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Abstract

Note onset and pitch detection is a standard tool in music signal analysis and processing. In this thesis, after a

short introduction to the nature of musical notes and piano notes in particular, we present an overview of various

techniques for detecting piano note onsets as well as pitch. Several onset detection algorithms are analyzed and

tested against single piano notes and more complex monophonic passages. Subsequent thresholding techniques

are used to extract the results, which are finally compared and evaluated. As far as pitch or note detection is

concerned, some basic concepts are presented as well as an attempt to tackle the constraints presented by the

innate inharmonicity present in piano tuning.
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1 Introduction

1.1 Motivation

The research field this thesis wanted to explore and contribute to was automatic music transcription. The initial

goal was to implement an algorithm for extracting the harmonic content of piano chords. However, the first phase

concerning the detection of onset events, was already proven to be an interesting and challenging task, also due to the

unique nature of the piano. Thus, an overview of the available onset detection techniques and their implementation

on real piano signals was considered a valuable study. Along with the comparison of the aforementioned methods two

implementations for detecting the pitch of the under examination note were presented.

1.2 Outline

The second section of this thesis acts as an introduction to the piano as an instrument, its mechanics and some of

its unique properties but also the characteristics of piano notes both in the time and frequency domain. The section

concludes with a special reference to the effect of inharmonicity.

The third section introduces in more detail the signals used in the course of this thesis, from the way these

sample signals were obtained to fundamental concepts and processes(e.g. the Fourier transform) used throughout the

implementation of the algorithms.

The fourth section covers the overview of the implemented onset detection methods. After the introduction to

basic concepts(e.g. onset, attack and transient) and general approach to onset detection algorithms, the methodology

followed in obtaining the detection functions is presented. More specifically, the input signal was subject to time-

block analysis, i.e. split in windows of certain samples which were further analyzed separately. These windows were

in some implementations overlapping over half the window size. In order to avoid spectral leakage caused by the

windowing process, a Hamming window was used to minimize its effect. In total six onset detection algorithms were

implemented, two in the time domain and four in the frequency domain. More specifically in the time domain, the

energy of the window and the ratio between two successive window maxima were the measures whose change in time

were followed. In the frequency domain, first the High-frequency content was used as a measure, hoping to highlight

and take advantage of the percusiveness of the onset and its broadband nature. Then an implementation based on

the spectral difference, through the magnitude part of the Fourier transform of the windows, was tested. The last two

methods, extracted onset information through the phase part of the frequency domain signal. Both take advantage
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of the stationarity of a periodic signal, as measured in the progression of its phase and how it is disrupted when an

onset event occurs. The last method expresses this stationarity in terms of the phasor of the signal, namely measuring

the phase and magnitude of the signal and calculating its euclidean distance from respective estimated values. The

detection function obtained were then thresholded using an adaptive threshold which follows the local median value

of a window follower. The algorithms were first tested and compared against a three note piano excerpt and in turn

against a noisy recording of a nocturne by F.Chopin. The latter succeeded in highlighting pros and cons of the methods

used.

In the last section, two methods for note detection are presented. The first one, uses the Cauchy-Schwarz inequality,

to find the most likely candidate for the note played among predefined libraries of spectra of all the 88 notes of a piano.

A case for libraries of averaged spectra from multiple pianos and that of ideal self-defined spectra were examined. The

second method is based on the energy of the harmonics of a piano note. It aims to pick at least a pair of consecutive

order harmonics in its candidates in order to decide the fundamental frequency. For this reason the method is run

thrice; for 3, 5 and 10 maxima, ultimately offering a set of three note candidates.

2 Introduction to piano notes

2.1 Piano’s physical characteristics

The piano is an acoustic, stringed musical instrument invented around the year 1700 (the exact year is uncertain), in

which the strings are struck by hammers. It is played using a keyboard, which is a row of keys (small levers) that

the performer presses down or strikes with the fingers and thumbs of both hands to cause the hammers to strike the

strings [1].

The supporting structure of the piano is the rim, a rigid, curve-shaped wooden structure that supports all the

other elements and which, theoretically speaking, does not vibrate. The soundboard is a piece of ’Picea’ wood that fits

into the rim, with its borders stuck to the inner perimeter of the rim. The soundboard vibrates with its edges clamped,

it is the actual radiation element of the piano. It is about 10 mm thick, and it presents an anisotropic stiffness. The

vibration of the soundboard is due to the transmission of the strings’ vibration through a piece called the bridge, which

is stuck to the soundboard. Two bridges exist, one for the bass strings and the other for the remaining strings. The

point of change is called the bass break. Strings are the main vibrating elements. They are excited by the hammers
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(action mechanism) when the key is pressed by the pianist. The string is tensioned with one end (the one far from the

keyboard) fixed on the rigid cast iron frame and the other (that nearest the keyboard) rolled onto the tuning pin of

the wrest plank. The "speaking" length is the portion of the string between the two points of support the bridge and

the agrafe. In certain strings the agrafe is replaced by the capo d’astro as the support. They are both constructed

on the iron frame. The speaking length determines the main vibration, because the remainder of the string is highly

damped to prevent vibration. All the string parameters will be related to the speaking portion. The strings are made

of steel. The bass strings, which lie on the bass bridge, are wound with one or two layers of copper wire to increase

their linear density without increasing the diameter of the steel string. The length and diameter (and thus the linear

density) of the string are different from note to note. Most of the piano notes have two or even three strings. This

combination is called unison. Only one string belonging to the unison has the right tuning. The others are tuned out

slightly by about one or two cents [2]. This adjustment is responsible for the vibrato and double decay characteristics

of the piano sound. The lowest notes use only a single string per note [3].
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2.2 Piano note in time and frequency domain

2.2.1 Time domain

The representation of a piano note is seen in Fig. 1a. The y-axis refers to the air pressure levels, or time magnitude

of the time signal. When a note event occurs, the envelope of the signal raises drastically. This event is referred to as

the attack. The attack is followed by a decay, sustain period, during which the amplitude of the signal drops. These

events will be studied more explicitly at section 3 where onset detection methods are presented.

2.2.2 Frequency domain

Single piano notes are generally assigned and referred to as a single frequency, known as the pitch frequency. The

pitch values (see Table 1) increase logarithmically as we ascend in the piano clavier (keyboard), and always derive

from the tuning pitch of A4.

P (i) = 2
i−49
12 P (49)) (1)

where i = 1, 2, . . . , 88 denoting note increasing number and P (49) refers to the tuning pitch of note A4.

The piano note spectrum however, consists of theoretically infinite sinusoids all with a frequency close to positive

integer multiples of the pitch. The fundamental frequency F0 is referring to the pitch of the note. Subsequent harmonics

are labeled as F1 ' 2F0, F2 ' 3F0 etc.

Timbre The timbre of any musical instrument, is basically its identity. It is what makes a flute sound different

than a violin, a fagotto or a piano. It is described by the ratios of the harmonics in relation to the fundamental.

These ratios may differ even from piano to piano, and are also affected by the interpretation, as the latter affects some

features concerning the note onset.

Harmonically related notes By harmonically related notes we refer to notes who share a number of high-

energy harmonics, i.e. whose spectra have an increased degree of matching. It is this matching that makes certain

notes sound in harmony when played together and is the basis for Harmony rules and limitations found in music

Theory.1.

1E.g. The interval of an augmented 4th , for example F4-B4 was widely avoided during the classical era, since these notes share no

harmonics of significant energy, thus introducing disharmony.Basic examples of harmonic notes are octaves(8th), minor or major 3rd and

perfect 5th.[http://musictheoryblog.blogspot.gr/2007/01/intervals.html]
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Figure 1: Time and frequency magnitude frequency representation of piano note C3
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Piano Note Pitch(Hz) Piano Note Pitch(Hz) Piano Note Pitch(Hz) Piano Note Pitch(Hz)

A0 27.5 G2 98 F4 349.23 D#6 1244.51

A#0 29.14 G#2 103.83 F#4 369.99 E6 1318.51

B0 30.87 A2 110 G4 392 F6 1396.61

C1 32.7 A#2 116.54 G#4 415.3 F#6 1479.98

C#1 34.65 B2 123.47 A4 440 G6 1567.98

D1 36.71 C3 130.81 A#4 466.16 G#6 1661.22

D#1 38.89 C#3 138.59 B4 493.88 A6 1760

E1 41.2 D3 146.83 C5 523.25 A#6 1864.66

F1 43.65 D#3 155.56 C#5 554.37 B6 1975.53

F#1 46.25 E3 164.81 D5 587.33 C7 2093

G1 49 F3 174.61 D#5 622.25 C#7 2217.46

G#1 51.91 F#3 185 E5 659.25 D7 2349.32

A1 55 G3 196 F5 698.46 D#7 2489.02

A#1 58.27 G#3 207.65 F#5 739.99 E7 2637.02

B1 61.74 A3 220 G5 783.99 F7 2793.83

C2 65.41 A#3 233.08 G#5 830.61 F#7 2959.96

C#2 69.3 B3 246.94 A5 880 G7 3135.96

D2 73.42 C4 261.63 A#5 932.33 G#7 3322.44

D#2 77.78 C#4 277.18 B5 987.77 A7 3520

E2 82.41 D4 293.66 C6 1046.5 A#7 3729.31

F2 87.31 D#4 311.13 C#6 1108.73 B7 3951.07

F#2 92.5 E4 329.63 D6 1174.66 C8 4186.01

Table 1: Piano note tempered pitches for A4=440 Hz tuning
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Piano note special spectral features

2.2.3 Inharmonicity

The characteristics of the piano elements lead to a set of specific aspects of the vibrational parameters. The position

where the string is struck by the hammer and the width of the striking zone are not the same for all notes. Both

aspects affect the spectral envelope, acting like a comb filter, so the spectral envelope of the notes changes as the

octaves increase. The stiffness of the steel string causes an increase in frequency of the harmonics above the harmonic

values, so the string vibration is clearly inharmonic. Because inharmonicity [4] depends on the physical parameters of

the string, every note has a different degree of inharmonicity. Inharmonicity also affects piano tuning. When tuning

a note that is one octave higher than the other, if the higher note is tuned at twice the frequency of the lower one, a

beat will appear. That beat is produced by the fundamental of the higher note and the second harmonic of the lower

note (which is higher than the former due to inharmonicity). To avoid the occurrence of this beat, the higher note is

tuned to be coincident with the second harmonic of the lower note, and thus slightly above its "tempered" value. As

a result the piano notes are not tuned to the tempered values, with the exception of the A4 note and basically the

octave from C3-C4. The piano tuning is generally described by Railsback curve(see Fig. 3). Furthermore the end of

the string held by the bridge is not fixed; it is moving. This changes the vibration frequency in a way that is different

for every harmonic of the note. This modification depends on the mechanical impedance of the soundboard. The

resulting frequency can be higher or lower than that for fixed ends. Finally, it is understood that in most cases any

piano(unless very recently hard tuned), will present some slightly or more evidently out of tune notes [3].

Consequently, as we can see in Fig. 1b the actual frequency of the fundamental harmonic F0 of a piano C3 note

is slightly out-of-tune than the theoretical 130.81 Hz. Similarly, subsequent harmonics have different values than the

exact multiples of the F0. In Fig. 2, for the sake of showing the diversity between different piano note spectra, we

see the spectrum of notes E6 and C1. An other interesting point seen in the case of the C1 note (Fig. 2b) is the

fact that the fundamental frequency F0 is "hidden", its energy is very low compared to the respective values of higher

harmonics. This phenomenon is present when dealing with very low note and cedays as we surpass the first octave of

the piano range. Psychoacoustic researches however, suggest that human ear distinguishes between notes, not only by

the pitch, but also from the relative magnitudes and frequency distances between higher harmonics. The implications

that derive from the inharmonicity and "hidden fundamental" features of piano note spectra, will be further discussed

in section 4, where note detection algorithms will be presented.
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Figure 3: The Railsback curve(green) indicates the average difference in cents (1 semitone

consists of 100 cents) between tempered and actual tuning value.

3 Signal model

For all the tests performed throughout the course of this study, three types of short piano music pieces I(t) were used.

Their duration was customized using Cubase software.

1. Stereo1 non-anechoic2 5 second recordings of all piano notes played in a Steinway & Sons model B piano

interpreted at fortissimo intensity found in the site of University of Iowa dept. of Electronic Music library

[5].

2. Stereo non-anechoic recording of piano passage (C4 - E4 - D4) using the built-in microphones of a Samsung

Galaxy S6 Edge.

3. Sample of a stereo non-anechoic recording of Chopin’s Nocturne op.9 No.1.

1Stereo recording is a technique involving the use of two microphones to simultaneously record one instrument. The mono signals

from each microphone are assigned to the left and right channels of a stereo track to create a sense of width in the recording [6].
2Non - anechoic means the recording took place in a room whose boundaries do not fully absorb sound waves , resulting in some

echoing signals.
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Time domain signal All the above pieces were recorded at a sampling frequency Fs = 44.1kHz. With Matlab’s

audioread function we imported the respective .wav files to our project. Since the recordings were stereo, the imported

signals also consisted of two separate channels of equal length N found as

N = TFs (2)

where T is the duration of the piece’s continuous time signal I(t) in seconds. Each separate channel of the .wav format

is described as

xc(n) = Ic(nTs) (3)

where x(n) is the sampled version(.wav file) of I(t), Ts = 1/Fs is the sampling period and c refers channels 1 or 2 of

the stereo recordings.

The two channels were averaged, to ultimately constitute the signal used in the implemented algorithms. This

signal basically represents the discrete resentation of the pieces.

x(n) =
x1(n) + x2(n)

2
(4)

Frequency domain signal

Fourier transform The Fourier transform transforms a signal from its original domain (in this case, time) to

the frequency domain and vise versa. The forward transform (time to frequency) of the continuous time input signal

I(t) is given as

X(F ) =

∫ ∞

−∞
I(t)e−j2πtF (5)

F referring to an infinite possible frequency values. However, for easier manipulation the values of F are discetized as

suggested by the Discrete Fourier transform of the discrete time singal x(n).

Discrete Fourier transform The Discrete Fourier Transform or DFT represents the signal in the frequency

domain, in terms of discrete bins rather than continuous frerquencies. The DFT frequency representation signal is

X(k) =

N∑

n=1

x(n)e−j2π
nk
N (6)

where k now refers to frequency bins. The Fast Fourier Transform in Matlab, is basically the same as the DFT with

some improvements in the algorithm’s complexity. So by running the FFT for our discrete real signal x(n) we end up

with the complex signal X(k).

12



The amplitude part of the kth bin is calculated as

|X(k)| =
√
<(X(k))2 + =(X(k))2 (7)

and the phase component is found as

φk = tan−1
(<(X(k))

=(X(k))

)
. (8)

To further improve the FFT’s frequency representation and computing speed it is optional to choose an input

signal of size

N ′ = 2a (9)

where

a = dlog2Ne (10)

We now call the FFT for the specified input size N ′.

X(k) = FFT(x(n), N ′) (11)

This procedure in Matlab is performed by assigning a 0 value to the extra N ′−N samples added at the right of x(n),

also known as right zero padding.

The FFT output X(k) is symmetric around the central bin. With the use of the fftshift function in Matlab we center

this symmetric representation around bin#1 referring to the frequency of 0 Hz(DC component) and finally keep the

values referring to positive frequencies, both for amplitude and phase. The whole procedure is shown in Fig. 4.

The actual frequency value associated with the kth bin is found as

F (k) = (k − 1)
Fs

N ′
(12)

and the FFT’s frequency resolution, i.e. the difference between successive bins’ associated frequency in Hz is

FR =
Fs

N ′
(13)
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Figure 4: Obtaining the final spectrum of note E4
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4 Onset Detection

Basic concepts Automatically detecting music events, gives huge possibilities in a series of music analysis applica-

tions such as compression, retrieval and automatic transcription. In the scope of this paper onset detection methods

we reviewed, in order to later proceed to recognition of the single piano note samples. Before actually reviewing some

onset detection algorithms, a clear distinction between the related concepts of attack, transients and onsets, also shown

in Fig. 5a, is mandatory.

• Attack : The attack refers to the time interval during which the amplitude envelope increases.

• Transient : The concept of transient is more difficult to describe precisely. As a preliminary informal definition,

transients are short intervals during which the signal evolves quickly in some non trivial or relatively unpredictable

way. In the case of acoustic instruments, the transient often corresponds to the period during which the excitation

(in piano, a hammer strike)is applied and then damped, leaving only the slow decay at the resonance frequencies

of the body. Central to this time duration problem is the issue of the useful time resolution: we will assume that

the human ear cannot distinguish between two transients less than 10 ms apart. Note that the release or offset

of a sustained sound can also be considered a transient period.

• Onset : The onset of the note is a single instant chosen to mark the temporally extended transient. In most cases,

it will coincide with the start of the transient, or the earliest time at which the transient can be reliably detected.

The above terms however, are not so discrete and easily detectable when it comes to real music signals, mainly

due to noise presence and multiple sound sources. Piano onsets are considered percussive, due to the mechanics of

the hammer, in contrast to e.g. a soft violin onset produced by the "smooth" bowing. However the "percusiveness"

of piano onsets might still vary from note to note, depending on the chromatics of the interpretation. Staccato and

forte interpretations, generally tend to increase the attack’s gradient and might even enhance some harmonics (due to

soundboard resonance) which would be less present in legato and piano playing. In the latter interpretation, onsets

might appear a lot "softer" too. In general, it is impossible to successfully detect onsets without first observing the

time-varying "transientness" of the signal [7].
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(a) (b)

Figure 5: (a) Onset parts visualized, (b) Overview of onset detection methods
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4.1 Onset detection overview

The general approach of onset detection algorithms consists of three main parts.(Fig. 5).

• Pre-Processing : In this stage the input signal is processed in such a way, as to enhance certain aspects of it.

It is these aspects that will be then used during the construction of the detection function. However, this

is an optional step with its importance according to the task in hand and mainly takes place when a simple

reduction method is to implemented. A very common such pre-process, is to independently analyze information

through multiple frequency bands. This leads to the division of the spectrum to a number of overlapping or

non-overlapping bands, either to ultimately combine changes in individual bands to obtain a global estimate or

to focus on a particular band to increase the robustness of a certain reduction method [8].

• Reduction : This step is the core in the procedure of onset detection. The input signal, either pre-processed or

not, is analyzed in subsequent time blocks which in almost all cases overlap at a fraction of the analysis block

length. For every such block, a distinct property is examined and measured. This property’s time evolving output

obtained in this step is a signal which aims to make the later step of ultimately peak picking and determining the

onsets, simpler and more robust. In general all these methods lie under a more general approach, very common

in Automatic Music Transcription, known as time-frequency analysis. Short-time Fourier, Gabor and Wigner

are the most broadly used transforms. in this paper the concepts and performance of numerous onset detection

approaches is analyzed and evaluated.

• Peak Picking : This last step before obtaining the possible onset position is peak picking , or in a more broad sense

meant as post processing the detection function found on the previous step. First task, if needed, is low-pass

filtering the detection function to follow more general schemes in its temporal evolution and then "following"

this smooth version to mark local maxima. Later in this paper we will propose a method to obtain these maxima

and modify their respective values. The latter is done , in order to make the final task of thresholding more

effective.
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4.2 Obtaining a Detection Function

Time - block analysis In the introduction to the reduction process of onset detection algorithms, a need for a

time-frequency analysis of the input signal was highlighted, in order to interpret the evolution of certain of its features

through the analysis blocks.

The idea is to analyse the input x(n) in successive analysis blocks of L samples, with a hop distance of h samples

describing the jump between successive analysis blocks(Fig. 6).

The total number of analysis blocks is given as

NoB =

⌊
N − L
h

⌋
(14)

The floor function assures we do not exceed the limit of N samples of our x(n) signal.

The mth analysis block is given as

bm(l) = x((m− 1)h+ l) , l = 1, 2, . . . , L (15)

Block analysis time resolution The hop distance h is set as a fraction of the block size L (L,L/2 ,L/4 etc) and

determines the time-block analysis’ time resolution, or in other words, how often we check for onsets in the time

domain signal.

TR = hTs (16)

Setting the time resolution In the implementations of the algorithms towards obtaining a detection function,

several values of hop distance h were chosen, according to the respective chosen block size L. Common values of h were

set at 512 samples. A sampling frequency of 44.1kHz or sampling period of 2.27·10-5 seconds led to a time resolution of

512·(2.27·10-5) ' 11.6 ms. Even though when comparing to real piano music 2 and human ear time resolution(minimum

of 10ms), this value might seem excessive, the fact that rapid changes in the transient state(which as seen in Fig. 5a

only constitutes a small time interval proportionally to the whole note) indicate the onset, justifies this decision. On

top of that, by choosing a seemingly small time resolution at this stage allows for more "freedom" in the process of

low pass filtering the detection function while still being able to have practically reliant onset positioning.
2a 32nd note at a tempo of 112 4th notes per minute (Very fast passage in La Campanella by Liszt ) constitutes a duration of 67 ms
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Figure 6: Time block analysis, with L = 512 and h = 256 samples

Frequency resolution Frequency resolution is inversely proportionate to the block size L, as seen in Eq.13. This

suggests that when dealing with methods based on the dime domain, where frequency resolution is of no use, the block

size can take lower values. On the other hand, in some frequency domain approaches, block sizes could be set to a

bigger value if a clearer frequency representation is needed to increase the method’s robustness. In these examples, in

frequency domain based onset detection methods, a block size of L = 1024 was used, ultimately offering a frequency

resolution of Fs/1024 ' 43.06Hz. It is enough of a resolution to follow frequency related events.

Spectral leakage In practical signal-sampling applications, one can obtain only a finite record of the signal. This

finite sampling record results in a truncated waveform that has different spectral characteristics from the original

continuous-time signal. These discontinuities produce leakage of spectral information, resulting in a discrete-time

spectrum that is a smeared version of the original continuous-time spectrum. This phenomenon is known as spectral

leakage. To reduce this on our sampled blocks, we multiply them with a hamming window of L size. This procedure

minimizes the transition edges between successive blocks ultimately reducing spectral leakage [9].
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Figure 7: The effect of the Hamming window(a), in the block’s time signal(b,c) and spectrum(d,e)

Hamming window The Hamming window is obtained as

H(l) = α− β cos

(
2πl

L

)
(17)

with α = 0.54, β = 1 - α = 0.46 and l = 1, 2, . . . , L. The window is then multiplied with the time block.

b′m(l) = bm(l)H(l) , l = 1, 2, . . . , L (18)

The effect of the Hamming window in both time and frequency domain are shown in Fig. 7.
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Results As part of this introduction to the several reduction methods examined, single piano notes are tested, more

specifically the a3 note 3. In the detection function comparison afterwards we will compare their performance on the

more complex input signals of the C4-E4-D4 passage and that of the Chopin’s Nocturne.

Time domain

4.2.1 Energy follower

First attempts in onset detection took advantage of the basic temporal effect of an onset event in an audio signal

[10]. It is understood that during the transient the signal’s amplitude increases, while on the other hand, during the

note sustain(steady state) the respective amplitude steadily decreases. A basic idea to capitalize on this fundamental

concept is to apply an "energy follower", which follows the changes of the signal’s energy by adding the squared

samples foe every block.

Algorithm Steps

1. In this case we opted for a block and hop size of 512 samples, resulting to a time resolution of 11.6 ms.

2. Continuing, for each analysis block we extract a measurement which refers to the local energy of the signal.

E(m) =
1

L

L∑

l=1

bm(l)2 (19)

where L is the block size(512 samples), bm is the mth block.

3. We finally get our detection function by taking the rectified first derivative of E(m), since we are interested in

rise of energy.

DF(m′) = H(E(m′ + 1)− E(m′)), for m′ = 1, 2, . . . ,NoB− 1 (20)

where

H(y) =
y + |y|

2
(21)

is the rectifying process.

3All comparison figures to be shown, have the y axis scaled to offer a visible comparison. In the peak picking stages we will deal with

normalized detection function outputs
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(a) (b)

Figure 8: (a) Block-by-block energy, (b) Rectified energy derivative - Detection function

4.2.2 Peak follower

An also rather straightforward and immediate approach proposed in [11], is based on the same idea as energy envelope

follower, this time following maxima of successive blocks. In this case the envelope is calculated using a peak follower

algorithm that mimics the behavior of an ideal capacitive voltage peak follower circuit.

Algorithm steps

1. The block and hop size are once again set at 512 samples.

2. For every block we measure the peak (max) of its absolute value.

maxima(m) = max (|bm|) (22)

3. At each block, the peak follower is updated to the new block value if that is higher, or a fixed proportion (close

to 1) of the previous block peak follower value, so as to simulate exponential decay.

PF(m) = max{maxima(m),PF(m− 1)κdecay} (23)

, where κdecay = 0.99 is the decay factor, which simulates exponential decay when the Peak Follower drops.
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Figure 9: (a) Peak follower adjusted to simulate exponential decay, (b) Peak fol-

lower method’s output

4. The detection function is finally obtained by calculating the ratio of successive peaks, as these where given by

the peak follower.

DF(n) =
PF(n)

PF(n− 1)
(24)

Comments

Following a detection or at the start of the scan, it is possible for the detector to falsely trigger on the first

few samples, simply because the peak follower has been reset and may initially lie in an insignificant envelope

trough. However in our 512 sample block implementation covers that dropback which could occur if a small

block at the start of the scan had a very small value.

This procedure follows a similar feature to the energy follower. However in this case we follow a measure of

the ratio between successive values to get the final form of our detection function. This method on one hand

will produce sharper peaks but is more prone to oversharpening them when an onset happens against a quiet

background while risking the opposite effect when an onset happens on top of a note sustain.
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Frequency domain Since the frequency content of a signal provides a huge amount of information and processing

capabilities, many onset detection techniques are based on spectral features of the input audio signal. These techniques

described below, not only skip the need of preprocessing as described earlier(such as band predetection and separation)

but also offer very good results when dealing with more complex inputs, such as polyphonic signals played by one or

even more instruments or percussion onsets.

4.2.3 High Frequency Content

As far as frequency domain is concerned, onset events are typically described as a broadband event. That said, we can

suppose that since most of the energy of the signal is gathered in lower frequencies, we can search for onset behavior

in higher frequencies. This can be implemented by weighing the spectrum accordingly. Here, the High Frequency

Content(HFC) algorithm as proposed by Masri in [11] is presented.

Algorithm steps

1. We again analyze the signal accordingly. We obtain blocks of 1024 samples with a hop of 512 samples. The

blocks are multiplied by the hamming window as shown in Eq.(18) and graphically in Fig. 7c.

2. For every time analysis block, constructed in step 1, we obtain the FFT of our block Bm, as shown in Eq.(6).

3. We now construct the "ramp" signal as proposed by Masri in the HFC (High-Frequency content) function.

R(k) = |k| (25)

k referring to the bins of the respective FFT spectrum. This ramp linearly weights the spectrum towards high

frequencies.

4. We calculate the High - Frequency energy content by summing the weighted energy of every bin. To avoid dc

component interference and alteration of our metric , we neglect the first bin.

HFE(m) =

L/2∑

k=2

|Bm(k)|2R(k) (26)

5. In order to once again come up with detection function easier to undergo a successful peak picking procedure ,

we normalize this intermediate detection function.

DF(m) =
HFE(m)

HFE(m− 1)
· HFE(m)

E(m)
(27)
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(a) (b)

Figure 10: (a) High frequency energy, (b) High frequency content normalized output

where HFE is the High Frequency energy as calculated in Eq.(26) and E(m) refers to the energy of the block

E(m) =

L/2∑

k=2

|Bm(k)|2 (28)

The first part of the detection function product, suggests that we will enhance instances where the absolute

HFE of the current block is bigger than the respective value of the previous block. However this ratio could

present significant values for small absolute value differences. Hence, comes the second part of the product ,

which balances the detection function values to instances where the ratio of HFE to overall energy is larger. For

avoidance of dividing by zero we set lowest possible values for E(n) and HFE(n) to 1.
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4.2.4 Spectral difference

As we have seen so far in the previously presented onset detection algorithms, after the time-block analysis of the

input, we measure a quantity related to every such block and consequently end up with our novelty function. In

this next case however, we will look at a method which takes some information regarding subsequent analysis’ blocks

and compares them in order to come up with a proper onset detection scheme. An approach based on the changes

of spectra in respect of time is used, in order to formulate the detection function as the "distance" between two

subsequent spectra, as the latter are treated as points in the N-dimensional space. Several metrics are proposed to

calculate this distance(otherwise referred to as spectral flux), like Masri’s proposal of calculating the L1 - Norm of the

difference between two subsequent analysis’ blocks’ spectra [11]. Duxbury proposes the L2 - norm of the difference

[12], combined with the High Frequency Content as described earlier after preprocessing the input signal and studying

changes in five different subbands. In this paper, we tested a method that measures the L2 - norm of the difference. In

this case too, the rectified difference is taken into account, meaning we once again keep only the effect of frequencies

that show an increase in their energy between two analysis blocks. As we discussed earlier, this procedure emphasizes

onsets rather than offsets in the music signal.

Algorithm Steps

1. We start once again by setting the size of the time analysis block this time to L = 1024 and the hop distance

between adjacent blocks to h = 512 samples. The blocks are once again multiplied with a Hamming window.

2. We now move on to calculating our metrics. First up, for each of the first 512 bins(positive frequencies) of the

two - under examination - blocks we extract their spectral bin difference.

BDm(k) = H(|Bm(k)| − |Bm−1(k)|) (29)

we once again keep the rectified bin difference(Eq.(21)) since we are interested in rises of the respective frequency

bin amplitudes.

3. After obtaining these bin differences for every bin, we extract our detection function for every block of reference

by summing up the squared bin differences.

DF(m) =

L/2∑

k=2

BD2
m(k) (30)

where once again we ignore the first bin.
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Figure 11: Spectral difference output for note A3

4.2.5 Weighted Phase Deviation

As far as frequency content information is concerned, we have so far examined algorithms that only use the amplitude

information of the Fast-Fourier transform output, ignoring phase information. As expected, this phase information

has a strong correlation with the time evolution of the signal. The angle part of the FFT output associates every

frequency bin with the phase shift calculated at the start of the time analysis block and its value is obtained as shown

in Eq.(8).

The idea The idea of onset detection capitalizing on phase information, lies in a basic difference between the

transient and steady state of the signal. As we discussed in the introduction of this paper, a steady state is described

as the state of the signal that can be analyzed as a finite summation of sine waves, in contrast to the transient state

which can not be sufficiently modeled in such a manner. However, in music signal processing these terms are not so

strictly defined. Instead we define the steady state as the part of the note or notes that can be reconstructed by the

tonal part and only that, even though in theory every note has an infinite amount of harmonics. During the steady

state, the phase deviation between subsequent analysis blocks for any frequency bin, should remain constant. This is

true as we expect that instantaneous frequency of a bin should remain approximately constant over adjacent windows.
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Wrapped-Unwrapped phases One thing to keep in mind before we examine the phase evolution of a single

bin in respect of time, is that Matlab by default "wraps" the values between -π and π. The unwrap function basically

"smoothens" the wrapped version. It corrects the radian phase angles in a vector by adding multiples of ±2π when

absolute jumps between consecutive elements are greater than or equal to the default jump tolerance of π radians.

This procedure can be seen graphically in Fig.s 13a and 13b.

Instantaneous frequency and phase deviation We define the instantaneous frequency of every bin as

Fk(m) =

(
φ̃k(m)− φ̃k(m− 1)

2πh

)
Fs (31)

where φ̃k(m) refers to the unwrapped phases of the blocks, h is the hop size and Fs is the sampling frequency. Since this

instantaneous frequency should remain constant over adjacent windows as suggested in the idea, it is the numerator

that should remain approximately constant.

φ̃k(m)− φ̃k(m− 1) ' φ̃k(m− 1)− φ̃k(m− 2) (32)

Equivalently, the phase deviation can be defined as the second difference of the phase

∆φk(m) = φ̃k(m)− 2φ̃k(m− 1) + φ̃k(m− 2) ' 0 (33)

On the other hand when an onset event occurs(transient state), an "unexpected" event will alter this deviation. It

is this property, on which phase onset detection algorithms are based. In [13], Bello proposes a method that analyzes

the instantaneous distribution (in the sense of a probability distribution or histogram) of phase deviations across the

frequency domain. In [14] the mean absolute phase deviation is used. Here we use a measure of the weighted phase

deviation.

Algorithm Steps

1. Similarly to previous algorithms, the first step consists of the analysis of the input signal in time blocks of

L = 1024 and hop size of h = 512 samples. This is once again to obtain a somewhat better frequency resolution.

The analysis blocks are once again multiplied by a hamming window.

2. For every bin we calculate its phase deviation ∆φk as shown in Eq.(33)

3. Angle values are computed for every bin as the inverse tangent of the imaginary part divided by the real part of

the complex FFT output(Eq.(8)). This means that even bins with very low contribution to the signal (very small
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Figure 12: (a)Original signal(A3), (b)Phase deviation scheme at an onset point

magnitude) can still project a significant angle value, and ultimately provide "noisy" information regarding the

bin’s phase deviation. Thats why we propose a weighted phase deviation extraction, meaning that we weigh each

bin’s phase deviation by multiplying with the bin’s magnitude at the block of reference. This way we minimize

the noise components introduced in our detection function by these "unimportant" bins.

WPDk(m) = ∆φk(m)|Bk(m)| (34)

, where WPDk(m) is the weighted phase deviation of bin k, computed as the product of ∆φk(m) and the

magnitude of that bin, all referring to analysis block bm.

4. We finally obtain our detection function by measuring the sum of phase deviations for every analysis block fm.

DF(m) =

L/2∑

k=2

WPDk(m) (35)
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Figure 13: Wrapped (a) and unwrapped (b) phase for bin 83. First(c) and second(d) unwrapped

phase derivatives for bin 83
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Figure 14: Weighted phase deviation output for note A3

4.2.6 Phasor stationarity

The last case of onset detection we are going to examine in the scope of this paper, is a method proposed in [15] and

takes place in the complex domain. The idea is to combine energy and phase information as extracted in the methods

we discussed earlier. A straight forward approach would suggest a plain multiplication of spread measures of the two

-statistically similar- functions which would indeed produce sharper for the detected onsets. However, the approach

we will study, energy and phase information is simultaneously analyzed.

In Sections 4.2.4 and 4.2.5, onsets were located by inspecting changes in either magnitude or phase. In this method

however, we will simultaneously take these changes into account, by predicting the to be examined values of analysis’

blocks. During the steady state of a music signal (no transient present), we assume that frequency and amplitude

values remain constant. So by estimating the FFT phasor for a bin at block bm, through information extracted by its

phasors at previous blocks(bm−1 ,bm−2) and calculating its Euclidean distance from the actual phasor (Fig. 15a), we

expect this distance to approach 0 during steady state and show peaks during onset events, as both magnitude and

phase will deviate as seen in previous sections.

Algorithm steps
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1. We once again choose a block size of L = 1024 with a hop size of h = 512 samples.

2. We denote the phasor for the kth bin as

Bk(m) = Rk(m)ejφk(m) (36)

and the estimation of Bk(m) based on previous blocks as

B̂k(m) = R̂k(m)ejφ̂k(m) (37)

Magnitude estimation The estimated magnitude is considered to remain constant between two adjacent

blocks. This is a good estimate even though in practice a piano note’s sustain drops in respect of time. So we

assign it the magnitude of the previous block’s FFT.

R̂k(m) = |Bk(m− 1)| (38)

Phase estimation The estimated unwrapped phase ˜̂φk(m) can be measured as

˜̂
φk(m) = 2

˜̂
φk(m− 1) +

˜̂
φk(m− 2) (39)

However, since φk(m) in Eq.(39) refers to wrapped phase values, so does φ̂k(m). So we wrap the unwrapped

phase˜̂φk(m) between -π and π using the princarg function.

φ̂k(m) = princarg(
˜̂
φk(m)) (40)

3. We now measure the Euclidean distance between Bk(m) and B̂k(m). This gives us a measure of bin stationarity

through blocks.

Γk(m) =

{[
<(F̂k(m))−<(Fk(m))

]2
+
[
=(F̂k(m))−=(Fk(m))

]2}1/2

(41)

4. We get the final form of our detection function in the form of block stationarity, by summing the bin stationarities

calculated in step 3 across all the bins.

DF(m) =

L/2∑

k=1

Γk(m) (42)
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Figure 15: (a)Phasor stationarity scheme , (b)Detection function output

4.3 Comparison between detection functions

C4-E4-D4 This piano passage consists of the three notes mentioned. The recording starts with just the back-

ground noise (environment, my breath etc.). The notes are played at similar intensity level, more specifically fortissimo.

The consistently loud playing ensures a similar attack period of the notes, and increased "percusiveness" as explained

in the introduction to Section 4.
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Figure 16: Detection Functions outputs for our input piece C4 - E4 - D4
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Nocturne This example probably constitutes the most complex single note passage we could come up with for

several reasons.

1. Even though it is just 6 notes, the diversity in dynamics is evident. This extreme interpretation is a distinct

characteristic in first introduced in the Romantic period, where this Nocturne belongs.

2. As also seen in the resentation of this piece, the specific piano used for the recording has a characteristic wavy

note sustain in some notes.

3. All these features are further enhanced leading to a complex signal by the over use of sustain pedal4, through

the whole duration of this excerpt.

4. Lastly, the note sequence B-flat5 - C6 - D-flat6 - B-flat5 - C6 - A-flat5 offers repeating notes, and harmonic

notes(i.e. notes with common harmonics), thus potentially confusing some spectral, even temporal, measure-

ments.
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Figure 17: Detection Functions outputs for our input piece Nocturne op.9 no.1
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Peak evaluation

C4-E4-D4 : As we can see in Fig. 16 all methods have successfully shown peaks close to the onset events, shown

with a red line in the original signal. In the case of the energy follower, the time derivative of the energy used to follow

onsets, works fine in this clear note case but still shows peaks relatively high caused by the vibrato of the note. The

normalization using ratios for the peak follower and high frequency content, improves the false positive detection, but

tends to overemphasize onsets occurred against a quiet background(in this case the first note). Spectral flux, while

still being somewhat dependent on the actual energy of the signal at time analysis blocks, offers distinct peaks, with

however small peaks following vibrato(soundboard resonance) phenomena. These minor peaks are not present in the

phase deviation as expected. The phasor stationarity method finally, also works as expected, by somewhat combining

the spectral flux representation with that of the phase deviation.

Nocturne For the methods performed to the more complex case of the Nocturne (Fig. 17), first up we notice

the the last onset, is not easily visible by looking at the signal. This alerts us, as to how the basic approach of energy

methods will perform. Indeed, besides the energy follower with its already mentioned false positive peaks, the peak

follower and high frequency content, show relatively low peaks for notes 3,4 and 5 and fail to detect the 6th. The reason

why High frequency content method does not work as expected, is the very low "percusiveness" of onsets, which is

a typical finding in Romantic interpretations. The spectral difference method also seems to suffer in the detection of

the 6th onset. The fast that this note is played fairly piano, with heavy sustain pedal effect accumulated throughout

the so-far played excerpt, combined with the fact the the 5th(B-flat5) with the 6th(G-flat5) are heavily harmonically

related, highlights the method’s drawback at such cases. The last two methods however once again manage to show

a more distinct peak at the 6th onset, yielding them more efficient for our two excerpts.

4The Sustain pedal keeps the dumper lifted even when the piano key is released. This allows for all the harmonics and resonances to

keep on sounding over other note events, leading to a more "round" or "full" sound.
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4.4 Thresholding the detection functions

Smoothing The purpose of smoothing our detection function DF(m) is to is to facilitate the tasks of thresholding

and peak-picking by increasing the uniformity and consistency of event-related features in the detection function, ideally

transforming them into isolated, easily detectable local maxima.

We obtain our smooth DF(m) by sliding a rectangular window of length W samples over it.

D̂F(m) =
1

R

W∑

w=1

DF(m+ r) (43)

4.4.1 Fixed thresholding

This pretty trivial approach, suggests that onset periods O(m)) "exist" when the smooth detection function D̂F(m)

is higher than a certain positive constant T , referring to the fixed threshold.

O(m) = D̂F(m)− T , ∀m ∈ {m : D̂F(m) > T (m)} (44)

and

O(m) = 0 , elsewhere

where D̂F is our smooth detection function, m referring to the analysis block and T is the fixed threshold.

Even though the implementation of such a threshold is fairly simple and easy to obtain, the results it returns for

cases of real music signals like the ones we are studying, are not so satisfactory. Mainly, diversity of peak values caused

by complexity in music interpretation or other characteristics, contributes to erroneous results of a fixed threshold.

Fixed thresholding could be used for simple signals like our C4-E4-D4, for some methods like the energy follower.

Moreover, the normalization performed in the detection function of the peak follower and the high frequency content

methods, since offering steeper local peaks, might allow the use of a delicately valued fixed threshold. Still, however,

the implication following the use of a fixed threshold, led us to seeking better alternatives.

4.4.2 Adaptive thresholding

In general an adaptive threshold, instead of having a fixed value, follows D̂F(m) and takes values based on local events

[7].
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Adaptive threshold using local median More specifically, in the implementation of our onset detection algo-

rithms we opted for an adaptive threshold constructed using a moving-median filter derived out of the smooth D̂F(m).

Such an adaptive threshold is obtained as shown below.

T ′(m) = λ ·median{|D̂F(m−K)|, . . . , |D̂F(m+K)|} (45)

where λ is a positive constant,scaling the median, in our case λ = 1 and median returns the median value of a window

of length 2K + 1 sliding through our smooth detection function D̂F(m).

We now fine tune the adaptive threshold by raising it for a positive constant T .

T ′′(m) = T + T ′(m) (46)

where

T = a · δ, (47)

and

δ =
1

M

M∑

m=1

|D̂F(m)− T ′(m)| (48)

i.e. the mean absolute deviation of D̂F(m)− T ′(m).

Similarly to the fixed threshold, the onset periods O(m) are found as

O(m) = D̂F(m)− T ′′(m) , ∀m ∈ {m : D̂F(m) > T ′′(m)} (49)

and

O(m) = 0 , elsewhere (50)

Thresholding efficiency It is clear in Fig. 18d that the results of the thresholding depend a lot on the fine tuning of

the adaptive threshold T ′′(m) in respect of λ and δ, for every method. However certain methods with fixed appropriate

values of λ and δ behaved well for both our inputs C4-E4-D4 and Nocturne.

4.5 Peak picking

After applying our adaptive threshold and obtaining the onset periods O(m) as shown in Eq.(49) and Eq.(50), we

decide upon the final onset events as the local maxima of O(m)

Ô(m) = 1 , ∀m ∈ {m : O(m− 1) < (O(m) < O(m+ 1))} (51)
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Figure 18: Original detection function DF (m) for the phase deviation method(a), smooth

detection function D̂F (m) (b), adaptive threshold T ′(m) (c) and raised adaptive threshold

T ′′(m) (d) both denoted as the red line.

.
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Figure 19: Ô′(m)(red line) shows successful detection of onsets in the Nocturne excerpt, using the method of phase

deviation. Smoothing rectangular window of R = 3 and adaptive threshold of K = 2 and a = 6, were used for

detection.

and

Ô(m) = 0 , elsewhere

with Ô(m) showing the decided onset events.

4.6 Time block accuracy

Before moving on to finding the note whose onset was detected, we must define the time block accuracy of the peaks

in Ô(m). Time block accuracy refers to which block shows the onset event for every method explained.

Energy follower, Peak follower For these two methods since their detection functions relies on energy measures

of the time signal will return a detection block corresponding to the end of the attack,i.e. the block with highest

energy or highest maximum respectively (Fig.s 8b and 9b). However, the onset event, most probably started a few

blocks before the detected block. This suggests that these two methods slightly suffer in accurately spotting the onset.

High frequency content,Spectral difference,Weighted phase deviation, Phasor stationarity For these

methods however, time block accuracy is improved, as the parameters measured refer to blocks closer the actual onset

block.
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5 Note Detection

After successfully identifying note onsets, we move on to methods of finding which piano note was played. Similarly to

onset detection methods, many note detection methods are based either in time or frequency domain representations

of the note.

A part of x(n) after the onset event is selected such as to be able to trace changes even in the lowest frequencies,

i.e. bigger wavelengths.

Finding the wanted excerpt length As we will see the length of the excerpt changes depending in the method

we use to find the note.

Time domain methods Since the lowest piano note’s fundamental frequency is P (1) = 27.5Hz as shown in

Table 1, the biggest period for any piano note is

Tmax =
1

P (1)
= 3.6 · 10−2 seconds (52)

So for a sampling period of Ts = 1/Fs ' 2.27 · 10−5 seconds we get the minimum length of our excerpt as

Nmin =

⌈
Tmax

Ts

⌉
= 1604 samples (53)

Frequency domain methods However, the Nmin also determines the frequency resolution for our FFT as we

saw in Eq.(13). The smallest difference in fundamental frequencies as shown in Table 1, is the difference between notes

A0 and A#0.

∆Fmin = P (2)− P (1) = 1.64Hz (54)

where P (1) and P (2) refer to the pitches of notes A0 and A#0 respectively. So, we defy a good enough frequency

resolution as

FRmin = 0.5Hz (55)

That means

Nmin =
Fs

FRmin
= 88200 samples (56)

Our excerpt length Since time domain note detection(e.g. Zero crossing [16], autocorrelation [17] to name a

couple) are not in the analysis scope of this paper, for our methods we used the size of excerpt Nmin as shown in

Eq.(56) in order to theoretically successfully detect notes as low as A0.
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Figure 20: Different harmonic magnitude relation for the first 12 harmonics of E2 between

pianissimo(a) and fortissimo(b) intensity.

My initial goal My initial goal during this thesis was to ultimately find a way to recognize piano pieces containing

chords(i.e. more than one note being played at the same time). Time domain approaches do not seem suitable for

this task, so i opted to start for frequency domain methods.

5.1 Piano note frequency representation

How a piano note "looks" like if we obtain the magnitude part of its Fourier transform depends on several factors.

5.1.1 Harmonics’ relative magnitude

First thing to notice, is that there is no definitive rule as to how the partials’ or harmonics’ magnitude relate. This

means that the assumption that the fundamental frequency for the ith note F0(i) will have the largest magnitude

out of all harmonics, falls short. This suggests that obvious peak picking methods searching for the maximum of

the note’s magnitude spectrum are erroneous for some notes. A typical example highlighting this, is the concept of

"hidden" fundamentals, seen at Fig. 2b. The harmonics’ magnitude relation is also heavily affected by the intensity

or interpretation of the piano player. These two aspects our shown in Fig. 20.
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5.1.2 Inharmonicity

We had a basic idea of what inharmonicity is in Section 2.2.3. Let us sum up the aspects of inharmonicity regarding

piano notes.

Partial inharmonicity This form of inharmonicity refers to how partials(i.e. harmonics) tend to have bigger

frequency than the theoretical perfect multiple of the fundamental frequency F0.

Fj(i) = (j + 1)F0(i) + Ij(i) (57)

gives the actual frequency at harmonic j of note i, taking the inharmonicity Ij(i) of note i at harmonic j into account.

Since I(i) depends on physical properties of the piano strings, such as diameter and stiffness, so it is different from

note to note. Also, characteristics of the piano bridge and soundboard resonance factors, differ the inharmonicity of

note i from harmonic j to harmonic j′.In general,

Ij(i) > Ij′(i) , for j > j′ (58)

Moreover this increase of inharmonicity with the increase of harmonic number is not linear, so it becomes more difficult

to model.

Fundamental inharmonicity It is better to discuss fundamental inharmonicity with an example.

Let us assume an A4 note(note #49) tuned to its tempered pitch value as shown in Table 1, i.e. P (49) = 440Hz.

The first harmonic of the A4 piano note would theoretically appear at F1(49) = 880Hz. However, because of the

partial inharmonicity (Eq,(57)), this harmonic will appear at a higher frequency.

F1(49) > 2F0(49)Hz (59)

So, if we were to now tune note A5(note #61) at its tempered value of P (61) = 880Hz, the difference ∆F = F0(61)−

F1(49), would lead to a discomforting beat with a frequency of ∆F Hz, if A4 and A5 were to be played together. To

overcome this apparent beat, piano tuners tune the piano so as to eliminate the beat. This leads to actual piano note

pitches as seen in the Railsback curve in Fig. 3.

It now becomes apparent that inharmonicity makes piano pitch detection a lot more challenging than imagined.

Modeling this inharmonicity is an option [3]. Some notes can be chosen to model their inharmonicity and according
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to these measurements estimate the inharmonicity levels for every note and its respective harmonics. However in my

thesis, i did not go deeper into trying to do these but instead tried to minimize its degree of involvement to measures.

5.2 Signal model

As we showed in Eq.(55) we are aiming for a frequency resolution of FR = 0.5Hz. However in our excerpts (Section 3)

and in fact in most realistic cases the time period between successive detected onsets will be less than 2 seconds(i.e.

88200 samples for Fs = 44100Hz). To optimize our calculations and keep a consistent method we need to have input

signals of same FFT length. To do that without errors we first isolate every note before obtaining its final spectral

representation.

5.2.1 Excerpt in the time domain

Deciding on onset and offset times To come up with the correct signal representing a single note, we first refer

to the output of our onset times Ô(m) (Eq.(51)).The peaks of Ô(m) refer to the onset blocks bd. However, to have a

clearer spectral representation(since onsets are a broadband event as described in Section 4.2.3, it is preferable to set

the actual note detection start block bs as the vth block after the detected block bd assigned to the peak of Ô(m).

bs = bd+v (60)

where bs refers to the decided start block for note detection methods, d is the onset detection block number as found

in Ô(m) and v is the block shift introduced to guarantee a clearer spectral representation. An appropriate value of v

must be chosen, depending on the time accuracy of the used onset detection method (Section 4.6).

The sample designating the start note analysis excerpt start is given as the 1st sample of bs.

ns = bs(1) (61)

In the same manner we obtain a block and ultimately a sample designating the end of our note analysis excerpt.

be = bd′−v′ (62)

where d′ is the block number of the next detected onset found in Ô(m) and v′ a positive constant indicating an

appropriate number of shift to avoid next onset interference.
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Ending sample for our note detection excerpt is the last sample of be.

ne = be(L− 1) (63)

L being the time block size.

Our excerpt now is

q(n) = x(n) , n ∈ [ns, ne] (64)

with a size of

N = ne − ns (65)

x is the discrete time input.

5.2.2 Excerpt magnitude spectrum

The discrete time series q(n) referring to our excerpt to be analyzed, is transformed under the Fast Fourier transform

to obtain its magnitude spectrum(Eq.(6) and Eq.(7)). In order to have consistent analysis we once again opted for an

Nt = 88200 bin FFT representation.

Q(k) = |FFT(q(n), Nt)| (66)

where Q(k) is the magnitude spectrum of q(n) and Nt = 88200.

• If Nt > N , i.e. the note’s actual duration is less than 2 seconds(or N < 88200 samples in our case), the FFT is

performed by right zero padding q(n), as explained in Eq.(11).

• If Nt > N , or a longer than 2 second note, q(n) is truncated and set to a length of Nt samples.

5.3 Frequency domain note detection methods

In the scope of this paper we will study two methods to detect the input note based on its frequency representation

and more specifically the magnitude part of the note’s Fourier transform. In the first method, the idea is matched

filtering while in the second method a more straightforward measuring idea involving peak picking is implemented.

5.3.1 Note detection using matched filtering

Matched filtering [18] is a method for determining the presence and location of a target signal within some other signal,

or set of signals. It is based on the Cauchy-Schwarz inequality.
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The Cauchy-Schwarz inequality In linear algebra, the Cauchy-Schwarz [19] inequality states that for all

vectors u and v of an inner product space5 it is true that

|〈u, v〉|2 ≤ 〈u, u〉 · 〈v, v〉 (67)

where |〈·, ·〉| is the inner product.

Lets consider the maximization |〈 x
||x|| ,

y
||y|| 〉|. From the Cauchy-Schwarz inequality (Eq.(67)) we get

∣∣∣∣
〈

x

||x|| ,
y

||y||

〉∣∣∣∣
2

≤ 1 (68)

since

〈x, x〉 = ||x||2 (69)

and ∣∣∣∣
∣∣∣∣
x

||x||

∣∣∣∣
∣∣∣∣ = 1 (70)

Hence through Eq.(68) we can see that |〈 x
||x|| ,

y
||y|| 〉| attains a maximum when y = ax for some a ∈ C,R. The lower

bound, which is 0, is attained when x and y are orthogonal. In informal intuition, this means that the expression is

maximized when the vectors x and y have the same shape or pattern and minimized when x and y are very different.

A pair of vectors with similar but unequal shapes or patterns will produce relatively large value of the expression less

than 1, and a pair of vectors with very different but not orthogonal shapes or patterns will produce relatively small

values of the expression greater than 0. Thus, the above expression carries with it a notion of the degree to which two

signals are "alike", the magnitude of the normalized correlation between the signals in the case of the standard inner

products.

In the following two note detection methods we make use of the matched filter detector by taking the normalized

version of the input spectrum(i.e. divided by its norm)

Q̂(k) =
Q(k)

‖Q(k)‖ (71)

5In linear algebra, an inner product space is a vector space with an additional structure called an inner product. This additional

structure associates each pair of vectors in the space with a scalar quantity known as the inner product of the vectors. Inner products

allow the rigorous introduction of intuitive geometrical notions such as the length of a vector or the angle between two vectors.[wiki]
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and matching it with our library’s similarly normalized spectra,

Ŝi(k) =
Si(k)

‖Si(k)‖ (72)

with i ∈ [1, 88] indicating the note number.

We measure the input’s spectrum Q̂(k) "similarity" with Ŝi(k) for all i.

C(i) = |〈Q̂(k), Ŝi(k)〉| (73)

and finally decide on the detected note id,

id = argmaxi∈[1,88]C(i) (74)

where the detected note id, gives C(i) its maximum value(closest to 1).

We will see two implementations of Matched Filtering, each one comparing the input normalized spectrum with

different pre-existing sets of normalized spectra. The first case uses a library of spectra from several pianos, including

the input’s piano while the second one uses a library of spectra "mimicking" the representation of ideal note spectra.
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Case 1. Library of several pianos’ spectra The first attempt to minimize the effect of every piano’s unique

spectral properties and "anomalies", uses a library of spectra obtained after averaging spectra of piano notes played

in PN separate pianos.

Implementation steps

1. By using the Cubase software we loaded all the notes from two virtual pianos, in both piano cases with a sampling

frequency Fs = 44100 Hz. The excerpts were 2 seconds in duration, comprising only from the note(i.e. no zeros

before or after the note). These excerpts, along with the notes obtained by Iowa Univeristy (see section 2)

"filled" our note library.

2. For every piano note we obtained its normalized spectrum as shown in Eq.(71).

The pre-existing set’s spectrum for every note is once again found as

Ŝ′i(k) =
S′i(k)

‖S′i(k)‖ (75)

where S′i(i) is found as the average spectrum of every note

S′i(k) =

PN∑
Ŝpn,i(k)

PN
(76)

over all PN pianos.

3. We complete the process as suggested by Eq.(73) and Eq.(74).

Case 2. Library of ideal spectra This time the pre-existing library consists of spectra "mimicking" ideal piano

note spectra. There have been attempts to create such spectra by evaluating the total inharmonicity presented in piano

notes(section) [3]. However, such an implementation requires detailed and excessive research on physical characteristics

of the specific piano, which is outside the scope of this paper. In our method we suggest a rough modeling of the

inharmonicity.
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Figure 21: Ideal spectrum of note A2(13) (a) and note A7(85) (b). For (b) masks are less,lower

and wider

Implementation steps

Constructing the ideal spectra of a single note

1. The goal is to create a signal, with rectangular pulses or regions of certain width and height, around frequencies

where harmonics would ideally appear.

Determining harmonics’ region’s central frequency For the region referring to the fundamental frequency

F0 we determined its central frequency as suggested by the Railsback curve(Fig. 3).

H0(i) = P (i) +R(i) · (P (i+ 1)− P (i)) (77)

where P refers to the tempered pitch as shown in Table 1 and R refers to the Railsback curve value for note i.

For the rest of the regions we assumed their central frequencies without taking the partial inharmonicity effect

into account, even though heuristic approximations can improve the accuracy of ideal "locations".

Hj(i) = (j + 1) ·H0(i) (78)

Hj(i) referring to the jth harmonic’s frequency for note i.
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Determining harmonics’ region’s width The width of every region is set, taking into account a once again

rough consideration of inharmonicity. In general, since magnitude peaks of higher notes are wider(i.e. 2 or 3

slightly off-tune strings) we opted for a wider, by a widening factor, region when looking at higher frequencies

in general.

w(i) = 2 + cP (i) (79)

where w is the width of the region aiming to detect the peak of the jth harmonic of note i,c is the widening

factor and P is the pitch. Notice that our approximation assumes a single width for every note irrespective of

harmonic number j, thus inadequately modeling the partial inharmonicity.

2. In our implementation we constructed J = 8 such regions for every spectrum, "mimicking" the first 8 harmonics

of every note. However, for higher fundamental frequencies(i.e. higher notes), some harmonics’ frequency might

exceed not only our analysis bandwidth, but also trace frequencies where harmonics have very little to zero

energy. For these notes fewer regions were constructed.

3. To keep the comparison "fair" between ideal spectra containing different number of regions, it is of bigger

importance to normalize these spectra as shown in Eq.(71).

4. After obtaining the ideal spectra and comparing them with the input, we observed that most false detections

were cases where ideal spectra of harmonically related notes(Section 2.2.2), lower to the actual note, all gave a

high match(Fig. 22b). To override this false matching, we used a method to verify existence of the fundamental

frequency detected at this stage.

Checking for fundamental frequency "existence" This intermediate method can improve the performance

of the ideal spectra method in expense of computational cost. It falls short at tracing fundamentals of low piano

notes, due to the phenomenon of "hidden" fundamental, also explained in Section 2.2.2. The way to verify the

existence of the fundamental is as follows.

(a) For the intermediate, still to be verified, detected note i′d as found from the matched filter detector we

introduce a spectral area, similarly to bandpass filtering our spectrum. This area’s left(low) and right(high)

frequency limits are found as

L(i′d) = b(1− b)P (i′d)c (80)

53



and

R(i′d) = b(1 + b)P (i′d)c (81)

where b is the area width term, adjusted to ensure isolation of at most one harmonic and P once again

refers to the pitch, or fundamental frequency value of the intermediately detected note i′d.

The area is finally defined as

Aa(i′d) = Q̂(a) (82)

where a = L(i′d), L(i′d) + 1, . . . , R(i′d)− 1, R(i′d) and Q̂ is the input’s normalized spectrum.

(b) For the area Aa(i′d) we measure a statistical property referred to as maximality. The maximality of the

area is found as

M(A) =
max(A)

A
(83)

measuring the ratio of the max of A to the area’s mean value A. M(A) basically measures how distinct the

maximum value(peak) is, compared to the surrounding frequencies’ magnitude values. In general, peaks

actually referring to harmonics tend to be a lot higher than the mean value of the surrounding area, resulting

in high maximity values. The final decision about the validity of the intermediate detection is done by fixed

thresholding the value of M .

Mi′d
(A) > T =⇒ id = i′d (84)

for a fixed threshold T , heavily correlated with the widening term b eq(), and id referring to the final valid

detection.

(c) In the case where the intermediate detection i′d is not valid, i.e. Mi′d
(A) < T then C(i) is updated

C(i′d) = 0 (85)

and the fundamental validity check is performed again for the maximum of the updated C(i). The whole

procedure is repeated, until a valid fundamental has been detected.

5. The valid fundamental decides the final detected note id.
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Figure 22: Matched filter output C(i) for case 1 for note B3(39) (a) and case 2 for note

F4(45)(b). In case 2 (b) the high output for harmonically related to the F4 lower pitches

highlights the need for the fundamental check process.

Comparison between the two matched filtering cases

Case 1, has the benefit of "masking" some spectral anomalies present in piano notes spectra(Section 5.1), by

averaging them. However it only yields good results when looking for notes coming from a piano already accounted

for in the average spectra. In other cases the library must be updated with spectra of the piano to be detected.Still

there are several false detections, where the detection is the high octave of the input note. Additionally, even though

in our case when adding more pianos to the library, the performance for every piano separately slightly improved, we

can assume that this is not necessarily true for an ever increasing number of pianos in the library, as there is a high

chance the average spectra will become extremely noisy, especially at lower frequencies where fundamental frequencies

are not so distinctly separate.

Case 2, tackles the main weakness of case 1, by attempting to offer a library suitable for any piano input. However

since inharmonicity(a highly unique characteristic of any piano) is not modeled adequately enough,the intention for

globality of the library is somehow tackled. Furthermore the effectiveness of the matched filter detector is reduced,

since in many occasions a correct detection is obtained after running the fundamental validity check a few times.

This means that methods using solely methods similar to the fundamental frequency check, might be proven more
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effective in a certain set of note inputs. Lastly, since the regions comprising the ideal spectra are of a fixed width and

height, timbre of notes is merely taken into account, resulting to heavily varying performance in respect of different

interpretations of piano notes.

Fig. 22 shows the matched filtering method output for both cases.

5.3.2 Note detection using harmonics’ energy

This method is in many ways, different than the method of matched filtering. The basic concept is that for every

possible note i we obtain a measure of the energy of the first N peaks and come to a detected note decision based on

the energy measurement made.Lets follow the algorithm, step-by-step.

The following procedure is repeated N times,once for every peak, for every note i, starting from i = 1 up to 88.

1. For the ith note, the nth peak refers to the maximum of the updated Q̂n−1 spectrum, i.e. the spectrum before

the nth peak picking(e.g. in Fig. 23a the first peak(n = 1),is the maximum of input original spectrum Q0 as

obtained in Eq.(66). Such a notation for input spectrum Q(i) is needed, as for after every repetition and peak

detection, the under examination spectrum Q(i) is updated accordingly.

2. Updating the spectrum After the detection of the nth peak we save its respective frequency as mn(i) and

define an area with and around this peak. The limits of this area are found as

Ln(i) = mn(i)− bP (i)c (86)

and

Rn(i) = mn(i) + bP (i)c (87)

where P (i) is the pitch of note i. To avoid looking for indexes outside the size of Q0, Ln(i) is bounded to a

minimum of 1, indicating the first element of Q0, while Rn(i) is bounded at a maximum of 44100, namely the

last bin of Q0.

3. The area between Ln(i) and Rn(i) referring to spectrum Qn−1 is now zeroed and the spectrum is updated for

the next peak pick.

These 3 steps are repeated N times for every i possible note, after which we have saved the peak positions

mn(i) , n = 1, 2, . . . , N .
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Figure 23: Peak picking process for A4 note(i = 49)

Continuing, we take the positions of the peaks mn(i) and for every note we take a measurement of the overall energy

of these peaks as shown.

E(i) =

N∑

n=1

Q0(mn(i))2 (88)

where Q0 is the input’s original magnitude spectrum.

Interpretation of the energy measured The reason why we measure the energy of the chosen peaks of all possible

notes, can be examined by steps 2 and 3 mentioned above. Lets explain this graphically in Fig.s 23 and 24.

After locating the first maximum (Fig. 23a), in Fig. 24 we see how the areas to be zeroed are decided. For

A4, coinciding with the input note we see that the peak on the right(first harmonic) is not included in the zeroing

area(yellow line)and thus reserved for a possible later pick. However when the area referring to A#4(red line) is zeroed

this peak is also zeroed. So a "valuable" peak is lost and not counted for E(50). as shown in Fig. 23b.This through

Eq.(88) will result to an E(50) < E(49), thus indicating the first occurred energy drop. This energy drop, shown in

Fig. 25a, will further increase as we calculate the energy for the N first peaks found for every i.

Decision We finally take the absolute values of the first derivative of the energy |∆E| and decide detected note id

as the index of its first non-zero element, as shown in Fig. 25b.
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Figure 24: Zero area determination for several notes i for input spectra of A4. Red line for note i = 50 indicates the

first area(as i increases) to zero out a "valuable" peak.
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Figure 25: Energy measured and decision making

Evaluation of the method The described procedure is global, in the sense that it does not take any particular piano

characteristics into account. However, the issue of inharmonicity is only conditionally tackled. The method proposed,

will only produce satisfactory results if the measured maxima N , all refer to actual harmonics of the spectrum and

contain at least one pair of successive harmonics in order to be able to detect the first i for which an energy drop is

detected. To achieve that we opted to run the algorithm for three values of N chosen under these criteria.

N1 = 10 This relatively big number of peaks chosen, helps identify low notes. As we saw in previous sections, for

low notes the lower harmonics tend to have less energy. At the same time lower notes have more harmonics, so we can

safely assume that only useful peaks are calculated. Lastly, partial inharmonicity is tackled by using this relatively

big N1. Not only do we succeed at least a pair of successive harmonics, but moreover a pair found at a fairly low

harmonic number. That ensures that the partial inharmonicity has not grown excessively at these harmonics, offering

a more trustworthy zeroing area step.

N2 = 4 In order to achieve successful note detection for the mid range of the piano , we run the algorithm for

N2 = 4. N1 will tend to take into account peaks that do not refer to actual harmonics, since notes in the middle of

the piano range might show less than 10 harmonics.
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N3 = 1 For similar reasons we introduce the last case of N3 = 1, for detecting notes in the mid-high range of the

piano. This is also called the idle state of the algorithm, since the essential detection procedure of the algorithm is

bypassed. In this case, the detected note id is found as

id = argmini∈[1,88]|mN3
− P (i)| (89)

where mN3 is the frequency of the only peak picked, and id is the detected note found as the note whose tempered

pitch is closer to mN3
.

Candidates So for every input note spectrum I0 the algorithms returns a set of three detected note candidates,

each referring to a different number N of measured peaks. Even though this may not seem very appealing at start,

the fact that the actual note is guaranteed to be in this set, some extra methods can be used to choose effectively

between notes in the candidate set.
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6 Conclusions

As far as onset detection is concerned, time domain methods based on the energy of the signal, although more

straight-forward in their implementation, were proven less effective in detecting less percussive onsets. Same thing

applies to the frequency domain, when searching for onsets based on the high frequency content of a signal. Out of

all the tested methods, the ones based on phase information, namely the phase deviation and the phasor stationarity,

yielded the best results in detecting soft onsets. Also, their ability to ignore pitch characteristics, helps in avoiding

onsets potentially ’masked’ by harmonic relevance of the notes played. The subsequent task of thresholding and

peak-picking the output of the algorithms was in turn proven to be a challenging task. When dealing with music

notes where interpretation is affecting the level and distinctiveness of peaks, fixed thresholding was proven to be below

par. However, techniques utilizing adaptive thresholding, even though more effective, are still reliant on sometimes

arbitrary trial and error fine tuning, before their execution. As far as the note detection methods are concerned,

matched filtering methods assisted with predefined spectra libraries although robust in theory, are heavily affected by

the inharmonicity of the piano, namely the innate deviation of higher order harmonics from the theoretical multiples of

the fundamental frequency. It is worth mentioning however, that this method has more potential in chord detection as

the ’masks’ of detected notes are easy to be progressively subtracted from the original spectrum. The second method

based on harmonics’ energy, attempted to bypass the effect of inharmonicity. The algorithm proposed, aims to pick

at least a pair of consecutive order harmonics in its candidates in order to decide the fundamental frequency. For

this reason, and taking other piano note characteristics into consideration, the method is run thrice; for 3, 5 and 10

maxima, ultimately offering a set of three note candidates with the real note guaranteed to be a member of it. This

work around was made in order to find a method to cover the whole range of the piano, more so the ’problematic’ low

and high regions where inharmonicity is more prominent.

In the course of this work, a lot of time and effort was spent on trying to model the effect and nature of inharmonicity.

It is obvious, that machine learning techniques, might be proven very helpful in modelling the variety in harmonics’

deviation and also differences between pianos. Same techniques could be applied, in order to generate more confident

thresholding or peak picking steps, in determining false positives detected during the onset detection process.
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