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Abstract

This work studies all necessary signal processing steps in a full-duplex Gen2

reader for RFID tags with Miller-2, 4 and 8 line coding. Relevant prior art fo-

cused on FM0 line coding. Synchronization, channel estimation and coherent

detection techniques are presented. Symbol-by-symbol detection is studied

and respective BER in AWGN is theoretically calculated, showing its equiv-

alence with BER-optimal FM0 coherent detection. Since Miller line coding

has memory, maximum likelihood coherent sequence detection is studied, us-

ing the Viterbi algorithm. Simulations in Rayleigh fading show that 16-bit

sequence detection offers approximately only 1.2 dB advantage compared to

symbol-by-symbol at 2 10−3 BER. Furthermore, higher lengths offer rather

diminishing returns. This finding corroborates famous M. Simon’s and D.

Divsalar’s relevant 2006 conjecture, stating that Miller’s sequence detection

with ”Viterbi would not asymptotically recover a 3 dB advantage”. Future

work will study other fading channels, including Rice.
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Chapter 1

Introduction And Prior Art

1.1 Introduction

Miller - M can be described as follows:

1. There are two symbols that encode each bit, if for instance the bits 0,

0, 0 are sent then the symbols that will encode these bits are S1, S2, S1.

There cannot be sent consecutive S1 due to the concept of memory. In

the following scheme this example is shown and afterwards these sym-

bols will fully be analyzed. Furthermore, this coding is quite different

from the usuals. The transitions are not done at the end of each symbol

that encodes each bit but at the beginning. For example, when bit 1

follows bit 0 then the waveform at its beginning remains at −1. This

happens only in this case (from bit 0 to bit 1). In any other case for

instance if bit 0 follows bit 0, meaning from symbol S1 to S2 or from S2

to S1, a transition is observed at the beginning of the waveform from

1 to -1 or vice versa which make sence as symbol S2 = −S1 and it will

be shown later.

2. Symbols S1 and S2 are used to encode bit 0. In the middle of each

waveform of symbol S1 or S2 a transition from -1 to 1 or vise versa is

occurred. On the contrary, symbols S3 and S4 are used to encode bit

1 and in the middle of its waveform level -1 remains -1 for symbol S3

while level 1 remains 1 for symbol S4.

These are the basic rules used to construct Miller coding.
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Figure 1.1: Miller-2 from [4]

For Miller line coding the symbols one can observe are the following:

S1(t)  

 S2(t)

S3(t)

S4(t)

Figure 1.2: Symbols For Miller-2

Symbols S1(t), S2(t) are used to encode bit ’0’.
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Also, S3(t) and S4(t) are used to encode bit ’1’.

These symbols will be used in the Gram-Schmidt process to find out how

many bases vectors exist. These bases are used to determine the matched

filters in the detector as will be shown later. In this thesis, a receiver was

applied based on the EPC protocol for RFID systems. Using Rayleigh Fad-

ing channel with ML symbol by symbol detector for Miller-2 line coding it

was observed that the results are exactly the same as those from optimal

FMO line coding. Furthermore, Marvin Simon postulated that applying an

algorithm with memory, like Viterbi, an improvement more than 3-dB can-

not be achieved. Indeed, in this thesis applying the Viterbi Algorithm, an

improvement of 1.2-dB was achieved.
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1.2 Prior Art on FM0 and Miller-M line

coding

Work in level [11] explored the noncoherent reception and signal processing

schemes for the EPC Gen2 Protocol. Three synchronization schemes were

compared for two different encodings and they concluded that the cross-

correlation synchronization method worked better than the energy synchro-

nization for all SNRs.

Work in level [1] focused on a complete, fully-coherent, full-duplex Gen2

reader for RFID tags with FMO line coding, utilizing a single transceiver

board on a commodity USRP2 (N200) software-defined radio; this work tar-

geted coherent, linear processing at the reader for RFID tags with optimal

exploitation at the detection level of line coding-induced memory and chan-

nel estimation for coherent processing.

Also, work in level [10] proved the theoretical BER for Miller-2 line coding

which has the same BER with coherent 2T FMO line coding. Furthermore, it

postulated that this BER could be further improved with a Viterbi algorithm.
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1.3 Thesis Outline

Chapter 2: In this chapter, the continuous time model of the received signal

at the reader is described. Then, the discrete time signal processing is made.

Chapter 3: Channel estimation is described and the necessary proofs are

given. Maximum Likelihood Estimation (MLE) was used in the calculations

which is a method of estimating the parameters of a statistical model given

observations, by finding the parameters values that maximize the likelihood

of making the observations given the parameters. Furthermore, the least-

squares method was used to find the optimal parameter values by minimizing

the sum of squared residuals.

Chapter 4: The ML symbol by symbol detector as well as the Viterbi al-

gorithm are described. Also, the Bit Error Rate (BER) for Additive White

Gaussian Noise (AWGN) channel is proved.

Finally, in Chapter 5 the numerical results of this work are provided.
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Chapter 2

System Model, QPSK

modulation for Miller-M

2.1 System Model

During uplink (tag to reader) communication the reader transmits a carrier

wave (CW) and the RFID tag modulates its information by switching its

antenna load between two stages. In that way tag information is binary

modulated on the reflection coefficient changes. The reader receives the su-

perposition of its own transmitted signal and the tag’s backscattered signal.

The complex baseband equivalent of the received signal at the reader is given

by [2, Eqs. (26), (33)]:

y(t) = [mdc +mmod x(t)]ej2π∆f t + n(t) (2.1)

where the DC component mdc ∈ C is due to the CW and an unmodulated

component scattered back by the tag; the modulated mmod ∈ C component

depends on the channel coefficients of the reader transmitting antenna-to-

tag and tag-to-antenna receiving antenna links, the tag antenna reflection

coefficients, the tag scattering efficiency and the carrier transmitting power;

x(t) ∈ (±1) is a binary real valued tag scattered waveform and ∆f is the

carrier frequency offset (CFO) between CW transmission and the reader

reception chain(e.g. CW transmitter and receiver could be dislocated or

they could employ different oscillators);

Finally, n(t) is the circularly symmetric white Gaussian noise (n(tj) ⊥ n(ti)

for tj 6= ti .)
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2.2 Reader SDR Processing

Assuming coherent detection and symbol synchronization, reader can per-

fectly estimate and subtract mdc from the received waveform (in Eq. (2.1)

mdc is removed, assuming estimation of ∆f , multiply with e−j2π∆f t and set

mmod = h ), then the received digitized signal from Eq (2.1) is expressed as:

y[k] = y(kTs) = hx[k] + n[k], x[k] =
N−1∑
n=0

Sd(n)[k − nL− τ ] (2.2)

where n[k] = n(kTs) ∼ CN (0, 2σ2
n), τ is the synchronization delay due to tag

internal delay and tag-reader propagation delay, T denotes the nominal bit

duration, Ts sampling period, N is the total number of the bits, L = T
Ts

the

oversampling factor which shows samples per bit and Sd(n) can be selected

between the following waveforms where d(n) ∈ {1, 2, 3, 4}:

S1[k] =



1 when 0 ≤ k < L
4

−1 when L
4
≤ k < L

2

1 when L
2
≤ k < 3L

4

−1 when 3L
4
≤ k < L

S2[k] =



−1 when 0 ≤ k < L
4

1 when L
4
≤ k < L

2

−1 when L
2
≤ k < 3L

4

1 when 3L
4
≤ k < L

(2.3)
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S3[k] =



1 when 0 ≤ k < L
4

−1 when L
4
≤ k < L

2

−1 when L
2
≤ k < 3L

4

1 when 3L
4
≤ k < L

S4[k] =



−1 when 0 ≤ k < L
4

1 when L
4
≤ k < L

2

1 when L
2
≤ k < 3L

4

−1 when 3L
4
≤ k < L

(2.4)

Definition of CN (0, σ2)

If X is circular gaussian with variance σ2 then:

fX (x) = fXr,Xi(xr, xi)

= fXr(xr)fXi(xi)

=
1√

2π σ
2

2

e−
x2
r
σ2

1√
2π σ

2

2

e−
x2
i
σ2

=
1

πσ2
e−

x2
r+x2

i
σ2

=
1

πσ2
e−
|x|2

σ2

where x = xr + jxi .

Consequently, the received signal after matched filtering with a square pulse

of length L
4

samples and from Eq. (2.2) where n = 0 and τ = 0 can be written

as:

y0 =

L
4
−1∑

k=0

y[k] =

L
4
−1∑

k=0

hx[k] +

L
4
−1∑

k=0

n[k] = h′x0 + n′0 (2.5)

y1 =

L
2
−1∑

k=L
4

y[k] =

L
2
−1∑

k=L
4

hx[k] +

L
2
−1∑

k=L
4

n[k] = h′x1 + n′1
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y2 =

3L
4
−1∑

k=L
2

y[k] =

3L
4
−1∑

k=L
2

hx[k] +

3L
4
−1∑

k=L
2

n[k] = h′x2 + n′2

y3 =
L−1∑
k= 3L

4

y[k] =
L−1∑
k= 3L

4

hx[k] +
L−1∑
k= 3L

4

n[k] = h′x3 + n′3

ȳ =


y0

y1

y2

y3

 =


x0

x1

x2

x3

h′ +

n′0

n′1

n′2

n′3

 (2.6)

where n′0 ⊥ n′1 ⊥ n′2 ⊥ n′3, n′i ∼ CN(0, L
2
σ2
n), h′ = hL

4
and xi ∈ {±1},

i ∈ {0, 1, 2, 3}.
Definition vectors:

x0

x1

x2

x3

 ∈



1

−1

1

−1

 ,

−1

1

−1

1

 ,


1

−1

−1

1

 ,

−1

1

1

−1




Gram-Schmidt process was used to determine the bases vectors in the signal

space of Miller-2. Given a set of signals of limited energy {S̃1(t), S̃2(t), S̃3(t), S̃4(t)},
an orthonormal set of bases vectors φ̄1(t), φ̄2(t) is produced as follows:

1. Set g1(t) = S̃1(t) and the base vector φ̄1(t) = g1(t)/||g1(t)||

2. Set g2(t) = S̃3(t)− < S̃3(t), φ̄1(t) > φ̄1(t) and the base vector φ̄2(t) =

g2(t)/||g2(t)||

3. Set g3(t) = S̃4(t)− < S̃4(t), φ̄1(t) > φ̄1(t)− < S̃4(t), φ̄2(t) > φ̄2(t) and

this result will be equal to 0.

4. Set g4(t) = S̃2(t)− < S̃2(t), φ̄1(t) > φ̄1(t)− < S̃2(t), φ̄2(t) > φ̄2(t) and
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this result will be equal to 0.

5. If there was a third base vector one of g3(t), g4(t) would not be equal

to 0. So, it is determined that there are 2 bases vectors φ̄1(t), φ̄2(t).

Applying the above process in this thesis, these results follow:

S̄1 =


1

−1

1

−1



φ̄1 =
S̄1

|S̄1|
=

1

2


1

−1

1

−1


S̄2 = −S̄1 ,

S̄3 =


1

−1

−1

1


φ̄2 = S̄3− < S̄3, φ̄1 > φ̄1

< S̄3, φ̄1 > = [1− 1− 1 1]
1

2


1

−1

1

−1

 = 0

φ̄2 =
S̄3

|S̄3|
=

1

2


1

−1

−1

1


S̄4 = −S̄3
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From the above, it is understood that S̄1 and S̄2 are parallel vectors so they

have the same base vector φ̄1. Likewise, for S̄3 and S̄4 which have the same

base vector φ̄2.

The modulation is Quadrature Phase Shift Keying (QPSK). In this mod-

ulation, the information is carried in the phase of sinusoidal waveforms of

the same frequency and amplitude thus same energy. For the transmission

four waveforms are used, each one carries two bits modulating the phase of a

carrier with frequency fc and amplitude
√

2Es
T

where Es is the energy of the

waveforms and T is the symbol duration. The signal space is two dimensional

and each symbol is described by the following coordinates {±
√
Es,±

√
Es}.

Figure 2.1: Miller-M Constellation Diagram
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From these 2 bases vectors, 2 matched filters will be produced:

Figure 2.2: Matched Filters

The r1,r2 from the Matched filters are used in the ML symbol by symbol

detector. The r1 is produced from the inner product < ȳ, φ̄1 > where ȳ

is defined in Eq. (2.5). Likewise, for r2 which is produced from the inner

product < ȳ, φ̄2 >.

< ȳ, φ̄1 > = φ̄1
T
ȳ

=
1

2
[1 − 1 1 − 1]


y0

y1

y2

y3


=
y0 − y1 + y2 − y3

2

= r1
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< ȳ, φ̄2 > = φ̄2
T
ȳ

=
1

2
[1 − 1 − 1 1]


y0

y1

y2

y3


=
y0 − y1 − y2 + y3

2

= r2

Furthermore, r1 = φ̄T1 ȳ with ȳ from Eq. (2.6):

r1 = φ̄T1 ȳ

= φ̄T1

h′

x0

x1

x2

x3

+


n′0

n′1

n′2

n′3




= h′φ̄T1


x0

x1

x2

x3

+ φ̄T1


n′0

n′1

n′2

n′3


= h′q1 + w1

The calculation for q1 for each Definition vector is:

φ̄T1


x0

x1

x2

x3

 = φ̄T1


1

−1

1

−1

 =
1

2
[1 − 1 1 − 1]


1

−1

1

−1

 = 2
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φ̄T1


x0

x1

x2

x3

 = φ̄T1


1

−1

−1

1

 =
1

2
[1 − 1 1 − 1]


1

−1

−1

1

 = 0

φ̄T1


x0

x1

x2

x3

 = φ̄T1


−1

1

−1

1

 =
1

2
[1 − 1 1 − 1]


−1

1

−1

1

 = −2

φ̄T1


x0

x1

x2

x3

 = φ̄T1


−1

1

1

−1

 =
1

2
[1 − 1 1 − 1]


−1

1

1

−1

 = 0

For the specific φ̄1, q1 ∈ {0,±2}.
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Also, w1 ∼ CN (0, σ2
1) with variance equal to:

σ2
1 = E[w∗1w1] = E[w1w

∗
1]

= φ̄T1E[


n′0

n′1

n′2

n′3

 [n∗0n
∗
1n
∗
2n
∗
3]]φ̄1

= φ̄T1
L

2
σ2
nI4φ̄1

=
L

2
σ2
nφ̄

T
1 φ̄1

=
L

2
σ2
n|φ1|2

=
L

2
σ2
n

For r2 = φ̄T2 ȳ the calculations with the above procedure end up in:

r2 = h′q2 + w2

with q2 ∈ {0,±2}, w2 ∼ CN (0, σ2
2) and σ2

2 = L
2
σ2
n.

Now each Miller symbol can be written as 2x1 complex vector:

r =

[
r1

r2

]
= h′kq̄′ + w̄ = h′k

[
q′1

q′2

]
+

[
w1

w2

]
(2.7)

where h′ = hL
4
, k = 2 for Miller-2, w̄ ∼ CN (0̄, L

2
σ2
nI2), qi = kq′i, (i ∈ {1, 2})

and q̄′ is one of the following:

q̄′ ∈

{[
1

0

]
,

[
−1

0

]
,

[
0

1

][
0

−1

]}
(2.8)

q̄′ ∈

{
q̄

(0)
H , q̄

(0)
L , q̄

(1)
H , q̄

(1)
L

}
(2.9)
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The tag signal to noise ratio (SNR) for Miller-2 is defined as:

SNR =
|h′k|2|q̄′|2

L
2
σ2
n

=
|hL

4
2|2

L
2
σ2
n

=
|h|2L2

4
L
2
σ2
n

=
|h|2L
2σ2

n

For Miller-4 the equations are the following:

ȳ =



y0

y1

y2

y3

y4

y5

y6

y7


=



x0

x1

x2

x3

x4

x5

x6

x7


h′ +



n′0

n′1

n′2

n′3

n′4

n′5

n′6

n′7


(2.10)

Definition vectors:

x0

x1

x2

x3

x4

x5

x6

x7


∈





1

−1

1

−1

1

−1

1

−1


,



−1

1

−1

1

−1

1

−1

1


,



1

−1

1

−1

−1

1

−1

1


,



−1

1

−1

1

1

−1

1

−1




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with n′i ∼ CN (0, L
4
σ2
n) and h′ = hL

8
.

From Gram-Schmidt process the bases are:

φ̄1 =
1

2
√

2

[
1 − 1 1 − 1 1 − 1 1 − 1

]T
φ̄2 =

1

2
√

2

[
1 − 1 1 − 1 − 1 1 − 1 1

]T
The scheme for Matched filters remains the same. Now, the filters are equal

to:

r1 =
1

2
√

2
[y0 − y1 + y2 − y3 + y4 − y5 + y6 − y7]

r2 =
1

2
√

2
[y0 − y1 + y2 − y3 − y4 + y5 − y6 + y7]

Also, either in Miller-2 or Miller-4 the Eq. (2.7) remains the same but, for

Miller-4 k = 2
√

2, w̄ ∼ CN (0̄, L
4
σ2
nI2).

The tag signal to noise ratio (SNR) for Miller-4 is defined as:

SNR =
|h′q̄′k|2
L
4
σ2
n

=
|h|2(L

8
)28

L
4
σ2
n

=
|h|2L
2σ2

n
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For Miller-8 the equations are the following:

ȳ =



y0

y1

y2

y3

y4

y5

y6

y7

y8

y9

y10

y11

y12

y13

y14

y15



=



x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15



h′ +



n′0

n′1

n′2

n′3

n′4

n′5

n′6

n′7

n′8

n′9

n′10

n′11

n′12

n′13

n′14

n′15



(2.11)



2.2. Reader SDR Processing 25

Definition vectors:



x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15



∈





1

−1

1

−1

1

−1

1

−1

1

−1

1

−1

1

−1

1

−1



,



−1

1

−1

1

−1

1

−1

1

−1

1

−1

1

−1

1

−1

1



,



1

−1

1

−1

1

−1

1

−1

−1

1

−1

1

−1

1

−1

1



,



−1

1

−1

1

−1

1

−1

1

1

−1

1

−1

1

−1

1

−1




with n′i ∼ CN (0, L

8
σ2
n) and h′ = h L

16
.

From Gram-Schmidt process the bases are:

φ̄1 =
1

4

[
1 − 1 1 − 1 1 − 1 1 − 1 1 − 1 1 − 1 1 − 1 1 − 1

]T
φ̄2 =

1

4

[
1 − 1 1 − 1 1 − 1 1 − 1 − 1 1 − 1 1 − 1 1 − 1 1

]T
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The scheme for Matched filters remains the same. Now, the filters are equal

to:

r1 =
1

4
[y0 − y1 + y2 − y3 + y4 − y5 + y6 − y7 + y8 − y9 + y10

− y11 + y12 − y13 + y14 − y15]

r2 =
1

4
[y0 − y1 + y2 − y3 + y4 − y5 + y6 − y7 − y8 + y9 − y10

+ y11 − y12 + y13 − y14 + y15]

Also, either in Miller-2 or Miller-8 the Eq. (2.7) remains the same but, for

Miller-8 k = 4, w̄ ∼ CN (0̄, L
8
σ2
nI2).

The tag signal to noise ratio (SNR) for Miller-8 is defined as:

SNR =
|h′|2k2|q′|2

L
8
σ2
n

=
|h|2( L

16
)216

L
8
σ2
n

=
|h|2L
2σ2

n

It is concluded that signal noise ratio (SNR) is the same for all Miller codes,

2, 4, 8, as it should.
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Chapter 3

Channel Estimation

3.1 Channel Estimation

A Gen2 tag that uses Miller line coding transmits a known (real) sequence

(preamble) sp before sending information bits. At first, frame synchronization

is performed and the delay τ is estimated by correlating the received signal

with the known preamble. The reader can search for a suitable τ in a small

interval i.e.,{0, ..., L′} where L′ = L = T
Ts

.

τ ∗ = argmax
τ∈{0,...,L}

∣∣∣∣∣
Np−1∑
n=0

sp[n]y[τ + n]

∣∣∣∣∣ (3.1)

Where Np is the number of samples in the preamble. The unknown parameter

h can then be estimated by solving a least squares problem:

h′ =

∑τ∗+Np−1
k=τ∗ y[k]sp[k − τ ∗]

|sp|2
(3.2)
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3.2 Proofs

The proof for Eq. (3.1) is:

y[k] = hx[k] + n[k] , n[k] ∼ CN (0, 2σ2
n)

x[k] = x(kTs) =
N−1∑
n=0

Sd(n)(t− nT − τ̃)|t=kTs

=
N−1∑
n=0

Sd(n)(kTs − nT − τTs)

=
N−1∑
n=0

Sd(n)((k − τ)Ts − nT )

= S[k − τ ]

Where S[k] =
∑N−1

n=0 Sd(n)(t− nT )|t=kTs

y[k] =

{
n[k] when 0 ≤ k ≤ k0 − 1

S[k − k0] + n[k] when k0 ≤ k ≤ k0 +M − 1

where M is the number of samples of the preamble.

k0−1∏
k=0

1

(πσ2)2
e−
|y[k]|2

σ2

k0+M−1∏
k0

1

(πσ2)2
e−
|y[k]−S[k−k0]|2

σ2

=
1

((πσ2)2)M
e−

∑N−1
k=0

|y[k]|2

σ2

k0+M−1∏
k0

e−
−y[k]S∗(k−k0)−y∗[k]S[k−k0]+|S(k−k0)|2

σ2

with the following:

(y[k]− S[k − k0])(y[k]∗ − S∗[k − k0])

= |y[k]|2 − y[k]S∗[k − k0]− y[k]∗S[k − k0] + |S[k − k0]|2

with MLE for k0 you either get the:
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argmax
k0

e−
1
σ2

∑k0+M−1
k0

−y[k]S∗(k−k0)−y∗[k]S[k−k0]+|S[k−k0]|2

or minimize the:

k0+M−1∑
k=k0

−y[k]S∗[k − k0]− y∗[k]S[k − k0] + |S[k − k0]|2 , k0 ∈ {0, 1, ..., L− 1}

but

k0+M−1∑
k0

|S[k − k0]|2

=
M−1∑
n=0

|S[n]|2 = const

So we have to minimize

k0+M−1∑
k=k0

−y[k]S∗[k − k0]− y∗[k]S[k − k0]

or maximize the :

k0+M−1∑
k=k0

+y[k]S∗[k − k0] + y∗[k]S[k − k0]

If we set α = y[k]S∗[k−k0] and α∗ = y∗[k]S[k−k0] we have
∑k0+M−1

k=k0
α+α∗ =∑k0+M−1

k=k0
2<(a) = 2<(

∑k0+M−1
k=k0

α). We can maximize:

2<(

k0+M−1∑
k=k0

y[k]S∗(k − k0)) (3.3)
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with |<(z)| ≤ |z|, while with z =
∑k0+M−1

k=k0
y[k]S∗[k − k0] we maximize the

following:

|
k0+M−1∑

k0

y[k]S∗[k − k0]| (3.4)

= |
M−1∑
k=0

y[k + k0]S[k]| (3.5)

with preamble S[k − k0] = S∗[k − k0].

So finally, k0 = argmaxk0
|
∑M−1

k=0 y[k + k0]S[k]|

The proof for the Eq. (3.2) is:

h = argmin
h∈C

τ∗+Np−1∑
k=τ∗

|y[k]− hS[k − τ ∗]|2

= argmin
h∈C

τ∗+Np−1∑
k=τ∗

(y[k]− hS[k − τ ∗])(y[k]− hS[k − τ ∗])∗

= argmin
h∈C

τ∗+Np−1∑
k=τ∗

(y[k]− hS[k − τ ∗])(y∗[k]− h∗S∗[k − τ ∗])

= argmin
h∈C

τ∗+Np−1∑
k=τ∗

(|y[k]|2 − h∗y[k]S∗[k − τ ∗]− hS[k − τ ∗]y∗[k] + |h|2|S[k − τ ∗]|2)

= argmin
h∈C

τ∗+Np−1∑
k=τ∗

(|y[k]|2 − h∗y[k]S∗[k − τ ∗]− hS[k − τ ∗]y∗[k] + hh∗|S[k − τ ∗]|2)

= argmin
h∈C

τ∗+Np−1∑
k=τ∗

(−h∗y[k]S∗[k − τ ∗]− hS[k − τ ∗]y∗[k] + hh∗|S[k − τ ∗]|2)
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we set f(h) = −h∗y[k]S∗[k− τ ∗]−hS[k− τ ∗]y∗[k] +hh∗|S[k− τ ∗]|2 and h, h∗

as independent d
dh

(hh∗) = h∗, d
dh∗

(hh∗) = h with df(h)
dh
6= df(h)

dh∗
.

= argmin
h∈C

f(h)

=>
df(h)

dh
=

τ∗+Np−1∑
k=τ∗

(−S[k − τ ∗]y∗[k] + h∗|S[k − τ ∗]|2) = 0

=> h∗
τ∗+Np−1∑
k=τ∗

|S[k − τ ∗]|2 =

τ∗+Np−1∑
k=τ∗

S[k − τ ∗]y∗[k]

=> h∗ =

∑τ∗+Np−1
k=τ∗ S[k − τ ∗]y∗[k]∑τ∗+Np−1N
k=τ∗ |S[k − τ ∗]|2

=> h =

∑τ∗+Np−1
k=τ∗ S∗[k − τ ∗]y[k]∑τ∗+Np−1
k=τ∗ |S[k − τ ∗]|2

=

∑τ∗+Np−1
k=τ∗ S[k − τ ∗]y[k]∑τ∗+Np−1
k=τ∗ S2[k − τ ∗]

=

∑τ∗+Np−1
k=τ∗ S[k − τ ∗]y[k]

|S|2

because S[k−τ ∗] is real and Np is the number of the samples of the preamble

S and τ ∗ is from Eq. (3.1).
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Chapter 4

Detection

4.1 ML Symbol By Symbol Detection

With parameter h’ estimated and known, the ML symbol by symbol detection

rule for system of Eq. (2.7) becomes:

argmin
q̄′∈{q̄(0)

H ,q̄
(0)
L ,q̄

(1)
H ,q̄

(1)
L }
|r̄ − h′kq̄′|2

where k = 2 for Miller-2, k = 2
√

2 for Miller-4, k = 4 for Miller-8. When

q̄′ = q̄
(0)
H or q̄

(0)
L decide bit ’0’ else if q̄′ = q̄

(1)
H or q̄

(1)
L decide bit ’1’.

4.2 BER Proof For AWGN

It is assumed that BER = 2I1 and I1 will be calculated as:

I1 =

∫ ∞
r2=0

∫ r1=r2

r1=−r2
f(r1, r2|S1)dr1dr2

=
1

2πσ2

∫ ∞
r2=0

∫ r1=r2

r1=−r2
e−

(r1−k)2+(r2)2

2σ2 dr1dr2

=
1√

2πσ2

∫ ∞
r2=0

e−
r22

2σ2

∫ r1=r2

r1=−r2

1√
2πσ2

e−
(r1−k)2

2σ2 dr1dr2

set t = r1−k
σ

=
1√

2πσ2

∫ ∞
r2=0

e−
r22

2σ2

∫ r2−k
σ

t=
−r2−k
σ

1√
2πσ2

e−
t2

2 σdtdr2



4.2. BER Proof For AWGN 33

set dt = 1
σ
dr1 => dr1 = σdt

=
1√

2πσ2

∫ ∞
r2=0

e−
r22

2σ2 [Q(
−r2 − k

σ
)−Q(

r2 − k
σ

)]dr2

set r2
σ

= t

=
1√

2πσ2
σ

∫ ∞
t=0

e−
t2

2 [Q(−t− k

σ
)−Q(t− k

σ
)]dt

=
1√
2πσ

σ

∫ ∞
t=0

e−
t2

2 [(1−Q(t+
k

σ
))−Q(t− k

σ
)]dt

=

∫ ∞
t=0

1√
2π
e−

t2

2 [− 1√
2π
Q(t+

k

σ
)− 1√

2π
Q(t− k

σ
)]dt

=
1

2
− 1√

2π

∫ ∞
t=0

e
−t2

2 [Q(t+
k

σ
) +Q(t− k

σ
)]dt

=
1

2
+

∫ ∞
t=0

Q′(t)[Q(t+
k

σ
) +Q(t− k

σ
)]dt

=
1

2
+Q(t)[Q(t+

k

σ
) +Q(t− k

σ
)]∞0 −

∫ ∞
t=0

Q(t)[Q(t+
k

σ
) +Q(t− k

σ
)]′dt

=
1

2
+Q(t)[Q(t+

k

σ
) +Q(t− k

σ
)]∞0 −∫ ∞

t=0

Q(t)[− 1√
2π
e−

(t+ k
σ )2

2 − 1√
2π
e−

(t− kσ )2

2 ]dt

=
1

2
− 1

2
(Q(

k

σ
) +Q(−k

σ
)) +

1√
2π

∫ ∞
t=0

Q(t)[e−
(t+ k

σ )2

2 + e−
(t− kσ )2

2 ]dt

=
1√
2π

∫ ∞
t=0

(
1

2
− 1

2
erf(

t√
2

))(e−
(t+ k

σ )2

2 + e−
(t− kσ )2

2 )dt

=
1

2

1√
2π

∫ ∞
t=0

e−
(t+ k

σ )2

2 dt+
1

2
√

2π

∫ ∞
t=0

e−
(t− kσ )2

2 dt

− 1

2

1√
2π

∫ ∞
t=0

erf(
t√
2

)[e−
(t+ k

σ )2

2 + e−
(t− kσ )2

2 ]dt
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According to the first integral set as t + k
σ

= x, the second integral set

as t− k
σ

= x so, the following equation is concluded:

= − 1

2
√

2π

∫ ∞
x= k

σ

e−
x2

2 dx+
1

2
√

2π

∫ ∞
x=− k

σ

e−
x2

2 dx− 1

2
√

2π∫ ∞
t=0

erf(
t√
2

)[e
−( t√

2
+ k
σ
√

2
)2

+ e
−( t√

2
− k
σ
√

2
)2

]dt

The third integral is set as x = t√
2

so:

=
1

2
Q(

k

σ
) +

1

2
Q(−k

σ
)− 1

2
√
π

∫ ∞
x=0

erf(x)[e
−(x+ k

σ
√

2
)2

+ e
−(x− k

σ
√

2
)2

]dx

=
1

2
Q(

k

σ
) +

1

2
[1−Q(

k

σ
)]− 1

2
√
π

∫ ∞
x=0

erf(x)[e
−(x+ k

σ
√

2
)2

+ e
−(x− k

σ
√

2
)2

]dx

=
1

2
− 1

2
√
π

∫ ∞
x=0

erf(x)[e−(x+a)2

+ e−(x−a)2

]dx

=
1

2
− 1

2
√
π

√
π

2
[1 + erf(

k

2σ
)2]

=
1

2
− 1

4
[1 + erf(

k

2σ
)2]

=
1

4
− 1

4
(erf(

k

2σ
))2

=
1

4
[1− (erf(

k

2σ
))2]

=
1

4
[1− erf(

k

2σ
][1 + erf(

k

2σ
]

=
1

2
[1− erf(

k

s
√

2
√

2
)]

1

2
[1 + erf(

k

s
√

2
√

2
)

= Q(
k

σ
√

2
)[1−Q(

k

σ
√

2
)]

= Q(
√
SNR)(1−Q(

√
SNR)) = I1
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But, BER = 2I1 so it is proved that:

BER = 2Q(
√
SNR)(1−Q(

√
SNR))

Useful Remarks:

1. 1
2

=
∫∞
t=0

1√
2π
e−

t2

2 dt

2. Q′(x) = − 1√
2π
e−

x2

2

3. erf(x) = 2√
π

∫ x
0
e−t

2
dt

4. Q(x) = 1
2
− 1

2
erf( x√

2
)

5. Q(−x) = 1−Q(x)

6. SNR = k2

2σ2 =>
√
SNR = k

σ
√

2

7.
√
π

2
(1 + (erf( a√

2
))2) =

∫∞
x=0

[e−(x−a)2
+ e−(x+a)2

]erf(x)dx, Eq. (38) in [9]



4.3. Viterbi Algorithm 36

4.3 Viterbi Algorithm

4.3.1 Introduction

Miller-2 line coding has memory, which means that the ML symbol by sym-

bol detector is not optimal as it only sees the current symbol. Instead, the

Viterbi algorithm with sequence length of more than one bit, exploits the

memory of this code. Specifically, the algorithm finds the path from the

beginning of the trellis-diagram of Miller-2 code to the end of it which max-

imizes a specific criterion. The basic idea is that beginning from the left

to the right of the trellis-diagram (Forward-Pass) the transitions to a com-

mon state in any step, should maximize the total weight until this state.

This means that, if there are two states q̄′
(1)
n ,q̄′

(2)
n with total weight until

these states Γ(q̄′
(1)
n ), Γ(q̄′

(2)
n ) then the transition (q̄′

(1)
n , q̄′n+1) with weight

w(q̄′
(1)
n , q̄′n+1) is preferred to the transition(q̄′

(2)
n , q̄′n+1) with weight w(q̄′

(2)
n ,

q̄′n+1) if the maximization criterion is the maximum additive cost, meaning

Γ(q̄′
(1)
n ) +w(q̄′

(1)
n , q̄′n+1) > Γ(q̄′

(2)
n ) +w(q̄′

(2)
n , q̄′n+1). The total weight until the

step n+ 1 is updated by adding the weight of the transition that was chosen.

Consequently, each state in every step has a total weight and a pointer to

the state of the previous step that has been chosen.

The Hidden Markov Model for this algorithm is the following where q̄′n, q̄
′
n+1

are the hidden states and r̄n, r̄n+1 are the observations.

q q

r r

__ __

__

n+1n

n+1n

__

Figure 4.1: Hidden Markov Model
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4.3.2 The Algorithm

The trellis-diagram is indicated in the following scheme:

q qn n+1

__

q

q

q

q

q

q

q

q

H H

H H

L L

L L

(0)

(0)

(0)

(0)

(1) (1)

(1) (1)

_ _

_

_

_

_

_

_

__

Figure 4.2: Trellis Diagram

The initial distribution of the symbols is P (q̄′n) = 1
4
. The distribution of

receiving r̄n = h′2q̄′n + w̄n, if the symbol which is represented by q̄′n was

sent, is the following:

f(r̄n|q̄′n) ≡ CN

(
h′2q̄′n,

L

2
σ2
nI2

)
∝ e

||r̄n−h′2q̄′n||
2

L
2 σ

2
n
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where q̄′n is in Eq. (2.8) and Eq. (2.9). Also, r̄n has been described in Eq. (2.7).

The weight for each transition from one state to the other is calculated from

this formula:

lnf(r̄n|q̄′n) ∝ − 2

Lσ2
n

||r̄n − h′2q̄′n||2 ≡ w(r̄n, q̄′n)

Algorithm’s steps:

1. The initial total cost to each state is calculated as: Γ(q̄′n) = ln(1
4
) +

w(r̄1, q̄′n)

2. In this step the optimal cost must be calculated to reach each state.

For example the procedure to reach q̄
(0)
H state is as follows:

From state q̄
(0)
L to q̄

(0)
H the total cost is:

temp2 = Γ(q̄
(0)
L ) + ln(P (q̄

(0)
H |q̄

(0)
L )) + w(r̄2, q̄

(0)
H ) (4.1)

with P (q̄
(0)
H |q̄

(0)
L ) = 1

2
as from each state two transitions are possible

with equal probability.

Also, the total cost from q̄
(1)
L to q̄

(0)
H is:

temp3 = Γ(q̄
(1)
L ) + ln(P (q̄

(0)
H |q̄

(1)
L )) + w(r̄2, q̄

(0)
H ) (4.2)

Finally, the total cost to reach the state q̄
(0)
H is updated as:

Γ(q̄
(0)
H ) = max

i∈{2,3}
tempi (4.3)

As well, a pointer is kept to show which previous state lead to the cur-

rent state q̄
(0)
H .
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Repeating the steps (4.1), (4.2), (4.3) the total costs: Γ(q̄
(1)
H ),Γ(q̄

(1)
L ),Γ(q̄

(0)
L )

are updated considering the transitions which lead to these states as

shown on the trellis-diagram.

3. Step 2 is repeated for the next observations r̄3, ..., r̄N .

4. In the final step the decision for which q̄′n was sent is taken by:

argmax
q̄′∈{q̄(0)

H ,q̄
(0)
L ,q̄

(1)
H ,q̄

(1)
L }

Γ(q̄′)

By following the pointers with backtracking, the exact path is well

known.
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Chapter 5

Numerical Results

5.1 Simulation Results

At first, a comparison of ML symbol by symbol Miller-2 detector with FM0

coherent 2T is presented below. In the simulation, it is proven that they

coincide. The iterations of this simulation were 15000.

Figure 5.1: ML Symbol By Symbol Miller-2 VS FM0 Coherent 2T

The theoretical BER for the AWGN channel is given by the following formula

as shown by Marvin Simon [10]:

BER = 2Q(
√
SNR)(1−Q(

√
SNR))
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The plot for this formula is the following and it is observed that it coincides

with the previous figure (5.1) as it should.

Figure 5.2: AWGN Channel

Furthermore, the Viterbi algorithm is presented for a sequence length of

1 bit (n = 1) with perfect channel estimation and is compared with the

ML symbol by symbol detector for Miller-2 line coding. These two results

coincide because Viterbi detector is the same as the ML. The iterations that

were used for this result were 70000 and the plot which represents them is

the following:
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Figure 5.3: Viterbi Detector For A Single Bit VS ML symbol by symbol
Detector

Viterbi algorithm for sequence length of n = 1, 2, 4, 8, 16, 32, 120 with perfect

channel estimation is shown in the following diagram. For SNR = 0 : 8,

300000 iterations were used while, for SNR = 10, 500000 iterations were

used. It is shown that the BER improves as the sequence of bits increases

which is a characteristic of an algorithm with memory.

Figure 5.4: Viterbi
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For the Viterbi algorithm , n = 1 with BER 2 10−3 the SNR is equal to

9.724. Also, for n = 16 at the same BER, the SNR is equal to 8.523. So, it

is observed that 1.2 dB improvement has been achieved.

9.715 9.72 9.725 9.73 9.735

SNR

1.94

1.96

1.98

2

2.02

2.04

B
E

R

×10
-3

Figure 5.5: Viterbi n=1 with BER 2 10−3

8.523 8.5232 8.5234 8.5236 8.5238 8.524 8.5242

SNR

1.998

1.999

2

2.001

2.002

2.003

B
E

R

×10
-3

Figure 5.6: Viterbi n=16 with BER 2 10−3



44

Chapter 6

Conclusions

6.1 Conclusions

This work proves that the simulation results for BER of Miller-2 line coding

versus SNR coincide with the theoretical results. It is proved that Miller-

2 line coding with ML symbol by symbol detector has the same BER as

the FM0 coherent 2T in [1]. Furthermore, the BER for a Viterbi detector

with perfect channel estimation is improved as the sequence length of bits

increases. Finally, a 1.2 dB improvement is achieved compared to the ML

symbol by symbol detector.

6.2 Future Work

Rayleigh Fading channel is not the most appropriate for RFID systems be-

cause there is no line of sight signal. Instead, Rice channel should be used

as it provides a strong line of sight signal.
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