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ABSTRACT  

Given the importance of the credibility and validity required in macroscopic traffic flow models 

while performing real-word simulations, the necessity of employing an efficient, computationally 

fast, and reliable constrained optimization scheme for model calibration appears to be mandatory 

to ensure that the traffic flow characteristics are accurately represented by such models. To this 

end, a parallel, metamodel-assisted Differential Evolution (DE) algorithm is employed for the 

calibration of the second-order macroscopic gas-kinetic traffic flow (GKT) model using real 

traffic data from Attiki Odos freeway in Athens, Greece. The parallelization of the DE algorithm 

is performed using the Message Passing Interface (MPI), while artificial neural networks 

(ANNs) are used as surrogate models. Numerical simulations are performed, which demonstrate 

that the DE algorithm can be effectively used for the search of the globally optimal model 

parameters in the GKT model; in fact, the method appears to bepromising for the calibration of 

other similar traffic models as well.   

Keywords: parallel differential evolution, surrogate models, artificial neural networks, 

macroscopic traffic flow modeling. 

 

1 Introduction 

The need for robust and realistic modeling tools for evaluating different traffic systems and 

intelligent transportation system (ITS) technologies has increased remarkably over the last 

decades. Traffic flow models can be employed for the planning and assessment of road 

infrastructures, traffic surveillance and monitoring, incident detection, as well as for the 

development and testing of traffic control strategies and other operational tools. Currently, 

several commercial traffic simulation models are available, and even more mathematical models 

have been developed by researchers all over the world. Clearly, the accurate and effective 

application of traffic flow models is of significant importance. In this context, an effective 

calibration and validation process is deemed mandatory for any simulation model, so as to ensure 

its credibility and validity in performing real-world simulations, by reflecting realistically all 

possible traffic conditions. 
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In general, traffic simulation models can be classified as either microscopic or macroscopic, 

according to their level of detail. In a microscopic simulation, the traffic flow is modeled at a 

high level of detail, by capturing the behavior of individual vehicles; while at the macroscopic 

level, the traffic flow is described in lesser detail by using aggregated variables, such as flow, 

density and mean speed [1]. In fact, the feature of macroscopic models to require a relatively 

small number of parameters, compared to microscopic ones, results in a less demanding and 

computationally less expensive calibration and validation process and, therefore, in a more 

flexible development and implementation of such models for real-world applications. 

Despite the increasing spread in the use of macroscopic traffic flow simulation models, relatively 

little attention has been given to their calibration and validation. Compared to microscopic 

models, surprisingly few studies include methods for addressing or actually conducting the 

calibration and validation process for macroscopic models. Examples of optimization algorithms 

used are the deterministic Complex algorithm of Box in [2, 3, 4, 5, 6], the deterministic Nelder-

Mead algorithm utilized in [7, 8], genetic algorithms in [9, 10], the stochastic cross-entropy 

method employed in [11] and the parallel Differential Evolution algorithm in [12].  

To contribute to the state-of-the-art, this work puts forward an optimization scheme, based on a 

parallel, metamodel-assisted Differential Evolution (DE) algorithm [27, 28] to determine the 

optimal parameters of the second-order macroscopic gas-kinetic traffic flow (GKT) model [22, 

23, 24], which minimizes the relative error between the model prediction and the observed real 

data. Such a calibration process is a quite complex problem, since it takes the form of 

minimizing a cost function with numerous local minima, which traditional gradient-based 

algorithms are likely to fail to avoid. 

Among the various search and optimization techniques, Evolutionary Algorithms (EAs) have 

emerged during the past decades as an essential and versatile tool for dealing with demanding 

high-dimensional real-world optimization problems. EAs are capable of handling non-

differentiable, nonlinear and multimodal cost functions based on the principles of natural 

selection and evolution. From a population of candidate solutions, each individual is evaluated 

on the basis of its fitness function, and the best ones are selected (with accordingly increased 

probability) to proceed to the next generation and evolve farther. However, despite the important 

contribution of EAs in solving complicated problems, they suffer from a significant drawback; a 

considerable number of evaluations are needed, which usually calls for significantly increased 

computational resources. In order to overcome this barrier, the use of surrogate models 

(metamodels), in conjunction with parallel processing, appears to be an efficient approach. 

The population-based searching mechanism of EAs makes them eminently suitable for 

parallelism. The use of parallel EAs (PEAs) not only improves the efficiency, but also enhances 

the arithmetic performance, if structured populations are adopted. The different types of parallel 

EAs can be divided mainly in two categories, panmictic EAs and structured ones [13, 14].  

Combinations of the aforementioned categories have been reported in the literature resulting in 

hybrid models such as hierarchical hybrids [15, 16, 17].  In panmictic EAs a global 

parallelization model is usually followed, which utilizes a unique population of candidate 

solutions, while the selection operation is applied to all members of the population. The whole 

procedure is tailored by a central processor, which distributes the members of the population to 

different processors in order to be evaluated in parallel, while the selection step is performed 

only by the central processor sequentially. This model is usually combined with a Master-Slave 



3 
 

architecture. Synchronous and asynchronous parallel implementations of panmictic PEAs have 

been proposed in the literature [18, 19]. 

 

In general, parallel EAs mostly use structured populations, following either the island (dEAs) or 

the cellular model (cEAs) [14, 20, 21]. For the parallel implementation, the population is divided 

into subpopulations called demes, and each evolves separately on its assigned processor. In dEAs 

each subpopulation is compromised by many individuals; while in cEAs the subpopulation 

corresponds to a single individual. The demes exchange individuals with some migration 

frequency to ensure the propagation of good solutions. In a dEA the subpopulations are loosely 

connected to each other, whereas in cEAs every individual can interact only with its neighbours. 

When implementing the island model, only a small number of subpopulations are used, contrary 

to cEA, where the number of subpopulations is equal to the population size [13, 14]. Hybrid 

PEAs implementations utilize the multi-population dEA model with the fine-grained cEA model 

resulting in better convergence behavior [15, 16, 17]. 

 

In this work, a parallel DE algorithm was developed based on the panmictic approach, using a 

unique population that is distributed among the processors, with a Master-Slave architecture. 

Separate executable programs perform the evaluation of each individual in the population, while 

the required data exchange and communication between the processors are achieved using MPI 

(Message Passing Interface) library functions. Furthermore, the utilization of surrogate models 

within the DE algorithm enhances its performance by substituting the computationally time-

consuming exact evaluations of the fitness functions with low-cost approximations. 
  

Numerical simulations are presented using real traffic data from a particular freeway stretch in 

Attiki Odos motorway, Greece, where recurrent congestion, triggered by a saturated off-ramp, 

occurs during the morning peak hours. Although traffic congestion originating from a diverging 

area is quite frequent, appearing mainly at freeways during the peak periods, is not a trivial task 

to deal with, since it is difficult to determine the freeway exit flow.  A high-order finite volume 

numerical scheme is implemented for the spatial discretization of the differential equations in the 

GKT model, while time integration is based on a high-order implicit-explicit Runge-Kutta 

method [25, 26]. The obtained results demonstrate that the proposed model is reasonably 

accurate in reproducing traffic dynamics, while the parallel DE algorithm can be effectively used 

for its calibration. 

 

The rest of the paper is organized as follows: In Section 2 a brief description of the second-order 

GKT model is presented, whereas in Section 3 a description of the major elements composing 

the proposed numerical optimization scheme is given. In Section 4 the model calibration and 

validation procedure is presented along with the considered freeway stretch and the traffic data 

used in the current implementation; the calibration results are evaluated regarding their ability to 

replicate traffic congestion at a particular saturated off-ramp area. The research findings are 

summarized in Section 5. 

 

2 The GKT model  

This section briefly presents basic definitions and equations governing the second-order GKT 

model according to [22, 23, 24, 25, 26]. Let 𝜌 = 𝜌(𝑥, 𝑡) and 𝑢 = 𝑢(𝑥, 𝑡) denote the traffic 
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density (vehicles per unit length) and mean speed, respectively, at location 𝑥 and time instant t, 

while the traffic flow rate (vehicles per unit time) is given as 𝑞(𝜌, 𝑢) =  𝜌(𝑥, 𝑡)𝑢(𝑥, 𝑡). The GKT 

model can be written in conservation law form with source terms as follows 

𝜕𝑡𝜌 + 𝜕𝑥(𝜌𝑢) = 𝑟𝑟𝑚𝑝, (1) 

𝜕𝑡(𝜌𝑢) + 𝜕𝑥(𝜌𝑢2 + 𝜃𝜌) = 𝜌 (
𝑉𝑒

∗(𝜌) − 𝑢

𝜏
) + ℎ𝑟𝑚𝑝. (2) 

To describe the traffic flow from on-ramps (or to off-ramps), the terms 𝑟𝑟𝑚𝑝 and ℎ𝑟𝑚𝑝 were 

incorporated on the right-hand sides of Equations (1) and (2). Following from [24], the source 

term 𝑟𝑟𝑚𝑝, which denotes the effective flow density (source density), is only active within the 

merging (or diverging) zone with length 𝑙𝑟𝑚𝑝 with inflow 𝑞𝑟𝑚𝑝 > 0 from (or outflow 𝑞𝑟𝑚𝑝 < 0 

to) the ramp, and is defined as  

𝑟𝑟𝑚𝑝(𝑥, 𝑡) = {

𝑞𝑟𝑚𝑝(𝑡)

𝑙𝑟𝑚𝑝
   𝑖𝑓 𝑥 𝑖𝑠 𝑤𝑖𝑡ℎ𝑖𝑛𝑔 𝑚𝑒𝑟𝑔𝑖𝑛𝑔 𝑧𝑜𝑛𝑒 ,

0           𝑒𝑙𝑠𝑒𝑤𝑒𝑟𝑒.

 

 

(3) 

 

The source term ℎ𝑟𝑚𝑝 in the momentum dynamics Equation (2) describes changes to the 

macroscopic local speed by assuming that on-ramp vehicles merge to the mainstream road at 

speed 𝑢𝑟𝑚𝑝 < u. Conversely, the vehicles considered to leave the mainstream road reduce their 

speed to 𝑢𝑟𝑚𝑝 before they diverge to the off-ramp. Hence, this term can be written as 

ℎ𝑟𝑚𝑝(𝑥, 𝑡) =
𝑞 ∙ 𝑟𝑟𝑚𝑝

𝜌
+

(𝑢𝑟𝑚𝑝 − 𝑢)|𝑞𝑟𝑚𝑝|

𝑙𝑟𝑚𝑝
. (4) 

Further, the pressure-like term 𝜃 in Equation (2) is computed as 𝜃 =  𝐴(𝜌)𝑢2, where 𝐴(𝜌)  is 

given by the Fermi-like function 

𝐴(𝜌) = 𝐴0 + 𝛿𝐴 [1 + tanh (
𝜌 − 𝜌𝑐𝑟

𝛿𝜌
)], (5) 

in which 𝜌𝑐𝑟 is the critical density, reflecting the boundary for the transition from the free flow to 

congested traffic states, with  𝐴0 and 𝐴0 + 2𝛿𝐴 the variance pre-factors between the 

aforementioned two states, while 𝛿𝜌 is the width of the transition region. Typical parameter 
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value ranges for 𝐴0, 𝛿𝐴, and 𝛿𝜌, along with other typical used model parameters of the GKT 

model are specified in [22, 23, 24, 25, 26]. 

The model also includes a traffic relaxation term to keep traffic flow in equilibrium state, with 

𝑉𝑒
∗ = 𝑉𝑒

∗(𝜌, 𝑢, 𝜌𝛼 , 𝑢𝛼) representing the non-local and dynamic equilibrium speed, while 𝜏 is a 

relaxation time. 𝑉𝑒
∗ depends not only on the local (𝜌, 𝑢) but also on the non-local traffic state 

(𝜌𝛼, 𝑢𝛼), and is determined as 

𝑉𝑒
∗ = 𝑢𝑚𝑎𝑥 [1 −

𝜃 + 𝜃𝛼

2𝐴𝜌𝑚𝑎𝑥
(

𝜌𝛼𝑇

1 − 𝜌𝛼 𝜌𝑚𝑎𝑥⁄
)

2

𝐵(𝛿𝑢)]. (6) 

According to Equation (6), 𝑉𝑒
∗ is computed as the maximum desired speed, 𝑢𝑚𝑎𝑥, reduced by a 

term that reflects necessary deceleration maneuvers in traffic flow. The quantities 𝜌𝛼 , 𝑢𝛼 are 

computed at the downstream anticipation location 𝑥𝛼 = 𝑥 + 𝛾(1 𝜌𝑚𝑎𝑥 + 𝑇 ∙ 𝑢⁄ ), where 𝑇 is the 

average time-headway, 𝜌𝑚𝑎𝑥 the maximum density and 𝛾 a scale factor. Finally, the Boltzmann 

interaction factor  

𝐵(𝛿𝑢) = 2 [𝛿𝑢
𝑒−𝛿𝑢2 2⁄

√2𝜋
+ (1 + 𝛿𝑢2) ∫

𝑒−𝑦2 2⁄

√2𝜋

𝛿𝑢

−∞

𝑑𝑦] (7) 

increases monotonically with the normalized velocity difference 𝛿𝑢 = (𝑢 − 𝑢𝑎) √𝜃 + 𝜃𝛼⁄  and 

describes the dependence of the braking interaction on the velocity difference 𝛿𝑢 between the 

actual position 𝑥 and the interaction point 𝑥𝛼. 

 

The major difference with respect to other macroscopic traffic flow models is the non-local 

character of the GKT model. Specifically, the non-local term in Equation (6) has smoothing 

attributes like those of a diffusion or viscosity term, but its effect is forwardly directed and, 

therefore, more realistic. Moreover, unlike other macroscopic models, the steady-state 

(equilibrium) speed-density relation of GKT model, 𝑉𝑒, is implicitly given from the steady-state 

condition of homogeneous traffic.  

 

The numerical integration of system Equations (1)-(2), is based here on an accurate and robust 

higher-order finite-volume relaxation scheme; a fifth-order Weighted Essential Non-Oscillatory-

type (WENO) interpolant approach is used for the spatial discretization, while time integration is 

based on a third-order implicit-explicit (IMEX) Runge-Kutta method. For a detailed description 

of the spatial and temporal discretization schemes, as well as the superiority and performance of 

the applied higher-order scheme, compared to low-order ones, in traffic flow simulations, we 

refer to [25].  

 

 

3 The optimization scheme 

 

3.1 Surrogate assisted Differential Evolution algorithm 
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Evolutionary Algorithms imitate nature's selection process using a population-based search 

mechanism for dealing with demanding high-dimensional real-world optimization problems. 

They are a class of search methods with efficient balance between exploitation of the best 

solutions and exploration of the search space, as well as low sensitivity to local minima 

treatment. They combine elements of directed and stochastic search and, therefore, are more 

robust than directed search methods. Within the proposed numerical optimization scheme, a 

Differential Evolution Algorithm (DEVA) is utilized, which is a versatile parallel stochastic 

search method, introduced by Storn and Price [27], capable of handling non-differentiable, 

nonlinear and multimodal cost functions, providing superior convergence performance than other 

EAs [27, 28]. In contrast to other EAs, the DE compares each individual of the population only 

against a new one, which is its counterpart in the current population. The new parameter vector is 

a linear combination between a randomly selected one and a weighted difference between two 

other randomly chosen chromosomes. 
 

Below, an analytical description of the basic elements composing a classic DE algorithm is 

presented. Given a cost function 

 

𝑓𝑐𝑜𝑠𝑡(𝒙) = 𝑓𝑐𝑜𝑠𝑡(𝑥1 , 𝑥2, … , 𝑥𝑛) → 𝑚𝑖𝑛 (8) 

 

where, 𝒙 denotes the vector containing the 𝑛 design variables of the problem under consideration 

and 𝑓(𝑿): ℝ𝑛 → ℝ a real function. The optimization target is the minimization of the cost 

function 𝑓 by modulating the values of its parameters (design variables), while each parameter is 

bounded between an upper 𝑥𝑖
𝑢and a lower 𝑥𝑖

l value. Differential Evolution evolves a fixed-size 

population of 𝑁𝑝 individuals (chromosomes) for a finite number of generations 𝐺𝑚𝑎𝑥. The 

initialization of the first population is established by randomly assigning values to the parameters 

within the given boundaries of the design variables 

 

𝑥𝑘,𝑖
0 = 𝑟 ∙ (𝑥𝑖

u − 𝑥𝑖
l) +  𝑥𝑖

l,   𝑖 = 1, … , 𝑛, 𝑘 = 1, … , 𝑁𝑝,  (9) 

 

where r denotes a random number generated with uniform probability within 

the range [0, 1]. After the evaluation of each individual's cost function, 

operators are applied to the population, simulating the according natural 

processes. The first operator applied is the mutation scheme, which generates a 

new chromosome, based on three randomly selected individuals of the current 

generation G. The formation of the new parameter vector is realized by adding 

a weighted difference vector between the two members of the triad to the third 

one, the so-called "donor". Then, the uniform crossover scheme is applied; the 

mutant and the chromosome of the current population are subjected to a 

discrete recombination which produces the final candidate solution.𝑥𝑘,𝑖
′𝐺+1 =

 

(10) 
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{
𝑥𝐶𝑘,𝑖

𝐺 + 𝐹(𝑥𝐴𝑘,𝑖
G − 𝑥𝐵𝑘,𝑖

G )   𝑖𝑓 𝑟 ≤ 𝐶𝑟    or    𝑖 = 𝑖∗ 

𝑥𝑘,𝑖
𝐺             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 

where 𝑥𝐶𝑘,𝑖
𝐺  are the elements of the "donor" vector, G is the current generation and 𝑖∗ is a 

randomly selected integer within [1, n], chosen once for all members of the population. The 

random number 𝑟 is seeded for every gene of each chromosome, whereas the parameters 𝐹 and 

𝐶𝑟 consider the mutation and crossover operations, respectively. Specifically, the scale factor F 

controls the diversification rate of the population, while the crossover probability 𝐶𝑟 controls the 

fraction of design values that are inherited from the mutant. Moreover, the design variable, 

which corresponds to the randomly selected index, 𝑖∗, is taken from the mutant to ensure that the 

trial vector does not duplicate the initial one. Subsequently, each member of the resulting 

intermediate population is evaluated and competes against its counterpart in the current 

population; the best fitted individuals are the ones that will form the next generation. The DE 

selection scheme ensures the survival of the elitists and can be described as follows: 

𝒙𝑘
𝐺+1 = {

𝒙𝑘
′𝐺+1 𝑖𝑓 𝑓(𝑿𝑘

′𝐺+1) ≤ 𝑓(𝑿𝑘
𝐺),

𝒙𝑘
𝐺 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 

(11) 

 

The process is successively repeated, providing populations with better fitted individuals. 

The utilized DE is combined with two Artificial Neural Networks (ANNs), a multi-layer 

perceptron (MLP) and a radial basis functions network (RBFN), which serve as surrogate 

models. The assistance of these models lies in time-savings, due to avoiding the computationally 

intensive exact evaluations of each candidate solution, by using a trained neural network instead, 

while maintaining the robustness and the convergence capabilities of the DE algorithm [29, 30]. 

These approximate models are established using a data-driven approach, where only the input 

and output behavior of the simulation model are taken into account, in order to create a 

mechanism that mimics that behavior. During the evaluation stage of the DE, each trial vector is 

pre-evaluated by a surrogate model; if it is worse fitted than the corresponding vector of the 

current population, the current vector is transferred to the next generation. In this way, the 

efficient damping of less-promising solutions is achieved, yielding an acceleration of the 

procedure. To enhance the robustness of the methodology, all better fitted trial vectors are 

exactly re-evaluated. Only exactly evaluated trial vectors with lower values of cost function are 

transferred to the next generation, ensuring that the derived population is composed only by 

exactly evaluated chromosomes [29, 30]. In order to create an initial central database for the 

training and testing data sets of the surrogate models, exact evaluations are performed for each 

individual chromosome for the first two generations. Subsequently, in each generation a 

predefined number of the best members are selected to construct the pool of the training and 

testing data sets; the aforementioned feature results in the creation of a local approximation 
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model which evolves with the population. Moreover, an additional small percentage of the 

candidate solutions are selected to be exactly evaluated, to further enhance the robustness of the 

procedure. The two surrogate models are used simultaneously since each one might point to 

different regions of the design space constituting a cheap and direct assistance for global 

optimization. Therefore, in each generation both ANNs are re-trained and tested, while the one 

with the best performance takes action, considering the output testing errors.  

 

3.2 Parallel implementation 

Despite the important contribution of EAs in solving complicated problems, they tend to be 

excessively time-consuming since they require a considerable number of evaluations; thus, 

appropriate acceleration through parallel processing appears to be mandatory. The concept 

behind the developed parallelization strategy is to enable the cooperation of the DE with 

different simulation software in the form of executables. The required data transfer between the 

DE and the simulation software is succeeded with appropriate text files, while the 

communication among the processors and the parallel implementation is achieved using MPI 

(Message Passing Interface) library functions. The proposed strategy appears to be quite 

efficient, regardless the use of text files, considering that the computational time of data transfer 

is negligible compared to the one of the evaluation step. 

 

The population members are distributed a priori among the available processors and each 

processor is in charge for the evaluation of one individual. Next, a unique rank is assigned to 

each processor, while one of them is identified as the master node that keeps track of the whole 

procedure. This node performs all the pre-process that is required prior to the beginning of the 

optimization procedure, which includes the creation of a working folder for each processor 

where the executables comprising the evaluation step and their corresponding text files are 

replicated. Furthermore, the master node distributes all the necessary information concerning the 

DE algorithm to all other processors, i.e., the number of the design variables, their upper and 

lower bounds and control parameters for the DE algorithm. 

  

After the completion of the initialization step, the main procedure begins; each processor is 

generating a random individual within the specified bounds for each gene of the chromosome 

and evaluates it. Next, the fitness values of the candidate solutions and their corresponding 

chromosomes are broadcasted to all processors, to update their databases with the new 

population members. Each processor evolves separately one chromosome, and the new resulting 

one is stored in its corresponding working folder. All the operations needed (mutation, crossover 

and selection) for the evolution process, are implemented after the evaluation step of each 

generation on each node separately for its assigned chromosome. Nevertheless, the auxiliary 

evaluations of the surrogate models are performed only by the master node for all chromosomes. 

According to the prescribed procedure, a Boolean array is filled, indicating if the new trial vector 

is better fitted than its parent and should be exactly evaluated. Subsequently, all selected 

candidates are exactly evaluated, while, for the rest, the fitness values and trial vectors are 

explicitly broadcasted by the master node to their corresponding processors for the consistency 

of the procedure. The optimization process is terminated when a prescribed number of 

generations is reached. 
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3.3 Cost Function formulation 

 

As already mentioned, this study addresses the problem of calibrating the parameters of the GKT 

model to best match the real-measured traffic data by means of the optimization scheme for the 

calibration and validation of macroscopic traffic flow models. In particular, this methodology 

attempts to minimize the discrepancy between model generated data and the measurements taken 

from the detectors in terms of a cost function with appropriate specification of the parameters 

included in the model. The proposed traffic flow model is fed with real input traffic data to 

reproduce the complete traffic state, while for evaluating the resulting model accuracy a cost 

function is introduced as a combined total mean square normalized error of the model-calculated 

and observed speeds and flows as follows 

 

𝑓(𝑿) =
1

𝐶
∑ ∑ [(1 − 𝜇) (1 −

𝑢𝑖,𝑘

𝑢𝑖,𝑘
𝑑 )

2

+ 𝜇 (1 −
𝑞𝑖,𝑘

𝑞𝑖,𝑘
𝑑 )

2

]

𝑛

𝑖=1

𝐾

𝑘=1

, (12) 

  

where, 𝑢𝑖,𝑘 and 𝑞𝑖,𝑘 represent, respectively, the predicted mean speed and flow, computed at 

detector location 𝑘 (𝐾 is the number of detectors that are available for calibration) and time 

instant 𝑖 (𝑛 is the simulation time horizon);   𝑢𝑖,𝑘
𝑑  and 𝑞𝑖,𝑘

𝑑  represent, respectively, the observed 

mean speed and flow computed at location 𝑘 and time instant 𝑖, while 𝐶 = 𝑛𝐾, and 𝜇 is a 
weighting factor equal to 0.5. The overall optimization scheme for the calibration of the GKT 
model is illustrated as a flow chart in Figure 1. 
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Figure 1: Flowchart with the major steps of the optimization process. 

 

 

4 Model calibration and validation 

 

The calibration process constitutes a crucial step for the successful development and application 

of any macroscopic traffic flow model in transportation planning and traffic management. 

Indeed, the reliability and credibility of a model to reproduce different traffic flow conditions in 

a freeway network with the best possible accuracy is of major importance. However, the 

estimation of proper parameter values used in the model is a challenging problem, since the GKT 

model equations are highly nonlinear in both its parameters and state variables. 
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The numerically discretized GKT model is tested for a particular network where recurrent 

freeway congestion is triggered by a saturated off-ramp and propagates upstream along the 

freeway mainstream. Hence, the model is first calibrated to identify the optimal parameter values 

for the examined freeway test network, using measured data from a specific date. Eventually, in 

order to investigate the representativeness of the calibration results in replicating the traffic 

conditions of the considered site, the optimal parameter values resulting from the calibration 

process are applied to the same freeway network for a different day. 

 

Herein, the parameter vector for the calibration of the GKT model is 𝒙 = [𝑢𝑚𝑎𝑥 ,  𝜌𝑚𝑎𝑥 ,  𝜌𝑐𝑟 , 𝑇, 𝛾,
𝜏,  𝐴0, 𝛿𝐴, 𝛿𝜌] and it should be selected so as to minimize the deviation between the model 

results and the real measured traffic data, using cost function (12). Thus, the calibration process 

becomes a problem of finding an optimal parameter vector 𝒙 for the model Equations (1) and (2) 

subject to 𝒙 ∈ Ω, where Ω is a constrained admissible region of the parameter space, determined 

on the basis of physical constraints.  

 

4.1 Test network and traffic data   

 

The test network considered in this study, for the calibration of the GKT model parameters under 

recurrent traffic conditions, is a stretch of Attiki Odos motorway in Athens, Greece (with 

direction from the Airport to Elefsina). Specifically, the chosen network, as shown in Figure 2, is 

6.2 km long (from 34th to 27.8th km), is composed by three lanes, which become four between 

the 30.8th to 30.3rd km, and includes three on-ramps and three off-ramps. Referring to Figure 2, 

the location of the available detector stations are depicted with bullets.  

 

 

 
Figure 2: Graphical representation of the considered Attiki Odos freeway stretch. 

 

The real traffic data were provided by the company ATTIKES DIADROMES S.A., which is 

responsible for the operation and maintenance of the motorway, as well as for traffic 

management and customer service. In particular, data is collected through 13 detector-stations 

(Figure 2) that deliver measurements of flow and speed per lane with a time resolution of 20 s, 

for the time period May–June 2009. Detectors are also installed on the ramps, measuring the 

corresponding ingoing and outgoing traffic flows. Measured data corresponding to the stretch’s 

boundaries is also available.  
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A qualitative analysis of real-time traffic data showed that, within this examined freeway stretch, 

a recurrent congestion is formed during a typical morning rush hour. Figure 3 illustrates the 

space-time evolution of the real speed measurements for 16th June 2009 and 23rd June 2009. It 

can be observed that traffic congestion is formed upstream of the off-ramp E-11-1, persisting 

between 8-10 a.m. for both days, albeit with slightly different space-time shapes due to 

accordingly different flow propagation on both days. In particular, this congestion originates 

from the 29th km of the considered network and spills back on the upstream infrastructure for 

several kilometers, reaching up to the 33rd km. The reason behind this major congestion created 

in the specific diverging area is a combination of the increased exit flow that the off-ramp E-11-1 

receives and its limited capacity. It is worth noting that these two days were carefully selected so 

that, during the morning hours, no incident and no sensor failure occurred at the consider test 

network. 

 

 

Figure 3: Phase space speed dynamics at the considered freeway stretch for two different days. 

 

4.2 Calibration results 

The real traffic data used in this section were collected on the Attiki Odos motorway in Greece 

on the 16th of June, 2009. The GKT model parameters, with their respective upper and lower 

bounds being in line with those given in [12, 22, 23, 24, 25], are presented in Table 1. The 

population size of the DE algorithm was specified equal to 60, while the algorithm was executed 

for 1500 generations; the control parameters for the mutation and crossover operations were 𝐹 =
0.6 and 𝐶𝑟 = 0.45, respectively.  
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The considered 6.2 km stretch was simulated for 6 morning hours (i.e. from 6 a.m. to 12 p.m.), 

whereas the space discretization was for 𝛥𝑥 = 50 m and the Courant-Friedrichs-Lewy (CFL) 

numerical stability parameter value was set equal to 0.4. The runs of the DE algorithm have been 

performed on DELLTM R815 PowerEdgeTM server with four AMD OpteronTM 6380 sixteen-core 

processors at 2.50 GHz (64 cores in total). The clock computational time for 1200 generations 

was 1081 min. The resulted optimal model parameters and the minimum value of the cost 

function are presented in Table 2. In Figure 4, the convergence history for the best chromosomes 

of each generation is illustrated. 
 

Model parameters Units Bounds 

Desired free speed, 𝑢𝑚𝑎𝑥 km/h [110, 130] 

Maximum density per lane, 𝜌𝑚𝑎𝑥  veh/km [100, 200] 

Critical density per lane, 𝜌𝑐𝑟 veh/km [30, 60] 

Desired time gap, 𝑇 s [0.8, 2.2] 

Anticipation factor, 𝛾  [1, 2] 

Relaxation time, 𝜏 s [10, 40] 

Variance pre-factor for free traffic, 𝐴0  [0.0025, 0.015] 

Pre-factor, 𝛿𝛢  [0.03, 0.035] 

Transition width, 𝛿𝜌 veh/km [3.5, 20] 

 

Table 1: Range of the parameter vector used for the GKT model calibration. 

 

Figure 5 presents the space-time diagrams of the real measured speeds, contrasted to the model's 

estimation of speed for the calibration day. Figure 6 displays the measured and estimated speed 

dynamics for all detector stations, while in Figure 7 the flow dynamics for all detector stations 

are shown. From these figures, it can be deduced that the real traffic conditions are well 

reproduced by the calibrated model, which captures with sufficient accuracy when and where the 

traffic flow becomes congested, for the correct duration and extent. Quite importantly, it is clear 

in Figure 7 that the GKT model is able to reproduce the capacity drop phenomenon at the 

congestion head.  

 

Model 

parameters 

𝒖𝒎𝒂𝒙 

(km/h) 

𝝆𝒎𝒂𝒙 𝝆𝒄𝒓 𝑻 

(s) 

𝜸 𝝉 

(s) 

𝑨𝟎 𝜹𝑨 𝜹𝝆 

(veh/km) (veh/km) (veh/km) 

Optimal 

values 

1105 172 30 1.06 1.99 30.4 0.015 0.003 19 

Cost function 

(%) 

  4.98 

 

Table 2: Resulted optimal parameter values for the GKT model. 
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Figure 4: The convergence history of the best solution of each generation of the DE algorithm. 

 

 

 
Figure 5: Phase space speed dynamics for real measured speed (left) and the model prediction 

(right) for the calibration day. 
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Figure 6: Time series of the real speed measurements (black) and the model prediction of speed 

(red) at various detector locations for the calibration day. 
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Figure 7: Time series of the real flow measurements (black) and the model prediction of flow 

(red) at various detector locations for the calibration day. 

 

4.3 Validation results 

In order to test and assess the robustness of the resulting GKT model, the optimal parameters 

resulting from the previous calibration procedure are applied to the same freeway stretch, but for 

a different day, the 23rd of June 2009. For the validation day, the recurrent congestion in the 

traffic flow behavior is similar to the one presented for the calibration day, but has a slightly 

different space-time shape due to accordingly different traffic conditions.  

The validation results are presented in Figures 8, 9 and 10. The obtained results can be 

considered as satisfactory, since the traffic flow model is able to capture with sufficient accuracy 

the real traffic flow conditions in the particular freeway stretch; the proposed model is able to 

reproduce how the congestion occurs and propagates in time and space, although not at the exact 

same level of accuracy as for the calibration date. The main difference is that the duration of the 

congestion is overestimated at some freeway locations. The cost function value for this 

validation procedure was 14%. 
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Figure 8: Phase space speed dynamics for real measured speed (left) and the model prediction 

(right) for the validation day. 
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Figure 9: Time series of the real speed measurements (black) and the model prediction of speed 

(red) at various detector locations for the validation day. 

 

 

Figure 10: Time series of the real flow measurements (black) and the model prediction of flow 

(red) at various detector locations for the validation day. 

 

5 Conclusions 

In this study, a recently developed parallel, metamodel-assisted DE algorithm was employed for 

the automated calibration of the parameters of a second-order macroscopic GKT traffic flow 

model, using real traffic data. Following from the numerical results, the DE algorithm proved to 

be a viable candidate and versatile tool for the calibration of macroscopic traffic flow models 

having counteracting calibration parameters in which the cost function exhibits multiple local 

minima. The resulted optimal values of the model parameters indicated that the proposed DE 

algorithm guarantees the convergence of the best solutions; as well as that the GKT model is able 

to replicate with sufficient accuracy the prevailing traffic flow conditions; the credibility of the 

calibrated parameters is demonstrated through the validation procedure. 
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