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“If you try to fail, and succeed, which have you done?” — ”

George Carlin
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Abstract

Distributed complex event processing is a method of tracking, analyzing,
processing and detecting specific events or patterns of events that may occur
in event data streams from various distributed sources. Every node within a
network does in-situ processing from its sources. This way of handling large
sets of data whose sources may be geographically scattered, has a couple of
advantages over centralizing the data into a single node and process them
there. The amount of information is potentially vast and limitations of the
available bandwidth render this approach impractical. Thus, a distributed
approach is implemented for communication efficiency. Additionally, hav-
ing a single node do all the processing and synchronizations of the network
creates a Single Point of Failure (SPOF) making the system unreliable when
real-time processing is important.

For these reasons, an architecture of an in situ complex event processing
is developed using the Apache Storm primitives. The architecture detects
patterns of interest on incoming event data streams over a number of nodes
in the network in real-time. The patterns, events and network agents are
specified from a user in a file and the system is designed to support multiple
such queries as well as to adapt to any significant changes in the network.
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Περίληψη

Κατανεμημένη επεξεργασία σύνθετων γεγονότων είναι μια μέθοδος ανίχνευσης,

ανάλυσης, επεξεργασίας και εντοπισμού συγκεκριμένων γεγονότων ή μοτίβων γε-

γονότων που εμφανίζονται σε ροές πληροφορίας απο ποικίλες κατανεμημένες πη-

γές. Κάθε κόμβος εντός δικτύου πραγματοποιεί επί τόπου επεξεργασία στα γε-

γονότα των πηγών του. Αυτός ο τρόπος χειρισμού μεγάλου όγκου δεδομένων

με γεωγραφικά διεσπαρμένες πηγές έχει αρκετά πλεονεκτήματα σε σχέση με την

συγκέντρωση και επεξεργασία των δεδομένων σε έναν κόμβο. Η ποσότητα της

πληροφορίας είναι δυνητικά τεράστια και οι περιορισμοί στο bandwidth καθιστούν
την μέθοδο της συγκέντρωσης ανέφικτη. ΄Ετσι, για αποδοτικότητα στην επικοι-

νωνία υλοποιήθηκε η προσεγγιση της κατανεμημένης επεξεργασίας. Επιπλέον,

έχοντας μόνο εναν κόμβο για συγχρονισμό του δικτύου και επεξεργασία δημιουρ-

γείται κόμβος αποτυχίας SPOF καθιστώντας το σύστημα μη αξιόπιστο οταν η
επεξεργασία σε πραγματικό χρόνο είναι σημαντική.

Για τους λόγους αυτούς, αναπτύχθηκε μια αρχιτεκτονική επί τόπου επεξεργα-

σίας σύνθετων γεγονότων χρησιμοποιώντας το Apache Storm . Η αρχιτεκτονική
εντοπίζει πρότυπα ενδιαφέροντος στις εισερχόμενες ροές δεδομένων γεγονότων

σε πραγματικό χρόνο σε πολλαπλούς κόμβους δικτύου. Τα πρότυπα, γεγονότα

και πράκτορες στο δίκτυο ορίζονται απο το χρήστη και το σύστημα σχεδιάστηκε

ώστε να υποστηρίζει πολλαπλά ερωτήματα και να προσαρμόζεται σε σημαντικές

αλλαγές στο δίκτυο.
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Chapter 1

Introduction

1.1 Thesis Overview and contribution

Nowadays, there are many systems and application domains that demand
timely processing of new data and involve internetworking of a number of
physical devices. Big data systems, Internet of Things platforms, environ-
mental sensor networks are some examples that output infinite sequences
of measurements or data that need to be processed and respond quickly to
events. This data consists of information about various requests, responses,
states updates etc. and need to be monitored and processed so that the inter-
esting and useful part can be detected and used for actions, statistics, predic-
tions, conjectures or conclusions that are of interest.

Complex event processing is used for processing event data in data streams
and detecting efficiently interesting situations in real time. In this way the
processing workloads are being shared between the nodes, a single point of
failure (SPOF) is avoided and the communication needed between them is
reduced to minimum. In this thesis, the FERARI project was used for these
reasons. It’s a Flexible Event Processing for Big Data Architecture which is a
distributed streaming platform that can provide efficient complex event pro-
cessing. It uses the Proton engine, a scalable, integrated platform which sup-
ports the development and maintenance of both event driven and complex
event processing applications. This powerful CEP engine has been imple-
mented on top of the streaming cloud platform Apache Storm. Each node
of the network runs a Storm installation along with the FERARI topologies
and has event processing agents assigned to it. It processes in-situ the incom-
ing data and by using the geometric method it monitors locally the receiving
events whether constraints and conditions are satisfied or violated.

This work makes an attempt to add adaptive behavior to CEP processing
in cases where the FERARI system detects changes regarding event appear-
ance probabilities, network latencies, the query or the agents. The contri-
bution of this thesis is the design of an architecture and an algorithm de-
velopment to make the CEP processing system more flexible by adapting to
various changes and being able to continue functioning smoothly in the most
effective way.
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1.2 Thesis Outline

The thesis is structured in a bottom-up way where every chapter covers a
lower level of the system’s design architecture than its next.

Chapter 2 describes some background concepts that are used throughout
the thesis. These are the complex events and the computing framework of
Apache Storm.

Chapter 3 analyses the engine which processes the complex events of the
system both as standalone and implemented on top of the cloud platform,
Storm.

Chapter 4 introduces the FERARI implementation and the modifications
needed to make it adaptive when circumstances demand some changes to
the system.

Chapter 5 concludes the thesis.
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Chapter 2

Background

This chapter introduces some concepts which are used throughout the thesis.
The complex events and the computation framework are presented in this
section.

2.1 Complex Events and Complex Events Process-
ing

Events are objects that represent data and notify about activities or changes
of states. The same activity or change of state can be represented by more
than one event object. The events can be simple or complex. The simple
events are atomic instances and are fed into the system for processing. They
are called primitive events. Event processing is a method of tracking and
analyzing (processing) streams of information (data) about things that hap-
pen (events) and deriving a conclusion from them. Complex event process-
ing (CEP) combines data from multiple sources to infer events or patterns
that suggest more complicated circumstances. The complex events consist
of other complex or primitive events and are derived by the CEP engine if
certain event patterns are met [3], [1], [10]. Figure 2.1 shows how this is
done.

These patterns are the rules that are expressed in the form of queries and
submitted in the CEP engine in order to detect the complex events. The over-
all structure of a query of a complex event language is:

Query clauses

FROM <input stream >
PATTERN <pattern structure>
WHERE <pattern matching condition>
WITHIN <sliding window>
HAVING <pattern filtering condition>
RETURN <output specification>

The PATTERN, WHERE, WITHIN clauses can define completely a query
pattern [11]. The PATTERN clause declares the structure of a pattern and
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uses constructs like AND where all the involving events need to take place,
SEQ where the involving events need to be sequential, OR where any of the
events need to occur. The WHERE clause contains value-based predicates
to define the events relevant to the pattern. The WITHIN clause specifies a
time window over the pattern in which the events are relevant ignoring the
ones out of it. It is important for a query to be as accurate as possible so that
all complex events of interest are detected and will not be missed.

FIGURE 2.1: CEP is aggregating event streams and detecting
patterns.

CEP is applied in a wide variety of fields, like health for pre detecting
deceases, operational intelligence (OI) to provide insight into business oper-
ations by running query analysis against live feeds and event data, financial
services for potential fraud detection and more.

2.2 Apache Storm

2.2.1 Project information

Apache Storm is a free distributed real time stream processing computation
framework [2], [8]. Initially it was developed majorly by Nathan Marz and
the team Back Type in the programming languages Clojure and Java. Storm
was released in 2011 as an open source project and currently is used by many
companies and organizations like Twitter and NaviSite. It is widely used for
a number of reasons:
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• It is scalable. Storm topologies run across a cluster of computers in
parallel. New machines can be added at any given time in the clus-
ter and can be used for the topology’s tasks immediately. Storm of-
fers commands for adjusting the parallelism in the running topologies
during processing or hints can be given when setting the components.
Storm’s inherent parallelism means it can process very high through-
puts of messages with very low latency.

• It is fault-tolerant. In cases when machines of the clusters fail then their
workers will be assigned to another node and if the workers die the
daemon supervisor will restart them. Even if the master daemon Nim-
bus dies, the workers will still continue to function.

• It guarantees data processing. Storm is able to keep the tuples anchored
to its input tuple or more tuples (for joins or aggregations) and track
the tuple tree through the topology with “acker” tasks. Any tuples or
messages that fail to ack will be replayed.

• It can be used with any programming language. Spouts and bolts can
be designed by any language as there are adapters for languages like
python, JavaScript, Perl.

• Easy to use. Storm clusters are easy to deploy as there are out of the box
configurations suitable for production. There are just three abstractions:
bolts, spouts, topologies that are easy and straightforward to program
and can be run in local mode for testing.

• It is free and open source. It has a large growing ecosystem of libraries
and tools to use in conjunction with Storm including many features and
utilities.

2.2.2 Storm Architecture

The architecture of Storm consists primarily of 2 basic types of nodes, the
Nimbus and the Supervisor.

Nimbus is a daemon which is run by the master node, it’s the central
component of Storm and its job is to run the topology, distribute the code
around the cluster, assign tasks to the machines of the cluster and monitor
for any failures.

Supervisors are daemons which are run by the slave nodes, they listen to
Nimbus waiting for workers and tasks to be assigned to them or stop them.
The Supervisors communicate with the Nimbus through the distributed mes-
saging framework, the Zookeeper, which is the one monitoring and storing
the state of the stateless daemons. These can be seen in the Figure 2.2.

Each machine in the cluster can run one or more worker processes for one
or more topologies. Each worker process can run one or more executors that
are the bolts or spouts of a specific topology. The tasks perform the actual
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data processing and their number for a component is immutable. This is il-
lustrated in Figure 2.3.

FIGURE 2.2: Master node and slave nodes communicate
through Zookeeper
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FIGURE 2.3: Tasks and executors of a worker process

2.3 Basic Concepts

Storm’s main concepts are the bolts, spouts and streams. In this section these
Storm primitives will be discussed.

2.3.1 Spout

A spout is the main source of streams in a topology. The spouts are responsi-
ble for accepting raw data from external sources like queues, files, streaming
APIs etc. and emit them into the topology through one or more streams for
processing. Additionally, the spout give each tuple a message id, so that af-
ter it has been processed, storm calls the ack () or fail () method passing the
message id to identify the tuple it is referring to for replay.

The core interface for implementing spouts is the ISpout. The major methods
of the interface that need to be implemented are:

• The open() method, which is called once when the spout is initialized in
the worker and here the external sources (i.e. distributed file systems,
databases, files) are defined.

• The nextTuple() method, which is called when Storm requests the next
tuple for processing.

• The ack(messageID) and fail(messageID) methods, which are called
when Storm has fully processed or failed to process the tuple with this
message ID.

• The OutputFieldsDeclarer method, which declares the multiple streams
the spout can emit tuples to and the SpoutOutPutCollector, which spec-
ifies the stream for the tuples to be emitted to.
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2.3.2 Bolt

The bolt is the basic processing component in a topology. They take as in-
put the tuples emitted by the streams they have subscribed to and produce
tuples as output. The bolts can process the tuples in any way like filtering,
transformations, aggregations etc. Then the output tuples can be emitted to
other bolts for further processing. New threads can be launched from within
bolts for asynchronous processing because the collector is thread-safe. The
core interface for implementing bolts is the IBolt. The major methods of the
interface that need to be implemented are the following:

• The cleanup() method is called when the component is shutting down.

• The execute() method is called when a tuple is available after it has been
emitted from a spout and is responsible for the processing of the tuple.

• The prepare() method is called once when the bolt is initialized in the
worker.

Both bolts and spouts can implement the declareOutputFields() where
the output stream ids and fields are declared.

2.3.3 Streams

A stream is an abstraction in Storm. It is a virtual channel through which
the tuples are emitted from spouts or bolts to other bolts of the topology. A
topology example using streams can be seen in Figure 2.4. They are defined
by the declareOutputFields() method with a schema that names the fields of
the tuples that are streamed.

The bolts subscribe to the streams they will be receiving input tuples from.
In order for the streams to be defined, stream groupings are used. The built-
in groupings that Storm offers are:

• Shuffle grouping: Tuples are randomly distributed across the tasks in
such a way that each one receives equal number of tuples.

• Fields grouping: The stream is partitioned by the fields specified.

• Partial Key Grouping: It works like the fields grouping in a more effi-
cient way in some situations.

• All grouping: The stream is replicated across all the bolt’s tasks.

• Global grouping: The entire stream goes to a single task of the bolt.

• None grouping: It is similar to the shuffle grouping.

• Direct grouping: The producer of the tuple decides which task of the
consumer will receive this tuple. A bolt can get the task ids of its con-
sumers by either using the provided TopologyContext or by keeping
track of the output of the emit method in OutputCollector (which re-
turns the task ids that the tuple was sent to).
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• Local or shuffle grouping: If the target bolt has one or more tasks in
the same worker process, the tuples will be shuffled to balance them
between the tasks.

FIGURE 2.4: Example of bolts, spouts and streams in a Storm
topology.

2.4 Redis

Redis is an open source NoSql, in-memory key value data structure store
which is used as a database, cache and message broker. It has outstand-
ing performance and is highly scalable. A Redis server supports many data
structures and features like: transactions, Pub/Sub, Lua scripting. In this
project the Publish/Subscribe paradigm is used.

Senders, the publishers, are not programmed to send their messages to
specific receivers, the subscribers, but the latter express interest in one or
more channels and only receive messages that are of interest without knowl-
edge of what(if any) publishers there are. This feat allows greater scalability
and more dynamic network topology and is implemented by SUBSCRIBE,
UNSUBSCRIBE and PUBLISH. Lastly, clients may subscribe to glob-like pat-
terns in order to receive all the messages sent to channel names matching a
given pattern. [9]



10

Chapter 3

Related projects

This chapter covers the central CEP engine that will be used in the sys-
tem, Proton and the Apache Storm implementation of it, which is Proton on
Storm.

3.1 Proton

Proton, known as Proactive Technology Online and developed by IBM, is
a scalable integrated platform that supports event-driven and complex event
processing applications. It is reactive not just to single events but also to situ-
ations which are essentially specific patterns of events that take place within
a dynamic time window. It enables the application to detect and react to any
custom pattern without knowledge of the primitive event, supports various
types of contexts and offers a complete event processing operator set like
join, aggregate, absence operators. [7]

A Proton project consists of events, consumers/producers, contexts, ex-
pressions and event processing agents (EPAs). It receives raw, primitive
events and by applying the patterns within a context on the events, the en-
gine generates derived events and takes actions or reports to the EPN con-
sumers if needed. This can be seen in Figure 3.1. The core concepts are
described in this section.

3.1.1 Event Processing Network

The event processing network (EPN) is an abstraction which basically is the
whole query. It is written in files in JSON format, describe the flow of the
events among the EPAs and define the EPAs, the consumers, producers, con-
texts and events.

3.1.2 Events

The events belong to event classes which describe the event structures that
the proton engine has to recognize. They enter the engine during runtime
carrying information about occurrences in the system’s domain. They can
have user defined attributes. Additionally, there are the derived events that
are derived from the EPAs and have the same characteristics as the input
events. The built-in attributes of the events are :
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FIGURE 3.1: The core CEP engine: Proton.

• Name: It is the name of the event class and the only one that must be
provided. The other attributes can be given default values.

• OccurrenceTime: This attribute of Date type is the time the event oc-
curred and can be assigned by the source.

• DetectionTime: The time the event is detected by the engine and is the
count of milliseconds passed since January 1, 1970 UTC.

• Duration: The time interval the event occurred.

• Certainty: The probability that event may occur.

• Cost: The cost of the event. The engine constructs this attribute and sets
its value to 0.0 if its omitted or left empty.

• Annotation: An annotation about the event. The default value is an
empty string.

• EventId: A string identification of the event. If omitted of left empty,
the value to the attribute is set to an auto-generated identifier.

• EventSource: The name of the source of the event. The default value is
an empty string
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3.1.3 Producers

The producers are responsible for feeding the CEP engine with the events
that occur. They have various parameters to customize them according to
the needs of applications, i.e. format of the input events, delimiters used to
separate the event attributes, polling interval between two input events and
more.
A producer definition includes these adapters:

• Files: The events are read from a given file. The file adapters can be set
as timed file adapters where the input events enter the system based on
their OccurrenceTime attribute.

• REST: The events enter the system through a rest client with GET com-
mands from an external REST service periodically. The REST adapters
can be parameterized by setting the URL of the REST service, the Con-
tentType and the PollingMode for batches or single instances of events.

• Custom: There can be custom mechanisms added to the adapter frame-
work in order to read the events.

3.1.4 Consumers

The consumers are responsible for handling the derived events that are
generated in the event processing network. Similarly to the producers, they
have various parameters to customize them and the consumer adapters in-
clude:

• Files: The events are written in a file.

• REST: The derived events are sent to an external REST service with
POST commands and can be parameterized by defining the URL of the
service, the ContentType and the AuthToken.

• Custom: There can be custom mechanisms for handling the derived
events.

3.1.5 Contexts

A context determines when a particular event processing agent is relevant.
Each agent can be running multiple context instances simultaneously. There
are three types of contexts:
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3.1.5.1 Temporal Contexts

A temporal context defines a time window in which the agent is relevant.
There are two types of temporal contexts, initiators and terminators.

Initiators The Initiators denote when the temporal contexts start. There
can be multiple initiators, so we need a correlation policy which determines
what happens in the case a new temporal context is opened when another
one is already open with the values “add” or “ignore”. They can be one of
three types:

• Startup: The temporal contexts are open when the event processing
agent is initially defined.

• Event initiator: The event that acts as the initiator of this context.

• Absolute time: The exact time of the temporal context is initialized.

Terminators The Terminators denote when the temporal contexts end. There
can be multiple terminators and one or more terminators can terminate one
more temporal context instances. They can be one of four types:

• Event terminator: The event that acts as terminator for this context.

• Absolute time: The exact time the temporal context is terminated.

• Relative time: The temporal context ends after the specified has passed
since the initiation time of the temporal context.

• Never ends: The temporal context is never terminated. If no terminator
is needed this one is chosen.

Additionally, the terminators can be set to terminate or discard a tempo-
ral context. If a temporal context is discarded, the event instances that have
accumulated during this temporal context are discarded and no detection oc-
curs.

3.1.5.2 Segmentation Contexts

A segmentation context defines a semantic equivalent that groups events
which have a set of attributes in common. It can either be an attribute or an
expression and has a unique name and a collection of participant events.
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3.1.5.3 Composite Contexts

A composite context consists of one or more temporal or segmentation
contexts and an instance of a composite context is open if all the specified
contexts of it are matched.

3.1.6 Event Processing Agents

The Event processing agents are the entities that are responsible for the
pattern detection and the generation of the derived events from the input
events, which can be derived events themselves. The EPAs have these char-
acteristics:

• Unique name

• EPA type

• Contexts

• Participating events

• Derived events

• Cardinality and Evaluation policies.

In more detail:

• They have a unique name to be identified in the event processing net-
work.

• The core property of every agent is its operator type. The operator type
of the EPA constructs the pattern based on the input events and can be
one of these:

– Basic operator: This is a stateless operator that works as a filter
on the input events and detects the patterns that meet the defined
conditions and thresholds.

– Join operators: The pattern is detected if the participant events
arrive in the exact order of the operands (Sequence) or in any order
(All).

– Absence operator: The pattern is detected if the operand events
have not arrived during the time window of the context.

– Aggregation operator: The Aggregate EPA is a transformation agent
that applies functions on a number of input events and computes
values. These values can be used in the derived events or as a
condition in the basic operator.
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– Trend operation: The Trend EPA is an agent that traces values of
a specific attribute over time on series of events. It detects incre-
ment, decrement or stable patterns among a minimum specified
number of event instances and operates only on a single event
type.

• In addition, EPAs have their contexts which can be temporal, or com-
posite containing a segmentation context.

As defined temporal context is the time duration in which the patterns
or events are relevant, and composite context containing segmentation
determines whether the events, that are fitting or not the context, are
considered input events. The EPA participant events are partitioned
according to the values or expressions defined by the segmentation con-
text.
The operators basic and absence do not use EPA segmentation contexts
since they do not correlate between operands.

• The participant events are the input events to the EPA and the operands
to the aforementioned operators. They are comprised of some proper-
ties which are the name of the event, a condition which is a filter ex-
pression that rejects the events that do not satisfy it and the consump-
tion policy which allows the event to be reused or reprocessed later in
the same pattern.
The trend operands and aggregation operands and operators have some
more properties. The most frequently used operand property of the ag-
gregation operator is the Instance Selection Policy which decides what
happens when multiple events of the same event occur. The quantifier
can be set to three options: First, Last or Override.
If it is set First/Last then only the First/Last event of the operand is se-
lected. If it is set to Override then all previous events are lost and only
the last is available, in contrast where the other events are buffered.

• The evaluation policy determines when the event is calculated and re-
ported. There are two available modes:

– In the immediate mode, a pattern is detected and reported when
a new input event instance occurs (given that the conditions of the
pattern are satisfied).

– In the deferred mode, a pattern is detected and the composition
process is performed when the context is terminated.

The operators: all, sequence, aggregation, trend use the evaluation pol-
icy attribute.

• The cardinality policy determines whether a pattern can be detected
once or multiple times in a context. If the policy attribute is set to:

– Single, then the pattern can be detected only once during the con-
text.
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– Unrestricted, then the pattern is calculated any times its condi-
tions are satisfied during a context.

The operators: all, sequence, aggregation, and trend use the cardinality
policy attribute.
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3.2 Proton On Storm

Proton on Storm is the standalone Proton, implemented using the Apache
Storm primitives. It runs as a Storm topology using bolts and spouts for the
queues, the contexts and the EPAs, and constitutes the core CEP engine. The
components can be seen in Figure 3.2.

FIGURE 3.2: Proton On Storm architecture

The user defines the producers for feeding the raw input data from ex-
ternal systems and they are translated to the input adapters which direct the
data to the Spouts.

The Routing bolt determines the routing metadata, the context and agent
name, of the incoming events and adds them to the event tuple. The Rout-
ing bolt runs multiple independent parallel instances. Then the metadata
are grouped using STORM options and the tuples are emitted to the context
service so that events with same metadata can be processed together.

The Context bolt controls the context service of the system. It adds the
relevant context partition id to the tuple, manages the lifecycles of the con-
texts, the initiators and terminators of partitions according to events or timers
specified and segmenting the input events into collections so that they are
processed in a batch. Then the tuples are field grouped on their context par-
tition and agent name and will be sent to relevant EPA instance.

The EPA Manager bolt is the last component of the topology. This is
the EPA manager where the EPAs instances are fed the events that are rele-
vant according to their context partition and they are processed for pattern
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matching and/or creating derived events, if relevant. The derived events are
emitted back to the routing bolt.
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Chapter 4

An adaptive complex event
processing system over STORM

4.1 FERARI Architecture

FERARI is an architecture which uses the CEP engine Proton On Storm for
real time processing of large volumes of event data over distributed topolo-
gies in a network. The system needs to be able to process continuous streams
of event data in a flexible and scalable way keeping the communication cost
to a minimum. In this section, the overall architecture of sites and network is
described. [6] [5] [4]

4.1.1 Site Architecture

Each site in the network runs an Apache Storm topology with independent
nimbus/supervisors daemons and their own tasks. The topology involves,
apart from the Proton On Storm which serves as the CEP engine of the sys-
tem, other components which ensure the communication required and the
proper functionality of operators.
The components of the FERARI topology are presented below. An overview
of the topology can be seen in Figure 4.1.

4.1.1.1 Input Spout

The Input Spout is the component which feeds the system with input data.
This data may come from any source, like a database, a file, HTTP Post
method. The Input spout’s main job is to receive the information, create the
primitive events out of it and emit them to the processing engine. Addition-
ally, it uses the plan generated by the optimizer to build the façade be able to
parse the events.

4.1.1.2 PushAndPull spout

The PushAndPull spout receives events that are pushed by the other sites
of the network through the communicators and then pass them to the event
processing engine. The routing bolt of the coordinator site generates pull
requests for event types which are sent from the communicator to all relevant
sites. The time machines of the sites that produce events of that type receive
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FIGURE 4.1: FERARI topology in a node.

the request and put these types of event in push mode for the requested time
window, which is by default infinite.

4.1.1.3 Time Machine

The Time Machine bolt’s main task is to use the detection timestamps and
buffer the tuples for a determined amount of time and according to their
type. Every time a coordinator asks a request the node to provide data, the
communicator of the node will ask for the tuples from the time machine, if
they are available in this time window. When available, it will forward the
requested events that took place in the requested timespan to the coordinat-
ing site’s PushAndPull spout. The Time machine can function in two ways.
The first is the “play” way where it buffers the data it receives and saves the
time stamp of the last tuple. When a local violation or a global that involves
the node occurs, the node enters a violation resolution state. In this state
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a “pause” message is sent to the time machine and it functions in “pause”
mode sending buffered tuple if they are requested until the violation is re-
solved. After the violation resolution the time machine gets in “play” mode
again. Furthermore, statistics are stored in time machine which can be re-
quested and used by the Optimizer to create new plans for sites. Lastly, in
this component are stored values sent from the gatekeeper about the moni-
toring function.

4.1.1.4 Communicator bolt

The Communicator bolt is the component of the system responsible for the
communication with the other nodes of the network. Since the Storm installa-
tions are independent in the sites, a Redis server is used to provide inter-node
communication.

The main job of the communicator is to send and respond to event re-
quests. The other nodes’ operators may request events that are relevant and
they will be asking for this event data, so their communicators will send pull
requests. Additionally, the communicator plays a part in violation resolu-
tions. When a violation occurs in the network, the communicator sends a
message and informs the time machine to enter “pause” mode until the vi-
olation has been resolved and the communicator messages time machine to
enter “play” mode.

4.1.1.5 Communicator RedisPubSubSpout

This is the spout of the communicator. Its job is mainly to wait and listen
to specific channels and respond to messages accordingly. The RedisPubSub
spout receives the configuration files as well as the plans from the optimizer
which are vital for the initialization of the other components of the node

Additionally, it receives the pull and push requests from the other nodes,
and messages concerning the coordinator like threshold values, violation res-
olution or reports. If the node is a coordinator, then the relevant messages are
sent to the Gatekeeper bolt.

4.1.1.6 GateKeeper bolt

The GateKeeper bolt is the component that takes mostly part in detecting
and resolving violations. It observes the monitoring function and if it is out of
bounds of the local threshold set by the GM coordinator, then the coordinator
is notified through the communicator for resolution. If the node has the GM
operator, then it is its job to resolve any local or global violations, compute
and reassign new thresholds to the nodes so that the number of violation gets
reduced.
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4.1.2 Initialization and setup

In this section, the initialization and setup of the system will be described.
For the system to start working and processing, it needs to be provided in-
formation about the network, the event streams and the query itself. This
information is processed by another component of the system, the Optimizer.

Optimizer The Optimizer is a Storm topology on its own. It is installed
in a node of the network but it does not affect the functionalities of the rest
architecture. It consists of 2 storm primitives, which are Optimizer bolt and
Optimizer spout. The optimizer’s job is to process the information given to
him, calculate and generate plans for each site. This information is given to
the optimizer spout externally through a socket, REST service, files. Then it
is passed to the Optimizer bolt where the actual methods for plan generation
take place and the configuration properties of the CEP engine components
are set.

The optimizer needs two kinds of information, information about the net-
work, and information about the queries. These parameters for the optimizer
are essential for the plans to be generated.

4.1.2.1 Network parameters

The network parameters are information about the nodes and what type of
events they receive. Specifically, they describe the interconnection between
the sides of the nodes and the latency between them. In addition, they in-
clude the types of the events along with their frequencies in the node. This
data is not static and may change while the topology is running, but it is nec-
essary for the initialization and the first optimal plans.
They are inserted in the system through a .csv file and the format is:

siteName ;(name of the site); links (name of sites the first site is linked ) ;
(latency between the sites) ; events ;(name of the events) ; (frequencies of the
events).

An example of a .csv file is:
siteName ;cent1;links; site4; 14;site1;10;events; CallPOPDWH; 0.1;
siteName;site1;links; site2; 12;site3; 13;events ;CallPOPDWH; 0.1;
siteName ;site2;events ; CallPOPDWH; 0.09;
siteName ;site3; events; CallPOPDWH; 0.09;
siteName;site4; events; CallPOPDWH; 0.15;
The graph for the network of the above example is shown in Figure 4.2.

4.1.2.2 Queries

The system needs to know how and what events is going to process. So, the
optimizer is fed with a set of queries defined by the user. It comes in JSON
format and generally describes the EPN and the EPAs as described in section
3.1. Among others, it contains information about the names of the possible
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FIGURE 4.2: Network graph.

input events, derived or not, the types of the EPAs, the contexts, the policies,
the types and expressions of the derived events.

After the query JSON file and the network parameters are received, the
optimizer parses them and breaks down the query into sub queries. After-
wards, the optimizer generates optimal plans for each site to answer these
sub queries and sends them to each site separately. The EPN also is checked
whether it includes the GM operator. If it does, its parameters and weight
vectors are set. The format of an EPN are described in a JSON file and can be
seen in Figure 4.3.

FIGURE 4.3: Format of JSON file.
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4.2 An adaptive complex event processing system
over STORM

In the previous section, the necessary parameters for setup and initializa-
tion of the system were described. Those are queries, the inter-site commu-
nication latencies, the names and frequencies of the events for each node.
However, these parameters may vary and change while the processing takes
place. When this happens, the system needs to adapt to the new parameters
while ensuring the smooth and proper functioning of the system.

For the system to start working we need to install and run the Apache
Storm topology in each and every one of the sites. For the sites to start pro-
cessing events, the network parameters and the set of queries from an ex-
ternal source are required. After this information is fed to the system, the
optimizer runs the necessary algorithms to generate a set of optimal plans
for each site in the network. Afterwards, the optimizer sends the plans to the
communicators of all the corresponding nodes of the network and the sites
begin processing input events.

While the sites are working and process all the incoming events, a new set
of queries could be sent to optimizer, inter-site latencies may change. Addi-
tionally, the optimizer may detect a change in the event frequencies the sites
are receiving. Every event passes through the routing bolt, so it is chosen
to accommodate the method UpdateStatistics, which updates the hashmaps
that include the event types and their counters. Then the maps are emitted to
the time machine and they become accessible to the optimizer who decides
whether new plans are required.

In case these incidents occur, the optimizer has to take into account the
changes and adapt to them by generating new plans for the sites. The new
plans will be transmitted through Redis to the other sites, which will start ini-
tializing and configuring the new topology with the new parameters. Mean-
while the old topology needs to stay active and keep processing the events
until the contexts are terminated. Then the old topology is killed and only
the new one remains active in the site.

4.2.1 Architecture

The platform, in order to achieve this adapting behavior to new parame-
ters, needs extra functionalities and components. One of them is a new topol-
ogy with a single storm primitive, called AdaptationSpout. The Adaptation
spout can be considered a distinct, cut off from the underlying distributed ar-
chitecture entity that can communicate through Redis signals with it. It can
be seen in the Figure 4.4.

The other component is another topology running in parallel with the
FERARI architecture in each site and has a single Storm component as well,
called Input spout. This spout’s main task is to feed the FERARI topology
with the primitive raw data. It receives or reads the data from an external
source and then publish it in a Redis channel. The spouts in the active and
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potentially multiple FERARI topologies subscribe to these channels and get
the event data. It can be seen in Figure 4.5.

FIGURE 4.4: Adaptation spout communicating with all FERARI
topologies.

FIGURE 4.5: Input spout sending raw data to the FERARI
Topology.



26 Chapter 4. An adaptive complex event processing system over STORM

In more detail, the Adaptation topology is the first topology that starts
running.

In the open() method, the necessary channels that will be used to com-
municate with other components of the distributed architecture are defined
and initialized. Additionally, the sources of the files containing the network
parameters and the set of queries are defined in this method.

The spout waits until the Json file is received and the parameters are set.
The spout then parses the network parameters file and finds the central node
of the graph, which will accommodate the optimizer. It then begins the pro-
cess of creating, starting and submitting the two topologies in every site de-
scribed in the network parameters file.

When the parameters change and new plans have to be generated, the
spout is notified and repeats this process. The optimizer in the first topology
is passed the parameters, creates the new plans which are transmitted to the
sites. When the new topology with the new plans is re ready to run, the
adaptation bolt is notified so that it can begin the process of killing the old
topology.

It is necessary for the spout to keep track of the active topologies running
at sites and the LocalCluster() objects that are used to start and kill them, so
there is a structure keeping this data as well as the topology id.

4.3 The adaptation workflow

The work flow of the adaptation process will be described in this section,
using a simplified mobile fraud detection scenario. In this example, for the
needs of a mobile network several antennas with geographical distance be-
tween them have been set up. These antennas represent the sites of the dis-
tributed architecture and the nodes in the network graph. Each cell tower
occupies a big range in which the customers can make calls using the cor-
responding antenna. The calls are the input data along with their proper-
ties, which involve attributes the calling number, duration, time occurrences,
charge amount and their event name is CallPOPDWH. The system is receiv-
ing the call events in the input spouts and is trying to detect potential deceit-
ful actions. The flow of actions is as follows.
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FIGURE 4.6: Network parameters and Json file reaching the
Adaptation spout

The adaptation spout is waiting for the network parameters and the Json
file. When they are both available, the spout creates the topologies Proton-
MobileFraudTopology with topologyID: t0 and ProtonMobileFRStopology at
all sites and the structure that keeps the information about the topologies in
the clusters is updated.
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FIGURE 4.7: Adaptation forwards the parameters to optimizer.

Adaptation spout sends the parameters to the optimizer. He parses the
EPN and the network parameters and runs a number of algorithms to gener-
ate the plans for each site which are written in Json files.
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FIGURE 4.8: The optimizer sends the plans to the sites

The JSON files are sent to the communicators of the sites and then for-
warded to Proton On Storm. The Routing, Context and EPAManager bolts
need them for initialization as the EPAs, Contexts and event definitions are
described in them. The files are also necessary to the Input Spout of the Pro-
tonMobileFraudTopology because it needs to know the event definitions.
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FIGURE 4.9: New parameters reach the Adaptation spout

ProtonMobileFRStopology is receiving the primitive events from external
sources and propagates them to the Input spout of the ProtonMobileFraud-
topology for process. While the plans and queries are executed, new network
parameters or set of queries may be available and new plans need to be gen-
erated. The Adaptation spout gets notified, creates new ProtonMobileFraud
topologies with topologyID:t1 and sends them to optimizer at topology with
topologyID=t0.
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FIGURE 4.10: Optimizer sends the new plans to the new topolo-
gies .

New plans are generated and transmitted to the newly created ProtonMo-
bileFraudTopologies and then forwarded to CEP engine’s components with
topologyID t1.
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FIGURE 4.11: Adaptation spout is notified about the status of
the new topologies.

When t1 is ready and processing adaptation spout is notified. It waits
for the temporal contexts of t0 to be terminated. Until the contexts end, the
topologies run in parallel in the sites.
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FIGURE 4.12: Adaptation spout kills the old topologies.

When the contexts are terminated the adaptation spout signals the sites
to kill the topology with topologyID=t0, leaving the topology t1 running.
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4.4 Implementing the adaptive behavior

The system needs to be able to adapt to the new parameters generated
by the optimizer. When the new plans are available there may be derived
events that haven’t been processed, requests from the coordinator may have
not been answered yet. For those reasons complex events may be lost, so it
is necessary for the system to wait for all the temporal contexts of the first
plans to be terminated.

The topologies with different plans have to run in parallel until the con-
texts are over. For this reason, the classes Routing bolt, RedisPubSubSpout,
PushAndPullSpout, Optispout, CommunicatorBolt, CommunicatorState and
TimeMachineState that receive messages have one more attribute in their
constructor which is their topology id. This parameter prevents inter-node
messages from ending up in the wrong topology in the same as this could
cause malfunctions at the initialization of the nodes, events to be .

Additionally, a new type message is required which will notify the Adap-
tationSpout about the state of the newly created topology so that the previ-
ous can be killed safely without losing events. The FRSSpout uses the Redis
server’s features as it utilizes the Publish/Subscribe messaging paradigm to
publish the events to channels. In this way every active topology can be re-
ceiving all the input raw data.

Lastly, the optimizer can be considered an entity like the Adapt topology,
cut off from the system. If necessary, the architecture can be easily modified
to keep the optimizer in a single site without the need to kill him, or even
create a separate topology for him.

4.5 Results

The Mobile fraud example was executed in the system. In the example, the
topology with topologyID=0 and topologyID=2 had node site1 as micro-
coordinator and topology with topologyID=1 had node cent1. The results
of the fraud example be seen in this section. It can be seen that the system
adapts and forces multiple topologies run in parallel for some time before
they are killed and allow the last one to keep running.

4.5.1 cent1
cent1 received CallPOPDWH at 1420063200000in topologyID: 0
cent1 received CallPOPDWH at 1420063227000in topologyID: 0
cent1 received CallPOPDWH at 1420063242000in topologyID: 0
cent1 received CallPOPDWH at 1420063246000in topologyID: 0
cent1 received CallPOPDWH at 1420063251000in topologyID: 0
cent1 received CallPOPDWH at 1420063255000in topologyID: 0
cent1 received CallPOPDWH at 1420063278000in topologyID: 0
cent1 received CallPOPDWH at 1456938481000in topologyID: 0
cent1 received CallPOPDWH at 1420063287000in topologyID: 0
cent1 received CallPOPDWH at 1420063290000in topologyID: 0
cent1 received halfExpensiveCalls at 1504638707654in topologyID: 0
cent1 received LongCallAtNight at 1504638707689in topologyID: 0
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cent1 received halfFrequentEachLongCall at 1504638707707in topologyID: 0
cent1 received halfExpensiveCalls at 1504638707691in topologyID: 0
cent1 received halfFrequentLongCalls at 1504638707736in topologyID: 0
cent1 received CallPOPDWH at 1420063296000in topologyID: 0
cent1 received CallPOPDWH at 1420063246000in topologyID: 1
cent1 received halfFrequentLongCalls at 1504638708515in topologyID: 0
cent1 received halfExpensiveCalls at 1504638708572in topologyID: 0
cent1 received LongCallAtNight at 1504638708578in topologyID: 0
cent1 received halfFrequentEachLongCall at 1504638708580in topologyID: 0
cent1 received CallPOPDWH at 1420063251000in topologyID: 1
cent1 received LongCallAtNight at 1504638709175in topologyID: 1
cent1 received halfExpensiveCalls at 1504638709175in topologyID: 1
cent1 received halfFrequentEachLongCall at 1504638709176in topologyID: 1
cent1 received halfFrequentLongCalls at 1504638709176in topologyID: 1
cent1 received CallPOPDWH at 1420063302000in topologyID: 0
cent1 received CallPOPDWH at 1420063255000in topologyID: 1
cent1 received CallPOPDWH at 1420063278000in topologyID: 1
cent1 received CallPOPDWH at 1420063310000in topologyID: 0
cent1 received CallPOPDWH at 1456938481000in topologyID: 1
cent1 received CallPOPDWH at 1420063287000in topologyID: 1
cent1 received CallPOPDWH at 1420063319000in topologyID: 0
cent1 received CallPOPDWH at 1420063290000in topologyID: 1
cent1 received CallPOPDWH at 1420063296000in topologyID: 1
cent1 received CallPOPDWH at 1420063323000in topologyID: 0
cent1 received CallPOPDWH at 1420063302000in topologyID: 1
cent1 received CallPOPDWH at 1420063310000in topologyID: 1
cent1 received CallPOPDWH at 1420063333000in topologyID: 0
cent1 received CallPOPDWH at 1420063319000in topologyID: 1
cent1 received CallPOPDWH at 1420063323000in topologyID: 1
cent1 received CallPOPDWH at 1420063343000in topologyID: 0
cent1 received CallPOPDWH at 1420063333000in topologyID: 1
cent1 received CallPOPDWH at 1420063343000in topologyID: 1
cent1 received CallPOPDWH at 1420063363000in topologyID: 0
cent1 received CallPOPDWH at 1420063363000in topologyID: 1
cent1 received CallPOPDWH at 1420063374000in topologyID: 1
cent1 received CallPOPDWH at 1420063374000in topologyID: 0
cent1 received CallPOPDWH at 1420063376000in topologyID: 1
cent1 received CallPOPDWH at 1420063376000in topologyID: 0
cent1 received CallPOPDWH at 1420063384000in topologyID: 1
cent1 received CallPOPDWH at 1420063384000in topologyID: 0
cent1 received CallPOPDWH at 1420063395000in topologyID: 0
cent1 received CallPOPDWH at 1420063395000in topologyID: 1
cent1 received CallPOPDWH at 1420063409000in topologyID: 0
cent1 received CallPOPDWH at 1420063409000in topologyID: 1
cent1 received CallPOPDWH at 1420063409000in topologyID: 1
cent1 received CallPOPDWH at 1420063415000in topologyID: 1
cent1 received CallPOPDWH at 1420063425000in topologyID: 1
cent1 received CallPOPDWH at 1420063428000in topologyID: 1
cent1 received CallPOPDWH at 1420063438000in topologyID: 1
cent1 received CallPOPDWH at 1420063453000in topologyID: 1
cent1 received CallPOPDWH at 1420063454000in topologyID: 1
cent1 received CallPOPDWH at 1420063479000in topologyID: 1
cent1 received CallPOPDWH at 1420063479000in topologyID: 1
cent1 received CallPOPDWH at 1456938482000in topologyID: 1
cent1 received CallPOPDWH at 1420063493000in topologyID: 1
cent1 received CallPOPDWH at 1420063493000in topologyID: 1
cent1 received CallPOPDWH at 1420063453000in topologyID: 2
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cent1 received CallPOPDWH at 1420063454000in topologyID: 2
cent1 received CallPOPDWH at 1420063494000in topologyID: 1
cent1 received CallPOPDWH at 1420063479000in topologyID: 2
cent1 received CallPOPDWH at 1420063479000in topologyID: 2
cent1 received CallPOPDWH at 1420063495000in topologyID: 1
cent1 received CallPOPDWH at 1456938482000in topologyID: 2
cent1 received CallPOPDWH at 1420063493000in topologyID: 2
cent1 received CallPOPDWH at 1420063495000in topologyID: 1
cent1 received CallPOPDWH at 1420063493000in topologyID: 2
cent1 received CallPOPDWH at 1420063494000in topologyID: 2
cent1 received CallPOPDWH at 1420063495000in topologyID: 1
cent1 received CallPOPDWH at 1420063495000in topologyID: 2
cent1 received CallPOPDWH at 1420063495000in topologyID: 2
cent1 received CallPOPDWH at 1420063520000in topologyID: 1
cent1 received CallPOPDWH at 1420063495000in topologyID: 2
cent1 received CallPOPDWH at 1420063520000in topologyID: 2
cent1 received CallPOPDWH at 1420063524000in topologyID: 1
cent1 received CallPOPDWH at 1420063524000in topologyID: 2
cent1 received CallPOPDWH at 1420063545000in topologyID: 2
cent1 received CallPOPDWH at 1420063545000in topologyID: 1
cent1 received CallPOPDWH at 1420063557000in topologyID: 2
cent1 received CallPOPDWH at 1420063557000in topologyID: 1
cent1 received CallPOPDWH at 1420063575000in topologyID: 2
cent1 received CallPOPDWH at 1420063575000in topologyID: 1
cent1 received CallPOPDWH at 1420063580000in topologyID: 1
cent1 received CallPOPDWH at 1420063580000in topologyID: 2
cent1 received CallPOPDWH at 1420063583000in topologyID: 1
cent1 received CallPOPDWH at 1420063583000in topologyID: 2
cent1 received CallPOPDWH at 1420063588000in topologyID: 2
cent1 received CallPOPDWH at 1420063588000in topologyID: 1
cent1 received CallPOPDWH at 1420063590000in topologyID: 2
cent1 received CallPOPDWH at 1420063590000in topologyID: 1
cent1 received CallPOPDWH at 1420063604000in topologyID: 2
cent1 received CallPOPDWH at 1420063604000in topologyID: 1
cent1 received CallPOPDWH at 1420063609000in topologyID: 1
cent1 received CallPOPDWH at 1420063609000in topologyID: 2
cent1 received CallPOPDWH at 1420063618000in topologyID: 1
cent1 received CallPOPDWH at 1420063618000in topologyID: 2
cent1 received CallPOPDWH at 1420063627000in topologyID: 2
cent1 received CallPOPDWH at 1420063627000in topologyID: 1
cent1 received CallPOPDWH at 1420063643000in topologyID: 2
cent1 received CallPOPDWH at 1420063643000in topologyID: 1
cent1 received CallPOPDWH at 1420063653000in topologyID: 2
cent1 received CallPOPDWH at 1420063657000in topologyID: 2
cent1 received CallPOPDWH at 1420063669000in topologyID: 2
cent1 received CallPOPDWH at 1420063680000in topologyID: 2
cent1 received CallPOPDWH at 1420063683000in topologyID: 2
cent1 received CallPOPDWH at 1420063709000in topologyID: 2
cent1 received CallPOPDWH at 1456938488000in topologyID: 2
cent1 received CallPOPDWH at 1420063726000in topologyID: 2
cent1 received CallPOPDWH at 1420063735000in topologyID: 2

4.5.2 site1
site1 received CallPOPDWH at 1420063213000in topologyID: 0
site1 received CallPOPDWH at 1420063227000in topologyID: 0
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site1 received CallPOPDWH at 1420063243000in topologyID: 0
site1 received CallPOPDWH at 1420063244000in topologyID: 0
site1 received CallPOPDWH at 1456938483000in topologyID: 0
site1 received CallPOPDWH at 1420063246000in topologyID: 0
site1 received CallPOPDWH at 1420063252000in topologyID: 0
site1 received CallPOPDWH at 1420063270000in topologyID: 0
site1 received CallPOPDWH at 1420063285000in topologyID: 0
site1 received CallPOPDWH at 1420063290000in topologyID: 0
site1 received CallPOPDWH at 1456938483000in topologyID: 1
site1 received CallPOPDWH at 1420063290000in topologyID: 0
site1 received CallPOPDWH at 1420063246000in topologyID: 1
site1 received CallPOPDWH at 1420063252000in topologyID: 1
site1 received CallPOPDWH at 1420063293000in topologyID: 0
site1 received CallPOPDWH at 1420063270000in topologyID: 1
site1 received CallPOPDWH at 1420063285000in topologyID: 1
site1 received CallPOPDWH at 1420063293000in topologyID: 0
site1 received CallPOPDWH at 1420063290000in topologyID: 1
site1 received CallPOPDWH at 1420063290000in topologyID: 1
site1 received CallPOPDWH at 1420063329000in topologyID: 0
site1 received CallPOPDWH at 1420063293000in topologyID: 1
site1 received CallPOPDWH at 1420063293000in topologyID: 1
site1 received CallPOPDWH at 1420063345000in topologyID: 0
site1 received CallPOPDWH at 1420063329000in topologyID: 1
site1 received CallPOPDWH at 1420063345000in topologyID: 1
site1 received CallPOPDWH at 1420063359000in topologyID: 0
site1 received CallPOPDWH at 1420063359000in topologyID: 1
site1 received CallPOPDWH at 1420063371000in topologyID: 0
site1 received CallPOPDWH at 1420063371000in topologyID: 1
site1 received CallPOPDWH at 1420063379000in topologyID: 1
site1 received CallPOPDWH at 1420063379000in topologyID: 0
site1 received CallPOPDWH at 1456938489000in topologyID: 1
site1 received CallPOPDWH at 1456938489000in topologyID: 0
site1 received CallPOPDWH at 1420063388000in topologyID: 1
site1 received CallPOPDWH at 1420063388000in topologyID: 0
site1 received CallPOPDWH at 1420063393000in topologyID: 0
site1 received CallPOPDWH at 1420063393000in topologyID: 1
site1 received CallPOPDWH at 1420063397000in topologyID: 1
site1 received CallPOPDWH at 1420063397000in topologyID: 0
site1 received CallPOPDWH at 1420063399000in topologyID: 0
site1 received CallPOPDWH at 1420063399000in topologyID: 1
site1 received CallPOPDWH at 1420063399000in topologyID: 0
site1 received CallPOPDWH at 1420063399000in topologyID: 1
site1 received CallPOPDWH at 1420063403000in topologyID: 1
site1 received CallPOPDWH at 1420063403000in topologyID: 0
site1 received CallPOPDWH at 1420063416000in topologyID: 1
site1 received CallPOPDWH at 1420063416000in topologyID: 0
site1 received CallPOPDWH at 1420063434000in topologyID: 0
site1 received CallPOPDWH at 1420063434000in topologyID: 1
site1 received CallPOPDWH at 1420063443000in topologyID: 1
site1 received CallPOPDWH at 1420063443000in topologyID: 0
site1 received CallPOPDWH at 1420063445000in topologyID: 1
site1 received CallPOPDWH at 1420063445000in topologyID: 0
site1 received CallPOPDWH at 1420063448000in topologyID: 1
site1 received CallPOPDWH at 1420063448000in topologyID: 0
site1 received CallPOPDWH at 1420063453000in topologyID: 1
site1 received CallPOPDWH at 1420063453000in topologyID: 0
site1 received CallPOPDWH at 1420063455000in topologyID: 1
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site1 received CallPOPDWH at 1420063455000in topologyID: 0
site1 received CallPOPDWH at 1420063456000in topologyID: 1
site1 received CallPOPDWH at 1456938493000in topologyID: 1
site1 received CallPOPDWH at 1420063443000in topologyID: 2
site1 received CallPOPDWH at 1420063456000in topologyID: 1
site1 received CallPOPDWH at 1420063445000in topologyID: 2
site1 received CallPOPDWH at 1420063448000in topologyID: 2
site1 received CallPOPDWH at 1420063483000in topologyID: 1
site1 received CallPOPDWH at 1420063453000in topologyID: 2
site1 received CallPOPDWH at 1420063455000in topologyID: 2
site1 received CallPOPDWH at 1420063492000in topologyID: 1
site1 received CallPOPDWH at 1420063456000in topologyID: 2
site1 received CallPOPDWH at 1456938493000in topologyID: 2
site1 received CallPOPDWH at 1420063494000in topologyID: 1
site1 received CallPOPDWH at 1420063456000in topologyID: 2
site1 received CallPOPDWH at 1420063483000in topologyID: 2
site1 received CallPOPDWH at 1420063527000in topologyID: 1
site1 received CallPOPDWH at 1420063492000in topologyID: 2
site1 received CallPOPDWH at 1420063494000in topologyID: 2
site1 received CallPOPDWH at 1420063551000in topologyID: 1
site1 received CallPOPDWH at 1420063527000in topologyID: 2
site1 received CallPOPDWH at 1420063551000in topologyID: 2
site1 received CallPOPDWH at 1420063551000in topologyID: 1
site1 received CallPOPDWH at 1420063551000in topologyID: 2
site1 received CallPOPDWH at 1420063564000in topologyID: 1
site1 received CallPOPDWH at 1420063564000in topologyID: 2
site1 received CallPOPDWH at 1420063566000in topologyID: 1
site1 received CallPOPDWH at 1420063566000in topologyID: 2
site1 received CallPOPDWH at 1420063566000in topologyID: 1
site1 received CallPOPDWH at 1420063566000in topologyID: 2
site1 received CallPOPDWH at 1420063568000in topologyID: 2
site1 received CallPOPDWH at 1420063568000in topologyID: 1
site1 received CallPOPDWH at 1420063569000in topologyID: 1
site1 received CallPOPDWH at 1420063569000in topologyID: 2
site1 received CallPOPDWH at 1420063578000in topologyID: 1
site1 received CallPOPDWH at 1420063578000in topologyID: 2
site1 received CallPOPDWH at 1420063587000in topologyID: 1
site1 received CallPOPDWH at 1420063587000in topologyID: 2
site1 received CallPOPDWH at 1420063591000in topologyID: 2
site1 received CallPOPDWH at 1420063591000in topologyID: 1
site1 received CallPOPDWH at 1420063591000in topologyID: 1
site1 received CallPOPDWH at 1420063591000in topologyID: 2
site1 received CallPOPDWH at 1420063591000in topologyID: 1
site1 received CallPOPDWH at 1420063591000in topologyID: 2
site1 received CallPOPDWH at 1420063595000in topologyID: 1
site1 received CallPOPDWH at 1420063595000in topologyID: 2
site1 received CallPOPDWH at 1420063595000in topologyID: 1
site1 received CallPOPDWH at 1420063595000in topologyID: 2
site1 received CallPOPDWH at 1420063598000in topologyID: 2
site1 received CallPOPDWH at 1456938497000in topologyID: 2
site1 received CallPOPDWH at 1420063605000in topologyID: 2
site1 received CallPOPDWH at 1420063607000in topologyID: 2
site1 received CallPOPDWH at 1420063617000in topologyID: 2
site1 received CallPOPDWH at 1420063618000in topologyID: 2
site1 received CallPOPDWH at 1420063619000in topologyID: 2
site1 received CallPOPDWH at 1420063648000in topologyID: 2
site1 received CallPOPDWH at 1420063657000in topologyID: 2
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Chapter 5

Conclusion

This thesis is focused on developing an adaptive complex event processing architecture
capable of processing large volumes of data over distributed topologies with the ability to
adapt to various changes. It is built on the Apache Storm framework using spouts as data
sources, bolts for data manipulation and streams for the in-between them communication.

In the thesis we propose the necessary modifications to the existing FERARI architec-
ture in order to support the adaptation of the complex event processing based on FERARI’s
optimizer. The system is designed to adapt to scenarios when new queries are inserted and
significant fluctuations on the event frequencies or inter-node latencies occur.

We introduced a new daemon-like topology that supervises the active topologies in each
site and an intra-node topology. These entities enables the parallel processing of multiple
topologies, corresponding to different plans that the FERARI optimizer generated, and the
timely termination of topologies making, thus, the system even more flexible and scalable.



41

Bibliography

[1] Jagrati Agrawal et al. “Efficient pattern matching over event streams”.
In: Proceedings of the 2008 ACM SIGMOD international conference on Man-
agement of data. ACM. 2008, pp. 147–160.

[2] Quinton Anderson. Storm real-time processing cookbook. Packt Publishing
Ltd, 2013.

[3] Opher Etzion, Peter Niblett, and David C Luckham. Event processing in
action. Manning Greenwich, 2011.

[4] Gennady Laventman (IBM) Eliezer Dekel (IBM) Inna Skarbovsky (IBM)
Antonis Deligiannakis (TUC) Izachak Sharfman (TECHNION) Tomis-
lav Krizan (PI) Daniel Trabold (FHG) Michael Kamp (FHG) Sebastian
Bothe (FHG). “Flexible Event pRocessing for big dAta aRchItectures”.
In: Architecture Definition. IBM. 2015, p. 51.

[5] Ioannis Flouris et al. “Complex event processing over streaming multi-
cloud platforms: the FERARI approach”. In: Proceedings of the 10th ACM
International Conference on Distributed and Event-based Systems. ACM.
2016, pp. 348–349.

[6] Ioannis Flouris et al. “FERARI: A Prototype for Complex Event Pro-
cessing over Streaming Multi-cloud Platforms”. In: Proceedings of the
2016 International Conference on Management of Data. ACM. 2016, pp. 2093–
2096.

[7] IBM Research – Haifa. “IBM Proactive Technology Online User Guide”.
In: (2016).

[8] Jonathan Leibiusky, Gabriel Eisbruch, and Dario Simonassi. Getting
started with storm. " O’Reilly Media, Inc.", 2012.

[9] Tiago Macedo and Fred Oliveira. Redis Cookbook: Practical Techniques for
Fast Data Manipulation. " O’Reilly Media, Inc.", 2011.

[10] Nicholas Poul Schultz-Møller, Matteo Migliavacca, and Peter Pietzuch.
“Distributed complex event processing with query rewriting”. In: Pro-
ceedings of the Third ACM International Conference on Distributed Event-
Based Systems. ACM. 2009, p. 4.



42 BIBLIOGRAPHY

[11] Eugene Wu, Yanlei Diao, and Shariq Rizvi. “High-performance com-
plex event processing over streams”. In: Proceedings of the 2006 ACM
SIGMOD international conference on Management of data. ACM. 2006,
pp. 407–418.


	Abstract
	Acknowledgements
	Introduction
	Thesis Overview and contribution
	Thesis Outline

	Background
	Complex Events and Complex Events Processing
	Apache Storm
	Project information
	Storm Architecture

	Basic Concepts
	Spout
	Bolt
	Streams

	Redis

	Related projects
	Proton
	Event Processing Network
	Events
	Producers
	Consumers
	Contexts
	Temporal Contexts
	Segmentation Contexts
	Composite Contexts

	Event Processing Agents

	Proton On Storm

	An adaptive complex event processing system over STORM
	FERARI Architecture
	Site Architecture
	Input Spout
	PushAndPull spout
	Time Machine
	Communicator bolt
	Communicator RedisPubSubSpout
	GateKeeper bolt

	Initialization and setup
	Network parameters
	Queries


	An adaptive complex event processing system over STORM
	Architecture

	The adaptation workflow
	Implementing the adaptive behavior
	Results
	cent1
	site1


	Conclusion
	Bibliography

