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Abstract. An efficient strategy for calculation of delaminations in composite beams and intel-

ligent structures is used in order to quantify structural uncertainties within a finite element 

model of a piezocomposite (multilayered plate theory). Furthermore the dynamical system is 

connected with robust and neurofuzzy control. The problem of positioning of actuators and 

sensors has been investigated. Model based simulations of increasing complexity illustrate 

some of the attractive features of the strategy in terms of accuracy as well as computational 

cost. This shows the possibility of using such strategies for the development of smart structur-

al and systems. 
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1 INTRODUCTION 

Piezoelectric sensors and actuators are extensively employed in many practical applications 

such as intelligent structures due to their lightness and their capability of coupling strain and 

electric fields. In order to control structural vibrations, piezoelectric sensors and actuators can 

be easily bonded on the vibrating structure. In active vibration control, the patches are sym-

metrically bonded on top and bottom surfaces [1,2, 3]. An Hinfinity [4,5] controller, a fuzzy 

controller [20,21,26] or a hybrid neuro-fuzzy control [22,23,24,25]  can be designed and op-

timally tuned [27, 28] to suppress the vibrations of the intelligent structure even when delam-

ination phenomena occur [32, 33]. The position and the size of the actuators influence the 

response of the smart structure and determine the maximum admissible piezoelectric actuation 

voltage. The optimal sensor locations can be found, using genetic algorithms and multicriteria 

optimization [6,13]. In addition the numerical results can be compared with analytical ones 

obtained by the Laplace transform method [7,8]. Satisfactory vibration reduction has been ob-

served for control cases under sinusoidal, random disturbances, confirming the reliability and 

validity of such algorithms. The results are very satisfactory since the vibration suppression is 

achieved. 

2 FINITE ELEMENT FORMULATION 

 

We base our model on the layerwise approach which takes into account the adhesive layer 

derived earlier in Refs [32, 33]. The structure consists of an elastic core bonded with  piezoe-

lectric sensor and actuator layers and adhesive layers between them. Delamination between 

the layers may appear and influences the effectiveness of active vibration control. Using a 

special adhesive finite element we are leading to the following equation of motion in terms of 

nodal variable q, 

( ) ( ) ( ) ( ) ( )   m eMq t Dq t Kq t f t f t        (1) 

where M is the generalized mass matrix, D the viscous damping matrix, K the generalized 

stiffness matrix, 
mf  the external loading vector and 

ef  the generalized control force vector 

produced by electromechanical coupling effects. The exact form of these matrices are given in 

[32], [33]. 

To transform to state-space control representation, let (in the usual manner),  

( )
( )

( )

q t
x t

q t

 
  
 

          (2) 

Furthermore to express ( )ef t  as ( )Bu t  we write it as *

ef u where *

ef the piezoelectric force is for 

a unit applied on the corresponding actuator, and u represents the voltages on the actuators. 

Furthermore, ( ) ( )md t f t  is the disturbance vector [9, 10]. 

Then,  
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 
       

 

u t
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d t
    (5) 

The previous description of the dynamical system will be augmented with the output equation 

(some displacements or velocities are measured) [10, 11, 12],  

 1 3 1( ) ( ) ( ) ( ) ( ) 
T

ny t x t x t x t Cx t       (6) 

 

3 ROBUST CONTROL PROBLEM 

Two control laws for the composite beam are designed in order to suppress the vibrations. Be-

cause of its linearity and easy implementation, the linear quadratic regulator (LQR)[12,13] is 

presented first. The response of the controlled nominal and damaged beams is investigated. In 

order to take into account the incompleteness of the information about the eventual damages 

and external additional influences a robust H
 controller is designed [14, 15]. A system analy-

sis is made on condition that the system is not accurate but includes uncertainty that may be 

related to some kind of damage [9] 

For practical applications both algorithms need several trial-and-error design iterations in 

order to provide appropriate control voltages, since the piezoelectric actuators can be depolled 

by high oscillating voltages. The effectiveness of the proposed control strategies is investigated 

with the help of numerical simulations [7, 9].   

 The following three steps are taken in the robustness analysis [16, 17]: 

 
Figure 1 Uncertainty modelling 

 

1. Expression of an uncertainty set by a mathematical model. 

2. Robust stability (RS): check if the system remains stable for all plants within the 

uncertainty set. 

3. Robust performance (RP): if the system is robustly stable, check whether perfor-

mance specifications are met for all plants within the uncertainty set.  

 

To perform the robustness analysis, the interconnection of Figure 1 will be used.  

Δ define the uncertainty, Μ define the nominal system, w are the inputs (the mechanical 

force and the noise of the system), z are the outputs (the state vector and the control vector).  

The uncertainty included in Δ satisfies 1


  .  

The system (M, Δ) is robustly stable if,  

11
ˆ

sup ( ( )) 1
nI

j


                        (7) 
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The system (M, Δ) exhibits robust performance if,  

ˆ

sup ( ( )) 1
nI

j




                   (8) 

 where, 

0

0




 
    

 

and   has the same structure as Δ but dimensions corresponding to (w,z). Unfortunately, 

only bounds on μ can be estimated.  

To proceed let us assume uncertainty in the M, D and K matrices of the form,  

0 0

0

( ) ( )
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m D D I d
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with, 

1
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                (10) 

This means that we are allowing a percentage deviation from the nominal values [6,9]. 

With these definitions Eq. (1) becomes, 

0 0 0( ) ( ) ( ) ( ) ( ) ( )u m eq t D q t K q t Dq t f t f t             (11) 

Where, 
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Writing [5]in state space form, gives, 
2 22 2 2 2 2 2 2 6
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( ) ( ) ( ) ( ) ( )u ux t Ax t Bu t Gd t G q t                 (13) 

  In this way we treat uncertainty in the original matrices as an extra uncertainty term.  

 

4 FUZZY AND NEURO-FUZZY CONTROL 

 

A fuzzy inference system can be developed within MALAB using the fuzzy toolbox. The 

control scheme usually consists of a Mamdani [20,21] or a Sugeno-type controller 

[22,23,24]. This system can be used for the study of smart structures such as smart beams 

[21,24,25], plates [26,27], etc.The controllers usually consist of two inputs and one output. 

As for inputs, the controller can take displacement and velocity or the electric potential and 

current and returns the control force. The membership functions have triangular, trapezoi-

dal, Gaussian or sigmoid both for inputs and output. An example of triangular and trape-

zoidal functions is shown in Fig. 2. The inference system involves membership functions 

combined with use of logical operations. Namely, the decision is based on a set of if -then 

rules, thus the recurring system is a rule-based system. A set of rules as this one shown in 

Table 1, can be considered. The graphic representation of rules is given by the fuzzy sur-

face shown in Fig. 2.  
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1. Displacement 

2. Velocity 

3. Far 

up 

4. Close 

up 

5. Equilibrium 6. Close 

down 

7. Far 

down 

8. Up 9. Max 10. Med+ 11. Low+ 12. Null 13. Low- 

14. Null 15. Med+ 16. Low+ 17. Null 18. Low- 19. Med- 

20. Down 21. High+ 22. Null 23. Low+ 24. Med- 25. Min 

Table 1. Fuzzy inference rules 

 

 

Figure 2: Membership functions prior optimization and fuzzy surface 

 

5. OPTIMIZATION OF CONTROL 

The results given solely by fuzzy control in previous investigations of our team [21, 24, 26], 

were very satisfactory in terms of displacement. However, the results regarding the veloci-

ty and the acceleration were not acceptable. 

Thus, the need of optimization some of the parameters of the fuzzy controller arose. This 

fine tuning is a really exacting process, thus a simple, effective and well known procedure 

has to be chosen. 

For example, a genetic algorithm can be used due to its simplicity and smooth behavior in 

such problems [27]. The algorithm was used in order to optimize the membership functions 

of the variables (inputs/outputs) or other characteristics of the fuzzy controller. In this case, 

a population of different solutions try to reach total optima via a stochastic iterative pro-

cess. 
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Another method that may be useful for the fine tuning of the parameters of a controller, 

used for vibration suppression of smart structures, is the particle swarm optimization meth-

od [28, 29, 30] and the differential evolution [31]. These methods are similar to the genetic 

approach, however they can provide more accurate results. 

6. DELAMINATION MODELING 

For the simulation of delamination, a non-linear delamination law can be considered to the 

structural model investigated, as shown in Fig. 3: 

 

Figure 3: Stress-strain behavior in the adhesive 

The above law leads to appropriate modification of the existing stiffness matrix of the 

structure in order to take into account the differences in the behavior before and after the 

delamination [32]. 

For each finite element, the element average strain εzzcan be calculated as follows: 

 
   

 

1

i

i

i i
a

zz a

w w

h





   (14) 

where w is the vertical displacement of layers, whose behavior in delamination is invest i-

gated, and h(a) is the thickness of the adhesive layer. If the strain is less than εo, no delam-

ination appears in the element. Otherwise, delamination takes place. In this case, the 

delamination can occur between the lower-middle and the middle-upper plate layer. 

For the implementation of the non-linear delamination law, the Newton-Raphson incre-

mental-iterative procedure has been used, as follows [33]: 

 

Incremental step 

Load enforcement 

  Start iterations 

 -Loop to the whole of elements 

 -Calculate the mean strain of each element 

 -Compare with εo 
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 -Appropriate estimation of the tangential stiffness matrix  

 -Estimation of the internal force vector 

 -Solving equilibrium equs and finding incremental  

    and global displacements 

 -Error control and continuation iteration  

    orcontinue the incrementalstep 

 

7. RESULTS AND DISCUSSION 

 

For the numerical simulations a cantilever composite beam with piezoelectric layers bonded 

on its top and bottom and discretized with finite elements, is used. Periodic sinusoidal loading 

pressure acting on the side of the structure simulating a strong wind. A sinusoidal load with 

an amplitude of 15N and frequency of 6.5 rad/sec, has been considered.  Fig 4 shows the dy-

namical response for the displacements of the uncontrolled and controlled beam with LQR 

control [12] and H
 control [18], for the four nodes of the beam. Fig 5shows the dynamical 

response for the rotations of the uncontrolled and controlled beam with LQR control and H
 

control strategy, for the four nodes of the beam. The beam with H
control keeps in equilibri-

um and we have zero ddisplacements, complete vibration reduction is achieved. The compari-

son of the open and closed loop frequency response of the system are shown in Figure 6, as 

shown in figure, there is a significant improvement in the effect of disturbance on error up to 

the frequency of 1000 Hz. Figure 7 shows the control voltages for the four nodes of the beam. 

The control voltages for the disturbance rejections of the beam are less than 500 volt. 

Results are very good, and the beam remains in equilibrium. Reduction of vibrations is ob-

served, while piezoelectric add-ons produce voltage within their tolerance limits (±500volt). 

 

 

Figure 4: Response of the four nodes for the displacement with LQR and H  control and re-

sponse without control. 
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Figure 5: Response of the four nodes on the vibrating beam for the rotation with LQR and 
H control and without control. 

 

 

Figure 7: Singular Value for H control strategy. 

 

 
Figure 8: Response of the four nodes for the displacement with LQR and   control and re-

sponse without control. 

 

As a conclusion one can say that structural uncertainty in smart piezocomposites can be quan-

tified by using techniques of computational mechanics. This gives rise to more accurate de-

sign and optimal tuning of robust controllers, either following classical or soft computing 

techniques. Further investigation includes the optimal positioning of sensors and actuators and 

the incorporation of other uncertainties (crack initiation and propagation, fatigue). 

 

. 
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