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Abstract

In the field of hardware-based parallelism, Field Programmable Gate Arrays (FPGAs) play

a key role as a platform to provide a high level of parallelization. In recent years, High Level

Synthesis (HLS) software has been introduced as a tool for developing on FPGAs. This software

brings a higher level of abstraction compared to traditional programming methods that are used

to directly describe the Register-Transfer Level (RTL) design to be implemented on an FPGA.

Xilinx, the current largest FPGA vendor has recently introduced Vivado HLS, as a part of the

Vivado design suite.

In this thesis, we present our approach at implementing the Needleman-Wunsch dynamic

programming algorithm for protein sequence alignment on Vivado HLS, with the main goal to

achieve the highest level of parallelism and acceleration. This study contributes an analysis of

the algorithm under the scope of parallelism, its data dependencies and the limitations they

set, as well as data locality, for which we developed a cache simulator in Java. Additionally, it

provides an analysis of Vivado HLS regarding its performance on accelerating the algorithm and

presents a comparison of the methods offered by the tool for optimizing the implementation.

Initially, we briefly present the Needleman-Wunsch algorithm and describe its function.

Subsequently, we analyze it in regard to the maximum level of parallelism that can be achieved

in respect to the limitations of the algorithm and proceed to further examine the available

methods of parsing its dynamic programming matrix under the scope of data locality. Here

we present the cache simulator, the results of which are important for the comparison of the

efficiency of the aforementioned methods regarding their hit/miss rates when accessing the cache

memory. Afterwards, we present two discrete implementations of the algorithm on Vivado

HLS: One using the code of a software implementation of the algorithm and one with code

we developed considering the results of the analysis of the algorithm. In the former case, we

used a set of directives offered by Vivado HLS, in order to optimize the performance of our

implementation; without however achieving parallelism on the design. In the latter one, which

describes a parallel implementation of the algorithm, we observed the inability of Vivado HLS

to achieve the expected acceleration of the design. Finally, we present the conclusions of our

study, which provide input for further work on optimizing the implementation of the algorithm

and comparing it with alternative implementations.
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Chapter 1

Introduction

2001 was the year the first general-purpose processor featuring multiple cores on its die, the

POWER4 processor by IBM, was released to the public [1]. In 2005, Intel followed suit, intro-

ducing their first lineup of multicore CPUs and since then, parallel architectures have become

the norm. This turn from a single core to a multicore (and even manycore) environment in

high availability allowed for true application parallelization with great performance benefits

and speedups. However, the switch from sequential to parallel computing makes programming

harder, more demanding and at the risk of not achieving the desired improvement in perfor-

mance. Therefore, the need for the categorization of the algorithmic motifs that are considered

to be important in regard to the parallel landscape has surfaced. Researchers at Berkeley in-

troduced the Dwarfs of High-Performance Computing, a collection of algorithmic methods that

“capture a pattern of computation and communication” [3] to cover this need.

The parallel landscape is also defined by the available hardware platforms that support

parallelization, a field where FPGAs play a key role. Their ability to be programmed at a

hardware level gives them a clear advantage on the level of parallelism they can achieve when

compared to general purpose CPUs. Although the main method of describing an algorithm for

implementation on an FPGA is by using a hardware description language (VHDL, Verilog),

in recent years, there has been an attempt to provide a high level of abstraction in the design

workflow with the introduction of High Level Synthesis software. HLS tools allow for defining

a design using a high-level programming language and exporting an RTL design defined in a

hardware description language. Xilinx, the current largest FPGA manufacturer provides the

Vivado High Level Synthesis software as a part of the Vivado Design Suite, a software suite for

developing on Xilinx FPGAs.
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1. INTRODUCTION

High Level Synthesis tools are designed to provide ease of use and fast development times.

However, it is important to be evaluated on the performance and efficiency of their resulting RTL

design. The need for evaluation is especially prominent in the field of parallel algorithmic motifs,

where FPGAs are expected to have a significant performance advantage over CPU/software

solutions.

In this study, we present the implementation of the Needleman-Wunsch algorithm for se-

quence alignment that follows the dynamic programming algorithmic motif included in the

Dwarfs, on Vivado HLS. The study contributes an analysis of the algorithm under the scope

of parallelism, its data dependencies and the limitations they set, as well as data locality, for

which we developed a cache simulator in Java. Furthermore, it provides an analysis of Vivado

HLS as a tool to accelerate the algorithm enhance its performance and presents a comparison

of the methods it offers towards optimizing the implementation. In particular:

• In Chapter 3 we present the Needleman-Wunsch algorithm as a method of aligning a pair

of protein sequences and the steps it follows towards finding the optimal global alignment.

• In Chapter 4 we provide an in-depth analysis of the Needleman-Wunsch algorithm under

the scope of parallelization and demonstrate the two possible methods of parsing the

dynamic programming matrix. We also introduce the cache simulator we developed in

order to determine the cache hit and miss rates of those methods and discuss the results.

• In Chapter 5 we present two discrete implementations of the algorithm on Vivado HLS;

one utilizing a preexisting code targeting a software implementation and one developed

considering the results we collected in Chapter 4. We then attempt to enhance the perfor-

mance of the implementations with the use of optimization directives provided by Vivado

HLS and present the results.

• In Chapter 6 we conclude our study and discuss our observations. Additionally, we

proceed to suggest topics for future work to further expand our study.
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Chapter 2

Related Work

2.1 The Dwarfs of High-Performance Computing

A dwarf is defined as an “algorithmic method that captures a pattern of computation and

communication” [3]. The dwarfs were initially presented by Philip Colella in 2004 [2] as a set

of seven algorithmic motifs that he believed would be important for physical sciences and en-

gineering for at least the next decade. Colella’s work was further expanded by researchers at

the University of California, Berkeley [3], under the consideration of the changing landscape

of hardware-level parallelization. Their research aimed at extending the algorithmic fields rep-

resented by the dwarfs to cover a larger range of applications; the dwarfs were subsequently

expanded to the following 13 algorithmic domains:

• Structured Grids: A pattern represented by a regular multidimensional grid, where

points on it are conceptually updated together - either in place or between two versions of

the grid. This method has a high temporal locality, as all points are updated using data

from a small neighborhood around each one. The grid can be split into smaller grids that

contain areas of interest; transitions between those grids may happen dynamically.

• Unstructured Grids: Data are represented in an irregular grid, where their locations

are selected usually by the characteristics of the application. As in Structured Grids,

points are conceptually updated together. Because the update to any point requires

determining a list of neighboring points and loading values from them, there are multiple

levels of memory reference indirection.
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2. RELATED WORK

• Spectral Methods: Data refers to the frequency spectrum. There is a combination

of multiply-add operations and a specific pattern of data permutation. In some stages

of the calculation, an all-to-all communication might happen, while there might be no

communication in others.

• Dense Linear Algebra: Data are stored in dense matrices or vectors and there are

three levels of operations - Level 1 (vector/vector), Level 2 (matrix/vector) and Level 3

(matrix/matrix). Most applications use unit-stride memory accesses to read row data and

stride accesses to read column data.

• Sparse Linear Algebra: Data used for calculations stored in matrices and include

many zero values - therefore the matrices are usually compressed to reduce storage and

bandwidth demands when accessing all nonzero values. Due to the data being compressed,

access is performed with indexed loads and stores.

• N-Body Methods: Computations depend on interactions between many points on the

grid. Variations include particle-particle methods, where every point depends on all oth-

ers, leading to complexity of O(n2) and hierarchical particle methods that combine forces

from multiple points to reduce the computational complexity to O(n log n) or O(n).

• MapReduce: An algorithmic motif which relies on the implementation of the functions

Map() and Reduce() to assign workload in a multi-processor environment. A series of

repeated random runs produces the result set. Due to the fact that it can be very easily

parallelized, it is considered embarassingly parallel.

• Combinational Logic: A method that performs simple operations on a large set of data,

e.g. operations on Cyclic Redundancy Codes.

• Graph Traversal: The algorithm traverses a set of objects in a graph, while examining

their characteristics.

• Dynamic Programming: The problem is split into smaller and simpler sub-problems

that are evaluated towards finding a solution to the initial problem.

• Backtrack and Branch-and-Bound: An algorithmic method searching a large space

towards finding a globally optimal solution. It is used on implementations search and

global optimization problems.
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2.2 Vivado High Level Synthesis

• Graphical Models: Sets of graphs with nodes and edges, where each node represents a

variable and each edge a conditional probability for transitioning to a node.

• Finite State Machines: A non-empty set of states and functions describing transitions

between the states are used to model a computation. In some cases, the machine can be

split into smaller machines that can run in parallel.

2.2 Vivado High Level Synthesis

The Vivado High Level Synthesis is a tool distributed by the major FPGA manufacturer Xilinx

as a part of the Vivado development suite, that transforms a programming algorithm defined

in C, C++, SystemC or as an OpenCL API C kernel into a Register Transfer Level (RTL)

implementation, ready to be synthesized on a compatible Xilinx FPGA. Vivado HLS introduces

a higher level of abstraction to the designer, allowing them to describe an algorithm in a general-

purpose programming language rather than a hardware description language (VHDL, Verilog)

in an attempt to improve productivity and enhance system performance. [14]

With Vivado HLS, the designer can describe the algorithm using any of the compatible

C-based languages 1. A function that acts as a main entry for the design must be set as a top-

level function; its arguments will be implemented as an interface on the RTL when synthesized.

After providing the code, the designer can validate its correctness against a known good output,

analyze its performance using the bundled inspection tools, transform the design to RTL and

export it to an RTL package in a desired IP format. This package can subsequently be imported

and used as a core in other Vivado designs.

Vivado HLS gives the designer the opportunity to specify how parts of the source code

should be transformed in the synthesis process through the use of directives. Those are a set

of #pragma statements that can be used by the designer to instruct the Vivado HLS on how it

should transform the code area the directive refers to, with the aim of achieving a more refined

and optimized result. The main code areas for which directives can be applied are:

• The interfaces that will be implemented on the arguments of the top-level function, e.g.

AXI4, bus, etc.

1Vivado HLS only supports a limited subset of the operations each programming language provides. For

example, there are limitations on the implementation of pointers and no provision for dynamic memory allocation.

Evangelos Mageiropoulos 5 March 2017



2. RELATED WORK

• The storage elements, in particular arrays: The designer can select how arrays are

implemented into block rams and registers.

• The loops that appear in a function body. Those can be unrolled, pipelined etc. in order

to enhance parallelism.

In section 7.1 of the Appendix, we present a detailed list of the directives available on Vivado

HLS.

Due to HLS becoming widely available only recently, it is necessary to evaluate it under

different algorithmic motifs and assess its performance and any benefits in comparison to a tra-

ditional RTL design methodology. Therefore, there has been research that focuses on providing

an evaluation of the methods the tool provides for enhancing the performance of the design [7]

and compare the results with direct, RTL implementations [8]. The results of those studies

indicates that Vivado HLS can introduce speedups on the design and perform more efficiently

latency and resource-wise.

Additionally, in order to further provide a layer of abstraction, a dynamic memory man-

agement system has been introduced for Vivado HLS, since it does not natively support this

feature1 [9, chapter 5]. This makes easier sharing memory between multiple processing elements

inside the design with varying memory demands throughout its runtime.

2.3 Work on Dwarfs

The collection of Dwarfs as a set of well-defined algorithmic methods has been implemented

in OpenCL in the OpenDwarfs project [4]. OpenCL (Open Computing Language) is a pro-

gramming framework that allows for platform-agnostic code to be executed on heterogeneous

platforms that usually include CPUs, GPUs and, more recently, FPGAs. The study in [6] raises

the concern that an architecture-agnostic approach would cause an inefficient implementation

that will not utilize the resources of an FPGA optimally and proceeds to compare unoptimized

and optimized versions of algorithms following the structured grids and N-body methodologies

as described in the Dwarfs.

The study in [5] further expands [6] and introduces the Needleman-Wunsch algorithm as

an implementation of the dynamic programming algorithmic method from the Dwarfs. It then

proceeds to implement its kernel on OpenCL and execute it on the Opteron 6272 CPU, as well

as the HD7660D and HD6550D GPUs.

Evangelos Mageiropoulos 6 March 2017



2.3 Work on Dwarfs

An implementation of the Needleman-Wunsch algorithm on HLS is presented in [10]. In

this paper, the researchers used the CoDeveloper HLS suite that accepts code in Impulse C and

generates HDL code, in a fashion similar to Vivado HLS. They follow a different approach from

us however, as they directly proceed to implement a multi-process system with streaming input

and output from and to a CPU-controlled storage server. Additionally, they do not perform

a data locality analysis for efficient cache usage. They conclude that the HLS design is faster

than an HDL implementation; however the need to describe hardware still stands (even with a

high level language).
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Chapter 3

The Needleman-Wunsch Dynamic

Programming Algorithm

3.1 Introduction

The Needleman-Wunsch algorithm was developed by Saul Needleman and Christian Wun-

sch [11]. It is used in bioinformatics to calculate the alignment of a pair of sequences (collections

of nucleotides or amino acid residues), i.e. a way of arranging the sequences in order to find

regions of similarity between them. The Needleman-Wunsch algorithm falls under the category

of global alignment algorithms, which carry the alignment throughout whole pair of similarly

sized sequences, in contrast to local alignment algorithms, such as the Smith-Waterman, which

find particular regions of similarity on pairs of dissimilar sequences.

The algorithm follows the dynamic programming methodology to perform the global align-

ment, as it splits the original problem into small individual subproblems and solves them towards

finding the solution for the original one. For this procedure, it utilizes a two-dimensional dy-

namic programming matrix to store the solutions of the subproblems. For a pair of sequences

with lengths m, n, the matrix has size (m + 1) x (n + 1), which causes the algorithm to have a

time as well as space complexity of O(mn).

3.2 Algorithm Presentation

On its simplest form, the Needleman-Wunsch algorithm uses the scoring function S(xi, yj)

which accepts a pair of amino acids or proteins and returns their match/mismatch score. A

simple scoring function might simply return a given value if the input pair matches or not. In a
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3. THE NEEDLEMAN-WUNSCH DYNAMIC PROGRAMMING
ALGORITHM

more complicated scoring system however, a similarity matrix might be used instead - e.g. the

BLOSUM62 similarity matrix which is presented in section 7.3 of the Appendix, which contains

different scores for each pair of inputs. Additionally, it considers a gap penalty value, vgap open

to account for opening gaps while aligning the sequences. The algorithm first initializes the

first row and column of the dynamic programming matrix, vdp, using the formulas:

vdp(0, 0) = 0 (3.1)

vdp(i, 0) = vdp(i− 1, 0) + vgap open, i > 0 (3.2)

vdp(0, j) = vdp(0, j − 1) + vgap open, j > 0 (3.3)

It then uses the following function to fill the matrix, beginning from vdp(1, 1):

vdp(i, j) = max


vdp(i− 1, j − 1) + S(xi, yj)

vdp(i− 1, j) + vgap open

vdp(i, j − 1) + vgap open

(3.4)

For each vdp(i, j) calculated, the algorithm keeps the cell that was selected from the max

function and creates a path to cell (0, 0). When the calculation of the dynamic programming

matrix reaches the bottom right cell and is completed, it traces back the path to (0, 0). This

procedure creates the sequence alignment, in the sense that diagonal movement matches pairs

on both sequences, horizontal movement introduces a gap in the sequence mapped to the rows

of the matrix and horizontal movement introduces a gap in the sequence mapped to the columns

of the matrix1.

3.3 Example of Usage

Consider the sequences ACGCATCA and ACTGATTCA to be aligned with the Needleman-Wunsch

algorithm, with a match score of vmatch = 2, a mismatch penalty of vmismatch = −3 and a gap

penalty vgap open = −2 [12]. As mentioned, the algorithm initializes a two-dimensional matrix

with the size of (m + 1) x (n + 1) given sequence lengths m and n, respectively; in this case,

the matrix has a size of 9x10.

1Note that there might be more than one possible global alignments for a pair of sequences. The Needleman-

Wunsch algorithm selects one of them.
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3.3 Example of Usage

Figure 3.1: Initialized 9x10 dynamic programming matrix

The algorithm proceeds to initialize the first row and column of the matrix using the equa-

tions 3.1-3.3. The resulting initialized matrix appears in figure 3.1.

Following the matrix initialization, the algorithm begins to calculate the value of each cell,

starting from cell (1, 1), using the equation 3.4. In the case of the cell (1, 1), its value is

calculated as:

vdp(1, 1) = max


vdp(0, 0) + vmatch

vdp(0, 1) + vgap open

vdp(1, 0) + vgap open

= max


0 + 2

−2− 2

−2− 2

= 2

Additionally, the algorithm keeps track of the cell that was selected from the max function

- in this case, cell (0, 0). Thus, the dynamic programming matrix is updated as shown in

figure 3.2.

Figure 3.2: The dynamic programming matrix with cell (1, 1) calculated

The algorithm subsequently proceeds to calculate the values of the remaining cells in the
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3. THE NEEDLEMAN-WUNSCH DYNAMIC PROGRAMMING
ALGORITHM

dynamic programming matrix. Figure 3.3 presents the resulting matrix. It then traces the path

from the bottom right cell back to cell (0, 0), resulting in the following alignment:

ACTG-ATTCA

|| | || ||

AC-GCAT-CA

Figure 3.3: The completed dynamic programming matrix with the traceback path [12]
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Chapter 4

Analysis of the Algorithm

The main advantage of an algorithm implementation on an FPGA is the high level of parallelism

that can be achieved in contrast to a traditional CPU/software implementation. Therefore, it is

important that the algorithm is analyzed for its maximum level of parallelism, while considering

any delays that might occur due to data transfers and might hinder performance and introduce

latency on the design. In this chapter, we analyze the Needleman-Wunsch algorithm under the

scope of data dependencies and we subsequently examine the efficiency of the findings regarding

data locality. Finally, we suggest an implementation of the design, considering the findings of

this analysis.

4.1 Stencil Computation

In scientific computing, a stencil defines the computation of an element in an n-dimensional

spatial array at time t as a function of neighboring array elements at time t − 1,...,t − k. The

n-dimensional array plus the time dimension span an (n+ 1)-dimensional spacetime. A stencil

computation is a traversal of spacetime in an order that respects the data dependencies

imposed by the stencil. Such computational method might impose delays when, on the memory

hierarchy of the system performing the computation, the storage required to accommodate for

data dependencies exceeds the size of the available cache, thus resulting in cache misses [13].
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4. ANALYSIS OF THE ALGORITHM

(a) Initial state (b) Step 1 (c) Step 15

Figure 4.1: Parsing steps on a reverse-diagonal matter: Green indicates cells that have been

computed, yellow indicates cells that have their data dependencies satisfied but are yet to be

computed and white indicates cells that do not have their data dependencies satisfied and thus

cannot be computed at the current state.

4.2 Data Dependency Analysis

4.2.1 The Needleman-Wunsch Algorithm as a Stencil Array

By the algorithm’s definition, each cell (i, j) in the dynamic programming matrix depends on

the cells (i− 1, j − 1), (i, j − 1) and (i− 1, j). This makes the matrix parsing scheme fall under

the category of a stencil computation. Furthermore, it limits the possible level of parallelism

to parsing the matrix in a reverse-diagonal manner, as shown in figure 4.1 of a sample 20x20

matrix.

When the matrix filling operation begins, only the value of a single cell can be calculated.

Following its calculation, the number of cells ready for calculation rises to two. After each

timestep1, the number of cells available for calculation rises by 1, to a maximum of the size of

the diagonal of the array - then diminishes by 1 until the end of the calculation. Parallelism-

wise, the best possible solution would be to implement as many execution units to calculate

the value of each cell, i.e. workers, as there are cells on the diagonal of the matrix, in order to

parse it as fast as possible. Such solution however would be unfeasible when considering the

limitations of available hardware when working on large matrices. Additionally, it would be

a waste of resources, as the workers would be fully utilized for only a fraction of the process

- in the case of a square matrix, only once, when calculating the reverse diagonal. Therefore,

1In a stencil computation, a timestep refers to the calculation of the cells in the stencil array that have their

dependencies satisfied at a given time.
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4.2 Data Dependency Analysis

Figure 4.2: Array with 4 workers, step 4: This is the fourth step of the parsing and the first

where all workers are utilized. Green indicates cells that have their values already calculated,

red indicates the last cells that had their values calculated by the workers, yellow indicates the

cells that have their dependencies satisfied and can be calculated and white indicates cells that

do not have their dependencies satisfied. This step is common in both the diagonal and vertical

parsing methods.

an implementation where the number of workers is smaller than the number of cells on the

diagonal of the matrix would be expected. Under this premise, we proceed to present the

possible methods for parsing the matrix, i.e. assigning matrix cells to workers for calculation.

4.2.2 Matrix Parsing Methods

There are two possible methods of scheduling the workload to the worker units with regard to

how the matrix is being parsed: One following a diagonal parsing order and one following a

vertical one, as shown in figures 4.2, 4.3, 4.4 and 4.5, in an example of a 20x20 matrix with 4

workers. A horizontal parsing method is also applicable - however it behaves in the exact way

as the vertical one and thus is ignored in this study.

Regarding parallelism, the diagonal parsing method holds an advantage over the vertical

one, as it adheres to the reverse-diagonal method which ensures that the maximum number of

workers possible is always utilized, as stated earlier, leading to parse completion in the least

amount of steps. In contrast, when (Y − 1)modnworkers 6= 0 (where Y is the number of matrix

columns and nworkers is the number of workers), there will be nworkers − (Y − 1)modnworkers

idle workers when working in the last set of columns with the vertical parsing method, as shown

in figure 4.6.
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Figure 4.3: Array with 4 workers, step 5: This is the fifth step of the parsing and is common

in both the diagonal with left anchor (i.e. diagonal parsing beginning on the left side of each

diagonal) and vertical parsing methods.

(a) Step 6 (b) Step 7 (c) Step 8

(d) Step 9 (e) Step 10

Figure 4.4: Steps in a diagonal parsing method: The sixth to tenth step in the diagonal with left

anchor parsing method. Workload is assigned in order to calculate cell values on current reverse

diagonal and should workers be left non utilized, they proceed to the next reverse diagonal.
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(a) Step 6 (b) Step 7 (c) Step 8

(d) Step 9 (e) Step 20 (f) Step 21

(g) Step 22 (h) Step 23

Figure 4.5: Steps in a vertical parsing method: The sixth to ninth and twentieth to twenty-third

step in the vertical parsing method. Workload is assigned in vertical order. The twentieth to

twenty-third steps show the procedure of changing the set of columns that are being parsed

while keeping all the workers utilized.
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(a) Step 76 (b) Step 77 (c) Step 78

(d) Step 79 (e) Step 80

Figure 4.6: Final steps in the vertical parsing method: In the case of 4 workers on a 20-by-20

matrix, there is one worker idle when parsing the last set of columns.
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4.2.3 Conclusion

The analysis of the Needleman-Wunsch stencil array signifies that the parsing method to achieve

the highest possible level of parallelism would be the diagonal one. However, the issue of data

locality and efficiency regarding data transfers still needs to be examined and addressed. In

the following section we compare the two parsing methods under the scope of data locality in

order to minimize any slowdowns that might be caused from data that need to be retrieved

from storage outside the FPGA.

4.3 Data Locality Analysis

4.3.1 Purpose

In any data processing design, an implementation of a cache memory to store data for fast

access is necessary to improve data locality and performance. However, as stated earlier, a

stencil computation might introduce delays during runtime, when the storage required to keep

the dependencies needed for a timestep exceeds the available cache of the system. In such

case, a cache miss will occur in order for the system to retrieve the data required and solve the

dependency, which will cause the procedure to stall. Therefore, we need to analyze the parsing

methods presented in the previous section under the scope of data locality and evaluate them

on their efficiency regarding data reuse.

4.3.2 Determining Hits and Misses

In order to analyze their efficiency regarding cache hits and misses, each method needs to be

tested with varying parameter values, for them to be studied under different use case scenarios.

Those parameters are:

• The the dynamic programming matrix size (rows and columns), as defined by the length

of inputs

• The number of workers

• The cache size

For simplicity’s sake, during the analysis, we considered a fully associative cache to be

present. This would achieve maximum cache utilization, under a best-case scenario for the
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evaluation of cache hits and misses. Each cache entry consists of a pair of matrix row and

column coordinates acting as a tag and the value of the corresponding cell for the data part.

In order to automate the procedure of measuring cache hits and misses, we developed a

cache simulator in Java. The simulator accepts the aforementioned parameters as arguments

and prints the number of hits and misses for each step, as well as their total amount up to that

step. The results collected from the simulator execution were grouped into graphs for a better

understanding of the performance of each method.

The simulator accepts the size of the dynamic programming matrix, the number of workers,

the cache size and the desired parsing methods as arguments. It then initializes the following

main elements:

• A matrix to hold the status of each cell - whether its value has been calculated, it has

its dependencies satisfied or not,

• A list used for keeping track of cells that have their dependencies satisfied but are yet to

be calculated - a pending cell list, and

• A list acting as a cache. The presence of cells needed for a calculation in this list deter-

mines whether there is a cache hit or miss. Cells can be added in the head or tail of the

list. After each step, the size of the list is checked. If it exceeds the cache size passed as

an argument, the exceeding cells are removed from the tail of the list.

At first, the cell (1, 1) (the only cell that has its dependencies satisfied) is inserted into

the pending list. Afterwards, the simulator enters a loop that breaks when the pending list is

empty, i.e. there are no more cells to be calculated and the algorithm has finished. Inside that

loop, the simulator performs the parsing of the matrix. It begins by removing as many cells

from the pending list as possible, to a maximum of a number equal to the number of workers.

The position of the cells removed from the pending list is determined by the parsing method

selected: In the case of diagonal, the cells are removed from the head of the list, whereas in the

case of vertical, they are removed from its tail. In this way, the matrix is parsed in a manner

adhering to the desired parsing method.

Following the removal of each cell from the pending list, the simulator checks whether its

dependencies are in the cache list and updates the hit and miss statistics accordingly. If a

dependency is not in the cache list, it is added in accordance to its position in relation to the

cell that is being calculated: If (m,n) is the position of the cell and (m− 1, n− 1) the position
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of the dependency, the dependency is added to the tail of the cache list. Otherwise, it is added

in the head. In this way, diagonal dependencies that are used for only one calculation are more

likely to be removed from the cache. Subsequently, the simulator changes the cell status on

the matrix to ’calculated’, checks if the cells (m + 1, n) and (m,n + 1) have their dependencies

satisfied (if they exist) and adds them in the pending list. This procedure acts as a step in the

algorithm.

After each step, the simulator prints current and cumulative hit and miss statistics on a

log file for reference. Each log file also contains data on which cells were brought to cache and

which cells were removed from the cache, as well as the status of the dynamic programming

matrix with regard to the calculation status of the cells.

For our analysis, we created a bash script to run the simulator on a given set of data, collect

the hit and miss results from its log files and create graphs with them using gnuplot. The data

set of the simulations was as follows:

• A set of varying sequence input lengths, resulting in matrices with dimensions 6x3, 15x8,

45x24, 150x8 and 450x240.

• For each matrix size we considered a set of 5, 10, 60, 100 and 234 workers.

• For each simulation regarding the number of workers, the cache size was determined as

[S ∗ numworkers], where S ∈ (0.8, 1.5, 2, 4, 8). This way, we can inspect how the cache

performs in relation to the number of working units, while excluding cache values that

would be too small or too large and thus unnecessary for our study.

• Each simulation was performed under both diagonal and vertical parsing methods.

This data set will help us to understand the behavior of both parsing methods in varying

cache sizes and number of workers that varies from equal to much smaller order in relation to the

number of matrix cells. For each simulation on a mxn sized matrix, we expect 3∗(m−1)∗(n−1)

cache accesses. That is because the cells on the first row and column of the matrix do not need

to be calculated and each cell calculation depends on data from 3 neighboring cells.

A total of 250 simulations were run on the cache simulator, as a result from the input

dataset provided. We collected the cumulative cache hit and miss results and grouped them by

the number of workers and the size of the matrix. Then we produced graphs showing the hits

and misses of both parsing methods under the same figure for each group, for us to visualize
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and better understand the performance of each method. This procedure resulted in 25 graphs.

In this section we present the most important ones. We have also included the exact hit and

miss statistics for all graphs in section 7.2 of the Appendix, together with the number of cells

of the matrix and the cache accesses.

We expect the misses in a simulation on a mxn matrix to be at least m + n − 1. That is,

because the cells in the first row and column of the matrix are not present in the cache when the

parsing begins, therefore requesting them will result in a cache miss at least once. In the case

where the number of workers is relative to or bigger than the matrix dimensions, both parsing

methods have similar or equal performance. This happens because when the number of workers

is comparable to the dimensions of the matrix, both methods follow a similar parsing pattern,

with negligible deviations from each other. Moreover, for a cache big enough, the methods

achieve the minimum number of misses, m + n− 1.

However, when the number of workers is smaller than the matrix dimensions, the parsing

methods perform quite differently. In figure 4.7a of a simulation with 5 workers and a 15x8

matrix, we can see that when the cache size increases, the diagonal method quickly achieves

marginally more cache hits than the vertical one. This is however not the case in simulations

shown in figures 4.7e and 4.7f, where the matrix size gets bigger than the number of workers (and

subsequently the cache size, as set in the simulation parameters). Here, the diagonal method

strives to reach the performance of the vertical one and manages to achieve a marginally better

hit/miss rate only with the maximum cache size.

Moreover, in figure 4.7b, when the cache size becomes larger than the number of workers,

the diagonal method performs worse than the vertical one and in figure 4.7c it fails to have

more hits than misses under any cache size tested. This is due to the fact that the diagonal

method needs to keep in the cache, cells across the previous reverse diagonal of the matrix, as

shown in figure 4.9 - in the case the matrix has a diagonal with size similar to the cache, there

would be no issue. However, when working on larger matrix, it will result in high miss rate and

overall poor performance. In contrast, the vertical method performs in a consistent manner, no

matter the size of the matrix - thus, making it a better choice for our implementation.
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4.4 Simulation Results Analysis

When parsing a mxn matrix with k workers with the vertical method, when traversing a set of

columns, the calculations the workers 2, ..., k1 need to perform for each step depend solely on

data calculated in the previous two steps. The only exception would be the first steps when

parsing the set, where the workers will need to retrieve data from the first row of the matrix.

Only worker 1 needs data calculated from the traversal of the previous set of columns, as shown

in figure 4.8. Those dependencies were calculated by worker k while traversing the previous set

of columns. This procedure results in a high rate of data reuse and is the cause of the improved

efficiency of the method over the diagonal one.

The poor performance of the diagonal method is due to the fact that this method needs

to keep in the cache, cells across the previous reverse diagonal of the matrix, as shown in

figure 4.9. In the case the matrix has a diagonal with size similar to the cache, there would be

no issue. However, when working on larger matrix, it will result in high miss rate and overall

poor performance. In contrast, the vertical method performs in a consistent manner, no matter

the size of the matrix - thus, making it a better choice for our implementation. Considering

this observation, we proceed to make the following statement for the vertical parsing method:

In a vertical parsing method, for the implementation to be efficient, the cache size needs to be
at least 2∗nworkers+2. This accommodates for storing the dependencies from the two previous
steps of calculations. Any additional space can act as a 2nd level cache to be used towards
storing dependencies generated by the n-th worker that can be used by the first worker when
parsing the next set of columns.

When a group of n workers traverse a single set of columns, their data dependencies equals

to 3∗n, as each cell (j, k) depends on data from cells (j−1, k), (j−1, k−1) and (j, k−1); those

cell dependencies though overlap, which results in 2 ∗ n + 1 discrete dependencies, as shown

in figure 4.10. However, when the group of workers splits into two sets of columns, as shown

in figures 4.5e, 4.5f and 4.5g, we essentially have two groups of k and n − k, k < n workers

that have different sets of dependencies. In this case, the number of dependencies equals to

2 ∗ k + 1 + 2(n− k) + 1 = 2 ∗ n + 2.

The analysis of the Needleman-Wunsch algorithm we presented in this chapter helped us

understand its constraints and challenges imposed in an attempt to design a parallel implemen-

1The number of each worker refers to the column the worker traverses under each set, i.e. worker 1 traverses

the leftmost column of the set, worker 2 traverses the one on its right, etc.
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tation of it on an FPGA platform. Based on the results we collected from this analysis, we can

propose the following directions as a guide for our implementation:

• A set of n workers to perform the parsing of the matrix.

• The workers would perform the traversal in a way adhering to the vertical parsing method,

thus achieving better cache efficiency.

• A cache of size 2 ∗ n + 2 to accommodate for data dependencies required by the workers.

• An additional 2nd level cache outside of the IP to accommodate for data required by the

first worker.

• A scheduler to assign the workload to workers and manage the cache and inputs/outputs.

• An interface implementation for the design to access the 2nd level cache for data retrieval

and writing, as well as sending data of calculated cells to storage outside of the design.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: Cache simulator results
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Figure 4.8: Data dependencies for the first worker in a vertical parsing method: When traversing

this 20x20 matrix with 4 workers, the first worker will need data from the cells colored in blue.

Figure 4.9: Data dependencies in a diagonal parsing method: On this 20x20 matrix, the workers

assigned on the red cells will continue as indicated by the arrow. The blue cells in the previous

diagonal need to be present in cache, for the dependencies of the next steps to be satisfied.

Figure 4.10: Data dependencies for a set of workers: In this example, 4 workers have 2∗4+1 = 9

discrete dependencies.
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Chapter 5

Algorithm Implementation on

Vivado HLS

In this chapter, we present in detail the steps we followed towards implementing the Needleman-

Wunsch algorithm on Vivado HLS. We begin with a brief description of the tool and then proceed

to present the source code we will be using. Subsequently, we demonstrate two implementations

of the algorithm, together with performance results with different sets of directives.

5.1 Retrieving a Code Source

The first step towards implementing the Needleman-Wunsch algorithm on the Vivado HLS was

to retrieve the source code of an existing implementation. We required the code to be written

in a high-level programming language by a reputable source. In this way, we could ensure the

correctness of the code and proceed to import it to Vivado HLS for our study.

The first source we considered was the algorithm implementation by the National Center

for Biotechnology Information (NCBI), as a part of the NCBI C++ Toolkit software suite [15].

This suite also includes the well-known BLAST (Basic Local Alignment Tool) algorithm [16]

and provides a framework of libraries aimed at supporting bioinformatics services used inside

NCBI.

Despite our efforts to extract the Needleman-Wunsch implementation from the NCBI Toolkit,

its tight integration with the suite and the multitude of additional code modules it depended

on would compel us to perform quite a few alterations to the original code. This procedure that

would defy our initial purpose to preserve the integrity of the source code we would import to
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Vivado HLS. Therefore we ultimately deemed the NW implementation from the NCBI Toolkit

unfeasible for use to our study.

The next source we considered was an implementation of the algorithm by Dr. Y. Zhang at

the University of Michigan. [17] The source is provided in both Fortran and Java and follows a

simple and straightforward approach to implementing the NW algorithm. We selected the Java

version and converted it into C++ to achieve compatibility with Vivado HLS, making as few

alterations as possible, in order to keep the error margin at a minimum. The code also included

an alternative implementation of the algorithm that we did not include in our conversion. After

converting the code, we compared the output of both programs to verify its correctness.

5.1.1 Presentation of the Algorithm

The algorithm accepts two sequences of amino acids in FASTA 1 format, and negative integers

for gap introduction and extension penalties. It then fills the dynamic programming matrix

using a BLOSUM62 matrix (listed in section 7.3 of the Appendix) when calculating the score.

When the dynamic programming part is completed, it traces back the matrix and prints the

global alignment of the sequences, together with the alignment score. Next we present in detail

all the matrices, arrays and variables the algorithm uses:

1. The pair of sequences are read into the strings f1 and f2. The gap open penalty is read

into gap open and the gap extension penalty into gap extn.

2. The imut matrix is initialized as a 23x23 BLOSUM62 matrix, together with the string

seqW holding the amino acid sequence ARNDCQEGHILKMFPSTWYVBZX to match the matrix.

3. Each of f1, f2 is transformed into integer arrays seq1 and seq2, respectively. Each cell

of seq1, seq2 holds the position of seqW in which the corresponding amino acid in f1, f2

appears.

4. A two-dimensional score matrix is initialized, so that score[i][j] = imut[seq1[i]][seq2[j]],

i.e. each cell score[i][j] holds the BLOSUM62 score of matching the amino acids in

f1[i] and f2[j].

1A FASTA-formatted text file consists of one or more amino acid sequences, with a preceding line for each

sequence that starts with “>” and is followed by a unique sequence identifier and an optional description. For

our implementation, we only expect one sequence per FASTA file and ignore the line beginning with “>”.
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5. The matrices val, idir, preV, preH, jpV and jpH are initialized, each with dimensions

f1.length x f2.length.

• val holds the dynamic programming results. Per the algorithm’s specification, it

is initialized as val[0][0] = gap open, val[0][j] = val[0][j - 1] + gap extn

for j > 0, val[i][0] = val[i - 1][0] + gap extn for i > 0 and val[i][j] = 0

for i, j > 0.

• idir acts as a traceback matrix. Because it is an integer matrix, diagonal is 1,

horizontal is 2 and vertical is 3.

• The prevV and prevH matrices hold score data on already opened vertical and hori-

zontal gaps, respectively.

• The jpV and jpH act as support matrices to record the size of each extended vertical

and horizontal gap, respectively.

6. The algorithm performs the dynamic programming part to evaluate the alignment. This

is implemented as a set of two nested for loops for traversing each cell of val sequentially.

The formula the algorithm follows is:

val[i][j] = max


val[i - 1][j - 1] + score[i][j]

val[i - 1][j] + gap open

preH[i - 1][j] + gap extn

val[i][j - 1] + gap open

preV[i][j - 1] + gap extn

This considers diagonal, vertical and horizontal scores, together with gap opening or

extension penalties. Together with val, the matrices idir, prevV, prevH, jpV and jpH

are also updated to store traceback data and gap extension sizes and penalties.

7. After the dynamic programming matrix is filled, the algorithm proceeds to perform the

traceback operation and store the aligned sequences and final score of the alignment to a

text file.

5.2 Steps on Implementing the Algorithm

The implementation of the Needleman-Wunsch algorithm we chose for our study follows a

simple and straightforward sequential approach, with no optimizations towards parallelism or

platform-specific code, making it suitable for our case. In this section, we present our steps
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towards implementing the algorithm on Vivado HLS, optimizing it through the use of directives

and then attempting a different implementation for which we applied the findings we collected

from the previous chapter.

5.2.1 Implementation Using the Provided Code

For our first implementation attempt, we transfered the provided source code to Vivado HLS

and focused on using the directives the suite provides to optimize its performance, while keeping

any changes in the code to a minimum. In this way, we were able to observe how Vivado HLS

performs on a non-optimized sequential code, what level of parallelism can be achieved and

what the margins of speed-up are. Initially, we created the header file datatypes.h, where we

set the struct bus out, which returns the aligned sequences and score the algorithm calculates.

Essentially it acts as an output interface. The data structure bus out includes:

• fina score to carry the alignment score,

• L ali, L id and identity to carry sequence identity information,

• the arrays sequenceA, sequenceB and sequenceM that hold the aligned sequences (sequenceM

is used to provide spacing and helps identify the matches between sequenceA and sequenceB).

Inside datatypes.h we defined the constant MAXSIZE that we use to set the maximum size

of the arrays of the algorithm. As Vivado HLS does not allow defining arrays with size not

known at compile time, we need to have a maximum, predefined size for them. Additionally,

we used the ap int<val> and ap uint<val> type primitives provided by Vivado HLS to define

(un)signed integers with a custom bit length of val, in order to minimize the size of arrays that

are used in the algorithm. We removed the write-to-file part of the code. Instead, for returning

data, we set the function to return a struct of type bus out, which will later be implemented

as part of the interface. We also changed the arguments the function accepts (which will later

be implemented as the interface of the core) to the following:

• char f1[MAXSIZE] that contains the first input sequence,

• ap uint<val> f1 length that contains the length of the first input sequence1,

• respectively, char f2[MAXSIZE] and ap uint<val> for the second input sequence,

1For a successful implementation, we should use an appropriate value for val considering the value of MAXSIZE.
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• ap int<5> gap open and ap int<5> gap extn to define the penalties for gap opening

and gap extension.

In order to observe the impact of the directives on the design, we ran two of tests: One with

input sequences of lengths 10 and 50, and one of 300 and 500. Therefore, for every loop

with bounds depending on the size of the sequences, we used the directive LOOP TRIPCOUNT1 to

inform Vivado HLS of the number of iterations expected for each loop and updated the MAXSIZE

constant to 100 and 1000, respectively. Additionally, we set val to 7 and 10, respectively.

After the aforementioned steps, we decided to split the workflow in two parts: For the first,

we synthesized the code without the use of any optimization directives, in order to have an

unoptimized set of results for reference and for the second one, we gradually applied a list of

directives and monitored their impact on the design. This procedure was carried out using

the solutions perspective offered by Vivado HLS; each solution refers to a designer-defined

list of directives that can be implemented for synthesis, making implementations with different

directive sets easy to manage and perform comparisons on their results.

We ran each implementation on a system running Ubuntu Linux 16.04, with 4GB of RAM

and a 2.13GHz Core 2 Duo processor. The Vivado HLS version we used was 2016.2. We defined

xcku035-sfva784-3-e as a target device which corresponds to a Xilinx Kintex UltraScale FPGA.

This device package was the most resourceful available in the Vivado HLS device selection list,

with 25391 SLICEs, 203128 LUTs, 406256 FFs, 1700 DSPs and 1080 BRAMs. We set the clock

period to be 10ns.

The synthesis of the unoptimized code took 33.15 seconds to complete. Vivado HLS auto-

matically bound the ports of the core to the following interfaces:

• fina score, L ali, L id and identity to ap vld,

• sequenceA, sequenceB, sequenceM f1 and f2 to ap memory,

• f1 length, f2 length, gap open and gap extn to ap none.

Additionally, it correctly identified the arrays imut and seqW as read-only and implemented

them as distributed ROMs, whereas it implemented val, idir, preV and preH as block RAMs

and seq1 and seq2 as distributed RAMs.

1As stated in the list of directives, LOOP TRIPCOUNT is merely used for design analysis and does not impact

synthesis.
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After synthesizing an unoptimized implementation of the algorithm, we proceeded to apply

a list of directives to the code: At first, we focused on optimizing the loops inside the algorithm:

For each loop, we applied the PIPELINE directive. Vivado HLS automatically changed the Ini-

tiation Interval from 1 to 2 to satisfy carried dependency constraints for all occurrences. Subse-

quently, in an attempt to improve the efficiency of the resource utilization, we applied directives

on the interface: We set f1 length, f2 length, gap open and gap extn to ap stable, because

we expect those variables to have a constant value throughout the execution of the algorithm.

Additionally we attempted to set sequenceA, sequenceB and sequenceM to STREAM; however

Vivado HLS informed that those arrays are accessed in a non-sequential manner, therefore it

could not implement them as FIFOs used for STREAM. As a result we set them to ap memory. As a

next step towards improving latency, we applied the UNROLL directive for each loop. Vivado HLS

failed to implement it on the double-loop of the dynamic programming part of the code and the

traceback loops because of their variable bounds; however it successfully implemented it on the

initialization loops of seq1 and seq2, which were iterating on constant bounds. Furthermore,

we attempted optimizing the array accesses by partitioning them, using the ARRAY PARTITION

directive. However, using the cyclic and block option showed no improvement on the results

and complete caused Vivado HLS to exhaust the available memory of the system and stop

responding. Therefore we ultimately removed the ARRAY PARTITION directives altogether. Ad-

ditionally, we attempted to use the DATAFLOW directive on the design. Vivado HLS however

informed us that did not discover any possible data sharing optimizations between the loops of

the algorithm and thus failed to implement the directive.

The latency results of our implementations are shown in tables 5.1 and 5.2, for both tests.

We can observe that the PIPELINE directive caused a vast improvement in latency, especially

on the test with the larger set of inputs. Additionally, the use of the UNROLL directive further

improved latency, although to a lesser extent, while the ap stable interface directive showed

no improvement regarding latency. However, it allowed Vivado HLS to perform optimizations

regarding the use of available resources, which caused an improvement in resource utilization,

as shown in tables 5.3 and 5.4. In contrast, both PIPELINE and UNROLL directives caused a

slight increase in resource utilization. In figure 5.1 we can observe the latency speedup the

use of directives provided to the design with respect to the latency observed without the use

of directives. In both matrix sizes, we observe a speedup factor of about 2x when using both

PIPELINE and UNROLL directives.
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Directives Latency (clock cycles)

Synthesis RTL Simulation

None 6526 (2650) 7007

+PIPELINE 4817 (1002) 5314

+ap stable 4817 (1002) 5314

+UNROLL 3317 (1002) 3814

Table 5.1: Latency results on a 10x50 matrix

Directives Latency (clock cycles)

Synthesis RTL Simulation

None 946606 (751500) 952035

+PIPELINE 494307 (300002) 499354

+ap stable 494307 (300002) 499354

+UNROLL 474707 (300002) 479350

Table 5.2: Latency results on a 300x500 matrix

Directives Resources

BRAM 18K DSP48E FF LUT

None 24 8 3048 5425

+PIPELINE 24 9 3098 5530

+ap stable 24 9 2938 5530

+UNROLL 24 9 3011 5854

Table 5.3: Resource utilization on a 10x50 matrix

Directives Resources

BRAM 18K DSP48E FF LUT

None 1963 8 3167 5636

+PIPELINE 1963 9 3241 5782

+ap stable 1963 9 3051 5782

+UNROLL 1963 9 3116 6100

Table 5.4: Resource utilization on a 300x500 matrix
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Figure 5.1: Implementation speedup with different sets of directives

We also observed, however, that although the use of directives improved the overall latency

of the design significantly, the latency of the dynamic programming part (shown in parentheses

in the Synthesis column) would not drop below a certain value. This indicates that the dynamic

programming matrix is still accessed sequentially (each cell calculation requires two clock cycles

and for a matrix of size m xn the latency of its traversal would be m∗n∗2+2, together with an

initiation interval of two cycles). Therefore we concluded that the sole use of directives would

not be sufficient to parallelize the Needleman-Wunsch algorithm in Vivado HLS. Additionally,

for the larger test, the usage of BRAMs (memory elements) grew to 1963, making the design too

large for a pure FPGA implementation (the device we used only had 1080 BRAMs). Therefore,

we concluded that the sole use of directives would not be sufficient to parallelize the Needleman-

Wunsch algorithm and implementing the whole design on an FPGA would be unfeasible for large

inputs.

5.2.2 Implementation Based on the Analysis Results

In this section, we present our attempt to implement the Needleman-Wunsch algorithm on

Vivado HLS considering the findings of the theoretical analysis. Therefore we assumed the

following:

• Due to their variable (and likely large) size, the matrices val, idir, preV, preH, jpV and

jpH would be stored outside of our implementation and accessed through an interface.
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• We solely focus on the dynamic programming part of the algorithm, thus expecting array

initializations and traceback to be performed outside of our implementation.

• We would implement a 1st level cache inside our design.

• Due to its arbitrary size, we would expect a 2nd level cache to be implemented out-

side of our design and mediate between our implementation’s interface and the dynamic

programming matrices. For our study, we did not proceed to implement it.

• A scheduler implemented in the top level function of our design would assign workload to

the workers in order for them to parse the matrix with the vertical parsing method.

The block diagram of our suggested implementation is shown in figure 5.2. The workers,

1st level cache and scheduler reside inside the Vivado HLS core. Our design interfaces with

a memory controller that accesses a 2nd level cache and the dynamic programming matrices.

The memory controller, as well as the 2nd level cache could be implemented inside an FPGA

development board and take advantage of any available memory module (e.g. RAM) to increase

data locality. Additionally, the memory controller would interface with an external storage

(e.g. CPU-controlled hard drive) to store the dynamic programming array data. The external

storage would also contain the input sequences seqA and seqB. We now proceed to provide

details regarding the cache implementation and the interface.

Cache Implementation As stated in the previous chapter, we considered the implementa-

tion of a first level fully associative cache with size 2 ∗ nworkers + 2. Each cache cell holds the

cell value, the row and column of the cell acting as a tag, and a valid bit variable. As shown

in figure 5.3, a cache cell distributes data to two workers vertically and horizontally (with the

exception of the bottom-left and top-right cell) and to one worker diagonally. Moreover, when a

cache cell is accessed by a worker diagonally, its value will not be read again, due to the parsing

pattern. Therefore its value can be flushed to the external storage and the cell becomes empty.

This is also the case for the cell carrying the vertical dependency of the n-th worker. However,

when its data is flushed, it is expected to stay in the second-level cache, for faster access when

processing the next set of columns.

We implemented the cache as an array with 2 ∗ nworkers + 2 cells. We then used the

ARRAY PARTITION directive in order to decompose it into individual elements and unrolled the

loops that traverse it with the UNROLL directive in an attempt to fully parallelize the array
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Figure 5.2: Block diagram of the parallel Needleman-Wunsch implementation

Figure 5.3: Cache data distribution among 4 workers: The cells that are being evaluated by

the workers are indicated with red and the cells carrying dependencies are indicated with blue.

accesses. The implementation we aimed at is shown in figure 5.4. Each cache entry holds data

the size of which can be defined by the designer before synthesis, in order to accommodate for

different value ranges.
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Figure 5.4: Block diagram of the fully associative 1st level cache

Workers For our implementation, we defined the Worker class. This class contains the part

of the code inside the dynamic programming loop of the original implementation. The workers

accept the values required to perform the computation as arguments and return the calculated

val, idir, preH, preV, jpH and jpV values inside a struct.

Scheduler The scheduler assigns the workload to the array of workers, establishes the com-

munication between the cache and the workers and implements the interface of the core. In

our case, the scheduler uses two nested loops to parse the dynamic programming matrix: The

outer runs for as long as there are utilized workers (due to the uncertainty of the size of the

inputs); the inner is used to assign the workload to each worker - where we would concentrate

our efforts for parallelization.

Interface In addition to the preexisting ports f1, f2 (which we now implemented as point-

ers to accommodate for unknown input sequence lengths), f1 length, f2 length, gap open

and gap extn, we introduced an array interface of type nw data t *, a struct pointer im-

plementing the communication of the core to the external storage. Initially we attempted to

implement a pointer array with size 2 ∗n+ 2 for each cache cell to communicate independently.

However, the Vivado HLS would not support pointer implementation inside an array; therefore

we resulted to using only one instance of the array interface. This would force the cache

cells to share one bus when reading or flushing data, which would cause performance issues and

limit throughput.

As a first step, we applied the LOOP UNROLL directive on the inner loop of the scheduler, in

order for the workers to parse the dynamic programming matrix in parallel. We additionally set

the ports f1, f2 and array interface to use the ap bus interface, as it allowed non-sequential

accesses through pointers.
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For our test, we set the number of workers to 8 and used a sample set of sequences both with

length of 50. We ran both Synthesis and RTL Simulation: The simulation process completed

after a day of running and the results are shown in table 5.5. We would attribute those values to

the lack of interface ports as well as the complexity of the design, as we essentially described a

hardware implementation. Our attempts to apply any pipeline directives, as well as increasing

the number of workers failed due to Vivado HLS exhausting the available memory of the system

and halting. Table 5.6 presents the estimated resource utilization of the design.

Directives Latency (clock cycles)

Synthesis RTL Simulation

UNROLL 563157 442946

Table 5.5: Latency results of the implementation based on the analysis of the algorithm, on a

50x50 matrix

Directives Resources

BRAM 18K DSP48E FF LUT

UNROLL 2 49 17124 39648

Table 5.6: Resource utilization of the implementation based on the analysis of the algorithm,

on a 50x50 matrix
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Chapter 6

Conclusions - Future Work

In this thesis, we presented the Needleman-Wunsch algorithm as a prime example of an ap-

plication implementing the dynamic programming methodology and proceeded to perform an

in-depth analysis of it under the scope of parallelism. Additionally, we developed and presented

a cache simulator in Java, which helped us observe and evaluate the performance of the matrix

parsing methods in regard to cache hits and misses. Our findings helped us form a solid set of

suggestions for its parallelization, considering both spatial and temporal constraints and limita-

tions posed by the distinct characteristics of the algorithm. We subsequently implemented two

On our subsequent attempt to accelerate the algorithm on Vivado HLS, we made the following

observations:

• Implementing an algorithm using Vivado HLS is a straighforward procedure that provides

a higher level of abstraction from hardware description languages, which speeds up the

design process.

• The use of optimization directives was proven to be beneficial for the performance of the

design. Especially, the PIPELINE directive on loops with variable bounds the UNROLL on

loops with static bounds and no carried dependencies can improve the latency compared

to not using them by almost a factor of 2, per our observation.

• However, the use of directives can also cause long synthesis and RTL simulation times

and in some cases it might not provide the desired performance improvement.

• Additionally, Vivado HLS might fail to parallelize a design, despite the use of directives.

This is however to be expected to a certain degree, as successful parallelization requires a

good understanding of the mechanics and limitations of the algorithm.
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• In larger and more complicated designs, Vivado HLS suffers from long implementation

times and exhausts the available system memory, which might cause unexpected termi-

nation of the program.

As future work of our study, we would suggest proceeding to download the design on an

FPGA board and evaluate its performance on actual hardware. This would help us validate

the correctness of the algorithm and collect more accurate results regarding its performance.

Additionally, we would compare our implementation against designs developed purely in Hard-

ware Description Language, as well as software-based implementations for execution in a CPU,

and compare their performance results. In this way, we would be able to observe the effi-

ciency and performance of the design synthesized by the Vivado HLS compared with software

and hardware-based solutions. Moreover, we would also compare the results of our design to

those of other dynamic programming algorithm designs, especially the Smith-Waterman al-

gorithm that is used for local sequence alignment and shares the same algorithmic principles

with Needleman-Wunsch. This would provide useful information regarding any performance

deviations occurring due to differentiations between the algorithms.

Finally, we would propose an alternative approach for the parallel Needleman-Wunsch im-

plementation: Although attempting to implement the whole design on Vivado HLS yielded

unsatisfactory results, we would consider using the tool to create RTL designs for the worker

modules and then proceed to import them in a Vivado VHDL design. With this method, a

scheduler and a cache can be designed with more precision in VHDL and communicate with the

workers through an appropriate interface. This would enable us to compare the results of such

solution with those presented in this study, ultimately coming to conclusions on an optimal

design methodology.
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Chapter 7

Appendix

7.1 A: A List of HLS Directives

The following is a cumulative list of directives as used in the Vivado High Level Synthesis

software, together with an explanation of their usage.

1. ALLOCATION: Specifies a limit for the number of operations, cores or functions used.

This can minimize the sources used for the RTL design, but might force the sharing of

hardware resources and increase overall latency.

Options:

• limit: Refers to the maximum number of allowed instances of the block

• type:

(a) core: The directive refers to a readily available Xilinx core (the designer can

pick it from a list).

(b) function: The directive refers to a function defined in the C source code (the

designer must specify its name)

(c) operation: The directive refers to an operator, such as add, sub, etc. (the

designer can pick it from a list).

2. ARRAY MAP: Combines multiple smaller arrays into a single larger array, which can

then be targeted to a single memory resource.

Evangelos Mageiropoulos 43 March 2017



7. APPENDIX

Options:

• instance: Specifies the name of the larger array to be used. If multiple directives

refer to the same larger array, it gets populated with the same order as they appear.

• mode:

(a) horizontal (default): The smaller arrays get concatenated to form a larger array

with more elements and words with the same size as them.

(b) vertical: The larger array has the same number of elements as the smaller ones,

but longer words.

• offset: Specifies an integer value indicating the absolute offset in the target instance

for current mapping operation. This applies to horizontal mode only and is optional,

as Vivado HLS can automatically give it a value that will not cause overlaps.

3. ARRAY PARTITION: Splits an array into smaller arrays or individual elements. It

can improve the throughput of the design, at the cost of extra resources.

Options:

• type:

(a) block: Smaller arrays holding consecutive blocks of the original array are cre-

ated.

(b) cyclic: Partitioning creates smaller arrays by interleaving elements from the

original array.

(c) complete (default): The array is decomposed into individual elements.

• factor: Specifies the number of arrays the original array will be partitioned into.

• dimension: In multi-dimensional arrays, it specifies the dimension the directive

refers to. 0 is used to have the directive applied to all dimensions.

4. ARRAY RESHAPE: Combines array partitioning with vertical array mapping to cre-

ate a single new array with fewer elements but wider words
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Options: As this directive is essentially a combination of ARRAY PARTITION and

vertical ARRAY MAP, its options are the same as those of ARRAY PARTITION.

5. CLOCK: Used to apply a clock to the specified function. Only SystemC supports multiple

clocks.

6. DATAFLOW: This is a directive that orders Vivado HLS to analyze the dataflow be-

tween sequential functions or loops and attempt to create channels that allow consumer

functions and loops to start operation before the producer functions or loops have com-

pleted. This allows a higher level of parallelization, which can improve throughput and

decrease latency.

7. DATAPACK: Used to pack the fields of a struct into a single scalar. The first field of

the struct takes the least significant sector of the scalar, etc.

Options:

• instance: Specifies the name of the scalar to be used.

• byte pad:

(a) field level: Pack each field of the struct on 8-bits boundary first, then pack the

struct.

(b) struct level: Pack the struct first, then pack it on 8-bits boundary.

8. DEPENDENCE:Vivado HLS can detect variable dependencies within a loop and be-

tween different iterations of a loop. This directive is used to manually declare the presence

(or not) of a dependence, in case Vivado HLS fails to detect it (or have a false-dependence).

Options:

• variable/class(array/pointer): Specifies whether the directive refers to a particular

variable (option variable), or a whole class of variables (option class). Those options

are mutually exclusive.

• type:

(a) inter (default): The directive refers to variable operations within different loop

iterations.
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(b) intra: The directive refers to variable operations within the same loop iteration.

• direction: Refers to the nature of the dependence (RAW, WAR, WAW). This is

relevant for loop-carry dependencies only.

• distance: Specifies the inter-iteration distance for array access.

• dependent: Sets whether the dependence is true or false (default).

9. EXPRESSION BALANCE: Turns expression balancing on or off in a particular sec-

tion. By default, Vivado HLS balances expressions automatically.

10. FUNCTION INSTANTIATE: By default, all instances of a function, at the same

level of hierarchy, use the same RTL implementation. This directive forces the creation

of unique RTL implementation for each instance of the function, allowing them to be

optimized. The designer must declare which function argument is to be specified as a

constant.

11. INLINE: Removes a function as a separate entity and allows operations within the func-

tion to be shared and optimized more effectively with surrounding operations. An inlined

function cannot be shared.

Options:

• region: All functions within the specified region are to be inlined.

• recursive: Apply the directive recursively down the hierarchy. By default, the

directive is applied on only one level.

• off : Excludes the referenced region from being considered for automatic inlining.

12. INTERFACE: Specifies how RTL ports are created from the function description during

interface synthesis.

Options:

• mode:

(a) ap ack: Implements an acknowledge port associated with the data port to

acknowledge that the data was read or written.

(b) ap bus: Implements pointer and pass-by-reference ports as a bus interface.
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(c) ap fifo: Implements the port with a standard FIFO interface with active-on-low

empty and full ports.

(d) ap hs: Implements the data port together with valid and acknowledge ports,

to provide a two-way handshake feature.

(e) ap memory: Implements array arguments as a standard RAM interface that

will appear as discrete ports in the Vivado IP integrator.

(f) ap none: Does not implement any protocol.

(g) ap ovld: Implements an output data port with an associated valid port.

(h) ap stable: Does not implement any protocol and assumes that data is always

stable after reset, to allow internal optimizations.

(i) ap vld: Implements a data port with an associated valid port to indicate when

the data is valid for reading/writing.

(j) axis: Implements all ports as an AXI4-Stream interface.

(k) bram: Implements array arguments as a standard BRAM interface that will

appear as a single port in the Vivado IP integrator.

(l) m axi: Implements all ports as an AXI4 interface. config interface command

can be used to specify 32-bit or 64-bit address ports and control any address

offset.

(m) s axilite: Implements all ports as an AXI4-Lite interface. Vivado HLS produces

an associated set of C driver files during the Export RTL process.

• register: Registers the port and its related protocol signals and instructs the signals

to persist until at least the last cycle of the function execution. Applies to the

ap none, ap ack, ap vld, ap ovld, ap hs, ap fifo and axis modes.

• depth: Indicates the maximum size of the FIFO needed in the verification adapter

that Vivado HLS creates for RTL co-simulation. It is required for pointer interfaces

using ap fifo and ap bus modes.

• offset: Controls the address offset in AXI4-Lite and AXI4 interfaces. For AXI4-Lite,

it specifies the address in the register map. For AXI4, it can be set as:

(a) off : Do not generate an offset prot.

(b) direct: Generate a scalar input offset port.
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(c) slave: Generate an offset port and automatically map it to an AXI4-Lite slave

interface.

• bundle: Groups function arguments into AXI ports. By default, Vivado HLS groups

all function arguments specified as an AXI4(-Lite) interface into a single AXI4(-Lite)

port. This option bundles together all arguments with the same bundle string and

creates an RTL port with the same string as name.

• clock name: Specifies the clock name for the s axilite mode.

13. LATENCY: Specifies the minimum or maximum latency on a region. Vivado HLS

always aims for minimum latency and if it falls below the minimum set by the directive,

it extends the latency to the specified value, potentially increasing sharing. Conversely,

if it cannot match the maximum latency set, it increases effort to achieve the constraint

and if it still fails, it issues a warning and produces a design with the smallest achievable

latency.

14. LOOP FLATTEN: Flattens nested loops into a single loop, saving clock cycles and

potentially allowing for greater optimization.

A perfect loop nest refers to a loop nest of which only the innermost loop has loop

body content, there is no logic specified between the loop statements and all loop bounds

are constant. A semi-perfect loop nest is similar to a perfect loop nest with the

difference of having the outermost loop bound variable. An imperfect loop nest has

inner loops with variable bounds, or loop body not exclusively inside the inner loop. This

directive applies to perfect or semi-perfect loop nests and should be declared for the inner-

most loop in the loop hierarchy. If imperfect loop nest is the case, the designer might try

to restructure the code or unroll the loops in the loop body to create a perfect loop nest,

in order to apply the directive.

Options:

• off : Disables automatic loop flattening to a particular loop nest.

15. LOOP MERGE: Merges all loops into a single loop, that reduces the number of clock

cycles required in the RTL to transition between the loop body implementations and

Evangelos Mageiropoulos 48 March 2017



7.1 A: A List of HLS Directives

allows the loops be implemented in parallel. For loops to be merged, if their bounds

are variable, they must have the same number of iterations (if they are constant, the

maximum value is used as the bound of the merged loop). Moreover, code between loops

to be merged cannot have side effects and multiple execution of this code should generate

the same results. Loops with both variable bound and constant bound or loops that

contain FIFO reads cannot be merged.

Options:

• force: Forces loops to be merged, even when Vivado HLS issues a warning.

16. LOOP TRIPCOUNT: In case the loop tripcount (the total number of iterations per-

formed by a loop) cannot be automatically determined by Vivado in order to calculate its

total latency, this directive can be used to declare the latter. This information is used for

design analysis and does not have an impact on synthesis.

Options:

• min: Specifies the minimum latency.

• max: Specifies the maximum latency.

• avg: Specifies the average latency.

17. OCCURENCE: When pipelining functions or loops, this directive specifies that a par-

ticular code section is executed at a lesser rate than the code in the enclosing function

or loop, allowing it to be pipelined at a slower rate and potentially shared within the

top-level pipeline. Given that N is the number of times the enclosing function or loop is

executed and M is the number of times the conditional region is executes, the ratio N/M

must be an integer.

Options:

• occuring cycle: Specifies the N/M ratio.

18. PIPELINE: Specifies the details for function and loop pipelining.
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Options:

• II: Specifies the Initiation Interval, the number of cycles needed for the pipelined

function or loop to process new inputs. Default value is 1. Vivado HLS tries to meet

this request, but the actual result might have a larger II.

• enable flushing: Implements a pipeline that can flush pipeline stages if the input of

the pipeline stalls. This option implements additional control logic and thus demands

greater area.

• enable loop rewinding: This applies only to loops and enables continuous loop

pipelining, with no pause between one loop iteration ending and the next starting.

Rewinding is effective only if there is one single loop (or a perfect loop nest) inside the

top-level function. The code segment before the loop is considered as initialization,

executes only once in the pipeline and cannot contain any conditional operations.

• disable loop pipelining: Disables any automatic loop pipelining that might take

place in the optimization process.

19. PROTOCOL: Specifies a region of the code (a protocol region) in which no clock op-

eration is inserted by Vivado HLS, unless explicitly specified in the code. To declare a

region of code, the designer must enclose it in braces and name it: <name>:{}

Options:

• mode:

(a) floating (default): Floating mode allows the code corresponding to statements

outside the protocol region to overlap with the statements in the protocol region

in the final RTL. Although the protocol region remains cycle accurate, other

operations can occur at the same time.

(b) fixed: This mode ensures that there is no overlap.

20. RESET: Adds or removes reset signals for global or static variables.

Options:

• off : Whether it is ticked or not, reset signal is not/is generated, respectively.
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21. RESOURCE: Specifies which resource (core) should be used to implement a variable in

the RTL. The variable can be an array, an arithmetic operation or a function argument.

Options:

• core: Specifies the core to be used, as defined in the technology library.

• latency: Specifies the latency of the core.

• port map: Specifies port mappings when using the IP generation flow to map ports

on the design with ports on the adapter.

22. STREAM: Sets an array to be implemented as a FIFO for streaming data, which is a

more efficient communication mechanism in a case the data in the array are consumed or

produced in a sequential manner, in contrast to the default RAM array implementation. If

a top-level function argument is specified as an ap fifo, the array is identified as streaming.

Options:

• off : If the default channel is set to use a FIFO with the config dataflow command,

it globally implies a STREAM directive on all arrays in the design. This option

allows streaming to be turned off on a specific array and default it back to using a

RAM pingpong buffer based channel.

• depth: Overrides the default FIFO depth specified by the config dataflow com-

mand.

• dimension: On multidimensional arrays, specifies which dimension the directive

applies to. Default is 1.

23. UNROLL: This directive is used to unroll a loop, which minimizes the checks for exit

conditions and can improve parallelism.

Options:

• factor: Specifies a non-zero integer as the unrolling factor. Leaving it blank suggests

complete unrolling.
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• skip exit check: On a loop with fixed bounds, no exit condition check is performed

if the iteration count is a multiple of the factor. If the iteration count is not an integer

multiple of the factor, Vivado HLS prevents unrolling and issues a warning that the

exit check must be performed. On a loop with variable bounds, the designer must

ensure that not performing an exit condition check will not cause problems.

• region: Unrolls all loops inside a particular region. In case the region itself is a loop,

it is kept rolled.
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7.2 B: Cache Simulator Hit and Miss Statistics

Cache Size Diagonal Vertical

Misses Hits Misses Hits

4 11 19 11 19

8 8 22 8 22

10 8 22 8 22

20 8 22 8 22

40 8 22 8 22

Table 7.1: 5 workers, 6 rows, 3 columns: 18 cells, 30 cache accesses

Cache Size Diagonal Vertical

Misses Hits Misses Hits

4 199 95 188 106

8 157 137 89 205

10 86 208 78 216

20 22 272 37 257

40 22 272 32 262

Table 7.2: 5 workers, 15 rows, 8 columns: 120 cells, 294 cache accesses

Cache Size Diagonal Vertical

Misses Hits Misses Hits

4 2073 963 2206 830

8 2031 1005 939 2097

10 2000 1036 907 2129

20 1740 1296 248 2788

40 670 2366 248 2788

Table 7.3: 5 workers, 45 rows, 24 columns: 1080 cells, 3036 cache accesses
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Cache Size Diagonal Vertical

Misses Hits Misses Hits

4 23752 11561 25972 9341

8 23710 11603 11795 23518

10 23679 11634 11259 24054

20 23419 11894 2479 32834

40 22374 12939 2479 32834

Table 7.4: 5 workers, 150 rows, 80 columns: 12000 cells, 35313 cache accesses

Cache Size Diagonal Vertical

Misses Hits Misses Hits

4 215292 106641 236348 85585

8 215250 106683 107399 214534

10 215219 106714 105739 216194

20 214959 106974 21839 300094

40 213914 108019 21839 300094

Table 7.5: 5 workers, 450 rows, 240 columns: 108000 cells, 321933 cache accesses

Cache Size Diagonal Vertical

Misses Hits Misses Hits

8 8 22 8 22

15 8 22 8 22

20 8 22 8 22

40 8 22 8 22

80 8 22 8 22

Table 7.6: 10 workers, 6 rows, 3 columns: 18 cells, 30 cache accesses

Evangelos Mageiropoulos 54 March 2017



7.2 B: Cache Simulator Hit and Miss Statistics

Cache Size Diagonal Vertical

Misses Hits Misses Hits

8 157 137 157 137

15 64 230 64 230

20 22 272 22 272

40 22 272 22 272

80 22 272 22 272

Table 7.7: 10 workers, 15 rows, 8 columns: 120 cells, 294 cache accesses

Cache Size Diagonal Vertical

Misses Hits Misses Hits

8 2031 1005 1918 1118

15 1897 1139 918 2118

20 1740 1296 857 2179

40 670 2366 158 2878

80 68 2968 158 2878

Table 7.8: 10 workers, 45 rows, 24 columns: 1080 cells, 3036 cache accesses

Cache Size Diagonal Vertical

Misses Hits Misses Hits

8 23710 11603 24746 10567

15 23576 11737 11744 23569

20 23419 11894 10499 24814

40 22374 12939 1279 34034

80 18184 17129 1279 34034

Table 7.9: 10 workers, 150 rows, 80 columns: 12000 cells, 35313 cache accesses
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Cache Size Diagonal Vertical

Misses Hits Misses Hits

8 215250 106683 225554 96379

15 215116 106817 107316 214617

20 214959 106974 103399 218534

40 213914 108019 11039 310894

80 209724 112209 11039 310894

Table 7.10: 10 workers, 450 rows, 240 columns: 108000 cells, 321933 cache accesses

Cache Size Diagonal Vertical

Misses Hits Misses Hits

48 8 22 8 22

90 8 22 8 22

120 8 22 8 22

240 8 22 8 22

480 8 22 8 22

Table 7.11: 60 workers, 6 rows, 3 columns: 18 cells, 30 cache accesses

Cache Size Diagonal Vertical

Misses Hits Misses Hits

48 22 272 22 272

90 22 272 22 272

120 22 272 22 272

240 22 272 22 272

480 22 272 22 272

Table 7.12: 60 workers, 15 rows, 8 columns: 120 cells, 294 cache accesses
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Cache Size Diagonal Vertical

Misses Hits Misses Hits

48 111 2925 111 2925

90 68 2968 68 2968

120 68 2968 68 2968

240 68 2968 68 2968

480 68 2968 68 2968

Table 7.13: 60 workers, 45 rows, 24 columns: 1080 cells, 3036 cache accesses

Cache Size Diagonal Vertical

Misses Hits Misses Hits

48 21760 13553 18537 16776

90 9879 25434 8348 26965

120 8349 26964 6731 28582

240 229 35084 379 34934

480 229 35084 379 34934

Table 7.14: 60 workers, 150 rows, 80 columns: 12000 cells, 35313 cache accesses

Cache Size Diagonal Vertical

Misses Hits Misses Hits

48 213300 108633 214644 107289

90 208239 113694 105425 216508

120 202734 119199 81099 240834

240 164964 156969 2039 319894

480 1164 320769 2039 319894

Table 7.15: 60 workers, 450 rows, 240 columns: 108000 cells, 321933 cache accesses
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Cache Size Diagonal Vertical

Misses Hits Misses Hits

80 8 22 8 22

150 8 22 8 22

200 8 22 8 22

400 8 22 8 22

800 8 22 8 22

Table 7.16: 100 workers, 6 rows, 3 columns: 18 cells, 30 cache accesses

Cache Size Diagonal Vertical

Misses Hits Misses Hits

80 22 272 22 272

150 22 272 22 272

200 22 272 22 272

400 22 272 22 272

800 22 272 22 272

Table 7.17: 100 workers, 15 rows, 8 columns: 120 cells, 294 cache accesses

Cache Size Diagonal Vertical

Misses Hits Misses Hits

80 68 2968 68 2968

150 68 2968 68 2968

200 68 2968 68 2968

400 68 2968 68 2968

800 68 2968 68 2968

Table 7.18: 10 workers, 45 rows, 24 columns: 1080 cells, 3036 cache accesses
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Cache Size Diagonal Vertical

Misses Hits Misses Hits

80 18184 17129 18184 17129

150 6369 28944 6369 28944

200 229 35084 229 35084

400 229 35084 229 35084

800 229 35084 229 35084

Table 7.19: 100 workers, 150 rows, 80 columns: 12000 cells, 35313 cache accesses

Cache Size Diagonal Vertical

Misses Hits Misses Hits

80 209724 112209 183403 138530

150 195654 126279 88760 233173

200 180354 141579 84116 237817

400 67909 254024 1589 320344

800 689 321244 1589 320344

Table 7.20: 100 workers, 450 rows, 240 columns: 108000 cells, 321933 cache accesses

Cache Size Diagonal Vertical

Misses Hits Misses Hits

187 8 22 8 22

351 8 22 8 22

468 8 22 8 22

936 8 22 8 22

1872 8 22 8 22

Table 7.21: 234 workers, 6 rows, 3 columns: 18 cells, 30 cache accesses
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Cache Size Diagonal Vertical

Misses Hits Misses Hits

187 22 272 22 272

351 22 272 22 272

468 22 272 22 272

936 22 272 22 272

1872 22 272 22 272

Table 7.22: 234 workers, 15 rows, 8 columns: 120 cells, 294 cache accesses

Cache Size Diagonal Vertical

Misses Hits Misses Hits

187 68 2968 68 2968

351 68 2968 68 2968

468 68 2968 68 2968

936 68 2968 68 2968

1872 68 2968 68 2968

Table 7.23: 234 workers, 45 rows, 24 columns: 1080 cells, 3036 cache accesses

Cache Size Diagonal Vertical

Misses Hits Misses Hits

187 229 35084 229 35084

351 229 35084 229 35084

468 229 35084 229 35084

936 229 35084 229 35084

1872 229 35084 229 35084

Table 7.24: 234 workers, 150 rows, 80 columns: 12000 cells, 35313 cache accesses
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Cache Size Diagonal Vertical

Misses Hits Misses Hits

187 184801 137132 183099 138834

351 76862 245071 76349 245584

468 53255 268678 52393 269540

936 689 321244 1139 320794

1872 689 321244 1105 320828

Table 7.25: 234 workers, 450 rows, 240 columns: 108000 cells, 321933 cache accesses

Evangelos Mageiropoulos 61 March 2017



7. APPENDIX

7.3 C: The BLOSUM62 Scoring Matrix

A R N D C Q E G H I L K M F P S T W Y V B Z X

A 4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -2 0 -2 -1 0

R -1 5 0 -2 -3 1 0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3 -1 0 -1

N -2 0 6 1 -3 0 0 0 1 -3 -3 0 -2 -3 -2 1 0 -4 -2 -3 3 0 -1

D -2 -2 1 6 -3 0 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3 4 1 -1

C 0 -3 -3 -3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1 -3 -3 -2

Q -1 1 0 0 -3 5 2 -2 0 -3 -2 1 0 -3 -1 0 -1 -2 -1 -2 0 3 -1

E -1 0 0 2 -4 2 5 -2 0 -3 -3 1 -2 -3 -1 0 -1 -3 -2 -2 1 4 -1

G 0 -2 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3 -1 -2 -1

H -2 0 1 -1 -3 0 0 -2 8 -3 -3 -1 -2 -1 -2 -1 -2 -2 2 -3 0 0 -1

I -1 -3 -3 -3 -1 -3 -3 -4 -3 4 2 -3 1 0 -3 -2 -1 -3 -1 3 -3 -3 -1

L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4 -2 2 0 -3 -2 -1 -2 -1 1 -4 -3 -1

K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5 -1 -3 -1 0 -1 -3 -2 -2 0 1 -1

M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5 0 -2 -1 -1 -1 -1 1 -3 -1 -1

F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6 -4 -2 -2 1 3 -1 -3 -3 -1

P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7 -1 -1 -4 -3 -2 -2 -1 -2

S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4 1 -3 -2 -2 0 0 0

T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5 -2 -2 0 -1 -1 0

W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11 2 -3 -4 -3 -2

Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7 -1 -3 -2 -1

V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4 -3 -2 -1

B -2 -1 3 4 -3 0 1 -1 0 -3 -4 0 -3 -3 -2 0 -1 -4 -3 -3 4 1 -1

Z -1 0 0 1 -3 3 4 -2 0 -3 -3 1 -1 -3 -1 0 -1 -3 -2 -2 1 4 -1

X 0 -1 -1 -1 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -2 0 0 -2 -1 -1 -1 -1 -1
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