
Technical University of Crete

Diploma Thesis

Development of a Functional
Multi-Agent System Prototype for

Offering Integrated Vehicle-to-Grid and
Grid-to-Vehicle Services in Smart Cities

Author:

Georgios Kechagias

Committee:

Associate Professor Georgios Chalkiadakis (Supervisor)

Associate Professor Eftichios Koutroulis

Dr. Nikolaos Spanoudakis

A thesis submitted in partial fulfillment of the requirements

for the degree of Diploma in Engineering

in the

School of Electrical and Computer Engineering

Technical University of Crete

2018

https://www.tuc.gr
http://www.ece.tuc.gr
https://www.tuc.gr

iii

Technical University of Crete

School of Electrical and Computer Engineering

Development of a Functional Multi-Agent System Prototype for

Offering Integrated Vehicle-to-Grid and Grid-to-Vehicle Services in

Smart Cities

by Georgios Kechagias

Abstract

In this work, we design a functional prototype for a novel multiagent systems (MAS)

services architecture for the important and challenging to engineer vehicle-to-grid (V2G)

and grid-to-vehicle (G2V) energy transfer problem. The prototype was developed using

JADE, a FIPA (Foundation of Intelligent Physical Agents)-standards compliant multia-

gent platform. Agent communication is based on the exchange of appropriate FIPA-ACL

agent communication language messages, and on well-defined communication protocols

specifically tailored to our application domain. As part of our work, we defined two novel

design patterns, which allow the developers (i) to reuse the protocol parts and logic de-

fined in the framework, and (ii) to customize key agent functionalities or capabilities

according to their needs/goals. We demonstrate the functionality and effectiveness of

our system prototype on a variety of realistic use case scenarios, executed using both

real-world and synthetic datasets.

v

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Ανάπτυξη ενός Λειτουργικού Αρχετύπου Πολυπρακτορικού

Συστήματος Παροχής Ολοκληρωμένων Υπηρεσιών

Φόρτισης-Αποφόρτισης Ηλεκτρικών Οχημάτων σε ΄Εξυπνες

Πόλεις

Γεώργιος Κεχαγιάς

Περίληψη (Abstract in Greek)

Η διπλωματική εργασία ασχολήθηκε με το σχεδιασμό και την υλοποίηση ενός λειτουργικού

αρχετύπου για μια καινοτόμο πολυπρακτορική αρχιτεκτονική προσφοράς υπηρεσιών στο

πεδίο της φόρτισης/εκφόρτισης ηλεκτρικών οχημάτων (στα αγγλικά: the vehicle-to-grid/grid-

to-vehicle -V2G/G2V- problem). Το εξαιρετικά σημαντικό καινοφανές αυτό πραγματικό

πρόβλημα, απαιτεί λόγω της φύσης του καθώς και της περιορισμένης σχετικής βιβλιογραφίας

και εμπειρίας σχετικών λύσεων την προσεκτική σχεδίαση (πληροφοριακού ή άλλου) συστή-

ματος εκ μέρους του μηχανικού. Το αρχέτυπο αναπτύχθηκε χρησιμοποιώντας το JADE,

μια πολυπρακτορική πλατφόρμα που είναι συμβατή με τα πρότυπα του διεθνούς οργανισ-

μού Foundation of Intelligent Physical Agents (FIPA). Η επικοινωνία των πρακτόρων

βασίζεται στην ανταλλαγή κατάλληλων μηνυμάτων της FIPA-ACL γλώσσας επικοινωνίας

πρακτόρων, και σε καλά καθορισμένα πρωτόκολλα επικοινωνίας ειδικά σχεδιασμένα για το

πεδίο εφαρμογής. Ως μέρος της εργασιας μας, προχωρήσαμε στον ορισμό δύο πρωτότυπων

σχεδιαστικών προτύπων, τα οποία επιτρέπουν στους προγραμματιστές (i) να επαναχρησι-

μοποιούν το κομμάτια των πρωτοκόλλων και την λογική που ορίζεται στο σχεδιαστικό

πλαίσιο, και (ii) να προσαρμόζουν βασικές λειτουργίες και ικανότητες των πρακτόρων σύμ-

φωνα με τις ανάγκες και τους στόχους τους. Η λειτουργικότητα και αποδοτικότητα του

αρχετύπου μας επιδεικνύεται σε μια σειρά από ρεαλιστικά σενάρια χρήσης του συστήματος,

τα οποία εκτελούνται χρησιμοποιώντας συλλογές από πραγματικά και συνθετικά δεδομένα.

Acknowledgements

First and foremost, i would like to thank my supervisor Dr.Georgios Chalkiadakis for

teaching me multi-agent systems and algorithmic game theory all these years, for trusting

me with this thesis, and for his help and guidance throughout my studies. I am also

truly thankful to my co-supervisor Dr.Nikolaos Spanoudakis for always being available

to answer my questions, for teaching me how to engineer multi-agent systems, and

for the enjoyable time we sent at the office. Moreover, i am grateful to Dr.Charilaos

Akasiadis for his guidance and comments throughout this work, the moral support,

and encouragement. I would like to thank my dear friend Vassilis Amourgianos for his

invaluable help to the preparation of the final presentation of this thesis, and all my

friends who in their own way helped me during my studies. I can not thank enough

Lydia for all her love, patience and support all these years. Last but not least, i would

like to thank my parents and sister; Maria-Christina, Paschalis, and Maria, for always

loving and supporting me unconditionally.

vii

Contents

Abstract iii

Περίληψη v

Acknowledgements vii

Contents ix

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Thesis Contributions . 2

1.2 Thesis Structure . 5

2 Smart Grid and Electric Vehicles 7

2.1 Smart Grid Overview . 7

2.1.1 Electricity Markets . 10

2.1.2 Electricity Tariffs . 11

2.2 Smart Cities . 12

2.3 Electric Vehicle Charging . 13

2.4 Coalition Formation . 15

2.5 Recommendation Systems . 16

2.6 Mechanism Design . 17

3 Agents and Agent-Oriented Programming 19

3.1 Agent Definition . 19

3.2 Agent-Based Negotiations . 22

3.3 Foundation of Intelligent Physical Agents 22

3.4 Agent Communication . 24

3.5 Ontologies . 27

3.6 Java Agent Development Framework . 27

ix

Contents x

3.6.1 Basic Programming Interface . 30

3.6.2 Agent Communication in JADE 32

3.7 Agent Systems Engineering Methodology 33

3.7.1 Statecharts . 35

4 Related Work 37

5 System Architecture 39

5.1 V2G/G2V System Architecture . 39

5.2 Agents . 42

5.3 Communication Interfaces . 44

5.4 V2G/G2V Domain Ontology . 46

6 System Design and Implementation 51

6.1 Inter-Agent Control . 52

6.1.1 Charging Recommendation Protocol 53

6.1.2 Charging Station Reservation Protocol 54

6.1.3 Negotiation Protocol . 55

6.1.4 Charging Station Registration Protocol 56

6.1.5 Authenticate Recommendation Protocol 58

6.1.6 Electricity Prices Request Protocol 58

6.1.7 Electricity Imbalance Request Protocol 59

6.1.8 Charging Station Update Schedule Protocol 60

6.1.9 Producer Consumer Registration Protocol 61

6.1.10 Update Expected Production/Consumption Protocol 62

6.1.11 Update Energy Profile Confidence Protocol 63

6.1.12 Update Station Availability Protocol 64

6.1.13 Time Synchronization Protocol . 65

6.2 Intra-Agent Control . 66

6.2.1 Electric Vehicle Agent . 66

6.2.2 Charging Station Agent . 70

6.2.3 Station Recommender Agent . 71

6.2.4 Electricity Imbalance Agent . 72

6.2.5 Mechanism Design Agent . 73

6.2.6 Electricity Producer and Consumer Agents 75

6.3 Design Patterns for Open Protocols . 77

6.3.1 Capability Pattern . 78

6.3.2 Functionality Pattern . 78

6.3.3 Discussion . 80

6.4 Synchronization and Time Agent . 80

7 Evaluation 83

7.1 Implementation Details . 83

7.1.1 Station Recommendation Algorithm 84

7.1.2 Charging Stations Dataset . 85

7.1.3 Electric Vehicles Dataset . 85

7.1.4 Electricity Production and Consumption Datasets 87

7.2 System Evaluation . 88

Contents xi

7.2.1 Electricity Producer and Consumer Agent: Registration and Up-
dates . 89

7.2.2 Charging Station Agent: Registration 89

7.2.3 Electric Vehicle Agent: Station Recommendations and Reservation 92

7.2.4 Electric Vehicle Agent: Recommendation Selection Utility Functions 94

7.2.5 Electric Vehicle - Charging Station: Negotiation 97

8 Conclusions and Future Work 101

8.1 Conclusions . 101

8.2 Future Work . 102

A A Simple Recommendation Algorithm 105

B Views of the EV Agent GUI 109

B.1 Charge View . 109

B.2 Map View . 110

B.3 Algorithms View . 110

Bibliography 113

List of Figures

1.1 An overview of the core stakeholders of the proposed system. 3

2.1 An overview of a micro-grid [4]. 9

2.2 An overview a charging station with multiple charging slots. 13

3.1 Generic overview of a MAS [29]. 21

3.2 FIPA’s agent management reference model. 24

3.3 FIPA abstract architecture. 24

3.4 FIPA-ACL message with a request performative [7]. 26

3.5 Relationship between AP, containers and agents [7]. 28

3.6 A scenario of a JADE based system [9]. 29

3.7 Example GUI of the JADE RMA showing the basic platform elements. . . 29

3.8 JADE agent execution policy. 31

3.9 JADE message marshalling and unmarshalling [7]. 33

3.10 ASEME development phases with their outputs [59]. 35

5.1 An overview of the proposed architecture for the V2G/G2V problem.
With a star we noted the agents that can have multiple counterparts
while in gray color we have note the functionality that is out of the scope
of this thesis. 41

5.2 The concepts of the V2G/G2V Ontology given as a UML class diagram. . 47

6.1 The model of the Charging Recommendation Protocol. 54

6.2 The model of the Charging Station Reservation Protocol. 55

6.3 The model of the Charging Negotiation Protocol. 56

6.4 The model of the Update Expected Production/Consumption Protocol. . 57

6.5 The model of the Charging Station Registration Protocol. 57

6.6 The model of the Authenticate Recommendation Protocol. 58

6.7 The model of the Electricity Prices Request Protocol. 59

6.8 The model of the Electricity Imbalance Request Protocol. 60

6.9 The model of the Charging Station Update Schedule Protocol. 61

6.10 The model of the Producer/Consumer Registration Protocol. 62

6.11 The model of the Update Station Availability Protocol. 63

6.12 The model of the Update Station Availability Protocol. 64

6.13 The model of the Time Synchronisation Protocol. 65

6.14 The impementation of the functionality design pattern for the utility func-
tion of the EV agent. 68

6.15 The intra-agent model of the Electric Vehicle agent. 69

6.16 The intra-agent model of the Charging Station agent. 71

xiii

List of Figures xiv

6.17 The intra-agent model of the Station Recommender agent. 73

6.18 The intra-agent model of the Electricity Imbalance agent. 74

6.19 The intra-agent model of the Mechanism Design agent. 76

6.20 The intra-agent model of the Electricity Producer agent. 77

6.21 Capability Pattern skeleton. 79

6.22 Capability Pattern instantiation skeleton. 79

6.23 The abstraction of the Functionality Design Pattern. 79

7.1 Locations of real-world gas stations in the city of Chania, Crete, Greece . 86

7.2 The area selection tool of OpenStreetMaps which was used to extract the
Polytexneio-Kounoupidiana sector (the bright area). The coordinates box
depicts its bounds. 88

7.3 A screenshot of the JADE sniffer agent that illustrates the registration
process and the updates of an Electricity Producer agent. 90

7.4 A screenshot of the JADE sniffer agent that illustrates the registration
process and the updates of an Electricity Consumer agent. 90

7.5 Some representative messages of the conversations between EP 13 and IM. 91

7.6 A screenshot of the GUI of Electricity Imbalance agent that depicts the
electricity imbalance (left) and the profiles of the aggregated electricity
production and consumption (right) of the grid.. 91

7.7 A screenshot of the JADE sniffer agent that illustrates the registration of
a Charging Station agent with various other agents. 92

7.8 A screenshot of the GUI of the Station Recommender agent. 93

7.9 A screenshot of the JADE sniffer agent that illustrates the communica-
tion process of an EV agent that requests charging recommendations and
makes a reservation at the selected charging station. 95

7.10 A screenshot of the GUI of the EV agent that illustrates the charging
preferences as set by the driver, the received recommendations based on
these preferences, as well as the selected recommendation which was used
for the reservation to the Charging Station agent (green-marked recom-
mendation). 95

7.11 Different algorithms for selecting the best station. The user selects the
desired one at runtime, or the agent selects it after assessing user preferences. 96

7.12 A screenshot of the GUI of the EV agent that illustrates where the EV
driver inserts its updated preferences and how a negotiation is initiated. . 98

7.13 A screenshot of the JADE sniffer agent that illustrates a negotiation be-
tween an EV agent and a Charging Station agent. 99

7.14 The contents of the negotiation messages. 99

B.1 The charge view (main) of the EV agent GUI. 109

B.2 The map view of the EV agent GUI. 110

B.3 The algorithms view of the EV agent (top), and the weights insertion
panel (bottom). 111

List of Tables

3.1 FIPA-ACL message parameters [7]. 25

7.1 Typical charging station slot specifications. 85

7.2 Battery and charging specifications of some popular EV models. 86

7.3 Coordinates of the areas in which EVs are located when request charging
recommedantions. 87

7.4 Average results for the three different utility functions used from Electric
Vehicle agents to select charging recommendation 96

xv

Dedicated to my mother and father

xvii

Chapter 1

Introduction

To this day, electricity production has been considerably depended on fossil fuels such

as coal, petroleum and natural gas. Many countries have initiated endeavors to reduce

their carbon emissions through the reduction of fossil fuels usage. In this context,

the usage of electricity in the transportation sector and the progressive independence

from the internal combustion engine (ICE) which most contemporary vehicles utilize, is

expected to be pivotal. In recent years, pure electric vehicles (EV)s have been gaining

momentum and today more than 3 million circulate globally. China is the biggest EV

market with more than half of global sales, 40% of the global stock, and 2.2% market

share. Norway has the most successful EV deployment in terms of market share, with

39% [28]. Estimations from the International Energy Agency, indicate that the number

of pure EVs on the road will reach 125 million by 2030.

Even though the increasing circulation of electric against ICO vehicles is going to reduce,

to some extent, the carbon emissions, this fact by itself is not going to reduce our

reliance on fossil fuels. EVs require a considerable amount of electricity to charge their

batteries, therefore they are expected to increase the electricity demand. Renewable

energy sources such as sunlight and wind, are alternative energy sources which do not

pollute the environment and are essential in order to complement the benefits of EVs.

However, their drawback is that they are highly volatile and intermittent, thus, we

need to design special mechanisms that will manage their usage efficiently. EVs could

potentially be an asset in the electricity grid by providing ancillary services.

Over the recent years, a number of Demand-Side Management approaches [2] have been

proposed, aiming to create appropriate mechanisms which incentivize electricity con-

sumers to shift part of their consumption to time intervals during the day where the

renewable energy is plentiful. This is a central aspect of the smart grid agenda as the

1

2 CHAPTER 1. INTRODUCTION

direct managing of electricity generation in settings with high renewable energy pene-

tration, is infeasible. EVs are parked on average 90% of the day [36], thus, they could

be utilized as a temporary distributed energy storage system. During the time intervals

with plentiful renewable energy production, EVs are enabled to charge their batteries,

whereas, when the electricity grid presents energy shortages, the fully charged vehicles

can provide energy back to the grid in order to cover peak demand (Vehicle-To-Grid

Problem, V2G) and potentially create a profit for the EV owner [37, 49, 51].

At the same time, the uncontrolled charging of multiple EVs simultaneously, and the

fact that EVs require a relatively large amount of energy to charge their batteries, put

the electricity grid under critical strain. Therefore, the design and development of in-

telligent systems which are going to monitor and schedule the EV charging in real-time

considering the grid constraints, such as the imbalance between the local electricity pro-

duction and consumption prioritizing the utilization of renewable energy, is imperative

(Grid-To-Vehicle Problem, G2V) [49, 63].

EVs charge through charging stations that are located either at the house of the driver

or they are public. The latter case, given that EV charging preferences and EV’s current

state vary depending on the day, the month and the year, as well as the fact that some

charging stations may be more congested than others, introduces a major difficulty to

the EV drivers regarding the selection of the most suitable charging station. The exten-

sion of the intelligent systems mentioned before with charging station recommendation

capabilities that are going to guide EVs to the most suitable charging stations is pivotal.

This may reduce the amount of energy EVs consume searching for charging stations,

providing the potential to a smoother incorporation of EVs to the electricity grid and

increasing the satisfaction and engagement of EV drivers.

Multi-agent systems (MAS) are an excellent technological solution for smart grid applica-

tions such as EV charging management (V2G/G2V), as they enable the communication

of complex information and the execution of difficult calculations effectively and in a

distributed fashion [57].

1.1 Thesis Contributions

In the work presented in this thesis, we design a functional prototype of a novel multia-

gent systems (MAS) services architecture for the important and challenging to engineer

vehicle-to-grid (V2G) and grid-to-vehicle (G2V) energy transfer problem. For the system

design, we make an effort to keep it generic and open in order to be able to incorporate

additional future requirements regarding the operation of the smart grid.

1.1. THESIS CONTRIBUTIONS 3

The key entities (stakeholders) of the proposed system are illustrated in Figure 1.1:

Distribution System
Operator

Energy Flow Data Flow

Electric Vehicles

Charging
Stations

PV Panels, Wind
Turbines

Households,
InfrastructureElectricity Imbalance

Service
Station Recommendation

Service

Mechanism Design
Service

Figure 1.1: An overview of the core stakeholders of the proposed system.

• Electric Vehicles (EVs), which are a contemporary type of load in the electric

grid whose drivers have very specific requirements and preferences regarding their

battery charging.

• Charging Stations, which are the physical gateways where EVs connect to charge

their batteries. Charging Stations make a profit from reselling electricity to EVs,

while they can provide electricity back to the grid for the batteries of the fully

charged EVs in case of an emergency.

• Households and Infrastructure, which incorporate the traditional energy consumers

connected to the electricity grid. Contemporary houses can have the infrastructure

for harvesting renewable energy which they can offer back to the grid when they

have low energy consumption and high renewable energy production.

• Renewable Energy Producers, which are all the wind turbines, PV panels and

other infrastructure (Distributed Energy Resource, DER) responsible for harvest-

ing renewable energy and offering this energy for consumption to the grid. Τhe

owners of these infrastructures expect to make a profit from selling the produced

energy to the electricity markets.

• Distribution System Operator, which is the physical and legal entity responsible

for the safe operation, maintenance and development of the electricity distribution

and to ensure the system’s long-term ability to meet electricity demand.

4 CHAPTER 1. INTRODUCTION

Furthermore, we assume the existence of a national regulatory service entity for energy,

or possibly a profit-making private service that consists of:

• Station Recommendation Service. which is a service designed to propose to EVs

the charging stations that match perfectly to their needs, preferences and current

mood.

• Electricity Imbalance Service, which is a service responsible for gathering from the

various electricity producers and consumers their expected supply and demand

for electricity and providing the interested stakeholders with the time intervals of

energy excess and shortage.

• Mechanism Design Service, which is a service responsible to calculate and provide

the price per unit of energy for each time interval, and to ensure that the reports

made from the various stakeholders regarding their future operation in the elec-

tricity grid are truthful and accurate. The latter is mathematically guaranteed

by controlling the flow of payments, taking into account in these payments the

accuracy and truthfulness of the reports of the various entities.

Αll the stakeholders that were previously mentioned are represented as intelligent agents.

This means these agents are not controlled in any way by a central authority, that they

are enabled to communicate with other agents in their network in order to coordinate

their actions, and that they are capable of independent decision making, in order to

achieve their private goals.

The proposed system supports different agent types, i.e. EVs, charging stations, produc-

ers/consumers, and, in addition, specific V2G/G2V related services, such as recommen-

dation systems, mechanism design schemes, and grid constraints extraction modules.

Each of these agents is allowed to execute different algorithms to match their goals, e.g.

achieve minimum charging cost, participate in V2G activities, avoid herding effects, etc.

For the inter-agent communication, we design and implement specific high-level state-

ful communication protocols, that enable diverse stakeholders to use the services of the

agents that comprise our architecture. Furthermore, we develop a general V2G/G2V

ontology that can be used in a plethora of smart grid related applications. The estab-

lishment of an ontology for the agent communication is pivotal, as agents should agree

on the terminology they are going to use in their exchangeable messages. The definition

of the communication protocols and domain ontology highlights the open nature of our

MAS, where the various participants (agents) are generally able to freely join and leave

the system at any time. The agents that we implemented, compose in their intra-agent

control the various communication protocols according to their owns needs and goals.

1.2. THESIS STRUCTURE 5

As each agent can be diverse, with specific requirements, goals, and business models,

thus, it is natural to need custom algorithms and logic. To this end, we define two new

design patterns, that on the one hand allow the developers to re-use the protocol parts

and logic defined in the framework, and on the other hand to customize key functionality

or capabilities according to their needs/goals.

A fundamental feature of our system is that it enables software reusability. Each entity

was designed and developed as an independent agent, by specifying open communication

protocols and ontologies, and by applying strong software engineering practices (design

patterns). As underlying framework of our implementation, we used the Java Agent

Development Framework (JADE). JADE is a very popular, Java-based framework that

facilitates the development of agent-based applications and it is compliant with the FIPA

specifications for interoperable, intelligent, multi-agent systems.

The Graphical User Interface (GUI) that we developed from various agents, enables the

human-agent interaction and makes the agent control, monitoring, and debugging easy

and effective.

The system proposed in this thesis is an endeavor towards the consolidation of the theo-

retical results and algorithms proposed from various computer science fields for tackling

V2G/G2V sub-problems in order to achieve efficient, smooth and reliable incorporation

of the EV technology to the smart grid.

1.2 Thesis Structure

The rest of the thesis is structured as follows. Chapter 2 presents key concepts from the

smart grid, electric vehicle charging, and algorithmic game theory. Chapter 3 introduces

the concepts of agent and multi-agent system and then the methodology and tools that

are commonly used to design and develop integrated agent-based systems. Chapter 4

present related works. Chapter 5 presents the architecture for the V2G/G2V problem

and Chapter 6 contains the design and implementation of this architecture. Chapter 7,

contains a detailed presentation of use case scenarios that demonstrate the functionality

of the proposed system and the datasets we used for our evaluation. Finally, Chapter 8

concludes this thesis and outlines directions for future work.

Chapter 2

Smart Grid and Electric Vehicles

In this introductory chapter, we review some key concepts from the smart grid, electric

vehicle charging and algorithmic game theory that are essential in order to capture the

requirements and the assumptions that have to be considered for a realistic system that

is going to offer integrated V2G/G2V services. We begin with an introduction to the

smart grid, the energy markets, and the typical energy tariffs. Then, we discuss the char-

acteristics of electric vehicles, the challenges arising from their charging and the benefits

from their “smart” charging. Next, we introduce some important concepts of coalition

formation and discuss how such techniques could assist the efficient incorporation of the

electric vehicles into the smart grid. In this context we review basic recommendation

system techniques which could assist EV drivers or their agents to explore alternative

charging plans and finally, we introduce the mechanism design domain as a solution to

incentivize truthful reporting of the preferences in smart grid settings.

2.1 Smart Grid Overview

Electric power is extremely important to modern society. Communities that lack elec-

tric power, even for short periods, jeopardize the public health, safety, and economic

prosperity of their dwellers [66]. Electricity grids, which are the means of transmission

and distribution of energy, were adequate for our old-fashioned usages, but as more

sophisticated electricity consumption and production patterns arise, their management

becomes more complex. It is evident that for their effective and reliable operation,

electricity grids require considerable renovation [49].

Nowadays, we don’t consume electricity generated only from bulk thermal power plants

which burn fossil fuels, but part of the production is derived from decentralized energy

7

8 CHAPTER 2. SMART GRID AND ELECTRIC VEHICLES

generators which use renewable energy such as the sunlight and wind and are incorpo-

rated to the distribution grid. Targets put forward by 196 countries under the Paris

Agreement [45] for the reduction of greenhouse gases, indicate that the usage of renew-

able energy sources is going increase considerably in the near future. However, due to

their dependence to weather conditions, RES are by definition intermittent and very

unreliable, therefore they introduce a considerable uncertainty to the planning of energy

production. Their large-scale incorporation and effective utilization by the contempo-

rary electricity grid becomes even more complicated when taking into consideration that

electricity storage is expensive and difficult. Therefore, the amount of electricity gen-

erated must be consumed at the time of its generation. If electricity balance (i.e. the

difference between production and consumption) is not maintained for large periods, the

grid could collapse with intolerable consequences, as entire regions could remain without

power for many hours (i.e. blackout) [21, 49]. More formally, given a number of elec-

tricity producers I and a number of electricity consumers J , the electricity imbalance

imbt between production and consumption during a time interval t, is defined as:

imbt =
∑
i

prodi,t −
∑
j

consj,t (2.1)

where, prodi,t, i ∈ I is the production of i during t and consj,t, j ∈ J is the consumption

of j during t.

Apart from the evolution of electricity production, customer habits (i.e. electricity con-

sumption) change rapidly. The increasing use of information technologies and consumer

electronics has lowered the tolerance for outages, fluctuations in voltages and frequency

levels, and other power quality disturbances [66]. However, the large-scale induction

of the computers in every aspect of our daily life reshapes the landscape of the energy

sector (e.g. smart meters, electric vehicles), and creates opportunities to overcome past

difficulties. For instance, in the past, due to the lack of means to communicate complex

information, little flexibility has been built into the demand side of the electricity market

[8].

Smart grid technology which incorporates bidirectional data flow, allows customers to

adjust their energy consumption by using real-time information about the production,

consumption, and prices of electricity. This control over electricity usage is called

demand-side management (DSM). DSM programs comprise two essential activities: de-

mand response programs which intend to transfer customer load during periods of high

demand to off-peak periods where energy generation is less expensive; and energy effi-

ciency and conservation programs, which encourage customers to give up some energy

use and convenience in return for saving money [18].

2.1. SMART GRID OVERVIEW 9

Figure 2.1: An overview of a micro-grid [4].

The aforementioned descriptions could be summarized in the following definition of

Smart Grid which was given by the U.S. Department of Energy [66]: A fully automated

power delivery network that monitors and controls every customer and node, ensuring

a two-way flow of electricity and information between the power plant and the appli-

ance, and all points in between. Its distributed intelligence, coupled with broadband

communications and automated control systems, enables real-time market transactions

and seamless interfaces among people, buildings, industrial plants, generation facilities,

and the electric network.

A Smart Grid, apart from the high penetration of renewable energy sources, the extensive

support of smart appliances and the sophisticated available pricing schemes, is essentially

a collection of smaller interconnected grids. These “small grids” which are called micro-

grids [4], vary in size from countries and big cities to small villages and neighborhoods.

In more detail, a micro-grid (Figure 2.1) is an integrated autonomous energy system

which contains distributed energy sources as they were previously described, together

with a number of electrical loads as well as storage units (e.g. electric vehicles, batteries).

Electricity grids contain various operators which are responsible for different aspects of

their operation. An entity named Transmission System Operator (TSO) is responsible

to maintain the security and integrity of the grid by managing the energy transmission

network and simultaneously, by operating a number of energy markets that enable energy

exchange between the various market players. An entity named Distribution System

Operator (DSO)1, is responsible to maintain and ensure the effective operation of the

energy distribution network, which is the infrastructure that carries energy from the

transmission system to the individual consumers.

1In some countries, TSO and DSO are completely independent business entities with multiple coun-
terparts operating in the same market (e.g. in the USA), while in other, these entities may have some

10 CHAPTER 2. SMART GRID AND ELECTRIC VEHICLES

2.1.1 Electricity Markets

Markets have evolved over the years from mere locations where a few individuals would

occasionally gather to trade goods, into virtual environments where information con-

stantly flow and agreements are instantly reached. Electricity markets summarize rather

accurately the contemporary meaning of a market and are developed based on the idea

that energy can be treated as a commodity and therefore to be traded. However, there

are critical differences between the electricity trading and the trading of other com-

modities (e.g. cubic meters of gas or stocks) [38]. Real world TSOs run multiple power

markets which have explicit participation rules and minimum requirements [32]. A clas-

sification of these markets is the following:

• Baseload Power: The baseload power market is for the power that must be

provided continuously throughout the year, usually at a very low cost. Nuclear,

coal-fired, hydroelectric and natural-gas power plants are usually responsible to

provide this type of power. These power plants are intended to be turned off

during designated periods of maintenance and therefore the participation in these

markets is highly constrained.

• Peak Power: Peak power is generated and purchased from this market at times

of exceptionally high demand, usually on hot summer afternoons. Peak power is

typically provided by gas generators that can be switched on and off for shorter

periods of time, usually three to five hours.

• Spinning Reserves: Spinning reserves are these generators which are constantly

synchronized to the grid and provide energy in case of unplanned and emergency

events e.g. transmission line failures. As these generators are designed for contin-

gencies, they are used limited during a year and even then, for durations up to one

hour. The payment scheme of these generators is not depended on the duration of

their actual utilization, but it is based on their availability. Therefore, they add

a considerable expense to the operation of the electricity grid which is commonly

conveyed on the bills of the final electricity consumers.

• Regulation: Regulation power is used to regulate frequency and voltage on the

grid by matching the instantaneous power supplied by the grid with the instanta-

neous power demand. We have already mentioned the importance of the supply-

demand balance in the grid. To provide regulation services and to participate in

the regulation market, the participants must respond to a frequent real-time signal

sent by the TSO in order to validate their availability.

independence, but ultimately operate under the same national business “umbrella” (e.g. in Greece). In
the literature, the latter case is named independent system operator (ISO).

2.1. SMART GRID OVERVIEW 11

Markets, besides the players which participate and the products for which they are

concerned, operate under a set of proper and strict rules [38]. These rules include the

date of the delivery of the agreed products, the mode of settlements and the built-in

conditions of the transactions. The aforementioned properties separate the markets in

two distinct categories:

• Spot markets: In this kind of markets, the sellers deliver their goods immediately

and the buyer pays for them “on the spot”. When the deal is complete, neither

party can back out. In spot markets, there are no conditions attached to the

product delivery, as the whole transaction takes place in the same place.

• Forward markets: In this kind of markets, the sellers and the buyers sign forward

contracts based on their individual interests, with the sellers pledging to deliver a

particular product in a designated period and the sellers pledging to pay for the

products according to a specific timeline. In this kind of markets, the contracts

commonly contain various safeguards in order to protect the involved parties.

2.1.2 Electricity Tariffs

With the advent of technologies which enable the switching to a smarter grid, various

pricing schemes have emerged for selling electricity both in wholesale and retailing mar-

kets. Some of these pricing schemes utilize the benefits of the smart grid aiming to

support its efficient operation, providing incentives to consumers for rational electricity

consumption [1]. Other, have been inherited from the old electricity grid and they are

still used due to their simplicity and convenience. Some of them are the following:

• Flat Rate: In this pricing scheme, a supplier/utility charge a flat fixed price for

every kWh consumed or produce which means that a customer’s final charging is

directly linked to its own energy profile. Typically, this stability offered to the

customers comes with a cost, as flat rates typically incorporate service charges.

This charging scheme is optimal for customers and grid with low smart metering

infrastructure.

• Time of Use (TOU): TOU tariffs change according to the season, the day of

the week, and in many cases according to the electricity imbalance of the grid. An

individual day is segmented in time intervals, and each interval is assigned a fixed

price. If energy consumers have knowledge over the peak hours, they can avoid

energy consumption during these periods and shift to intervals where the energy

is cheaper. For energy producers, peak hours indicate the periods over which their

12 CHAPTER 2. SMART GRID AND ELECTRIC VEHICLES

service can provide an additional profit. Smart metering technology is extremely

useful for the effective use of this pricing scheme.

• Real-time Pricing (RTP): RTP can be defined as energy prices that are set

for a specific time period on an advance or forward basis and which may change

according to price changes in the market. Prices paid for energy consumed during

these periods are typically established and known to consumers a day ahead or an

hour ahead in advance of such consumption, allowing them to vary their demand

and usage in response to such prices and manage their energy costs by shifting

usage to a lower cost period, or reducing consumption overall [1].

• Prediction of Use (POU): In POU tariffs, electricity producers and consumers

are asked to predict a baseline for energy profile, and they are charged based both

on their actual consumption and their deviation from their prediction (in the sense

that units consumed or produced in excess/short of the baseline may be charged

different marginal rates) [56, 72].

2.2 Smart Cities

Cities nowadays face complex challenges to meet objectives regarding socio-economic

development and quality of life. The concept of “smart cities” is a response to these

challenges as they incorporate the Internet of Things (IoT) approach and broadband

network technologies to enable e-services which are very important for urban develop-

ment, and drive the innovation in areas such as health, inclusion, environment, and

business [10, 76]. A smart city is the interconnection of key industry and service sectors,

such as Smart Governance, Smart Mobility, Smart Utilities, Smart Buildings, and Smart

Environment 2.

Smart cities depend on a smart grid to ensure efficient and reliable delivery of energy to

supply their many functions, present opportunities for conservation, improve efficiencies

and, most importantly, enable coordination between urban officialdom, infrastructure

operators, those responsible for public safety and the public health. The smart city is all

about how the city ”organism” works together as an integrated whole and survives when

put under extreme conditions. Energy, water, transportation, public health and safety,

and other aspects of a smart city are managed in concert to support the smooth operation

of critical infrastructure while providing for a clean, economic and safe environment in

which people live, work and play [26].

2http://www.smart-cities.eu

2.3. ELECTRIC VEHICLE CHARGING 13

2.3 Electric Vehicle Charging

Electric vehicles (EVs) are considered as key technology in the direction of reducing our

dependency on fossil fuels, therefore, they are central aspect of the smart grid agenda

[49]. Pure EVs emit zero CO2 as they are completely independent of ICOs, but to charge

their batteries they require a considerable amount of electricity, which is multiple times

higher than an average household electricity consumption.

Charging Station

...
i

Electricity

Grid
j...

Electric VehicleElectric Vehicle

Data FlowData Flow

Energy FlowEnergy Flow

Charging SlotCharging Slot

1

1

1

1

2

2

2

2

3

3

3

3

i-1

j-1

i-1

j-1

Figure 2.2: An overview a charging station with multiple charging slots.

EVs can charge their batteries at charging stations that provide the physical infras-

tructure to connect to the grid. Each charging station can be equipped with multiple

chargers (charging slots), and each charging slot can be of a different type and power

output [22]. A general view of a charging station with multiple charging slots is illus-

trated in Figure 2.2. A charging station is interconnected with the rest of the electricity

grid at the power supply level, thus having access to the energy that then resells to the

EVs to charge their batteries. In the scenario, a smart grid, the flow of electricity is

bidirectional as a charging station can provide power back to the grid from that stored in

the batteries of the EVs. At the same time, and in the same scenario, a charging station

can communicate in real-time complex information and can offer advanced services to

other Internet-enabled devices and stakeholders (Internet of Things, IoT).

There are two categories of charging stations based on their location:

1. Home Charging Station: Households with available private garage can easily

be equipped with charging stations. However, as a household charging station is

coupled with its electricity infrastructure, the type of charger and the charging

rate it provides, is constrained from the infrastructure specifications. As a result,

the charging duration at home is usually high, but the cost is low. Most EVs can

charge during evening hours when their owners return home from work and want

to be sure that their battery will be charged enough to allow them to drive the

14 CHAPTER 2. SMART GRID AND ELECTRIC VEHICLES

next day [49, 67]. Therefore, a significant peak on the demand is expected during

evening hours, which coincides with the existing afternoon peak on the household

electricity demand.

2. Public Charging Station: In urban areas where the physical spatial planning do

not allow the existence of home charging infrastructure, public charging stations

and public garages equipped with chargers are the only charging option for EVs.

These public charging stations usually offer a number of charging slots, possible

of different connection type and charging rate (e.g. fast, rapid charging), and are

owned from different providers. The pricing per kWh typically varies between them

due to the different business models which they may have. The arrival/departure

pattern to and from public charging stations is relatively different from households.

Most EV drivers frequently prefer to connect their vehicle upon arrival at a selected

destination (e.g. work, sports facilities, shopping malls) and expect to have their

vehicles fully charged upon departure. This behaviour creates a similar problem

with charging at home, but with the peak on the demand being shifted at different

time intervals. Additionally, public charging includes and the of problem EV

parking.

If an EV owner has a charging station at her home garage, then the charging station

is reasonable to be equipped with a small amount of charging slots (the most likely

one with two). However, if a charging station is public or is owned by a large parking

operator, it is expected to be equipped with much more charging slots in order to meet

the demand of a larger number of EVs.

Either charging at home or at a public charging station, it is evident that the unco-

ordinated EV charging may lead to excessive peak demand and potential blackouts.

Therefore, the effective EV charging management in a way that individual EV owners

will be always able to drive and also the electricity grid will be protected is a very chal-

lenging problem [49, 67]. The complexity of the EV charging problem increases if we

consider settings where the penetration of intermittent and unreliable renewable energy

sources is high. The reason for this is that large EVs populations offer the grid a large

distributed battery in which it can potentially store the excessive renewable production

which is very expensive to store alternatively. EVs are parked around 90% of the day,

thus, with proper management, they can provide the grid very important balancing

services [67].

In the literature, the management of EV charging is distinguished in two problems:

2.4. COALITION FORMATION 15

• G2V Problem: This is the problem of coordinating the simultaneous charging

of EVs from the grid. Since they can draw a considerable amount of power, the

grid overloads, which in turn leads to blackouts and infrastructure damage.

• V2G Problem: In contrast to G2V, the V2G problem is concerned with how

EVs can supply power stored their batteries to the grid during power peaks. This

can lower or even eliminate the need for spinning reserves. Since the batteries can

charge when power is cheap (e.g. at night or during the time intervals with high

renewable energy production) and return the power when it is more expensive,

this raises an opportunity for profit for EV owners.

The coordination and scheduling mechanisms that are proposed to address the simul-

taneous electricity demand (herding effect) and the V2G activities can be either de-

centralized (bottom-up) or centralized (top-down) Each approach has advantages and

disadvantages depending on scenario and the electricity market they are applied to

[53, 58, 63, 69].

2.4 Coalition Formation

Coalition Formation (CF) is the problem of finding groups of agents that can join forces

and act collectively (cooperate) towards a common goal. Each agent has individual

strengths and weaknesses and by forming teams (coalitions), they complement each

other yielding results that they could not if acted alone [11, 13, 48]. CF is a twofold

problem:

• Coalition Structure Generation: Coalition structure generation, is the prob-

lem of creating a collection of non-empty subsets (i.e. coalitions) over all the

available agents such that the union of all coalitions result in the actual agent

space and that every agent is part of exactly one coalition.

• Payoff Distribution: The payoff distribution problem is concerned with the

division of the coalitional outcome to the agents that were part of the cooperative

effort. This must be done in such a way that the rewards are fair, and no agent

can be motivated to leave his coalition.

The application of CT techniques to the smart grid domain enables the conversion of

the various small, unreliable, almost invisible to the electricity grid, power electricity

producers and consumers, to aggregated equivalent power entities that have increased

16 CHAPTER 2. SMART GRID AND ELECTRIC VEHICLES

negotiation power and can participate into the electricity markets in a cost-effective

manner. CF approaches have been used extensively in smart grid applications and more

particular for the formation of cooperatives for electricity consumption shifting [1, 3], for

the formation of Cooperative Virtual Power Plants (CVPPs) [14, 55], and for charging

and discharging (V2G/G2V) EVs [15, 16, 70, 71]. For the latter case, the problem of

assigning EVs to charging stations can be expressed as a CF problem. The first part of

the problem is to determine which EVs are going to be assigned to specific stations, and

the second part is to determine the value (payoff) each individual EV is going to receive

for its contribution.

2.5 Recommendation Systems

The massive amount of information available on the Internet and the rapid introduc-

tion of new e-business services (buying products, product comparison, auctions, etc.)

frequently overwhelms users, leading them to make poor decisions [6, 50]. Recommen-

dation systems are software tools and techniques which are responsible to provide users

with alternatives (suggestions) for items which they may want to use. Music, Movies

and Shopping recommendation systems are extremely popular and have proved very

effective in real-world settings. Recently, the research community started studying rec-

ommendations on the domain of electric vehicle charging [23], but these endeavors are

currently in preliminary state.

In their simplest form, recommendation systems output a ranked list of different items

which are provided to the user. The ranks represent the likelihood that an individual

would like a particular item. Over the years, numerous recommendations approaches

emerged which differ in the type and volume of information that they need and in the

way they process the available data. Here we briefly review some notable approaches:

• Content-based: Content-based approaches try to recommend items similar to

those a given user has liked in the past. The basic process performed by a content-

based recommender consists in matching up the attributes of a user profile in

which preferences and interests are stored, with the attributes of an item, in order

to recommend to the user new, possibly interesting, items.

• Collaborative filtering: Collaborative Filtering (CF) approaches make sugges-

tions to a user by using the items which other users with similar tastes liked in

the past. The intuition of this approach is that people often get the best recom-

mendations from someone with tastes similar to themselves.

2.6. MECHANISM DESIGN 17

• Hybrid: Hybrid recommendation systems are based on the combination of the

techniques mentioned above. A hybrid system combining techniques A and B tries

to use the advantages of A to fix the disadvantages of B. For instance, CF methods

suffer from new-item problems, i.e., they cannot recommend items that have no

ratings. This does not limit content-based approaches since the prediction for new

items is based on their description (features) that are typically easily available.

Given two (or more) basic RSs techniques, several ways have been proposed for

combining them to create new hybrid systems.

2.6 Mechanism Design

Mechanism design (MD) is a sub-field of game theory that explores how to build systems

(viewed as games) that compute optimal system-wide socially accepted solutions despite

the self-interest of individual players (or agents) [42]. This means that these agents can

not maximize their gains by misreporting their true preferences and intentions, thus,

they have an incentive to be truthful. In MD literature, this property is called incentive

compatibility and means that the design must be such, that actors finally choose willingly

to follow a desired social choice function [1].

In the context of the smart grid, the requirements for planning and coordination of the

production and consumption make MD approaches considerably effective. The tradi-

tional electricity pricing schemes often do not provide the appropriate incentives (or

counter-incentives) to the electricity users to assist the reliable and effective operation

of the electricity grid. Given that, we need systems that will mathematically guarantee

desired social behaviours and rational electricity usage without jeopardizing the comfort

and well-being of the end-users. At the V2G/G2V domain, it is imperative to incen-

tivize the truthful reporting of charging preferences of EV’s driver such as the arrival

and departure to and from a particular charging point [54]. In the literature, several

smart grid-related MD approaches have been proposed, and here we will briefly review

some representative endeavors that motivated and inspired our own work.

Chalkiadakis et al. [14] propose a payment mechanism that guarantees that CVPPs have

an incentive to truthfully report to the grid accurate estimates of their electricity pro-

duction. In a similar setting, Robu et al. [55] utilize scoring rules and more particular

the Continuous Ranked Probability Score (CRPS) to apply payments that incentivize

the reporting of accurate electricity production predictions. Akasiadis and Chalkiadakis

[3] present a mechanism for the coordination of large-scale demand shifting which is

based on CRPS that has been evaluated using real-world consumption data. Here,

consumption shifting agents report their confidence regarding meeting their expected

18 CHAPTER 2. SMART GRID AND ELECTRIC VEHICLES

contributions, and this measure affects both their selectivity and final charging for elec-

tricity usage. At the domain of EV charging, Robu et al. [54] propose a dominant

strategy incentive compatible online mechanism for the allocation of electricity units

to EVs for charging. This is achieved by canceling unit allocations or by discharging

over-allocated units before EV departure.

Chapter 3

Agents and Agent-Oriented

Programming

In the previous chapter we introduced important background concepts for the smart grid

with a focus on the V2G/G2V domain, as well as game-theoretic and AI approaches

which are frequently used to tackle the problems arising in this domain. The terms

agent and multi-agent system (MAS) are commonly mentioned in the related literature,

but in the context of this thesis, we did not properly define their actual meaning and the

advantages they provide. In this chapter we begin by briefly introducing the concepts of

agent and multi-agent system and then the methodology and tools that are commonly

used to design and develop integrated agent-based systems using agent-oriented pro-

gramming (AOP) techniques. AOP is a relatively new software paradigm that brings

concepts from the theories of AI into the realm of distributed systems.

3.1 Agent Definition

The concept of an agent has become important in both Artificial Intelligence (AI) and

mainstream computer science. However, during the period of the emergence of the term,

there was much debate around the question what is an agent?, and many researchers

have provided their own interpretations [24]. Today, this debate is not as intense as old,

since a considerable part of the agent-based research community seems to have converged

to the following characterization1[73]:

1Without this meaning that other definitions or characterizations are wrong.

19

20 CHAPTER 3. AGENTS AND AGENT-ORIENTED PROGRAMMING

An agent is an encapsulated computer system that is situated in some environment and

that is capable of flexible, autonomous action in that environment in order to meet its

design objectives.

The general properties which define the term agent (either hardware or software) and

could be derived from the aforementioned characterization are the following [74]:

• Autonomy: agents operate without the direct intervention of humans or others

and have some kind of control over their actions and internal state.

• Social Ability: agents interact and communicate with other agents (and possibly

humans) via some kind of agent-communication language.

• Reactivity: agents perceive their environment, which may be the physical world,

a user via a graphical user interface (GUI), a collection of other agents, the Internet,

or perhaps all of these combined, and respond in a timely fashion to changes that

occur in it.

• Pro-activeness: agents do not simply act in response to their environment, they

are able to exhibit goal-directed behaviour by taking the initiative.

Besides these properties, there are several more which describe an agent but under

designated conditions. These include the agent mobility, which ability of an agent to

move to different nodes of the available network in order to exploit remote resources

or to cooperate with other agents, the assumption that agents are not malicious which

is called veracity, and the assumption that agents act in order to achieve their private

goals in a non-self-destructive manner which is called rationality [74].

When agent-oriented approaches are adopted to model a domain of interest, it comes

naturally that this domain may include multiple entities that could be described by the

term agent. These agents, as they act on behalf of their user or owner, they represent

their interests and goals which may be different from these of other agents in the same

environment. However, despite their selfishness, they may be able to cooperate towards

a common goal [75] making decisions under uncertainty or lack of trust [47]. Either way,

it soon becomes apparent that the majority of real world problems require or involve

multiple agents [29]. These distributed systems which contain multiple agents capable

of making independent decisions, are called multi-agent systems (MAS). An overview of

such a system is illustrated in Figure 3.1. In general, multi-agent systems are categorized

into cooperative and competitive depending on the inter-agent relationships.

Multi-agent systems have multiple advantages over single agent or traditional centralized

systems. Some of their advantages are the following:

3.1. AGENT DEFINITION 21

• They are decentralized and thus does not suffer from the “single point of failure”

problem associated with centralized systems.

• They model problems in terms of autonomous interacting agents similar to com-

ponents, which is proving to be a more natural way of representing open environ-

ments, task allocation and team planning.

• They provide solutions in situations where expertise is inherently distributed.

• They enhance the overall system performance and inherently provide computa-

tional efficiency, reliability, extensibility, robustness, maintainability, responsive-

ness, flexibility, and reuse.

• They enable the interconnection and interoperation of multiple existing legacy

systems. By building an agent wrapper around such systems, they can be incor-

porated into an existing agent society.

Figure 3.1: Generic overview of a MAS [29].

There are numerous real world applications which utilize the agent and multi-agent

paradigm. Broadly speaking, these applications are divided into three main categories.

The first category is the family of applications which use agents as processing nodes of a

fully functional distributed processing system. Each agent, given an input, is responsible

for a specific calculation and the combination of the results of these calculations form

the final solution of the problem of interest. The second category is concerned with the

utilization of agents as personal assistants. Agents represent actual users, act on their

behalf and aim to maximize their satisfaction and utility. The final category contains

applications which combine the aforementioned applications in order to gain the benefits

of both. For example we may have a personal assistant agent like the one we mentioned

earlier, but in a more complex environment. This agent consists of multiple agents and

each of them has a specific computation to handle. These “worker” agents, report back

22 CHAPTER 3. AGENTS AND AGENT-ORIENTED PROGRAMMING

to their “manager” about the status of their computation who in turn is responsible to

combine the results, utilize them, and assign new tasks to the workers [75].

3.2 Agent-Based Negotiations

Negotiations and more specifically, the automated negotiations (or agent negotiations),

are important means for agents to resolve their differences and reach mutually acceptable

agreements. The above imply that the agents which participate in a negotiation, are

autonomous, self-interested, hold private information, have preferences, but also that

they may have interest in cooperation [30, 46]. In a negotiation process, the common

message types which agents exchange to denote their intentions are, proposal (or offer),

counter-proposal, critique, accept-proposal, and reject-proposal. Despite the fact that

negotiations are complex interactions and in many cases, domain specific, the negotiation

theory can be summarized to the following three topics: (a) Negotiation Protocols, (b)

Negotiation Objects and (c) Agent’s Decision Making Models [30]:

3.3 Foundation of Intelligent Physical Agents

FIPA 2 is an IEEE Computer Society standards non-profit organization which was es-

tablished in 1996 in order to develop a collection of standards and specifications for

software agent technology. FIPA provides a framework within which agents which are

implemented according to its specification dwell, operate and are managed. This frame-

work defines the model of agent creation, registration, location, communication, migra-

tion, and operation, and is supported by a collection of entities with specific roles and

purpose and are illustrated in Figure 3.2. In more detail:

• Agent Platform (AP) provides all the software and hardware infrastructure

where agents are deployed. This includes machines (e.g. Servers, PCs, Mobile

Devices), operating systems, as well as other FIPA agent management components

(as we describe below), the agents which are implemented by a developer and all

the ancillary software (e.g. libraries).

• Directory Facilitator (DF), is an optional component that dwells in the AP

and offers yellow page services to other agents. When agents intend to make

public one of their services, they send a registration message to the DF agent with

information about the service they want to register. Agents can search the DF

2www.fipa.org

3.3. FOUNDATION OF INTELLIGENT PHYSICAL AGENTS 23

for services which they are interested in or subscribe with the DF to periodically

receive updates about them. Note that the DF component is considered to be a

neutral and trusted entity within the AP in the sense that it has not an incentive

to provide inaccurate information or mislead other agents. Finally, an AP allows

the co-existence of multiple DFs that can form a DF federation.

• Agent Management System (AMS) is a mandatory component of an AP and

it is responsible for orchestrating the agent activities such as creation, deletion, and

overseeing the migration of agents to and from the AP. When an agent is created,

it is obligated to register with the AMS in order to obtain an agent identifier.

When an agent deregisters with the AMS, her life within an AP terminates. AMS

holds a directory of all agents present within an AP, together with their status (e.g.

active, waiting, suspended) and an agent description that is provided by the agent

herself. An AP can only contain a single AMS and when AP spans to multiple

machines, the AMS authority is extended to all of them.

• Agent is a computational process that inhabits an AP and typically offers one or

more computational services that can be published as a service description. The

particular design of these services, otherwise known as agent capabilities, is not

the concern of FIPA, which only mandates the structure and encoding of messages

used to exchange information between agents. An agent must have at least one

owner and must support at least one notion of identity which can be described

using the FIPA Agent Identifier (AID) that labels an agent so that she may be

distinguished unambiguously.

• The Message Transport System (MTS) is a service provided by an AP to

transport FIPA-ACL messages between agents on any given AP and between

agents on different APs. Messages are providing a transport envelope that com-

prises the set of parameters detailing, for example, to whom the message is to be

sent. For details about agent communication and FIPA-ACL messages, see Section

3.4.

In addition, FIPA proposes an abstract multi-agent architecture, that is, a collection of

elements that enable the interoperability and reusability between agent systems possibly

of different technology and implementation. These elements include mechanisms for

agent registration, agent discovery and inter-agent message transfer (Figure 3.3). The

actual implementation of the architecture is called realization and may include all or

a subset of these elements. The purpose of the abstract architecture is to introduce a

minimum number of required elements which are useful for an integrated multi-agent

system but a realization may include additional elements which may not be described

by FIPA.

24 CHAPTER 3. AGENTS AND AGENT-ORIENTED PROGRAMMING

AgentAMS DF

Agent Platform (AP)

Message Transport System (MTS)

Other agent platforms and entities

Figure 3.2: FIPA’s agent management reference model.

ACL Message
Transport

Agent
Directory

Service
Directory

Abstract Architecture

Figure 3.3: FIPA abstract architecture.

3.4 Agent Communication

Unlike the object-oriented communication which in reality is method invocations be-

tween objects, agent communication is based on the assumption that an agent is an

autonomous entity and thus, other agents can not force her to perform an action or

write data onto her internal data structures. What agents can do is to influence, mo-

tivate or simply request other agents to perform an action by formulating and sending

individual semantically meaningful messages [75]. In practice, agents are a form of dis-

tributed and heterogeneous code processes, therefore, they are enabled to communicate

using mainstream low-level communication protocols (e.g. TPC/IP, HTTP) [7].

From the infrastructure perspective (i.e. computer networks, low-level protocols), agents

have means to communicate efficiently, however, in order to understand each other they

need some form of communication language just as humans need natural languages (e.g.

Greek, Arabic, Chinese). Earlier we mentioned that agents exchange messages in order

to communicate, therefore, the definition of an agent communication language requires

the description of the properties and semantics of these messages.

The majority of ACLs are considerably influenced by the speech act theory which orig-

inates from [5]. Speech act theory is predicated on the assumption that speech actions

3.4. AGENT COMMUNICATION 25

Table 3.1: FIPA-ACL message parameters [7].

Parameter Description

performative Type of the communicative act of the message

sender Identity of the sender of the message

receiver Identity of the intended recipients of the message

reply-to Which agent to direct subsequent messages to within a conversation thread

content Content of the message

language Language in which the content parameter is expressed

encoding Specific encoding of the message content

ontology Reference to an ontology to give meaning to symbols in the message content

protocol Interaction protocol used to structure a conversation

conversation-id Unique identity of a conversation thread

reply-with An expression to be used by a responding agent to identify the message

in-reply-to Reference to an earlier action to which the message is a reply

reply-by A time/date indicating by when a reply should be received

just like other actions are performed by agents intending to fulfill their goals [75]. Per-

formative verbs, which are described and defined in terms of beliefs, desires, intentions,

and other similar modalities (e.g. request, inform, propose, promise), accompany an

agent’s message and are used to utter the specific intention that the message is serving.

Additional to message performatives, ACLs include definitions about the structure and

parameters of the exchangeable messages, as well as the terminology and rules that are

allowed for the knowledge representation.

Over the years, many agent communication languages (ACL) have emerged each having

their own pros and cons. The two major ACLs which in practice share the same foun-

dation are the Knowledge Query and Manipulation Language (KQML) and FIPA-ACL

[39]. Nowadays, FIPA-ACL is enjoying widespread usage through the JADE framework

(see Section 3.6) and since it is used in the context of this thesis, we are going to briefly

discuss some fundamental FIPA-ACL features.

Table 3.1 illustrates the parameters of a FIPA-ACL message according to the FIPA

message structure specification. There are no mandatory parameters as the specification

intends to provide flexibility, however, some of them are unofficially mandatory (e.g.

the sender, receiver, content). FIPA suggests three different encodings for its messages:

String, XML and Bit-Efficient. FIPA-ACL provides a list 22 communicative acts (CA)

(i.e performatives) which are based on speech act theory and are fully defined in an

independent FIPA specification. Typical communicative acts include the request, inform,

propose, call for proposal (cfp), refuse, subscribe and are assigned to the Performative

parameter of a FIPA-ACL message.

In agent communication, the information which the various agents can exchange vary

from mere words and numbers to complex data structures with many different variables,

26 CHAPTER 3. AGENTS AND AGENT-ORIENTED PROGRAMMING

reflecting all the information spectrum in the real world. This complexity requires the

adoption of a well-defined syntax and rules so that the information that is sent to be

parsed and recognized identically. The aforementioned syntax and rules are defined in

the literature as content languages [7, 39]. An ACL message provides the parameter

content for the exchangeable knowledge. FIPA, do not mandate the usage of a specific

content language, but through an independent specification proposes the FIPA-SL lan-

guage, a human-readable string-encoded first-order modal language which can represent

propositions, objects, and actions.

Figure 3.4: FIPA-ACL message with a request performative [7].

Figure 3.4, depicts a FIPA-ACL message whose content is encoded as String using the

FIPA-SL content language and an ontology named traver-assistant (Refer to Section

3.5 for details about ontologies), and which is part of a message sequence that follows

the FIPA-Request-Protocol. In detail, the message sender (Alice), requests the receiver

(Bob) an action (action construct), to book her a hotel room (book-hotel term), for the

period between arrival and departure (two constant date terms).

Furthermore in agent communication there exist predefined sequences of messages that

can be applied in several situations that share the same communication pattern regard-

less of the application domain [7]. These sequences of messages are defined as high-

level protocols and typical examples include the negotiations and auctions (e.g. English

Auction, Vickrey Auction). Based on this assumption, FIPA provides a collection of

specifications for general interaction protocols with the most notable examples being

the FIPA-Request-Protocol, the FIPA-Contract Net-Protocol and the FIPA-Subscribe-

Protocol.

3.5. ONTOLOGIES 27

3.5 Ontologies

People, organizations and in our case, software agents, constantly communicate between

and among themselves. However, the different preferences and background contexts, cre-

ate widely varying viewpoints and assumptions regarding what is essentially the same

subject matter. The consequent lack of a shared understanding leads to poor commu-

nication and difficulties in identifying requirements between these entities [65]. The

tackling of this problem requires the establishment of a shared understanding of the

domain of interest in order to reduce conceptual and terminological confusion. An on-

tology is the term used to refer this shared understanding of some domain of interest.

An ontology embodies some sort of worldview with respect to a given domain and often

is conceived as a set of concepts (e.g. entities, attributes, processes), their definitions

and their inter-relationships [65, 75].

In the context of multi-agent systems, if the various agents are to communicate about

some domain, it is necessary for them to agree on the terminology they will use to

describe this domain. Additionally, if these agents have been engineered by different

organizations and developers, the establishment an ontology makes the collective agent

development process easier and their communication more effective [68].

In summary, the reasons to develop an ontology are the following [43]:

• To share a common understanding of the structure of information among people

organizations or software agents

• To enable reuse of shared understanding and domain knowledge

• To make domain assumptions explicit

• To separate domain knowledge from the operational knowledge

• And to analyze the domain knowledge

3.6 Java Agent Development Framework

JADE3[7] is a software development framework for the implementation of fully dis-

tributed multi-agent systems. It provides a simple yet rich Java API, as well as a

collection of features that enable peer to peer asynchronous agent communication, agent

service discovery, management of ontologies and context languages, effective debugging

and monitoring through graphical tools. In the context of this work, we choose JADE

28 CHAPTER 3. AGENTS AND AGENT-ORIENTED PROGRAMMING

Figure 3.5: Relationship between AP, containers and agents [7].

over other alternatives [64] due to the aforementioned properties, its widespread usage

from academia and industry, and its open-source nature.

Each running instance of the JADE environment is called container and each of them

can contain multiple agents. A collection of active containers is called Agent Platform.

In an AP, the first container to start is the Main container and every container that

follows is normal. When a normal container starts it must be told where to find their

Main container (in terms of IP address and port). These relationships between the AP,

the various containers and the agents are depicted in Figure 3.5.

An example JADE system is illustrated in Figure 3.6. It is composed of two platforms

which contain three and one containers respectively. Platform1 contains four developer

implemented agents in total, while Platform2 contains only one. In JADE, the various

platforms, containers and agents, communicate by using appropriate message transport

protocols [7]. In JADE, both the DF and AMS as defined by FIPA (Section 3.3), are

implemented as agents that provide and registration and exploration services to the

various other agents.

Figure 3.7 shows the primary JADE graphical interface which is provided by the JADE’s

Remote Monitoring Agent (RMA) and allows the system administrator to monitor and

manage the running platforms. The letter A indicates the root folder which contains

all the available APs, each of them being identified by an IP address and a port. The

containers of an AP are indicated by D. The Main Container must contain the AMS, DF

and RMA agents which are indicated by C. Finally, the agent(s) which are implemented

by a developer, are identified by a name and the AP identification and in Figure 3.7 are

indicated by C.

3http://jade.tilab.com/

http://jade.tilab.com/

3.6. JAVA AGENT DEVELOPMENT FRAMEWORK 29

Figure 3.6: A scenario of a JADE based system [9].

Figure 3.7: Example GUI of the JADE RMA showing the basic platform elements.

Apart from the RMA, the framework provides a collection of console and graphical tools

which help the developer in the management and debugging phase and are essential

since MAS applications are quite complex. Such tools are the DummyAgent, which is

very useful for sending ACL messages to ping implemented agents; the SnifferAgent

which is a tool for debugging and/or documenting conversations between agents; and

the IntrospectorAgent which is a tool that allows the monitoring of an agent’s life cycle,

and its queues of sent and received messages.

30 CHAPTER 3. AGENTS AND AGENT-ORIENTED PROGRAMMING

3.6.1 Basic Programming Interface

In JADE, agents are all the Java classes that extend jade.core.Agent class. This class

provides a collection of basic agent methods and among them, the setup() method which

the developer typically has to override in order to include custom agent functionality. An

agent can delete herself from an AP by using the doDelele() method that is provided

by the Agent class. Before an agent is deleted, the takeDown() method is invoked and

its responsibility is to carry out clean-up operations (e.g. deregister from the DF, GUI

termination). According to FIPA, within an AP, each agent has a unique agent identifier

and in JADE it is represented as an instance of the jade.core.AID class. Agent class

enables communication with other agents using an asynchronous communication model

based on FIPA-ACL messages.

The activities an agent needs to perform are typically carried out within behaviours

which are all these classes that extend the jade.core.behaviours.Behaviour class.

Each behaviour performs its designated operation by executing the method action()

that is inherited from the Behaviour class. JADE provides a behaviour library that

enables the composition of more complex actions by combining different behaviours in

various ways. Some representative behaviours are the following:

• OneShotBehaviour: An atomic behaviour that is executed exactly once. Atomic

is a behaviour that does not contain any other sub-behaviour.

• CyclicBehaviour: An atomic behaviour that is executed constantly.

• TickerBehaviour: An atomic behaviour that is executed periodically according

to a configurable timer.

• WakerBehaviour: An atomic behaviour that is executed exactly once after a con-

figurable timeout.

• FSMBehaviour: A composite behaviour that executes its sub-behaviours according

to a FSM defined by the user. Each sub-behaviour represents a state of the FSM.

• SequentialBehaviour: A composite behaviour that executes its sub-behaviours

in sequential order and terminates when its last sub-behaviour has ended.

Each agent has a built-in list that contains the active behaviours that are scheduled

for execution according to the order of their insertion. New behaviours can be added

into the behaviour list by using the addBehaviour() exposed from Agent class. The

round-robin, non-preemptive behaviour scheduling implies that when a behaviour is

scheduled for execution, its action() method is invoked, it runs until it finishes and

3.6. JAVA AGENT DEVELOPMENT FRAMEWORK 31

Figure 3.8: JADE agent execution policy.

it can not be interrupted. A behaviour returns when its done() method returns true.

A behaviour can release the execution control with the use of the block() method,

or it can permanently remove itself from the behaviour list in runtime through the

removeBehaviour() method. The schematic overview of the path of execution of an

agent thread is depicted in Figure 3.8.

Note that behaviours and can be spawned, suspended or killed at any given time as

a behaviour should be seen as a way to spawn a new (cooperative) execution thread

within the agent. In terms of data exchange, sharing and storage, JADE behaviours

can use the provided from JADE jade.core.behaviours.DataStore. This makes the

developed behaviours completely independent from a specific application, enabling the

reusability of the behaviour code.

Note that in JADE, an agent is a dedicated Java thread and all her behaviours are

always executed by this particular thread. The intention of this design approach makes

JADE an effective and robust framework in environments with limited resources such

as smartphones or other mobile devices. Nevertheless, as JADE is implemented in Java,

developers can spawn additional execution threads but the management of these threads

requires special management from the developer. When there are no behaviours available

for execution, the agent’s thread goes to sleep in order to lighten the CPU load.

32 CHAPTER 3. AGENTS AND AGENT-ORIENTED PROGRAMMING

JADE agents can send and receive messages by using the send() method of the Agent

class and pick up messages from their message queue using the receive() method.

JADE provides message filtering mechanisms (through the jade.lang.acl.MessageTemplate

class), thus, we can specify rules about the properties of the messages that specific agent

behaviours will receive and consume.

3.6.2 Agent Communication in JADE

The agent communication is probably the most central JADE feature and it is imple-

mented considering the guidelines of the related FIPA specification for agent communi-

cation as we discussed in Section 3.4. It provides a built-in message transport system

which facilitates the inter-agent communication in two different cases:

1. Agents which share the same container, communicate using the JADE Internal

Message Transport Protocol, which by default is using Java Remote Method Invo-

cation (RMI). This choice was made by JADE developers and it is not contained

in a FIPA specification.

2. Agents of different APs communicate via HTTP-based Message Transport Proto-

cols (MTPs). This is an official FIPA specification guideline.

When JADE agents exchange FIPA-ACL messages, they have to parse the FIPA-SL

syntax of these messages in order to understand their contents. Additionally, they must

have shared understanding (through an ontology), about the domain of discourse in

order to ascribe the same meaning to symbols for the communication to be effective.

JADE agents are Java-based, thus, the content of their messages is represented using

Java objects. When an agent sends a message, she has to convert its internal Java

representation into the corresponding ACL content expression while the receiver needs

to perform the exact opposite conversion (see Figure 3.9). JADE provides support

for content languages and ontologies in order to automatically perform all the above

conversions and verification operations. JADE supports the various content languages

such as SL, XML, LEAP, but a developer is free to create custom content languages by

developing proper codecs for their interpretation.

In order to perform the proper semantic checks on a given content expression, JADE

provides a message content ontology which is used to classify all the elements of the

domain in which agents operate. The classification is derived from FIPA-ACL specifica-

tions and requires the content expression of a message to contain semantics which align

with its performative (i.e. communicative act). These semantics include:

3.7. AGENT SYSTEMS ENGINEERING METHODOLOGY 33

Figure 3.9: JADE message marshalling and unmarshalling [7].

• Predicates: Represent expressions that say something about the status of the

world (e.g. (Lives (Person :name George) (City :name "Chania"))) and can

be used as content of messages which contain the inform performative.

• Terms: Represent expressions identifying entities that have real existence in the

domain of agent operation (e.g. (Person :name Nikos :age 20)).

Terms are further categorized into:

• Primitives (i.e. Integers, Strings, Doubles) and Concepts (i.e. Complex objects

with multiple fields). These categories make no sense if used directly as the content

of an ACL message.

• Agent Actions: represent special types of concepts that incidate the actions

which agents have to perform (e.g. Buy (Book :title "Game of Thrones")

(Person :name Charis)). This category only makes sense as content of messages

which contain the request performative.

A domain specific ontology in JADE is a collection of entities which implement one of

the following marking interfaces: jade.content.Predicate, jade.content.Predicate

or jade.content.Predicate.

3.7 Agent Systems Engineering Methodology

The Agent Systems Engineering Methodology (ASEME) [59] is an Agent Oriented Soft-

ware Engineering (AOSE) methodology for developing multi-agent systems. It uses the

Agent MOdeling LAnguage (AMOLA), which provides the syntax and semantics for cre-

ating models of multi-agent systems covering the analysis and design phases of a software

34 CHAPTER 3. AGENTS AND AGENT-ORIENTED PROGRAMMING

development process. It supports a modular agent design approach and introduces the

concepts of intra- and inter-agent control. The former defines the agent’s behavior by co-

ordinating the different modules that implement his capabilities, while the latter defines

the protocols that govern the coordination of the society of the agents. ASEME applies

a model driven engineering approach to multi-agent systems development, so that the

models of a previous development phase can be transformed to models of the next phase.

Thus, different models are created for each development phase and the transition from

one phase to another is assisted by automatic model transformation, including model to

model (M2M), text to model (T2M), and model to text (M2T) transformations leading

from requirements to computer programs.

Agent Modeling Language (AMOLA [60]) describes both an agent as a unit and agents

as part of community (multi-agent system). The concept of functionality is defined

to represent the thinking, thought and senses characteristics of an agent. Then, the

concept of capability is defined as the ability to achieve specific goals (e.g. the goal to

decide which movie to see tonight) that requires the use of one or more functionalities.

Therefore, the agent is an entity with certain capabilities, including inter and intra-

agent communication. Each of the capabilities requires certain functionalities and can

be defined separately from the other capabilities. The capabilities are the modules that

are integrated using the intra-agent control concept to define an agent. Each agent is

considered a part of a community of agents, i.e. a multi-agent system. Thus, the multi-

agent system’s modules are the agents and they are integrated into it using the inter-

agent control concept. The originality in this work is the intra-agent control concept

that allows for the assembly of an agent by coordinating a set of modules, which are

themselves implementations of capabilities that are based on functionalities. Here, the

concepts of capability and functionality are distinct and complementary. In order to

represent system designs, AMOLA is based on statecharts, a well-known and general

language and does not make any assumptions on the ontology, communication model,

reasoning process or the mental attitudes (e.g. belief-desireintentions) of the agents

giving this freedom to the designer.

Capabilities are decomposed to simple activities. For example, a decision making capa-

bility fulfills the task of finding where to recharge this evening. The problem is decom-

posed to activities, e.g. of finding which stations are nearby, what are their available

charging slots, rank them, etc. Each activity is realized by a specific functionality, i.e. a

specific technique like an algorithm, invocation of a service, etc. The same capability can

be implemented with different functionality types: an agent can have a decision making

task based on an argumentation-based functionality, while another implementation of

the same capability could be based on a different functionality, e.g. multi-criteria-based

functionality.

3.7. AGENT SYSTEMS ENGINEERING METHODOLOGY 35

ASEME (through its IDE) automatically generates portions of the agent code or provides

guidelines for the programmers to transform their design models to implementation

models. As JADE is used widely from many developers as underlying agent development

framework because of its multiple advantages, ASEME authors have chosen JADE and

Java as their code generation output [62]. Figure 3.10 briefly illustrates the various

ASEME phases, the different levels of abstraction and the models related to each of

them. Note that in the context of this thesis, we do not utilized ASEME for code

generation, but the design and representation of the inter-agent and inta-agent controls

of our system are inspired from ASEME.

Figure 3.10: ASEME development phases with their outputs [59].

3.7.1 Statecharts

A statechart is a finite collection of states and transitions. A state is either a basic state

or a hierarchical state and may contain multiple sub-states [27]. A hierarchical state

can be either an AND-state or an OR-state. AND-states have orthogonal components

that are related by “and” (executed in parallel) while OR-states have sub-states that are

related to each other by “exclusive-or”. Basic states are those at the bottom of the state

hierarchy, i.e., those that have no substates. Transitions are binary relations between

states and are usually triggered by events. Such events can be:

• A sent or received inter-agent message

• A change in one of the executing state’s variables (also referred to as an intra-agent

message)

• A timeout

36 CHAPTER 3. AGENTS AND AGENT-ORIENTED PROGRAMMING

• The ending of the executing state activity (no expression transition)

A message event is expressed by P(x , y , c) where P is the performative, x is the sender

role, y the receiver role and c the content of the message. The items that the designer

can use for defining the state transition expressions are the message performatives,

the ontology used for defining the messages content and the timers. An agent can

define timers as normal variables initializing them to a value representing the number of

milliseconds until they timeout. Timers are initialized in the action part of a transition

expression, while the timeout predicate can be used in both the event and condition

parts of the transition expression depending on the needs of the designer. The definition

of statechart as it is used in AMOLA, makes possible to proceed to the definition of the

inter- and intra-agent control.

Chapter 4

Related Work

To date, many simulation tools and real-world prototypes that incorporate a wide range

of features related to the V2G/G2v domain have been proposed. These systems either

focus on underlying issues related to the EV operation in the smart grid or they are

integrated environments (either for simulation or real use) that include many entities

that are related to some extent with the V2G/G2V domain.

Rigas et al. [52] present EVLibSim, a Java tool for the simulation of EV charging sta-

tions built on their previous work on EVLib [34]. This tool provides a friendly and

comprehensive UI for the management of charging stations that allows their creation,

modification, and monitoring. The tool simulates the operation of each charging station

and provides the results to facilitate the comparison and evaluation of the various ap-

proaches. Although proven quite useful by test usage scenarios involving actual domain

experts, this approach is restricted to charging stations only and does not incorporate

additional stakeholder types.

Jordán et al. [31] propose a MAS to support the decision-making process on the determi-

nation of locations of EV charging stations in the city of Valencia. The system integrates

a collection of information from heterogeneous data sources such as traffic data, social

network data, charging station pricing data, and optimize the charging station locations

using a genetic algorithm. Evaluation of experimental results shows that the higher the

proposed solutions’ fitness values are, the better coverage of the more populated and

crowded areas of the city of Valencia is achieved. This approach might come handy

for designing charging infrastructure, however, it does not capture what happens next,

when it is offered for use.

Kamboj et al. [33] present an approach for forming coalitions of EVs to provide V2G and

demand-side management services to the electricity grid. Authors incorporate a MAS

37

38 CHAPTER 4. RELATED WORK

architecture and implement simulations using JADE. The system considers an intelli-

gent agent for each EV, an aggregator agent responsible for forming coalitions of EVs,

and a TSO agent that communicates with aggregators and regulate the V2G/DSM pro-

cess. EVs are selected in a way, such that the minimum energy required to successfully

participate in the regulation market is reached. Evaluation, however, involved five EVs

only. Moreover, the system does not allow for complex EV selection processes and thus

cannot scale.

Papadopoulos et al. [44] propose a MAS implemented in JADE that coordinates the

battery charging of EVs considering the individual preferences of the EV drivers, by

using specific search techniques and neural networks. The driver preferences include

the willingness to participate in V2G, as well as the charging availability of the vehicle.

Through a series of experiments, the proposed MAS is shown to have the ability to satisfy

autonomous EV owners’ charging preferences under both normal, and emergency grid

conditions. Then, [35] proposes a MAS EV charging management system that satisfies

the energy requirements of a large number of EVs considering owners’ preferences. The

problem is formulated as a non-cooperative dynamic game [41], that converges to an

equilibrium when players are weakly coupled. This means that EVs do not have perfect

information regarding all other EVs preferences and states, but can optimize based on

the known averages of such values (corresponding to “mass behaviour”). Simulations

on a realistic setting show that EV energy requirements can be allocated efficiently,

and achieve “valley filling” during off-peak hours, a capability that provides multiple

advantages for the Grid. None of these works, however, defines specific protocols and

messaging ontologies, nor do they pinpoint how to extend the proposed frameworks by

adding different agent types or algorithms, as we do in our approach.

In our work, we present an integrated MAS prototype for the V2G/G2V problem which

is based on a high-level architecture to allow the study and evaluation of different ap-

proaches of the various modules required in such a setting. We define specific commu-

nication protocols and a domain-specific ontology for the inter-agent communication.

The proposed protocols are open, in the sense that they can be easily extended or tai-

lored to capture any real-world case that exists since we provide analytic descriptions

and semantic schemes for each module that agents in such settings would utilize. Using

our system, the designer or researcher can test and compare algorithms of their choice

for providing charging recommendations, calculating the charging schedules for large

numbers of EVs, and the effect of different pricing schemes, in real-world use-cases. To

show the applicability of our approach, we implement a functional prototype based on

the proposed architecture and execute combinations of different algorithms for various

use-cases to compare their results.

Chapter 5

System Architecture

In this chapter, we present the architecture for the V2G/G2V problem. It follows a

multi-agent architecture in the sense that the various stakeholders have been modeled

as intelligent agents who can act autonomously without interventions or dictations of

other, centralized third parties. The decision regarding which the stakeholder agents

are was taken considering the related literature. The communication of these agents is

based on the exchange of appropriate messages that adhere the FIPA-ACL, an agent

communication language introduced by FIPA (see Section 3.4), and by using well-defined

communication protocols specifically tailored to our application domain.

5.1 V2G/G2V System Architecture

The various stakeholders and services that were briefly presented in Section 1.1, are

discussed here in much more detail, as agents who compose an integrated multi-agent

V2G/G2V architecture. We assume that these agents live and operate in a smart grid

infrastructure that can be interconnected with the other parts of the electricity grid

through Distribution and Transmission Networks. When the grid under study requires

power that can not be generated locally, it is capable of importing it, while when it has

a local energy surplus, it can export it to other grids and create additional profits for the

electricity producers. As we have already mentioned in Chapter 3, agents are distributed

distributed software processes that can make decisions independently, thus other agents

do not have control over their internal state and private information. Agents can only

communicate using agent communication languages and specific interaction protocols.

Figure 5.1 illustrates an overview of the agents of our architecture, their interactions, as

well as their basic components.

39

40 CHAPTER 5. SYSTEM ARCHITECTURE

The agents that participate in the proposed MAS architecture are (a) Electric Vehicle

agents (EV), (b) Charging Station agents (CS), (c) Electricity Producer agents (EP),

and (d) Electricity Consumer agents (EC). Furthermore, we assume the existence of a

national regulatory service for energy, or possibly a profit-making private service, that

consists of (i) the Station Recommender agent (SR), (ii) the Electricity Imbalance agent

(EI), and (iii) the Mechanism Design agent (MD). We chose to refer to such a service

by its three distinct modules separately, since our focus in this thesis is on the technical

details of the functionality provided by each, and not on the business and regulatory

aspects.

In Figure 5.1, each agent of our architecture is depicted as a rectangle and contains

a collection of modules, i.e. the computation and storage sub-systems that are asso-

ciated with the particular agent. Each module is private in the sense that only the

particular agent that contains that module can access it. The agents that have multiple

counterparts in our architecture are denoted with a star superscript near their name.

The grey coloured elements denote required functionality that, however, has not been

implemented in the context of this thesis.

5
.1.

V
2
G
/
G
2V

S
Y
S
T
E
M

A
R
C
H
IT

E
C
T
U
R
E

41

Mechanism Design Agent

Mechanism Design

Component

Electricity Producers

Repository

Charging Stations

Repository

Electricity Consumers

Repository

Mechanism Design Agent

Mechanism Design

Component

Electricity Producers

Repository

Charging Stations

Repository

Electricity Consumers

Repository

Electricity Imbalance Agent

Grid Constraint

Extraction

Electricity Producers

Repository

Charging Stations

Repository

Electricity Consumers

Repository

Electricity Imbalance Agent

Grid Constraint

Extraction

Electricity Producers

Repository

Charging Stations

Repository

Electricity Consumers

Repository

Charging Station Agent*

Negotiation Decision

Making
Charging Scheduling

Preference Elicitation
Mechanism Design

Component

Financial

Management

Charging Station Agent*

Negotiation Decision

Making
Charging Scheduling

Preference Elicitation
Mechanism Design

Component

Financial

Management

Station Recommender Agent

Recommendations

Engine

Electric Vehicles

Repository

Charging Stations

Repository

Station Recommender Agent

Recommendations

Engine

Electric Vehicles

Repository

Charging Stations

Repository

Electricity Consumer Agent*

Preference Elicitation
Financial

Management

Electricity Consumer Agent*

Preference Elicitation
Financial

Management

Electricity Producer Agent*

Preference Elicitation
Financial

Management

Electricity Producer Agent*

Preference Elicitation
Financial

Management

Electric Vehicle Agent*

Negotiation Decision

Making
Preference Elicitation

Financial

Management

Recommendation

Selection

Electric Vehicle Agent*

Negotiation Decision

Making
Preference Elicitation

Financial

Management

Recommendation

Selection

Report

Confidence

Report Expected

Consumption

Report

Confidence

Reserve

Charging Slot

Negotiation

Report

Charging Schedule

Request Station

Recomendations

Payments

Payments

Payments

Request

Electricity Prices

Request

Imbalance

Request

Imbalance

Request

Imbalance

Report Expected

Production

Payments

Report

Confidence

Report

Confidence

Report Station

AvailabilityReport

Confidence

Authenticate

Recommendation

Not implemented

functionality

Not implemented

functionality

Left side initiates and

waits for complex

information

Left side initiates and

waits for complex

information

Both sides can initiateBoth sides can initiate

Left side initiates and waits

for acknowledgement

Left side initiates and waits

for acknowledgement

Report Expected

Production

Report Expected

Consumption

Report

Confidence

Report

Charging Schedule

LEGEND

Request

Prices

Figure 5.1: An overview of the proposed architecture for the V2G/G2V problem. With a star we noted the agents that can have multiple
counterparts while in gray color we have note the functionality that is out of the scope of this thesis.

42 CHAPTER 5. SYSTEM ARCHITECTURE

5.2 Agents

Electric Vehicle Agent: Εach EV has an intelligent agent which we assume to be

installed and executed on a computational infrastructure that is part of the EV, or on a

mobile device that its driver possesses. The goals of an EV agent is to ensure that the

vehicle will always have enough charge for driver’s next trip. It monitors the activities

and behaviour of the driver, models and predicts his future behavior and needs, and

then contracts a charging station to schedule its battery charging. It also aims to create

a profit to the driver by participating in V2G activities when the vehicle is parked for

long periods of time. If one of the driver’s needs changes and he does not want to charge

under the active agreement with the charging station as originally decided by the agent,

the agent can initiate a negotiation regarding the initial agreement, or cancel it and

make a new arrangement to accommodate driver’s latest mood and preferences. An

EV agent contains a Preference Elicitation module that is responsible to monitor the

driving habits and behaviour of the driver, and predict its future charging preferences; a

Financial Management module that is responsible for making the payments regarding the

charging of the EV and receiving payments when the EV participates in V2G activities;

a Negotiation Decision Making module that contains the algorithmic components and

the logic according to which the agent conducts negotiations; and a Recommendations

Selection module that contains the algorithmic components for the agent to determine

which charging recommendation to select. An EV agent communicates with the Station

Recommendation agent and the Charging Station agents (see below).

Charging Station Agent: The goal of a Charging Station agent is to look after the best

interests of the owner of the charging station, by providing the physical gateways (i.e.

connectors, parking slots) to EVs that connect to the grid and create profit by charging

the EV batteries. Another goal of the Charging Station agent is to negotiate with

Electric Vehicle agents an already made charging agreement, in order to change some of

its parameters and in this way to create space in its charging schedule for more vehicles to

charge. This leads to a better utilization of the station infrastructure and maximizes the

profit for its owner. A Charging Station agent contains a Charging Scheduling module

that is the algorithmic components responsible to schedule the charging and discharging

of EVs over a predefined planning horizon (e.g. 24 hours ahead); a Negotiation Decision

Making module that contains the algorithmic components and the logic according to

which the agent conducts negotiations; a Mechanism Design module that calculates the

EV payments in such a way to incentivize rational behaviour; a Preference Elicitation

module that monitors charging slots usage and updates the prices for each of them

according to the needs of the station owner; and a Financial Management module that

is responsible for making the payments regarding the operation the charging station.

5.2. AGENTS 43

A Charging Station Agent communicates with the Electric Vehicle agents, the Station

Recommender agent, the Electricity Imbalance agent and the Mechanism Design agent.

Station Recommender Agent: The goal of this agent is to recommend the charging

stations and charging slots that match the most with the EVs’ preferences and current

battery state, while ensuring that herding effects do not occur and allowing the EVs to

participate in V2G activities. The Station Recommender agent contains a Recommenda-

tions Engine module that makes charging stations recommendations, an EV Repository

module where it stores information about the past EV behaviour in order to utilize it

for future recommendations, a Charging Station Repository of registered charging sta-

tion. It communicates with the Electric Vehicle agents, the Charging Station agents,

the Electricity Imbalance agent, and the Mechanism Design agent.

Electricity Imbalance Agent: The goal of this agent is to aggregate information from

the Electricity Producers, Electricity Producers and Charging Stations agents, regard-

ing their expected energy profiles, and to calculate the periods of electricity shortage

and surplus. Then, it provides the electricity imbalance to all interested parties, for

them to plan their electricity consumption and production activities. It employs a Grid

Constraints Extraction module that can incorporate various measures and methods that

could be relevant in a Smart Grid scenario, and calculates electricity imbalance over a

predefined planning horizon, and a Charging Stations Repository, an Electricity Pro-

ducers Repository and a Electricity Consumers Repository, where it stores information

about the registered agent types, respectively.

Mechanism Design Agent: This agent represents an intermediate trusted third party

entity which is responsible for the prices calculation and the payment flows. In the

general case, whoever communicates with this agent, does so for anything related to

payments. The goal of this agent is to charge producer and consumer agents with

appropriate, possibly personalized fees, so that they are incentivized to be truthful re-

garding their statements for expected values, and in this way promote the reliable and

smooth operation of the system. By collecting expected profiles and by observing the

actual production and consumption for the corresponding time intervals, the Mechan-

sism Design agent calculates the various payments. These payments are such, so that to

reward the agents who provide accurate and truthful reports regarding their expected

energy profiles, while, at the same time, inaccurate agents suffer penalties. We assume

that agents who register with the Mechanism Design agent, are informed of the method

by which payments are calculated and they have to agree to comply with it. The Mech-

anism Design agent contains a Mechanism Design Component module which contains

the algorithmic components to calculate the various payments and repository modules

44 CHAPTER 5. SYSTEM ARCHITECTURE

to store the expected energy profiles of the various producers and consumers. It com-

municates with the Electricity Producer and Consumer agents, the Charging Station

agents, the Electricity Imbalance agent, and the Station Recommender agent.

Electricity Producer Agent: The goal of an Electricity Producer agent is to predict

and periodically report the expected energy output of the energy generators it corre-

sponds to, as well as the confidence of such predictions. These reports are then used

to plan the aggregate consumption patterns, possibly by introducing variable prices for

consumption, according to if renewable energy is abundant or in shortage. This can lead

to significant exploitation of the renewable energy produced, as without coordination,

this energy may have been left unexploited. An Electricity Producer agent contains a

Preference Elicitation module which is responsible to predict the electricity production

of the producer over a specific planning horizon (e.g. 24 hours ahead) and calculate its

confidence for that prediction, and a Financial Management module which is responsi-

ble for the payments and transactions of the agent. This agent communicates with the

Electricity Imbalance agent and the Mechanism Design agent.

Electricity Consumer Agent: The goal of this agent is to predict and periodically

report the expected energy consumption of the consumer it represents, as well as the

confidence of such predictions. An Electricity Consumer agent, contains a Preference

Elicitation module which is responsible to predict the electricity consumption of the con-

sumer over a specific planning horizon (e.g. 24 hours ahead) and calculate its confidence

for the prediction, and a Financial Management module which is responsible for the

payments and transactions of the agent. This agent communicates with the Electricity

Imbalance agent and the Mechanism Design agent.

5.3 Communication Interfaces

The agents of the architecture, communicate using FIPA-ACL messages as they were

presented in section 3.4. The connections that appear in Figure 5.1 and connect the

agents of our architecture indicate which agents communicate with each other. The

arrows of these connections denote the order in which these messages are exchanged. Α

connection with two solid arrowheads, indicates that both the agents can initiate the

communication. An example of such a communication is the connection Negotiation

between an Electric Vehicle agent and a Charging Station agent. A connection with a

solid arrowhead and a simple arrowhead indicates that the side from which the solid ar-

rowhead leaves, initiates the communication requesting complex information, and waits

for a response containing this information. An example of such a communication is

the connection Request Station Recommendation between an EV agent and the Station

5.3. COMMUNICATION INTERFACES 45

Recommender agent. The connections with only one arrowhead, indicates communica-

tion where the side from which the arrowhead leaves, initiates the communication, while

the other side sends a simple acknowledgement to inform the sender about a result. An

example of such a communication is the connection Report Expected Production between

the Electricity Producer agent and Electricity Imbalance agent.

In our architecture, the aforementioned connections represent communication protocols

whose details are going to be described in Section 6.1 where we present the inter-agent

control of our system. Here, we will present in high level the goals of these protocols:

• Request Charging Recommendations: This protocol is used from the Electric Ve-

hicle agents to request charging recommendations from the Station Recommender

agent.

• Reserve Charging Slot : This protocol is used from the Electric Vehicle agents to

request a reservation to particular charging slot of a charging station.

• Negotiation: This protocol is used both from Electric Vehicle agents and Charging

Station agents in order to negotiate the details of an already existing charging

reservation to a particular charging slot of the station.

• Request Imbalance: This protocol is used from all agents who want to get informed

about the electricity imbalance of the grid over a predefined planning horizon (e.g.

24 hours ahead).

• Request Prices: This protocol is used from all agents who want to get informed

about the prices of electricity consumption over a predefined planning horizon.

• Report Expected Production: This protocol is used from the Electricity Production

agents to report their expected electricity production over a predefined planning

horizon.

• Report Expected Consumption: This protocol is used from the Electricity Con-

sumption agents to report their expected electricity consumption over a predefined

planning horizon.

• Authenticate Recommendation: This protocol is used from Charging Station agents

to verify that a charging recommendation made to a particular Electric Vehicle

agent is genuine.

• Report Charging Schedule: This protocol is used from Charging Station agents to

report their charging schedule over a predefined planning horizon.

46 CHAPTER 5. SYSTEM ARCHITECTURE

• Report Station Availability : This protocol is used from Charging Station agents to

report their updated availability regarding their charging slots.

• Report Confidence: This protocol is used from all the agents who want to report

their confidence to their expected energy profile over a predefined planning horizon.

These profiles can be the expected production, expected production or the charging

schedule of the respective agents.

• Register Charging Station: This protocol is used from the Charging Station agents

in order to register with the all the service agents Electricity Imbalance agent,

Mechanism Design agent and Station Recommender agent which need their profile

and type in order to consider them in the their activities. We do not illustrate this

protocol in 5.1 to increase readability.

• Register Electricity Producer : This protocol is used from the Electricity Producer

agents in order to register with the service agents Electricity Imbalance agent and

Mechanism Design agent which need their profile and type in order to consider

them in the their activities. We do not illustrate this protocol in 5.1 to increase

readability.

• Register Electricity Consumer : The same as Register Electricity Producer protocol.

• Payments: This protocol is used from all the agents who perform monetary trans-

actions (e.g. payments for electricity consumption, payments for electricity pro-

duction). This protocol, as already mentioned, in out of the scope of this work.

5.4 V2G/G2V Domain Ontology

The FIPA communication model is based on the assumption that communicating agents

share an ontology of communication defining speech acts and protocols. In order to

have fruitful communication, agents must also share an ontology of their domain of

application, thus, we developed a simple ontology domain for the V2G/G2V domain

(see Figure 5.2). This ontology is used by the agents in order to form the content of the

messages they exchange as the shared understanding and the reduction of conceptual

and terminological confusion are essential for successful communication. A detailed

description of the concepts of the ontology in alphabetical order is the following:

Battery: This concept describes the battery which is equipped to an EV. It contains

the capacity of the battery, which is the maximum energy it can store; the current State

of Charge (SOC) of the battery, which is the amount of energy it has currently stored;

the State of Health (SOH), which represents the condition of the battery compared to

5.4. V2G/G2V DOMAIN ONTOLOGY 47

Figure 5.2: The concepts of the V2G/G2V Ontology given as a UML class diagram.

its ideal conditions expressed as percentage; the charging efficiency, which denotes the

amount of power that the battery receives compared to the nominal value of the input

power; the energy consumption (kwh/100km) and a list of charging types.

Charging Recommendation: This concept represents a charging recommendation

that is made to an EV given its type (i.e. battery state, charging preferences). It contains

information about the recommended arrival and departure to and from the charging

station, details about the station itself (e.g, station id, charging slot id, location), as well

as, the price for charging at a particular station during the period mentioned before,

the amount of energy that the vehicle will receive and the rate of charging. Finally,

the recommendation system assigns to each recommendation made a rank, that is, the

likelihood that the EV will “like” a particular recommendation.

Charging Slot: A charging station can contain one or more charging slots. These

slots are the ports where the EVs connect and derive power to charge their batteries.

Each slot is coupled with a parking slot that we assume its in front or near it. At a

given charging station, different charging slots can have different payment tariffs for each

electricity unit consumed.

Charging Station: This concept describes an EV charging station. A charging station

contains the identifier of the station, its location, the network of stations that she belongs,

48 CHAPTER 5. SYSTEM ARCHITECTURE

as well as the charging slots available in this particular charging station.

Charging Type: EVs can be equipped with one or more inlets which allow different

maximum power inputs for their battery to charge. The charging power determines

the actual charging time of the battery. Given these, this concept contains a field that

denotes the maximum rated power for charging and discharging the battery, the inlet

type, and a label to categorize the type charging (e.g. Normal, Fast, Rapid).

Confidence: This is a concept that contains information about the confidence of an

entity regarding its expected goals. The confidence is expressed using two values; the

mean and standard deviation and indicate the deviation from the reported expected

energy profile.

Confidence Slot: This concept associates a Confidence object to a specific date and

time. It is used to declare our confidence over a specific time interval. Its parameters are

a Confidence concept as described above, and a date-time value with format YYYY-MM-DD

HH:MI:Sec.

Electricity Consumer: This concept contains all the information which describe an

Electricity Consumer. It includes the identifier of the consumer, the units of measure-

ment consumption (e.g. kWh) and its type (e.g. Residential, Industrial).

Electricity Producer: This concept contains all the information which describe an

Electricity Producer. It includes the identifier of the producer, the units of measurement

of production and its type (e.g. PV Panel, Wind Turbine, VPP).

Electric Vehicle: The Electric Vehicle concept contains all these parameters which de-

scribe a real-world EV. These parameters include the battery of the vehicle, the charging

preferences of the driver, its current location, as well as the model and an identifier to

uniquely recognize it.

Energy Slot: This concept contains information about the amount of energy which is

expected to be available at a specific time interval. It contains a parameter about the

amount of energy (kWh) available and a data-time parameter with format YYYY-MM-DD

HH:MI:Sec

EV Preferences: This concept, contains a set of parameters which capture the cur-

rent desires and needs of the EV driver concerning the charging of his vehicle. These

parameters include the expected arrival and departure to and from the charging station

expressed as a YYYY-MM-DD HH:MI:Sec formatted String, the desired SOC at the depar-

ture time, the preferred network of charging stations, the preferred charging type from

those which the vehicle supports and the confidence to his preferences.

5.4. V2G/G2V DOMAIN ONTOLOGY 49

Location: This concept contains a set of geographic coordinates (latitude and longi-

tude) that uniquely determine the position of an object in the world.

Negotiation Object: In our system, we allow negotiations between EVs and charging

stations. The negotiation concerns a set of variables that are available for negotiation

and are denoted using this object. These variables include the arrival and the departure

to and from a particular charging station, the amount of energy that the EV is going to

receive, as well as the price charged per energy unit (kWhs).

Reservation: This concept contains information about a reservation made to charging

slot of a charging station. Its parameters are the period of the reservation expressed

as a set of date-time values (YYYY-MM-DD HH:MI:Sec), as well as a unique reservation

identifier.

Time Price: This concept contains information about the price of each unit of energy

available at a specific time interval. Its parameters are a price, and a date-time value

with format YYYY-MM-DD HH:MI:Sec.

Chapter 6

System Design and

Implementation

In this chapter, we present the design and implementation of the V2G/G2V architecture

presented in Chapter 5. The communication protocols (i.e. inter-agent control) that

we presented there, and each agent’s internal operation (i.e. intra-agent control), are

described here in much more detail. We define two new design patterns, that on the one

hand allow the developers to re-use the protocol parts and logic defined in the framework,

and on the other hand to customize key agent functionalities or capabilities according

to their needs/goals. For our implementation, we utilized JADE (see Section 3.6), a

framework which respects the standards set by the FIPA and provides a friendly and

comprehensive Java API for agent development and management.

The ontology presented in Section 5.4, here is going to be enriched with additional

entities that connect the various concepts presented there. In Section 3.6, we mentioned

that an ontology in JADE is a collection of Concepts, Predicates and AgentActions which

represent the definitions and relationships of these definitions that describe a particular

subject domain (in our case, the V2G/G2V domain). The Concepts of our ontology are

already presented in Section 5.4 and in this section we will present the Predicates and

AgentActions of ontology through the inter-agent control.

The modeling of both the intra- and inter-agent controls of our system follows the

ASEME paradigm and rules (see 3.7), and are illustrated using statecharts, which are

part of the Unified Modeling Language (UML). Then, these statecharts are transformed

into the appropriate JADE communication logic and behaviours, using a similar method-

ology to [61] and [40]. All statecharts presented in this chapter were designed using

YAKINDU 1.

1https://www.itemis.com/en/yakindu/state-machine/

51

52 CHAPTER 6. SYSTEM DESIGN AND IMPLEMENTATION

6.1 Inter-Agent Control

Inter-agent control refers to the communication protocols that are used by the various

agents to communicate. Each protocol is defined by (i) its purpose, which is a textual

description of the nature of the interaction, (ii) the initiator, which is the role(s) respon-

sible for initiating the communication protocol, (iii) the responder, which is the role(s)

with which the initiator interacts, and (iv) the protocol inputs and outputs depending

on the role. The two participating roles are shown in the grey area of each statechart

that represents parallel (orthogonal) executing components e.g. see Figure 6.1. Having

this definition, in the general case, a concrete agent can inherit the part of the statechart

corresponding to the role it wants to play in its intra-agent control model.

In this section, we define 13 communication protocols for inter-agent communication.

The roles that participate in these protocols are played by agents of our V2G/G2V ar-

chitecture. Depending on their goals/needs, some agents play many different roles, while

others only specific ones. Despite the fact that we specify at each protocol description

which agents of our architecture utilize it, this does not imply that these protocols are

agent specific. On the contrary, they can be utilized by different agents which possibly

are not part of our current architecture.

For the implementation of these protocols, we used JADE’s FSMBehaviour, which is a

composite behaviour with Finite State Machine (FSM) based children scheduling, and

SequentialBehaviour which is a composite behaviour with sequential children schedul-

ing. The various inputs and outputs of each protocol are accessed through JADE’s

DataStore, a data structure that all the behaviours of a particular role of the protocol

have to share (see Section 3.6).

The different color (light yellow) of a state for specific communication protocol state-

charts, denotes the state (in our implementation correspond to JADE behaviours) that

is not part of the protocol package but is expected as a parameter in the instantia-

tion of protocol role. These states contain custom functionality that is provided by the

developer using an appropriate design pattern (see Section 6.3). Thus, each protocol

becomes open in the sense that the developer can program the agent to handle the

received messages according to her own goals and needs.

Note, the definition of the communication protocols presented in this section, do not

impose a specific way of interpreting the exchanged messages or a technology of ex-

changing them. This means that they could be developed with alternative frameworks

and programming languages than these we used in this thesis (i.e. JADE and Java).

6.1. INTER-AGENT CONTROL 53

6.1.1 Charging Recommendation Protocol

This protocol is used by EV agents in order to request charging station recommendations

from the Station Recommender agent and it is illustrated in Figure 6.1. Here, an EV

agent plays the Electric Vehicle role (ev, the left side of the statechart), while the

Station Recommender agent plays the role Station Recommender (srec, right side of the

statechart).

For the ev role, the protocol starts by sending a message to request charging recommen-

dations. The event of sending this message, which must have the Request performative,

the ev as sender, the srec as receiver and the message content being the RequestCharg-

ingRecommendations as the Request(ev, srec, RequestChargingRecommendations) event

suggests, causes another transition, targeting the ReceiveRecommendations state. The

same transition executes the action t1 = TIMEOUT that sets the timer t1 to timeout

in TIMEOUT milliseconds (TIMEOUT is a configurable variable). The receipt of an

inter-agent message with performative Inform and content ChargingRecommendations,

or Failure and content Problem, or the timeout of the timer t1 can cause the final tran-

sition to terminate this protocol.

For the srec role, the protocol starts at the ReceiveRecommendationsRequest state that

contains an activity that waits for a request message by an EV. When a request is

received (the srec transition to the next state has the same expression with the ev

transition from the “SendRecommendationsRequest” to the ReceiveRecommendations),

she gets to the next state CalculateRecommendations (is not implemented in the protocol

package) which contains the charging recommendations calculation activity, and sets her

timer (t2) to timeout in TIMEOUT milliseconds. From this state, srec has two transition

options for making a transition. The first option is that a charging recommendations

result is successfully calculated, while the second is that the t2 timer timeouts. In

the first case, there is a transition to the SendChargingRecommendations, while in the

second case the protocol terminates for this role. From the SendResponseMessage state

srec sends an Inform with content ChargingRecommendations or a Failure message with

content Problem to her counterpart and the protocol for this role terminates.

• RequestChargingRecommendations is an AgentAction with properties:

– ElectricVehicle: Ontology Concept (see Section 5.4)

• ChargingRecommendations is a Predicate with properties:

– List of ChargingRecommendation: Ontology Concept

• Problem is a Predicate with properties:

54 CHAPTER 6. SYSTEM DESIGN AND IMPLEMENTATION

– String : Primitive (The type of the problem occurred in human-readable for-

mat, this is Primitive in our ontology as presented in Section 3.6)

ChargingRecommendationProtocol

Electric Vehicle (ev)

SendChargingRecommendationsRequest

ReceiveRecommendations

Station Recommender (srec)

ReceiveRecommendationRequest

CalculateChargingRecommendations

SendChargingRecommendations

1 2

Request(ev,srec,RequestChargingRecommendations)
/t1=TIMEOUT

Request(ev,srec,RequestChargingRecommendations)
/t2=TIMEOUT

Inform(srec,ev,ChargingRecommendations)
or Failure(srec,ev,Problem)

1

Propose(srec,ev,ChargingRecommendations)
or Failure(srec,ev,Problem) or
timeout(t1)

timeout(t2)

2

Figure 6.1: The model of the Charging Recommendation Protocol.

6.1.2 Charging Station Reservation Protocol

This protocol is used from EV agents to make a charging reservation to a specific charg-

ing slot of a charging station. The request is sent to the corresponding Charging Station

agent. Note that in order to make a charging reservation, the EV agent should have

received charging recommendations. The communication protocol is depicted in Fig-

ure 6.2. The execution logic of this protocol is identical with that of the Charging

Recommendation Protocol. The only difference is the content of the various messages.

• ReserveChargingSlot is an AgentAction with properties:

– ChargingRecommendation: Ontology Concept (see Section 5.4)

– ElectricVehicle: Ontology Concept

• Problem is a Predicate with properties:

– String : Ontology Primitive, the type of the problem occurred in a human-

readable format.

• Done is a Predicate (part of JADE’s jade.content.onto.basic package) with

properties:

6.1. INTER-AGENT CONTROL 55

ChargingStationReservationProtocol

Electric Vehicle (ev)

SendStationReservationRequest

ReceiveReservationOutcome

Charging Station (cs)

ReceiveChargingReservationRequest

HandleChargingReservationRequest

SendReservationOutcome

1 2

timeout(t2)

1

Inform(cs,ev,Done) or
Failure(cs,ev,Problem) or
timeout(t1)

Inform(cs,ev,Done) or
Failure(cs,ev,Problem)

Request(ev,cs,ReserveChargingSlot)
/t1=TIMEOUT

2

Request(ev,cs,ReserveChargingSlot)
/t2=TIMEOUT

Figure 6.2: The model of the Charging Station Reservation Protocol.

– ReserveChargingSlot: Ontology AgentAction, if the requested action was per-

formed successfully.

6.1.3 Negotiation Protocol

This communication protocol (Figure 6.3) is used from EV and Charging Station agents

to negotiate about an existing charging reservation. In this protocol, we have only one

role, i.e. the Responder to a proposal. Both agents play the same role. The protocol

starts as soon as a protocol-related message arrives. This, however, implies that one of

the agents is responsible to initiate the negotiation by sending a proposal.

The state ReceiverNegotiationMessage, contains an activity that waits to receive a mes-

sage. As soon as one such arrives, there are two possibilities: (a) if its performative

is Accept or t1 has timed-out indicating that there is no response of the counterpart

indicating inability to reach a solution (the negotiation ends unsuccessfully), and then

the protocol terminates for this role; (b) the performative is Propose or Reject, we have

a transition to the NegotiationDecisionMaking state. In this state, the message received

is processed and a result is reached based on the negotiation decision-making algorithm.

This algorithm can be inserted with the functionality design pattern (its implementation

of the action method just calls the Template method).

56 CHAPTER 6. SYSTEM DESIGN AND IMPLEMENTATION

NegotiationProtocol

Responder (resp)

ReceiverNegotiationMessage

NegotiationDecisionMaking

SendDecisionMakingOutcome

(Propose(resp,init,NegotiationProposal)
or Reject(resp,init,NegotiationProposal))
/t1=TIMEOUT

1

Accept(init,resp,NegotiationProposal)
or timeout(t1)

2

Propose(init,resp,NegotiationProposal) or
RejectProposal(init,resp,NegotiationProposal)

1

Accept(resp,init,NegotiationProposal)
or timeout(t1)

2

Figure 6.3: The model of the Charging Negotiation Protocol.

• NegotiationProposal is a Predicate with properties:

– NegotiationObject : Ontology Concept (see Section 5.4)

6.1.4 Charging Station Registration Protocol

This protocol is used from the Charging Station agents, which plays the Charging Station

role, in order to register with the various service agents of our system. Currently, these

agents are the Mechanism Design agent, the Electricity Imbalance agent and the Station

Recommender agent, and all play the Service Provider role. A Charging Station agent

should be registered with these agents in order to facilitate better individual operation,

as well as the operation of the grid. The communication protocol is depicted in Figure

6.5.

• RegisterChargingStation is an AgentAction with properties:

– ChargingStation: Ontology Concept (see Section 5.4)

6.1. INTER-AGENT CONTROL 57

ExpectedProductionConsumptionUpdateProtocol

 Producer or Consumer (p or c)

SendUpdateExpectedEnergyProfile

ReceiveUpdateProfilrOutcome

Service Provider (sp)

ReceiveUpdateExpectedProfileRequest

HandleUpdateExpectedProfileRequest

SendUpdateProfileOutcome

1 2

Inform(sp,p or c,Done) or
Failure(sp,p or c,Problem)

Request(p or c,sp,UpdateExpectedProduction) or
Request(p or c,sp,UpdateExpectedConsumption)

Request(p or c,sp,UpdateExpectedProduction) or
Request(p or c,sp,UpdateExpectedConsumption)

Inform(sp,p or c,Done) or
Failure(sp,p or c,Problem)

Figure 6.4: The model of the Update Expected Production/Consumption Protocol.

ChargingStationRegistrationProtocol

Charging Station (cs)

SendChargingStationRegistration

ReceiveRegistrationOutcome

Service Provider (sp)

ReceiveChargingStationRequest

HandleChargingStationRegistration

SendStationRegistrationOutcome

1 2

Request(cs,sp,RegisterChargingStation)

Inform(sp,cs,Done) or
Failure(sp,cs,Problem)

Inform(sp,cs,Done) or
Failure(sp,cs,Problem)

Request(cs,sp,RegisterChargingStation)

Figure 6.5: The model of the Charging Station Registration Protocol.

• Problem is a Predicate with properties:

– String : Ontology Primitive, the type of the problem occurred in a human-

readable format.

• Done is a Predicate with properties:

– RegisterChargingStation: Ontology AgentAction, if the requested action was

performed successfully.

58 CHAPTER 6. SYSTEM DESIGN AND IMPLEMENTATION

6.1.5 Authenticate Recommendation Protocol

This protocol is shown in Figure 6.6 and it is used from Charging Station agents, in

order to validate that a recommendation made to a particular EV agent is genuine or

not. The Station Recommender agent can make personalized recommendations to EVs

that may contain special prices and offers with an aim to incentive specific charging

behaviour and/or better distribution of the EVs to the charging stations. Thus, to

protect the recommendation process from malicious EV agents who aim to modify the

details of a received recommendation before contracting a charging station, we provide

to Charging Station agents (or other agents who want to play one of the roles) this

protocol. The Charging Station role forms a message with the Query-If performative

and receives either a message with the Confirm or Dis-confirm performative.

AuthenticateRecommendationProtocol

Charging Station (cs)

SendAuthenticateRecommendationQuery

ReceiveAuthenticationResponse

Station Recommender (srec)

ReceiveRecommendationAuthenticationQuery

SendAuthenticationOutcome

1 2

QueryIf(cs,srec,IsRecommendationGenuine)
QueryIf(cs,srec,IsRecommendationGenuine)

Confirm(srec,cs,IsRecommendationGenuine) or
Disconfirm(srec,cs,IsRecommendationGenuine)

Confirm(srec,cs,IsRecommendationGenuine) or
Disconfirm(srec,cs,IsRecommendationGenuine)

Figure 6.6: The model of the Authenticate Recommendation Protocol.

• IsRecommendationGenuine is a Predicate with properties:

– ChargingRecommendation: Ontology Concept (see Section 5.4)

– String: Ontology Privitive, the ID of the vehicle that received the recommen-

dation

6.1.6 Electricity Prices Request Protocol

This communication protocol is used from the Station Recommender agent, in order to

learn the current prices of electricity over a predefined planning horizon, and utilize this

information for its own goals and needs. This agent plays the Service User role of the

protocol while the Mechanism Design agent plays the Mechanism Design Service role.

The latter agent always waits to receive requests regarding the electricity prices, and

when such a request is received, it calculates the current prices and sends the results.

6.1. INTER-AGENT CONTROL 59

The statechart of this protocol is shown in Figure 6.7. The message sent by the agent

who plays the role Service User, has null content, as the semantics of the message (i.e.

the protocol name, the ontology, and the content language), provide enough information

to the Mechanism Design Service role to identify the purpose of the message.

ElectricityPricesRequestProtocol

Service User (su)

SendElectricityPricesRequest

ReceiveElectricityPrices

Mechanism Design Service (mds)

ReceiveElectiricityPricesRequest

SendElectricityPrices

HandleElectricityImbalanceRequest

21

Request(su,mds,null)

Inform(mds,su,CurrentElectricityPricesAre) or
Failure(mds,su,Problem)

Request(su,mds,null)

Inform(mds,su,CurrentElectricityPricesAre) or
Failure(mds,su,Problem)

Figure 6.7: The model of the Electricity Prices Request Protocol.

• CurrentElectricityPricesAre is an Predicate with properties:

– A list of EnergySlot : Ontology Concept (see Section 5.4)

• Problem is a Predicate with properties:

– String : Ontology Primitive, the type of the problem occurred in a human-

readable format.

6.1.7 Electricity Imbalance Request Protocol

This communication protocol is used from the Station Recommender agent, the Mech-

anism Design agent and the Charging Station agent, in order to learn the electricity

imbalance of the grid over a predefined planning horizon, and utilize this information

for their own goals and needs. These agents play the Service User role of the protocol

while the Electricity Imbalance agent plays the Electricity Imbalance role of the proto-

col. The latter agent always waits to receive requests regarding the electricity imbalance

of the grid, and when such a request is received, it processes and sends the results. The

statechart of this protocol is shown in Figure 6.8. The message sent by the agent who

plays the role Service User, has null content, as the semantics of the message (i.e. the

60 CHAPTER 6. SYSTEM DESIGN AND IMPLEMENTATION

protocol name, the ontology, and the content language), provide enough information to

the Electricity Imbalance Service role to identify the purpose of the message.

ElectricityImbalanceRequestProtocol

 Service User (su)

SendUpdatedChargingSchedule

ReceiveUpdateScheduleOutcome

Electricity Imbalance Service (eis)

ReceiveElectricityImbalanceRequest

SendElectricityImbalance

HandleElectricityImbalanceRequest

1 2

Request(su,eis,null)

Inform(eis,su,CurrentElectricityImbalanceIs) or
Failure(eis,su,Problem)

Inform(eis,su,CurrentElectricityImbalanceIs) or
Failure(eis,su,Problem)

Request(su,eis,null)

Figure 6.8: The model of the Electricity Imbalance Request Protocol.

• CurrentElectricityImbalanceIs is an Predicate with properties:

– A list of EnergySlot : Ontology Concept (see Section 5.4)

• Problem is a Predicate with properties:

– String : Ontology Primitive, the type of the problem occurred in a human-

readable format.

6.1.8 Charging Station Update Schedule Protocol

This communication protocol is used from the Charging Station agents, in order to up-

date their charging schedule over a predefined planning horizon by playing the Charging

Station role of the protocol. The Service Provider role, which receives the charging

schedule updates, handles them and send results, is played from the Mechanism De-

sign agent and Electricity Imbalance agent. An illustration of the statecharts of this

communication protocol is shown in Figure 6.9.

• UpdateStationSchedule is an AgentAction with properties:

– String : Ontology Primitive, the ID of a charging station

– List of EnergySlot, Ontology Concept (see Section 5.4)

6.1. INTER-AGENT CONTROL 61

ChargingStationUpdateScheduleProtocol

Charging Station (cs)

SendUpdatedChargingSchedule

ReceiveUpdateScheduleOutcome

Service Provider (sp)

ReceiveRequestUpdatedStationSchedule

HandleUpdateStationSchedule

SendUpdateScheduleOutcome

1 2

Inform(sp,cs,Done) or
Failure(sp,cs,Problem)

Request(cs,sp,UpdateStationSchedule)

Inform(sp,cs,Done) or
Failure(sp,cs,Problem)

Request(cs,sp,UpdateStationSchedule)

Figure 6.9: The model of the Charging Station Update Schedule Protocol.

• Problem is a Predicate with properties:

– String : Ontology Primitive, the type of the problem occurred in a human-

readable format.

• Done is a Predicate with properties:

– UpdateStationSchedule: Ontology AgentAction, if the requested action was

performed successfully.

6.1.9 Producer Consumer Registration Protocol

This communication protocol is used from Electricity Producer and Consumer agents in

order to register with the various service agents of our system. Currently, these agents

are the Mechanism Design agent and the Electricity Imbalance agent which play the

Service Provider role of the protocol. The protocol is illustrated in Figure 6.10.

• RegisterElectricityProducer is an AgentAction with properties:

– ElectricityProducer : Ontology Concept (see Section 5.4)

• RegisterElectricityConsumer is an AgentAction with properties:

– ElectricityConsumer : Ontology Concept

• Problem is a Predicate with properties:

62 CHAPTER 6. SYSTEM DESIGN AND IMPLEMENTATION

– String : Ontology Primitive, the type of the problem occurred in a human-

readable format.

• Done is a Predicate with properties:

– RegisterElectricityProducer or RegisterElectricityConsumer: Ontology Agen-

tAction, if the requested action was performed successfully.

ProducerConsumerRegistrationProtocol

Producer or Consumer (p or c)

SendRegistrationRequest

ReceiveRegistrationOutcome

Service Provider (sp)

ReceiveRegistrationRequest

HandleRegistrationRequest

SendRegistrationOutcome

21

Request(p or c,sp,RegisterElectricityProducer) or
Request(p or c,sp,RegisterElectricityConsumer)

Inform(sp,p or c,Done) or
Failure(sp,p or c,Problem)

Inform(sp,p or c, Done) or
Failure(sp,p or c,Problem)

Request(p or c,sp,RegisterElectricityProducer) or
Request(p or c,sp,RegisterElectricityConsumer)

Figure 6.10: The model of the Producer/Consumer Registration Protocol.

6.1.10 Update Expected Production/Consumption Protocol

The Electricity Producer and Consumer agents which are registered with the various

services of our system should periodically send updates for their expected levels of pro-

duction or consumption over a predefined planning horizon. This is achieved using the

protocol illustrated in Figure 6.4. Currently, the agents which play the Service Provider

role of this protocol are the Mechanism Design agent and the Electricity Imbalance

agent.

• UpdateExpectedProduction with properties:

– List of EnergySlot : Ontology Concept (see Section 5.4)

• UpdateExpectedConsumption

– List of EnergySlot : Ontology Concept

• Problem is a Predicate with properties:

6.1. INTER-AGENT CONTROL 63

– String : Ontology Primitive, the type of the problem occurred in a human-

readable format.

• Done is a Predicate with properties:

– UpdateExpectedProduction or UpdateExpectedConsumption: Ontology Agen-

tAction, if the requested action was performed successfully.

6.1.11 Update Energy Profile Confidence Protocol

This protocol is used from Charging Station agents, Electricity Consumer agents and

Electricity Producer agents, in order to update their confidence of their reported ex-

pected energy profiles over a predefined planning horizon. These agents play the Service

User role of the protocol. The Mechanism Design agent and the Electricity Imbalance

agent, play the Service Provider role, and wait to receive update requests from the

aforementioned agents. The communication protocol is depicted in Figure 6.11.

UpdateEnergyProfileConfidenceProtocol

Service User (su)

SendEnergyProfileConfidence

ReceiveUpdateConfidenceOutcome

Service Provider (sp)

ReceiveUpdateConfidenceRequest

HandleConfidenceUpdateRequest

SendConfidenceUpdateOutcome

21

Inform(sp,su,Done) or
Failure(sp,su,Problem)

Request(su,sp,UpdateConfidence)

Request(su,sp,UpdateConfidence)

Inform(sp,su,Done) or
Failure(sp,su,Problem)

Figure 6.11: The model of the Update Station Availability Protocol.

• UpdateConfidence is an AgentAction with properties:

– List of ConfidenceSlot : Ontology Concept, (see Section 5.4)

• Problem is a Predicate with properties:

– String : Ontology Primitive, the type of the problem occurred in a human-

readable format.

64 CHAPTER 6. SYSTEM DESIGN AND IMPLEMENTATION

• Done is a Predicate with properties:

– UpdateConfidence: Ontology AgentAction, if the requested action was per-

formed successfully.

6.1.12 Update Station Availability Protocol

This communication protocol is used from the Charging Station agents (which play the

Charging Station role) in order to update their charging slot availability. The Station

Recommender agent, plays the Station Recommender role and waits to receive update

availability requests. When such a request is received, it handles it the results. of this

protocol is depicted in Figure 6.12.

UpdateStationAvailabilityProtocol

Charging Station (cs)

SendUpdatedStationAvailability

ReceiveUpdateAvailabilityOutcome

Station Recommender (srec)

ReceiveRequestUpdateAvailability

SendUpdateAvailabilityOutcome

HandleStationAvailabilityUpdate

1 2

Request(cs,srec,UpdateStationAvailability)

Inform(srec,cs,Done) or
Failure(srec,cs,Problem)

Request(cs,srec,UpdateStationAvailability)

Inform(srec,cs,Done) or
Failure(srec,cs,Problem)

Figure 6.12: The model of the Update Station Availability Protocol.

• UpdateStationAvailability is an AgentAction with properties:

– String: Ontology Primitive, the ID of a charging station

– Integer: Ontology Primitive, the ID of a charging slot

– Reservation: Ontology Concept (see Section 5.4)

• Problem is a Predicate with properties:

– String : Ontology Primitive, the type of the problem occurred in a human-

readable format.

• Done is a Predicate with properties:

6.1. INTER-AGENT CONTROL 65

– UpdateStationAvailability: Ontology AgentAction, if the requested action was

performed successfully.

6.1.13 Time Synchronization Protocol

This protocol (Figure 6.13) is used from all the agents which want to synchronize their

internal clocks. Currently, in our system, all the agents should be synchronized, thus,

they all use this protocol playing the Service User role. First, the initiator of the protocol

requests from the DF agent a list with all the agents which offer a time service. In our

system, we assume the existence of a single Time agent. Then, the initiator sends a

request which has no content. The reason for this is that the semantics of the message

(i.e. the protocol name and the performative) have enough information for the Time

agent to understand the intention of the message. When the Time agent receives the

message, it responds with the synchronization information.

TimeSynchronizationProtocol

Service User (su)

DFSearchTimeAgent

SendTimeRequest

ReceiveTimeResponse

Timer (tm)

ReceiveTimeRequest

SendTimeResponse

1 2

Inform(tm,su,TimeSyncInfo)

Inform(tm,su,TimeSyncInfo)

Request(su,tm,null)

Request(su,tm,null)

Figure 6.13: The model of the Time Synchronisation Protocol.

• TimeSyncInfo is a Predicate with with properties:

– Long : Ontology Primitive, the real date-time when the execution of the sys-

tem started expressed in milliseconds

66 CHAPTER 6. SYSTEM DESIGN AND IMPLEMENTATION

– Long : Ontology Primitive, the real time step of the system expressed in

milliseconds

– String : Ontology Primitive, the simulation date-time when the execution of

the system started format YYYY-MM-DD HH:MI:Sec

– Integer : Ontology Primitive, the simulation time step of the system expressed

in minutes

6.2 Intra-Agent Control

Intra-agent control refers to each agent’s internal data receiving, processing and manage-

ment model. Each agent of our architecture, depending on its goals, uses a composition

of the communication protocols presented in Section 6.1. Through these protocols, it

receives information essential for its decision making and/or acts by sending information

messages to other agents with purpose of influencing them and modify the environment

of operation. Furthermore, each agent can contain private states, which contain agent-

specific functionalities that are inserted using specific design patterns (see Section 6.3).

Each agent maintains a collection of data structures where it stores its operational

details. These data structures as already mentioned, are private for each agent, thus,

other agents can not access and modify them. For each agent we summarize the most

important data structures for their operation, providing the name of the data structures,

which in our case corresponds to the name of the Java implementation, a description to

its purpose, and the state of the intra-agent control that utilizes it or modifies it.

6.2.1 Electric Vehicle Agent

Then intra-agent control model for the Electric Vehicle agent is shown in Figure 6.15.

Note that for simplicity of representation, the protocol roles that the agent realizes are

shown as basic states. These can be expanded to the relevant roles in the protocols

presented earlier in inter-agent control (see Section 6.1).

When it starts its operation, the agent performs initialization activities (enters the Ini-

tialization state). In this state, it publicizes its service (a V2G / G2V service) to other

agents using the DF agent (see Section 3.3, DFRegisterService state) and then, it plays

the Service User role of the TimeSynconizationProtocol in order to receive time infor-

mation and synchronize its simulation clock. The purpose of the simulation clock is to

make easier the experimentation on the developed prototype by accelerating the time

of execution of the various agent activities while ensuring that all the agents have the

6.2. INTRA-AGENT CONTROL 67

same clock readings (sec Section 6.4 for more information). Then, the agent enters both

the RecommendationReservation and Negotiation rectangle components. In the Recom-

mendationReservation component it makes a transition to the DecideNextAction basic

state.

In this state, the agent makes decisions regarding the charging of the EV. There are

three different possibilities for the EV agent: (a) it uses a specific algorithm to monitor

and predict the battery state and driver preferences and to decide autonomously when

and how to arrange the EV charging; (b) it gets the aforementioned information from

predefined datasets;2 and (c) it provides a comprehensive GUI where the user can insert

her charging preferences and manually initiate the protocols. These possibilities are

three different implementations for the DecideNextAction state activity. From this state,

we have two possible transitions. The first transition is caused by the event “Initiate

Recommendations-Reservation” and leads to the RecommendationReservationControl

state, while the second transition is caused by the event “Initiate Negotiation” which,

however, has a condition in order to be executed as it requires the variable t1 to be

greater than the current time of the system. For now, this condition is not true, thus,

the transition is not possible.

In state RecommendationReservationControl the EV agent, first plays the Electric Ve-

hicle role of the ChargingRecommendationProtocol where it sends information about its

battery state, preferences and location requesting for charging recommendations. When

the response is received, we have two transition options. The first transition is caused

by the event “No Charging Recommendations” which means exactly that, that is, no

charging recommendations are currently available for the EV. However, if recommen-

dations are available, the agent evaluates them and selects the recommendation which

better serves its needs and preferences using a specific utility function (state EvaluateRe-

commendations). This utility function is inserted using the functionality design pattern

(see Section 6.3).

Then, the EV agent plays the Electric Vehicle role of the ReserveChargingStationPro-

tocol in order to communicate with the selected Charging Station agent and make a

reservation to the recommended charging slot. If the reservation is successful, the Rec-

ommendationReservationControl state terminates. If the reservation is unsuccessful due

to the fact the initial details of the selected recommendation are outdated (i.g. another

EV occupied the requested charging slot), the agent requests new charging recommenda-

tions, and the aforementioned procedure is repeated. In both cases, we have a transition

back to the DecideNextAction state where the agent determines its next action. If the

2This is very useful for experimentation with large agent populations.

68 CHAPTER 6. SYSTEM DESIGN AND IMPLEMENTATION

transition to this state was triggered from the “Successful Reservation” event, the pa-

rameter t1 is set to be equal with the arranged arrival time to the selected charging

station. This means that a transition from state DecideNextAction to InitiateNegotia-

tion is now possible, thus, the EV agent can negotiation the active charging reservation

with the selected Charging Station agent (optionally).

If the EV agent wants to initiate a negotiation, it just sends a proposal, and if the

Charging Station agent replies, the rest of the negotiation process will be taken care by

the Negotiation orthogonal component. There, the agent enters the NegotiationProto-

col:Responder (using the Responder role of the respective protocol) and when the nego-

tiation is over, it handles the results (i.e. update its data structures). The Negotiation

orthogonal component is executed always in parallel to the RecommendationReservation

component, as a Charging Station agent could itself initiate a negotiation at any time.

The EV agent used the functionality design pattern to define the NegotiationDecision-

Making action of the NegotiationProtocol.

An example of the implementation of the functionality design pattern is illustrated in

Figure 6.14. The agent state of the EV agent EvaluateRecommendation, has access to

the implementation of the utility function from the myAgent reference. Thus, the agent

is responsible to decide which utility function is going to use. To do this, it utilizes

the UtilityFunctionFactory (Factory1 of Figure 6.23), providing as input, only the class

name of the utility function it wants to use. In this thesis, we have implemented three

different utility functions (i.e. Instance subclasses) (i) MaxEnergyRecSelector, which

selects the charging recommendation with the maximum energy, (ii) MinDistanceRec-

Selector, which selects the charging recommendation that contains the closest charging

station, and (iii) MinPriceRecSelector, which selects the recommendation that offers

the lowest charging price per kWh. The aformentioned subclasses extend the EVUtili-

tyFunctionTemplate (Template1).

Figure 6.14: The impementation of the functionality design pattern for the utility
function of the EV agent.

6.2. INTRA-AGENT CONTROL 69

Electric Vehicle Agent

Main

<name>

RecommendationReservation

r1

RecommendationReservationControl

ev 1.0

ChargingRecommendationProtocol:ElectricVehicle

EvaluateRecommendations

ReserveChargingStationProtocol:ElectricVehicle

DecideNextAction InitiateNegotiation

r1

Negotiation

r1

NegotiationProtocol:Responder HandleNegotiationOutcome

Initialization

ev 0.0

DFRegisterService TimeSynconizationProtocol:ServiceUser

1

2

Reservation Successful
1

Reservation
Unsuccessful

2

1

 No Charging
Recommendations

2

 Initiate
Recommendations-Reservation

2

[reservation==successful]/
t1=vehicle.arrivalTime

 Initiate Negotiation
[currTime < t1]

1

t1=currTime

Figure 6.15: The intra-agent model of the Electric Vehicle agent.

70 CHAPTER 6. SYSTEM DESIGN AND IMPLEMENTATION

6.2.2 Charging Station Agent

The intra-agent control of the Charging Station agent is depicted in Figure 6.16. The

agent first executes the same initialization presented before for Electric Vehicle agent,

that is, the registration of its service with the DF, and the synchronization of its sim-

ulation clock. Then, the agent enters both the ChargingNegotiationControl and Charg-

ingStationReservationProtocol:ChargingStation rectangle components.

In the ChargingStationReservationProtocol:ChargingStation component, the agent par-

ticipates in the ChargingStationReservationProtocol, playing the Charging Station role.

When in this protocol, it waits to receive a request message from EV agents for a reserva-

tion to a charging slot of the charging station (in the ReceiveChargingReservationRequest

basic state). When such a message is received, the composite state HandleChargin-

gReservationRequest is responsible to handle it. First, the AuthenticateRecommenda-

tionProtocol is used to verify the source of the recommendation which the requester

(EV agent) is using to make the reservation. If the answer is negative (Disconfirm),

the state directly terminates. If the answer is positive (Confirm), the agent request the

electricity imbalance using the ElectricityImbalanceRequestProtocol in which it plays the

Service User role.

After receiving the electricity imbalance, the agent calculates the charging schedule of

the EV and makes a reservation to the requested charging slot. If the reservation is

successful, the agent sends its updated charging schedule and confidence to the Mech-

anism Design and Electricity Imbalance agents using the ChargingStationUpdateSched-

uleProtocol and UpdateEnergyProfileConfidenceProtocol, sends its new availability to the

Station Recommender agent using the UpdateStationAvailabilityProtocol and the state

terminates. If the reservation is unsuccessful, the state directly terminates. The out-

come of the reservation is sent to the EV agent that requested a reservation. Note that

the details of the messages are presented in the inter-agent control of our system (see

Section 6.1).

In the ChargingNegotiationControl component, the agent participates in the Charg-

ingNegotiationProtocol, playing the Responder role (We remind that a negotiation is

used when an already made charging reservation and the calculated charging schedule

has to be reconsidered in order to capture the updated mood and preferences of the

involved stakeholders). When a negotiation is over, the agent reviews the negotiation

outcome (in the HandleNegotiationOutcome state), and based on the result, makes the

appropriate updates to the corresponding agents. If the charging schedule and confi-

dence were updated, the agents sends the updated quantities to the Mechanism Design

and Electricity Imbalance agents using the ChargingStationUpdateScheduleProtocol and

6.2. INTRA-AGENT CONTROL 71

UpdateEnergyProfileConfidenceProtocol. If the reservation details (i.g. the arrival and

the departure of the EV to the charging station) were updated, the agent updates the

Station Recommender agent using the UpdateStationAvailabilityProtocol. It is possible

that one or none of the aforementioned quantities is updated, thus, it is not necessary

for all the corresponding agents to be informed.

Charging Station Agent

ChargingStationInitialization

ChargingStationControl

r2

ChargingNegotiationControl

Re

ChargingNegotiation:Responder

HandleNegotiationOutcome

UpdateEnergyProfileConfidenceProtocol:ServiceUser

UpdateStationAvailabilityProtocol:ChargingStation

ChargingStationUpdateScheduleProtocol:ChargingStation

r1

ChargingStationReservationProtocol:ChargingStation

r1

SendReservationOutcomeReceiveChargingReservationRe...

HandleChargingReservationRequest

r1

AuthenticateRecommendationProtocol:ChargingStation

ElectricityImbalanceRequestProtocol:ServiceUser

ScheduleAndMakeReservation

UpdateStationAvailabilityProtocol:ChargingStation

ChargingStationUpdateScheduleProtocol:ChargingStation

UpdateEnergyProfileConfidenceProtocol:ServiceUser

ChargingStationRegistrationProtocol:ChargingStation

1 2

No Reservation Updates
1

Registreation Successful

1

Reservation Successful

1

Disconfirm
2

Registration Unsuccessful

2

Charging Schedule Updated

1

No Schedule Updates

2

EV Reservation Updated

2

Confirm
1

Reservation Problem
2

Figure 6.16: The intra-agent model of the Charging Station agent.

6.2.3 Station Recommender Agent

The intra-agent control of the Station Recommender agent is shown in Figure 6.17.

When this agent is launched, it enters its initialization state where it registers its service

with the DF, and synchronizes its internal simulation clock. Then it makes a transition

to the StationRecommenderControl state. In this state there exist four parallel (AND)

composite states that are executed indefinitely, waiting to handle specific requests.

72 CHAPTER 6. SYSTEM DESIGN AND IMPLEMENTATION

The first composite state is about receiving the requests of Charging Station agents who

wish to register with the Station Recommender agent. To receive these messages the

agent plays the Service Provider role of the ChargingStationRegistrationProtocol. The

second composite state is about receiving queries asking if a specific charging recommen-

dation that was made to an EV agent, is genuine or not. To receive these messages, the

agent plays the Station Recommender role of the AuthenticateRecommendationsProto-

col. Next, the at the third composite state the agent receives requests from Charging

Station agents who wish to update their charging slot availability. playing the Station

Recommender role of the UpdateAvailabilityProtocol. The last, and the most interesting,

composite state contains the activities of the Station Recommender agent to calculate

and send charging station recommendations to EV agents.

When in this state, the agent waits to receive a request message for charging recom-

mendations (in the ReceiveRecommendationRequest basic state). As soon as one such

arrives, the agent requests the electricity imbalance and the electricity prices for the

predefined planning horizon, using the ElectricityImbalanceRequestProtocol and Elec-

tricityPricesRequestProtocol respectively. The information received, as well as the infor-

mation provided from the EV agent about EV’s current battery status and the driver’s

preferences, are input to a recommendations algorithm which calculates the charging

recommendations (in the CalculateChargingRecommendations basic state). This algo-

rithm is inserted into our agent using the functionality design pattern (see Section 6.3).

Finally, the SendChargingRecommendations state sends the results to the EV agent who

requested the recommendations.

6.2.4 Electricity Imbalance Agent

The intra-agent control of the Electricity Imbalance agent is shown in Figure ??. When

it is launched, it performs the initializations described for the others agents and enters

the ElectricityImbalanceControl AND-state. In this state, six orthogonal components

are executed in parallel, each containing a specific basic state that expresses a capability

of the agent that corresponds to a specific role of a communications protocols.

As we can see, for all communication protocols, the agent plays the ServiceProvider

role, that is, waits to receive messages, and depending on the protocol, to provide the

appropriate answer. More specifically, the agent handles registration messages from

Electricity Production, Consumption, and Charging Station agents; updates regarding

the confidence of the various agents to their reported expected energy profile; from

Electricity Producers and Consumer agents, updates about their expected production

and consumption profile over a predefined planning horizon; from Charging Station

6.2. INTRA-AGENT CONTROL 73

Station Recommender Agent

StationRecommenderControl

gdgfgdgd

ChargingStationRegistrationProtocol:ServiceProvider

<name>

AuthenticateRecommendationProtocol:StationRecommender

<name>

UpdateStationAvailabilityProtocol:StationRecommender

<name>

ChargingRecommendationsRequestProtocol:StationRecommender

<name>

HandleRecommendationRequest

r1

ElectricityPricesRequestProtocol:ServiceUser

ElectricityImbalanceRequestProtocol:ServiceUser

CalculateChargingRecommendations

ReceiveRecommendationRequest

SendChargingRecommendations

StationRecommenderInitialization

1

2

3

4

Figure 6.17: The intra-agent model of the Station Recommender agent.

agents, updates about their charging schedule; and finally, requests from various agents

for the electricity imbalance of the grid over a predefined planning horizon.

6.2.5 Mechanism Design Agent

When it starts its operation, the Mechanism Design agent performs initialization activ-

ities (enters the MechanismDesignInitialization state, need to mention where it is Fig-

ure...). Then, it enters simultaneously in the six orthogonal components illustrated in

Figure 6.19. For instance, in state ChargingStationRegistrationProtocol:ServiceProvider

(using the ServiceProvider role of the respective protocol), it waits to receive messages

74 CHAPTER 6. SYSTEM DESIGN AND IMPLEMENTATION

Electricity Imbalance Agent

ElectricityImbalanceInitialization

ElectricityImbalanceControl

<name>

ChargingStationRegistrationProtocol:ServiceProvider

<name>

ProducerConsumerRegistrationProtocol:ServiceProvider

<name>

UpdateEnergyProfileConfidenceProtocol:ServiceProvider

r1

ExpectedProductionConsumptionUpdateProtocol:ServiceProvider

<name>

ChargingStationUpdateScheduleProtocol:ServiceProdiver

<name>

ElectricityImbalanceRequestProtocol:ServiceProvider

1

2

3

4

5

6

Figure 6.18: The intra-agent model of the Electricity Imbalance agent.

6.2. INTRA-AGENT CONTROL 75

from Charging Station agents which request registration. In state ElectricityPrices-

RequestProtocol:MechanismDesignService, the agent waits to receive requests for the

current price of electricity. When such a request is received, it makes a transition to

the state ElectricityImbalanceRequestProtocol:ServiceUser and requests the electricity

imbalance. Then in state CalculatePrices, it calculates the prices and then sends the

results to the agent who sent the request.

As we can see, all the depicted states inside the orthogonal components are re-executed

after they finish indefinitely. This means that the Mechanism Design agent, depending

on the protocol it uses, always waits to receive the appropriate requests. However, each

state can not handle multi requests at the same time, only when the state has finished

its handling with a request can handle another.

6.2.6 Electricity Producer and Consumer Agents

The intra-agent control of the Electricity Producer agent is shown in Figure 6.20. After

the agent has registered its service with the DF and has synchronized its clock (both

are activities of the ElectricityProducerIntialization state), it then enters the state DF-

SearchAgent, where it requests and receives from DF the agent identifiers (AIDs) of the

Electricity Imbalance and the Mechanism Design agents. Then, it plays the role Producer

of the ProducerConsumerRegistrationProtocol in order to register with them. If the reg-

istration is unsuccessful the agent terminates, while, if the registration is successful,

it enters the state UpdateExpectedProductionControl and sets a timer t1 to TIMEOUT

hours. In this state, it calculates its expected production over a predefined planning hori-

zon (CalculateExpectedProduction state) and then its confidence (CalculateConfidence

state). The calculation of these quantities is part of the Preference Elicitation module

of this agent. Then, the agent sends its expected production using the UpdateExpect-

edProductionConsumptionProtocol where it plays the Producer role, and its confidence

using the UpdateEnergyProfileConfidenceProtocol where it plays the Service User role.

The agent remains in the state UpdateExpectedProductionControl indefinitely, and ev-

ery time the timer t1 timeouts, the computation resumes. In our implementation, the

TIMEOUT period is set to 24 hours, thus, the Electricity Producer agent will calculate

and send its expected production and confidence every 24 hours.

Note that the intra-agent control of the Electricity Consumer agent, as well as its de-

scription, is almost identical (excluding the state names) with that of the Electricity

Producer agent, thus, we will avoid the repetition and we will not review it separately.

76 CHAPTER 6. SYSTEM DESIGN AND IMPLEMENTATION

Mechanism Design Agent

MechanismDesignInitialization

MechanismDesignControl

<name>

ChargingStationRegistrationProtocol:ServiceProvider

<name>

ProducerConsumerRegistrationProtocol:ServiceProvider

<name>

UpdateEnergyProfileConfidenceProtocol:ServiceProvider

r1

ExpectedProductionConsumptionUpdateProtocol:ServiceProvider

<name>

ChargingStationUpdateScheduleProtocol:ServiceProdiver

<name>

ElectricityPricesRequestProtocol:MechanismDesignService

r1

HandlePricesRequest

r1

ElectricityImbalanceRequestProtocol:ServiceUser CalculatePrices

ReceiveElectiricityPricesRequest SendElectricityPrices

1

2

3

4

5

6

Figure 6.19: The intra-agent model of the Mechanism Design agent.

6.3. DESIGN PATTERNS FOR OPEN PROTOCOLS 77

Electricity Producer Agent

ElectricityProducerControl

r1

ProducerConsumerRegistrationProtocol:Producer

UpdateExpectedProductionControl

r1

UpdateExpectedProductionConsumptionProtocol:Producer

CalculateExpectedProduction CalculateConfidence

UpdateEnergyProfileConfidenceProtocol:ServiceUser

DFSearchAgents

ElectricityProducerInitialization

t1=TIMEOUT
1

Registration
Problem

2

timeout(t1)/t1=TIMEOUT

Figure 6.20: The intra-agent model of the Electricity Producer agent.

6.3 Design Patterns for Open Protocols

The architecture we presented in Section 5 poses several challenges for the rest of the de-

velopment process. First, there is a need to accommodate different methods for decision-

making based on user preferences, or on the business model of a stakeholder, or on the

agent that implements a protocol role. As an example, both EV agents and Charging

Station agents have the capability to negotiate (see Figure 5.1), however, it is obvious

that they will most likely employ different algorithms to do so.

Thus, we needed to cater for agents following protocols to realize their goals in the

system, while being able to define their own algorithms, policies or business rules. These

cannot be foreseen at design time of the prototype.

In the first case, we had a decision-making behaviour, e.g. in a negotiation module, where

the objects of the negotiation are quite clear, however, there are different strategies for

78 CHAPTER 6. SYSTEM DESIGN AND IMPLEMENTATION

the agents to employ. We would like to allow the diverse agent developers to develop

their own strategies aiming to make more competent agents. Thus, a specific function

with clear parameters needs to be able to be supplied by the developing team.

In the second case, e.g. in service provider agents, it was clear that a service provider

gets a request, processes it and then replies with an appropriate response. The process

part, however, can be very different and changes not only based on policy but also based

on the data structures and architecture of an agent. In this case, the agent developer

needs to use a behaviour that is tailored to the agent’s needs. This time it is not just

an algorithm that changes, it is also the agent data structures - that are typically part

of a behaviour but also the algorithm.

6.3.1 Capability Pattern

This pattern is based on developing an activity that will take place within the relevant

state in the protocol. This activity is not implemented in the protocol package, it is

rather passed as a parameter. Thus, although all agents use the same protocol package,

they each develop their own specific state activity, which we will call the handler be-

haviour. The only requirement for this design pattern to work is the handler behaviour

to have access to the agent’s data structures, and the data structures of the protocol

itself.

This section aims to define a design pattern for catering for the first case, where the

developers need to associate a specific algorithm to a behaviour’s action method. This is

based on developing a behaviour that will replace the one in the protocol. The abstract

behaviour is not implemented in the protocol package, it is rather passed as a parameter.

Thus, although all agents use the same protocol package, they each develop their own

specific process handler behaviour. The skeleton of this design pattern is illustrated in

Figure 6.21, while the instaniation of this design pattern is depicted in Figure 6.22.

6.3.2 Functionality Pattern

In this section, we define a design pattern for catering for the first case, where the

developers need to associate a specific algorithm to a behaviour’s action method. To

remedy this situation we relied on the well-known by practitioners factory design pattern

[25]. According to this pattern we use a factory method that returns an instance of a

method respecting an API which can be dynamically selected, even at run-time. The

latter case can be extremely useful in emergency situations where the typical algorithm

fails. This can also be used for self-healing of an autonomous - e.g. vehicle agent.

6.3. DESIGN PATTERNS FOR OPEN PROTOCOLS 79

public class <ProtocolRoleName> extends FSMBehaviour {

/*auto-generated state String representations should go here, such as the following

line*/

private final String HANDLER = "handler";

public <ProtocolRoleName>(Agent a, Behaviour handler, DataStore ds) {

setDataStore(ds);

handler.setDataStore(getDataStore());

/*auto-generated transitions registrations should go here*/

/*auto-generated state registrations should go here, such as the following line*/

registerState(handler, HANDLER);

}

}

Figure 6.21: Capability Pattern skeleton.

<Capability0>Behaviour b = new <Capability0>Behaviour(customAgent, Object[] params);

addBehaviour(new <ProtocolRoleName>(customAgent,b,dataStore));

Figure 6.22: Capability Pattern instantiation skeleton.

Figure 6.23 illustrates the class diagram of this design pattern. The superclass Tem-

plate1, contains a standard and generic API that the various subclasses (e.g. Instance1,

Instance2, Instance3) use, providing their own implementation for the abstract methods

of this API. This template can be the utility function used by the EV agent to select

recommendations. The Agent (EV) implements the Factory1 static class providing the

full class name of the algorithm it wants to use. The factory is responsible for creating

the requested algorithm and providing it to the Agent. The various agent behaviours

which have access to the Agent’s class data have the necessary access to utilize the al-

gorithm according to their needs. An implementation of this design pattern for the EV

agent is illustrated in Section 6.2.1, where we present its the inta-agent control.

Instance1 Instance2 Instance3

Factory1
Extends

Template1

Agent AgentBehaviourmyAgent

functionality1

Use

Figure 6.23: The abstraction of the Functionality Design Pattern.

80 CHAPTER 6. SYSTEM DESIGN AND IMPLEMENTATION

6.3.3 Discussion

These patterns are agent methodology- and platform-independent. They can be applied

with any statecharts-based method and influence code generation for diverse platforms.

Both patterns are compatible with object-oriented development, which, as a norm, is

supported by most methodologies for Engineering MAS (e.g. [17, 19])

The pattern in Figure 6.21 shows how an Xpand technology [20] code generation tem-

plate could be defined for the Eclipse platform (following the ASEME IDE). Similar

templates can be defined for other object-oriented implementations of statechart execu-

tion engines.

6.4 Synchronization and Time Agent

In a system with multiple agents who have to communicate and coordinate, the syn-

chronization of actions is a crucial factor to their effectiveness. The Time Agent is a

utility agent responsible to provide time services to all the other agents of the system.

When the various agents initiate, they communicate with this agent in order to receive

date and time information that is going to enable the synchronisation of their internal

clock with the clocks of the various other agents in the same environment. Note that

the transfer of the system to the “wall clock” will make the existence of the simulation

clock redundant.

When the Time Agent starts its execution, it stores the real date and time expressed in

milliseconds of that particular moment tstart, which we assume its the time zero of the

system. Other stored attributes are the real duration of each time interval expressed

in milliseconds tslot; a value denoting the simulation date-time starting point (which

can be different from the real date-time) tsimstart; and finally a value which contains the

duration of a time interval in simulation time tsimslot . For example, the real time zero of

the system can be the current date-time expressed in milliseconds between that date-

time and 1/1/1970-00:00:00:000; the real duration of each time interval expressed in

milliseconds can be 3000 milliseconds; the simulation start date-time can be 30/12/2017

00:00:00:000 and the simulation time interval can be 5 minutes. Thus, every 3000

miliseconds in the real world are translated to 5 minutes simulation time.

In JADE, we can represent the clock of an agent using a TickerBehaviour. The synchro-

nisation is achieved by combining a WakerBehaviour and a TickerBehaviour. When

the synchronization information is received, we can calculate the specific date and time

of the next tick of the clock, tticknext (i.e. of the TickerBehaviour of all agents). Then, we

6.4. SYNCHRONIZATION AND TIME AGENT 81

set the WakerBehaviour to be executed at time tticknext (see Equation 6.2), and when it

will be executed, it will add to the list of active behaviours the TickerBehaviour with

tick period, tslot. In this way we synchronize within milliseconds the clocks of the agents

that share the same Java Virtual Machine (JVM) (the TickerBehaviours of all agents,

will tick at the same time). Whenever we want, We can convert the real current time

to simulation time, as we have available the start date-time and the time interval of the

simulation.

An agent can calculate the current real time of the system using the following formula:

tcurr = tstart + tslot × k (6.1)

where k is the number of time slots elapsed from system’s time zero. However, tcurr

is not unknown, as we can use time APIs such as System.currentTimeMillis() in

Java to obtain it. Thus, we can utilize this information to calculate k = diff
tslot

, where

diff = tcurr − tstart. We can calculate the date-time of the next clock tick using the

next equation:

tticknext = tstart + (k × tslot) + tslot (6.2)

Chapter 7

Evaluation

The aim of this study, besides the design and the development of an integrated multi-

agent V2G/G2V architecture for the evaluation of theoretical models and algorithms, is

to answer the question whether a potential solution will be effective and truly useful in

the real world. In order to evaluate this, given that the deployment of software agents to

real-world charging stations and electric vehicles is incredibly expensive, we first must

conduct simulations that are based on real-world scenarios and datasets. In this chapter,

we discuss the details of the implemented simulator, the datasets we utilized and the

usage scenarios that we executed.

7.1 Implementation Details

To evaluate and prove the functionality of our system, it is required to implement specific

algorithmic components that will produce results in order to populate the data structures

of the various agents. Such an algorithm is about the charging station recommendations

which is used from the Station Recommender agent. In this section we will briefly

present this algorithm for completeness purposes, however, we will not present the utility

functions used from the EV agents to select charging recommendations and the charging

scheduling algorithm which is used from the Charging Station agents to schedule EVs

due to their simplicity (e.g. EV charges immediately upon connection). Note that the

proper implementation of the aforementioned algorithms is out of the scope of this work.

For our experiments, we derived valuable data from Zap-Map1, a very popular EV

platform in the UK with more than 80.000 visitors each month. The public data available

in this platform include electric vehicle and charging station specifications, charging

1https://www.zap-map.com

83

84 CHAPTER 7. EVALUATION

station locations, reviews from each station, availability information and many more.

The available information in this platform is crowdsourced from real EV drivers. We

combined the aforementioned real-world datasets, with real-world datasets from other

sources, as data for our specific use case are not currently available. The data what our

use cases required, but however we did not have available, were created synthetically

using appropriate distributions with properties derived from the related literature.

The various dataset generators that we developed to combine the aforementioned datasets

are implemented in Java, and they are easily configurable. This means that the interested

user can easily modify them using her own configurations and datasets. Furthermore,

the majority of the real-world datasets used in the context of this thesis, are documented

using the JSON 2 format, thus, their management and extension are very simple.

7.1.1 Station Recommendation Algorithm

In order to make recommendations to EV agents regarding the charging station that

match better with their preferences and needs, we implemented a very simple recom-

mendation algorithm which was inserted to the Station Recommender agent using the

functionality design pattern as presented in Section 6.3. The implementation of the

algorithm in Java can be found in Appendix A. Given an EV’s type, which contains

its preferences (e.g. arrival and departure time, charging type) and its battery’s state

(e.g. soc, soh, charging efficiency), the recommendation algorithm, first checks if for the

given period of connection, that is, between EV’s arrival and departure, charging slots

are available (i.e. without reservations from other EVs). For the available charging slots,

the algorithm filters these which are compatible with EV’s charging inlets. If the driver

prefers a specific charging type, then this step of the algorithm returns only the corre-

sponding charging slots. For the selected charging slots, the algorithm calculates the

energy which the EV can receive during its connection and the actual requested energy

as described from the preferences of the driver. Depending on these values, it makes

a decision about the amount of energy that will recommend. If the requested energy

is more than the available energy that the EV can receive during its connection, then

the latter is recommended, otherwise, the requested energy. The recommended prices

are calculated using both the pricing policy of the charging station for a specific charg-

ing slot, as well as the electricity prices as received from the Mechanism Design agent.

Finally, the algorithm checks if the EV preferences contain a specific charging station

network, and if this is the case, it filters the stations of the preferred network. Note that

the implementation of a more sophisticated recommendation algorithm is something we

consider in our future work.

2https://www.json.org

7.1. IMPLEMENTATION DETAILS 85

Table 7.1: Typical charging station slot specifications.

Connector Power Current Price

Type 2 6 3.7kW 1Φ AC 0.01 e/kwh

Type 2 6 7.0kW 1Φ AC 0.015 e/kwh

Type 2 6 22kW 3Φ AC 0.02 e/kwh

CSS 6 50kW DC 0.03 e/kwh

CHAdeMO 6 50kW DC 0.03 e/kwh

7.1.2 Charging Stations Dataset

To create realistic charging stations, we used both synthetic and real-world data which

are freely available. Table 7.1 summarizes the charging station slots specifications that

are derived from the Zap-Map platform. The Power column, denotes the maximum

power that a particular charging slot can provide, the Current column denotes the

electric current type of each charging slot and the Price column denotes the amount for

charging at a particular charging slot has to pay. These prices are arbitrary and are based

on the assumption that the faster you charge, the more you have to pay. Each charging

station can be equipped with a number of charging slots of each charging standard and

power output. For our experiments and we assume that all the charging slots have equal

probability to be available at a charging station, however, the probability values are

easily reconfigurable. Inherently, each charging station is placed at a specific location in

a given area that is described by a set of coordinates (latitude and longitude). In this

study, we assume that charging stations are located where traditional gas stations are

located. To find real-world gas station locations, we used the free version of GoogleMaps

Places API 3 to download a dataset which contains the locations of 60 real-world gas

stations in the city of Chania (Figure 7.1).

7.1.3 Electric Vehicles Dataset

To model EVs that are as realistic as possible, we used real-world data that are freely

available in combination with synthetic that are based on empirical statistical properties.

Table 7.2 summarizes the specifications of a selection of five real world EVs that were

used for our evaluation from the Zap-Map platform. The consumption profiles of each

EV, was derived from US EPA4. To determine the current SOC of an EV, we sampled a

beta distribution B(4, 17) and for the target SOC of EV’s battery upon disconnection, we

sampled a normal distribution N (0.6, 0.1) bounded to the interval [SOC, 1]. The SOH

3https://cloud.google.com/maps-platform/places/
4https://www.epa.gov/

86 CHAPTER 7. EVALUATION

Figure 7.1: Locations of real-world gas stations in the city of Chania, Crete, Greece

Table 7.2: Battery and charging specifications of some popular EV models.

EV Model Battery Capacity Consumption
Charging Methods

Inlet Max Power

BMW i3 33 kWh 18.01 kWh/100km
Type 2 11 kW

CCS 50 kW

Hyundai Ioniq 28 kWh 15.53 kWh/100km
Type 2 6.6 kW

CCS 50 kW

Nissan Leaf 40 kWh 18.64 kWh/100km
Type 2 6.6 kW

CHAdeMO 50 kW

Renault Zoe 41 kWh 10.25 kWh/100km Type 2 43 kW

Smart ForTwo ED 17.6 kWh 20.5 kWh/100km Type 2 7 kW

of the battery is sampled from a beta distribution B(30, 1) and the charging efficiency

is set to 0.95 plus some noise sampled from a normal distribution N (0, 02).

The exact location of an EV at the time it requests charging recommendations is de-

scribed by the coordinates longitude and latitude. To generate these coordinates for

each EV, we selected and used five square sectors in the Chania region. Each sector

is bounded by a north and south latitude and an east and west longitude (Table 7.3).

Special care was given to avoid areas that are covered by the sea. These values are ex-

ported from OpenStreetMaps5, an open data, community-driven, maps platform. Figure

5https://www.openstreetmap.org/

7.1. IMPLEMENTATION DETAILS 87

Table 7.3: Coordinates of the areas in which EVs are located when request charging
recommedantions.

Location NorthLati SouthLati WestLongi EastLongi

Polytexneio-Kounoupidiana 35.5394 35.5254 24.0615 24.0882

Chania City Center 35.5157 35.4952 24.0094 24.0463

Southern Chania City 35.4995 35.4722 23.9841 24.0482

Western Chania City 35.5109 35.4983 24.0112 23.9448

Souda-Tsikalaria 35.4888 35.4735 24.0765 24.0484

7.2 illustrates the method we used to extract the values for the case of Polytexneio-

Kounoupidiana sector, using the OpenStreetMaps’s area export tool. Then, we used

the derived sector data to sample two uniform distributions U(southLati, northLati)

and U(westLongi, eastLongi), for latitude and longitude respectively. We use uniform

distribution to preserve generality by not making any assumption regarding the actual

EV concentration at a particular location. For our experiments, we assume that the

probability of an EV to be located at the Chania City Center sector is higher than

the other sectors, and for the requirements of future experiments, we can easily modify

the corresponding probabilities. The arrival of an EV to a charging station is created

synthetically by adding the current time of the system and a random number of minutes

sampled from a normal distribution N (120, 40). For the charging duration of an EV (i.e.

its departure time), we used a real-world dataset that contains information about the

charging duration of EVs at public charging stations, part of the Low Carbon London

(LCL) project 6. From 1588 charging events, the average connection duration time is

285 minutes and the standard deviation is 259 minutes, thus, to generate the charging

duration of our EVs, we sample a normal distribution N (285, 259), bounded to the in-

terval [15,1440] i.e. from 15 minutes to 24 hours. Note that, all probability distributions

can be configured to other types, according to the needs of the user for each case.

7.1.4 Electricity Production and Consumption Datasets

To generate the expected production of the various DESs and the expected consumption

of entities such as households and industries, we sampled normal distributions with

arbitrary mean and standard deviation values. The reason is that if we used real-world

statistical properties to calculate the hourly production and consumption, we would have

to aggregate a considerable number of producers and consumers to create a meaningful

electricity imbalance and effectively evaluate our system, and that was out of the scope

of this thesis. Here again, the replacement of our statistical values with realistic hourly

6https://www.europeandataportal.eu/data/en/dataset/low-carbon-london-electric-vehicle-load-
profiles/resource/e607bf5b-d71d-428c-ab62-97a828c1643f, accessed November 3, 2018,

88 CHAPTER 7. EVALUATION

Figure 7.2: The area selection tool of OpenStreetMaps which was used to extract the
Polytexneio-Kounoupidiana sector (the bright area). The coordinates box depicts its

bounds.

mean and standard deviation data for each day and each month is effortless. Such

data are already available in the literature, thus, for realistic datasets of electricity

production and consumption, we refer the interested reader to the works of Akasiadis

and Chalkiadakis [3] and Chalkiadakis et al. [12].

7.2 System Evaluation

In order to demonstrate the functionality of the MAS prototype proposed in this thesis,

we show use case scenarios for the various implemented agents and their interactions. For

the visualization of the results, we used graphical user interfaces that we implemented

in Java, as well as JADE’s Sniffer agent. The latter agent marks with the same color the

conversations that share the same conversation id. In our implementation, the instances

of the various communication protocols have same conversation id, and thus, the same

color.

The message exchanges presented below match with the inter-agent controls (the com-

munication protocols) presented in Section 6.1 and the sequence that the agents use these

protocols is defined in the intra-agent control of each agent presented in Section 6.2.

7.2. SYSTEM EVALUATION 89

The execution of the use case scenarios conducted using JADE version 4.5 on a 4GB

RAM, i5 CPU/2.67 GHz laptop and Ubuntu 18.04.1 LTS.

7.2.1 Electricity Producer and Consumer Agent: Registration and Up-

dates

The execution of this scenario can be seen in Figure 7.3. The agents time-lines shown

in the figure are the Mechanism Design agent (MD), the Electricity Imbalance agent

(IM) and a Electricity Producer agent (EP 13). EP 13 requests to register with both

the MD and IM agents using the ProducerConsumerRegistrationProtocol (lines 1-4, RE-

QUEST and INFORM messages exchange). If the registration is successful, then the

EP 13 agent sends a request to update its expected production for a predefined planning

horizon. This request is sent both to the MD and IM agents using the ExpectedProduc-

tionConsumptionProtocol (lines 5,9 and 6,8). Together with the expected production,

the EP 13 agent sends and its confidence regarding its expected production using the

ConfidenceUpdateProtocol (lines 7,10 and 11,12). The latter two protocols are executed

periodically as the producer can have updated beliefs about its expected production

profile and its confidence to it. The exact same procedure with the EP 13 agent, is

performed by the Electricity Consumer agent EC 18 and it is depicted in Figure 7.4.

The details of some messages of the conversations between EP 13 and IM are shown in

Figure 7.5. To increase readability, we reduced the amount of information of the field

content of the second REQUEST message, as it is a list of items with repeating pattern

i.e. (EnergySlot :dateTime <dateTime> :kwh <kwhs>) (each item for a specific time

interval).

Figure 7.6 illustrates a GUI that we developed to monitor the electricity that is produced

and consumed in the grid. The left panel of the figure shows the imbalance between the

local electricity production and consumption as reported by the corresponding agents,

while the right panel shows the energy profiles of the aggregated production and con-

sumption over a 48-hour planning horizon.

7.2.2 Charging Station Agent: Registration

The execution of this scenario can be seen in Figure 7.7. The agents time-lines shown in

the figure are the the Electricity Imbalance agent (IM), Mechanism Design agent (MD),

the Station Recommender agent (SR) and a Charging Station agent (CS 73). CS 73

requests to register with MD, IM and SR using the ChargingStationRegistrationProtocol

(lines 1-6, REQUEST and INFORM messages exchange). If something goes wrong

90 CHAPTER 7. EVALUATION

Figure 7.3: A screenshot of the JADE sniffer agent that illustrates the registration
process and the updates of an Electricity Producer agent.

Figure 7.4: A screenshot of the JADE sniffer agent that illustrates the registration
process and the updates of an Electricity Consumer agent.

7.2. SYSTEM EVALUATION 91

Figure 7.5: Some representative messages of the conversations between EP 13 and
IM.

Figure 7.6: A screenshot of the GUI of Electricity Imbalance agent that depicts the
electricity imbalance (left) and the profiles of the aggregated electricity production and

consumption (right) of the grid..

92 CHAPTER 7. EVALUATION

with the registration (e.g. the registration message had missing information), a failure

message will be sent from the latter agents describing the problem occurred (see Section

6.1). Figure 7.8 illustrates the GUI of the Station Recommender agent that visualizes

information about the available charging station in the grid. On the top, it shows

the locations of the charging stations, and on the bottom, the charging slot connector

types of the registered charging stations. For this particular use case scenario, we have

available among others, 18 Type 2 at 7.0kW and 11 CHAdeMO at 50kW charging slots.

Figure 7.7: A screenshot of the JADE sniffer agent that illustrates the registration
of a Charging Station agent with various other agents.

7.2.3 Electric Vehicle Agent: Station Recommendations and Reserva-

tion

The execution of this scenario can be seen in Figure 7.9. The agents time-lines shown in

the figure are the Mechanism Design agent (MD), the Electricity Imbalance agent (IM),

the Station Recommender agent (SR), a Charging Station agent (CS 1), and an Electric

Vehicle agent (EV 0). EV 0 requests charging recommendations from SR using the

ChargingRecommendationProtocol (line 1, REQUEST message) and waits for a response.

SR, upon receiving such a request, requests the electricity imbalance from IM using

the ElectricityImbalanceRequestProtocol (lines 2-3, REQUEST and INFORM message

exchanges) and the electricity prices from MD using the ElectricityPricesRequestProtocol

(lines 4,7). To calculate the electricity prices, MD requires the electricity imbalance

as well, thus it uses the ElectricityImbalanceRequestProtocol (lines 5,6). Having the

imbalance, the prices and EV’s type, SR agent calculates and sends the recommendations

and the ChargingRecommendationProtocol terminates (line 8, INFORM message).

7.2. SYSTEM EVALUATION 93

Figure 7.8: A screenshot of the GUI of the Station Recommender agent.

After receiving the charging recommendations, EV 0 requests a reservation to the se-

lected from the recommendations CS 0 using the ChargingStationReservationProtocol

(line 9, REQUEST message) and waits for a response. Note that in Figure 7.9 we have

multiple charging stations available (e.g. CS 1, CS 2,) but EV 0 selects CS 0 due to

its utility function. Before answering, CS 0 invokes the AuthenticateRecommendation-

Protocol in order to verify that a recommendation is genuine (lines 10,11, QUERY-IF

and CONFIRM messages), and then requests the electricity imbalance using the Elec-

tricityImbalanceRequestProtocol (lines 12,13). Having this information, CS 0 calculates

the charging schedule of EV 0 and makes a reservation. After that, it sends its new

schedule and confidence using the ChargingStationUpdateScheduleProtocol and Confi-

denceUpdateProtocol to the IM (lines 14-17) and MD (lines 18-21). Then, it sends its

94 CHAPTER 7. EVALUATION

updated availability to SR using the AvailabilityUpdateProtocol (lines 22,23). At the

end, it replies with an INFORM performative to EV 0 (line 24).

For the requirements of this use case scenario, the SR agent was configured to use the

charging recommendation algorithm that was briefly presented in Section ?? and the EV

agent was configured to use the utility function that selects the charging recommendation

with the minimum price. Both algorithms were imported to the corresponding agents

using the functionality design pattern presented in Section 6.3.

As we explained in the previous chapters, the aforementioned communication process is

initiated from the Preference Elicitation module of the EV agent and can be either auto-

matic or manual (the driver sets her preferences using a specific GUI). For the particular

use case scenario we discuss in this section, the process for EV 0 started using its GUI,

as the autonomous decision making of the EV agent is out of the scope of this thesis.

However, the recommendation selection is performed automatically and is based on the

aforementioned utility function. The graphical panel that illustrates the selected charg-

ing preferences, the received recommendations and the selected recommendation used

to make a charging reservation, is presented in Figure 7.10. The selected recommenda-

tion (the green-colored line) is the one with the minimum price per kWh, which was

the expected outcome as the agent used a minimum price utility function. In the next

subsection, we will compare three utility functions that are based on different criteria

and we will discuss the results.

7.2.4 Electric Vehicle Agent: Recommendation Selection Utility Func-

tions

For this use case scenario, we implemented three very simple utility functions to eval-

uate the functionality of our design which allows the easy incorporation of alternative

functionality using the functionality design pattern presented in Section 6.3. The im-

plemented utility functions are the following:

• Maximum Energy: Selects the recommendation with the maximum energy

• Minimum Distance: Selects the recommendation with the minimum distance

• Minimum Price: Selects the recommendation with the minimum price

Note that an EV agent can select the recommendation selection algorithm even on

runtime through the GUI of the EV agent (see Figure B.3).

7.2. SYSTEM EVALUATION 95

Figure 7.9: A screenshot of the JADE sniffer agent that illustrates the communication
process of an EV agent that requests charging recommendations and makes a reservation

at the selected charging station.

Figure 7.10: A screenshot of the GUI of the EV agent that illustrates the charging
preferences as set by the driver, the received recommendations based on these prefer-
ences, as well as the selected recommendation which was used for the reservation to the

Charging Station agent (green-marked recommendation).

96 CHAPTER 7. EVALUATION

Figure 7.11: Different algorithms for selecting the best station. The user selects the
desired one at runtime, or the agent selects it after assessing user preferences.

Table 7.4: Average results for the three different utility functions used from Electric
Vehicle agents to select charging recommendation .

Measure
Maximum Energy Minimum Price Minimum Distance

Mean Std Mean Std Mean Std

Price (e) 0.10 0.009 0.089 0.0026 0.098 0.0087

Energy (kWh) 13.11 5.67 11.98 4.84 10.60 4.61

Distance (km) 5.99 10.50 3.90 5.99 0.44 0.26

Furthermore, for the Station Recommender agent, we implemented a very simple rec-

ommendations algorithm which was briefly presented in Section 7.1.1. We aggregated

the results of three independent executions of the system for the three different util-

ity functions, and for each execution, we launched 100 Electric Vehicle agents and 60

Charging Station agents. Their initialization is described in Section 7.1. The results of

this use case scenario are summarized on Table 7.4. When the agents use the utility

function that selects the recommendation with the maximum energy, we observe that

the average energy of the selected recommendations for all agents is the highest in com-

parison with the other two utility functions. Similarly, when the utility function selects

the recommendation with the minimum price, the average price of the selected recom-

mendations is the lowest. Finally, when the utility function selects the recommendation

with the minimum distance, the average distance of the selected recommendations is

the lowest. These results show what we expected to happen, that is, depending on the

utility function, we have alternative results.

The purpose of this scenario was mainly to present the convenience that our design

patterns offer to a realistic simulation setting, where the aim is to evaluate alternative

utility functions and not the development of a fully functional multi-agent system from

scratch. The developers can reuse the protocol parts and logic defined in our framework,

and focus only on the implementation of custom key functionalities or capabilities of the

agents according to their needs/goals.

7.2. SYSTEM EVALUATION 97

7.2.5 Electric Vehicle - Charging Station: Negotiation

The final use case scenario of our system demonstrates a negotiation between an EV

agent and a Charging Station agent, and it is the continuation of the scenario presented

in Section 7.2.3. The negotiation is initiated by the EV agent and the initiation process

is illustrated in Figure 7.12. As the EV agent has an active reservation to a Charging

Station agent, it can start a negotiation, thus the GUI enables the negotiation option

(see the inta-agent control of the EV agent in Section 6.2). By pressing the Negotiation

button (indicated by A), a dialogue window shows up (indicated by B), in which the

EV driver can insert the details of a proposal to the Charging Station agent. The

details of a proposal (NegotiationObject) are defined in our V2G/G2V ontology (see

Section 5.4). As we can see, initially, the driver requested 80% desired SOC on the

departure (indicated by C) and the selected recommendation which then was translated

to a charging reservation to CS 0, has price 0.082 e/kWh. The driver now requires

100% desired SOC on the departure, for the same period, with the same price, thus he

inserts his updated preferences to the interface (indicated by D) and presses the Propose

button. This sends the command to the EV agent to initiate an automated negotiation

with the Charging Station agent. The proposal contains the updated preferences of the

driver as inserted to the GUI.

The negotiation decision-making algorithms used in this use case scenario, are very

simple and only for demonstration purposes. The Charging Station agent, when receives

a proposal, checks if the requested energy is more from this of the active reservation. If

this is the case, it makes a proposal which contains the requested energy, for the same

period, but with an increased price per kWh. In any other case, it rejects the proposal.

The EV agent always accepts the proposals of the Charging Station agent and it does

not answer anything if one of its proposals is rejected. The algorithms were inserted to

the agent using the functionality design pattern presented in Section 6.3. Thus, its very

easy to replace our demonstration algorithms with more sophisticated implementations.

The negotiation process is illustrated in Figure 7.13. As we can see, the messages that

precede the negotiation (lines 25-27), are the ones which were exchanged from the various

agents during previous use case scenario. By pressing the ‘Propose button, EV 0 initiates

the negotiation (line 25, PROPOSE message) forming the contents of her proposal using

the input from the GUI. Then CS 0 answers with a counter-proposal (line 26) which in

our case, accepts the updated energy requirements of EV 0, but requires a higher price

per kWh (see Figure 7.14 for the details of the messages), which the EV 0 accepts (line

27, ACCEPT-PROPOSAL message). The negotiation now has successfully completed

and the CS 0, according to the new agreement, has to send updates about its new

charging schedule (if updated) and its new availability (if updated). In our scenario,

98 CHAPTER 7. EVALUATION

only the charging schedule is updated as the EV 0 requires additional energy at the

same period, thus the CS 0 updates the MD and IM agents about its new charging

schedule and confidence.

Α

C

B

D

Figure 7.12: A screenshot of the GUI of the EV agent that illustrates where the EV
driver inserts its updated preferences and how a negotiation is initiated.

7.2. SYSTEM EVALUATION 99

Figure 7.13: A screenshot of the JADE sniffer agent that illustrates a negotiation
between an EV agent and a Charging Station agent.

Figure 7.14: The contents of the negotiation messages.

Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this thesis, we reviewed a considerable part of the literature that is related to the

smart grid and in particular with the V2G/G2V problem with a focus to agent-based

approaches. Based on a novel architecture, we implemented an integrated prototype

MAS for the V2G/G2V problem. The system addresses the needs for openness, and the

coverage of diverse business models via the definition of a number of key agent types, and

the development of open protocols. These are freely provided along with the ontology,

thus any interested parties can build their agents, implementing their capabilities given

their expertise and business case.

We identified two design patterns, allowing for participating agents (a) to dynamically

select functionalities and (b) to define their own implementations of abstract behaviours.

The various agents we implemented in the context of this thesis show how a developer

can compose the proposed protocols, the V2G/G2V ontology and the design patterns

to create novel agents that form a fully operational MAS for the challenging V2G/G2V

problem. For agents such as the EV agent, we implemented a GUI prototype that

enables the human-agent interaction and helps the better visualization of the outputs of

our system. We demonstrate the functionality and effectiveness of our system prototype

on a variety of realistic use case scenarios, executed using both real-world and synthetic

datasets.

101

102 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

8.2 Future Work

There are several directions to extend the work presented in this thesis. In this section,

we will highlight four of them.

The first direction is concerned with the composition of more realistic testing scenarios

and evaluation of specific state of the art algorithms related to the V2G/G2V problem.

Such algorithms are for charging recommendations, EV charging scheduling, payments

using mechanism design approaches and recommendation selection (utility functions).

Τhe literature that we considered and studied to identify the requirements and details

of the proposed system, provides an excellent place to start. Note that the management

of the various payments in our system requires the implementation of the corresponding

Mechanism Design and Financial Management modules that were presented in Chap-

ter 5.

The second direction focuses on the improvement and extension of the communication

protocols that we implemented in order to capture the communication difficulties in-

troduced in the real world. For example, if EV agents are installed in mobile devices

and these devices suffer from signal loss and intermittent Internet connection, the sent

messages could arrive at their receiver with severe delays, leading to efficiency losses,

reduced satisfaction, and frustration. Real-time systems related with smart grid, are

extremely time sensitive, thus, the extensions of the proposed protocols to predict such

communication difficulties and handle them appropriately, may improve the stability of

the of the grid and the satisfaction of EV drivers. Furthermore, new communication

protocols have to be implemented in order to capture new requirements. For this part,

we can utilize ASEME, in order to speed up the development process and for the better

documentation the various architectures and protocols.

The third direction for future work includes the extension of the open-source ASEME

IDE so to include the design patterns we proposed to its automatic code generation

making the generated code more robust and easy to extend. As the inter-agent control

model is a statechart, the ASEME IDE allows to generate code and store it in its own

package. However, this feature is not connected with the intra-agent control model

generation and even though code generation is automated it only generates the control

code, not the action methods of the agents. Thus, in practice, all behaviours action

codes must be rewritten for each agent. This, however, poses certain risks. Protocols

intended flow may be disrupted by the code of programmers, or the same code must be

rewritten in several packages.

As final future work direction, we consider the conversion of the Java (Swing and JavaFX

based) desktop GUI prototypes developed in the context of this thesis, to Android and

8.2. FUTURE WORK 103

web-based GUIs that are going to utilize the agents we proposed. As first priority, we

consider the development of the Android application for the EV agent to facilitate the

interaction between the EV driver and the EV agent. This application can be installed

into the mobile of the driver or can be part of control-board of her EV or both, and

will provide the EV driver with a friendly and easy to use interface to set her charging

preferences and also to display the current status of her EV. A number of add-ons

to support the aforementioned applications have been developed from the open-source

community of JADE, and are freely available.

Appendix A

A Simple Recommendation

Algorithm

Despite the fact that the development of an algorithm for charging recommendations

is out of the scope of this work, we provide a very simple recommendation approach

for the requirements of our use case scenarios. The source code of algorithm, which is

implemented in Java, is the following:

public List<ChargingRecommendation> calculateStationRecommendations(ElectricVehicle

vehicle) {

// the charging preferences of the EV

EVPreferences evPrefs = vehicle.getPreferences();

// the charging types of the vehicle

ChargingType[] types = vehicle.getBattery().getChargingTypes();

// if charging type selected, then get only the relevant station and slots

if (evPrefs.getChargingType() != null) {

types = new ChargingType[] { types[evPrefs.getChargingType()] };

}

// all the charging stations

HashMap<String, ChargingStation> stations0 =

getRepoStations().getChargingStations();

// the set of slots and stations that are available during the arrival and

// departure period

List<Object[]> slotNStations =

getChargingStationSlotsReservations().searchAvailableSlots(evPrefs.getArrival(),

evPrefs.getDeparture());

105

106 APPENDIX A. A SIMPLE RECOMMENDATION ALGORITHM

slotNStations = filterByVehicle(stations0, slotNStations, types);

// en empty recommendations list

List<ChargingRecommendation> recommendations = new ArrayList<>();

for (Object[] ss : slotNStations) {

int slotID = (int) ss[0];

String stationID = (String) ss[1];

ChargingStation cs = stations0.get(stationID);

ChargingSlot slot = cs.getChargingSlots().get(slotID);

for (ChargingType type : types) {

if (type.getConnectorType().equals(slot.getConnectorType())) {

ChargingRecommendation rec = new ChargingRecommendation();

rec.setArrival(evPrefs.getArrival());

rec.setDeparture(evPrefs.getDeparture());

rec.setLocation(cs.getLocation());

double rank = calculateRank();

rec.setRank(rank);

double chargingRate = Math.min(type.getPower(), slot.getPower());

double requiredKwhs = AgentUtils.requestedkWhs(vehicle);

double kwhs = calculateTotalKWhs(chargingRate,

vehicle.getBattery().getChargingEfficiency(),

evPrefs.getArrival(), evPrefs.getDeparture());

kwhs = Math.min(kwhs, requiredKwhs);

rec.setTotalKWHs(kwhs);

double price = calculatePrice(kwhs, slot.getNetProfitPerKwh());

rec.setPricePerKWH(price);

rec.setSlotID(slot.getSlotID());

rec.setStationID(cs.getId());

rec.setChargingPower(chargingRate);

rec.setConnectorType(slot.getConnectorType());

rec.setStationNetwork(cs.getStationNetwork());

rec.setId(AgentUtils.generateUUID());

recommendations.add(rec);

}

107

}

// remove the station that do not match with vehicle’s preferences

if (evPrefs.getStationNetwork() != null) {

for (Iterator<ChargingRecommendation> iter = recommendations.iterator();

iter.hasNext();) {

ChargingRecommendation rec = iter.next();

if (!rec.getStationNetwork().equals(evPrefs.getStationNetwork())) {

iter.remove();

}

}

}

}

return recommendations;

}

}

Appendix B

Views of the EV Agent GUI

Each of the following views, represents one the top left buttons of the EV agent GUI.

By pressing each button, we have the corresponding view.

B.1 Charge View

The panel of Figure B.1 is the main view of the EV agent GUI. Here the details of the

state of the EV are displayed, such as the current state of charge, state of health of the

battery and the name of the model. In addition, it contains an interface where the EV

driver can insert her EV charging preferences, as well as a table, which illustrates the

recommendations received and the recommendation selected from the EV agent.

Figure B.1: The charge view (main) of the EV agent GUI.

109

110 APPENDIX B. VIEWS OF THE EV AGENT GUI

B.2 Map View

The panel of Figure B.2 opens when we press the Map button of the EV agent GUI

(top-left). It illustrates the locations of the recommended stations on the map (in our

case for the city of Chania, Crete), as well as the location of our EV. Each point on the

map is a special button that when pressed, shows the details of the particular charging

station or vehicle.

Figure B.2: The map view of the EV agent GUI.

B.3 Algorithms View

The panel of Figure B.3 opens when we press the Algorithms button of the EV agent

GUI. The top view shows the algorithm selection dialogue, which opens when we press

the GUI button with the three dots next to the algorithm name we want to select. The

bottom view shows the dialogue that open when we select the Utility Function: Weighted

Average, where we can insert the preferred weights of the parameters of this particular

utility function.

B.3. ALGORITHMS VIEW 111

Figure B.3: The algorithms view of the EV agent (top), and the weights insertion
panel (bottom).

Bibliography

[1] Akasiadis, C. (2017). Multiagent Demand-Side Management for Real-World Energy

Cooperatives. PhD thesis, Technical University of Crete.

[2] Akasiadis, C. and Chalkiadakis, G. (2017a). Cooperative electricity consumption

shifting. Sustainable Energy, Grids and Networks, 9:38 – 58.

[3] Akasiadis, C. and Chalkiadakis, G. (2017b). Mechanism design for demand-side

management. IEEE Intelligent Systems, 32(1):24–31.

[4] Asmus, P. (2010). Microgrids, virtual power plants and our distributed energy future.

The Electricity Journal, 23(10):72 – 82.

[5] Austin, J. L. (1975). How to do things with words, volume 88. Oxford university

press.

[6] Babas, K., Chalkiadakis, G., and Tripolitakis, E. (2013). You are what you consume:

a bayesian method for personalized recommendations. In Seventh ACM Conference on

Recommender Systems, RecSys ’13, Hong Kong, China, October 12-16, 2013, pages

221–228.

[7] Bellifemine, F. L., Caire, G., and Greenwood, D. (2007). Developing Multi-Agent

Systems with JADE (Wiley Series in Agent Technology). John Wiley and Sons Ltd.

[8] Borenstein, S. (2002). The trouble with electricity markets: Understanding califor-

nia’s restructuring disaster. 16:191–211.

[9] Caire, G. (2003). Jade tutorial: Jade programming for beginners. http://jade. tilab.

com/doc/JADEProgrammingTutorial-for-beginners. pdf.

[10] Caragliu, A., Del Bo, C., and Nijkamp, P. (2011). Smart cities in europe. Journal

of urban technology, 18(2):65–82.

[11] Chalkiadakis, G. (2007). A Bayesian Approach to Multiagent Reinforcement Learn-

ing and Coalition Formation under Uncertainty. PhD thesis, University of Toronto.

113

114 BIBLIOGRAPHY

[12] Chalkiadakis, G., Elkind, E., and Wooldridge, M. (2011a). Computational Aspects

of Cooperative Game Theory. Synthesis Lectures on Artificial Intelligence and Machine

Learning. Morgan & Claypool Publishers.

[13] Chalkiadakis, G., Elkind, E., and Wooldridge, M. (2012). Cooperative game theory:

Basic concepts and computational challenges. IEEE Intelligent Systems, 27(3):86–90.

[14] Chalkiadakis, G., Robu, V., Kota, R., Rogers, A., and Jennings, N. R. (2011b).

Cooperatives of distributed energy resources for efficient virtual power plants. In 10th

International Conference on Autonomous Agents and Multiagent Systems (AAMAS

2011), Taipei, Taiwan, May 2-6, 2011, Volume 1-3, pages 787–794.

[15] Christianos, F. and Chalkiadakis, G. (2016a). Efficient multi-criteria coalition for-

mation using hypergraphs (with application to the V2G problem). In Multi-Agent

Systems and Agreement Technologies - 14th European Conference, EUMAS 2016, and

4th International Conference, AT 2016, Valencia, Spain, December 15-16, 2016, pages

92–108.

[16] Christianos, F. and Chalkiadakis, G. (2016b). Employing hypergraphs for efficient

coalition formation with application to the V2G problem. In ECAI 2016 - 22nd

European Conference on Artificial Intelligence, 29 August-2 September 2016, The

Hague, The Netherlands - Including Prestigious Applications of Artificial Intelligence

(PAIS 2016), pages 1604–1605.

[17] Cossentino, M. and Seidita, V. (2014). Passi: Process for agent societies specifi-

cation and implementation. In Handbook on Agent-Oriented Design Processes, pages

287–329. Springer.

[18] Davito, B., Tai, H., and Uhlaner, R. (2010). The smart grid and the promise of

demand-side management. 3:8–44.

[19] DeLoach, S. A. and Garcia-Ojeda, J. C. (2010). O-MaSE: a customisable approach

to designing and building complex, adaptive multi-agent systems. International Jour-

nal of Agent-Oriented Software Engineering, 4(3):244–280.

[20] Efftinge, S. and Völter, M. (2006). oaw xtext: A framework for textual dsls. In

Workshop on Modeling Symposium at Eclipse Summit, volume 32, page 118.

[21] European Commission (2005). Smart grids, european technology platform for the

electricity networks of the future.

[22] Falvo, M. C., Sbordone, D., Bayram, I. S., and Devetsikiotis, M. (2014). Ev charging

stations and modes: International standards. In 2014 International Symposium on

Power Electronics, Electrical Drives, Automation and Motion, pages 1134–1139.

BIBLIOGRAPHY 115

[23] Ferreira, J., Pereira, P., Filipe, P., and Afonso, J. (2011). Recommender system

for drivers of electric vehicles. In 2011 3rd International Conference on Electronics

Computer Technology, volume 5, pages 244–248.

[24] Franklin, S. and Graesser, A. (1996). Is it an agent, or just a program?: A taxonomy

for autonomous agents. In International Workshop on Agent Theories, Architectures,

and Languages, pages 21–35. Springer.

[25] Gamma, E. (1995). Design patterns : elements of reusable object-oriented software.

Addison-Wesley, Reading, Mass.

[26] Geisler, K. (2013). The relationship between smart grids and smart cities. IEEE

Smart Grid Newsletter.

[27] Harel, D. and Naamad, A. (1996). The STATEMATE Semantics of Statecharts.

ACM Transactions on Software Engineering and Methodology (TOSEM), 5(4):293.

[28] International Energy Agency (2018). Global ev outlook 2018: Towards cross-modal

electrification.

[29] Jennings, N. R. (2000). On agent-based software engineering. Artif. Intell.,

117(2):277–296.

[30] Jennings, N. R., Faratin, P., Lomuscio, A. R., Parsons, S., Sierra, C., and

Wooldridge, M. (2001). Automated negotiation: Prospects, methods and challenges.

International Journal of Group Decision and Negotiation, 10(2):199–215.

[31] Jordán, J., Palanca, J., del Val, E., Julian, V., and Botti, V. (2018). Masev: A mas

for the analysis of electric vehicle charging stations location. In Demazeau, Y., An, B.,

Bajo, J., and Fernández-Caballero, A., editors, Advances in Practical Applications of

Agents, Multi-Agent Systems, and Complexity: The PAAMS Collection, pages 326–

330, Cham. Springer International Publishing.

[32] Kamboj, S., Kempton, W., and Decker, K. S. (2011a). Deploying power grid-

integrated electric vehicles as a multi-agent system. In 10th International Conference

on Autonomous Agents and Multiagent Systems (AAMAS 2011), Taipei, Taiwan,

May 2-6, 2011, Volume 1-3, pages 13–20.

[33] Kamboj, S., Kempton, W., and Decker, K. S. (2011b). Deploying power grid-

integrated electric vehicles as a multi-agent system. In The 10th International Con-

ference on Autonomous Agents and Multiagent Systems - Volume 1, AAMAS ’11,

pages 13–20, Richland, SC. International Foundation for Autonomous Agents and

Multiagent Systems.

116 BIBLIOGRAPHY

[34] Karapostolakis, S., Rigas, E. S., Bassiliades, N., and Ramchurn, S. D. (2016). Evlib:

A library for the management of the electric vehicles in the smart grid. In Bassiliades,

N., Bikakis, A., Vrakas, D., Vlahavas, I. P., and Vouros, G. A., editors, Proceedings

of the 9th Hellenic Conference on Artificial Intelligence, SETN 2016, Thessaloniki,

Greece, May 18-20, 2016, pages 13:1–13:4. ACM.

[35] Karfopoulos, E. L. and Hatziargyriou, N. D. (2013). A multi-agent system for

controlled charging of a large population of electric vehicles. IEEE Transactions on

Power Systems, 28(2):1196–1204.

[36] Kempton, W., Tomic, J., Letendre, S., Brooks, A., and Lipman, T. (2001). Vehicle-

to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed

Electric Power in California. Institute of Transportation Studies, Working Paper

Series qt0qp6s4mb, Institute of Transportation Studies, UC Davis.

[37] Kempton, W. and Tomić, J. (2005). Vehicle-to-grid power fundamentals: Calculat-

ing capacity and net revenue. Journal of Power Sources, 144(1):268 – 279.

[38] Kirschen, D. S. and Strbac, G. (2018). Fundamentals of power system economics.

John Wiley & Sons.

[39] Labrou, Y., Finin, T., and Peng, Y. (1999). Agent communication languages: the

current landscape. IEEE Intelligent Systems and their Applications, 14(2):45–52.

[40] Moraitis, P. and Spanoudakis, N. I. (2006). The gaia2jade process for multi-agent

systems development. Applied Artificial Intelligence, 20(2-4):251–273.

[41] Myerson, R. (1991). Game Theory: Analysis of Conflict. Harvard University Press.

[42] Nisan, N., Roughgarden, T., Tardos, E., and Vazirani, V. V. (2007). Algorithmic

game theory. Cambridge University Press.

[43] Noy, N. F., McGuinness, D. L., et al. (2001). Ontology development 101: A guide

to creating your first ontology.

[44] Papadopoulos, P., Jenkins, N., Cipcigan, L. M., Grau, I., and Zabala, E. (2013).

Coordination of the charging of electric vehicles using a multi-agent system. IEEE

Transactions on Smart Grid, 4(4):1802–1809.

[45] Paris Agreement (2015). United nations framework convention on climate change.

Paris, France.

[46] Rahwan, I., Ramchurn, S. D., Jennings, N. R., McBurney, P., Parsons, S., and

Sonenberg, L. (2003). Argumentation-based negotiation. Knowledge Eng. Review,

18(4):343–375.

BIBLIOGRAPHY 117

[47] Ramchurn, S. D., Huynh, D., and Jennings, N. R. (2004). Trust in multi-agent

systems. The Knowledge Engineering Review, 19(1):1–25.

[48] Ramchurn, S. D., Polukarov, M., Farinelli, A., Truong, N. C., and Jennings, N. R.

(2010). Coalition formation with spatial and temporal constraints. In 9th International

Conference on Autonomous Agents and Multiagent Systems (AAMAS 2010), Toronto,

Canada, May 10-14, 2010, Volume 1-3, pages 1181–1188.

[49] Ramchurn, S. D., Vytelingum, P., Rogers, A., and Jennings, N. R. (2012). Putting

the ’smarts’ into the smart grid: a grand challenge for artificial intelligence. Commun.

ACM, 55(4):86–97.

[50] Ricci, F., Rokach, L., Shapira, B., and Kantor, P. B., editors (2011). Recommender

Systems Handbook. Springer.

[51] Richardson, D. B. (2013). Encouraging vehicle-to-grid (v2g) participation through

premium tariff rates. Journal of Power Sources, 243:219 – 224.

[52] Rigas, E. S., Karapostolakis, S., Bassiliades, N., and Ramchurn, S. D. (2018).

Evlibsim: A tool for the simulation of electric vehicles’ charging stations using the

evlib library. Simulation Modelling Practice and Theory, 87:99–119.

[53] Rigas, E. S., Ramchurn, S. D., and Bassiliades, N. (2015). Managing electric vehicles

in the smart grid using artificial intelligence: A survey. IEEE Trans. Intelligent

Transportation Systems, 16(4):1619–1635.

[54] Robu, V., Gerding, E. H., Stein, S., Parkes, D. C., Rogers, A., and Jennings, N. R.

(2013). An online mechanism for multi-unit demand and its application to plug-in

hybrid electric vehicle charging. J. Artif. Intell. Res., 48:175–230.

[55] Robu, V., Kota, R., Chalkiadakis, G., Rogers, A., and Jennings, N. R. (2012).

Cooperative virtual power plant formation using scoring rules. In Proceedings of the

Twenty-Sixth AAAI Conference on Artificial Intelligence, July 22-26, 2012, Toronto,

Ontario, Canada.

[56] Robu, V., Vinyals, M., Rogers, A., and Jennings, N. (2017). Efficient buyer groups

with prediction-of-use electricity tariffs. IEEE Transactions on Smart Grid, pages

1–1.

[57] Roche, R., Lauri, F., Blunier, B., Miraoui, A., and Koukam, A. (2013). Multi-Agent

Technology for Power System Control, pages 567–609. Springer London, London.

[58] Seitaridis, A., Rigas, E. S., Bassiliades, N., and Ramchurn, S. D. (2015). Towards

an agent-based negotiation scheme for scheduling electric vehicles charging. In Multi-

Agent Systems and Agreement Technologies - 13th European Conference, EUMAS

118 BIBLIOGRAPHY

2015, and Third International Conference, Athens, Greece, December 17-18, 2015,

pages 157–171.

[59] Spanoudakis, N. (2009). The Agent Systems Engineering Methodology (ASEME).

PhD thesis, Paris Descartes University.

[60] Spanoudakis, N. and Moraitis, P. (2008). The agent modeling language (amola).

In Dochev, D., Pistore, M., and Traverso, P., editors, Artificial Intelligence: Method-

ology, Systems, and Applications, pages 32–44, Berlin, Heidelberg. Springer Berlin

Heidelberg.

[61] Spanoudakis, N. I. and Moraitis, P. (2010). Modular JADE agents design and

implementation using ASEME. In Proceedings of the 2010 IEEE/WIC/ACM Inter-

national Conference on Intelligent Agent Technology, IAT 2010, Toronto, Canada,

August 31 - September 3, 2010, pages 221–228.

[62] Spanoudakis, N. I. and Moraitis, P. (2015). Engineering ambient intelligence sys-

tems using agent technology. IEEE Intelligent Systems, 30(3):60–67.

[63] Sundström, O. and Binding, C. (2012). Flexible charging optimization for electric

vehicles considering distribution grid constraints. IEEE Trans. Smart Grid, 3(1):26–

37.

[64] Trillo, R., Ilarri, S., and Mena, E. (2007). Comparison and performance evaluation

of mobile agent platforms. In Autonomic and Autonomous Systems, 2007. ICAS07.

Third International Conference on, pages 41–41.

[65] Uschold, M. and Gruninger, M. (1996). Ontologies: Principles, methods and appli-

cations. The knowledge engineering review, 11(2):93–136.

[66] US Department of Energy (2003). “Grid 2030” — a national vision for electricity’s

second 100 years.

[67] Valogianni, K., Ketter, W., Collins, J., and Zhdanov, D. (2014). Effective manage-

ment of electric vehicle storage using smart charging. In Proceedings of the Twenty-

Eighth AAAI Conference on Artificial Intelligence, July 27 -31, 2014, Québec City,

Québec, Canada., pages 472–478.

[68] Van Aart, C., Pels, R., Caire, G., and Bergenti, F. (2002). Creating and using

ontologies in agent communication. In Proceedings of the Workshop on Ontologies in

Agent Systems.

[69] Vayá, M. G. and Andersson, G. (2012). Centralized and decentralized approaches to

smart charging of plug-in vehicles. In 2012 IEEE Power and Energy Society General

Meeting, pages 1–8.

BIBLIOGRAPHY 119

[70] Vinyals, M., Bistaffa, F., Farinelli, A., and Rogers, A. (2012a). Coalitional energy

purchasing in the smart grid. In 2012 IEEE International Energy Conference and

Exhibition (ENERGYCON), pages 848–853.

[71] Vinyals, M., Bistaffa, F., Farinelli, A., and Rogers, A. (2012b). Stable coalition

formation among energy consumers in the smart grid. In Proceedings of the 3rd

International Workshop on Agent Technologies for Energy Systems (ATES 2012).

Citeseer.

[72] Vinyals, M., Robu, V., Rogers, A., and Jennings, N. R. (2014). Prediction-of-use

games: a cooperative game theoryapproach to sustainable energy tariffs. In Pro-

ceedings of the 2014 international conference on Autonomous agents and multi-agent

systems, pages 829–836. International Foundation for Autonomous Agents and Mul-

tiagent Systems.

[73] Wooldridge, M. (1997). Agent-based software engineering. IEE Proceedings-

software, 144(1):26–37.

[74] Wooldridge, M. and Jennings, N. R. (1995). Intelligent agents: Theory and practice.

Knowledge Engineering Review, 10:115–152.

[75] Wooldridge, M. J. (2002). Introduction to multiagent systems. John Wiley and Sons

Ltd.

[76] Zanella, A., Bui, N., Castellani, A., Vangelista, L., and Zorzi, M. (2014). Internet

of things for smart cities. IEEE Internet of Things journal, 1(1):22–32.

	Abstract
	Περίληψη
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Thesis Contributions
	1.2 Thesis Structure

	2 Smart Grid and Electric Vehicles
	2.1 Smart Grid Overview
	2.1.1 Electricity Markets
	2.1.2 Electricity Tariffs

	2.2 Smart Cities
	2.3 Electric Vehicle Charging
	2.4 Coalition Formation
	2.5 Recommendation Systems
	2.6 Mechanism Design

	3 Agents and Agent-Oriented Programming
	3.1 Agent Definition
	3.2 Agent-Based Negotiations
	3.3 Foundation of Intelligent Physical Agents
	3.4 Agent Communication
	3.5 Ontologies
	3.6 Java Agent Development Framework
	3.6.1 Basic Programming Interface
	3.6.2 Agent Communication in JADE

	3.7 Agent Systems Engineering Methodology
	3.7.1 Statecharts

	4 Related Work
	5 System Architecture
	5.1 V2G/G2V System Architecture
	5.2 Agents
	5.3 Communication Interfaces
	5.4 V2G/G2V Domain Ontology

	6 System Design and Implementation
	6.1 Inter-Agent Control
	6.1.1 Charging Recommendation Protocol
	6.1.2 Charging Station Reservation Protocol
	6.1.3 Negotiation Protocol
	6.1.4 Charging Station Registration Protocol
	6.1.5 Authenticate Recommendation Protocol
	6.1.6 Electricity Prices Request Protocol
	6.1.7 Electricity Imbalance Request Protocol
	6.1.8 Charging Station Update Schedule Protocol
	6.1.9 Producer Consumer Registration Protocol
	6.1.10 Update Expected Production/Consumption Protocol
	6.1.11 Update Energy Profile Confidence Protocol
	6.1.12 Update Station Availability Protocol
	6.1.13 Time Synchronization Protocol

	6.2 Intra-Agent Control
	6.2.1 Electric Vehicle Agent
	6.2.2 Charging Station Agent
	6.2.3 Station Recommender Agent
	6.2.4 Electricity Imbalance Agent
	6.2.5 Mechanism Design Agent
	6.2.6 Electricity Producer and Consumer Agents

	6.3 Design Patterns for Open Protocols
	6.3.1 Capability Pattern
	6.3.2 Functionality Pattern
	6.3.3 Discussion

	6.4 Synchronization and Time Agent

	7 Evaluation
	7.1 Implementation Details
	7.1.1 Station Recommendation Algorithm
	7.1.2 Charging Stations Dataset
	7.1.3 Electric Vehicles Dataset
	7.1.4 Electricity Production and Consumption Datasets

	7.2 System Evaluation
	7.2.1 Electricity Producer and Consumer Agent: Registration and Updates
	7.2.2 Charging Station Agent: Registration
	7.2.3 Electric Vehicle Agent: Station Recommendations and Reservation
	7.2.4 Electric Vehicle Agent: Recommendation Selection Utility Functions
	7.2.5 Electric Vehicle - Charging Station: Negotiation

	8 Conclusions and Future Work
	8.1 Conclusions
	8.2 Future Work

	A A Simple Recommendation Algorithm
	B Views of the EV Agent GUI
	B.1 Charge View
	B.2 Map View
	B.3 Algorithms View

	Bibliography

