
Design and implementation of a
framework for efficient remote

reconfigurable accelerator deployment
in disaggregated environment

Pissadakis Emmanouil

Department of Electrical and Computer Engineering
Technical University of Crete

Supervisor
Professor Dionisios Pnevmatikatos

Committee
Assistant Professor Vasilios Samoladas

Professor Ioannis Papaefstathiou

In partial fulfillment of the requirements for the degree of Master of Science in Engineering in
computer Science

JULY, 2019

Abstract

Cloud computing usage has drastically increased over the years, providing data security and

privacy which are prime concerns these days. The scalability of the cloud capacity, as well as the

accessibility of the provided services, constitute relevant factors for the cloud computing evolution.

Data centers are mainly deployed as cloud computing resources to deal with large storage and

computation requirements. The need for specialized hardware acceleration in this domain is well

established and intensified by the insatiable demand for compute power. Hardware accelerators

can also provide high energy efficiency for many application domains in comparison with current

architectures based on general purpose processors. The fixed amount of the available resources

constitutes the major disadvantage of traditional data centers. Resource disaggregation alleviates

this issue while offering the opportunity to manage resources more efficiently. In disaggregated

computing environments, where all data transfers between remote nodes are realized via packet

exchanges over a rack-scale network, reducing communication and synchronization is a prerequi-

site to the effective employment of remote acceleration. To this end, this thesis presents ReFiRe

[1] (Remote Fine-grained Reconfigurable acceleration), a generic deployment framework with na-

tive support for partial reconfiguration that allows considerable reduction of communication needs

between a processor and remote accelerators. Custom instructions that encapsulate complex se-

quences of operations and their respective synchronization requirements deployed for shifting control

flow and partial reconfiguration decisions to the remote side. Considering the high complexity of

the instruction-initialization procedure, a source-to-source transformation framework based on the

ReFiRe infrastructure was further implemented. Through this framework, these instructions are

automatically generated according to application requirements transparently to the user level. To

evaluate ReFiRe, three benchmark applications were employed. A 2D-FFT algorithm, a genomics

application that detects positive selection in genomes and a Binarized Neural Network, demonstrate

that offloading computations to remote accelerators using ReFiRe leads to superior aggregate per-

formance on the same specialized hardware platform compared to using dedicated accelerator calls

on a per-operation basis.

This work has been supported in part by EU H2020 ICT project dRedBox, contract #687632

Acknowledgments

Many people helped and inspired me in order to complete this thesis. First, I would like to

thank my professor Dionisios Pnevmatikatos for giving me the opportunity to work in the field

that I am interested in. Second, special thanks to Nikolaos Alachiotis for the cooperation and his

constant technical support during this thesis, as well as to Dimitris Theodoropoulos for his helpful

advises. Additional thanks to my friends for their vital help. Finally, I am indebted to my family

for their mental support during my studies.

Publications

1. Emmanouil Pissadakis, Nikolaos Alachiotis, Panagiotis Skrimponis, Dimitris Theodoropou-

los, Thanasis Korakis and Dionisios Pnevmatikatos ”ReFiRe: Efficient Deployment of Re-

mote Fine-Grained Reconfigurable Accelerators”, International Conference on Field-Program-

mable Technology (FPT), Okinawa, Japan December 2018

2. Panagiotis Skrimponis, Emmanouil Pissadakis, Nikolaos Alachiotis and Dionisios Pnevmati-

katos ”Accelerating Binarized Convolutional Neural Networks with Dynamic Partial Recon-

figuration on Disaggregated FPGAs”, paraFPGA 2019

Contents

Abstract i

Acknowledgments ii

Publications iii

List of Figures vi

List of Tables viii

1 Introduction 10

1.1. Motivation . 11

1.2. Thesis contributions . 11

1.3. Thesis outline . 12

2 Background 14

2.1. Cloud computing . 14

2.2. Data center disaggregatation . 16

2.3. The need for hardware acceleration . 19

2.4. FPGA-CPU communication in data centers . 21

2.5. Remote-accelerator deployment challenges . 23

3 Related work 25

4 The ReFiRe framework 30

4.1. Hardware accelerator architecture . 31

4.2. Advanced Co-processor Instruction (ACI) . 32

4.2.1. ACI Specialization principles . 33

4.2.2. ACI memory components . 34

4.2.2.1. SYNC, COMPUTE and PARAMETER area 34

4.3. Host device . 35

4.3.1. ReFiRe Application Programming Interface (API) 35

iv

CONTENTS v

4.3.2. Source-to-source transformation framework 37

4.3.3. The ACI constructor . 38

4.3.4. The application description . 39

4.3.5. ACI application mapping . 41

4.4. Accelerator device . 43

4.4.1. ACI decode control . 43

4.5. ACI sequence diagram . 45

5 Evaluation 48

5.1. System implementation . 48

5.2. 2D-FFT accelerator for image processing . 50

5.2.1. Application description . 50

5.2.2. ACI application mapping . 50

5.2.3. Experimental results . 51

5.3. Detection of positive selection in genomes . 53

5.3.1. OmegaPlus . 53

5.3.1.1. Application description . 53

5.3.1.2. ACI application mapping . 53

5.3.1.3. Experimental results . 54

5.3.2. Linkage Disequilibrium calculation for DNA input data 57

5.3.2.1. Application description . 57

5.3.2.2. ACI application mapping . 58

5.3.2.3. Experimental results . 58

5.4. Binarized neural network . 59

5.4.1. Application description . 59

5.4.2. ACI application mapping . 61

5.4.3. Experimental results . 62

5.4.3.1. Static Architecture . 63

5.4.3.2. PR Architecture . 63

5.4.3.3. Comparison with other works . 64

5.5. ReFiRe performance versus primitive remote calls 65

6 Conclusions and future work 68

6.1. Conclusions . 68

6.2. Future work . 69

References 70

List of Figures

2.1 The three service models provided in the cloud environment as presented by Oliver Knodel

[2]. 16

2.2 Traditional data center network. 17

2.3 Disaggregated data center network. 17

2.4 A limitation of current data center infrastructures regarding resource utilization (a), and

the respective resource allocation scheme of dReDBox (b). 18

2.5 Example of a memory-intensive application and the respective resource allocation schemes

in a current infrastructure (a) and dReDBox (b). 19

2.6 Dark silicon gap, as presented by Hadi Esmaeilzadeh et al. [3]. 20

2.7 Options for Attaching an FPGA to a CPU. 22

3.1 Heterogeneous computing framework overview and framework integrated stack, depicting

both the software and the hardware layers. 26

3.2 EPEE system overview. EPEE consists of a software component and a hardware component,

each includes a core layer and a extension layer. 27

4.1 ReFiRe framework overview. 30

4.2 The ReFiRe architecture. 31

4.3 Hierarchy of ACI Compute classes, providing an example of two TASK configurations for a

set of three accelerator cores, A, B, and C. I (input) and O (output) per task are served by

a dedicated DFD. 32

4.4 ACI memory component overview. 35

4.5 Source-to-source transformation framework overview. 37

4.6 The ACI constructor flowchart (for the TASK class). 38

4.7 The ACI constructor flowchart (for the LOOP class). 39

4.8 Application description components. 40

4.9 ACI class hierarchy for the 1st application. 42

4.10 ACI class hierarchy for the 2nd application. 43

4.11 Remote accelerator state overview. 44

4.12 Sequence diagram of inter-node interactions for deploying remote hardware acceleration in

a master-worker scheme using ACI. 47

vi

LIST OF FIGURES vii

5.1 The prototype platform consisting of two ZCU102 boards interconnected through SFP-based

link. 49

5.2 2D FFT implementation using 1D FFTs. 50

5.3 ACI class hierarchy representation that enapsulates 1D FFTs accelerator cores. 51

5.4 Attained performance improvement from encapsulating the for-loop operations in a single

ACI via LOOP objects, rather than controlling them from the HOST via explicit per-

iteration synchronization. 52

5.5 Execution time breakdown for 1024-point 2D-FFT, with and without the ACI LOOP func-

tionality. 52

5.6 ACI representation for the calculation of LD scores and omega statistic values. 55

5.7 The effect of acceleration varies per configuration (table 5.4), demonstrating the performance

role of the computation-to-synchronization ratio in remote accelerator deployment, and the

ACI-enabled performance boost. Analyses A, B, and C are described in terms of total LD

and omega values. 56

5.8 ACI hierarchy for calculating LD scores with DNA input data. 58

5.9 Comparison of software task execution on HOST and ACCEL device. 59

5.10 Binarized Neural Network architecture. 62

5.11 Illustration of the ACI format for the Static Architecture and the PR Architecture for

FPGA-based BNN acceleration. 63

5.12 Execution time to process 10,000 images using the Static Architecture and the PR Archtitecture

when the batch size (number of images in-between PR events) grows up to 500. 64

5.13 Attained performance improvement from adopting ReFiRe for remote accelerator deploy-

ment, rather than having primitive remote calls. 67

List of Tables

5.1 Hardware resources of the ZCU102 Evaluation Board 49

5.2 Comparison between communication, computation and memory access percentage

of execution time, for various 2D-FFT sizes, with and without the ACI LOOP

functionality, assuming 4 results/cycle FFT core throughput. 53

5.3 Resource utilization for the 3-RAS design point and the three accelerators (ACCEL1-

3) for OmegaPLus [4]. 55

5.4 Execution configurations for accelerators ACCEL1-3. 56

5.5 Performance comparison between ReFiRe and SDSoC per algorithm stage (LD:ACCEL1-2,

ω statistic:ACCEL3) . 57

5.6 Resource utilization for the three BNN accelerator cores on the Zynq Ultrascale+

MPSoC . 64

5.7 Performance comparison with other FPGA-based CNN/BNN accelerators. The

presented accelerator system employs the same set of accelerator cores as Zhao et

al. [5]. 65

5.8 Comparison between the required ACI and primitive calls, for three distinct work-

load types. 65

5.9 ACI memory size for distinct workload sizes. 66

viii

Nomenclature

ACI Advanced Co-processor Instructions

ANN Artificial Neural Network

API Application Programming Interface

AS Accelerator Slot

BNN Binarized Neural Network

CNN Convolutional Neural Network

CPU Central Processor Unit

DC Datapath Constructor

DFD Data Fetch and Dispatch

DMA Direct Memory Access

DPR Dynamic Partial Reconfiguration

FPGA Field Programmable Gate Array

ICAP Internal Configuration Access Port

MM Memory Mapped

PF Parameter File

PR Partial Reconfiguration

PRR Partial Reconfiguration Region

RM Reconfigurable Module

ix

Chapter 1

Introduction

Over the past years, cloud computing usage has drastically raised since a pool of available resources

are available over the internet anytime. The quality of services, alongside the descending costs

and the verified reliability, have driven companies of all sizes to adopt this technology. Rather

than having desktop software, cloud computing offers space for maintaining data over the network,

while providing recovery services that handle data restoration reducing data loss possibility. Device

diversity and security are also important parameters of cloud computing employment.

Dealing with storing and accessing large amount of data by companies or organizations increases

the need of data center deployment in cloud services. Data centers are defined as locations where

computing and networking equipment is concentrated for the purpose of processing, storing and col-

lecting large amount of data. Traditional data centers usually consist of a static number of servers,

each having a specific amount of memory and computational power. The major drawback that data

centers have to cope with is the variance of the applications’ requirements. Many applications may

utilize a large amount of data while processing resources are under-utilized. Considering traditional

data center architecture, the efficient resource utilization constitutes an important research field.

To alleviate this issue, resource disaggregation has been proposed. Separating data-center com-

ponents into particular servers could perform optimal utilization. The traditional architecture

which is based on the monolithic server approach should be replaced with a resource-centric ar-

chitecture where pools of processors, memory and storage are interconnected through the network.

Additionally, the rapid growth of hardware application acceleration while maintaining low energy

consumption could derive FPGAs as an additional execution resource.

Exploiting the efficient resource utilization of the disaggregated data centers, as well as the

improved performance of the hardware accelerators, this thesis introduces a framework for efficient

remote reconfigurable accelerator deployment in disaggregated environment aiming to reduce the

communication/synchronization ratio between the remote nodes.

10

CHAPTER 1. INTRODUCTION 11

1.1 Motivation

The end of Dennard scaling [6] in CMOS technology in combination with the increasing demand

for computing power led to the implementation of domain-specific execution resources in today’s

computing platforms. The major conundrum that developers have to resolve in the hardware ac-

celerator deployment, is the trade-off between efficiency and applicability. Which of these options

should be the most critical factor in the accelerator development? Deploying an accelerator archi-

tecture with increased specialization that could derive better performance at the cost of reduced

applicability and load imbalance risk (coarse-grain accelerators), or constructing accelerators with

reduced specialization (fine-grained accelerators) to achieve better load balance at the cost of a

higher synchronization requirements? The main performance principle is the same, and comes

down to how to increase the time spent on computation (accelerator operation) while reducing the

time spent on synchronization (host-accelerator communication). This naturally leads to larger,

coarser-grained, less applicable custom architectures. Consequently, to broaden an accelerator’s

scope of application, it is a prerequisite to reduce synchronization, which will, in turn, pave the

way for finer-grained and more generic accelerator architectures since the more basic the operation,

the wider the application domain.

The main drawback of the traditional data centers was the problem of the fixed resource pro-

portionality. This problem is addressed in disaggregated data centers which are based in distinct

components that perform specific functionality (e.g. memory, compute, acceleration, etc). Thus,

efficient resource utilization according to each application requirements could be accomplished.

Hardware accelerators are important architectural components in the context of data center cus-

tomization because they can achieve high performance while maintaining lower energy consumption.

In disaggregated computing platforms, where all the nodes are distributed through the network,

the need of low-latency communication between the host-processor and the remote accelerator is

a prerequisite. Especially, when hardware execution resources are deployed in a disaggregated

environment, it is of paramount importance to alleviate the high communication and/or synchro-

nization requirements for remote, fine-grained accelerators while providing flexibility during the

deployment procedure.

1.2 Thesis contributions

In this thesis, we propose ReFiRe, a generic deployment framework that introduces various degrees

of flexibility in reconfiguring at run time and orchestrating fine-grained accelerator cores on the re-

configurable fabric of a remote, FPGA-based multiprocessor system-on-chip (MPSoC). Particularly,

the contributions of this thesis are:

CHAPTER 1. INTRODUCTION 12

• The proposal of a novel hardware architecture that dynamically interconnects partially re-

configurable regions (PRRs) to construct larger pipelines aiming to boost the performance

of the deployed accelerator cores (reconfigurable modules (RM)) by increasing computation

in-between synchronization and/or partial reconfiguration (PR) events.

• The design of Advanced Co-processor Instruction(ACI) for offloading operations to RMs. An

ACI consists of variable length instructions that grant high degrees of flexibility in deploying

remote accelerators.

• The implementation of high-level API that exposes all the ACI-construction functionality at

the user level, enabling applications to deploy, interconnect, and reconfigure remote acceler-

ators at run time.

• The implementation of a source-to-source transformation framework built on the high-level

API to construct ACIs according to application requirements, transparently to the user level.

• The evaluation of a row-column 2D-FFT algorithm, a genomics application that detects pos-

itive selection in genomes and a Binarized Neural Network over ReFiRe, demonstrating that

offloading computations to remote accelerators using ReFiRe leads to superior aggregate per-

formance on the same specialized hardware platform compared to using dedicated accelerator

calls on a per-operation basis.

• The evaluation of two alternative execution scenarios of the Binarized Neural Network, in

Static and Partial Reconfigurable architectures exploiting DPR and intra-layer parallelism

through dedicated features of the ReFiRe. More importantly, the proposed approach is

highly generic and versatile, thus allowing to boost performance of existing CNN and/or

BNN accelerators using DPR and parallelism, with negligible development effort.

1.3 Thesis outline

Chapter 2 provides a background of cloud computing while analyzing how FPGAs could be effi-

ciently exploited in these environments. Furthermore, disaggregated data centers’ architecture is

analyzed and explained how it addresses the traditional data center restrictions. Chapter 3 presents

Host - FPGA communication related work as well as FPGA-based implementations in data center

environment. In chapter 4, the ReFiRe framework is going to be analyzed. Especially, Host and

FPGA side components as well as the implemented communication method are going to be de-

picted. Furthermore, this chapter presents the ACI class hierarchy and the specialization principles

CHAPTER 1. INTRODUCTION 13

that ReFiRe relies on. Chapter 5 analyzes the prototype platform used for the evaluation. Chapter

6 contains experimental results for the 2D-FFT, a genomics application and a Binarized Neural

Network implementations over ReFiRe, while chapter 7 concludes this thesis and suggests future

improvements.

Chapter 2

Background

2.1 Cloud computing

Cloud computing could be defined as the delivery of on-demand computing services including

servers, storage, databases, networking, software, analytics, and intelligence over the internet. With

cloud computing, users can access files and use applications from any internet-connected device.

Data in the cloud are usually stored stored on many physical and/or virtual servers that are hosted

by a third-party service provider. Low-cost, high performance productivity and reliability are the

main benefits of cloud computing.

Cloud computing service models describe how cloud services are made available to clients and

divided into three categories.

1. The Software as a Service (SaaS): Provides online software solutions to the clients.

Everything is available over the internet when clients log in to their account online. They

can usually access the software from any device anytime. Google Apps, Dropbox, Salesforce

and Cisco WebEx are the most common examples in this category.

2. The Platform as a Service (Paas): Hardware and software tools available over the

internet. Usually an API is provided through this service that includes a set of functions

for programmatic platform management and solution development. AWS [7], [8] Elastic

Beanstalk, Heroku and Windows Azure are the most commonly used examples.

3. The Infrastructure as a Service (Iaas): Via this service, infrastructure components

are provided to the clients. Thus, clients have access to the lowest-level software like vir-

tual machines, storage, networks and firewalls. Amazon Web Services is one of the largest

providers.

Cloud computing usage has immensely increased through the years because of the easy access

in any infrastructure/software available over the network anytime. Furthermore, FPGAs (Field

14

CHAPTER 2. BACKGROUND 15

Programmable Gate Arrays) acceptance for computation acceleration has also increased. High

throughput, predictable latency while maintaining reprogrammabilty and low power consumption

could be accomplished by deploying FPGAs as execution resources. Hence, the simultaneous rise in

popularity for both the cloud and FPGAs grew the demand for deploying FPGA-based applications

in cloud environments. Fei Chen et al. [9] proposed four fundamental requirements that had to be

addressed in order to integrate FPGA resources into the cloud

1. Abstraction: FPGAs must be exhibited to the cloud via an easy to use API. FPGA pro-

gramming is a difficult process that requires strong programming skills. Pursuant to this

demand, if the provided interface isn’t well established then deploying a FPGA in the cloud

could be a very difficult and time consuming procedure.

2. Sharing: FPGA resource utilization among various users in the cloud is the most important

requirement that had to be addressed. Sharing and isolating the available resources should

be efficiently accomplished targeting to provide anytime the maximum available amount to

the users.

3. Compatibility: Many different tool chains and applications are used for the FPGA pro-

gramming in stand alone environments. Thus, the software development kit that is going to

be provided in the cloud had to compatible to the most commonly used of them.

4. Security: As FPGAs were not designed for multi-user needs splitting FPGA resources in

multiple users could derive multiple issues. The reliability of the system is a very important

factor for a user who wants to deploy his system on the cloud. If there is no security in users

transactions and a shared compute host could be easily brought down, then users aren’t going

to be attached in this cloud.

Knodel [2] defined three service models for FPGAs in a cloud environment. Their work mainly

focused on enabling remote FPGAs for acceleration and also providing background acceleration

for data centers with multiple users on the same physical FPGA. The main component of their

system (Reconfigurable Common Cloud Computing Environment-RC3E) is the hypervisor RC3E.

It manages the resources and provides access to the FPGA devices. The first model as illustrated

in Figure 2.1 below named (The Reconfigurable Silicon as a Service – RSaaS) provides full access

to the reconfigurable resource. Consequently, users can allocate a complete physical FPGA and

can implement the hardware of their choice. Virtual machines with the appropriate FPGAs devices

attached are allocated by the users for driver and hardware interface development.

In this model the whole development flow is provided as a cloud service. The concept can

be compared to the cloud service models Platform as a Service (PaaS) and Infrastructure as a

Service(IaaS).

The Reconfigurable Accelerators as a Service (RAaaS) constitutes the next model. According to

this, the FPGA is accessible through a computing framework in order to be deployed as a hardware

CHAPTER 2. BACKGROUND 16

Desigh Tools/Flow

User/RC2F Driver

RC3E Hypervisor

Desigh Flow

RC2F Driver

RC3E Hypervisor

User/RC2F Driver

RC3E Hypervisor

BITFILE DB

FPGA vFPGA vFPGA
User
App

User
App

User
Bitfile

User
vBitfile vBitfile

Sevice

Psysical
FPGA

Psysical
FPGARAM

CPU User-modifiable

Fixed

User VM n Compute VM n Service VM n

RSaaS RAaaS BAaaS

Figure 2.1: The three service models provided in the cloud environment as presented by Oliver Knodel [2].

accelerator. Memory interfaces on the FPGA as well as a communication API is provided in the

host side. Users have to design the computation core in the vFPGA and a program to send/receive

data. This way the system is safer than the RSaaS model. The RAaaS model can be compared to

the PaaS model.

The third model (Background Acceleration as a Service – BAaaS) is suitable for applications

and services running in common data centers. vFPGAs aren’t accessible to the users. Several

services and applications are running in the background in order to accelerate the application. A

resource management system is responsible for resource allocation and vFPGA reconfiguration.

Because of the transparency of that model, it could be compared to Service (SaaS) model.

2.2 Data center disaggregatation

The prompt growth of cloud computing nowadays improved the use of the data centers. Tradi-

tional data centers are usually defined as servers consisting of a fixed amount of storage, computing

and memory resources as illustrated in Figure 2.2 below. CPU to memory I/O ration is prede-

termined and unchangeable [10]. This add barriers and limitations related to resource utilization

and data management. Assigning a processing intensive task to conventional server will exploit all

the processing resources while memory module will be idle. Nevertheless, servers couldn’t access

these resources because of the restricted current data center architecture. Similarly, for a memory

intensive task the processing core would be unreachable leading to inefficient resource utilization.

The concept of disaggregation in computing servers has the intent to break the boundaries of

CHAPTER 2. BACKGROUND 17

Traditional Datacenter
Network

CPUGPUGPU

CP
U

GP
U

GP
U

CPU

GPU

GPU

Figure 2.2: Traditional data center network.

current compute, memory, network and storage components built in a hard, unique and tightly

connected unit. Next generation data centers will likely be based on the emerging paradigm of

Disaggregated Datacenter
 Network

GPU

GPU

CPU

CPU

Figure 2.3: Disaggregated data center network.

disaggregated function blocks as a unit departing from the current state of main board as a unit.

As shown in Figure 2.3 multiple functional blocks or bricks such as compute, memory and peripheral

will spread through the entire system and interconnected together via one or multiply high speed

networks. This new architecture brings various benefits that are desirable in today’s data centers

such as fine-grained technology upgrade cycles, fine grained resource allocation and access to a larger

amount of memory and accelerators. Disaggregation of resources in the data center, especially at

the rack-scale, offers the opportunity to use valuable resources more efficiently

CHAPTER 2. BACKGROUND 18

Alachiotis [11] proposed dRedbox, a disaggregated architectural perspective for Data Centers.

As above mentioned, traditional data centers usually consist of a fixed ratio of resources (main-

board tray along its hardware and software components). Hence, that restriction exposes several

drawbacks. First, system-level upgrades are very restricted because of the basic mainboard tray.

Upgrading a processor, for instance, usually leads to incompatibility problems related to other

components e.g memory and peripherals. Second, VM initialization/allocation in data centers is

also restricted due to the fixed amount of available resources. Finally, the costs of technological

upgrades are rising significantly due to the hardware dependencies.

Figure 2.4 below illustrates the limitation of current data centers infrastructures regarding

resource utilization for four different VMs in three separate servers. For the first VM 3 MEM Units

and 1 CPU core are allocated in the 1st server, 2 MEM units and 1 CPU core for the second VM

in the second server and 3 MEM and 1 CPU core for the third VM in the third server. According

to the data center infrastructure each VM could be allocated only in a single server. As shown

in figure 2.3 (b) in dRedbox resource allocation VMs could be allocated in different memory and

CPU units. Thus, VM4 is also allocated in the free MEM and CPU space, exploiting resource

disaggregation.

MEM

CPU

MEM

MEM

MEM

MEM

MEM

CPU

CPU

CPU

CPU

CPU

Server-1 Server-2 Server-3

(a)

(b)

VM1 VM2 VM3 VM4

Figure 2.4: A limitation of current data center infrastructures regarding resource utilization (a), and the
respective resource allocation scheme of dReDBox (b).

Overcoming the fixed architectural design of traditional data centers that are based on the

monolithic block design and introducing novel data center infrastructure in order to achieve better

resource allocation derives several challenges that had to be addressed. These challenges are related

to memory, network and hardware/software platform requirements. Inter and intra-node communi-

cation paths between the blocks of the system had to be configured and designed efficiently in order

CHAPTER 2. BACKGROUND 19

to reduce the communication overhead. Furthermore remote memory allocation had to maintain

coherency and consistency while providing minimal remote-memory access latency. Finally, the ap-

propriate software that defines resource typologies, ensures reliability while maintains correctness

had to be configured properly to address system’s problems that may occur.

The dReDBox approach is based on resource disaggregation of arbitrary types such as mem-

ories, processors and FPGA-based accelerators. These blocks defined as bricks, are constructing

pools of resources with system software tools implementing software-defined virtual machines in-

tending on better resource utilization according to each application needs. Figure 2.5 exhibits the

expected resource allocation schemes, for current and dReDBox enabled infrastructure, for serving

the requirements of memory intensive applications. According to traditional data centers (Figure

2.5 (a)) the application had to be dispatched into two different nodes because each of them could

accommodate only 32 GB of memory. As a consequence, only 25% of processing resources per node

is going to be utilized. In dRedBox infrastructure (Figure 2.5 (b)) three dbricks are going to be ini-

tiated. The first will handle the processing requirements of the application while the other ones the

memory requirements. This way,the available dbicks are going to be fully utilized. Communication

between bricks is achieved through high-speed, low-latency optical and electrical networks.

32 GB

CPU 1 CPU 2

25 % 25 %

VM1

32 GB

CPU 3 CPU 4

25 % 25 %

VM2

Node 1 Node 2

Application

32 GB

32 GB

Application

CPU 1

VM1

100 %

dBrick1
dBrick2

dBrick3

(a) Current infrastructures (b) dRedBox infrastructure

Figure 2.5: Example of a memory-intensive application and the respective resource allocation schemes in a
current infrastructure (a) and dReDBox (b).

2.3 The need for hardware acceleration

Processor designers as time follows increase the number of processor cores exploiting Moore’s Law

[12] rather than focusing on single score performance. As single core scaling has been reduced, the

CHAPTER 2. BACKGROUND 20

failure of Dennard scaling [6] will soon limit multicore scaling as well. Hadi Esmaeilzadeh et al.

[3] combined device scaling, single-core scaling, and multicore scaling to model multicore scaling

limits for by measuring the speedup for parallel workloads for next technology generations. For

their approach three different models evaluated which in combination with empirical measurements

projected multicore performance and chip utilization.

As illustrated in Figure 2.6 below the Device scaling model (DevM) provides the area,

power, and frequency scaling factors at technology nodes from 45 nm to 8 nm, considering TRS

Roadmap projections [13] and conservative scaling parameters from Borkar’s recent study [14].

The Core scaling model (CorM) maintains the maximum performance per area for a single-

core. Furthermore, it provides the appropriate power that had to be consumed to keep up the

corresponding performance. Finally, for the Multicore scaling model (CmpM) two classes of

multicore organizations (multi-core CPUs and many-thread GPUs) evaluated. For each of them

considered four topologies: symmetric, asymmetric, dynamic, and composed.

Finally, the product of CmpM, DevM and CorM outcomes the multicore speedup estimation

through the years. As shown if the figure above the amount of ”dark silicon” (transistor under-

utilization) gap continuously grows up. According to this assumption, the deployment of better

architectured single-core processors could lead to better performance in comparison with multicore

processors. To this end, the implementation of fine-grained accelerators seems to be promising for

accelerating large scale applications.

Figure 2.6: Dark silicon gap, as presented by Hadi Esmaeilzadeh et al. [3].

CHAPTER 2. BACKGROUND 21

Michael Ferdman et al. [15] based on their previous work [16] proved that datacenters which

use modern server hardware seems to be inefficient for scale-out workloads that need large-scale

computational resources. According to their assumption modern datacenter architecture is designed

for an extensive market. Current processors are build using increased clock speeds and (power and

area) inexpensive transistors. However, the ending of Dennard scaling [6] made these two factors

limited by power.

Scale-out workloads spend most of their time waiting for cache misses, instead of other work-

loads which are based on parallel execution of the processors. As a consequence, during scale-out

workloads execution cores are mostly idle because of the high instruction-cache miss rates. Fur-

thermore, using wide processors for these applications doesn’t yield significant benefits. Generally,

modern processors sacrifice efficiency in order to be able to accommodate different workloads.

The need of specialized processors that can efficient handle specific applications is necessary for

improving the throughput of the processor and the overall datacenter capability.

2.4 FPGA-CPU communication in data centers

Recently, FPGAs utilization into data centers (DC) has raised. They are mainly deployed to

offload and accelerate specific services that intent low power consumption. As analyzed from

Jagath Weerasinghe et al. [17] the cloud is housed in Data Centers which are based on on ever

shrinking servers. FPGAs must be deployed as independent Data Center resources, so as to be

accessible to the cloud users. They proposed to decouple the FPGA form the CPU and connect

them as standalone resource in the data center network. This way, they could be handled from

the users as a standard server. However, instantiating an FPGA in a data center infrastructure

would be a difficult process. Figure 2.7 below shows the three different approaches for setting up

a large number of FPGAs into a data center. For the first option the FPGA is incorporated into

the same board as the CPU. That approach breaks the homogeneity of the compute module in an

environment where server homogeneity is sought to reduce the management overhead. Moreover,

if they both occur in the same server and a hardware problem exists in one of them, then the

whole node had to be offline, making the other resource unusable. The most popular option is

to implement the FPGA on a daughter-card and communicate with the CPU over a high-speed

point-to-point interconnect such as the PCIe-bus Figure 2.7 (b) creating two separate data center

nodes. However, this is the most popular type it comes with several drawbacks dealing when used

in data center architecture. Initially the use of the FPGA is bonded to the workload of the CPU.

Deploying a small amount of PCIe buses per CPU may lead to FPGA under-provision and vice

versa. Additionally, the number of the FPGAs that an application may need to utilize isn’t known a

priori and usually cause under/over-utilization issues. This approach was also adopted by Microsoft

[18] and going to be analyzed in more detail in the next section. According to the third method as

shown in Figure 2.7 (c) the FPGA is directly hooked to the data center network. Joining a network

CHAPTER 2. BACKGROUND 22

controller interface to an FPGA could enable the communication with other resources, such as

disks and memory. Hence, FPGA modules can then be deployed in the data center independently

of the number of CPUs overcoming the limitations of the two previous options.

CPU FPGA CPU FPGA CPU FPGA

CPU Node CPU Node CPU NodeFPGA Node FPGA Node

PCIe DC Network

(a) (b) (c)

Figure 2.7: Options for Attaching an FPGA to a CPU.

Based on the third option Weerasinghe et al. [19] implemented a prototype architecture of

network-Attached FPGAs for data center applications. This architecture was partitioned into two

main layers: The application layer (vFPGA) and the network service layer (NSL). The vFPGA

has one or more communication links through the NSL to the servers and to other vFPGAs over

the data center network. The NSL provides the network connection for vFPGA to communicate

with servers and other vFPGAs over the DC network. It consists of an application interface layer,

a management layer, and a network protocol stack. The manager layer is responsible for listening

FPGA-configuration-related commands from the external software service. The Application Inter-

face Layer creates the appropriate data path between the FPGAs while the network protocol stack,

contains a network interface and a protocol stack to connect the FPGA to the DC network.

Performance and power are two of the most important challenges dealing with cloud computing.

While performance could be theoretically considered as a fixed factor, the scale of data centers makes

power a particularly significant factor. As above mentioned, these two challenges are usually solved

with accelerator (FPGAs and GPUs) deployment. Generally, accelerators are employed in master-

slave architectures where a host processor controls how the accelerators are used. Naif Tarafdar

et al. [20] proposed an architecture where any computing device could interact with any other

computing device over the data center network. In cloud environments, where most of the clients

aren’t developers, the need of making Field-Programmable Gate Arrays (FPGAs) easier to use as

computing devices is urgent. Further more, removing a layer of complexity from the programmers

provides code portability which is very important. Consequently, the major challenge they had to

deal with was to develop an infrastructure that could hide code complexity in order to make the

acceleration transparent to the users while maintaining efficient resource utilization.

Initially they developed a Message-Passing Interface (MPI) [21] in heterogeneous system [22]

for FPGA - processor communication. This was the basis for implementing an abstraction layer

CHAPTER 2. BACKGROUND 23

between software applications and the hardware. When moving to data center environment they

implemented even more layers of abstraction. The Resource Management and Resource Allocation

layers used to keep track of the computing resources and handle requests for resources from the

users. Openstack [23] services deployed for the networking. Via the interconnect layer the hardware

processor layer of the software node is connected with the Board Support Package Hardware layer

of the hardware node.

Depending on the layers of abstraction that they crated in order to deploy FPGAs on the cloud

a specific software/hardware design flow had to be initiated. This flow is analyzed below :

1. Implementation of all parts of the design in software.

2. Implementation and testing each individual function as an FPGA-offloaded design.

3. Swapping the software-based function with the tested FPGA-based kernel.

Assuming these works the integration of FPGAs in data center environments constitutes a

difficult procedure which prerequisites the implementation of various layers that provide the re-

configuration of the accelerators transparent to the users as well as a secure interconnection that

ensures low synchronization requirements.

2.5 Remote-accelerator deployment challenges

Many FPGA-based accelerators need to communicate with other devices, either because the logic

does not fit on a single FPGA or since the data calls for pre- or post- processing for which another

platform is better suited. The most popular interconnection method as proposed in [24] [25] [26] [27]

[28] [29] is the PCIe bus. Because there is no standard host-FPGA communication library, FPGA

developers have to write significant amounts of PCIe related code. Furthermore, FPGA-related

software drivers had to be implemented from the host side in order to deploy these accelerators.

These efforts are heavy tasks for the developers and usually mislead them from their main task

which is the FPGA accelerator deployment. Flexibility and efficiency are the main challenges that

they have to deal with. The communication must maintain high data throughput while consuming

a minimal amount of FPGA resources.

So far, FPGAs have mainly been used as static accelerators, designed once and used for a single

function. In the cloud context, the ability to modify accelerator functions at runtime in a multi-user

environment is essential. This requires new techniques in hardware design, interfacing, accelerator

management, OS integration, and programming models. As analyzed from Suhaib A. Fahmy et al.

[30] the key challenges that had to be addressed for a cloud-centric integration of FPGAs are :

• Support for dynamically reconfigurable accelerators to support changing application needs

with low latency

CHAPTER 2. BACKGROUND 24

• Maximizing communication throughput to multiple accelerators with fair, segregated sharing

• Maximized usage of FPGA resources at all times through efficient scheduling and allocation

• Easy integration of accelerated tasks within software applications

As extracted from the above mentioned, the most important challenge in the remote accelera-

tor deployment is to minimize the synchronization requirements between the remote nodes while

providing flexibility to the users via an easy to use Application Programming Interface

Chapter 3

Related work

Efficient communication between a host processor and accelerator devices is of paramount impor-

tance to the effective deployment of specialized solutions, which led to various frameworks been

proposed in recent years.

Neves et al. [24] described a flexible interfacing framework to establish communication between

a host processor and custom FPGA-based accelerators over PCI express interconnection. They

proposed a framework that targets heterogeneous systems consisting of an FPGA device connected

with a CPU through high speed interconnection.They evaluated their framework in a a Xilinx 7-

Series FPGA device, connected to a host x86 CPU through a PCI Express interconnection. As

shown in Figure above the reconfigurable fabric composed of two main modules. The Host Interface

Bridge (HIB), that handles all communication with the PCIe and the accelerator module which

is divided into the controller (module that manages the accelerator) , the Host Interface Bridge

for the communication and a global memory. The software layer that takes place in the CPU is

composed of two modules : i) the device driver and a low level Application Programming Interface

which via high level routines provides to the user the ability to load data and code to the processing

cores and manage the accelerator side.

Assuming various application-specific processing elements (PEs) mapped onto an FPGA, a set

of control and execution commands, exposed to the host processor via the low-level API, allow to

reset and initiate operations on the PEs, as well as transfer data to on-chip memory. The PEs

are controlled by four registers that are written by the host processor on a per-command basis,

introducing computation (via the PE identification register) and communication (via the broadcast

register) flexibility. However, explicit synchronization is required at an operation-level granularity,

since only a single command register is employed. ReFiRe can achieve higher computation-to-

synchronization ratios since an ACI can contain an arbitrary number of operations to execute

before the next synchronization event.

RIFFA 2.1 [31] is a low-level PCIe-based framework that establishes CPU-FPGA communication

through dedicated channels between software threads and accelerator cores. Unlike its predecessor,

RIFFA 1.0, it saturates the PCIe link for both upstream and downstream transfers. Furthermore,

25

CHAPTER 3. RELATED WORK 26

Software
Stack

Host
Interface
Bridge

Accelerator
controller

Global Memory

Accelerator

User Application

Low-level API

Device Driver

PCIe Device

Accelerator

S
of

tw
ar

e
La

ye
r

H
ar

dw
ar

e
 L

ay
er

PCIe

Figure 3.1: Heterogeneous computing framework overview and framework integrated stack, depicting both
the software and the hardware layers.

it supports up to 5 FPGA devices, and provides bindings for C/C++, Java, and Python. A set

of basic software functions allows to open/close a communication channel, as well as exchange

data with the accelerator hardware, requiring a custom RIFFA-based implementation to introduce

flexibility in deploying accelerator cores

Guillermo et al. [29], presented the MPRACE framework, an open-source stack for conducting

data transfers between a host CPU and DDR memory on an FPGA board. The solution consists

of a generic PCIe driver, a DMA engine, a hardware-abstraction library for IO, and a buffer-

management library for data transfers. This framework is adopted in many FPGAs to Host CPU

(through PCIe) connections because of the flexibility that is provided through the well established

libraries. On the other hand its interrupt handling method outcomes a major problem. An interrupt

could arrive at the Host before the Transaction Layer Package (TLP)s of the corresponding transfer

had been received. Compared to our approach, through the Advanced Co-processor Instructions

an efficient interrupt handling mechanism is implemented resolving this issue.

Paiágua et al. [27] described HotStream, a communication framework for stream-based archi-

tectures that exhibits a software and a hardware layer. The software layer consists of an API for

deploying complex streaming patterns, and a device driver to map user-specified memory buffers

to the physical address space. In the hardware layer, the Host Interface Bridge handles the data

transfers between the host processor and the accelerator, while the Multi-Core Processing Engine

(MCPE) manages the streaming of data through an interconnected array of processing elements

(PEs). This significantly improves performance due to reduced communication requirements be-

tween the accelerator hardware and the host processor, which is achieved by supporting direct

inter-PE data exchanges.

CHAPTER 3. RELATED WORK 27

User Software Application

Software
extension

Layer

Software Core Layer
(Library/APIs)

Software Core Layer
(PCI Driver)

User Hardware Application

Hardware
extension

Layer

Hardware Core Layer
(Platform Independent)

Hardware Core Layer
(Platform Dependent)

PCIe IP Core

Simple
Interface

Simple
Interface

PCIe BUS

Accelerator
developers's

work

PCIe
communication

libary's work

Providedby
FPGA and
Computer

Manyfactures

Figure 3.2: EPEE system overview. EPEE consists of a software component and a hardware component,
each includes a core layer and a extension layer.

Jian Gong [28] et al. proposed EPEE , an efficient and flexible host-FPGA PCIe communica-

tion library. That library provided a collection of common functions that aid the communication

between the FPGA and the Host computer. Through these functions, the control of registers for

read/write device state registers, read/write memory transactions and PCIe user-defined interrupts

are handled. They targeted to achieve high flexibility through balancing efficiency and functionality.

Figure 3.2 above, illustrates the overall system architecture that they proposed. It consists of

a software and hardware component. The hardware side consists of a platform independent and a

platform depended part. The fist part is responsible for handling host processors activities while

the second one refers to each hardware platform requirements that had to be defined in order to

port their framework in different hardware platforms. The software side, composed of a linux driver

a software Core Layer and a Software extension layer. The driver is responsible for controlling the

FPGA hardware via a set of specific system calls The software core layer provides an easy to use

application programming interface for data transfer. Their implementation focused on satisfying

two major design requirements. The easy to use APIs that is going to be provided to the users and

the transparency of the system by hiding low-level details.

The above mentioned related work focused on PCIe based implementations for host - FPGA

communication and synchronization. On the other hand, in the cloud computing field many worth-

noticed works have already been implemented.

CHAPTER 3. RELATED WORK 28

Amazon offers its F1 machine instance type [32], where developers can accelerate application

tasks on either a single or eight Xilinx FPGA chips. Alibaba has already started providing cloud

resources to its Chinese customers that utilize FPGAs towards improving performance of AI-based

applications [33].

Andrew Putnam et al. proposed Catapult [18] targeting to face the problem of the high compu-

tational capabilities , power efficiency and flexibility that datacenter workloads request. The power

limitations that servers have to deal with, have significantly slowed their improvement. FPGAs

offers the potential of providing application acceleration with low power consumption. Reconfigu-

ration and area utilization are the main challenges of deploying FPGAs in the cloud . To this end ,

Catapult alleviates these issues by providing a low power reconfigurable fabric (embedded into the

servers) that could accelerate portions of large-scale software services.

FPGA and CPU communication is achieved through a custom PCIe interface that warranties

low latency and multithreading safety. A low-level software library provided to the users in order

to configure the fabric with the the appropriate function , for passing the corresponding bitstream

in the FPGA . Additionally, they divided the programmable logic of the FPPGA in two main parts

: the shell which constitutes the reusable part (DRAM controllers, router logic , DMA , high speed

serial links) and a fixed region named role that corresponds to the application logic. They managed

to achieve 90-95% improvement in ranking throughput for a fixed latency compared to the software

approach.

Vineyard [34] mainly focused on the automatic accelerator utilization. To achieve that, they

developed a energy-efficient, integrated platform for data centers that consisted of a software frame-

work and FPGA-integrated servers. Vineyard mainly focused on six objectives: i)The development

of hardware accelerators that could be coupled to server processors in heterogeneous data cen-

ters, ii) The incorporation of energy-efficient processors (ARM cores) with FPGAs targeting low

energy consumption and high performance FPGA-accelerated servers , iii)the implementation of

a programming framework that could hide the complexity of programming hardware accelerators

compatible with multicore programming frameworks (e.g. Spark and MapReduce), iv) development

of a run-time scheduler responsible for controlling accelerators utilization treating power efficiency

and resources flexibility and v) hardware accelerator virtualization in a open source ecosystem

facilitating innovative enterprises.

Finally, Nowatzki et al. [35] analyzed that efficiency is sacrificed for programmability through the

implementation of domain specific accelerators (DSAs). Exploiting Dennard scaling and Moore’s

Law led to the design of hardware architectures that are capable of performing computations for

a specific domain achieving high performance and energy efficiency. On the other hand, these

architectures give up on programmability because of the constantly evolution of the algorithms

which are based on. Additionally , the need of flexibility across workloads between different devices

make DSAs inefficient. Build on this weakness they proposed a programmable architecture that

contains a low-power core, a spatial architecture, scratchpad, and DMA (LSSD) [36]. Based on a set

CHAPTER 3. RELATED WORK 29

of common specialization principles named the “5C’s “ concurrency, computation, communication,

caching, and coordination specialization matched DSA performance with two to four times the

power and area overhead while retaining reprogrammability. Based on their approach, in this

thesis a generic framework for efficient remote accelerator deployment in disaggregated data centers

is going to be implemented. It is based on a simplified LSSD-like hardware architecture on the

remote platform and exhibits concurrency, computation, communication, caching, and coordination

through a set of Advanced co-processor instructions (ACI).

Chapter 4

The ReFiRe framework

This thesis mainly focused on the implementation of the ReFiRe [1] framework. The ReFiRe

allows to efficiently deploy remote/disaggregated accelerators by improving the computation-to-

communication ratio between a host processor and an arbitrary number of accelerator devices.

This is achieved by relying on complex instructions of variable length, henceforth referred to as

Advanced Co-processor Instructions (ACIs), which describe partial reconfiguration events and the

required flow of data among a set of remote partially reconfigurable accelerator cores. Figure

4.1 below illustrates the outline of the ReFiRe framework. It consists of three main parts which

analyzed below:

1. The ACI support library: Provides an easy to use Application Programming Interface to the

users in order to encapsulate software application instructions in (ACI) format.

2. Advanced Co-processor Instruction (ACI): A set of custom instructions for Host-Hardware

accelerator communication, synchronization and remote accelerator deployment.

3. Advanced Co-processor Instruction decode control: A software implemented finite state ma-

chine (FSM) handler that decodes the ACI and controls the reconfigurable area.

ACI
support
library

ACI
decode
control

ACI

HOST ACCEL

REFIRE
FRAMEWORK

CPU CPU

Figure 4.1: ReFiRe framework overview.

30

CHAPTER 4. THE REFIRE FRAMEWORK 31

4.1 Hardware accelerator architecture

An overview of the ReFiRe hardware architecture that corresponds to the Field-Programmable Gate

Array (FPGA) part of the ACCEL device (Figure 4.1) is illustrated in Figure 4.2. It consists of

an array of S Reconfigurable Accelerator Slots (AS), with each AS being a partially reconfigurable

region (PRR) that could accommodate the accelerator core. The datapath Constructor (DC)

modules are responsible for interconnecting the ASs according to each application requirements.

Each DC which provides AXI4-Stream interface includes a crossbar switch and FIFO blocks for data

exchanges between the ASs. Thus, the output of each AS is going to be forwarded to the next one

without the need of external memory accesses. Each accelerator core may be characterized from a

set of parameters that remain the same during the execution. The Parameter File (PF) constitutes

a memory block that accommodates these configuration parameters which are retrieved through

the ACI. The data Fetch and Dispatch (DFD) unit handles the data transfer in between the main

memory and the accelerator cores. For every constructed datapath the DFD unit is responsible

for transmitting them from the memory at the point of entry and writing the output form the

last accelerator’s core point of exit to the appropriate memory space defined in the application.

Each of these units corresponds to a distinct AS and consists of a DMA engine that controls input

and output transactions. Depending on the application requirements, input data to each AS can

derive either from on-chip storage or from external memory (through DFD units). An array of

multiplexers are responsible for controlling the above mentioned input/output destination. The

DC, AS, DFD and multiplexer arrays are configured and controlled by the processing system on

the accelerator hardware based on information extracted from the ACI, which is stored in the

ACIMEM memory block as illustrated below.

PROCESSING
SYSTEM

ACI
MEMORY

PF

OFF CHIP MEMORY

AS 0 AS 1

PF

DFD_0 DFD_1 DFD_X-1

ON CHIP M
EM

ORY

ON CHIP M
EM

ORY

AS S-1

PF

ON CHIP M
EM

ORY

Program
m

able Logic

DC_0 DC_1 DC_X-1 . . .

 . . .

 . . .

Figure 4.2: The ReFiRe architecture.

CHAPTER 4. THE REFIRE FRAMEWORK 32

4.2 Advanced Co-processor Instruction (ACI)

An ACI is a complex instruction of variable length that encapsulates several degrees of flexibility

in deploying a fixed number of fine-grained accelerator cores for an arbitrary number of tasks. It

consists of three main parts, namely Sync, Compute, and Param. The Sync area facilitates host-

accelerator synchronization via the exchange of basic control signals (e.g., start/stop), progress

counters, and status codes. The Compute part includes the entire computational load that an ACI

carries, adopting a hierarchical organization of basic elements of five class types: the TASK, the

LOOP, the THREAD, the PARSEC, and the WINDOW, illustrated in Figure 4.3. The Param area contains

parameter values and corresponding PF locations per task. The five Compute-specific classes are

described below.

PARSEC 0 P
A

R
SE

C
 P

-1

THREAD 0 T
H

R
EA

D
 H

-1

LOOP 0

LO
O

P
 L-1

TASK 0 TASK T-1
A B C C AI

... ...
...... OI O

WINDOW 0

...

W
IN

D
O

W
 W

-1

Figure 4.3: Hierarchy of ACI Compute classes, providing an example of two TASK configurations for a set
of three accelerator cores, A, B, and C. I (input) and O (output) per task are served by a dedicated DFD.

TASK: This class represents a set of interconnected ASs. In a TASK class data are retrieved from

a predefined specific memory area and when the acceleration procedure finishes the output is

written back to memory. For every TASK class, unique opcodes initialize DFD, DC and multiplexer

configuration. For the DFD unit, specific opcodes related to input/output start addresses and the

data stream size according to each application requirements included in this class. The destination

of the intermediate data as well as the datapath of the accelerators are also encapsulated in order

to properly configure the DC and multiplexer units. Furthermore, for the PF initialization a set of

address offsets points to a specific region in the SYNC area.

LOOP: This is a container class for TASK objects. This class accommodates TASK class objects

that are going to be executed sequentially. LOOP class is characterized from the required number

of iterations and a stride which corresponds to a particular memory access pattern that had to be

applied per iteration.

THREAD: This is a container class for LOOP objects. In this class the number of LOOP class in-

stances that execute sequentially are defined. Each LOOP class is defined by a unique id with the

CHAPTER 4. THE REFIRE FRAMEWORK 33

corresponding offset that points to the memory area where LOOP characteristics are defined.

PARSEC: This is a container class for THREAD objects. Via PARSEC class, THREAD objects could

execute concurrently. In this class a parallel section is initialized containing the number of the ASs

that had to execute simultaneously according to each application demands. Next, for every AS a

DFD and DC module is instantiated for the concurrent data transfer to the accelerator cores.

WINDOW: This is a container class for PARSEC objects. In a WINDOW class the partial reconfiguration

of the available AS with the appropriate accelerator cores is established. These cores remain in

the AS until all the objects of the WINDOW class are executed and a next WINDOW class relies

on different partial reconfiguration of the ASs. Through this class the ASs could be reconfigured

at acceleration run-time providing the capability on reducing the overall partial reconfiguration

overhead by resizing the amount of the required computation into the appropriate WINDOW class

objects.

4.2.1 ACI Specialization principles

As already stated, the proposed framework is build on the five specialization principles suggested

by Nowatzki et al. [35]. Concurrency, computation, communication caching and coordination

specialization are these five principles. Concurrency refers to the ability of the operations to

be performed simultaneously. To achieve that the appropriate hardware architecture had to be

designed and configured properly in order to accommodate the parallel execution. Usually many

independent processing elements with their corresponding synchronization support mechanisms are

deployed. Dealing with hardware architecture, this principle increases the total performance of the

system for parallel workloads while broadens area and power demands. Computation principle refers

to the district units that an algorithm is composed of. Problem specific Functional Units (FUs)

used to cope with the specializing computation. It improves performance with low power demands

when some commonality between domains exists. The communication specialization focuses on

the data transmission between the FUs and the storage units. As proposed faster throughput to

the FUs could be achieved by instantiating communication channels and buffers between hardware

units. Data caching specialization points to the data reuse. In hardware acceleration where the

access patterns are known apriori constitutes an important aspect for the efficient deployment.

Finally, coordination is the management of hardware units and mainly involves the implementation

of finite state machines.

In comparison with ReFiRe’s infrastructure, data caching is achieved through the FIFO blocks

in each DC module as well as the on chip memory where data could be stored there without the

need for of chip memory accesses. Computation is exhibited in the TASK from the accelerator

cores, while communication and coordination between the ASs is exposed with the DC modules by

deploying the crossbar which initiates the appropriate datapath. Finally, concurrency is exposed

CHAPTER 4. THE REFIRE FRAMEWORK 34

through the PARSEC and THREAD classes that enables the simultaneous execution of the accelerators

cores.

The above proposed specialization principles could also be efficiently applied in different hard-

ware architectures like GPGPUs or FPGAs. Likewise, the run-time partial reconfiguation that is

transparently supported through the WINDOW class in ReFiRe constitutes a mechanism that fully

exploit the reconfigurability feature which is a very important factor in such devices and could

further improve the provided flexibility and capability.

4.2.2 ACI memory components

4.2.2.1 SYNC, COMPUTE and PARAMETER area

As described above, the main part of the ReFiRe framework is the Advanced Co-processor In-

struction memory (ACI). The sync area constitutes a memory space in the accelerator side for

the communication with the Host device. In this area, information related to accelerator status

is represented. Recurrently, both HOST and ACCEL read from specific memory space in order to

be informed about the current system’s status. Accelerator’s status states could be ACTIVE, IN-

ACTIVE, RESERVED, BUSY, IDLE and FREE. According to these states, the host writes in a

predefined memory space the next desirable state of the accelerator according to each application

requirements while informed about the current state if zero or one occurs in a specific area of the

corresponding state.

The Compute area includes execution related information in a fixed format as illustrated in

the Figure 4.4 below. The beginning and the end of each ACI class, as well as the appropriate

values needed for the application execution is mapped in this area using specific opcodes in order

to be recognized from the decode control in the accelerator side. The first line of the Compute

area informs the ACI decode control about the available slots that are going to be reconfigured in

a specific WINDOW class. Next, if one or more reconfigurable regions needed to be placed in the

FPGA simultaneously and the number of the appropriate thread classes are defined. If one or more

THREAD classes had to be initiated, the thread offset opcode notifies the accelerator side for the

specific memory region that each thread corresponds to. Each thread consists of a fixed number

of LOOP classes. Details relevant to the iteration number as well as the data stride are included

afterwards. The input/output address and size of the remote data, as well as the configuration

parameters required for the TASK class. Specifically, the configuration parameters are stored in

the param area in a prearranged format as shown in the figure above. The Parameter offset informs

the decode control where these task specific parameters are stored in consonance with the compute

area region.

CHAPTER 4. THE REFIRE FRAMEWORK 35

Compute Area
Param Area

Sync Area

Param Area

Loop iterations

Loop Stride

Input Address

Input Size

Output Address

Output Size

. . .

Slots New window opcode

New parallel section opcode

Thread idThread offset

New loop opcodeLoop id

New task opcodeTask idCrossbar

Slot idParameter sizeParameter
offset

End
task

End
loop

End
Thread

End Paraller
section

End
Window

ACCEL

Current
Accel
state

Next
Accel
state

HOST Read Read

Write
WriteACTIVE / INACTIVE (0) 0 / 11

RESERVED (1) 0 / 12 / 4

BUSY (2) 0 / 13

IDLE (3) 0 / 12 / 4

FREE (4) 0 / 10 / 1

Write

LOC(0)LOC(7) . . .
VAL(0)

. . .

VAL(7)

Threads

Figure 4.4: ACI memory component overview.

4.3 Host device

4.3.1 ReFiRe Application Programming Interface (API)

Writing a ACI based application often requires high complexity and excessive requirements from

the programmers side. The ReFiRe framework provides an expressive and flexible Application Pro-

CHAPTER 4. THE REFIRE FRAMEWORK 36

gramming Interface (API) for ACI class initialization according to each application requirements.

Because of the high complexity of the instructions that had to be encapsulated in the compute area

of the ACI memory, the implementation of an easy to use API was a major challenge. To achieve

that a set of library routines implemented for the placement of the appropriate instructions in the

ACI descriptor so as to be decoded and executed from the remote accelerator’s decode control.

The pseudocde below displays the sequence of function calls that had to be executed in order

to create an ACI descriptor that contains a single WINDOW, THREAD, LOOP and TASK class.

Initially, five different pointer types that correspond to these classes are declared. In the Create Desc

function descriptor pointer is initialized. Next, each of the available hardware accelerators had to

be placed in the appropriate available partial reconfigurable slot. Place Acc In As constitutes the

function for the above procedure. Thereafter, the Create Window function initializes a window

pointer for this descriptor. Similarly, Create Thread, Create loop and Create Task functions used

for THREAD, LOOP and TASK class initialization. Create loop input arguments are also the

iteration number of the loop as well as the data stride per iteration. Via the Set Input function

the input data address and size are declared in the descriptor. Likewise the location and the size of

the output data are declared in the Set Output function. The Set Crossbar function is responsible

for configuring the interconnect in order to create the appropriate accelerator datapath.

1 #inc lude ” ACI support l ib . h”
2

3

4 i n t main (void)
5 {
6

7 Desc r ip to r ∗ D e s c r i p t o r p t r ; //ACI Desc r ip to r po in t e r i n i t i a l i z a t i o n
8 Window∗ window ptr ; //Window po in t e r i n i t .
9 Thread∗ th r ead pt r ; // Desc r ip to r po in t e r i n i t .

10 Loop∗ l o o p p t r ; //Thread po in t e r i n i t .
11 Task∗ t a s k p t r ; //Task po in t e r i n i t .
12 Place Acc In As (Desc r ip to r p t r , s l o t i d , a c c e l i d) ; // Acce l e r a to r placement in AS
13 D e s c r i p t o r p t r=Create Desc () ; // ACI d e s c r i p t o r gene ra t i on
14 Window ptr=Create Window (D e s c r i p t o r p t r) ; //WINDOW c l a s s i n i t i a l i z a t i o n
15 Thread ptr=Create Thread (Window ptr) ; //THREAD c l a s s i n t .
16 l o o p p t r=Create Loop (Thread ptr , l o o p i t e r a t i o n , l o o p s t r i d e) ; //LOOP c l a s s i n i t .
17 t a s k p t r=Create Task (ha rdware o r so f twar e ta sk id , l o o p p t r) ; //TASK c l a s s i n i t .
18 Set Input (ta sk pt r , input addres s , i n p u t s i z e) ; //TASK s p e c i f i c parameters
19 Set Output (ta sk pt r , output address , output) ;
20 Set Cros Conf (ta sk pt r , c r o s s b a r i d) ;
21 Set Task Acc (ta sk pt r , a c c e l i d) ;
22 Set Acc Param (a c c e l i d , loc , v a l l) ; //Param area components
23

24

25 }

Listing 4.1: ACI application example

CHAPTER 4. THE REFIRE FRAMEWORK 37

Finally, using the Set Task Acc() function the appropriate accelerator is placed in the corre-

sponding TASK class. The parameters are forwarded to the accelerator side using the Set Acc Param()

function. The fists argument corresponds to the accelerator id while the second and the third to

position and the value of the parameter vector.

4.3.2 Source-to-source transformation framework

Although through ACI the synchronization between a Host CPU and the remote accelerators is

reduced, it is rather difficult for the programmers to encapsulate their work in an ACI due to the

complex hierarchical architecture. To this end, a framework that handles this task transparent to

the programmers is necessary.

C/C++
CODE

ACI CLASS
HIERARCHY

HARDWARE
ARCHITECTURE

GRAPH
GENERATOR

ACI
CONSTRUCTOR

ACI
APPLICATION

S/W
EXECUTION

DESCRIPTION

ACI
PARSER

FPGA

DFS
TRAVERSAL

Application
description

s2s Transformation framework

Application
code

Host CPU

ACCELERATOR_0(PARAM1, PARAM2 PARAMN)
ACCELERATOR_1(PARAM1, PARAM2 PARAMN)

ACCELERATOR_N(PARAM1, PARAM2 PARAMN)

Hardware accelerator description

 . . .

Figure 4.5: Source-to-source transformation framework overview.

As shown in Figure 4.5, the source-to-source (s2s) transformation framework executes on the

Host CPU side. It has as input a description of the available hardware accelerators and the

related application. The graph generator module of the s2s takes as input that application and

the hardware accelerator description,(where the hardware accelerators are defined in the form of

application related functions) and generates the corresponding graph. After parsing the graph using

the Depth First Search traversal, the result is inserted in the ACI constructor. The ACI constructor

constitutes a mechanism for mapping the available nodes of the graph to the compute part of an

ACI. The construction of an ACI depends on the available hardware architecture and the ACI class

hierarchy. During the implementation of the compute area, all the graph nodes are mapped into

the appropriate ACI classes. The outcome of the framework is an ACI based Application and the

application description that consists of software execution description and the ACI PARSER.

CHAPTER 4. THE REFIRE FRAMEWORK 38

4.3.3 The ACI constructor

The ACI constructor (which executes on the host CPU) takes as input the result of the DFS

traversal of the application graph and maps all the graph nodes into the appropriate classes of

the ACI. Figure 4.6 below, exhibits the flowchart of the ACI constructor in order to initiate the

appropriate TASK classes. As an assumption for the ACI constructor a terminal node is defined as

node in a graph with no children. Moreover a node to an application graph is equal to a hardware

accelerator or a software function that is between two hardware nodes. In order to encapsulate each

node of the graph in the correct class, the ACI constructor performs a number of analysis steps. At

first, regarding the TASK class, it checks whether a node or terminal or not. If a node is terminal,

it means that the TASK class that has been assigned to, can’t accommodate other accelerators.

Furthermore, if a node corresponds to a software function then it has to be assigned in a unique

TASK class. During the next step, the number of the children nodes is analyzed. If a node has

more than one child, its output had to be written to the appropriate memory space in order to

be used from its children nodes. If a node has only one child, then its child node (accelerator)

can be assigned to the same TASK. The hardware architecture allows creating a pipeline with a

specific number of accelerators, according to the available reconfigurable slots. In that case, the

output of the first accelerator is going to be used as input to its child node without the need of

external memory accesses. These steps are going to be applied in every node of the application

graph. Similarly, according to each node properties the ACI constructor is going to initialize the

LOOP class (based on the flowchart depicted in Figure 4.7 below). TASK nodes with the same

iteration number are assigned to the same LOOP class. When all the available accelerators slots

have been initialized, the next node is going to be attached to a new WINDOW class.

CREATE WINDOW

CREATE TASK

CREATE LOOP

TERMINAL

SW NODE 1 CHILD

EMPTY SLOT

VISIT NODE

ASSIGN NODE TO
TASK

ASSIGN NODE TO
TASK

EMPTY SLOT

ASSIGN NODE TO
TASK

TERMINAL

END

YES

YES

YES

YES

YES
YES

NO

NO

NO

NO

NO

NO

Figure 4.6: The ACI constructor flowchart (for the TASK class).

CHAPTER 4. THE REFIRE FRAMEWORK 39

PARSE FIRST TASK

GET LOOP ID

ASSIGN TASK IN
FIRST LOOP

PARSE NEXT TASK

==
CURRENT LOOP ID

GET LOOP ID

ASSIGN TASK IN
LOOPCREATE NEW LOOP

ASSIGN TASK IN
LOOP

YESNO

FINAL TASK
YESNO

END

Figure 4.7: The ACI constructor flowchart (for the LOOP class).

Figure 4.7 above illustrates the ACI constructor flowchart for the LOOP class initialization.

Aforementioned, the output of the first ACI constructor step is a TASK graph. Each node in the

graph consists of a set of accelerators with a specific loop id. During the first application parsing,

for each accelerator a unique loop id assigned according to the loop sequence they belonged to. If

one or more accelerators belong to the same iteration block, they are marked with the same loop

id. Next, based on this assumption, the ACI constructor parses that graph and gets the loop id of

each node. If two continuously nodes had the same id then they are attached in the same LOOP

class, otherwise new LOOP class had to be initiated to accommodate the next TASK.

4.3.4 The application description

The most important part of the s2s framework is the construction of the application description

which contains the application source code that is going to be executed from the processing system

of the remote FPGA. Initially, the graph generator creates the application graph according to each

application properties. Consequently, the ACI constructor will generate the appropriate application

description which consists of the ACI PARSER and the software execution description, as illustrated

in Figure 4.8. The ACI PARSER is responsible for decoding the ACI that has been sent from the

host CPU which contains all the instructions related to the application execution. As shown in

Figure 4.8 (ACI PARSER), initially the WINDOW of the ACI is going to be parsed. During that

step, the partial reconfiguration regions are going to be configured.

If there are any parts of the application that are going to be executed simultaneously on the

FPGA’s ASs, they will be recognized while parsing the THREAD class. In the LOOP class,

CHAPTER 4. THE REFIRE FRAMEWORK 40

Figure 4.8: Application description components.

information related to the execution iterations of the containing tasks is included. This way,

extra synchronization between host CPU and FPGA is redundant. Finally, in the TASK class

information related to the accelerator pipeline is embodied. A TASK may contain an accelerator or

a set of accelerators with the appropriate interconnect between them according to each application

requirements. Without the software execution description in the remote FPGA, only code related

to the hardware accelerators could be executed. Thus, if a software function was in between

two accelerators, it has to be executed from the host CPU. According to the assumption that

data are on the accelerator side, they had to be transferred on the HOST CPU side and after

the software execution the outcome should be transferred in the acceleration side again. As a

result, extra overhead related to data transfer time is added to the application execution. To

overcome that, the s2s framework generates the software execution description. It contains all

the function implementations that are going to be executed between the accelerators. Moreover,

information related to the order of the software function execution is included in the ACI PARSER.

A pointer to the related software function is initialized to the ACI PARSER from the s2s framework

in the corresponding software TASK. When the ACI PARSER recognizes software TASK, the

s2s transformation software had already initialized that pointer to the corresponding position of

the function pointer table in the software execution description. Hence, the appropriate software

function is going to be implemented as a software TASK in the ACI on the remote side.

CHAPTER 4. THE REFIRE FRAMEWORK 41

4.3.5 ACI application mapping

The significance of the source-to-source transformation framework was depicted in the Figure 4.5

above. Having as input a software application that contains the hardware functions that could be

executed from the accelerator device will construct the ACI hierarchy class representation which

corresponds to sync, compute and param area application related instructions.

Pseudocode below represents an example application while Figure 4.9 below illustrates the

ACI class hierarchy class exported from the source-to-source transformation framework. The first

application is going to be executed from the programmable logic of the remote FPGA without the

processing system invocation (for software function execution). Each HW accel i() function of the

application pseudocode corresponds to a hardware accelerator call (e.g FFT, matrix multiplication

etc.).

According to the source-to-source execution procedure, initially, the graph generator maps each

hardware accelerator call to a graph node. Next, each of those nodes (as analyzed in the previous

section) is going to be encapsulated in an ACI class. Assuming hardware architecture with four

partial reconfiguration regions all of the available accelerators can be placed in a single WINDOW.

Likewise, due to the same number of execution iterations are assigned to the same LOOP class.

1st Application Pseudocode

int main(){
HW_accel_0 (int* in_0, int in_size_0, int* out_0, int out_size_0);

HW_accel_1 (int* out_0, int out_size_0, int* out_1, int out_size_1);

HW_accel_2 (int* out_1, int out_size_1, int* out_2, int out_size_2);

HW_accel_3 (int* out_1, int out_size_1, int* out_3, int out_size_3);

}

Regarding TASK classes, three of them are instantiated. The first one contains the chaining

between the Hw accel 0 and the Hw accel 1. Due to the fact that the output of the 2nd accelerator

is used from the 3rd and the 4th accelerator it had to be written to the main memory. According to

this technique, the 2nd and the 3rd TASK input data will be retrieved from the memory. Otherwise,

the first two accelerators should be executed twice for the 3rd and the 4th accelerator individually,

which would increase the overall execution time.

For the second application, which pseudocode is illustrated below software functions and ac-

celerators with recursive calls evaluated. In more complex synthetic applications (pseudo code is

shown in below) where more accelerators needed for the evaluation, in order to be encapsulated in

an ACI, more than one WINDOW classes should be instantiated. A WINDOW can contain a fixed

number of accelerator cores according to the available partial reconfiguration slots. In the example

below, assuming hardware architecture with 4 partial reconfiguration slots may contain up to 4

CHAPTER 4. THE REFIRE FRAMEWORK 42

THREAD

ACI HIERARCY

0

1

2

TASK_2

TASK_1

WINDOW

LOOP

3

TASK_3

Figure 4.9: ACI class hierarchy for the 1st application.

accelerators. Moreover, the software functions between accelerators lead to different ACI hierarchy

construction. Each software function had to be encapsulated in a single TASK class. For the first

WINDOW, as shown in Figure 4.10, due to the same number of iterations, all the available TASKs

are going to be attached to the same LOOP class. Each TASK contains only one accelerator, on

the grounds that each them have more than one child or they are terminal nodes.

2nd Application Pseudocode

int main(){
HW_accel_0 (int* in_0, int in_size_0, int* out_0, int out_size_0);

HW_accel_1 (int* out_0, int out_size_0, int* out_1, int out_size_1);

HW_accel_2 (int* out_0, int out_size_0, int* out_2, int out_size_2);

HW_accel_3 (int* out_2, int out_size_2, int* out_3, int out_size_3);

for (i=0; i<N; i++){
HW_accel_4 (int out_2[i], int out_size_2, int out_4[i], int out_size_4);

HW_accel_5 (int out_4[i], int out_size_4, int out_5[i], int out_size_5);

}
for (j=0; i<M; j++){

HW_accel_6 (int out_5[j], int out_size_5, int out_6[j], int out_size_6);

SW_func_0 (int out_6[j], int out_size_6, int out_s0[j], int out_size_s0);

HW_accel_7 (int out_s0[j], int out_size_s0, int out_7[j], int out_size_7);

}
HW_accel_8 (int* out_6, int out_size_6, int* out_8, int out_size_8);

}

CHAPTER 4. THE REFIRE FRAMEWORK 43

For the second WINDOW class, the first two accelerators are placed in the same LOOP because

they execute with the same iteration number. Moreover they are members in the same TASK class.

This way, the output of the 4th accelerator is going to be used from the 5th immediately without

the need of memory accesses. The same dispatch should be applied to the 6th and 7th accelerator

cores. Because of the software application which is between them, they are assigned in different

TASK classes. Similarly, the 8th accelerator is assigned in a new WINDOW class due to the fact

that all the available slots in the previous windows were reserved.

Figure 4.10: ACI class hierarchy for the 2nd application.

4.4 Accelerator device

4.4.1 ACI decode control

The ACI decode control is the most important part of the accelerator device because it controls

the remote accelerator states according to the received instructions from the Host CPU. As shown

CHAPTER 4. THE REFIRE FRAMEWORK 44

in Figure 4.11 below, these states are divided into three different categories namely Accelerator

status, programmable logic configuration and accelerator execution states. For the first category,

the ACI decode control performs and endless sync area reading procedure in order to serve Host

CPU commands regarding the desired accelerator’s state. Initially, the accelerator device is in

INACTIVE state, where the hardware part of the accelerator device hasn’t been configured. In

this state, it can be configured from any remote Host device. When a Host device wants to initiate

a connection with the accelerator device forwards an ACTIVATE command. If the accelerator

state changes form INACTIVE to ACTIVE then the connection is established. Thus, the Host

device reserves the accelerator device. When it occurs in the RESERVED state it can’t be used

from other remote devices preventing any communication and synchronization deadlocks.

INACTIVE ACTIVE

RESERVED

CONFIG

IDLE

FREE

Accelerator status states Programmable logic
configuration state

Accelerator execution state

ACTIVATE

ACTIV
ATE

RESERVE

CONFIGURE

FREE

RESERVE

EXEC

FINISH

Reservation requests

Execution requests

START

W
AIT FOR ACI

FREE

Figure 4.11: Remote accelerator state overview.

When the accelerator is reserved from a host CPU, it moves to the IDLE state where the

ACI decode control waits for ACI in order to proceed in the CONFIG state. In this state, the

ACI decode control decodes the Compute and Param area and according to the ACI instructions

configures properly the programmable logic. In this state, a set of configuration steps had to be

CHAPTER 4. THE REFIRE FRAMEWORK 45

implemented according to each application requirements before the execution start. These steps

analyzed below:

1. Initialize ICAP[37] controller.

2. Place the appropriate partial bitstream in the corresponding partial reconfigurable region.

3. Initialize AXI4-Stream Switch.

4. Initialize DMA Interrupt Controller.

5. Start the DMA engine for the data transmission to the accelerator slots.

6. Retrieve the output data and place them in the destination source.

Following the application of the previous declared steps the accelerator device transmits to

the EXEC state where the hardware accelerator execution occurs. When the execution completes

the accelerator device carries on the IDLE state. When the Host device recognizes IDLE state,

by applying the FREE command in the sync area, it releases the remote accelerator so as to be

reconfigured for a different application or deployed from a different device. Otherwise, if a new

ACI arrives from the same host device the above mentioned procedure is going to be repeated.

4.5 ACI sequence diagram

Figure 4.12 illustrates the required sequence of interactions for offloading a single TASK to a TASK-

specific configured datapath (TCD), assuming a master-worker deployment scheme. Primarily,

the user application creates and populates an ACI, using the API that the ACI Support Library

exposes. A subset of the library routines are shown in figure 4.12. Input arguments and return

values are omitted for the sake of clarity. The library implementation enforces a priority on the

valid sequence of invoked functions, yielding correct-by-construction ACIs (note steps 1 to 6 in

figure 4.12). The ACI-construction process completes with the finalize aci() function (step 7),

which ensures that ACI data are present in memory before firing up the remote DC. This is a

prerequisite for correctness since the steps of populating the ACI and transferring ACI data can be

interleaved, as is also the case in the disaggregated-computing emulation platform employed here

for verification and evaluation purposes.

On the remote-accelerator side, processing begins with the finalization of the ACI. The ACI

Decode Control, a light-weight software implementation that is structured as a hierarchy of inter-

dependent FSMs, parses the ACIMEM memory space element by element, performing the required

control/configuration actions per class type. WINDOW, PARSEC, THREAD, and LOOP elements only

CHAPTER 4. THE REFIRE FRAMEWORK 46

generate configuration actions, whereas TASK elements additionally require synchronization and

monitoring, as they comprise computation. For each TASK, the ACI Decode Control initially allo-

cates and configures a DC, therefore constructing the required TASK-specific configured datapath.

Thereafter, PF initialization data are retrieved from the Param area and stored in PF blocks. Next,

a DFD is reserved and configured with input/output start addresses and the data size. Upon DFD

configuration, input data are fetched from memory and directed to the TCD’s entry point, i.e., the

first AS in the datapath. Output data come out from the TCD’s exit point, i.e., the last AS in the

datapath, which the DFD writes into the designated memory space. Throughout ACI processing,

the ACI Decode Control updates specific Sync area locations to facilitate progress monitoring from

the host side, which happens transparently to the operation of the DC. Note that, the ACI Decode

Control ignores PR requests for RMs already deployed in a AS.

CHAPTER 4. THE REFIRE FRAMEWORK 47

ACI Decode
Control

Data Fetch
& Dispatch

SYNC PARAMCOMPUTE

aci_ptr

start

get task

task

get PF data

PF data

1
3

4
5

ACI Decode
Control

Data Fetch
& Dispatch

read data

configure

data

done

new_aci ()

initialize

configure

send
input data

receive
output data

write data

6

update status/progress data

finalize_aci ()

2

new_parsec ()

new_thread ()

new_loop ()

new_task ()

set_pf_val ()

new_window ()

5

6

7

1

2

4

3

Figure 4.12: Sequence diagram of inter-node interactions for deploying remote hardware acceleration in a
master-worker scheme using ACI.

Chapter 5

Evaluation

5.1 System implementation

In order to evaluate ReFire in a disaggregated environment, two ZCU 102 evaluation boards em-

ployed each hosting a Zynq Ultrascale+ MPSoC, interconnected over a Small Form-factor Pluggable

(SFP) 10-Gbps link as shown in Figure 5.1 below. The disaggregated resource that provides the

computing power will be referred as HOST and the hardware accelerator platform as ACCEL.

An ARM Cortex-A53 64-bit quad-core processor operating at 1.2 GHz is the Application Pro-

cessing Unit (APU) on the HOST side running Ubuntu 16.4, while in the ACCEL side the ACI decode

control runs as a baremetal application. The programmable logic of both devices constitutes of

fixed amount of resources as depicted in table 5.1 below.

To facilitate data exchanges between HOST and ACCEL nodes, a set of extensions had to be

implemented on the programmable logic of both nodes in combination with certain operating-

system-level modifications [38]. Thus, data transmission is going to be accomplished transparent

to the user level. This procedure requires the operating system mapping of logical physical addresses

to remote memory segments, in order to make them available to user-space applications by altering

its kernel’s page tables to create a virtual map that associates local physical addresses to kernel

virtual addresses. Consequently, the remote memory segments on the ACCEL subsist on the operating

system’s virtual memory management system and could be accessed at application level via system

calls e.g. mmap().

In ReFiRe, the ACI memory block (Figure 4.4) is memory mapped, allowing the ACI to be

transmitted transparently and in parts while it is being populated by the user application using

the ACI Support Library (writing to corresponding virtual addresses). The observed, at the appli-

cation level, memory bandwidth for remote write operations is 1,046 MB/sec, measured using the

Sustainable Memory Bandwidth in High Performance Computers (STREAM) benchmark. Read

and write operations of 64-byte chunks (Cortex-A53 cache line size) to remote memory locations

introduce end-to-end latencies of 706 ns and 783 ns, respectively.

48

CHAPTER 5. EVALUATION 49

ACCELHOST

SF
P

LI
N

K SFP
LIN

K

PS D
D

R

PS D
D

R

PL DDR PL DDR

Figure 5.1: The prototype platform consisting of two ZCU102 boards interconnected through SFP-based
link.

Table 5.1: Hardware resources of the ZCU102 Evaluation Board

Part:xczu9eg-ffvb1156-2-i Size

Programmable functionality
System Logic Cells 600 (K)

CLB Flip-Flops 548 (K)
CLB LUTs 274 (K)

Memory
Max. Distributed RAM 8.8 (Mb)

Total Block RAM 32.1 (Mb)
UltraRAM -

ReFiRe supports partial reconfiguration through the AXI Hardware Internal Configuration

Access Port (HWICAP [39]) controller, which allows the ACCEL APU to read and write the FPGA

configuration memory through the Internal Configuration Access Port (ICAP) primitive [37]. Prior

to processing, the HOST transfers a set of partial bitstreams per AS/PRR to remote memory on the

ACCEL, while at run time, the ACI Decode Control performs PR operations according to custom

instructions received from the ACI memory.

CHAPTER 5. EVALUATION 50

5.2 2D-FFT accelerator for image processing

5.2.1 Application description

In image processing, the Fast Fourier Transform (FFT), an efficient implementation of the Discrete

Fourier Transform, is used to transfer spatial-domain image data into the frequency domain, which

facilitates several operations on images, such as noise removal, pattern recognition, and filtering.

A filter, for instance, is applied to an image by a convolution in the spatial domain, whereas a

multiplication is only required in the frequency domain. The 2D-FFT of an N -by-N image can be

computed with an N number of N -point 1D-FFTs per dimension using the well-known row-column

algorithm [3], i.e., by applying the N -point 1D-FFT first to every row and then to every column.

X

Y

U

Y

U

V

IMAGE F(x,y) INTERMEDIATE G(u,y)

2D FT SPECTRUM F(u,v)

1D FT (step 1)

1D FT (step 2)

Figure 5.2: 2D FFT implementation using 1D FFTs.

As illustrated in Figure 5.2 above, a two dimensional transform can be separated into a series of

one dimensional transforms. Initially, each horizontal line of the image is individually transformed

and produces an intermediate form in which the horizontal axis is frequency (u) and the vertical

axis is space (y). Hence, each vertical line of the intermediate image is also separately transformed

in order to acquire each vertical line of the transformed image.

5.2.2 ACI application mapping

The aforementioned computation can be conveniently captured in a single LOOP object per di-

mension, where the iteration number and the data stride are set according to the image size N.

CHAPTER 5. EVALUATION 51

Figure 5.3 illustrates the ACI class hierarchy representation that had to be initiated in order to

execute the FFT from the remote device. Initially, one WINDOW class containing one THREAD

class initiated. Thereafter, two LOOP classes had to be designed, each containing a single TASK

class where the accelerator execution is encapsulated. The first LOOP class relies on the first di-

mension accommodating 1D FFT related information (e.g iteration number and data stride) while

the second class relies on the second dimension parameters. Without the required for-loop opera-

tions captured in an ACI, explicit synchronization (start/done) is required per iteration, i.e., the

for-loops are implemented by the HOST. When the corresponding ACI functionality is exploited,

via the LOOP class, a single ACI is created and transferred to the ACCEL, where the for-loops are

implemented by the processing system.

Figure 5.3: ACI class hierarchy representation that enapsulates 1D FFTs accelerator cores.

5.2.3 Experimental results

We create a ReFiRe design point with one DC, one DFD, and a two ASs each hosting a 1D-FFT core

[21] for every dimension. Figure 5.4 below shows the attained performance improvement (speedup)

for an increasing image (and FFT) size when the for-loops are described in the ACI in comparison

with being implemented by the HOST. Different core throughput configurations are considered,

i.e., 2 and 8 results per cycle, as well as local memory bandwidth rates for read/write operations,

i.e., 2 GB/sec (the disaggregated-computing emulation platform described in Chapter 5) and 30

GB/sec (modelled considering an AC-510 SuperProcessor module with 4 GB of Hybrid Memory

Cube and a Xilinx Kintex UltraScale XCVU060 FPGA serving as the ACCEL).

Figure 5.5 provides a time breakdown for the 1,024- point 2D-FFT, considering additional

local memory bandwidth rates (16 GB/s) and core throughput configurations (4 and 16 results per

cycle). The barplot reveals that accessing memory dominates execution time (case M2-T2, no ACI),

with the percentage dropping as the memory bandwidth increases, and both computation (FFT

CHAPTER 5. EVALUATION 52

FFT size

Sp
eed

up
(X)

16 128 256 512 1024
1

2

3

4

2D−FFT performance improvement using ACI LOOP

Mem: 2GB/s, FFT: 2res/c
Mem: 2GB/s, FFT: 8res/c
Mem: 3 GB/s, FFT: 2res/c
Mem: 3 GB/s, FFT: 8res/c

0
0

Figure 5.4: Attained performance improvement from encapsulating the for-loop operations in a single ACI
via LOOP objects, rather than controlling them from the HOST via explicit per-iteration synchronization.

Comm Comp Mem

Configuration

Per
cen

tage
 of e

xec
utio

n tim
e (%

)
0

20
40

60
80

100

Execution−time breakdown for 1024−point 2D−FFT

M2−
T2

M16
−T2

M32
−T2

M32
−T4

M32
−T8

M32
−T1

6 AC
I LO

OP

M32
−T1

6 AC
I LO

OP

0 0 0 0 0

Figure 5.5: Execution time breakdown for 1024-point 2D-FFT, with and without the ACI LOOP
functionality.

operation) and communication (synchronization) fractions increase (case M30-T2, no ACI). Core

configurations with higher throughput decrease compute time (cases M30-T4 through M30-T16,

no ACI), leading to synchronization eventually exceeding computation (case M30-T16). The final

configuration (case M30-T16-ACI-LOOP) shows that exploiting the ACI LOOP class effectively

eliminates the synchronization overhead (≤ 0.5%) that would otherwise exceed computation and

yield the deployment of the accelerator in a disaggregated environment impractical. Likewise, table

CHAPTER 5. EVALUATION 53

5.2 below, exhibits that ACI LOOP functionality could eliminate communication requirements for

different 2D-FFT sizes considering core throughput equal to 4 results per cycle.

Table 5.2: Comparison between communication, computation and memory access percentage
of execution time, for various 2D-FFT sizes, with and without the ACI LOOP functionality,
assuming 4 results/cycle FFT core throughput.

2D-FFT Percentage of execution time (%) Percentage of execution time (%)
Without ACI LOOP With ACI LOOP

size Communication Computation Memory Communication Computation Memory
16 73% 2% 25% 2% 11% 87%
128 60% 14% 26% 0.15% 36.45% 63.4%
256 49% 24% 27% 0.15% 46.35% 53.5%
512 36% 34% 30% 0.1% 53.6% 46.3%

5.3 Detection of positive selection in genomes

5.3.1 OmegaPlus

5.3.1.1 Application description

Positive selection is a form of natural selection that is driven by beneficial mutations in a species

population. A mutation is beneficial when it improves the chances of survival and reproduction for

the carrier, leading to an increasing number of individuals having the beneficial mutation from gen-

eration to generation. When a beneficial mutation occurs, the amount of linked neutral mutations1

diminishes, creating a so-called selective sweep [40]. Detecting selective sweeps, and thus positive

selection, has practical applications such as detecting drug-resistant mutations in pathogens (e.g.,

HIV [41]) and improving the efficiency of drug treatments [42].

5.3.1.2 ACI application mapping

Here, we employ ReFiRe to accelerate OmegaPlus [4], a detection method that has been reported

to outperform2 other neutrality tests, e.g., SweepFinder [44] and SweeD [45], in terms of power to

detect selection and reject neutrality [43]. OmegaPlus exhibits two major computational stages,

the calculation of linkage disequilibria (LD) [46] and the calculation of ω-statistic values [46],

with the contribution of each stage to the total execution time varying with input data and user

parameters. An input dataset of S genomes and N polymorphisms (genomic locations with at least

one mutation) is represented in memory as a S ×N binary matrix D, where every non-zero entry

indicates a mutation. The LD score between polymorphic columns i and j is calculated as:

1Mutations in the proximity of the beneficial mutation (linked) with no effect on the survival and repro-
duction of the carrier (neutral).

2Except for certain neutral non-equilibrium evolutionary models [43].

CHAPTER 5. EVALUATION 54

r2ij =
(pij − pipj)2

pipj(1− pi)(1− pj)
, (5.1)

where pi and pj are calculated by dividing the number of mutations in columns i and j, respec-

tively, with the number of genomes S, and pij is calculated by dividing the number of genomes with

mutations in both i and j with S. OmegaPlus evaluates overlapping subgenomic regions in D, and

computes an LD score for every pair of polymorphic columns per region. Since the enumeration

of mutations (1’s in D) can easily dominate the execution time when the number of genomes in-

creases, OmegaPlus adopts a binary-vector representation scheme that allows to store each column

as a number of 64-bit unsigned values. This allows to compute the number of mutations per column

(or pair of columns) by iteratively performing population count operations, i.e., counting the set

bits in a word. Thereafter, ω-statistic values are calculated based on LD scores per subgenomic

region as follows:

ω =
(
(
l
2

)
+
(
W−l
2

)
)−1(

∑
i,j∈L r

2
ij +

∑
i,j∈R r

2
ij)

(l(W − l))−1
∑

i∈L,j∈R r
2
ij

. (5.2)

For this calculation, a subgenomic region than comprises W polymorphic columns is divided

into two non-overlapping regions, L and R, with l and W − l polymorphic colums, respectively.

Eq. 5.2 is computed iteratively for all possible combinations of L and R sizes, and the maximum

ω-statistic value per region is reported.

To evaluate ReFiRe, we modified the OmegaPlus source code to implement blocking in both

LD and ω-statistic calculations in order to facilitate hardware design using the high-level synthesis

(HLS) tool Vivado HLS. We created 3 reconfigurable accelerator modules, ACCEL1, ACCEL2, and

ACCEL3, as well as a 3-RAS ReFiRe design point to host them. ACCEL1 performs all the required

population count operations for an 8×8 block of polymorphic columns, ACCEL2 calculates LD scores

(Eq. 5.1), and ACCEL3 computes 32× 32 ω-statistic values (Eg. 5.2). Table 5.3 provides resource

utilization for the ReFiRe design point and the three accelerators.

As shown in Figure 5.6 below, for the ACI one WINDOW class that contains one THREAD class

employed. Furthermore two distinct LOOP classes that contain two TASK classes (the first for the LD

scores calculation and the second for the omega statistic values) initiated. The first one contains

the pipeline between ACCEL1 and ACCEL2 while the second TASK class includes the ACCEL3.

.

5.3.1.3 Experimental results

The rationale behind designing two accelerator modules for computing Eq. 5.1, i.e., ACCEL1 and

ACCEL2, lies in the fact that the former’s computational load increases with the number of genomes

S, whereas the latter’s increases with the number of polymorphic columns W in each subgenomic

CHAPTER 5. EVALUATION 55

WINDOW

THREAD

LOOP_0

ACI

ACCEL 1 ACCEL 2

TASK 1

ACCEL 3

TASK 2

LOOP_1

Figure 5.6: ACI representation for the calculation of LD scores and omega statistic values.

Table 5.3: Resource utilization for the 3-RAS design point and the three accelerators
(ACCEL1-3) for OmegaPLus [4].

Hardware module Resource type
Name Inst. CLB LUTs Register/SDR BRAM18/36 DSP

ACCEL1 1 6,617 5,048 131/9 -
ACCEL2 1 5,546 4,139 1/2 13
ACCEL3 1 3,423 3,179 1/2 7
HWICAP 1 412 978 -/2 -
DFD (AXI DMA) 3 2,650 3,318 -/18 -
AXIMM (PRR isolation) 4 208 - - -
AXIS-Inp. (PRR isolation) 4 147 - - -
AXIS-Out. (PRR isolation) 4 147 - - -
DC (crossbar) 2 1,505 2,589 -/18 -
PF (AXIBRAM Control) 8 305 209 - -
PF (BRAM36 slices) 8 - - -/2 -
HOST logic (remote comm.) 1 14,399 27,034 15/112 -
ACCEL logic (remote comm.) 1 27,034 36,599 17/117 -

region. Thus, decoupling population count operations from LD calculations allows for more flexi-

bility in accelerator deployment based on the characteristics of the input dataset, i.e., the number

of genomes and the number of polymorphic columns (and their locations in the genome). Further-

more, this allows to inrcease the scope of usage for ACCEL1 since representing elements as binary

vectors and performing population count operations on them finds application in several domains.

In chemical informatics, for instance, each bit in a so-called 2D fingerprint (binary vector) repre-

sents the existence or absence of a substructural fragment in a molecule. Enumerating the set bits

CHAPTER 5. EVALUATION 56

[1:A] [3:A] [5:A] [2:B] [4:B] [1:C] [3:C] [5:C]

Omega statistic
Linkage disequilibrium
Dataset preparation

[Configuration:Analysis]

Tim
e (

se
co

nd
s)

0
50

0
10

00
15

00
20

00
Comparison of execution configurations for ACCEL1−3

A: 1,910,589 (LD) - 167,655 (ω)
B: 1,841,040 (LD) - 2,004,291 (ω)
C: 1,337,301 (LD) - 8,047,328 (ω)

Figure 5.7: The effect of acceleration varies per configuration (table 5.4), demonstrating the performance
role of the computation-to-synchronization ratio in remote accelerator deployment, and the ACI-enabled

performance boost. Analyses A, B, and C are described in terms of total LD and omega values.

Table 5.4: Execution configurations for accelerators ACCEL1-3.

Configuration Environment Description
(Index: Name) (OS/Compiler)

1: Reference Ubuntu/gcc OmegaPlus v. 3.0.3 (software only)
2: SDSoC Pre-built*/sdscc Invokes ACCEL1-3 locally
3: ReFiRe Ubuntu/gcc Invokes ACCEL1-3 remotely,

creating one ACI per accelerator call
4: ReFiRe-A Ubuntu/gcc Invokes ACCEL1-3 remotely, deploying

ACCEL1-2 in the same TASK

5: ReFiRe-B Ubuntu/gcc Invokes ACCEL1-3 remotely, deploying
ACCEL1-2 in the same TASK in a LOOP

in 2D fingerprints is the basis for several chemical-similarity measures, e.g., Jaccard/Tanimoto and

Dice.

We performed 3 genomics analyses (A, B, and C in Figure 5.7 with different OmegaPlus parame-

ters based on a simulated dataset with 8,000 genomes and 20,000 polymorphisms (generated using

CHAPTER 5. EVALUATION 57

Table 5.5: Performance comparison between ReFiRe and SDSoC per algorithm stage
(LD:ACCEL1-2, ω statistic:ACCEL3)

Application Execution configuration Max. accel.
stage (metric) [2] [3] [4] [5] performance

LD (×103/sec) 1,091.77 707.21 948.19 2,430.87 2,809.48
ω statistic (×106/sec) 5.218 5.032 - - 49.089

the software ms [47]), and evaluated different accelerator-deployment scenarios with ReFiRe and

Xilinx SDSoC (execution configurations, see Table 5.4). All configurations were compiled with all

optimizations activated (-O3 for gcc and sdscc). Figure 5.7 illustrates execution times per algo-

rithm stage for each of the execution configurations, whereas table 5.5 above provides a comparison

in terms of throughput performance. As can be observed for LD, increasing the computation-to-

synchronization ratio for remote accelerators by creating deeper pipelines (configuration [4], ACCEL1

and 2 in a TASK) and offloading considerably more computations to a remote node (configuration

[5], use of LOOP with 10,000 iterations) allows to expose near-peak accelerator performance at the

application level (86.5%). The same does not hold for ω-statistic calculations, neither with Re-

FiRe (configuration [3]) nor with SDSoC (configuration [2]), due to the fact that random memory

accesses, as required by ACCEL3, dominate processing and lead to poor accelerator performance

(observed at the application level) of as low as 10% for both ReFiRe and SDSoC.

5.3.2 Linkage Disequilibrium calculation for DNA input data

5.3.2.1 Application description

Genetic variation is observed in the form of single-nucleotide polymorphisms (SNPs). A SNP results

from one or more mutations at the same genetic location in a genome [48]. The allele encoding

scheme is dictated by the mutation model, which can either be the Infinite Sites Model [49] or a

Finite Sites Model [50]. The former assumes at most one mutation per site (1 bit per state), whereas

the latter allows all possible DNA states at every site (4 bits per state). Linkage Disequilibrium

(LD) calculation (equation 5.2), prerequisites binary input data. Dealing with DNA input data LD

scores are calculated as follows according to [51].

r2ij =
(vi − 1)(vj − 1)vij

vij

∑
si,sj∈S

r2
sisj, (5.3)

where vi represents the number of existing states in SNP i(vi <= 4), vj the number of

existing states in SNP j(vj <= 4), and vij is the number of valid pairs of states (si,sj ∈ S).

CHAPTER 5. EVALUATION 58

5.3.2.2 ACI application mapping

As referred above, ACCEL1 and ACCEL2 yield LD scores when input data are in binary format.

Assuming there is not a hardware accelerator for LD score calculation with DNA input data, this

process should be executed from the processing system of HOST or ACCEL. Without the extension

that source-to-source transformation framework provides, the software process that is responsible

for the LD calculation with DNA input data had to be executed in the HOST side. For the first

step of the algorithm, based on the above assumption, LD scores (for binary input data) will be

calculated in the ACCEL side using the pipeline of ACCEL1 and ACCEL2. Thereafter, the HOST device

would obtain the output through the remote segments and outcome LD scores for DNA input

data. Exploiting source-to-source transformation framework’s capability, the second step of the

algorithm is going to be encapsulated in an ACI as a software TASK and be executed from the

ACCEL device as shown in Figure 5.8 below. Based on the ACI class hierarchy, a single WINDOW

class containing a TREAD class with two distinct LOOP classes instantiated. The first LOOP

class contains a hardware TASK (pipeline of ACCEL1 and ACCEL2) that corresponds to equation

5.1, while the second one accommodates a software implemented TASK (equation 5.3) for the LD

score calculation with DNA input data.

WINDOW

THREAD

LOOP_0

ACI

ACCEL 1 ACCEL 2

TASK 1

AC
CE

L

SW 1

TASK 2

LOOP_1

FPGA CPU

Figure 5.8: ACI hierarchy for calculating LD scores with DNA input data.

5.3.2.3 Experimental results

Figure 5.9 exhibits the overall execution time needed for deploying two different processing scenar-

ios. For the first scenario (represented with a red line in the following plot), the software TASK

is going to executed from the HOST side. Thus, for every algorithm iteration the synchronization

between HOST and ACCEL is a prerequisite. On the other hand, for the second execution scenario

CHAPTER 5. EVALUATION 59

(represented with a blue line in the following plot), the software TASK is going to be encapsulated

in an ACI and executed from the ACCEL among the hardware TASKs. Hence, regardless the re-

quired iterations, one ACI will be forwarded to the remote device containing the appropriate LOOP

classes with the corresponding information, without the need for further synchronization with the

HOST device. Thus, exploiting source-to-source framework’s flexibility, the overall execution time

could be boosted up to 2.5 times (according to the required algorithm iterations) in comparison

with the first execution scenario where the software TASK is executed from the HOST device, as

illustrated in figure below.

Figure 5.9: Comparison of software task execution on HOST and ACCEL device.

5.4 Binarized neural network

5.4.1 Application description

Artificial Neural Networks (ANNs) are computational models inspired by the way biological neural

networks of the human brain process information. Within the domain of ANNs, there is an area

frequently referred to as deep learning, where the employed neural networks typically exhibit be-

tween a few and more than a thousand layers. The most commonly used deep-learning network

is the Convolutional Neural Network (CNN), which processes data in a grid-like topology. The

high accuracy of CNNs was first demonstrated in the 2012 ImageNet recognition challenge [52].

Nowadays, CNNs are widely used in various domains, such as computer vision [53, 54] and artifi-

cial intelligence [55], leading to considerable advancements in speech recognition [56] for machine

translation [57] and natural language processing [58], among others. In fact, CNNs have several

practical applications, from self-driving cars [59] and autonomous aerial vehicles [60], to detecting

CHAPTER 5. EVALUATION 60

cancer [61, 62, 63] and playing complex games [64]. The superior performance of CNNs comes from

their ability to extract high-level features from input data after using statistical learning over a

large amount of data.

Considerable improvements in the development of high-performance systems for neural networks

using multi-core technology have been proposed in recent years [65]. However, various challenges

in power, cost, and performance scaling remain, due to the ever increasing model sizes (e.g., 50MB

for GoogLeNet [66], 200MB for ResNet-101 [67], 250MB for AlexNet [52], or 500MB for VGG-

Net [68]) that inevitably introduce prohibitively high computational costs, steadily raising the

need for accelerated solutions using FPGAs and/or GPUs. The need for models with low memory

and compute requirements is imperative.

Several works have been introduced to address the aforementioned challenges, and reduce the

resource utilization requirements of CNNs, e.g., by exploiting the sparsity of the network connec-

tions [69], or by narrowing the data width [70, 71, 72]. Another promising method is binarization,

which relies on a considerably more compact data representation for the network weights and the

neuron values than the one employed by regular CNNs. The underlying idea is to constrain each

value to be either +1 or -1. Consequently, this reduces storage and memory bandwidth require-

ments and allows to replace floating-point operations with binary operations, thereby paving the

way for efficient deep learning using FPGA technology.

Binarized Convolutional Neural Networks (BNNs) was first presented by Courbariaux et al. [73],

who introduced a method to train BNNs with the permutation invariant MNIST, CIFAR-10, and

SVHN [74] datasets, achieving state-of-art accuracy. Rastegari et al. [75] successfully trained a

BNN with ImageNet models, reportedly improving accuracy, boosting performance, and reduc-

ing the model size, when compared with a full-precision AlexNet [52] implementation. Existing

implementations of CNNs on FPGAs face several challenges due to their prohibitively high re-

quirements for storage, memory bandwidth, and compute capacity. This problem exacerbates with

more complex state-of-art models, such as the VGG model [70] that has 16 layers and 138 million

weights.

A typical CNN classifier consists of a parameterized pipelined multi-layer architecture. Layers

require configuration of their parameters, often called weights, which must be determined by train-

ing the CNN offline on pre-classified data. Once the parameters are determined, the CNN can be

deployed for the classification of new data points. The first layer takes as input a multi-channel

input image and outputs a set of feature maps (fmaps). Each of the following layers read the

fmaps, performs some computation on them, and produces a new set of fmaps to be fed into the

next layer. Finally, a classifier produces the probability of that image belonging to each output

class. The layer types are the following:

Convolutional layers realize a filter-like process, convolving the input fmaps with a K × K
weight kernel. The results are summed, added with a bias, and passed through a non-linearity

function to produce a single output fmap. This process is given in Equation 5.4 below,

CHAPTER 5. EVALUATION 61

yn = f(
M∑

m=1

xm ∗ wn,m + bn). (5.4)

Pooling layers map each input fmap to an output fmap where every pixel is the max/mean

of a K × K window of input pixels. They are inserted through a CNN to reduce the size of the

intermediate fmaps.

Fully-Connected layers apply a linear transformation on the input 1-D vectors with a weight

matrix. A bias is applied on the result, which is then passed through a non-linearity function to

produce a single 1× 1 output. This process is given in Equation 5.5 below,

yn = f(
M∑

m=1

xm ∗ wn,m + bn). (5.5)

A BNN is essentially an extremely quantized, reduced-precision CNN model where weights and

fmap pixels are binarized using the sign function. Positive weights are mapped to +1 and negative

weights to -1, using a compact single-bit representation. Therefore, BNNs require significantly less

storage than standard CNNs. The binarization of the neural networks can either be partial of full.

In order to be consider as full, it has to encompass the following aspects: binary input activations,

binary synapse weights and binary output activations. Due to the quantization effect, there is no

need for biasing since it does not compromising the accuracy. However, in order to enhance the

accuracy and scale down the error, a new layer type has to be introduced:

The Batch normalization [76] layer reduces the quantization error of the binarization by

linearly shifting and scaling the input distribution to have zero mean and unit variance. The

transformation is given in Equation 5.6 below,

y =
x− µ√
σ2 + ε

γ + β. (5.6)

The CIFAR-10 dataset [77] contains sixty thousand 32 × 32 3-channel images consisting of

photos taken of real world vehicles and animals. For the experiments, out of the 60,000 images,

50,000 images were chosen for training and 10,000 images for testing. Training of the CIFAR-10

BNN model was done using open-source Python code provided by Courbariaux et al. [73], which

uses the Theano and Lasagne deep learning frameworks.

5.4.2 ACI application mapping

The architecture of the BNN consists of nine layers, with the first six being convolutional layers

while the next three are fully connected layers, as illustrated in Figure 5.10. The first layer (L0 in

Fig. 5.10) receives fixed-point input data and binary weights, whereas the rest of the layers (L1

through L8 in Fig. 6.9) operate only on binary data. The convolutional layers rely on 3×3 filtering

and edge padding, while the fully connected layers apply batch normalization prior to pooling, and

CHAPTER 5. EVALUATION 62

L0 L1 L2 L3 L4 L5 L6 L7 L8

Floating-Point Convolution Binary Convolution Fully Connected

Figure 5.10: Binarized Neural Network architecture.

binarization before writing data out to the buffers. The accelerator system presented by Zhao et

al. [5] designed three accelerators, which are employed as-is in our disaggregated accelerator systems.

The FP CONV core implements the L0 layer of the BNN. The BIN CONV core is employed

for the following five binary-only convolution layers (L1 through L5). Finally, the BIN FC core

accelerates the last three BNN layers (L6 through L8).

To map the required BNN computations to an ACI, we place each accelerator call in a dedicated

TASK class, which also contains the respective core’s configuration parameters and input/output

address and sizes. The number of images that are processed in-between PR events is defined as the

number of iterations of a LOOP class, with the stride being the image size. The THREAD and

PARSEC classes allow to expose parallelism per layer by partitioning processing over multiple AS

that host the same accelerator core. Finally, the WINDOW class performs one PR event per AS

to deploy a different accelerator core to serve the needs of the next BNN layer. Due to the fact

that there are three accelerator cores, the final ACI that implements the BNN consists of three

WINDOW classes, one per accelerator core. Figure 5.11 below, illustrates alternative execution

scenarios based on different ACI structures for the BNN. The Static Architecture is identical

to the reference execution scenario that is implemented on a software-programmable FPGA by

Zhao et al. [5]. Due to the fact that ReFiRe is a native partially reconfigurable architecture, the

Static Architecture involves the initial deployment of the three accelerators in three AS. This

is achieved by placing all nine TASK classes (one per BNN layer) in the same WINDOW class.

The PR Architecture exploits PR at run time and exposes intra-layer parallelism through the

PARSEC/THREAD classes. Therefore, thee WINDOW classes are required, one per accelerator

core, and multiple ACI-based iterations are performed.

5.4.3 Experimental results

All three accelerator cores deployed in ReFiRe are retrieved from https://github.com/cornell-zhang/

bnn-fpga. Table 5.6 provides resource utilization per accelerator on the ZCU102 evaluation platform.

CHAPTER 5. EVALUATION 63

FP_CONV PARSEC FP_CONV THREAD BIN_CONV PARSEC BIN_CONV THREAD BIN_FC PARSEC BIN_FC THREAD

WINDOW

LOOP

FP_CONV TASK

BIN_CONV TASK

BIN_FC TASK

Static_Architecture

PR_ Architecture

Figure 5.11: Illustration of the ACI format for the Static Architecture and the PR Architecture for
FPGA-based BNN acceleration.

We evaluate two alternative execution scenarios, the Static Architecture and PR Architecture

(illustrated in Figure 5.11) using the CIFAR-10 dataset.

5.4.3.1 Static Architecture

We initially reproduce, using ReFiRe, the same static execution scenario that was evaluated by

Zhao et al. [5] using SDSoC. Thus, we first deploy the accelerator cores FP CONV , BIN CONV

and BIN FC through an initial configuration WINDOW. In this scenario, all 10,000 images we

used for evaluation are processed sequentially, directing the each layer’s output to the next, as

dictated by the BNN architecture. This approach required 128 sec to complete. As a reference, we

note that the SDSoC-based approach [5] using the exact same accelerators and amount of images

required 103.1 sec. The observed delay is due to data exchanges between remote FPGAs for ACI

transfers and synchronization.

5.4.3.2 PR Architecture

Next, we evaluate the DPR-based execution scenario by populating all AS with the same accelerator

core and rely on the PARSEC and THREAD classes to invoke them in parallel per layer. The DPR

overhead per AS (using ICAP [37]) is 7 ms (2.5 MB bitstream sizes). Note that, Zhao et al. [5] report

5.7 ms per image without using DPR. Thus, to yield a beneficial computation-to-PR ratio to exploit

DPR using ReFiRe, we organize processing in batches. Figure 5.12 illustrates how performance

improves with the batch size. As can be observed in the figure, DPR allows to outperform the

CHAPTER 5. EVALUATION 64

Table 5.6: Resource utilization for the three BNN accelerator cores on the Zynq Ultrascale+
MPSoC

ACCEL. LUTs FFs BRAMs DSPs Power (W)

FP CONV 11609 13802 16 0 0.112

BIN CONV 13208 5849 86 2 0.050

BIN FC 4432 6148 20 2 0.086

fully static architecture when the batch size exceeds 25 images/batch. Evidently, processing a

single image in-between DPR events yields the worst-case performance, requiring 917 seconds in

total for the 10,000 images, when the static design with 1 instance per accelerator finishes in 128

seconds. When the batch size exceeds the 300 images, DPR allows up to 3.1x faster execution,

due to the four accelerator instances per layer. Note that, aggregate system performance increases

almost linearly with the number of disaggregated FPGAs used, due to the beneficial computation-

to-synchronization ratio that the ACI offers. The overhead to create and transfer an ACI to a

remote FPGA is as low as 1.33 sec.

0

100

200

300

400

500

600

700

800

900

1000

1 10 50 100 200 300 500

Ex
ec

ut
ion

 tim
e (

se
c)

Batch size (number of images)

Static_Architecture

PR_Architecture

Figure 5.12: Execution time to process 10,000 images using the Static Architecture and the
PR Archtitecture when the batch size (number of images in-between PR events) grows up to 500.

5.4.3.3 Comparison with other works

A comparison with previous FPGA accelerator designs for CNN and BNN models is provided in

Table 5.7. Suda et al.[78] and Qui et al.[70] reported 117 and 136 GOPS/s, respectively, significantly

lower than the performance attained through ReFiRe. Li et al.[79] achieved 594 GOPS/s, with 22.5

CHAPTER 5. EVALUATION 65

GOP/s/W efficiency, due to the increased power consumption of the design. Our work outperforms

the reference approach proposed by Zhao et al. [5], achieving about 3.1 times higher performance

and efficiency for the exact same set of accelerators. Umuroglou et al. [80] and Liang et al. [81]

report considerably high performance than all other approaches. Therefore, we intend to employ

ReFiRe to further improve the performance of these accelerators by transparently introducing DPR

and deploying disaggregated FPGAs.

Table 5.7: Performance comparison with other FPGA-based CNN/BNN accelerators. The
presented accelerator system employs the same set of accelerator cores as Zhao et al. [5].

Zhao et al.[5] This work Suda et al.[78] Qiu et al.[70] Li et al.[79] Umuroglu et al.[80] Liang et al.[81]
Platform Zynq ZynqMP Stratix-V Zynq Virtex-7 Zynq Stratix-V

XC7Z020 XCZU9EG 5SGSD8 XC7Z045 VX690T XC7Z045 5SGSD8
Clock(MHz) 143 150 120 150 156 200 150

Precision(bit) Input: 8 Input: 8 8-16 16 16 Input: 8 Input: 8
Weight: 1 Weight: 1 Weight: 1 Weight: 1

Model size (OPs) 1.24 G 1.24 G 30.9 G 30.76 G 1.45 G 112.5 M 1.23 G
Performance (GOP/s) 207.8 667 117 136 565.94 2465.5 9396.41

Power(W) 4.7 5.97 25.8 9.63 30.2 11.7 26.2
Efficiency (GOP/s/W) 44.2 111.73 4.57 14.22 22.15 210.72 358.64

5.5 ReFiRe performance versus primitive remote calls

As stated in previous sections, ReFiRe [1] encapsulates sequences of operations in Advanced Co-

processor Instructions in order to reduce the computation-to-communication ratio between a host

processor and the accelerator device. Table 5.8 below, illustrates the required number of primitive

remote calls that had to be accomplished for three different workload types in comparison with the

corresponding ACI calls. Furthermore, it exhibits the relation between the workload type and the

corresponding ACI class. Through a primitive call, the host processor could handle fundamental re-

mote device’s operations e.g start/stop accelerator, initialize input/output data addresses, perform

one loop iteration with the appropriate parameters, initialize ICAP controller etc.

Table 5.8: Comparison between the required ACI and primitive calls, for three distinct
workload types.

Workload ACI-based offloading Primitive calls

Type Size ACI class #ACIs Number

Accelerator calls T TASK 1 T

Loop iterations L LOOP 1 L

Partial Reconfiguration Events W WINDOW 1 W

Assuming a fixed number of operations that had to be implemented in the remote device,

CHAPTER 5. EVALUATION 66

for every accelerator call, loop iteration and Partial Reconfiguration event, one primitive call is

required. On the other hand, regardless the number of the required operations, the appropriate

information could be embodied in one ACI, reducing the synchronization requirements between

the remote nodes. It is worth noticing that exploiting the Datapath Constructor of the ReFiRe,

one TASK class could accommodate more than one accelerator calls depending on the appropriate

pipeline depth.

Table 5.9 illustrates the size of the ACI memory that is going to be transferred on the remote

side for different workload sizes. In order to deploy T accelerator calls and W Partial reconfiguration

events remotely, the overall size of the ACI memory is equal to Sizeof(WINDOW)+Sizeof(LOOP) +

T*Sizeof(TASK) and W*Sizeof(WINDOW)+Sizeof(LOOP)+ Sizeof(TASK), respectively. Contrar-

ily, each LOOP’s iteration information could be embodied in one LOOP class reducing the overall

transfer size. Thus, the size of the ACI memory is equal to Sizeof(WINDOW) + Sizeof(LOOP) +

Sizeof(TASK).

Table 5.9: ACI memory size for distinct workload sizes.

ACI Workload ACI memory
Class type Class size Size Total size (Bytes)

TASK 64(BYTES) T Sizeof(WINDOW) + Sizeof(LOOP) + (T)*Sizeof(TASK)
LOOP 32(BYTES) L Sizeof(WINDOW) + Sizeof(LOOP) + Sizeof(TASK)

WINDOW 32(BYTES) W W*Sizeof(WINDOW) + Sizeof(LOOP) + Sizeof(TASK)

Figure 5.13 below, shows the attained performance improvement for an increasing operation

number when deploying ACI instead of performing primitive remote calls. By encapsulating the

accelerator calls in TASK classes rather than performing primitive remote calls, the overall per-

formance could be boosted up to 5 times. Likewise, by including the appropriate loop iteration

information in a LOOP class will improve the performance up to 3.5 times. However, considering

the increased WINDOW class decode time, both methods achieve the same performance. That oc-

curs because it lies in the top of the ACI class hierarchy and includes all the appropriate information

related to the contained ACI classes.

CHAPTER 5. EVALUATION 67

Figure 5.13: Attained performance improvement from adopting ReFiRe for remote accelerator deployment,
rather than having primitive remote calls.

Chapter 6

Conclusions and future work

6.1 Conclusions

In this thesis, a generic acceleration framework with support for dynamic partial reconfiguration

that improves performance of remote accelerators by encapsulating complex sequences of operations

in arbitrarily long instructions called ACIs presented. Through this framework, the control flow

of the execution procedure is shifted in the remote side. Thus, it reduces the synchronization

requirements between the host processor and the accelerator device. This way, near-peak accelerator

performance is exhibited at the application level.

The procedure of mapping a sequential application in Advanced Co-Processor Instructions in

order to be processed from the ACI decode control of the ReFiRe framework was a difficult and time

consuming process. To alleviate this issue, this thesis presents a source-to-source transformation

framework which takes as input the available hardware architecture alongside the corresponding

application and yields all the appropriate parts of the framework needed for the remote hardware

accelerator deployment. Furthermore, it encapsulates software tasks that are in between hardware

accelerators in order to be executed from the ACCEL side reducing the synchronization require-

ments with the Host device.

In order to evaluate ReFiRe, four distinct applications deployed. For the first application a

2D FFT (implemented by a sequence of 1D FFTs) evaluated. Exploiting LOOP class feature, we

managed to reduce the synchronization requirements to 0.5% of the total execution time. For the

second application taking advantage of the accelerator pipeline deployment inside a TASK class

as well as LOOP’s class functionality, near-peak accelerator performance exposed for the LD score

calculation. Attributed to source-to-source’s capability, for the third application (which calculates

LD scores for DNA input data), a software TASK executed in ACCEL (s2s outcome) and in

HOST device, representing two different evaluation scenarios. The source-to-source outcome over-

performed about 2.5 times the software TASK execution in the HOST side. Finally, a Binarized

Convolutional Neural Network evaluated over the ReFiRe framework. Assuming three hardware

68

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 69

BNN accelerator cores, using ReFiRe we encapsulated the required sequence of operations in order

to execute the BNN on the remote device. The evaluation results show that disaggregation offers

an attractive solution, because the aggregate system performance increases almost linearly with the

number of disaggregated FPGAs, due to the beneficial computation-to-synchronization ratio that

the ACI offers. That allows to expose near-peak accelerator performance at the application level,

despite performing computations on remote node.

To conclude, the ReFiRe framework exploits the five specialization principles, concurrency,

computation, communication, caching, and coordination. Based on these principles it constitutes

a flexible and efficient framework for remote accelerator deployment in disaggregated environment

targeting to maximize the remote accelerator’s performance.

6.2 Future work

As aforementioned, the ReFiRe framework minimizes the synchronization requirements between a

HOST and ACCEL device, while maximizes accelerator’s efficiency. Dealing with more than one

ACCEL device a scheduler daemon could be additionally implemented aiming on the efficient ACI

dispatch in the remote devices according to a set of scheduling parameters e.g. the reliability of

the remote node, the available resources etc. Furthermore, the increased number of the remote

devices will increase the communication requirements between the HOST and the ACCEL nodes.

Thus, in the host side, a process that will handle communication/synchronization requirements in

order to avoid deadlock generation should be implemented. Finally, further custom sequences of

operations related to different remote processing resources e.g. GPUs could be also encapsulated

in the current infrastructure, maximizing ReFiRe’s field of usage.

To summarize, the ReFiRe framework in combination with the above referred daemons could

initiate a very reliable, flexible and efficient infrastructure for deploying variable remote accelerator

devices in disaggregated data centers handling the major drawbacks that traditional data centers

cope with.

References

[1] E. Pissadakis, N. Alachiotis, P. Skrimponis, D. Theodoropoulos, T. Korakis, and D. Pnev-

matikatos, “ReFiRe: efficient deployment of Remote Fine-grained Reconfigurable accelera-

tors,” ICFPT, 2018.

[2] O. Knodel and R. G. Spallek, “Computing Framework for Dynamic Integration of Reconfig-

urable Resources in a Cloud,” Euromicro Conference on Digital System Design, 2015.

[3] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger, “Dark Silicon

and the End of Multicore Scaling,” 38 th International Symposium on Computer Architecture

(ISCA), 2011.

[4] N. Alachiotis et al., “OmegaPlus: a scalable tool for rapid detection of selective sweeps in

whole-genome datasets,” Bioinf., vol. 28, no. 17, pp. 2274–2275, 2012.

[5] R. Zhao, W. Song, W. Zhang, T. Xing, J.-H. Lin, M. Srivastava, R. Gupta, and Z. Zhang, “Ac-

celerating Binarized Convolutional Neural Networks with Software-Programmable FPGAs,”

FPGA, 2017.

[6] R. Dennard, F. Gaensslen, V. Rideout, E. Bassous, and A. LeBlanc, “Design of ion-implanted

MOSFET’s with very small physical dimensions,” IEEE Journal of Solid-State Circuits, 1974.

[7] J. Polzehl and V. Spokoiny, “Propagation-separation approach for local likelihood estimation,”

Probab. Theory Related Fields, vol. 135, no. 3, pp. 335–362, 2006.

[8] J. Polzehl, K. Papafitsoros, and K. Tabelow, “Patch-wise adaptive weights smoothing,” WIAS

Berlin, Tech. Rep. 2520, 2018.

[9] F. Chen, Y. Shan, Y. Zhang, Y. W. 2, H. Franke, X. Chang, and K. Wang, “Enabling FPGAs

in the Cloud,” Proceedings of the 11th ACM Conference on Computing Frontiers, 2014.

[10] A. Barret, “”A disaggregated server proves breaking up can be a good thing”

https://searchdatacenter.techtarget.com/feature/A-disaggregated-server-proves-breaking-

up-can-be-a-good-thing,” SearchDataCenter , Online, 2016.

70

REFERENCES 71

[11] N. Alachiotis, A. Andronikakis, D. T. Orion Papadakis, D. Pnevmatikatos, D. Syrivelis,

A. Reale, K. Katrinis, G. Zervas, H. Y. Vaibhawa Mishra, I. Syrigos, I. Igoumenos, T. Korakis,

M. Torrents, and F. Zyulkyarov, “dReDBox: A Disaggregated Architectural Perspective for

Data Centers,” Hardware Accelerators in Data Centers, 2019.

[12] G. E. Moore, “Cramming more components onto integrated circuits,” Electronics, Volume 38,

Number 8, 1965.

[13] “TRS. International technology roadmap for semiconductors, 2010 update, 2011. URL

http://www.itrs.net.”

[14] S. Borkar, “The exascale challenge.” Keynote at International Symposium on VLSI Design,

Automation and Test (VLSI-DAT), 2010.

[15] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic, C. Kaynak, A. D.

Popescu, A. Ailamaki, and B. Falsafi, “A CASE FOR SPECIALIZED PROCESSORS FOR

SCALE-OUT WORKLOADS,” IEEE Micro, 2014.

[16] ——, “Clearing the Clouds : A Study of Emerging Scale-out Workloads on Modern Hardware

,” In Proceedings of the 17th Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS), 2012.

[17] J. Weerasinghe, F. Abel, C. Hagleitner, and A. Herkersdorf, “Enabling FPGAs in Hyperscale

Data Centers,” 15 IEEE 12th Intl Conf on Ubiquitous Intelligence and Computing, August

2015.

[18] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides, J. Demme, H. Es-

maeilzadeh, J. Fowers, G. P. Gopal, J. Gray, M. Haselman, S. Hauck, S. Heil, A. Hormati,

J.-Y. Kim, S. Lanka, J. Larus, E. Peterson, S. Pope, A. Smith, J. Thong, P. Y. Xiao, and

D. Burger, “A Reconfigurable Fabric for Accelerating Large-Scale Datacenter Services,” Pro-

ceeding of the 41st Annual International Symposium on Computer Architecuture, ser. ISCA

’14. Piscataway, NJ, USA: IEEE Press, 2014, pp. 13–24.

[19] J. Weerasinghe, R. Polig, F. Abel, and A. Hagleitner, “Network-Attached FPGAs for Data

Center Applications,” International Conference on Field-Programmable Technology (FPT),

2016.

[20] N. Tarafdar, T. Lin, D. Ly-Ma, D. Rozhko, A. Leon-Garcia, and P. Chow, “Building the

Infrastructure for Deploying FPGAs in the Cloud,” Hardware Accelerators in Data Centers,

August 2019.

REFERENCES 72

[21] G. W, L. E, D. N, and S. A, “A high-performance, portable implementation of the MPI message

passing interface standard,” Parallel Comput 22(6):789–828. https://doi. org/10.1016/0167-

8191(96)00024-5, 1996.

[22] N. Tarafdar, T. Lin, E. N, L. D, L.-G. A, and P. Chow, “Heterogeneous virtualized network

function framework for the data center.” Field programmable logic and applications (FPL),

2017.

[23] “OpenStack (2018) OpenStack. https://www.openstack.org/.”

[24] N. Neves, P. Tomás, and N. Roma, “Host to Accelerator Interfacing Framework for High-

Throughput Co-Processing Systems,” 2015.

[25] M. Vesper, D. Koch, K. Vipin, and S. A. Fahmy, “JetStream: An Open-Source High-

Performance PCI Express 3 Streaming Library for FPGA-to-Host and FPGA-to-FPGA Com-

munication,” 26th International Conference on Field Programmable Logic and Applications

(FPL), 2016.

[26] M. Jacobsen, Y. Freund, and R. Kastner, “RIFFA: A Reusable Integration Framework for

FPGA Accelerators,” IEEE 20th International Symposium on Field-Programmable Custom

Computing Machines, 2012.

[27] S. Paiágua, F. Pratas, P. Tomás, N. Roma, and R. Chaves, “HotStream: Efficient Data Stream-

ing of Complex Patterns to Multiple Accelerating Kernels,” 25th International Symposium on

Computer Architecture and High Performance Computing, 2013.

[28] J. Gong, T. Wang, J. Chen, H. Wu, F. Ye, S. Lu, and J. Cong, “An Efficient and Flexible

Host-FPGA PCIe Communication Library,” International Conference on Field Programmable

Logic and Applications (FPL), 2014.

[29] G. Marcus, W. Gao, A. Kugel, and R. Männer, “THE MPRACE FRAMEWORK: AN OPEN

SOURCE STACK FOR COMMUNICATION WITH CUSTOM FPGA-BASED ACCELER-

ATORS,” VII Southern Conference on Programmable Logic (SPL), 2011.

[30] S. A. Fahmy, K. Vipin, and S. Shreejith, “Virtualized FPGA Accelerators for Efficient Cloud

Computing,” International Conference on Cloud Computing Technology and Science (Cloud-

Com), 2015.

[31] M. Jacobsen et al., “RIFFA 2.1: A reusable integration framework for FPGA accelerators,”

ACM TRETS, vol. 8, no. 4, p. 22, 2015.

[32] Amazon Web Services, “Amazon EC2 F1 Machine Instance,”

https://aws.amazon.com/ec2/instance-types/f1/, [Online; accessed 02-Jun-2019].

REFERENCES 73

[33] Alibaba Cloud, “Machine Learning Platform For AI,” https://www.alibabacloud.com, [Online;

accessed 02-Jun-2019].

[34] C. Kachris, D. Soudris, G. Gaydadjiev, H.-N. Nguyen, D. S. Nikolopoulos, A. Bilas, N. Mor-

gan, C. Strydis, C. Tsalidis, J. Balafas, R. Jimenez-Peris, and A. Almeida, “The VINEYARD

approach: Versatile, Integrated, Accelerator-based, Heterogeneous Data Centres,” 5th Inter-

national Conference on Modern Circuits and Systems Technologies (MOCAST), 2016.

[35] T. Nowatzki et al., “Domain specialization is generally unnecessary for accelerators,” IEEE

Micro, vol. 37, no. 3, pp. 40–50, 2017.

[36] ——, “Pushing the limits of accelerator efficiency while retaining programmability,” in HPCA

2016. IEEE, 2016, pp. 27–39.

[37] Xilinx, “UltraScale Architecture Configuration,” https://www.xilinx.com/support/documentation/

user guides/ug570-ultrascale-configuration.pdf, [Online; accessed 05-Jul-2018].

[38] D. Theodoropoulos, A. Reale, D. Syrivelis, M. Bielski, N. Alachiotis, and D. Pnevmatikatos,

“REMAP: Remote mEmory Manager for disAggregated Platforms,” IEEE 29th International

Conference on Application-specific Systems, Architectures and Processors (ASAP), 2018.

[39] Xilinx, “AXI Hardware ICAP,” https://www.xilinx.com/products/intellectual-

property/axi hwicap.html, [Online; accessed 05-Jul-2018].

[40] J. Maynard Smith and J. Haigh, “The hitch-hiking effect of a favourable gene.”

Genetical research, vol. 23, no. 1, pp. 23–35, Feb. 1974. [Online]. Available:

http://www.ncbi.nlm.nih.gov/pubmed/4407212

[41] M. T. Alam et al., “Selective sweeps and genetic lineages of plasmodium falciparum drug-

resistant alleles in ghana,” J. of Infectious Diseases, vol. 203, no. 2, pp. 220–227, 2011.

[42] N. G. de Groot and R. E. Bontrop, “The HIV-1 pandemic: does the selective sweep in

chimpanzees mirror humankind’s future?” Retrovirology, vol. 10, no. 1, p. 53, Jan. 2013.

[Online]. Available: http://www.retrovirology.com/content/10/1/53

[43] J. L. Crisci, Y.-P. Poh, S. Mahajan, and J. D. Jensen, “The impact of equilibrium assumptions

on tests of selection,” Frontiers in genetics, vol. 4, 2013.

[44] R. Nielsen et al., “Genomic scans for selective sweeps using SNP data,” Genome Research,

vol. 15, no. 11, pp. 1566–1575, Nov. 2005.

[45] P. Pavlidis et al., “SweeD: likelihood-based detection of selective sweeps in thousands of

genomes,” Molecular biology and evolution, p. mst112, 2013.

REFERENCES 74

[46] Y. Kim and R. Nielsen, “Linkage disequilibrium as a signature of selective

sweeps,” Genetics, vol. 167, no. 3, pp. 1513–1524, Jul. 2004. [Online]. Available:

http://www.ncbi.nlm.nih.gov/pubmed/15280259

[47] R. R. Hudson, “Generating samples under a Wright-Fisher neutral model of genetic

variation.” Bioinformatics (Oxford, England), vol. 18, no. 2, pp. 337–8, 2002. [Online].

Available: http://www.ncbi.nlm.nih.gov/pubmed/11847089

[48]

[49] M. Kimura, “The number of heterozygous nucleotide sites maintained in a finite population

due to steady flux of mutations,” Genetics, vol.61, no. 2, pp. 57-86, 1969.

[50] S. Tavaré, “Some probabilistic and statistical problems in the analysis of dna sequences,”

Lectures on mathematics in the life sciences, vol. 17, no. 2, pp. 57–86, 1986.

[51] Z. DV, P. A, and W. BS, “orrelation-based inference for linkage disequilibrium with multiple

alleles.”

[52] A. Krizhevsky et al., “ImageNet Classification with Deep Convolutional Neural Networks,” in

Advances in Neural Information Processing Systems (NIPS), 2012, pp. 1097–1105.

[53] O. Russakovsky et al., “ImageNet Large Scale Visual Recognition Challenge,” International

Journal of Computer Vision, vol. 115, no. 3, pp. 211–252, 2015.

[54] R. B. Girshick et al., “Rich Feature Hierarchies for Accurate Object Detection and Seman-

tic Segmentation,” in 2014 IEEE Conference on Computer Vision and Pattern Recognition,

CVPR, 2014, pp. 580–587.

[55] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning,” Nature, vol. 521, pp. 436–44, 05 2015.

[56] G. Hinton et al., “Deep Neural Networks for Acoustic Modeling in Speech Recognition,” Signal

Processing Magazine, 2012.

[57] L. Deng et al., “Recent advances in deep learning for speech research at Microsoft,” in IEEE

International Conference on Acoustics, Speech and Signal Processing, ICASSP 2013, Vancou-

ver, BC, Canada, May 26-31, 2013, 2013, pp. 8604–8608.

[58] R. C. et al, “Natural Language Processing (Almost) from Scratch,” Journal of Machine Learn-

ing Research, vol. 12, pp. 2493–2537, 2011.

[59] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “DeepDriving: Learning Affordance for Direct

Perception in Autonomous Driving,” in Proceedings of the 2015 IEEE International Conference

on Computer Vision (ICCV), 2015.

REFERENCES 75

[60] T. Zhang, G. Kahn, S. Levine, and P. Abbeel, “Learning Deep Control Policies for Autonomous

Aerial Vehicles with MPC-Guided Policy Search,” CoRR, vol. abs/1509.06791, 2015.

[61] A. Esteva et al., “Dermatologist-level classification of skin cancer with deep neural networks,”

Nature, vol. 542, no. 7639, pp. 115–118, 2017.

[62] M. Jermyn et al., “Neural networks improve brain cancer detection with Raman spectroscopy in

the presence of light artifacts,” in Clinical and Translational Neurophotonics; Neural Imaging

and Sensing; and Optogenetics and Optical Manipulation, vol. 9690, 2016.

[63] D. Wang et al., “Deep Learning for Identifying Metastatic Breast Cancer,” CoRR, vol.

abs/1606.05718, 2016.

[64] D. Silver et al., “Mastering the game of Go with deep neural networks and tree search,” Nature,

vol. 529, no. 7587, pp. 484–489, 2016.

[65] E. Nurvitadhi, D. Sheffield, , A. Mishra, G. Venkatesh, and D. Marr, “Accelerating Binarized

Neural Networks: Comparison of FPGA, CPU, GPU, and ASIC,” in ICFPT, 2016, pp. 77–84.

[66] C. Szegedy et al., “Going Deeper with Convolutions,” CoRR, vol. abs/1409.4842, 2014.

[67] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” in

2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas,

NV, USA, June 27-30, 2016, 2016, pp. 770–778.

[68] K. Simonyan et al., “Very Deep Convolutional Networks for Large-Scale Image Recognition,”

CoRR, vol. abs/1409.1556, 2014.

[69] X. Xie et al., “Exploiting Sparsity to Accelerate Fully Connected Layers of CNN-Based Appli-

cations on Mobile SoCs,” ACM Trans. Embedded Comput. Syst., vol. 17, no. 2, pp. 37:1–37:25,

2018.

[70] J. Qiu et al., “Going Deeper with Embedded FPGA Platform for Convolutional Neural Net-

work,” FPGA, 2016.

[71] S. Han et al., “Deep Compression: Compressing Deep Neural Network with Pruning, Trained

Quantization and Huffman Coding,” CoRR, vol. abs/1510.00149, 2015.

[72] F. N. Iandola et al., “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and

<1MB model size,” CoRR, vol. abs/1602.07360, 2016.

[73] M. Courbariaux, Y. Bengio, and J. David, “BinaryConnect: Training Deep Neural Networks

with binary weights during propagations,” CoRR, vol. abs/1511.00363, 2015.

REFERENCES 70

[74] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng, “Reading Digits in

Natural Images with Unsupervised Feature Learning,” in NIPS Workshop on Deep Learning

and Unsupervised Feature Learning, 2011.

[75] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net: ImageNet Classification

Using Binary Convolutional Neural Networks,” CoRR, vol. abs/1603.05279, 2016.

[76] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing

internal covariate shift,” CoRR, vol. abs/1502.03167, 2015.

[77] A. Krizhevsky, “Learning Multiple Layers of Features from Tiny Images,” 2009.

[78] N. Suda et al., “Throughput-Optimized OpenCL-based FPGA Accelerator for Large-Scale

Convolutional Neural Networks,” FPGA, pp. 16–25, 2016.

[79] H. Li et al., “A High Performance FPGA-based Accelerator for Large-Scale Convolutional

Neural Networks,” International Conference on Field Programmable Logic and Applications

(FPL), pp. 1–9, 2016.

[80] Y. Umuroglu et al., “FINN: A Framework for Fast, Scalable Binarized Neural Network Infer-

ence,” FPGA, 2017.

[81] S. Liang et al., “FP-BNN: Binarized neural network on FPGA,” Neurocomputing, 2017.

