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Abstract

Fake news detection has in recent years emerged as an important new research area,
necessitating the development of effective machine learning (ML) solutions in order to
identify the authenticity of reported news, and classify them as fake or not.

Against this background, in this thesis we put forward a novel text vectorization ap-
proach, that generates feature vectors of numerical statistics to describe a document. Our
so-called class label frequency distance (CLFD), bears certain advantages when compared to
‘’classic” text vectorization methods. Moreover, we detail how to incorporate the approach
within certain ML methods used for document classification. CLFD is shown experimen-
tally to provide an effective way for boosting the performance of those ML methods.

Specifically, our experiments, carried out in the fake news detection domain, verify
that efficient traditional ML methods that use our vectorization approach, consistently
outperform deep learning methods that use word embeddings for small and medium sized
datasets, while the results are comparable for large datasets. In addition, we demonstrate
that a novel hybrid method that utilizes both a CLFD-boosted logistic regression classifier
and a deep learning one, clearly outperforms deep learning methods even in large datasets.

Finally, for two datasets used in the literature, our CLFD vectorization approach al-
lows both the hybrid method and certain traditional machine learning methods to provide
significantly better results than those reported in recent published work within the fake
news detection domain.





Αποτελεσματική ανίχνευση ‘’ψευδών ειδήσεων’’

με χρήση τεχνικών μηχανικής μάθησης

του Μιχαήλ Μερσινιά

Επιβλέπων: Αναπληρωτής Καθηγητής Γεώργιος Χαλκιαδάκης

Περίληψη

Τα τελευταία χρόνια, η ανίχνευση ψευδών ειδήσεων είναι μια ανερχόμενη περιοχή έρευνας,

που συνδέεται με την ανάπτυξη μεθόδων μηχανικής μάθησης (ΜΜ) για την ταυτοποίηση της

αυθεντικότητας και την επιτυχή και αποδοτική ταξινόμηση κειμένων ειδήσεων ως ψευδών ή

μη.

Στην παρούσα διπλωματική εργασία, προτείνουμε ένα νέο στατιστικό μοντέλο διανυσ-

ματοποίησης κειμένου, που αποσκοπεί στην δημιουργία διανυσμάτων χαρακτηριστικών για

την αριθμητική αναπαράσταση ενός αρχείου κειμένου. Η μέθοδός μας, την οποία καλούμε

class label frequency distance (CLFD), έχει συγκεκριμένα προτερήματα σε σχέση με ‘’κλασ-

σικές’’ μεθόδους διανυσματικοποίσης κειμένου. Στην εργασία μας εξηγούμε το πώς μπορεί να

ενσωματωθεί σε μεθόδους ΜΜ που χρησιμοποιούνται για ταξινόμηση κειμένων. Αποδεικνύουμε

πειραματικά ότι η CLFD αποτελεί έναν αποτελεσματικό τρόπο για την βελτίωση της απόδοσης

των μεθόδων αυτών.

Πιο συγκεκριμένα, κατά την πειραματική διαδικασία, η οποία διεξήχθη στο πεδίο της

ανίχνευσης ψευδών ειδήσεων, επαληθεύεται ότι τα αποτελέσματα συγκεκριμένων παραδοσι-

ακών μεθόδων ΜΜ με αποδοτική πολυπλοκότητα που χρησιμοποιούν την προτεινόμενη μέθοδο

διανυσματοποίησης, είναι στατιστικά καλύτερα σε σχέση με αυτά των υψηλής πολυπλοκότη-

τας μεθόδων βαθιάς μάθησης για μικρού και μεσαίου όγκου συλλογές αρχείων ειδήσεων - ενώ

ταυτόχρονα, η απόδοση των μεθόδων είναι παρόμοια για μεγάλου όγκου συλλογές.

Ακολούθως, προτείνουμε μία νέα, υβριδική μέθοδο ΜΜ που συνδυάζει την παραδοσιακή

και αποδοτική μέθοδο ‘’λογιστικής παλινδρόμησης’’ (‘’logistic regression”) η οποία αξιοποιεί

το στατιστικό μας μοντέλο και μία μη γραμμική μέθοδο βαθιάς μάθησης. Αποδεικνύουμε

πειραματικά ότι η απόδοση της υβριδικής μεθόδου ξεπερνάει αυτήν των μη γραμμικών μεθόδων

βαθιάς μάθησης ακόμα και για μεγάλου όγκου συλλογές αρχείων.

Τέλος, σε δύο συλλογές αρχείων ειδήσεων που χρησιμοποιούνται στη βιβλιογραφία, η

εφαρμογή του στατιστικού μας μοντέλου είχε ως αποτέλεσμα η απόδοση τόσο της υβριδικής

μεθόδου όσο και ορισμένων κλασικών μεθόδων μηχανικής μάθησης να είναι σημαντικά καλύτερη

από αυτήν που αναφέρεται σε πρόσφατη σχετική ερευνητική δημοσίευση.
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Chapter 1

Introduction

‘’The information of the people
at large can alone make them
the safe, as they are the sole,
depository of our political and
religious freedom.”

Thomas Jefferson

Fake news is a term which describes news articles that are "intentionally and verifiably
false and can mislead readers" [1]. This phenomenon has existed throughout history,
from the turbulent times of the late Roman Republic when after the assassination of
Julius Caesar, a disinformation war occurred between Octavian and Mark Anthony which
included heavy use of propaganda in form of vitriolic speeches and defamatory slogans
written upon coins in the style of archaic tweets. Later on, in the early 19th century, the
New York newspaper The Sun published a series of articles about the supposed discovery of
life and civilization on the Moon and described its inhabitants to consist of unicorns, bat-
like winged humanoids and other fantastic animals. The Great Moon Hoax, as it was later
named, managed to spread quickly and established The Sun as a successful newspaper.

However, the frequency and impact of fake news has substantially increased in the
21st century, due to the easy access to unfiltered information that is available to the
public, mainly anonymously across the Web. In fact, the issue is so prevalent that Fake
News has been named as the 2017 word of the year by the Collins dictionary [2], It has
been shown that fake news spreads faster than credible news [3] while at the same time,
fake news generation is greater than news fact checking [4]. According to a March 2018
Eurobarometer survey [5], fake news constitutes a threat to democracy for 83% of the
EU population. Many governments have signed fake news laws which make it a crime to
spread fake news online [6, 7]. This means that there is a growing demand for automatically
detecting and stopping the spread of fake news, as its quick and effective detection can
have a positive social impact.

In the following sections, we provide a clear definition about fake news as a term, we
discuss the challenges and the objectives of fake news detection and finally we outline the
contributions and the organization of this thesis.

1



2 Introduction

1.1 Defining Fake News

Fake news is an umbrella term which encompasses various forms of unreliable information,
although as a term, it may often have different interpretations. As mentioned above, at its
core, it refers to news articles which are intentionally and verifiably false and can mislead
readers. These news articles usually contain fabricated stories with no verifiable facts,
sources or quotes. These stories may be propaganda which is intentionally designed to
push a specific agenda by misleading the readers, or they may be clickbait written for
economic incentives as the writer profits on the number of people who click on the story.
However, it is not only false stories that may be defined as fake news. Certain news articles
may contain the truth but may be written in language which is intentionally inflammatory,
leaves out contextual details, or only presents one viewpoint. All of the above [8] can be
summarized into two main categories of fake news:

• Misinformation: Misleading or inaccurate information that is mistakenly or inad-
vertently created and spread, but the intent is not to deceive.

• Disinformation: False information that is deliberately created and spread in order
to influence public opinion or obscure the truth [9].

In Figure 1.1, a chart [10] is presented with seven types of misinformation and disinforma-
tion. They represent the basic forms of fake news as defined above.

Figure 1.1: Seven types of mis/dis-information
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1.2 Challenges & Objectives

In our work, we follow a natural language processing and machine learning approach and
treat fake news detection as a binary text classification task which aims to classify news
articles into credible or fake news. However, the complex nature of fake news, as described
in Section 1.1, makes their detection a challenging task.

An important issue is that there is a lack of quantity and quality regarding training
data. The lack of large quantities of training data is even more prevalent in the real
world due to the fact that large datasets are difficult to build and annotate or they are
proprietary. Furthermore, due to the need of early detection, classification time efficiency
is another important factor. Therefore, our fake news detection system need to be time
efficient and achieve a high performance regardless of dataset size.

Another issue is that since fake news are often created anonymously and spread by other
sources, there is little to no information about them regarding non-textual metadata such
as the source, the original author or the country of origin. Furthermore, information about
the people who have read, liked or shared a news article might be either unavailable or raise
concerns regarding their privacy. Therefore, the only consistently available information is
the content of the news article.

After taking all of the above into account, our approach is to rely solely on the content,
the title and the body text, of the news article and treat this information as the only avail-
able input data. This content-based fake news detection approach allows the classification
to be done even on anonymous posts and the lack of non-textual features is not an obsta-
cle, as the classification is performed on textual features that are always available. Finally,
the fake news detection system needs to be time efficient and consistent in achieving high
performance regardless of dataset size. Thus, the objective of this thesis is the creation of
a robust, high performing and time efficient content-based fake news detection system.

1.3 Contributions

Our contributions can be summarized as follows:

• A definition of fake news and a description of different fake news detection system
types.

• A novel numerical statistical approach for the construction of document feature vec-
tors which boost the performance of certain machine learning methods. We also
create and evaluate variations of this approach. Our vectorization approach leads to
experimental results that show a high ranking among certain methods that use it. We
demonstrate on particular datasets that our approach leads to performance that is
superior to that of deep neural networks in small and medium sized datasets, while it
is comparable in larger ones. Finally, in two datasets, our algorithms produce results
that are significantly better than those reported in recent published work concerning
those exact datasets.

• A novel hybrid method which combines the best performing machine learning meth-
ods through an average probability system for more effective classification. Further-
more, the hybrid method makes use of information retrieval techniques to search
credible online news corpora in order to add a positive bias towards credible news
during classification if there is a high similarity between the titles of the news articles.

• A systematic comparison of five vectorization techniques as well as five traditional
machine learning and four deep learning methods for the binary text classification
task of creating a fake news detection system that relies solely on the content of the
news articles.



4 Introduction

1.4 Thesis Organization

In this section we outline the organization of this thesis and present the content of each
chapter.

In Chapter 2, we present related work regarding fake news detection and emphasize
certain aspects of literature which have been taken into consideration for this thesis.

In Chapter 3, we define common natural language techniques for textual data prepro-
cessing such as tokenization, stopword removal, stemming, lemmatizing and more. Fur-
thermore, we define text vectorization and describe the most common text vectorization
techniques. Finally, we present the chain of processes (pipeline) which outlines the func-
tionality of our fake news detection system.

In Chapter 4, we develop a novel statistical algorithm for effective text vectorization.
We provide the mathematical background and discuss the advantages it may provide com-
pared to traditional text vectorization techniques. Furthermore, we develop and present
variations of our algorithm. Finally, we describe its application in fake news detection by
providing a detailed example.

In Chapter 5, we present and describe several machine learning methods which will
be compared for the task of fake news detection. We describe their functionality, as well
as their advantages and disadvantages, in detail. Furthermore, we outline the reasoning
behind hyper-parameter selection for each of them. Finally, we propose a hybrid method
which combines the prediction results of some of these methods, as well as information re-
trieval techniques, into an effective classifier and we discuss the advantages it may provide.

In Chapter 6, we present our experimental results. The evaluation is carried out on
three datasets which differ in size, class balance and topic homogeneity. We systemati-
cally compare five vectorization techniques as well as five traditional machine learning and
four deep learning methods. For the best performing methods, we further analyze the
results along with error bars which correspond to 95% confidence intervals. Finally, we
discuss the results in detail and point out the effectiveness of our vectorization approach as
well as that of the hybrid method in terms of classification performance and time efficiency.

In Chapter 7, we conclude this thesis, and we provide directions for future work and
possible extensions to our solutions.



Chapter 2

Related Work

There has been a considerable amount of work on fake news detection in the past few
years. Existing research falls broadly within the realm of linguistic analysis, which uses
natural language processing and machine learning methods; or that of network analysis,
which utilizes knowledge network graphs [11]. We follow the first approach and treat fake
news detection as a binary text classification task.

Considering a fake news detection system, a constant flow of news articles has to be
classified as either credible or fake. More generally, a dataset is composed of a number
of news articles, or documents, each of which contains a certain number of features. The
features always included are the title and the body text of the news article. Other fea-
tures such as the author may sometimes be included. Therefore, two types of fake news
detection systems may be created depending on the assumption we make about the fea-
tures included in the classification. We call the first type content-based and the second
typemulti-criteria. There is a need to define these two types and distinguish between them.

• In content-based fake news detection systems, the data provided only contains the
title and the body text of each news article.

• In multi-criteria fake news detection systems, the data provided contains the title
and the body text of each news article as well as other characteristics such as the
author, the country of origin, the profiles of the readers who might have liked or
shared it, the date, and more.

Most of the related work focuses on multi-criteria fake news detection systems. How-
ever, in practice, fake news are often created anonymously and spread by other sources,
therefore there is little to no information about the source, the original author or the coun-
try of origin. As mentioned in Section 1.1, fake news may be in the form of information
that is mistakenly or inadvertently created and spread and the intent might not be to
deceive (misinformation). In this case, the profiles of the people who have liked or shared
the news article might give little to no insight to the fake news detection system. Further-
more, making use of profile information contained in a social media platform might raise
concerns over the privacy of its users or might be unavailable in the first place.

Therefore, while multi-criteria systems contain more information and may lead to higher
performance, content-based systems utilize information that is consistently available. In
the following subsections, we present certain approaches used in related work regarding
fake news detection as well as their respective results.
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6 Related Work

2.1 Multi-criteria fake news detection systems

A high performing fake news detection system, CSI [12], is a multi-criteria hybrid system
which combines deep learning methods for the text, the responses and the profile of the
users who have promoted the news articles and achieves the best performance with an
F1-score of 89% and 95% in two different datasets. Other similar systems have produced
high results as well [13] [14]. However, these are multi-criteria fake news detection systems,
as described above, and do not follow our content-based approach.

2.2 Content-based fake news detection systems

Related work regarding content-based fake news detection systems has been to date rela-
tively limited. A comparison of several deep learning methods [15] has shown that recurrent
neural networks and specifically LSTMs, Bidirectional LSTMs (Bi-lstm), and GRUs, which
use pre-trained GloVE word embeddings [16] as input, are suitable for identifying fake news
as they achieved the highest F1-score (81%). Another content-based fake news detection
system found in the literature [17], combines the representation results from different meth-
ods into a single classification method. More specifically, a multilayer perceptron is used
so the representation results of a convolutional (CNN) and a Bi-lstm neural network are
combined into an effective classifier for fake news detection.

A recent content-based fake news detection system [18] utilizes traditional machine
learning methods, such as Gradient Boosting [19], in order to achieve a compromise between
classification time and high performance. In our fake news detection system, we make use
of the two datasets used in [18], and demonstrate that we increase the performance of
traditional machine learning methods through our novel vectorization approach. In this
way, we retain the classification time advantage of traditional machine learning methods,
while achieving very high performance: one that is on par or higher than that of deep
learning methods, and significantly higher than the aforementioned state-of-the-art for
those datasets.

Furthermore, it is worth mentioning the stance detection approach, as a subcategory of
content-based fake news detection systems, which was inspired by the FNC-1 part of the
"fake news challenge" [20]. It assumes that a great dissimilarity between the title and the
body text of a news article is a solid sign of fake news. In literature, one of the best results
of this approach, with an FNC-1 score of 81.72%, is achieved by a method which makes use
of a shallow neural network and its input consists of the tf-idf vector of both the title and
the body text of the news article as well as their cosine similarity [21]. Finally, a different
subcategory of content-based fake news detection systems is the use of tensor embeddings
which, in a semi-supervised approach, uses a fraction of the labelled data (2%) and achieves
high performance with an accuracy score of 70.92% [22], as well as other content-based
systems which are based on syntactic and semantic analysis [23, 24, 25] or hierarchical
discourse-level structure [26] and show interesting results as well.

We conclude that the good results achieved in the scarce but important research done
on content-based systems make this approach promising, as they show that relying solely
on the content for classification does not significantly decrease the performance of a fake
news detection system.



Chapter 3

Background

In this chapter, we provide some basic definitions related to natural language processing
and text classification. We first present certain data preprocessing techniques which are
commonly used as a precedent step to text classification. We then define the process of
vectorization and describe the most common methods in detail. Finally, we outline the
chain of processes (pipeline) and the functionality of a content-based fake news detection
system.

3.1 Data Preprocessing

In this section, we define certain text preprocessing techniques related to natural language
processing and describe their functionality and usage in detail. These necessary steps
of text preprocessing provide dimensionality reduction by reducing the vocabulary size
the classification methods are exposed to, while at the same time, there is an increase in
performance due to the explicit correlation of words with similar meanings and the removal
of other words with little to no classification value.

3.1.1 Corpus, Tokenization & Vocabulary

We first provide some basic natural language processing definitions. The corpus is defined
as the collection of documents, news articles in our case, which constitute our dataset.
Furthermore, we define the vocabulary as the set of words which occur in the corpus. For
example, consider a corpus which consists of the following two documents: "I love going
out", "I love a nice ice cream". The process of tokenization generates a list of tokens which
constitute the vocabulary. Therefore, after performing tokenization based on whitespace
separation in this example, the resulting vocabulary is as follows: ["I", "love", "going",
"out", "a", "nice", "ice", "cream"]. Each element of the vocabulary corresponds to a
unique word contained in the corpus regardless of its number of occurrences and it may be
notated as term, word or token.
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3.1.2 Stopword Removal

It is obvious, even in the simple example presented above, that certain terms such as the
term "a" have no value in classification. In fact, this is the case with very common terms
which have a very high frequency of occurrence in the English language and may as a
result be overvalued. This phenomenon creates noise in the input of the machine learning
algorithms. In order to counter this, a list of stopwords is used in order to achieve the
selective exclusion of certain terms from the vocabulary. An example of such a stopword
list is presented below:

Stopword list: ["to", "a", ..., "the"]

However, not all such terms should be included in a stopword list as certain high frequency
terms may be useful features in specific domains and tasks. For example, the term "not"
has a high frequency in the English language but it is useful for identifying negation and
may provide insight in certain cases.

3.1.3 Stemming & Lemmatizing

The goal of both processes [27] is to condense derived words into their basic forms.

• Lemmatizing is the process of grouping together the inflected forms of a term so
they can be analysed as a single term, identified by the lemma of that term. It
is often more accurate than stemming as it uses more informed analysis to create
groups of terms with similar meaning based on the context around each term.

• Stemming is a similar process which is typically faster but less accurate as it simply
chops off the end of a term using heuristics, without any understanding of the context
in which a term is used.

In order to showcase the difference between lemmatizing and stemming, we present two
examples. For the first example, consider the terms "meanness" and "meaning". Stemming
transforms both of them to "mean", while lemmatizing does not make any changes. For the
second example, consider the terms "goose" and "geese". Lemmatizing transforms both
of them to "goose" while stemming transforms them into "goos" and "gees" respectively.
Therefore, lemmatizing was the choice for our fake news detection system as it is preferable
to stemming due to its increased accuracy.
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3.2 Vectorization

As mentioned in Chapter 1, the goal of our fake news detection system is to classify news
articles into credible or fake news by making use of machine learning classification methods.
We can use a linear model, y = w · x, where w is a vector of weights estimated by the
machine learning method and x is a feature vector. Alternatively, we can use a non-linear
model with a deep learning architecture. In our work, we experiment with both linear and
non-linear methods.

However, most of these methods have been designed to learn from numerical data. In
the case of news articles, the input is textual data which comes in the form of a sequence
of terms, punctuation and whitespaces. All of the above are based on string data and thus,
as a precedent step to classification, it is necessary to have a numerical representation
which is equivalent to the string representation of every document. This process is called
text vectorization [28]. Each term is regarded as a feature and it is assigned a numerical
representation based on certain attributes such as its frequency or the context around it.
The result is a feature vector for each document which corresponds to the set of features
which will be used by the classification methods during the learning process. In this section,
we present the most common vectorization techniques. We describe their functionality in
detail, provide examples and discuss their respective advantages and disadvantages.

3.2.1 Term Frequency

Let us consider the following two documents:

“Mike likes to play football. Alex likes to play football too.”
“Mike also likes to play basketball.”

Performing tokenization based on whitespace separation and removing punctuation, leads
to the generation of the following vocabulary:

[“mike”, “likes”, “to”, “play”, “football”, “alex”, “too”, “also", "basketball”]

Term frequency (tf) is a simple and useful numerical statistic used for term representation.
It calculates the number of times each term of the vocabulary occurs in each document.
This calculation results in a feature vector of length v for each document, where v is the
length of the vocabulary. Each element represents the number of times the term in position
i of the vocabulary appeared in the respective document. A variation of this method is
binary term frequency (b − tf) vectorization where each term takes a value of 1 in case
of occurrence in the document or a value of 0 otherwise. In our example, as we have two
documents, the result would be the following two vectors:

mike likes to play football alex too also basketball
Document 1 1 2 2 2 2 1 1 0 0
Document 2 1 1 1 1 0 0 0 1 1

Table 3.1: Term Frequency (TF) Vectors

mike likes to play football alex too also basketball
Document 1 1 1 1 1 1 1 1 0 0
Document 2 1 1 1 1 0 0 0 1 1

Table 3.2: Binary Term Frequency (B-TF) Vectors
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The advantages of term frequency (tf ) and binary term frequency (b-tf ) vectorization
techniques are the following:

• Simple and fast vectorization techniques which provide a simple but effective term
representation and often result in high accuracy.

However, the disadvantages of term frequency (tf ) vectorization are the following:

• High sensitivity to terms such as "a", "the" and "is" which have a very high frequency
of occurrence in the English language but do not provide any useful information.
Therefore, in order not to overvalue these terms and allow noise in the input of the
machine learning algorithms, a carefully created stopword list has to be generated
for the selective exclusion of such terms.

3.2.2 Term Frequency - Inverse Document Frequency

An alternative approach is to emphasize terms which may be rare and interesting in a
document but are overshadowed by other, more frequent terms whose information is not
useful. This may happen either because the aforementioned terms were not identified
as stopwords or because some domain-specific terms may be frequent in certain corpora
but provide no classification value, e.g. the term "movie" in the imdb movie reviews
dataset. In order to counter this issue, inverse document frequency is introduced. The
tf-idf term weighting re-weights the term frequency (tf ) features into floating point values
that represent how rare, or important, each term is in the corpus. More specifically, term
frequency (tf) is defined as the number of occurrences of a term in a document, divided by
the total number of terms the document contains. The inverse document frequency (idf)
depends on the whole document corpus and represents the total number of documents,
divided by the number of documents which contain the term. Therefore, in order to
calculate the inverse document frequency, we need to know the total number of documents
(nd) and the number of documents that contain the term, which is denoted as df(d, t).
The tf-idf values are calculated as follows:

idf(t) = log
1 + nd

1 + df(d, t)
+ 1 (3.1)

tfidf(t, d) = tf(t, d) · idf(t) (3.2)

In the previous example, the tf-idf document vectors would be the following:

mike likes to play football alex too also basketball
Document 1 1 1 1 1 1.32 1.32 1.32 0 0
Document 2 1 1 1 1 0 0 0 1.32 1.32

Table 3.3: Term Frequency Inverse Document Frequency (TF-IDF) Vectors

The advantages of tf-idf vectorization are the following:

• Simple and fast technique which provides a more sophisticated term representation
and often results in high accuracy.

• Low sensitivity to stopword selection due to the idf component. It significantly
lowers the weight of terms that have a high frequency of occurrence in the English
language as their occurrence in many different documents significantly decreases their
idf value and as a result, their tf-idf weight.
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However, the disadvantages of tf-idf vectorization are the following:

• A large corpus is required for an accurate impact of the idf component.

• The tf-idf term re-weighting isn’t always beneficial as in certain cases it might reduce
performance. For example, in a dataset such as imdb movie reviews, a common
but important term such as the term "like" would have a much lower tf-idf weight
compared to its respective term frequency weight. This could be a disadvantage in a
natural language processing task, such as sentiment analysis, where this term should
be considered important for classification.

3.2.3 Word embeddings

Word embeddings are used to improve the ability of classification methods, specifically
deep learning methods, to learn from text data by representing terms as N -dimensional
vectors. The vocabulary is represented in a vector space of several hundred dimensions,
with each unique term in the corpus being assigned a corresponding vector in this space.
They are based on the distributional hypothesis [29] stating that the meaning of a term
can be understood from the contexts it appears in. Following this hypothesis, terms are
represented by means of their neighbours and each term is associated with a vector that
encodes information about its co-occurrence with other terms in the vocabulary. These
vectors are called embeddings and provide a numerical representation, as described above,
for every term.

One-hot encoding

The most common word embedding approach is to one-hot encode the textual data. In this
case, we represent each word by an one-hot vector [0, ..., 0, 1, 0, ..., 0] of length v where
v is the size of the vocabulary. The elements of this vector take a value of 1 at the index
corresponding to the appropriate vocabulary term, and a value of 0 everywhere else. This
approach requires substantial computational resources as computations with such one-hot
encoded vectors are considered inefficient because all but one elements in each one-hot
vector have a value of 0. Furthermore, the dimensionality of the vector space is very high
and specifically at least v · h where v is the size of the vocabulary and h is the size of the
neural network’s hidden layer [30].

Pre-trained vectors

More advanced word embedding methods are pre-trained vectors which started as one-
hot representations and dimensionality reduction methods were applied to them in the
context of language models. They bring outside information and significantly reduce the
dimensionality of the vector space which is Rd in this case, where d is the word embed-
dings size which is often assigned a value between 100 and 1000 [30]. Furthermore, the
number of parameters that a method such as a neural network needs in order to learn
from scratch is significantly reduced. Word2vec [31] and GloVE [16] word embeddings,
developed by Google and Stanford University respectively, are the main pre-trained word
embedding techniques used in natural language processing tasks. Their resulting repre-
sentations showcase interesting linear substructures of the vector space as the vectors are
positioned in the vector space in a way that allows terms that share common contexts in the
corpus to be located in close proximity to one another. Fasttext [32], developed by Face-
book, follows another approach and learns from subword information such as characters or
character level n-grams.
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3.3 Pipeline

As a problem approached by a natural language processing and supervised classification
perspective, our content-based fake news detection system follows a specific chain of pro-
cesses (pipeline). The pipeline includes steps such as data fetching and cleansing, data
preprocessing, vectorization, method optimization and classification. More specifically:

• Data is being fetched and cleansed. All unwanted elements such as unrecognized
characters or NaN elements are removed.

• The resulting raw text is tokenized into terms based on whitespace separation of
text elements. Each token of text is preprocessed by performing techniques such as
lemmatizating and stopword removal.

• Vectorization is performed and transforms each token of clean text to an equivalent
numerical representation. This document feature vector generation step is being
performed by making use of algorithms which are powerful term-weighting schemes
that show the importance each term has for the classification process.

• Classification is performed through machine learning algorithms. Several combina-
tions of vectorization techniques and machine learning methods are chosen. After
fitting the training data, hyperparameters are tuned and evaluation follows.

• By comparing the results of the previous step, the best performing method, along
with its respective feature vectors and hyperparameters, is chosen as the main method
of the fake news detection system.

Figure 3.1: Fake news detection system pipeline



Chapter 4

Our approach

In this chapter, we propose a novel numerical statistical approach for vectorization which
produces feature vectors that can be used for effective term numerical representation. As
mentioned in Section 3.2, the process of transforming each textual element, or term, of
a document into an equivalent numerical representation is called vectorization. While
the traditional vectorization methods, such as tf or tf-idf, treat each term as part of a
document, this vectorization technique assigns weights to each term based on the frequency
it has within different class labels. We call this approach class label frequency distance
or clfd. In what follows, we introduce our novel clfd technique and discuss its benefits;
present its specification to fake news detection; and present machine learning algorithms
that employ it or are used as baselines.

4.1 Mathematical Framework

We first provide a brief explanation of clfd before providing the details. Consider a corpus
of documents D. Our approach works by determining the relative frequency of a term in a
specific set of documents Di ∈ D which belong to a class label i within a set C of possible
class labels, compared to the frequency of that term in the set of documents {D − Di}
which belong to all other class labels. Intuitively, this calculation determines how relevant
a given term is to a particular class label, relatively to its relevance to the rest of the
class labels. We call this class label frequency ratio (clfr), and it is the main component
of clfd. After calculating the clfr weight of a term t for each class label i, we calculate the
maximum distance between those clfr weights by subtracting the smallest clfr value from
the largest one. The result is the clfd weight for t, which signifies how likely it is that t
belongs to a specific class label.

The formal procedure for determining clfd is the following. Given a corpus of documents
D, a term t, and a set of documents Di ∈ D for each class label i, we first calculate three
class label term frequency (cltf ) vectors. The algorithm for their calculation is presented
in the following page.
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Algorithm 1: CLTF vectors calculation
Data: corpus, class_labels
Result: Generation of terms, occ, and total vectors

1 for document d in corpus do
2 for class_label i in class_labels do
3 if d belongs to i then
4 for term t in d do
5 terms(t,i) = t;
6 occ(t,i) += tf(t,d);
7 total(i) += tf(t,d);
8 end
9 end

10 end
11 end

In the above algorithm, tf(t, d) represents the number of occurrences of a term t in a
document d. For each class label i, the vector terms contains the vocabulary and the vector
occ the respective number of occurrences of each term t contained in terms. Finally, for
each class label i, total(i) represents the total number of occurrences of all terms contained
in the corresponding set of documents Di.

Now that we have the three cltf vectors for each set of documents Di that belong to
class label i, we can calculate a clfr weight vector for each class label i, as follows:

clfr i(t) = loge
(1 + occ(t, i)) · total(̂i)
(1 + occ(t, î)) · total(i)

+ 1, ∀t (4.1)

In Equation 4.1, occ(t,i) represents the number of occurrences of term t in Di, while occ(t,̂i)
represents the number of occurrences of term t in {D−Di}. Furthermore, total(i) contains
the total number of occurrences of all terms which appear in Di, while total(̂i) contains
the total number of occurrences of all terms which appear in {D −Di}. The clfr i vectors
are used to calculate the clfd weights as follows:

clfd(t) = maxi∈C(clfr i(t))−mini∈C(clfr i(t)),∀t (4.2)

In Equation 4.2, the clfd weight for a term t is the maximum difference among its clfr
values. The algorithm for the generation of the (corpus-wide) clfd weight vector is presented
in the following page.
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Algorithm 2: CLFD calculation
Data: corpus, vocabulary, class_labels
Result: Generation of clfd vector

1 terms, occ, total = cltf(corpus, class_labels);
2 for term t in vocabulary do
3 for class_label i in class_labels do
4 clfr i(t) computed as in Eq.4.1;
5 end
6 clfd(t) computed as in Eq.4.2;
7 end

In the above algorithm, we first calculate the cltf vectors occ and total, as in Algorithm
1, which represent, for each class label i, the number of occurrences of a term t in Di and
the total number of occurrences of all terms which appear in Di respectively. The clfri

vectors contain the clfr weights of each term t for every class label, calculated according
to Equation 4.1. Furthermore, clfd represents the maximum distance between those clfr
weights, and is calculated according to Equation 4.2.

Then, the final clfd vector for a document d is the result of taking the Hadamard
product between the computed clfd vector and one generated by a term frequency-based
vectorizer such as b-tf, tf or tf-idf :

clfdd(t)← clfd(t) ◦ tf-based_vectorizer(t, d), ∀t (4.3)

This step is required in order to remove from a document’s clfd vector the values that
correspond to terms not appearing in that specific document, as a tf-based vectorizer
calculates document-related numerical statistics, and would have assigned 0 values to such
terms. All tf-based vectorizers create vectors of size equal to vocabulary size v, and Alg.
2 computes a clfd vector of size v, thus a simple element-wise multiplication is required in
order to generate the final feature vectors for each document.
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4.2 Discussion

The clfd technique provides a sophisticated weighting scheme with certain advantages
compared to existing vectorization methods. This is because treating a term t as part of a
set of documents Di which belong to a class label i provides better insights for classification
than simply treating t as part of a single document or the entire corpus.

The clfd weights represent the importance or relevance of every term for classification.
If the clfd value of a term t is high, then that term is very likely to be related to documents
associated with a specific class label. If the clfd value of a term t is low, then that term is
not likely to occur in any documents associated with a specific class label. In case the clfd
value is zero, then the term t is equally likely to occur in documents associated with any
class label.

Compared to term frequency (tf ) vectorization, clfd contains a natural filter to stopword
noise due to the class label frequency ratio (clfr) component. Therefore, the performance
of clfd is practically not affected by the quality or even the absence of data preprocessing:
a term which has an equal number of occurrences between all class labels will have a clfd
weight value of zero and it is practically removed. If a term has a significantly higher
number of occurrences in documents which belong to a specific class label, and thus a high
clfd weight, then it should not necessarily be considered a stopword for this domain in the
first place, regardless of its frequency of occurrence in the English language.

Consider now tf-idf vectorization: in tf-idf, terms that are very common in certain
domains, such as the term “like” in a sentiment analysis task, will have a low weight value
due to the idf component. However, in the clfd approach, the term “like” will have a very
high clfr value for the positive class label and a very low clfr value for the negative class
label, thereby making the final clfd weight and relevance of the term “like”, high.

Therefore, we can conclude that our vectorization approach provides important advan-
tages over traditional vectorization methods. As such, it is conceivable that it can be used
to boost the performance of machine learning algorithms, a fact verified experimentally in
the fake news detection domain, as we detail later in this thesis.
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4.3 Clfd variants

The vectorizer required for Equation 4.3 can be chosen from a list which includes a b-tf
vectorizer (b-clfd), a tf vectorizer (tf-clfd) and a tf-idf vectorizer (tfidf-clfd). Consider
an example of two documents: "Congress approved the controversial bill", "The congress
is filled with lies, lies and deceit". The clfd variants are calculated as described in the
following subsections.

Binary class label frequency distance

The first variant is to use the clfd vector as a multiplier to a binary term frequency (b-tf )
vectorizer. We can multiply the final clfd weights with the respective b-tf weights for each
term of a document.

In our example, the vocabulary is represented by this vector: [congress, approved,
controversial, bill, full, lies, deceit]. After generating the binary term frequency (b-tf )
feature vectors, as described in Section 3.2.1, we have [1, 1, 1, 1, 0, 0, 0] as the b-tf feature
vector for document 1 and [1, 0, 0, 0, 1, 1, 1] as the b-tf feature vector for document 2. In
the end, the resulting b-clfd feature vectors are as follows:

Vocabulary clfd weights b-tf vector (doc 1) Document 1 vector
congress 0.00 1 0.00
approved 0.69 1 0.69

controversial 0.69 1 0.69
bill 0.69 1 0.69
filled 0.69 0 0.00
lies 1.10 0 0.00

deceit 0.69 0 0.00

Table 4.1: B-clfd term representation: Document 1 vector

Vocabulary clfd weights b-tf vector (doc 2) Document 2 vector
congress 0.00 1 0.00
approved 0.69 0 0.00

controversial 0.69 0 0.00
bill 0.69 0 0.00
filled 0.69 1 0.69
lies 1.10 2 1.10

deceit 0.69 1 0.69

Table 4.2: B-clfd term representation: Document 2 vector

The advantages that b-clfd vectorization provides are the following:

• A sophisticated term weighting scheme based on the maximum term frequency dis-
tance between different class labels in order to calculate the relevance of a term for
classification.

• There is little to no sensitivity to stopword selection as the usage of the class la-
bel frequency ratio (clfr) component acts as a natural filter. The quality of data
preprocessing does not significantly affect performance.
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Term frequency - class label frequency distance

The second variant is to use the clfd vector as a multiplier to a term frequency (tf ) vector-
izer. We can multiply the final clfd weights with the respective tf weights for each term
of a document. Compared to b-clfd weights, the tf-clfd weights will be equal in the case
terms do not occur more than once in each document, otherwise, they will be greater and
specifically, multiples of the b-clfd weights.

In our example, the vocabulary is represented by this vector: [congress, approved, con-
troversial, bill, full, lies, deceit]. After generating the term frequency (tf ) feature vectors,
as described in Section 3.2.1, we have [1, 1, 1, 1, 0, 0, 0] as the tf feature vector for doc-
ument 1 and [1, 0, 0, 0, 1, 2, 1] as the tf feature vector for document 2. In the end, the
resulting tf-clfd feature vectors are as follows:

Vocabulary clfd weights tf vector (doc 1) Document 1 vector
congress 0.00 1 0.00
approved 0.69 1 0.69

controversial 0.69 1 0.69
bill 0.69 1 0.69
filled 0.69 0 0.00
lies 1.10 0 0.00

deceit 0.69 0 0.00

Table 4.3: Tf-clfd term representation: Document 1 vector

Vocabulary clfd weights tf vector (doc 2) Document 2 vector
congress 0.00 1 0.00
approved 0.69 0 0.00

controversial 0.69 0 0.00
bill 0.69 0 0.00
filled 0.69 1 0.69
lies 1.10 2 2.20

deceit 0.69 1 0.69

Table 4.4: Tf-clfd term representation: Document 2 vector

The advantages that tf-clfd vectorization provides are the following:

• It retains the advantages of binary class label frequency distance (b-clfd) vectorization.

• It increases the maximum frequency distance between different classes in case a term
occurs more than once in a document, thus giving it an even greater classification
value.
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Term frequency inverse document frequency - class label frequency distance

The third variant is to use the clfd vector as a multiplier to a term frequency - inverse
document frequency (tf-idf ) vectorizer. We can multiply the final clfd weights with the
respective (tf-idf ) weights for each term of a document.

In our example, the vocabulary is represented by this vector: [congress, approved,
controversial, bill, full, lies, deceit]. After generating the term frequency - inverse document
frequency (tf-idf ) feature vectors, as described in Section 3.2.2, we have [0, 0.3, 0.3, 0.3, 0,
0, 0] as the tf-idf feature vector for document 1 and [0, 0, 0, 0, 0.3, 0.6, 0.3] as the tf-idf
feature vector for document 2. In the end, the resulting tfidf-clfd feature vectors are as
follows:

Vocabulary clfd weights tf-idf vector (doc 1) Document 1 vector
congress 0.00 0 0.00
approved 0.69 0.3 0.207

controversial 0.69 0.3 0.207
bill 0.69 0.3 0.207
filled 0.69 0 0.00
lies 1.10 0 0.00

deceit 0.69 0 0.00

Table 4.5: Tfidf-clfd term representation: Document 1 vector

Vocabulary clfd weights tf-idf vector (doc 2) Document 2 vector
congress 0.00 1 0.00
approved 0.69 0 0.00

controversial 0.69 0 0.00
bill 0.69 0 0.00
filled 0.69 0.3 0.207
lies 1.10 0.6 0.414

deceit 0.69 0.3 0.207

Table 4.6: Tfidf-clfd term representation: Document 2 vector

The advantages that tfidf-clfd vectorization provides are the following:

• It retains the advantages of term frequency - class label frequency distance (tf-clfd)
vectorization.

• There is an even stronger filter against stopwords due to the inverse document fre-
quency (idf ) component.
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4.4 Application to fake news detection

While our clfd approach can find application in several practical machine learning or nat-
ural language processing tasks, we use it here for fake news detection. As this is a binary
classification problem, there are only two possible class labels: credible news (c) and fake
news (f). Therefore, for the two classes i={c, f}, Equation 4.1 becomes:

clfr c(t) = loge
(1 + occ(t, c)) · total(f)

(1 + occ(t, f)) · total(c)
+ 1, ∀t (4.4)

clfrf (t) = loge
(1 + occ(t, f)) · total(c)
(1 + occ(t, c)) · total(f)

+ 1,∀t (4.5)

Furthermore, the resulting clfr vectors will now correspond to class labels c and f only.
Therefore, Equation 4.2 can be specified for these two classes i={c, f} by simply calculating
the absolute value of the subtraction between the two aforementioned clfr weights as
follows:

clfd(t) = |clfr c(t)− clfrf (t)|,∀t (4.6)

Now that we defined the equations for the generation of clfd weights for our binary text
classification task, we provide an example to describe the process in detail. Consider four
documents, the first and the third belonging in the class of credible news (c) and the second
and the fourth belonging in the class of fake news (f).

Documents
1 Congress approved the controversial bill.
2 The congress is filled with lies, lies and deceit.
3 The movie received plenty of controversial reviews.
4 This movie was made by aliens to brainwash us.

Table 4.7: Clfd example: Corpus

The first step is to generate the cltf vectors for each class label i = {c, f} as described
in Algorithm 1. Data preprocessing such as stopword removal and lemmatizing has been
applied [27]. In this example, the generated cltf vectors, terms, occ and total, are as follows:

Terms (c) Occ (c) Terms (f) Occ (f)
1 congress 1 congress 1
2 approve 1 fill 1
3 controversial 2 lies 2
4 bill 1 deceit 1
5 movie 1 movie 1
6 receive 1 make 1
7 plenty 1 alien 1
8 review 1 brainwash 1

Total - 9 - 9

Table 4.8: Clfd example: Class label term frequency (cltf) vectors
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The next step is to calculate the clfr weights according to Equations 4.4 and 4.5. The
resulting clfr weight vectors are as follows:

Vocabulary Credible news (c) Fake news (f)
1 congress 0.69 0.69
2 approve 1.10 0.41
3 controversial 1.39 0.29
4 bill 1.10 0.41
5 movie 0.69 0.69
6 receive 1.10 0.41
7 plenty 1.10 0.41
8 review 1.10 0.41
9 fill 0.41 1.10
10 lies 0.29 1.39
11 deceit 0.41 1.10
12 make 0.41 1.10
13 alien 0.41 1.10
14 brainwash 0.41 1.10

Table 4.9: Clfd example: Class label frequency ratio (clfr) vectors

Finally, we calculate the clfd weights according to Equation 4.6. The resulting clfd
weight vector is as follows:

Vocabulary clfd weight
1 congress 0.00
2 approve 0.69
3 controversial 1.10
4 bill 0.69
5 movie 0.00
6 receive 0.69
7 plenty 0.69
8 review 0.69
9 fill 0.69
10 lies 1.10
11 deceit 0.69
12 make 0.69
13 alien 0.69
14 brainwash 0.69

Table 4.10: Clfd example: Class label frequency distance (clfd) vector

Clfd Variants The final step is to multiply the clfd weight vector calculated above, with
a vector generated by a vectorizer of our choice as in Equation 4.3, in order to apply the clfd
weighting scheme to each document. Our choices in this work were (i) a b-tf vectorizer,
(ii) a tf vectorizer, and (iii) a tf-idf vectorizer. This gives rise to three respective clfd
variants: b-clfd, tf-clfd, and tfidf-clfd.
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4.5 Analysis

In the clfd weight vector of Table 4.10, we observe that our clfd vectorization approach
generates a vector of feature importance that is distinct to those that b-tf, tf or tf-idf
vectorizers had produced. Specifically, we present the following example for the corpus of
Table 4.7. Consider document 3:

movie receive plenty controversial review
tf 1.00 1.00 1.00 1.00 1.00

tf-clfd 0.00 0.69 0.69 1.10 0.69

Table 4.11: Clfd example: Comparison of tf and tf-clfd (document 3)

In Table 4.11, we notice that a tf vectorizer considers all terms to have an equal
importance in document 3. For instance, the term “movie” and the term “controversial”
are considered equally important as they both have a weight of 1.00. However, a tf-clfd
approach considers the term “controversial” very important (weight 1.10), the rest of the
terms less important (weight 0.69) and the term “movie” non-existent (weight 0.00).

Therefore, we notice that the term “controversial” has been assigned by clfd a high
clfd weight as it appears in one more “credible” document (document 1) in the collection.
Indeed, “controversial” is a rather elaborate word, more likely to appear in credible news
articles. On the other hand, a neutral term such as the term “movie” has a zero clfd weight.
As such, clfd weights could potentially be used as hints to “trace back” and verify whether
the terms of importance, according to clfd, are indeed likely to appear in their respective
document classes.

We can conclude that clfd can be a viewed as a tool that could help provide explain-
ability of machine learning outcomes, a very important concern in the further analysis of
news articles. More specifically, its feature importance vector can help provide useful in-
formation which can be used as elements of a system in an explainable AI approach that
will provide the reasons behind the classification decision. This comes in contrast to pure
neural network approaches where explainability is a big challenge.



Chapter 5

Machine learning methods

The resulting numerical feature vector representations of vectorization techniques are used
as input to certain machine learning methods whose task is to classify a news article
into credible news or fake news. The methods which are used can be categorized into
probabilistic, ensemble and deep learning methods. Furthermore, a hybrid method is
developed and proposed for better performance. In the following sections, the functionality
of these methods, as well as their advantages and disadvantages, is described in detail.

5.1 Probabilistic methods

Probabilistic machine learning methods are methods which rely on a probabilistic approach
to classification. The goal of this approach is to capture the relationship between the input
data and the output class label by comparing the probability of an event in the presence of
another event. For example, the probability of having a fire (event A) if the weather is hot
(event B). There may be several variables which event A depends on, such as the case of
the weather being windy (event C). In the end, a probabilistic method is able to predict,
given an observation of an input, a probability distribution over a set of class labels.

5.1.1 Multinomial Naive Bayes

The first probabilistic method that was used was a Multinomial Naive Bayes classifier.
This method is based on the Bayes’ theorem and thus adopts independence assumptions
regarding the features. Because of this assumption, possible correlations between the input
features are overlooked during classification. The multinomial based Naive Bayes classifier
regards the input feature vectors as representations of the frequencies which certain events,
terms of a document in our case, have been generated by a multinomial (p1, p2, ..., pn) where
pi is the probability that term i occurs in the document. Assuming that a feature vector
x = (x1, x2, ..., xn) represents the number of occurrences of all terms, with xi counting the
number of times term i was observed in a particular document, the likelihood of a term i
belonging to class k (pki), as well as the likelihood of the entire feature vector x belonging
to class k (p(x|Ck)), are calculated as in Equations 5.1 and 5.2 that are presented in the
following page.

23
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pki = p(xi|Ck) =
Nki + a

Σj=1Nkj + a · n
(5.1)

p(x|Ck) =
Σi=1 xi !

Πi=1 xi !
·Πi=1 p

xi
ki (5.2)

In Equation 5.1, Nki stands for the number of occurrences of term i in class k and n
stands for the total amount of features which equals the vocabulary size. The hyper-
parameter alpha (a) is named smoothing priors and handles features not present in the
learning samples while at the same time prevents the computation of zero probabilities. In
Equation 5.2, xi represents the number of occurrences of term i in a particular document
and pki is the likelihood of that term i belonging to class k as calculated in Equation 5.1.

As an example, consider the following document: ”We are going really really fast”. As-
suming that a term frequency (tf ) vectorization is used and all pki have been calculated,
a Multinomial Naive Bayes classifier would calculate the probability of this document be-
longing to class k, p(x|Ck), according to Equation 5.2 as follows:

p(we, are, going, really, really, fast|Ck) =

p(we = 1, are = 1, going = 1, really = 2, fast = 1|Ck) =

6!

2!
· p(we|Ck) · p(are|Ck) · p(going|Ck) · p(really|Ck)2 · p(fast|Ck)

Even though the Naive Bayes method does not take possible correlations between the
input features into account, it provides a good baseline method for text classification. The
advantages it provides are the following:

• It is a simple but also fast and accurate method for prediction.

• It has a very low computational cost and can efficiently perform on a large dataset.

• It performs particularly well in the field of text analytics specifically.

However, the disadvantages are the following:

• The assumption of independent features, because in practice it is almost impossible
that the input will be a set of features which are entirely independent. As a result,
the accuracy of this method is affected negatively.

• If there is no training set of a particular class, this causes zero posterior probability
and in this case, the classifier is unable to make predictions.

In our fake news detection system, we used the Multinomial Naive Bayes classification
method and performed hyperparameter optimization by using grid search and comparing
the results in order to empirically discover a good value for the alpha hyperparameter.
The value of alpha which provided the best results was kept in order to maximize the
performance of the Naive Bayes method for each dataset.
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5.1.2 Logistic Regression

Another probabilistic method which was used was Logistic Regression [19]. This method
attempts to optimize a function to fit the available data best and uses the maximum
likelihood estimation (MLE ) criterion. The MLE criterion determines the parameters
that are most likely to produce the observed data by setting the mean and variance as
parameters in determining the specific parametric values for a given model. The function
maps any real prediction values to probability values which range between 0 and 1 and
represent the probability of belonging to a certain class label. For binary classification, the
threshold for the probability values is 0.5, therefore a higher probability (p > 0.5) indicates
that the document is likely to belong to a certain class k, while a lower probability (p < 0.5)
indicates that the document is likely to belong to a class different from class k. In order
to calculate the probability values, the method follows the logistic sigmoid function which
is as follows:

z = β0 + β1 · x1 + β2 · x2 + ...+ e (5.3)

S(z) =
1

1 + e −z
(5.4)

In Equation 5.3, β stands for the regression coefficients which are estimated through
the maximum likelihood estimation (MLE ) criterion and aims to provide a clear division
between the probabilities of the class values. Furthermore, xi are the respective features
of our document feature vectors and e is an error bias. The resulting sigmoid(z), or S(z),
value is a probability value between 0 and 1 and is calculated as in Equation 5.4. A figure
[33] which clearly shows the logistic sigmoid function as well as the threshold for binary
classification is presented below.

Figure 5.1: Logistic sigmoid function

In our fake news detection system, we used the Logistic Regression classification method
and performed hyperparameter optimization by using grid search. After comparing the re-
sults, the default values were kept as they achieved a very high performance in all datasets.
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5.2 Ensemble methods

Ensembles methods [19] are techniques which create multiple classifiers and then combine
them to produce better results than any of the single classifiers individually. In our fake
news detection system, we used the Random Forest, Gradient Boosting (XGB) and Adap-
tive Boosting ensemble methods. The main hyperparameters of ensemble methods include
the number of decision trees, the depth of each decision tree and the learning rate.

Figure 5.2: Ensemble methods pipeline

The advantages of the ensemble methods are the following:

• High accuracy due to the combination of different classifiers.

• Acceptance of both categorical and numerical values in training data.

• Handling of missing data and no need for prior scaling of the training data.

• Generation of a reliable feature importance estimate.

5.2.1 Random Forest

The Random Forest method is based on bootstrap aggregating, also called bagging, which is
a technique that first splits training data into numerous subsets. Afterwards, each subset is
taken as input to a decision tree classifier and a prediction is made. Finally, the predictions
of each decision tree classifier are aggregated to output the actual prediction. As an extra
step to reduce overfitting, each decision tree only utilizes a randomly selected subset of
features. An illustration [34] of the bootstrap aggregating technique used by the Random
Forest method is presented below.

Figure 5.3: Bootstrap aggregating
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The advantages the Random Forest method provides, in comparison to other ensemble
methods, are the following:

• High accuracy and a significantly faster classification process due to parallelization
during training.

• Reduction of variance and overfitting due to the bagging process and the random
feature selection for each decision tree.

• Handling of outliers and noise which may appear in the distribution which signifi-
cantly reduces their impact on classification.

The disadvantages of the Random Forest method, in comparison to other ensemble meth-
ods, are the following:

• Unweighted voting. All classifiers are assumed to be equally important for the final
prediction.

• Independent classifiers which do not learn from each other’s classification results.

In our fake news detection system, we used the Random Forest classification method
and performed hyperparameter optimization by using grid search and comparing the results
in order to empirically discover a good value for each hyperparameter. The number of
decision trees was set to a value which doesn’t affect training time significantly, the depth
of each decision tree was assigned a very high value (no limit) and the learning rate was
set to the default value. This way, we have a few strong decision tree classifiers who train
in parallel and whose combination makes the Random Forest method perform very well in
all datasets.
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5.2.2 Gradient Boosting & Adaptive Boosting

The Gradient Boosting and the Adaptive Boosting classification methods are methods
which also split training data into subsets and then combine several weak classifiers to
create a strong classifier. This is done by focusing on their mistakes through boosting,
which is an iterative technique that adjusts the weight of an observation based on the last
classification. If an observation was classified incorrectly, it increases the weight of this
observation and vice versa. Compared to bootstrap aggregating, boosting is different in
the following ways:

• The partitioning of the data into subsets is random in bootstrap aggregating, while
boosting gives incorrectly classified samples a higher preference.

• Each classifier is independent in bootstrap aggregating, while boosting makes each
classifier dependent on the previous ones.

• The combination of the weak classifiers into a strong one is done by calculating
the average probability in bootstrap aggregating, while boosting utilizes a weighted
majority vote.

An illustration [35] of the boosting technique used by the Gradient Boosting and Adaptive
Boosting methods is presented below in a binary classification example which consists of
a positive (+) and and negative (-) class label.

Figure 5.4: Boosting

Regarding the two boosting methods used, the main difference is that Adaptive Boosting
adds the weak classifiers to the strong one according to their performance, calculated by
an alpha-weight, while Gradient Boosting adds the weak classifiers to the strong one by
using a gradient descent optimization process. The advantages the Gradient Boosting and
Adaptive Boosting methods provide, in comparison to other ensemble methods, include:

• High accuracy due to the weighted contribution of each decision tree classifier to the
final prediction as well as the fact that boosting adds new classifiers that perform
well where previous classifiers have failed.
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The disadvantages of the Gradient Boosting and Adaptive Boosting methods, in comparison
to other ensemble methods, include:

• High time complexity. The process is sequential as each classifier is influenced by the
previous ones, therefore training is iterative and cannot be done in parallel.

• High computational cost. A large number of decision trees is required and each
decision tree is dependent on the previous ones.

• Prone to overfitting if cross-validation is not performed.

In our fake news detection system, we used the Gradient Boosting and Adaptive Boost-
ing classification methods and performed hyperparameter optimization by using grid search
and comparing the results in order to empirically discover a good value for each hyperpa-
rameter. The conclusion was that the number of decision trees was assigned a very high
value and the learning rate was set to the default value. This way, we have a plethora of
relatively weak decision tree classifiers who train sequentially and learn from each other’s
mistakes. Their large number makes the Gradient Boosting and the Adaptive Boosting
methods achieve a high performance in all datasets.

5.3 Deep learning methods

Deep learning is a machine learning technique which contains algorithms inspired by the
structure and function of the human brain called artificial neural networks (ANNs). As
a term, it describes an algorithm that employs ANNs with more than 3 layers. An ANN
is based on a collection of connected units called artificial neurons. These neurons are
aggregated into layers and each layer performs a different kind of transformation on its
input. Each connection can transmit a signal from an artificial neuron of one layer to that
of another. Signals travel from the first layer (the input layer), to other (hidden) layers
and finally to the last layer (the output layer). An ANN learns by adjusting the weight, a
real number, of each connection which results in the increase or decrease of the strength
of the signal at that particular connection. Finally, the output of each artificial neuron is
computed by a non-linear function of the sum of its inputs.

A recurrent neural network (RNN) is a type of artificial neural network which contains
an internal state (memory) to process sequences of inputs. In our case, this means that an
RNN takes into account the order of the terms contained in the news article and processes
them sequentially. Thus, unlike the previous bag of word methods, the order matters as the
news article text is considered a sequence and each term affects the terms which come after
it. The main characteristic of the RNNs, which is their memory component, makes them
suitable for various sequential natural language processing tasks such as text classification.

In our fake news detection system, we attempted several RNN based architectures [36].
We will outline the architecture of each method and then describe its functionality in detail
in the following subsections.
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We first provide an overview of the architectures of the deep learning methods that
were developed for our fake news detection system before explaining them in detail. Word
embeddings were used as input into four deep learning methods. We used pre-padding of
zeroes and did not limit the maximum input length or the maximum size of the vocabulary
in order to achieve maximum performance despite the cost in computational resources. The
four deep learning methods, along with their respective architectures, are the following:

1. Long short-term memory neural network (lstm)

The architecture of this deep learning method begins with an embedding layer fol-
lowed by a dropout layer in order to reduce overfitting. Afterwards, an lstm layer
follows and its output is passed into a dense layer with a rectified linear unit (ReLU)
activation function. Finally, the classification is done on a dense layer with a sigmoid
activation function.

2. Bidirectional long short-term memory neural network (Bi-lstm)

The architecture of this deep learning method begins with an embedding layer fol-
lowed by a dropout layer in order to reduce overfitting. Afterwards, a Bi-lstm layer
follows and its output is passed into a dense layer with a rectified linear unit (ReLU)
activation function. Finally, the classification is done on a dense layer with a sigmoid
activation function.

3. Combined convolutional and long short-term memory neural network (cnn+lstm)

The architecture of this deep learning method begins with an embedding layer fol-
lowed by a dropout layer in order to reduce overfitting. Afterwards, there are three
repetitions of the combination of an 1-dimensional convolutional layer and an 1-
dimensional max pooling layer. The resulting output is passed into an lstm layer
followed by a dense layer with a rectified linear unit (ReLU) activation function.
Finally, the classification is done on a dense layer with a sigmoid activation function.

4. Multiple long short-term memory layers (mult.lstm)

The architecture of this deep learning method begins with an embedding layer fol-
lowed by a dropout layer in order to reduce overfitting. Afterwards, the first lstm
layer follows and its output is passed, through a repeat vector layer, into a second
lstm layer. The output of the second lstm layer is passed into a dense layer with a
rectified linear unit (ReLU) activation function. Finally, the classification is done on
a dense layer with a sigmoid activation function.
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5.3.1 Long short-term memory neural network

A long short-term memory neural network (LSTM ) is a type of deep learning method
which is widely popular in natural language processing and has also been very successful
in previous work in the field of fake news detection research [15]. The core components of
an LSTM neural network are the cell state and the various gates. It is also composed of
two states Ct and ht which represent the cell state and the hidden state accordingly. The
architecture is presented in Figure 5.5 [37] and all of the components are described below
in detail.

• Forget Gate (ft). This gate decides what information should be kept or thrown
away. Information from the previous hidden state ht−1 and information from the
current input xt are passed through a sigmoid function. The resulting values are in
a range from 0 to 1. The values which are closer to 0 are forgotten, and the values
which are closer to 1 are kept.

• Input Gate (it). This gate is used to update the cell state. Firstly, we pass the
previous hidden state ht−1 and the current input xt into a sigmoid function. The
result of this function it decides which values will be updated by transforming the
values to be in a range from 0 to 1. The values which are closer to 0 are not important,
while the values which are closer to 1 are important. The hidden state Ĉt and current
input xt is also passed into a tanh function in order to transform the values in a range
from -1 to 1 which help regulate the network. Then there is a multiplication of the
tanh output with the sigmoid output and the resulting value shows the importance
of the information.

• Cell State (Ct). This is the cell state which represents the memory of the neural net-
work. Firstly, pointwise multiplication is performed between the previous cell state
Ct−1 and the forget vector. This multiplication has a possibility of dropping values
in the cell state if it gets multiplied by a forget vector which contains values close to
0. Afterwards, a pointwise addition is performed between the newly calculated cell
state and the input state. This addition updates the cell state to new values that
the neural network finds relevant. The result is the new cell state Ct.

• Output Gate (ot). This gate decides what the next hidden state should be. The
hidden state contains information on previous inputs and is also used for predictions.
Firstly, the previous hidden state ht−1 and the current input xt are passed into
a sigmoid function. Then the newly modified cell state Ĉt is passed to the tanh
function. Finally, there is a multiplication of the tanh output with the sigmoid
output to decide what information the hidden state should contain. The output is
the hidden state ht, while the new cell state Ct and the new hidden state ht are
carried over to the next time step.
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Figure 5.5: Long short-term memory neural network

ft = σ(W T
f · [xt, ht−1] + bf ) (5.5)

it = σ(W T
i · [xt, ht−1] + bi) (5.6)

ot = σ(W T
o · [xt, ht−1] + bo) (5.7)

Ĉt = tanh (W T
c · [xt, ht−1] + bc) (5.8)

Ct = ft · Ct−1 + it · Ĉt (5.9)

ht = ot · tanh (Ct) (5.10)

In the above equations, ft stands for the forget gate (Equation 5.5), it stands for the
input gate (Equation 5.6), ot stands for the output gate (Equation 5.7), Ĉt stands for the
candidate cell (Equation 5.8), Ct stands for the cell state (Equation 5.9) and ht stands for
the hidden gate (Equation 5.10).

In conclusion, the cell state Ct acts as a transport highway that transfers relevant
information throughout the processing of the sequence and represents the memory of the
neural network. Regarding the gates of an LSTM, the forget gate ft decides what is relevant
to keep from prior steps, the input gate it decides what information is relevant to add from
the current step, and the output gate ot determines what the next hidden state should be.

In our fake news detection system, an LSTM neural network was used as the baseline
deep learning method as its utility of preserving information throughout a sequence has
made it achieve the most promising results in previous related work in the field of fake
news. Furthermore, we attempted a neural network architecture of multiple LSTM layers,
as deeper RNN architectures empirically show better results than shallow ones [38].
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5.3.2 Bidirectional long short-term memory neural network

As described above, LSTM preserves information from inputs which have already passed
through it by making use of the hidden state. However, the preserved information con-
sists of terms which precede the current term as the text is processed sequentially. A
bidirectional long short-term memory neural network (Bi-LSTM ) will process the text
sequentially in two ways, resulting in preserving both information which precedes and in-
formation which follows the current term. Consider the following example:

”The students went to the pool and enjoyed swimming.”

For the term ”pool”, an LSTM would utilize all preceding information which corresponds
to the following terms: [”The”, ”students”, ”went”, ”to”]. On the other hand, a Bi-LSTM
would utilize information both before and after the term ”pool” by performing a concate-
nation of the two. That information corresponds to the following terms: [”The”, ”students”,
”went”, ”to”, ”the”, ”and”, ”enjoyed”, ”swimming”]. By being able to see both the past and
the future context of a term, a Bi-LSTM has the advantage of providing more information
to the neural network and often achieves higher accuracy. The downside is the increased
cost in computational time and memory consumption.

In our fake news detection system, we used a Bi-LSTM neural network as a natural
improvement over the baseline deep learning method of an LSTM neural network.
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5.3.3 Convolutional long short term memory neural network

Convolutional neural networks (CNNs) [36], also called convnets, are widely used in image
classification and computer vision because they able to extract features from images and
use them in neural networks. They are specialized neural networks that are able to detect
specific, complex patterns. In fact, repeated hidden (convolutional) layers increase the
complexity of the patterns the neural network can detect. The core of the technique used
by CNNs is the mathematical process of convolution or more specifically, a slight variant
of convolution called cross correlation. This process compares the input signal with a
filter and outputs a high value (spike) in case of a high correlation between the filter and
the input signal. An example of cross correlation between the input signal and a filter is
presented below in Figures 5.6 and 5.7 [37].

Figure 5.6: Input signal (up) and Filter (down)

Figure 5.7: Output of cross correlation

In Figure 5.7, we notice a spike around the value of 0. This spike around zero means
that the input signal and the filter match when they are both aligned exactly in the center,
as shown in Figure 5.6.
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Since fake news detection is a text classification task, the text of a news article, which is
represented by a sequence of vectors (word embeddings), is treated as an one dimensional
vector signal. Therefore, the neural network utilizes one dimensional convolutions which
are capable of capturing complex patterns in a sequence of text.

The feature extraction process of an one dimensional convolution is simple. Firstly, a
patch of input features of size equal that of the filter kernel is taken. The output feature
is the dot product of this patch and the multiplied weights of the filter. An illustration of
the feature extraction process is presented in Figure 5.8 [37].

Figure 5.8: Convolutional neural networks - Feature extraction

Convolutional neural networks (CNN), and the one dimensional CNN in particular, also
have the characteristic of translation (spatial) invariance, which allows the neural network
to generalize and recognize certain sub-sequences regardless of the position of each of their
components, terms in our case. This is an important advantage and it happens due to the
max pooling layers that follow the convolutional layers in the neural network architecture
(see Figure 5.9 [37]) and perform a downsampling operation. As a result, the neural
network is capable of generalizing and detecting complex features. Therefore, repeated
combinations of convolutional and max pooling layers often increase performance. Finally,
due to the max pooling layer, the degree of overfitting as well as the computational time
and the memory consumption of the neural network operations are reduced.
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Since we want to predict if a sequence of text (news article) is part of a specific label
(credible news or fake news), the architecture of our convolutional neural network also
includes a dense layer in the end with a sigmoid activation function.

Figure 5.9: Convolutional neural network for classification

In our fake news detection system, we combined a CNN and a LSTM in order to retain
the advantages of both neural networks. After a repeated combination of convolutional
and max pooling layers, an LSTM layer was added, followed by two dense layers. This
architecture has the following advantages:

• Low computational cost in both training time and memory consumption.

• Preservation of relevant information throughout the sequence.

• Spatial invariance and detection of complex patterns.

• Reduced overfitting.

• Very high and consistent accuracy.
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5.4 Hybrid method

In addition to the previous machine learning methods, we developed a method, named
hybrid method, which combines machine learning and information retrieval techniques in
order to classify a news article into credible or fake news. For the first part, we created a
stacking method which utilizes the prediction results of two machine learning classification
methods through an average probability system in order to increase classification perfor-
mance. For the second part, the title of the news article is compared to a plethora of titles
from news articles which are collected from certain credible online sources. In case of a
high title similarity, a positive bias is added towards credible news during classification.
In the following subsections, we will describe the two components of the hybrid method in
detail.

5.4.1 Stacking

As described in Section 5.2, the idea behind ensemble methods is the combination of several
classifiers into a more effective one. This reasoning has been present in the field of fake
news detection research, as described in chapter 2.1, in the form of combining two different
deep learning methods through a multilayer perceptron [17].

Therefore, prompted by the observed performance of the methods above during our
experimental evaluation, we developed an algorithm which combines the representation re-
sults of two classifiers: (i) the traditional machine learning method of Logistic Regression
utilizing b-clfd feature vectors (l), and (ii) the deep learning method of cnn+lstm men-
tioned above (c). We first calculate the classification probabilities of these two machine
learning methods for each class label i. The hybrid method combines these probability
vectors by calculating the average probability hi of each news article d to belong to class
label i, as follows:

hi = (li + ci)/2 (5.11)

In Equation 5.11, li and ci denote the probability assigned to d belonging to i by the l
and c methods, respectively. In our binary text classification task of fake news detection,
we only have two h values for each d document, hc and hf , which represent the probability
of d belonging to the class label of credible or fake news respectively. Since hc +hf = 1, we
classify d into credible news if hc > 0.5 or into fake news if hf > 0.5. Notice that the hybrid
method’s extension to non-binary classification problems is entirely straightforward.

Figure 5.10: Hybrid method - Stacking
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5.4.2 Title similarity

The second component of the hybrid method depends on information retrieval techniques
that fetch the title of news articles taken from the online New York Times [39] and The
Guardian [40] newspapers. After retrieving all relevant titles through a query search, a
title similarity score is calculated in order to identify whether the title of a news article
also exists in the online news repositories of the aforementioned credible newspapers.

In order to calculate the title similarity score, we use certain techniques such as cosine
similarity and word mover’s distance [41], both of which are based on a word2vec model
trained on a 3.5 GB Google News corpus [42]. Finally, a next sentence prediction BERT
model [43] was deployed for the same task. Only if all three metrics show a high similarity
between two news article titles, a positive bias towards credible news is added.

Figure 5.11: Hybrid method - Title similarity

However, an important drawback of this technique is the time that is required for
the retrieval of the online corpus that is consisted of the titles of news articles from the
aforementioned credible online sources. Even with a short date range, several minutes are
required for the classification of a single news article. Thus, despite the promising results
that this technique showed during testing, it could not be used for the classification of
our datasets which contain thousands of news articles. Therefore, in the experimental
evaluation, we only used the stacking component, as described in Section 5.4.1, for the
hybrid method.
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Evaluation

In this chapter, we experimentally evaluate both our vectorization and machine learning
methods, on three datasets which differ in size, class balance and data homogeneity. For
the experiments, we have built a fake news detection system in the Python programming
language, utilizing libraries such as NumPy, pandas, regex, nltk [44], scikit-learn [45] and
keras [46]. The experiments were conducted on a virtual environment, Google Colab, which
is a free online Jupyter Notebook environment. It provides 12.72 GB of RAM, 48.97 GB of
disk space, and most importantly, a Tesla K80 GPU which increases computational effec-
tiveness. The metrics used for the evaluation of our experiments were accuracy, precision,
recall and F-1 score [47].

6.1 Corpora

Label Dataset 1 Dataset 2 Dataset 3
Fake 3164 10369 24396

Credible 3171 10349 13614
Total 6335 20718 38010

Table 6.1: Structure of the datasets

Our first dataset (Dataset 1) was George Mcintyre’s dataset [48] which contains 6335 news
articles, evenly distributed between the two classes. The main attribute of this dataset is
its homogeneity, as the 2016 US election news is the common topic of all articles.

Our second dataset (Dataset 2) was a Kaggle dataset [49] which contains 20718 news
articles, evenly distributed between the two classes. This open sourced dataset has been
reviewed by the Kaggle community and contains credible and fake news articles taken
from the Web. Compared to the first dataset, apart from the difference in size, this
dataset provides news articles about various topics which will show how our algorithms
and methods work in non-homogeneous data.

Our third dataset (Dataset 3) contains 38010 news articles, and is the union of the
previous two datasets and another Kaggle dataset of approximately 13000 fake news articles
[50]. Adding such a number of fake news articles had the effect of making this dataset large
and imbalanced, as it now contains a greater quantity of fake than credible news. Dataset
3 is also even more heterogeneous, as it is composed of three datasets which not only have
news articles about various topics, but they are also taken from various different sources.

39
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6.2 Evaluation Metrics

The metrics used for the evaluation of our experiments were accuracy, precision, recall and
F-1 score. These evaluation metrics are defined as follows:

Accuracy is defined as the number of correct predictions divided by the total number
of predictions. Its value is calculated as follows:

Accuracy = Number of correct predictions
Number of predictions made

For the other evaluation metrics, we need to define four important terms.

True Positives: The cases in which we predicted FAKE and the actual output was
also FAKE.

True Negatives: The cases in which we predicted CREDIBLE and the actual output
was CREDIBLE.

False Positives: The cases in which we predicted FAKE and the actual output was
CREDIBLE.

False Negatives: The cases in which we predicted CREDIBLE and the actual output
was FAKE.

Predicted: CREDIBLE Predicted: FAKE
Actual: CREDIBLE True Negatives False Positives

Actual: FAKE False Negatives True Positives

Table 6.2: Confusion matrix

The metrics based on the confusion matrix (Table 6.2) are precision, recall and F-1
score. We provide a brief definition for each of them:

• Precision is defined as the number of correct positive results divided by the number
of positive results predicted by the classifier. Its value is calculated as follows:

Precision = True Positives
True Positives + False Positives

• Recall is defined as the number of correct positive results divided by the number of
all samples that should have been identified as positive. Its value is calculated as
follows:

Recall = True Positives
True Positives + False Negatives

• F-1 score is defined as the Harmonic Mean between precision and recall. It shows
how precise the classifier is (how many instances it classifies correctly), as well as
how robust it is (it does not miss a significant number of instances). Its value can
be calculated by using one of the following two ways:

F-1 score = Precision x Recall
Precision + Recall = True Positives

True Positives + False Positives

Our goal is to maximize all of the aforementioned metrics (accuracy, precision, recall, F-1
score) and thus achieve a consistently high performance for our binary text classification
task of fake news detection.
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6.3 Comparison of vectorization techniques

6.3.1 Evaluation on the first dataset

Accuracy F-1 score

Table 6.3: Dataset 1: Accuracy and F-1 score
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Precision Recall

Table 6.4: Dataset 1: Precision and Recall
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Accuracy

Precision

Recall

F-1 score

Table 6.5: Dataset 1: Performance of vectorization methods
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In the experiments conducted on the first dataset, as presented in Tables 6.3, 6.4 and 6.5,
we can make the following observations:

• The ensemble machine learning methods, Random Forest, Gradient Boosting and
Adaptive Boosting, do not show any significant difference in the performance with
different vectorization techniques.

• The utilization of clfd -based feature vectors provides better results for the proba-
bilistic machine learning methods, Logistic Regression and Naive Bayes, compared
to the results provided by traditional vectorization techniques for those methods.
More specifically, comparing clfd -based vectorization to the next best performing
traditional vectorization technique, there is an approximately 1.5% to 2% increase in
performance across all metrics.

• There is a significant boost in the performance of the Naive Bayes method when we
compare the results of tf-idf with those of its clfd variant, tfidf-clfd. More specifically,
there is a 6% to 16% increase in performance if tfidf-clfd feature vectors are used
instead of tf-idf ones.

• The only exception is the precision score of the Naive Bayes method which is higher
with tf-idf feature vectors and the recall score of Logistic Regression which shows no
significant difference with clfd -based and tf-idf feature vectors.

• The best performing method is Logistic Regression with b-clfd feature vectors as it
provides the highest accuracy and F-1 score.
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6.3.2 Evaluation on the second dataset

Accuracy F-1 score

Table 6.6: Dataset 2: Accuracy and F-1 score
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Precision Recall

Table 6.7: Dataset 2: Precision and Recall
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Accuracy

Precision

Recall

F-1 score

Table 6.8: Dataset 2: Performance of vectorization methods
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In the experiments conducted on the second dataset, as presented in Tables 6.6, 6.7 and 6.8,
we can make the following observations:

• The ensemble machine learning methods, Random Forest, Gradient Boosting and
Adaptive Boosting, do not show any significant difference in the performance with
different vectorization techniques. The only exception is the accuracy score of the
Adaptive Boosting method which is 1.23% higher with tf-clfd feature vectors.

• The utilization of clfd -based feature vectors provides better results for the probabilis-
tic machine learning methods, Logistic Regression and Naive Bayes, compared to the
results provided by traditional vectorization techniques for those methods. More
specifically, comparing clfd -based vectorization to the next best performing tradi-
tional vectorization technique, there is an approximately 2% increase in performance
across all metrics.

• There is a significant boost in the performance of the Naive Bayes method when we
compare the results of tf-idf with those of its clfd variant, tfidf-clfd. More specifically,
there is a 6.5% to 15% increase in performance if tfidf-clfd feature vectors are used
instead of tf-idf ones.

• The only exception is the precision score of the Naive Bayes method which is ap-
proximately the same with clfd -based and tf-idf feature vectors.

• The best performing method is Logistic Regression with b-clfd feature vectors as it
provides the highest accuracy, recall and F-1 score.
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6.3.3 Evaluation on the third dataset

Accuracy F-1 score

Table 6.9: Dataset 3: Accuracy and F-1 score
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Precision Recall

Table 6.10: Dataset 3: Precision and Recall
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Accuracy

Precision

Recall

F-1 score

Table 6.11: Dataset 3: Performance of vectorization methods
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In the experiments conducted on the third dataset, as presented in Tables 6.9, 6.10 and 6.11,
we can make the following observations:

• The ensemble machine learning methods, Random Forest, Gradient Boosting and
Adaptive Boosting, do not show any significant difference in the performance with
different vectorization techniques.

• The Naive Bayes method does not show any significant difference in the performance
with different vectorization techniques either. However, it provides a higher precision
score with b-clfd feature vectors which is the highest among traditional machine
learning methods.

• The utilization of clfd -based feature vectors provides better results for the Logis-
tic Regression method compared to the results provided by traditional vectorization
techniques for that method. More specifically, comparing clfd -based vectorization
to the next best performing traditional vectorization technique, there is an approxi-
mately 1% increase in performance across all metrics.

• The best performing method is Logistic Regression with b-clfd feature vectors as it
provides the highest accuracy, recall and F-1 score.

6.3.4 Discussion of results

Regarding the comparison of vectorization techniques for traditional machine learning
methods, we observe certain patterns in the results. We notice that the ensemble ma-
chine learning methods, Random Forest, Gradient Boosting and Adaptive Boosting, do not
show any significant difference in their performance with varying vectorization approaches.
However, the probabilistic machine learning methods, Logistic Regression and Naive Bayes,
achieve a higher performance by using clfd -based feature vectors. In fact, our b-clfd vector-
ization approach consistently increases the performance of Logistic Regression in Dataset
1, Dataset 2 and Dataset 3 by at least 1.88%, 1.9% and 0.58% respectively. The only excep-
tion is the performance of Naive Bayes in Dataset 3 which is slightly higher (0.17%) with
tf-idf feature vectors. Therefore, there is a consistent high ranking for machine learning
methods that utilize our clfd vectorization approach, as it allows them to achieve compa-
rable or higher results in all datasets. The same pattern of results also appears in other
metrics such as accuracy, precision and recall. The best performing traditional machine
learning method is Logistic Regression with b-clfd feature vectors which consistently pro-
vides the highest results, outperforming other traditional machine learning methods in F-1
score in Datasets 1, 2 and 3 by at least 2.87%, 2.95% and 1.35% respectively.

With Without
preprocessing preprocessing

Tf 92.73 91.73
Tfidf 92.13 91.75
B-clfd 94.61 95.71

Table 6.12: Logistic Regression - Dataset 1

Finally, we report that the performance of clfd -based methods is not affected by the
quality or absence of data preprocessing. As presented in the example of Table 6.12, with-
out preprocessing, Logistic Regression (LR) with b-clfd provides results that are actually
better than the ones achieved after preprocessing (Table 6.5). On the other hand, the
performance of LR with tf and LR with tf-idf is reduced in case of no data preprocessing.
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6.4 Comparison of machine learning methods

In this section, we present the classification results of deep learning methods and make
a comparison with the best performing traditional machine learning method, Logistic Re-
gression with b-clfd feature vectors. Furthermore, we present the results of the hybrid
model and discuss its advantages. Finally, apart from a performance comparison, we also
compare the best performing methods in terms of classification time.

6.4.1 Performance comparison

Dataset 1
Accuracy Precision Recall F-1 score

Bali 2019 87.3 89 87 89
lstm 90.9 92.4 88.96 90.65

Bi-lstm 92.09 92.25 91.76 92
cnn+lstm 92.22 90.33 94.41 92.33
Mult.lstm 92.62 90.51 95.08 92.74
LR + clfd 94.53 94.6 94.64 94.61

Dataset 2
Accuracy Precision Recall F-1 score

Bali 2019 91.05 93 94 94
lstm 94.54 96.43 91.74 94.02

Bi-lstm 95 95.45 93.8 94.62
cnn+lstm 96.55 97.11 95.48 96.29
Mult.lstm 94.68 95.86 92.64 94.22
LR + clfd 97.52 97.17 97.65 97.41

Dataset 3
Accuracy Precision Recall F-1 score

lstm 96.24 96.61 97.63 97.12
Bi-lstm 95.64 96.69 96.36 96.63

cnn+lstm 96.78 97.26 97.78 97.52
Mult.lstm 95.96 97.2 96.54 96.87
LR + clfd 96.21 95.22 99.29 97.17

Table 6.13: Comparison of machine learning methods

From the comparison of the machine learning methods, in the experimental evaluation
conducted on the three datasets, we observe certain patterns in the results. Regarding
deep learning methods, we notice that cnn+lstm outperforms the other deep learning
methods for Datasets 2 and 3, while its performance is comparable to that of mult.lstm
for Dataset 1. In Dataset 1, lstm and Bi-lstm have the highest precision score among deep
learning methods, but are otherwise performing at least slightly worse than cnn+lstm in all
other cases (regardless of evaluation metric or dataset). Therefore, we consider cnn+lstm
as the best performing deep learning method.
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However, we notice that deep learning methods are outperformed in many occasions.
In Dataset 1, Logistic Regression with b-clfd vectorization consistently achieves the highest
performance. It outperforms all deep learning methods in accuracy, precision and F-1 score
by at least 1.91%, 2.2% and 1.87% respectively. The mult.lstm achieves a slightly (0.44%)
higher recall score. In Dataset 2, Logistic Regression with b-clfd consistently achieves
the highest results across all metrics. It outperforms deep learning methods in accuracy,
precision, recall and F-1 scores by at least 0.97%, 0.06%, 2.17% and 1.12% respectively.
In Dataset 3, the results of deep learning methods and those of Logistic Regression with
b-clfd are comparable. The best performing deep learning method, cnn+lstm, provides
higher accuracy, precision and F-1 scores by 0.57%, 2.04% and 0.35% respectively. How-
ever, Logistic Regression with b-clfd feature vectors outperforms all other deep learning
methods in those metrics. Furthermore, it achieves the highest overall recall score (at least
1.51% higher than others). Therefore, Logistic Regression with b-clfd vectorization achieves
clearly higher results than deep learning methods in Datasets 1 and 2, while the results
are comparable for Dataset 3.

Furthermore, for Datasets 1 and 2, our clfd vectorization approach allows Logistic
Regression to outperform existing state-of-the-art work [18], which also utilizes traditional
machine learning methods, by a significant margin. More specifically, for Dataset 1, it
outperforms state-of-the-art results by 7.23% in accuracy, 5.6% in precision, 7.64% in
recall and 5.61% in F-1 score. For Dataset 2, it outperforms state-of-the-art results by
6.47% in accuracy, 4.17% in precision, 3.65% in recall and 3.41% in F-1 score.

Accuracy F-1 score

Precision Recall

Table 6.14: Dataset 1: Performance of machine learning methods (95% confidence)
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Accuracy F-1 score

Precision Recall

Table 6.15: Dataset 2: Performance of machine learning methods (95% confidence)

Accuracy F-1 score

Precision Recall

Table 6.16: Dataset 3: Performance of machine learning methods (95% confidence)
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In Table 6.14, Table 6.15 and Table 6.16 we present the classification results of the best
performing traditional machine learning method (Logistic Regression with b-clfd feature
vectors), the best performing deep learning method (cnn+lstm) and the hybrid method.
For the statistical validity of our results, we present their mean performance for each of the
three datasets, along with error bars which correspond to 95% confidence intervals. These
confidence intervals were calculated as follows:

[p̂− ε, p̂+ ε], where ε = z1−a
2
·
√
p̂ · (1− p̂)

n
(6.1)

In the above equation, p̂ is the probability that represents the mean performance and ε
is the confidence interval. Furthermore, n is the number of testing samples and z, or z-
score, is a numerical measurement used in statistics of a value’s relationship to the mean
(average) of a group of values, measured in terms of standard deviations from the mean
[51]. Since we want to calculate an interval which corresponds to 95% confidence:

1− a = 0.95⇐⇒ a = 0.05⇐⇒ 1− a

2
= 0.975 (6.2)

From the z-score lookup table [52], we know that z0.975 = 1.96. Therefore, we conclude to
the following equation for the calculation of the 95% confidence intervals:

[p̂− ε, p̂+ ε], where ε = 1.96 ·
√
p̂ · (1− p̂)

n
(6.3)

Therefore, in Tables 6.14, 6.15 and 6.16, we can make certain statistically valid obser-
vations. We can see that Logistic Regression with b-clfd feature vectors has the lowest
variance. In Datasets 1 and 2, Logistic Regression with b-clfd feature vectors provides re-
sults that are significantly higher than those of the best deep learning method, while they
are comparable to those of hybrid. In Dataset 3, Logistic Regression with b-clfd feature
vectors and deep learning methods provide results which are comparable to each other.
However, in Dataset 3, hybrid provides results that are clearly superior to those of other
methods, across all metrics. Specifically, we report that hybrid consistently outperforms
deep learning methods in accuracy, precision, recall and F-1 score by at least 1.13%, 0.49%,
1.27% and 0.88% respectively.
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6.4.2 Time comparison

Dataset 1 Dataset 2 Dataset 3
LR + clfd 6.91 28.53 54.67
cnn+lstm 110.17 273.63 1295.32
Hybrid 112.22 292.88 1330.92

Table 6.17: Time comparison

In Table 6.17, we make a comparison of classification times among the best performing
machine learning methods in terms of classification time required after data preprocessing.
Note that this does not include the time required for the training of deep learning methods.
We observe that Logistic Regression with b-clfd feature vectors is approximately 16, 10 and
24 times more time efficient than the other methods for Datasets 1, 2 and 3 respectively.
The other two methods are comparable, with hybrid requiring approximately 5% more
time than cnn+lstm. Time scalability is also shown in Figure 4, where the significant
classification time advantage of Logistic Regression with b-clfd is clearly demonstrated.

Time Scalability

Table 6.18: Time scalability

Therefore, we conclude that Logistic Regression with b-clfd feature vectors appears to
have a linear time scaling and a training and classification time of under a minute even
for large datasets. On the other hand, we observe that there is no significant difference
between the classification time of the hybrid model and that of the cnn+lstm neural network
for different dataset sizes. This means that using Logistic Regression with b-clfd feature
vectors as a component in the creation of the hybrid model can increase the performance of
a deep learning method without significantly affecting its time efficiency. Both the hybrid
model and the cnn+lstm neural network show an exponential scaling of classification time
with different dataset sizes, which makes Logistic Regression with b-clfd feature vectors
gain an important advantage regarding time efficiency.
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6.5 Discussion of classification results

The systematic comparison of different vectorization techniques as well as machine learning
methods for the binary text classification task of creating an effective fake news detection
system leads to the following conclusions:

• We demonstrated that our novel vectorization approach, clfd, is a simple and effective
way for boosting the performance of certain machine learning methods. The exper-
imental results show that a clfd -based vectorization approach consistently provides
comparable or better results than other vectorization techniques, such as tf or tf-idf,
for traditional machine learning methods.

• In addition, the experimental results also show that the Logistic Regression method
provides significantly higher results than those reported in recent published work [18]
for Dataset 1 and Dataset 2.

• In fact, it can also outperform deep learning methods if b-clfd feature vectors are
used. More specifically, it provides consistently higher results than all deep learning
methods for small and medium sized datasets (Datasets 1 and 2), while there is no
significant difference in performance for large datasets (Dataset 3).

• Moreover, for large datasets (Dataset 3), the hybrid method successfully combines a
cnn+lstm neural network with Logistic Regression which utilizes b-clfd feature vec-
tors, to achieve the highest performance and significantly outperform deep learning
methods across all metrics.
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Conclusions & Future Work

7.1 Conclusion

In this thesis, we systematically compared several vectorization techniques as well as
machine learning methods for the binary text classification task of creating an effective
content-based fake news detection system.

We proposed a novel text vectorization technique, clfd; discussed its advantages with
respect to “classic” vectorization approaches; and showed that its employment by machine
learning methods can lead to the development of a content-based fake news detection
system that achieves high performance and requires a minimal amount of classification
time. In particular, we showed that clfd can turn Logistic Regression into a method that
is a winner for small and medium-sized datasets; a method the classification performance
of which is comparable to that of deep neural networks in large datasets, while it retains
the advantage of minimal classification time. Moreover, when used as a component of
our novel hybrid method, its performance clearly surpasses that of “pure” deep learning
methods across all metrics, even for large datasets.

The results of this work may have certain implications in the real world. Regarding
academia, clfd is a statistical approach for vectorization which leads to more effective
supervised text classification. Furthermore, the hybrid method leads to higher results than
deep neural networks across all metrics and dataset sizes. These contributions can be of
particular interest within the natural language processing and machine learning research
communities. Regarding industry, a clfd -boosted Logistic Regression classifier achieves a
very high performance while the cost regarding training and classification time is minimal.
This can be of particular interest to online news agencies, as it can be used for the quick and
effective classification of news articles in an online fashion. We encourage the utilization
of our work in the aforementioned ways as well as its further improvement.

7.2 Future Work

We encourage the utilization of our work in the aforementioned ways as well as its further
improvement. As a natural next step, we intend to evaluate our approach in other applica-
tion domains of interest. Future work also includes improving the hybrid method further,
via equipping it with a more sophisticated weighting scheme. Moreover, additional machine
learning methods can be added to its existing pool of methods, to increase its diversity
and potentially its power. More advanced deep learning architectures, such as hierarchical
attention networks [53], can also be considered. Finally, more research has to be done on
how to increase the effectiveness and time efficiency of the title similarity component of
our hybrid method, by making use of heuristics and more advanced information retrieval
techniques.
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