Desulfurization, benefication ...

parameters PER TON

n=length(deikded);

texper(1:n,1)= PER(:,3); %texper to texniko peras an den ...

8elw, to bazw 0. Paei ana gewtrhsh. An 8elw epifaneia, to ...

bazw apo ta x,y twn gewtrhsewn

%texper(1:n,1)= 0;

%% COSTEX

% Ta kosth

% Mia gewtrhsh ana sthlh

COSTEX=GEWT(2,:);

for i=1:n

[gr st]=size(COSTEX{i});
COSTEX{i}(:,8)=[];
COSTEX{i}(2:gr,4:7)=0;
COSTEX{i}(2,4)=Cextra;
COSTEX{i}(2,5)=kwaste;
COSTEX{i}(2,6)=klign;
COSTEX{i}(2:gr,7)=kdesulf; %Cost by seam

COSTEX{i}(1,5)=0; % Region generic
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geoloc(i,:)=COSTEX{i}(1,1:2);
end

clear gr st

% *************** Regions ********************
% DREG to cell pou leei poies gewtrhseis anhkoun sthn ka8e ...

region

load Regions.mat

[gee nreg]=size(Region);

if nreg==0; DREG=[]; end

for reg=1:nreg

xv=[Region{1,reg}(:,1); Region{1,reg}(1,1)]; ...

yv=[Region{1,reg}(:,2);Region{1,reg}(1,2)];
x=geoloc(:,1); y=geoloc(:,2);

in = inpolygon(x,y,xv,yv); DREG{1,reg}=find(in==1);
end

clear geoloc gee

for reg=1:nreg

for i=1:length(DREG{reg})
igeo=DREG{reg}(i);
[gr st]=size(COSTEX{igeo});
COSTEX{igeo}(2,4)= Region{2,reg}(1); %Cextra;

COSTEX{igeo}(2,5)= Region{2,reg}(2); %kwaste;

COSTEX{igeo}(2,6)= Region{2,reg}(3); %klign;

COSTEX{igeo}(2:gr,7)= Region{2,reg}(4); %kdesulf;

COSTEX{igeo}(1,5)=reg; %Se poia region

end

end

clear gr st igeo

%% Crisimo Orio

dcris(1:n,1)=crisor;

%% Cell by cell

% E3etazw indicator kai deikth ekmetalleushmothtas ana gewtrhsh

% Genika gia ka8e strwma Kerdos/sq.m = ari*(d−1)/d
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DEIK=cell(2,n);

for cel= 1:n

[Gram Sthl]=size(GEWT{2,cel});
LIG=GEWT{2,cel};
STE=GEWT{3,cel};
CostEX=COSTEX{1,cel};

% Prwth Gramh 8esh gewtrhshs, kai 8elw strwmata≥1 gia deikth

if Gram<2

DEIK{1,cel}=nan; DEIK{2,cel}=nan;
end

if Gram≥2

kwaste=CostEX(2,5); klign=CostEX(2,6); ...

kdesulf=CostEX(2,7); % Parameters by location. ...

DESULF is wrong! Needs to be done by lignite seam

DEIK{1,cel}=nan(Gram−1,1);
DEIK{2,cel}=nan(Gram−1,1);
indi=nan(Gram−1,1);
Gramt=Gram;

% Bazw Gramt gia to strwma panw apo to opoio koita o ...

deikths, epeidh den

% allazei o ari8mos twn loop pou kanei to for

for i=Gram:−1:2
para=kwaste*sum( ...

STE(i:Gramt,3).*STE(i:Gramt,8)/100 ...

)+klign*sum( ...

LIG(i:Gramt,3).*LIG(i:Gramt,8)/100 ) + ...

sum(CostEX(i:Gramt,4)/100); %e3oda bazw/100 ...

giati to exw sto 8ermiko periexomeno.

para=para +kdesulf*sum( LIG(i:Gramt,3) ) ...

+kbenefi*sum( LIG(i:Gramt,3) ); % DESULF ...

needs to be done by lignite seam

ari=nRetent*T*P*sum(LIG(i:Gramt,4)); % esoda. ...

Sto 8ermiko periexomeno exw diairesei me 100

d=ari/para;

if d≥dcris(cel)
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indi(i−1,1)=1;
DEIK{1,cel}(i−1,1)=d;

end

if d<dcris(cel)

indi(i−1:Gram−1,1)=0;
Gramt=i−1;
DEIK{1,cel}(i−1,1)=d;

end

if LIG(i,1)<texper(cel); % petaw strwmata katw ...

apo texniko peras. An den 8elw, bazw texper=0;

indi(i−1:Gram−1,1)=0;
Gramt=i−1;

end

DEIK{2,cel}=indi;
DEIK{1,cel}(indi==0,1)=0;

end

end

clear indi d Gram Gramt LIG STE

end

%% Finale

save Deikths DEIK COSTEX kwaste klign T nRetent kdesulf ...

kbenefi Region DREG

Tol=toc(t0)


