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Abstract

Polar codes, recently invented by Arikan, are the first provably capacity-
achieving codes for any binary input symmetric discrete memoryless channel
with low encoding and decoding complexity. This thesis explores the practi-
cal implementation of polar codes which are complexity efficient and perform
well for binary erasure channel (BEC) and binary symmetric channel (BSC).
The explicit code construction is based on a characteristic called channel po-
larization which involves generating N extremal (perfect or completely noisy)
channels from N independent uses of the same base channel. Information
bits are sent over the noiseless channels while pilot bits, called frozen bits,
are assigned to the noisy ones. Code design for BEC is based on the recur-
sive relations presented in the original paper whereas for BSC we propose a
heuristic and efficient algorithm and compare it to the method of recursive
estimation of Bhattacharyya parameters of bit-channels. The encoding is im-
plemented using a recursive butterfly structure with O(N logN) complexity,
where N is the block length of the code. Two main low complexity decoders
are compared in terms of bit error rate: successive cancellation decoder pro-
posed by Arikan having complexity O(N logN) with susceptibility to error
propagation and mediocre bit error rate performance at small or moderate
code lengths and list decoder, proposed by Tal and Vardy, with complexity
O(LN logN) where L is the list size.
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Chapter 1

Introduction

1.1 Milestones in coding

To take the issue from the beginning, Shannon defined channel capacity of
a noisy channel in 1948 as the highest rate at which a sender can reliably
transmit data to a receiver, measuring the channel’s quality. Two years later,
Hamming introduced the first class of linear codes, error-correcting codes for
which any linear combination of codewords is also a codeword as well as the
Hamming distance. In 1954, Reed-Muller codes emerged and a year later
Elias introduced the erasure channel, convolutional codes and also showed
that random parity-check codes achieve capacity on the BEC. In 1959, BCH
codes, generalization of the Hamming code for multiple-error correction be-
came known. 1960 was the year 2 codes appeared: Low-density parity-check
(LDPC) codes, introduced by Gallager, and Reed-Solomon codes.

More than 35 years passed before capacity was achieved in practice. In
1993, a new class of convolution codes called Turbo Codes emerged, whose
performance in terms of BER were close to the Shannon limit. Furthermore,
being impractical to implement when first developed by Gallager in 1963,
LDPC codes’ incredible potential remained undiscovered due to the compu-
tational demands of simulation until 1995 when they were rediscovered by
McKay and Neal.

In 2008, polar codes, introduced by Erdal Arikan, are the first provably capac-
ity achieving codes for binary-input discrete memoryless symmetric channels
with low encoding and decoding complexity. Polar coding theory became a
popular research area soon after and polar codes became a competitive can-
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didate coding scheme in future wireless communication systems (5G system).

1.2 Discrete memoryless channels

Figure 1.1: Binary-input discrete memoryless channel.

Considering a discrete memoryless channel with input alphabet X={0,1} and
output alphabet Y , we define the symmetric capacity of the channel as

I(W ) $
1

2

∑
y∈Y

∑
x∈X

W (y|x) log2

W (y|x)
1
2
W (y|0) + 1

2
W (y|1)

. (1.1)

Equivalently, symmetric capacity can be reffered to as the mutual infor-
mation between the input and the output of the channel, given uniformly
distributed input. The symmetric capacity is a measure of the rate of in-
formation transmission. If the channel is symmetric (a discrete memoryless
channel is symmetric if for all X , the branches leaving the code symbol have
the same set of probabilities, p1, p2,...,p|Y | and for all Y , the branches entering
the received symbol have the same set of probabilities p1, p2,...,p|X|), then its
symmetric capacity is equal to its Shannon capacity.
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Figure 1.2: Relation between symmetric capacity and Bhatacharyya
parameter for binary-input discrete memoryless channels.

Another important channel parameter is the Bhatacharyya parameter, which
is denoted as

Z(W ) $
∑
y∈Y

√
W (y|0)W (y|1) . (1.2)

The Bhatacharyya parameter is a measure of the reliability of information
transmission. If we use W to transmit a bit, then Z(W ) is an upper bound
on the error probability of maximum likelihood (ML) decision.

The symmetric capacity and Bhatacharyya parameter are related by

I(W ) ≥ log2

2

1 + Z(W )
, (1.3)

I(W ) ≤
√

1− Z(W )2. (1.4)
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1.2.1 Binary erasure channel (BEC)

0 0

?

1 1

1−ǫ

ǫ

1−ǫ
ǫ

Figure 1.3: The binary erasure channel with erasure probability ε.

The binary erasure channel was introduced by Elias as a toy example in
1954. Erasure channels can be used to model data networks, where packets
either arrive correctly or are lost due to buffer overfows or excessive delays.
Erasure channels model situations where information may be lost but is never
corrupted. A transmitted bit is either received correctly with probablity 1−ε
or known to be lost with probablity ε. Erasure occurs for each transmitted
bit independently, thus the channel is memoryless.
The capacity of BEC(ε) is CBEC(ε) = 1−ε and the Bhattacharyya parameter
of such a channel is ZBEC(ε) = ε.

1.2.2 Binary symmetric channel (BSC)

0 0

1 1

1−ρ

ρ

1−ρ

ρ

Figure 1.4: The binary symmetric channel with error probability ρ.

The binary symmetric channel is one of the simplest channels. The transmit-
ted bit is received correctly with probability 1−ρ or “flipped” with crossover
probability ρ.



1.3. Definitions and preliminaries 12

If X is the transmitted random variable and Y is the received variable, then
the conditional probabilities of the channel are

Pr(Y = 0|X = 0)=1−ρ,
Pr(Y = 0|X = 1)=ρ,
Pr(Y = 1|X = 0)=ρ,
Pr(Y = 1|X = 1)=1−ρ.

The capacity of BSC(ρ) is CBSC(ρ)=1−H(ρ), where H(ρ)=−ρ log2 ρ − (1 −
ρ) log2(1− ρ), and the Bhattacharyya parameter of such a channel is ZBSC(ρ)

= 2
√
p(1− p).

1.3 Definitions and preliminaries

Let N and K be positive integers with K ≤ N . An (N,K) block code is a
function from {0, 1}K to {0, 1}N , i.e., its input is a vector of K bits and its
output is a vector of N bits.

A specific polar code is fully defined by the four parameters (N,K,A, uAC
).

• N : Block length, i.e., the total number of bits transmitted over the
channel.

• K: The number of good channels. K = bRNc, where R is the rate
that we choose to transmit.

• A: The information set A ⊂ {1, ..., N}, i.e., the set of indices which
correspond to the good channels.

• uAC
: The frozen bits, i.e., bits which have fixed values.

The transmission process works in the following way. To begin with, the
information set A must be chosen according to the particular channel over
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Figure 1.5: High-level transmission scheme.

which transmission takes place. Different channels yield different informa-
tion sets. NR information bits are assigned to the good channels indicated
by set A (vector uA) and N(1−R) frozen bits, typically taking a fixed zero
value, are assigned to the rest of channels (vector uAC

). The combined vector
uN1 of uA and uAC

is encoded in a recursive structure obtaining vector xN1 ,
which is sent over the vector channel WN . WN corresponds to N uses of any
binary-input discrete memoryless channel (B-DMC). The received vector yN1
is decoded by the polar decoder, which produces an estimate of uA, the vec-
tor ûA.

An important characteristic of polar codes is their non universality. Dif-
ferent polar codes are generated depending on the specified value of erasure
probability ε for BEC or crossover probability ρ for BSC.
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Chapter 2

Channel Polarization: The
key-idea behind Polar Codes

2.1 Basic channel transformation

Combining two independent copies of W as shown in Figure (2.1) creates a
new synthetic channel W2, with capacity 2I(W ). The channel W2 is then
decomposed into two synthesized channels: W(1)

2 : u1 → (y1, y2) (which we
call degraded, for reasons that will be explained shortly) and W(2)

2 : u2 →
(y1, y2, u1) (which we call upgraded).

W
2

x 1

x 2u

y

y

1

2

1u

W 2

W

Figure 2.1: Channel W2.

To calculate the symmetric capacity and the Bhattacharyya parameter of
the upgraded and degraded channels, we must first calculate the transition
probabilities of the two synthesized bit-channels.

For the first bit-channel, we have

p(y1, y2|u1) =
∑
u2

p(y1, y2|u1, u2)p(u2|u1)

=
∑
u2

p(y1, y2|u1, u2)p(u2)
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=
∑
u2

p(y1, y2|u1, u2)
1

2

=
1

2
p(y1, y2|u1, u2 = 0) +

1

2
p(y1, y2|u1, u2 = 1)

=
1

2
p(y1, y2|x1, x2 = 0) +

1

2
p(y1, y2|x1, x2 = 1)

=
1

2
p(y1|x1)p(y2|x2 = 0) +

1

2
p(y1|x1)p(y2|x2 = 1)

=
∑
u2

1

2
p(y1|u1 ⊕ u2)p(y2|u2). (2.1)

I(u1; y1, y2) =
∑

y1,y2,u1

p(y1, y2|u1)p(u1) log2

p(y1, y2|u1)
1
2
p(y1, y2|u1 = 0) + 1

2
p(y1, y2|u1 = 1)

.

(2.2)

Z(W ′) =
∑
y1,y2

√
p(y1, y2|u1 = 0)p(y1, y2|u1 = 1) .

(2.3)

For the second bit-channel, we have

p(y1, y2, u1|u2) = p(y1, y2|u1, u2)p(u2|u1)

= p(y1, y2|u1, u2)
1

2

=
1

2
p(y1, y2|x1, x2)

=
1

2
p(y1|x1)p(y2|x2)

=
1

2
p(y1|u1 ⊕ u2)p(y2|u2). (2.4)

I(u2; y1, y2, u1) =
∑

y1,y2,u1,u2

p(y1, y2, u1|u2) log2

p(y1, y2, u1|u2)
1
2
p(y1, y2, u1|u2 = 0) + 1

2
p(y1, y2, u1|u2)

.

(2.5)
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Figure 2.2: Symmetric capacity of BEC and BSC before and
after the basic polarization step.

Figure 2.3: Bhattacharyya parameter of BEC and BSC before
and after the basic polarization step.

Z(W ′′) =
∑

y1,y2,u1

√
p(y1, y2, u1|u2 = 0)p(y1, y2, u1|u2) .

(2.6)

In the case W is a BEC with erasure probability ε, the capacities of channels
W ′ and W ′′ are equal to the capacities of BECs with erasure probabilities
2ε-ε2 and ε2, respectively. Thus I(W ′) = 1− (2ε-ε2) and I(W ′′) = 1− ε2.

The two bit channels created after the basic polarization step are defined as
upgraded and degrated channels with respect to the original one in terms of
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symmetric capacity which is illustrated in Figure (2.2) for BEC and BSC.
Figure (2.3) demonstrates the Bhattacharyya parameters before and after
the basic polarization step. We observe that a degraded channel has larger
Bhattacharrya parameter and smaller symmetric capacity than the original
channel. The opposite applies to the upgraded channel.

The channel polarization is a capacity preserving operation, which is math-
ematically expressed as I(W ′) + I(W ′′) = 2I(W ).

Proof

I(W(1)
2 ) = I(u1; y1, y2)

I(W(2)
2 ) = I(u2; y1, y2, u1)

Since u1 and u2 are independent, I(u2; y1, y2, u1) equals I(u2; y1, y2|u1). So,
by the chain rule and due to the one-to-one relation between (x1, x2) and
(u1, u2), we have

I(W ′) + I(W ′′) = I(u1, u2; y1, y2)

= I(x1, x2; y1, y2)

= I(x1; y1) + I(x2; y2)

= 2I(W ). (2.7)

After polarization, capacity is conserved but redistributed unevenly. The
synthesized bit-channels, the upgraded and the degraded one, have lower or
higher, respectively, capacity compared to the original channel. For the basic
polarization step, this property of capacity extremization is mathematically
expressed as

I(W ′) 6 I(W ) 6 I(W ′′) (2.8)

Equality holds iff I(W ) equals 0 or 1.
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Proof

I(W ′′) = I(u2; y1, y2, u1)

= I(u2; y2) + I(u2; y1, u1|y2)

= I(W ) + I(u2; y1, u1|y2) (2.9)

This shows that I (W ′′) > I(W ).

Combining this and the capacity conservation property which was proved pre-
viously, namely I(W ′) + I(W ′′) = 2I(W ), it is implied that I(W ′) 6 2I(W ).

Regarding the Bhattacharyya parameter of the synthesized channels, Arikan
[2] proved the following relations in case the base channel is B−DMC

Z(W ′′) = Z(W )2, (2.10)

Z(W ′) ≤ 2Z(W )− Z(W )2, (2.11)

Z(W ′) ≥ Z(W ) ≥ Z(W ′′). (2.12)

Equality holds in (2.11) iff W is a BEC.
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2.2 General channel transformation

W

W

W

W
N

2

W
N

Original channels
New polarized

channels

Vector channel

Combine Split

W
N

1

W
N

N

.

.

.

.

.

.

Figure 2.4: Channel combining and splitting.

The concept of polarization lies among two processes: channel combining
and channel splitting. N independent copies of the original channel W are
combined to form a vector channel WN in a recursive way and then the new
super channel WN is split back into N virtual channels W(i)

N , {1 ≤ i ≤ N}
which are called i-th bit-channels ofW . 0th level of recursion (n = 0, N = 1)

is simply using the channel W by itself, W1 $ W and the 1st level of recur-
sion (n = 1, N = 2) is the basic polar transformation that was discussed in
section (2.1).

For example, we use two independent copies of W2 to create the vector chan-
nel W4 Figure (2.5). The W4 channel is decomposed into four synthesized
channels: W(1)

4 : u1 → (y41), W(2)
4 : u2 → (y41, u1), W

(3)
4 : u3 → (y41, u

2
1), and

W(4)
4 : u2 → (y41, u

3
1).
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W 4

Figure 2.5: Recursive construction of W4 from two copies of W2.

1u

R N

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

W N/2

W N/2

W N

2u

N/2-1u

N/2u

.

.

.

N/2+1u

N/2+2u

N-1u

Nu

1y

.

.

.

2y

N/2-1y

N/2y

.

.

.

N/2+1y

N/2+2y

N-1y

Ny

Figure 2.6: Recursive construction of WN from two copies of WN
2
.

The generalized structure for N copies is illustrated in Figure (2.6).
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Figure 2.7: Polarized bit-channel.

The transition probability of the bit-channel W(i)
N is defined as

W(i)
N (yN1 , u

i−1
1 |ui) =

∑
uN
i+1

1

2N−1
WN(yN1 |uN1 ). (2.13)

The following two recursive formulas manage the efficient computation of the
transition probabilities of the synthesized channels.

W
(2i−1)
2N (y2N1 , u2i−21 |u2i−1) =

∑
u2i

1

2
W

(i)
N (yN1 , u

2i−2
1,e ⊕ u2i−21,o |u2i−1 ⊕ u2i)

W
(i)
N (y2NN+1, u

2i−2
1,e |u2i),

(2.14)

W
(2i)
2N (y2N1 , u2i−11 |u2i) =

1

2
W

(i)
N (yN1 , u

2i−2
1,e ⊕ u2i−21,o |u2i−1 ⊕ u2i)

W
(i)
N (y2NN+1, u

2i−2
1,e |u2i).

(2.15)

Polar codes exploit the channel polarization phenomenon by which N chan-
nels are synthesized out of combination of N independent copies of DMC
channels, such that ifN goes to infinity, the symmetric capacity terms I(W(i)

N )

tend towards 0 or 1. This means that a fraction of the channels W(i)
N become

perfect for data transmission, while the channels in the complementary frac-
tion become completely useless.

The capacity preserving property can be generalized for N bits, which is
mathematically expressed as

N∑
i=1

I(W(i)
N ) = NI(W ). (2.16)
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Figure 2.8: Polarization for different block lengths on BEC.

The above is true iff it applies on the basic polarization step. The capacity
extremization property can also be generalized for N bits.

As the code length N approaches infinity, the polarized channels go to two
extremes: the bit-channels with capacity almost 0 or the ones with almost 1.
This is the reason why bigger block lengths are preferred when choosing the
parameters of polar codes.

In Figure (2.8), we observe the effect of channel polarization. As expected,
almost half of the channels are perfect and the other half are useless. The
fraction of the channels that become perfect for transmission is equal to the
capacity of the channel. Since the upgraded channels have higher capacities
or lower error probabilities than the degraded (noisy channels), the channel
polarization phenomenon introduces a new philosophy for channel coding,
selecting the noiseless channels for information-bits transmission. The selec-
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Figure 2.9: I(W(i)
N ) vs. i=1,...,N=2048 for BEC(1

2
).

tion of good channels is explained in section (5).

The polarization effect is illustrated in Figure (2.9) for the case W is a BEC
with erasure probability ε = 0.5. The figure shows that I(W(i)

N ) tends to be
near 1 for small i and 0 near for large i. The numbers I(W(i)

N ) have been
computed using the following recursive relations.

I(W(2i−1)
N ) = I(W(i)

N
2

)
2
, (2.17)

I(W(2i)
N ) = 2I(W(i)

N
2

)− I(W(i)
N
2

)
2
with I(W(1)

1 ) = 1− ε. (2.18)

By recursively applying the polarization transformation over the resulting
channels, the result is that “the good ones get better and the bad ones get
worse.” Regarding the Bhattacharyya parameter of the synthesized channels,
for any B-DMCW , N = 2n, n ≥ 0, 1 ≤ i ≤ N , the relations (2.10) and (2.11)
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can be generalized. Thus,

Z(W(2i)
2N ) = Z(W(i)

N )
2
, (2.19)

Z(W(2i−1)
2N ) ≤ 2Z(W(i)

N )− Z(W(i)
N )

2
. (2.20)
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Chapter 3

Encoding of Polar Codes

The implementation of polar encoder can be accomplished in two ways.
The first way is the matrix multiplication, which is of quadratic complex-
ity. On the other hand, butterfly recursive encoding reduces the complexity
to O(NlogN).

3.1 Matrix multiplication

Having shown the basic step of polarization and the general channel trnasfor-
mation, we can now define the recursion that constructs the generator matrix

of polar codes. We define the Arikan kernel matrix as F=

[
1 0

1 1

]
. The n-th

Kronecker product of F is denoted F⊗n and is defined recursively as

F⊗n=

[
F⊗n−1 0

F⊗n−1 F⊗n−1

]
, where F⊗1=F.

For example F⊗2 can be calculated in the following way

F⊗2=

[
F⊗1 0

F⊗1 F⊗1

]
=


1 0 0 0

1 1 0 0

1 0 1 0

1 1 1 1

.
Polar codes in the original format are not systematic. In other words, the in-
formation bits do not appear as part of the codeword transparently. The gen-
erator matrix for polar codes of block length N = 2n is GN = BNF

⊗n, where
B is the bit-reversal permutation matrix. If vN1 = uN1 BN , then vb1,b2,...,bn =

ubn,bn−1,...,b1 . Polar encoder splits the source word into two parts: u=(uA, uAc)
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Figure 3.1: Generator matrix for N=4.

so that the first part consists of user data that is free to change in each round
of transmission, while the second part consists of digits that are frozen at
the beginning of the session and made known to the decoder. The codeword
produced by the polar encoder is x̄=ūAGA ⊕ ūAcGAc where GA, GAc subma-
trices of GN consisting of rows with indices in A and Ac, respectively. For

example, let G4 =


1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

 and the (4, 2, {2, 4}, (0, 0)) polar code. On

the 2nd level of recursion (n = 2, N = 4), we use two independent copies of
W2 to create the vector channel W4 Figure (2.5). The codeword produced by

the polar encoder is: x41=u41G4=(u2, u4)

[
1 0 1 0

1 1 1 1

]
+ (0, 0)

[
1 0 0 0

1 1 0 0

]
.

For systematic polar codes, we focus on a generator matrix without the
permutation matrix, namely GN = F⊗n. In a non-systematic codeword x,
information bits do not appear while in a systematic source word is mapped
to codeword, such that the message bits are explicitly visible. It was shown
by Arikan that the set of K indices in a codeword x, where the message bits
appear explicitly can be chosen equal to the set of information bit indices I.
There are multiple advantages to systematic encoding such as easier infor-
mation extraction and better bit-error rate (BER) performance.

Matrix multiplication of G with an information vector is easy for small block
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lengths but not convenient for bigger block lengths. The process has a com-
plexity of O(N2).

3.2 Butterfly circuit model

The first step is to construct an intermediate message
[
u1 u2 . . . uN

]
of length N from a length-K source message. The general form of the re-
cursion is shown in Figure (2.6), where two independent copies of WN

2
are

combined to produce channel WN .

The operator RN is a permutation, known as the reverse shuffle opera-
tion. Reverse shuffling distincts the odd and even indexed elements and
passes them to separate channels. Odd indexed signals become input to
the first copy of WN

2
and even indexed to the second. This permutation

can also be interprended as re-ordering the binary expression of i-1 where
i represents the input index. By re-ordering we mean that it cyclically
rotates the bit-indexes by one place to the left. If vN1 = uN1 RN , then
vb1,b2,...,bn = ub2,bn,...,b1 . For n = 3, the reverse shuffle operation, v81 =

u81R8 transforms the vector u81 = (u000, u001, u010, u011, u100, u101, u110, u111) to
v81 = (u000, u010, u100, u110, u001, u011, u101, u111) which means that we go from
u81 = (u1, u2, u3, u4, u5, u6, u7, u8) to v81 = (u1, u3, u5, u7, u2, u4, u6, u8). Note
that RN and BN are not equal. B8 happens to have the same effect on u81 as
R8 does, but this does not happen for bigger N .

In terms of complexity, let us assume that the computational complexity
of a mod-2 addition process is unitary (1 unit) and the complexity of the
reverse shuffle operation RN is N units of time, the complexity is derived
with the help of Master Theorem is

T (N) =
N

2
+O(N) + 2T (

N

2
)⇒

T (N) = O(N log2N) (3.1)
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Chapter 4

Decoding of Polar Codes

4.1 Successive cancellation

Arikan proposed successive cancellation (SC) decoding in order to achieve
capacity with low complexity. The information bits are decoded sequentially
in the increasing order of their indices. The decoder’s task is to generate
an estimate ûN1 of uN1 , where uN1 denotes the input data sequence, given
knowledge of A, uAc and yN1 . If ui is a frozen bit, the decoder will set ûi to
zero. If ui is an information bit, the decoder decides on ith bit (1 ≤ i ≤
N) computing the following likelihood ratio (LR) after estimating all the
previous bits ui−11 . The SC decoder follows a depth first approach, meaning
that it examines only one path from the root node to the leaf nodes assuming
a tree structure.

L
(i)
N (yN1 , û

i−1
1 ) =

W
(i)
N (yN1 , û

i−1
1 |0)

W
(i)
N (yN1 , û

i−1
1 |1)

(4.1)

and generates its decision as

ûi =

{
0, if L(i)

N (yN1 , û
i−1
1 ) ≥ 1

1, otherwise
(4.2)

In general, the notation for LRs is L(j)
i where i indicates the stage and j the

level, with 1 ≤ i ≤ N and 1 ≤ j ≤ n.
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4.1.1 Naive implementation

The complexity of SC decoding is determined by the complexity of the com-
puting LRs. The recursive relations for computing the LRs are

L
(2i−1)
N (yN1 , û

2i−2
1 ) =

1 + L
(i)
N
2

(y
N
2
1 , û

2i−2
1,e ⊕ û2i−21,o )L

(i)
N
2

(yNN
2
+1
, û2i−21,e )

L
(i)
N
2

(y
N
2
1 , û

2i−2
1,e ⊕ û2i−21,o ) + L

(i)
N
2

(yNN
2
+1
, û2i−21,e )

(4.3)

L
(2i)
N (yN1 , û

2i−1
1 ) = L

(i)
N
2

(y
N
2
1 , û

2i−2
1,e ⊕ û2i−21,o )

1−2û2i−1

L
(i)
N
2

(yNN
2
+1
, û2i−21,e ) (4.4)

The relations (4.3), (4.4) can be respectively rewritten in simplifed way as:

L =
1 + L1L2

L1 + L2

and (4.5)

L = L1L2 in case û2i−1 = 0 or (4.6)

L =
L1

L2

otherwise . (4.7)

A decision table is demonstrated for border cases like 0
0
, ∞∞ in (4.5).

L2

L1

0 1 ∞

0 ∞ 0
1 1
∞ 0 1 ∞

On the Nth level, each calculation of an LR at this length N requires the
calculation of two LRs at length N

2
. Each calculation of an LR at length N

2

requires the calculation of two LRs at length N
4

and so on, until we reach
length 1, at which point the recursion is terminated and the LRs have the
form L

(1)
1 (yi) = W (yi|0)

W (yi|1) .

From the above equations, it can be seen that each calculation of LR
{L(i)

N (yN1 , û
i−1
1 ):(1 ≤ i ≤ N)} is reduced to the calculation of two LRs at
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Algorithm 1 A high-level description of the SC decoder

Input: The received vector y
Output: a decoded codeword ĉ

1: for φ = 0, 1, ..., N − 1 do
2: calculate L

(φ)
N (yN1 , û

φ−1
1 )

3: if uφ is frozen then
4: set ûφ to the frozen value of uφ
5: else
6: if L(φ)

N (yN1 , û
φ−1
1 ) ≥ 1 then

7: set ûφ ← 0
8: else
9: set ûφ ← 1

10: end if
11: end if
12: end for
13: return the estimated source word ûA

length N
2
, thus overall O(N) complexity. Hence the calculation of all N LRs

requires O(N2) time complexity.

4.1.2 Smart implementation

A refined successive cancellation decoder was proposed to decrease the re-
dundant calculations in SC decoding without affecting the error performance.
To see where the computational saving will come from, we notice that each
LR value in the pair (L(2i−1)

N (yN1 , û
2i−2
1 ), L

(2i)
N (yN1 , û

2i−1
1 )) is assembled from

the same pair of LRs (L(i)
N
2

(y
N
2
1 , û

2i−2
1,e ⊕ û2i−21,o ), L

(i)
N
2

(yNN
2
+1
, û2i−21,e )). Let us split

the N LRs at length N
2
into two classes, namely,

{L(i)
N
2

(y
N
2
1 , û

2i−2
1,e ⊕ û2i−21,o ) : 1 ≤ i ≤ N

2
} (4.8)

{L(i)
N
2

(yNN
2
+1
, û2i−21,e ) : 1 ≤ i ≤ N

2
} (4.9)

Each class generates a set of N
2

LR calculation requests at length N
4
, for a

total of N requests.
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If we store the already calculated LRs, the calculation of all N LRs at length
N requires the calculation of N LRs at length N

2
and not 2N calculations as

in the previous algorithm. The total number of distinct LRs needed to be
calculated and stored with this algorithm is exactly N(1+logN). Thus, both
the computational and memory complexity of the SC decoder is O(N logN).

Below, we describe the decoding procedure for N = 4. The procedure is
shown in Figure (4.1), where N(1 + logN) = 12 nodes are illustrated. Each
node corresponds to an LR request. To begin with, the decoder activates
node 1 to decide the value of û1. Node 1 needs the LLRs at nodes 5 and 7,
L
(1)
1 , L

(1)
3 , so it activates the two branches on its right. Then, nodes 5 and

7 need the LR values of nodes 9, 10, 11, 12. Therefore, LRs at node 5 and
7 are computed using formula (4.3) and from them, L(2)

1 is calculated using
the same formula which makes the decoder capable to decide the value of û1.
For computing , L(2)

1 at node 2, nodes 5 and 7 are activated and the formula
(4.4) is used based on the previous values already computed. To estimate û3,
we activate nodes 6 and 8.

4.1.3 Performance on the BEC and BSC

Let us consider how successive cancellation decoder behaves in practice for
BEC and BSC.

The following two figures are presented to demonstrate the performance of
polar codes over BEC. In Figure (4.2), we consider transmissions of R=1

2
over

the BEC. The block length N is set to 32, 64, 128, 256, 512, and 1024. We
plot the bit error rate as a function of the erasure probability ε. In Figure
(4.3), we consider BEC(1

2
), the same variety of block lengths as before and

plot the BER as a function of rate R. We observe that the BER performance
improves as the block length grows larger. This is justified by the fact that
greater level of channel polarization is accomplished when the block length
increases to infinity.
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Figure 4.1: Successive cancellation decoder for N = 4.

4.1.4 Inferiority of SC decoder

The SC decoding method leads to error propagation which affects the bit
error rate of polar codes. Once an unfrozen bit is set, there is “no going
back”. A bit that was set at step i can not be changed at step j > i. In SC
decoding, incorrect bit decisions can be caused by channel noise or by error
propagation due to previous erroneous bit decisions. The first incorrect de-
cision is always caused by the channel noise since there are no previous errors.

The performance of SC decoding at finite blocklengths is inferior to other
modern codes, such as LDPC codes. The reason is that for finite block
lengths there exists a broad “grey zone” of channels whose capacities are far
from being polarized.
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Figure 4.2: BER vs erasure probability for polar code of R=1
2
and N = 32,

64, 128, 256, 512, and 1024 on the BEC.

4.2 List decoding of polar codes

To improve the finite blocklength performance, SC list (SCL) decoder was
introduced recently. The decoding algorithm uses SC as the underlying de-
coder, but improves its performance by exploring multiple paths on a decision
tree simultaneously, with each path resulting in one candidate codeword. The
computational and memory complexities of SC list decoding are though much
higher than simple SC decoder.

At each decoding step i ∈ A, instead of fixing a decision on the unfrozen
bit ui, two decoding paths corresponding to either possible value of ui are
created and decoding is continued in two parallel decoding threads. This
means that SCL uses a breadth-first approach by searching more than one
paths in each level of the tree. Each split doubles the number of paths to be
examined. In order to avoid the exponential growth of the number of decod-
ing paths, a pruning procedure is used to discard all but the L best paths.
The pruning criterion will be to keep the most likely paths. Finally, the
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Figure 4.3: BER vs Rate for polar code of ε=1
2
and N = 32, 64, 128, 256,

512, and 1024 on the BEC.

Figure 4.4: BER vs Rate for polar code of ρ=0.05 and N = 32, 64, 128, 256,
512, and 1024 on the BSC.
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decoder will end up with a list of L candidates for uA out of which the most
likely one is declared as the final estimate ûA. The estimated codeword is
declared by the binary labels uN1 that correspond to the edges {e1, e2, ..., eN}
of this chosen path. If ui is a frozen bit, there will be no splitting. Instead,
ûi is set to the fixed frozen value.

In a naive implementation, at each split the data structures used by the
parent path are duplicated, with one copy given to the first fork and the
other to the second. Since the number of splits is Ω(LN), and since the
size of the data structures used by each path is Ω(N), the copying operation
alone would take time Ω(LN2), which is practical only for codes with small
blocklength. To avoid wasting a lot of time on copy operations at each stage,
we could perform only a small number of copy operations with the following
tricks. At each split, flag the corresponding variables as belonging to both
paths and give each path a unique variable (make a copy) only before that
variable will be written to. If a path is killed, deflag its corresponding vari-
ables. In the end, the result is a running time of O(LNlog2N) with O(LN)

memory requirements.

To understand the concept of SCL decoding, let us examine the case of
polar codes of block length N = 4, K = 4 (all bits are unfrozen), and L =

4. The decoding algorithm starts and the first bit can be either 0 or 1
(û0 = 0 or û0 = 1). In the next step the decision over the second bit is split
again into 0 or 1. The possible words are û10 = 00, û10 = 01, û10 = 10, û10 = 11

but the number of paths is not greater than L = 4 so we don’t need to
prune, yet. In the following step we examine all possible values of û20 but
now the paths are 8 so we must keep track of only the L = 4 most likely
paths. Only the words û20 = 010, û20 = 011, û20 = 100, û20 = 111 are kept. The
proccess continues for the fourth bit at which point the possible words are
8 which is too much so the algorithm prunes keeping only the best L = 4

paths. The decoding algorithm terminates and we obtain the codewords
û30 = 0100, û30 = 0110, û30 = 0111, û30 = 1111.
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Regarding the implementation of SCL, the set of candidate paths that cor-
respond to the level i (L(i)) are kept in a list structure and updated at every
level. The first step is the path initialization. The initial list contains a null
path (L0) = ∅). The next step involves expanding all the existing paths with
one bit, once with a 0 once with a 1, doubling the total number of the new
candidate paths. Each corresponding path metric is updated in accordance
with equations (2.14), (2.15). In the following step, half of the candidate
paths, the ones with the lowest probability metric are deleted, so that ex-
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Figure 4.5: SCL vs SC for small (N = 64) and moderate (N = 512) size of
block length

actly L paths are preserved. If the candidate paths are no more than L, then
no path is deleted. The last 2 steps are reapeted until length N is reached,
when the path with the largest probability metric is selected.

In Figure (4.5), the improvement in the bit error rate performance by us-
ing SCL decoder instead of SC decoder is depicted in case of small and
moderate block lengths. The SCL decoder has a parameter L, called the list
size. If L = 1 the SCL decoder is equal to the simple SC decoder while for
L = 2N , we have the case of the ML decoder. Generally speaking, larger
values of mean lower error rates but longer running times. This is illustrated
in Figure (4.6).
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Figure 4.6: SCL for different values of list size, L.

4.2.1 List decoder with CRC check

Polar codes concatenated with a high rate cyclic redundancy check (CRC)
code is an effective approach that can further enhance the performance of the
polar codes, making them a strong competitor to Turbo and LDPC codes by
applying a SCL decoder with sufficiently large list size. Using a CRC as the
primary criterion for selecting the final decoder output, increased the error-
correction performance significantly. The idea of CRC check is the following:
Let there be k + r unfrozen bits. Of these, we use the first k bits to encode
information and the last r unfrozen bits to encode the CRC value of the first
k bits. In the end, we pick the most probable codeword on the list with
correct CRC.
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Figure 4.7: SCL vs SCL with CRC with N = 2048, L = 32, CRC = 16.
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Chapter 5

Construction of Polar Codes

The consruction of polar codes is one of the important concerns in using
polar codes in practice. The input to a polar code construction algorithm
is a triple (W,N,K) where W is the B−DMC on which the code will be
used, N is the code block length, and K is the dimensionality of the code.
The output of the algorithm is an information set A ⊂ {1, 2..., N} of size K,
such that

∑
i∈A

I(W(i)
N ) is as large as possible. In other words, designing polar

codes is equivalent to finding the set of good indices among the N polarized
channels that guarantee the maximum reliability. Good channels will have
I(W ) close to 1 and Z(W ) close to 0. In the way those two parameters are
defined, one would expect that I(W ) goes to 1 iff Z(W ) goes to 0 and vice
versa.

5.1 Construction over BEC

In BEC, the reliability of the bit channels is defined by the recursive relations
(2.17) and (2.18). The capacities are then sorted and the indices with the
highest reliabilities are chosen as elements of the set A.

For BEC the parameters I(W(i)
N ) can all be calculated in time O(N) thanks

to the recursive formulas.

5.2 Construction over BSC

The recursive relations (2.17) and (2.18) are valid only for BECs. No efficient
algorithm is known for calculation of for a general B−DMC W.
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5.2.1 Bhattacharyya parameter based channel

construction

Figure 5.1: Bhattacharyya parameter based channel construction.

In the initial paper, Arikan utilizes the Bhattacharyya parameter Z(W ) =∑
y∈Y

√
W (y|0)W (y|1) as another measurement of channel quality. Instead of

computing the Bhattacharyya parameters directly, a proccess that whould
require high computational cost, upper bounds on the Bhattacharyya pa-
rameters of bit-channels are calculated in order to estimate the bit channels
according to the relations (2.19) and (2.20). The process begins with the
value of Bhattacharyya parameter of BSC (ZBSC(ρ) = 2

√
p(1− p)). The

Bhattacharyya parameter of the original channel W is used to generate two
values : Z = 2(ZBSC(ρ)) − (ZBSC(ρ))

2 and Z = (ZBSC(ρ))
2. This step is re-

peated recursively until N numbers are generated. In the end, the K leaves
with the smallest Bhattacharyya parameters are selected and their index is
returned as output. This proccess is illustrated in Figure (5.1).
Due to its simplicity, this construction has been widely used, and produced
good polar codes.

5.2.2 Proposed algorithm

In this algorithm, we calculate the BER of bit-channels rather than their
Bhattacharyya parameters. We consider consecutive transmissions of K−
length zero-vectors and we calculate the BER of each synthesized channel
after the repetitions. The algorithm utilizes the fact that the vast majority
of the reliable channels tend to be concentrated in the last bit-channels and
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only a small fraction of the first bit-channels will qualify. In particular, three
BER thresholds are set, one for small values of ρ, one for medium and one
for large values. The threshold for small values of ρ is lower and for larger
values, higher.

On the first pass, the first K channels are tested. Zero-vectors are sent
over the first K channels and the BER of each synthesized channel is cal-
culated, after the repetitions. It is expected that almost none of the first
channels will reach the threshold. If s channels qualify, the channel index
and BER are stored on matrix candidates. A variable named checked keeps
track of the index of channels that have been examined so far.

On the next passes, the algorithm sends zero-bits over the channels currently
present on candidates and assuming the size of candidates is s, the zero-bits
are also sent over the next K − s channels. After transmitted repeatedly,
the examined channels, will be evaluated according to their BERs. To this
point, checked+ s first channels will have been evaluated.

The process is repeated until all bit channels are evaluated (checked = N).

The capacity of matrix candidates is K. If the matrix is filled up and not all
bit-channels are checked, the matrix will be sorted according to BERs. The
tuple with the smallest value of BER will be removed and kept on a vector
called “candidate on air”. Its place will be taken by the next channel that
is to be evaluated. If the bit-channel has better BER performance, then it
will replace "candidate on air" permanently. If it does not, the “candidate
on air” will be restored on candidates.

There is also the possibility that after examining all the bit channels, less
than K channels will be found. To mend the situation, at each evaluation
K
2
channels that have not qualified on candidates are stored and updated on

matrix reservoir according to BERs. If the end is reached and the matrix
candidates is not filled up, then candidates will be completed with channels
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with the smallest BERs from matrix reservoir.

Figure 5.2: Bhattacharyya parameter based construction method vs the pro-
posed code construction algorithm for N = 32, N = 64, N = 128.

Figure 5.3: Bhattacharyya parameter based construction method vs the pro-
posed code construction algorithm for N = 256, N = 512, N = 1024.
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5.3 Other Construction methods

Mori and Tanaka attempted an efficient construction of polar codes in the
general case utilizing density evolutions, a method that requires large mem-
ory and high complexity increasing with the code length.

A straightforward construction of polar codes is unmanageable because the
resulting bit-channels have an output alphabet that grows exponentially with
the code length. The Tal and Vardy construction method approximates a
bit-channel with an intractable large alphabet by a better and a worse chan-
nel with smaller alphabet size. The polar code is constructed according to
the worse channel and is compared with the better channel to measure the
distance from the optimal channel.



45

Chapter 6

Brief review, recent results and
current work

6.1 Brief review

In this thesis the fundamental concepts of polar coding are showcased, in-
cluding channel polarization, encoding scheme and decoding algorithms such
as SC and SCL. The crucial concern to improve the finite length performance
of polar codes under SC decoding has been addressed, while at the same time
keeping computation and memory complexity as low as possible. Last but
not least, results for polar codes with two different construction methods are
presented.

6.2 Recent results and current work

Recent progress has been made by Gross and Sarkis (MacGill University),
who managed to further improve the performance using systematic polar
codes and SCL with CRC.

Polar codes have a large variety of applications, including the construction of
a coding scheme that achieves the secrecy capacity for a wide range of wire-
tap channels, which was initiated by Mahdavifar and Vardy. Lossy source
compression of a binary symmetric source using polar codes has been stud-
ied by Korada and Urbanke. In addition, Gross and Sarkis have investigated
the suitability of polar codes to data storage applications focusing on error-
correction performance and throughput.
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