

 i

 TECHNICAL UNIVERSITY OF CRETE

 School of Electrical and Computer Engineering

 Diploma Thesis

EXPLORING EFFICIENCY AND

PERFORMANCE OF IMAGE CAPTIONING

 Nadia - Eythymia Frechat

Thesis Committee:

 Associate Professor Michail G. Lagoudakis, Thesis Supervisor

 Professor Michael Zervakis

 Professor Dionisios Pnevmatikatos (National Technical University of Athens)

A thesis submitted in partial fullment of the requirements for the degree of

Diploma in Electrical and Computer Engineering

Chania October 2019

ii

Abstract

Image captioning is a complex problem that combines the fields of computer vision

and natural language processing. It generates natural language sentences that describe the

content of an image. Image captioning has several applications in the real world with
significant practical impact, from assisting users with visual impairments to personal

assistants through human-robot interaction.

The progress in image captioning is a major success of Artificial Intelligence. It has
been reported that under some metrics, such as BLUE or CIDEr, the most up-to-date

techniques even outperform human performance.

In this thesis, we implement and present a model based on machine learning

techniques that combines the latest developments in computer vision and machine translation
that can be used to create natural sentences that describe an image. Specifically, a

combination of Convolutional Neural Networks together with Recurrent Neural Networks

was used to obtain the desired results. The models were trained to maximize the likelihood
of a target description given the training image.

Experiments on a huge set of training data, such as the MSCOCO 2015 used in this

thesis, demonstrate the accuracy of the model and the fluency of the language that is

acquired through the image descriptions alone. It has been tested qualitatively and
quantitatively that the model is often quite accurate.

 iii

Περίληψη

Ο ππνηηηιηζκόο εηθόλαο είλαη έλα πνιύπινθν πξόβιεκα πνπ ζπλδπάδεη ηνλ ηνκέα

ηεο κεραληθήο όξαζεο θαη ηεο επεμεξγαζίαο θπζηθήο γιώζζαο. Σηνρεπεη ζηελ παξαγσγή

πξνηάζεσλ ζε θπζηθή γιώζζα πνπ πεξηγξάθνπλ ην πεξηερόκελν θάπνηαο εηθόλαο. Ο
ππνηηηιηζκόο εηθόλαο έρεη αξθεηέο εθαξκνγέο ζηνλ πξαγκαηηθό θόζκν κε ζεκαληηθό

πξαθηηθό αληίθηππν, από ηελ παξνρή βνήζεηαο ζε ρξήζηεο κε πξνβιήκαηα όξαζεο έσο

πξνζσπηθνύο βνεζνύο κέζσ ηεο αιιειεπίδξαζεο αλζξώπνπ-ξνκπόη.
Η πξόνδνο ζηνλ ππνηηηιηζκό εηθόλαο είλαη κηα ζεκαληηθή επηηπρία ηεο Τερλεηήο

Ννεκνζύλεο. Έρεη αλαθεξζεί όηη ππν νξηζκέλεο κεηξηθέο, όπσο ην BLUE ή ην CIDEr, νη πην

ζύγρξνλεο ηερληθέο μεπεξλνύλ αθόκα θαη ηηο αλζξώπηλεο επηδόζεηο.

Σε απηή ηε δηπισκαηηθή εξγαζία, πινπνηνύκε θαη παξνπζηάδνπκε έλα κνληέιν
βαζηζκέλν ζε ηερληθέο κεραληθήο κάζεζεο πνπ ζπλδπάδεη ηηο πην ζύγρξνλεο εμειίμεηο ζηελ

κεραληθή όξαζε θαη ηε κεραληθή κεηάθξαζε θαη πνπ κπνξεί λα ρξεζηκνπνηεζεί γηα ηε

δεκηνπξγία θπζηθώλ πξνηαζεσλ πνπ πεξηγξάθνπλ κηα εηθόλα. Σπγθεθξηκέλα,
ρξεζηκνπνηήζεθε έλαο ζπλδπαζκόο ζπλειηθηηθώλ λεπξσληθώλ δηθηύσλ καδί κε

αλαηξνθνδνύκελα λεπξσληθά δίθηπα γηα ηελ απόθηεζε ησλ επηζπκεηώλ απνηειέζκαησλ. Τα

κνληέια εθπαηδεύηεθαλ έηζη ώζηε λα κεγηζηνπνηνύλ ηελ πηζαλόηεηα πεξηγξαθήο ζηόρνπ

δεδνκέλεο ηεο εηθόλαο εθπαίδεπζεο.
Πεηξάκαηα ζε έλα πνιύ κεγάιν ζύλνιν δεδνκέλσλ εθπαίδεπζεο, όπσο ην MSCOCO

πνπ ρξεζηκνπνηήζεθε ζε απηή ηε δηπισκαηηθή, δείρλνπλ ηελ αθξίβεηα ηνπ κνληέινπ θαη ηελ

επρέξεηα πνπ απνθηά ε γιώζζα απνθιεηζηηθά κέζα από ηηο πεξηγξαθέο ησλ εηθόλσλ. Τν
κνληέιν, ην νπνίν ειέγζεθε πνηνηηθά θαη πνζνηηθά, είλαη ζπρλά αξθεηά αθξηβέο.

iv

Acknowledgements

At this point, I would like to thank my supervisor, Mr. Michail Lagoudakis and the rest of

my committee Mr. Dionisios Pnevmatikatos and Mr. Michael Zervakis for the opportunity

they gave me to prepare my diploma thesis, and the confidence they showed from the
beginning at my work and myself. Then, I have to thank Mr. Antonis Nikitakis in particular

for his constant guidance and for his immediate response for everything needed while

writing this thesis.

 v

Table of contents

Abstract ...ii

Πεξίιεςε ... iii

Acknowledgements ... iv

Table of contents .. v

Table of Figures ... vii

 Introduction .. 9 Chapter 1:

1.1 Introduction ... 9

1.2 Thesis Contibution ... 9

1.3 Introduction to Neural Networks .. 9

1.4 Main Characteristics of Neural Networks ... 11
1.4.1 Advantages of Neural Networks ... 11
1.4.2 Disadvantages of Neural Networks ... 11

1.5 Learning Process .. 12
1.5.1 Supervised Learning ... 12
1.5.2 Unsupervised Learning ... 12
1.5.3 Reinforcement Learning ... 12

 Neural Networks .. 14 Chapter 2:

2.1 Neuron ... 14

2.2 Activation Functions .. 15
2.2.1 Sigmoid or Logistic .. 15
2.2.2 Tanh (Hyperbolic tangent) .. 16
2.2.3 ReLu (Rectified Linear Units) .. 16
2.2.4 Softmax .. 17

2.3 Networks architecture... 17
2.3.1 Single layer Feed-Forward Networks .. 17
2.3.2 Multi layer Feed-Forward Networks ... 18
2.3.3 Recurrent Networks .. 19

2.4 Network Training ... 20
2.4.1 Cost Function ... 20
2.4.2 Gradient Descent ... 20
2.4.2 Error BackPropagation ... 21

 Other Types of Neural Networks ... 25 Chapter 3:

3.1 Recurrent neural networks (RNN) .. 25
3.1.1 Architecture ... 25
3.1.2 Backpropagation Through Time ... 26
3.1.3 Vanishing/Exploding Gradients .. 27
3.1.4 Long Short-Term Memory (LSTM) .. 27

3.2 ConvolutionaL Neural Networks (CNN)... 29
3.2.1 Architecture ... 29
3.2.2 Convolutional Layer ... 30
3.2.3 Training ... 34

vi

 Related Work ... 35 Chapter 4:

4.1 Object Detection .. 35
4.1.1 Mask RCNN .. 35
4.1.2 Image Classification ... 36
4.1.3 Inception_V3.. 37

4.2 Image Captioning ... 40

 Our Image Captioning Model .. 41 Chapter 5:

5.1 Overview of Model Architecture .. 41

5.2 Encoder .. 42
5.2.1 Mask R-CNN and Inception_V3 in our System ... 42
5.2.2 Image Embedding .. 44

5.3 Decoder ... 44
5.3.1 Word Embedding ... 44
5.3.2 Attention .. 46
5.3.3 Caption Generator Based on LSTM .. 49

 Model Training ... 51 Chapter 6:

6.1 Database MSCOCO 2015 ... 51

6.2 Model Training .. 53
6.2.1 Training Variables .. 53
6.2.2 Training Algorithm... 54
6.2.3 Hyperparameter Selection... 55

6.3 Metrics ... 56
6.3.1 BLEU... 56
6.3.2 ROUGE ... 57
6.3.3 METEOR ... 57
6.3.4 CIDEr .. 57

 Results... 59 Chapter 7:
7.1.1 Qualitative Examples and Discussion ... 61

 Epilogue .. 74 Chapter 8:

8.1 Summary and Conclusions ... 74

8.2 Future Work ... 74

References ... 76

Introduction

 vii

Table of Figures

FIGURE 1-2 : STRUCTURE OF A REAL NEURAL NETWORK IN COMPARISON WITH AN ARTIFICIAL NEURAL NETWORK.[51] .. 10
FIGURE 2-1 : ARTIFICIAL NEURON MODEL [52] .. 14
FIGURE 2-2 : SIGMOID FUNCTION AND ITS DERIVATIVE.[30] .. 15
FIGURE 2-3 : HYPERBOLIC TANGENT FUNCTION. [31] ... 16
FIGURE 2-4 : RECTIFIED LINEAR UNITS FUNCTION.[32]... 16
FIGURE 2-5: STRUCTURE OF SINGLE LAYER NEURAL NETWORK. [33] ... 17
FIGURE 2-6 : STRUCTURE OF A MULTILAYERED NEURAL NETWORK. [34] .. 18
FIGURE 2-7 : DIFFERENCE BETWEEN AN RNN (LEFT) AND A FEED FORWARD NETWORK (RIGHT). [35] 19
FIGURE 2-8: VISUALIZATION OF GRADIENT DESCENT. [36] .. 21
FIGURE 3-1: SCHEMATIC REPRESENTATION OF AN RNN. [38] .. 25
FIGURE 3-2: VARIOUS FORMS THAT AN RNN NETWORK MAY HAVE. [39].. 26
FIGURE 3-3: RESULTS OF APPLYING THE SIGMOID FUNCTION MULTIPLE TIMES.[40] .. 27
FIGURE 3-4: ARCHITECTURE OF AN LSTM. [41] ... 28
FIGURE 3-5: CELL STRUCTURE OF AN LSTM CELL. [41]... 29
FIGURE 3-6: FORM OF A COLOR IMAGE. [42] ... 30
FIGURE 3-7: A REPRESENTATION OF CONVOLUTIONAL LAYER. [1] .. 30
FIGURE 3-8: PROCESSING AN IMAGE USING DIFFERENT FILTERS. [1] ... 31
FIGURE 3-9: EXAMPLE OF A FILTER WITH STRIDE = 1. [1] .. 31
FIGURE 3-10: APPLICATION OF ZERO PADDING AT THE BORDERS OF AN IMAGE. [1] .. 32
FIGURE 3-11: APPLICATION OF A 2X2 MAX-POOLING. [1] .. 33
FIGURE 3-12: EXAMPLE OF A FC LAYER AFTER A CONVOLUTIONAL LAYER. [1] ... 33
FIGURE 4-1: MASK R-CNN STRUCTURE. [43] .. 35
FIGURE 4-2: FEATURE PYRAMID NETWORKS. [44] .. 36
FIGURE 4-4: (A) ORIGINAL INCEPTION MODULE (B) 5 × 5 CONVOLUTION IS REPLACED BY TWO 3 × 3 CONVOLUTION. [2]

.. 38
FIGURE 4-5: (A) FACTORIZATION OF THE N × N CONVOLUTIONS. (B) ONE 3×1 CONVOLUTION FOLLOWED BY ONE 1×3

CONVOLUTION REPLACES ONE 3×3 CONVOLUTION. [2] .. 38
FIGURE 4-6:(A) INCEPTION MODULES. (B) AUXILIARY CLASSIFIER [2] .. 39
FIGURE 4-8: INCEPTION MODULE FOR GRID-SIZE REDUCTION. [2] .. 39
FIGURE 4-9: SCHEMATIC DIAGRAM OF INCEPTION V3. [46] ... 40
FIGURE 5-1: IMAGE CAPTIONING EXAMPLES. [47] .. 41
FIGURE 5-2: A HIGH-LEVEL BLOCK DIAGRAM OF OUR MODEL. ... 42
FIGURE 5-3: ENCODER MODEL ARCHITECTURE .. 42
FIGURE 5-4: A VISUAL EXAMPLE OF HOW WE USE THE MASK-RCNN MODEL.. 43
FIGURE 5-5: DECODER MODEL ARCHITECTURE .. 44
FIGURE 5-6: AN EXAMPLE OF BAG OF WORDS MODEL. [49] ... 45
FIGURE 5-7: SEMANTIC SIMILARITIES USING WORD EMBEDDING. [48] .. 46
FIGURE 5-8: ATTENTION MODEL STRUCTURE. [50] ... 47
FIGURE 5-9: A TYPICAL ATTENTION MODEL WITH A UNIFORM GRID OF EQUALLY-SIZED IMAGE REGIONS (LEFT). OUR

APPROACH ENABLES ATTENTION TO BE CALCULATED AT THE LEVEL OF OBJECTS (RIGHT). [14] 48
FIGURE 5-10: ATTENTION EXAMPLE .. 49
FIGURE 5-11: AN EXAMPLE OF HOW LSTM IS USED FOR GENERATING CAPTIONS .. 50
FIGURE 7-1 : EXAMPLES OF HOW OUR MODEL FAILS TO GET THE NUMBER OF OBJECTS IN AN IMAGE. 62
FIGURE 7-2: EXAMPLES OF HOW THE SMALL VARIETY OF WORDS PRODUCED BY OUR MODEL AFFECTS THE CAPTIONS 63
FIGURE 7-3: AN EXAMPLE OF OUR MODEL BEING BIASED. .. 64

Introduction 9

 Introduction Chapter 1:

1.1 INTRODUCTION

Image captioning is a major problem of artificial intelligence, which combines the field of Computer

Vision with Natural Language Processing. The ability of a system to be able to automatically generate
descriptions of the content of the images by producing correct, syntax and semantically, proposals

seem to be a fairly demanding challenge which, however, could have a great effect, such as helping

people with impaired vision to better understand the content of images that are available either online

or in the real world. This problem is much more difficult than the problem of image classification or
of problems that are related to the detection of objects in images, which mainly deals with computer

vision problems. This is due to the fact that we not only need to identify the individual objects in an

image, but must also express how these objects are interconnected, by determining which features and
activities are related. In addition, the above semantic information must be expressed in a natural

language such as English, which means that one needs a model of natural language in addition to

visual comprehension of the image.

1.2 THESIS CONTIBUTION

In this thesis we combine deep convolutional networks for image feature extraction and recurrent
networks (RNN) responsible for modeling the proposals so that we can create a unified network that

will produces descriptions of images. This thesis utilizes some of the state of the art approaches in the

fields of object detection and image classification, as well as, attention mechanism that was created

for machine translation and used it in order to give more focus on the important parts of the input
image, thus producing more accurate results.

Chapter 1 analyzes how neural networks work and how biological networks have been the inspiration
behind them, as well as what are some of the main benefits that make them produce best results in a

wide variety of problems. Chapter 2 emphasizes in the algorithm used for their training and how it

changes the parameters of the network in way that minimizes the cost function. Some of the most well
know networks are Recurrent Neural Networks and Convolution Neural Networks, which are

described in detail in this thesis and are explained Chapter 3. Τhen, in Chapter 5, we discuss the image

captioning model created for the purpose of this thesis in detail and how we used each part of the

model to achieve our goal. COCO dataset is, then ,explained in detain in Chapter 6 and the way it was
used to train our model. In Chapter 7, we discuss the metrics we used to evaluate the accuracy of our

system, we calculate the result and present some examples of the successful captions. Apart from the

accurate descriptions it is important to view some unsuccessful example and figure out what caused
this unsuccessful behavior. Finally in Chapter 8, we end this thesis by suggesting some modification

that may improve even more the accuracy of the system.

1.3 INTRODUCTION TO NEURAL NETWORKS

Neural nets are a relatively new area in the natural sciences, since they have become known and
developed only in the last forty years. Their main feature is that their principles and functions are

based on the nervous system of living organisms, but their study and use has gone far beyond

biological organisms, and today neural networks are used to solve any kind of problem associated

with computers.

10 Introduction

Their philosophy, however, is different from the way in which classical computers work. Their

function tries to combine the thinking of the human brain with the abstract mathematical way of
thinking. Thus, in neural networks we use ideas such as learning, memory etc. things we have so far

attributed only to human thought.

The brain consists predominantly of a wide range of neurons (approximately 10,000,000,000), which

are mass interconnected, with an average of 1,000 interconnections per neuron. The central building
block of the brain is neurons, nerve cells that create a dense communication network between them.

Anatomically the neuron consists of the body, the dendrites and the axon. In each dendrite there is an

infinitely short void called a synapse. In particular, dendrites are the neural entry gates as they
receive electrical signals from other neurons. The axon is the gate of the neuron. Sends signals to

other neurons in the form of electric pulses of fixed amplitude but of variable frequency. The

synapses are the points in which the branches of the axon of a neuron are joined to the dendrites of
other neurons. The percentage of electrical activity finally transmitted to the dendrite is the synaptic

weight.

The synapses are divided into excitatory and inhibitory depending on whether the charge released by

the synapse irritates the neuron to produce pulses more frequently or suppresses it by preventing it
from producing pulses. The most important feature of the neuron is its sensitivity, its ability to react to

various external stimuli. This reaction results in the generation of short-duration pulses. The pulses

travel on the axis of each neuron and through the synapses propagate to the dendrites of other
neurons. Each neuron collects all the electrical charge it receives from each synapse in dendrites. If

the sum of the load exceeds a threshold then the neuron's axis begins to generate electrical pulses at a

high frequency so we say the neuron shoots. If the load does not pass this limit then the neuron
produces very little pulses at random moments, so we say that the neuron is inactive. All empirical

knowledge thus acquired by the neural network from the environment is coded in synaptic weights.

These are the characteristic that gives the network the ability to evolve and adapt to the environment.

 Figure 1-1 : Structure of a real neural network in comparison with an artificial neural network.[51]

In analogy with a network of brain neurons, an artificial neural network consists of a set of artificial

neurons that are linked and interact with each other by the so-called synapses. The degree of
interaction is different for each pair of neurons and is determined by the so-called synaptic weights.

As the neural network interacts with the environment and learns from it, synaptic weights are

constantly changing, potentiating or weakening the strength of each bond.

The simplest definition of a neural network, more properly referred to as an 'artificial' neural network

(ANN), is provided by the inventor of one of the first neurocomputers, Dr. Robert Hecht-Nielsen. He
defines a neural network as:

"...a computing system made up of a number of simple, highly interconnected processing elements,
which process information by their dynamic state response to external inputs."

Introduction 11

In "Neural Network Primer: Part I" by Maureen Caudill, AI Expert, Feb. 1989

1.4 MAIN CHARACTERISTICS OF NEURAL NETWORKS

A neural network owes its computational power firstly to its parallel, distributed structure and

secondly to its ability to learn and generalize. The term generalization refers to the production of
reasonable outputs for inputs that the neural network has not met during the training. These two

features enable neural networks to find good approximate solutions to complex problems.

1.4.1 Advantages of Neural Networks

Neural networks provide the following useful properties:

1. Non-Linearity: An artificial neuron can be either linear or nonlinear. A neural network

consisting of interconnected non-linear neurons is by nature non-linear. This non-linearity is

distributed across the network and is an extremely important property, especially if the

physical mechanism for producing the input signals is non-linear.

2. Adaptability: Neural Networks have the ability to adapt their weights to changes in their

environment. Sometimes adjustments lead to a reduction in system performance.

3. Indicative Response: A Neural Network is designed to provide information not only on the

specific example chosen but also on the confidence in the decision taken.

4. Content related information: Knowledge is represented by the highly structured and active

state of the Neural Network. Each neuron in the network may be affected by the overall

activity of all other network neurons. This means that a neural network manipulates the

content-related information in a natural way.

5. Tolerance to failures: Neural Networks have great tolerance for structural errors. This means

that the malfunctioning or destruction of a neuron or some connections is not capable of

significantly disrupting their operation as the information that it encloses is not localized at a

specific point but diffused throughout the network.

6. Implementability in VLSI: the massively parallel nature of the Neural Network, makes it

possible to implement VLSI technology so that neural networks can be used in very large-

scale integration applications.

7. Analysis and Design Uniformity: The concept is that the same symbolism is used in all fields

that contain neural network implementation, which is indicated in several ways: Neurons

define a component common to all neural networks. This property makes it possible to share

learning theories and algorithms in different applications of neural networks.

8. Analogue with Neurobiology: Neural Network Design is done in analogy with the brain.

Neurobiologists see neural networks as the subject of research to explain neurobiological

phenomena. Similarly, engineers see neurobiology for new ideas to solve complex problems.

1.4.2 Disadvantages of Neural Networks

Below are listed the disadvantages of Neural Networks and their use:

12 Introduction

1. Hardware dependence: Artificial neural networks require processors with parallel computing

power. For this reason, the implementation of the equipment depends.

2. Determination the network structure: There is no specific rule on how to build a neural

network. Appropriate networking is achieved through experience, testing, trial and error.

3. Unexplained network behavior: This is the most important problem of NN. When the NN

produces a solution, there is no explanation of why and how. This reduces the trust of the

network.

4. Explanation and translation of weights in Neural Nets are impossible because of their non-

linearity.

5. Difficulty in displaying the problem in the network: Neural networks can only process

numeric information. Problems must be translated into numerical values before they are

entered in the SW. The imaging mechanism to be determined here directly affects the

performance of the network.

1.5 LEARNING PROCESS

As there are different ways people learn from their environment, the same goes for neural networks.

In a broad sense, we can categorize the learning processes through which neural networks work as
follows: supervised learning, unsupervised learning and reinforcing learning.

1.5.1 Supervised Learning

Learning with an instructor is also referred to as supervised learning. The neural network receives
pairs of input-desired output vectors and generates with the current weight state an output that initially

differs from the desired output. This difference is then calculated and the weights are adjusted based

on that error. More specifically, the teacher has knowledge of the environment and this knowledge is
represented by a set of input-output examples. However, the environment is unknown in the neural

network. If the network is exposed to an environmental training resource, because of his knowledge,

the trainer may provide the neural network with the desired response for that particular vector. The

desired response represents the optimal action to be performed by the neural network. The network
parameters are influenced by the training vector in combination with the error signal. The error signal

is defined as the difference between the desired response and the actual network response. This

process is repeated in order to bring the network into a situation where it will simulate the teacher's
situation.

1.5.2 Unsupervised Learning

In unsupervised learning there is no external trainer to oversee the learning process. Instead, there is a

process-independent measure of the representation quality that is required to learn the network and the
network parameters are optimized in relation to it. Training samples are now only input samples and

do not contain samples of the desired output. Training stops when the network stops changing the

weight values.

1.5.3 Reinforcement Learning

In reinforcing learning, learning an output-matching input is performed through continuous
interactions with the environment, aiming at minimizing a scalar performance measurement. In this

type of learning the network is again fed with sample inputs but is not fed with the desired responses

to these outputs. Now we use a general measure of the adequacy of the resulting judgment that can

lead the network to the desired behavior. This measure is known as a reinforcement signal and is
being fed back to the network in order to reward good behavior and punish the wrong ones. In

Introduction 13

summary, reinforcement learning works as follows: Initially, the neural network calculates the outputs

produced by the current input with current weight values. The system then evaluates the output and
the reinforcement signal is fed into the network. The weights are adjusted based on the reinforcement

signal, increasing the weight values that contributed to good behavior or reducing the weight values

that caused bad behavior.

14 Neural Networks

 Neural Networks Chapter 2:

2.1 NEURON

A neuron is an information processing unit that is fundamental for the operation of a neural network

and is the basis for designing a larger network. An artificial neuron is a computational model whose
parts are directly matched with those of the biological neuron. Each neuron receives information,

processes it and gives an output value. Its inputs are either the outputs of other neurons, or the input

signal of the network.

A neuron usually receives many simultaneous inputs. Every input has its corresponding weight. These
weights have the same type of operation as synaptic forces of biological neurons. The weights are

adaptive coefficients within the network that determine its intensity of the input signal as they enter

the artificial neuron. The weight shows us just how important the contribution of this signal is to the
configuration of the network structure for the two connecting neurons. Accordingly to how big or

small the weight is, the contribution of the signal is great or small respectively. These forces can be

modified according to the different training standards and according to the specific network topology

or through the training rules.

 Figure 2-1 : Artificial Neuron model [52]

The basic parts of which a neuron is composed (shown in Figure 2-1) are:

1. A set of synapses each of which is characterized by its own weight. More specifically, a

signal xk at the input of synapse j associated with the neuron j is multiplied by the synaptic

weight wkj. The synaptic weight of an artificial neuron can receive both positive and negative

values.

2. An adder for summing the input signals weighted by the corresponding synaptic weights.

3. An activation function for limiting the amplitude of the output signal of the neuron.

4. The neuron model also includes an externally applied bias bj. Bias results in an increase or

decrease in network excitation of the activation function, depending on whether it is positive

or negative respectively. Bias is an external parameter of the neuron and is equal to the

synaptic weight wj0 of the fixed input x0 = +1

In mathematical terms we can describe the neuron with the following pair of equations:

Neural Networks 15

 ∑

 (2.1)

 (2.2)

Where x1, x2, ... , xi are the input signals and wj1, wjk, ..., wji are the respective synaptic weights of the

neuron j, bj is the bias, θ() the activation function and yj the output signal of neuron j.

2.2 ACTIVATION FUNCTIONS

They are used to convert the input signal of a neuron to a non-linear output signal. If an activation
function is not applied then the output signal would be a simple linear function which, although easy

to solve, is unable to learn complex mappings from data such as images, video, audio, speech, etc. A

neural network should be able to learn and compute not only linear functions but also more complex

non-linear functions. Non-linear functions are those that have a degree greater than one and their
curve is non-linear.

Another important feature of the activation function is that it should be differentiable so that

backpropagation can be applied to optimize the algorithm as we propagate back into the network to
calculate the error in relation to weights and gradually optimize the weights using Gradient Descend.

Therefore, we conclude that in order for the network to be powerful, to have the ability to learn

complicated processes and to be able to process complex data, an activation function must be applied.

Four are the most common functions :
1. Sigmoid or Logist

2. Tanh — Hyperbolic tangent

3. ReLu (Rectified linear units)

4. Softmax

2.2.1 Sigmoid or Logistic

Sigmoid function is the most common activation function. It is defined as a strictly increasing

function, receives values from a continuous range of values from 0 to 1 and is differentiable.

The sigmoid function is defined as:

 (2.3)

 Figure 2-2 : Sigmoid function and its derivative.[30]

16 Neural Networks

2.2.2 Tanh (Hyperbolic tangent)

This function is also a sigmoidal function in terms of its shape, it‟s difference is in the fact that it gets

values in range (−1,1). The fact that the output values are zero – centered make it preferable to the
sigmoidal function. The tanh function is differentiable and is given:

 (2.4)

 Figure 2-3 : Hyperbolic tangent function. [31]

2.2.3 ReLu (Rectified Linear Units)

The rectifier non-linearity is defined as follows:

 (2.5)

where x is the input to a neuron.

This function ensures that the output will not get a value below zero.

 Figure 2-4 : Rectified Linear Units function.[32]

Neural Networks 17

2.2.4 Softmax

The Softmax regression is a form of logistic regression that normalizes an input value into a vector of

values that follows a probability distribution whose total sums up to 1. The output values are between
the range [0, 1] and it is used most cases in the last layer of the networks. The softmax function used

for multi-classification model returns the probabilities of each class and the target class will have the

high probability.

 |

∑

 (2.6)

Our objective is to predict if the trained set of features x, each with its own set of weights wj, are a

class of j. The formula 2.6 computes the exponential of the given input value and the sum of
exponential values of all the values in the inputs. Then the ratio of the exponential of the input value

and the sum of exponential values is the output of the softmax function.

2.3 NETWORKS ARCHITECTURE

Neural networks are characterized by their architecture, the function they perform and their training

method. The network architecture determines the layout of the connections, the number and the type

of neurons. The way in which neurons of a network are structured is closely related to the learning
algorithm used to train the network. Generally there are three fundamental architectures:

2.3.1 Single layer Feed-Forward Networks

In a neural network, the neurons are organized in the form of layers. In the simplest form there is an

input layer, which is directly connected to a layer of output neurons but not vice versa. Such a
network is called single layer due to the output level. Input layer is not counted because it does not

perform any calculations.

The network of this type is also called feed forward network. The feedforward neural network was
the first and simplest type of artificial neural network. In this network, the information moves in only

one direction, forward, from the input nodes to the output nodes. There are no cycles or loops in the

network.

 Figure 2-5: Structure of single layer neural network. [33]

18 Neural Networks

The first layer is the d-dimension inputs. In the second layer, the outputs are combined to give the

activations of the M output units. The output at this network structure is calculated by the following
equations:

 ∑

 j =0, 1, ... , M (2.7)

Where, wji is the weight for input xi connected to neuron j in the output layer and f() is an activation
function like those described in section 2.2.

2.3.2 Multi layer Feed-Forward Networks

This category of neural networks is characterized by the number of hidden layers, whose nodes are
called hidden neurons. The operation of these neurons is to interfere between the external input and

output of the network by doing some processing.

 Figure 2-6 : Structure of a multilayered neural network. [34]

The Input nodes provide information from the outside world to the network and are together referred

to as the “Input Layer”. No computation is performed in any of the Input nodes – they just pass on the

information to the hidden nodes. The Hidden nodes have no direct connection with the outside world.
They perform computations and transfer information from the input nodes to the output nodes. A

collection of hidden nodes forms a “Hidden Layer”. The Output nodes are collectively referred to as

the “Output Layer” and are responsible for computations and transferring information from the

network to the outside world.

The first layer is the d-dimension inputs. In the second layer, the outputs of the hidden units are
combined to give the activations of the M output units:

 ∑

 j =0, 1, ... , M (2.8)

Neural Networks 19

Then the output of the last layer will be calculated, for K output units, as:

 ∑

 k= 0, 1, … , K (2.9)

Or if we combine all the above equations the output of the network is:

 ∑

 ∑

 (2.10)

2.3.3 Recurrent Networks

A recurrent neural network differs from a feed forward neural network in having at least one feedback

loop. The output of each network neuron feeds the input of other neurons of the same layer and, in
some cases, even its own input (self-feedback). The presence of feedback loops affects the learning

ability of the network and its performance.

 Figure 2-7 : Difference between an RNN (left) and a feed forward network (right). [35]

 (2.11)

 (2.12)

Where, Whh is the array of weights of the hidden state to the hidden state, Wxh is the array of weights

from the input to the hidden state, Why is the array of weights from the output to the hidden output
and f an activation function applied per element. Recurrent neural networks will be discussed in more

detail in Chapter 3.

In all the above cases the networks were fully connected because each node of each network layer is

connected to each other node of the next level. In the case of missing network connections, then we

are talking about a partially connected network.

20 Neural Networks

2.4 NETWORK TRAINING

The main purpose of an artificial neural network is to be able to perform certain processes e.g. to

recognize images, but having been first properly trained. Each network receives some inputs and

gives some outputs. Learning is done by giving the network as inputs some standards for which we

know what the output should be. The network with these data modifies its internal structure to make
the same match based on the data given to it. This modification is based on a cost function and a

training algorithm which in most cases is gradient descent. The cost functions calculates the deviation

from the right response and the training algorithm updates the weights of the models in a way that the
cost function in minimized.

After finding the right internal structure, then it can solve other similar problems that it has not seen

before. However, these problems should be of the same nature and characteristics as those of training.

The training process will be further explained in the next sections.

2.4.1 Cost Function

The cost function of a supervised learning problem computes the compatibility between model

prediction and its true value. Depending on the type of problem we need to resolve, we also use a

different cost functions. In this case, we have to solve a classification problem, so we chose the
Cross-entropy cost function. Cross-entropy loss measures the performance of a classification model

whose output is a probability between 0 and 1 and expresses how far the prediction is from the actual

distribution. The loss of Cross-entropy increases as the predicted probability deviates from the actual
label. In case we have a binary classification, where the number of classes M equals 2 Cross-entropy

can be calculated from the equation:

 (2.13)

Where y is the ground truth and p is the prediction.
If we classify multiple classes, then we calculate separately the error for each class, based on the

labels, for one entry, and then we add the results.

L = ∑ ()

 (2.14)

Where M is the number of different categories, y is a binary marker (0 or 1) on whether the c tag is

the correct categorization for observing ν and p the probability predicted by the model to be a class c
entry.

The total loss for all data takes the form of an average loss from each separate example, ie it takes the
form of:

∑

 (2.15)

With N the set of training data and Li the error calculated by the Cross-entropy for the given i.

2.4.2 Gradient Descent

The idea behind the gradient descent [3] is the gradual but repetitive reduction of the error by

adjusting the weights. Intuitively, we know that if a change in weight increases (reduce) the error,
then we want to reduce (increase) that weight. Mathematically, this is written: ∂J / ∂w, which

represents the change in error relative to a change of weight. Once we calculate this derivative, we

will update the weight through the following equations:

Neural Networks 21

 (2.16)

Where, n is the learning rate and J(w) is the gradient of the cost function J(w) with respect to the

parameter w.

If we update all weights using equation (2.16) it means that the parameters move in the direction of

the steeper descent along the error function - hence the name, gradient descent.
The general idea of Gradient Descent is:

1. Calculate the slope, which is the first derivative of the cost function at the given time.

2. Update parameters by adding the quantity calculated in the previous step towards the negative

gradient of the slope.
3. After each weight update the gradient is re-examined for the new weight vector and the

procedure is repeated.

 Figure 2-8: Visualization of Gradient Descent. [36]

There are three types of Gradient Descent:

1. Batch Gradient Descent

2. Stochastic Gradient Descent
3. Mini-batch Gradient Descent

The pseudocode for stochastic gradient descent (sgd) has the following form:

2.4.2 Error BackPropagation

Backpropagation algorithms, short for "backward propagation of errors", is used in order to train

artificial neural networks following a gradient descent approach. Backpropagation computes the
gradients, whereas gradient descent uses the gradients to train the model.

The "backwards" part of the name stems from the fact that calculation of the gradient proceeds

backwards through the network, with the gradient of the final layer of weights being calculated first
and the gradient of the first layer of weights being calculated last. Partial computations of the gradient

Algorithm 2.1 : stochastic gradient descent

1. Select initial weight vector w and learning rate n.

2. Repeat until a minimum is reached:

a) Randomly mix training the examples

b) Calculate the slope: ∂J/ ∂w

c) Calculate the update direction: Δw = -η ∂J / ∂w

d) Run a parameter update: w = w + Δw

22 Neural Networks

from one layer are reused in the computation of the gradient for the previous layer. This backwards

flow of the error information allows for efficient computation of the gradient at each layer versus the
naive approach of calculating the gradient of each layer separately.

The backward propagation process for training a neural network consists of two passes across the

different layers of the network: a forward pass and a backward pass. In the forward passage an input

vector is applied to the network input neurons and its effect is propagated within the network from
one layer to the next and in the direction of the input layer to the output layer. Eventually a set of

outputs is generated as the actual network response. Comparing the final output values with the

desired result we calculate the error for each of them. During the first pass, the weights of the
network remain stable.During the backward pass weights are adjusted according to the error

correction rule produced by the forward passage. More specifically, the actual response of the

network is subtracted from the desired response to produce an error signal propagating back into the
network, on the opposite direction of the connections (direction from the output level to the input

level), from which the name 'error back propagation' emerges. The synaptic weights are adjusted to

make the actual network response approximate the desired response.

Neural Networks 23

𝑄𝑗 𝑓 𝑄𝑖𝑛𝑗

𝑦𝑘 𝑓 𝑦𝑖𝑛𝑗

𝛿𝑘 𝑡𝑘 𝑦𝑘 𝑓′ 𝑦𝑖𝑛𝑗

𝛥𝑢𝑗𝑘 𝛼𝛿𝑘𝑄𝑖𝑛𝑗

𝛥𝑏 𝑘 𝛼𝛿𝑘

𝛿𝑗 𝛿𝑖𝑛𝑗𝑓′ 𝑄𝑖𝑛𝑗

𝛥𝑤𝑖𝑗 𝛼𝛿𝑗𝑥𝑖

𝛥𝑏 𝑗 𝛼𝛿𝑗

Algorithm 2.2: BackPropagation[26]

1. Initialize weights w, v and learning rate α.

2. Repeat until the number of epochs is reached:

I. Repeat for each training pair in the dataset:

a) Each input unit receives input signal xi and sends it to the hidden unit for all i = 1

to n

b) Calculate the net input at the hidden unit using the following relation:

𝑄𝑖𝑛𝑗 𝑏 𝑗 (𝑥𝑖𝑢𝑖𝑗)
𝑛

𝑖
 j= 1 to p

Where b0j is the bias on hidden unit, vij is the weight on j unit of the hidden layer

coming from i unit of the input layer. Now calculate the net output by applying

the following activation function

 Send these output signals of the hidden layer units to the output layer units.

c) Calculate the net input at the output layer unit using the following relation:

𝑦𝑖𝑛𝑗 𝑏 𝑘 𝑄
𝑗
𝑤𝑗𝑘

𝑛

𝑖
 k= 1 to m

 Where b0k is the bias on output unit, wjk is the weight on k unit of the output

layer coming from j unit of the hidden layer. Calculate the net output by applying the

following activation function:

d) Compute the error correcting term, in correspondence with the target pattern

received at each output unit, as follows:

 On this basis, update the weight and bias as follows:

 Then, send δk back to the hidden layer.

e) Now each hidden unit will be the sum of its delta inputs from the output units.

𝛿𝑖𝑛𝑗 𝑏 𝑗 (𝛿𝑘𝑤𝑗𝑘)
𝑚

𝑘

 Error term can be calculated as follows:

 On this basis, update the weight and bias as follows:

24 Neural Networks

The steps described above train the neural network, ie all weights and network parameters have been

optimized so they can correctly predict an output for a given input. After training if a new input enters
the network, it will perform a forward pass from all the individual levels and produce a probability for

each unit of the output layer. If the training is done properly then the network will generalize the new

data well enough and will produce the desired output even on input data it has never seen.

𝑢𝑗𝑘 𝑛𝑒𝑤 𝑢𝑗𝑘 𝑜𝑙𝑑 𝛥𝑢𝑗𝑘 𝑛𝑒𝑤

𝑏 𝑘 𝑛𝑒𝑤 𝑏 𝑘 𝑜𝑙𝑑 𝛥𝑏 𝑘 𝑛𝑒𝑤

𝑤𝑖𝑗 𝑛𝑒𝑤 𝑤𝑖𝑗 𝑜𝑙𝑑 𝛥𝑤𝑖𝑗 𝑛𝑒𝑤

𝑏 𝑗 𝑛𝑒𝑤 𝑏 𝑗 𝑜𝑙𝑑 𝛥𝑏 𝑗 𝑛𝑒𝑤

 f) Each output unit yk, with k = 1 to m, updates the weight and bias as follows:

g) Each output unit zj, with j = 1 to p, updates the weight and bias as follows :

Other Types of Neural Networks 25

 Other Types of Neural Networks Chapter 3:

Depending on the type of problem and set of parameters required to determine the output, there are
different neural networks based on different mathematical functions. Below we will analyze some

"special" neural networks that were used to implement our own model.

3.1 RECURRENT NEURAL NETWORKS (RNN)

In a Feed-Forward neural network, the data move only in one direction, from the input layer, through

the hidden layers, to the output layer. The information moves directly through the network and for this
information passes through every node only once. Feed-forward neural networks have no memory for

the input they received before, and therefore cannot predict the data to follow. Thus, it is impossible

to use them in cases where the network inputs are sequences. In contrast, in RNNs the information
passes through a loop, so that when a decision is made, it will take into account the current input but

also what it learned from the inputs it received in the past according to the formula ht = f (ht-1, xt),

where f is an activation function, ht-1 the previous state and xt the input. Therefore, RNN have two

input sources, the current input and the previous hidden state, which are combined to determine how
they react to new data.

3.1.1 Architecture

If an RNN [4], [27] unfolds in time it will take the form below:

 Figure 3-1: Schematic representation of an RNN. [38]

If we denote by (x1, ..., xT) an input sequence, with (h1, ..., hT) the corresponding hidden state

sequence and with (y1, ..., yT) the output sequence calculated by network, then an RNN with only one

recurrent unit is described by the following equations that are repeated for 1 to T:

 (3.1)

 (3.2)

26 Other Types of Neural Networks

Where, Whh is the array of weights of the hidden state to the hidden state, Wxh is the array of weights

from the input to the hidden state, Why is the table of weights from the output to the hidden output and
ζ , are sigmoid and a sotmax function applied per element.

From (3.1) is obvious that the hidden layer depends directly on the input sequence x1, ..., xt:

 …

 =

Usually the h0 is initialized with zeros. The hidden state is a function of the input at the current time

on the Whx weight vector which is added to the hidden state of the previous time ht-1 which in turn is
multiplied by the hidden state weight vector Whh. The weights act as filters that determine the

significance to be given at the input and in the previous state. The above sum will pass through an

activation function ζ. Because of the feedback loop at each time, each hidden state contains
information not only of the previous state but of each present state.

It is worth mentioning that while Feed Forward neural networks assign one input to one output, RNNs

can assign one input to one output, multiple inputs to one output, one input to multiple outputs, and
multiple inputs to multiple outputs.

 Figure 3-2: Various forms that an RNN network may have. [39]

3.1.2 Backpropagation Through Time

Backpropagation in feedforward networks moves back from the final error through the outputs,

weights and inputs of each hidden layer, assigning the responsibility of these weights to a part of the

error by calculating their partial derivatives - ∂E / ∂w. These derivatives are then used by the gradient
descend to adjust the weights up or down, depending on which direction reduces the error. The

training of recurrent networks is based on an extension of backpropagation called Backpropagation

Through Time (BPTT). Time, in this case, is simply expressed by a well-defined set of parameters
linking one step to the next. The BPTT works by unfolding all timesteps. Every step in time has an

input step, a copy of the network, and one output. Errors are counted and summed for each time

period. The network is folded again and weights are updated, using the following formulas:

 ∑

 (3.3)

Other Types of Neural Networks 27

 ∑

 (3.4)

3.1.3 Vanishing/Exploding Gradients

Recurrent networks seek to create links between a final output and events that preceded many steps in

the past, so it is very difficult to know how much importance should be given to older inputs. This is

mainly because the information, flowing through the neural networks, passes through multiple stages

of multiplication. Any quantity that is frequently multiplied by an amount slightly larger than one can
become incalculably large, and vice versa, a number multiplied by an amount less than one can

become incomprehensibly small. If the gradient becomes so small that it disappears we say we have a

problem of vanishing gradients. On the contrary, if gradient values are greater than 1, the continuous
multiplication of the tables begins to increase the value of the derivatives exponentially. This is

defined as an exploding gradients problem.

More specifically, the problem of vanishing gradients is a problem we encounter in artificial neural
networks due to the gradient descent learning mechanism. Each weight receives a change according to

the error factor in relation to the specific weight at each repetition of the training. The first problem

arises when the derivative is small enough. Continuous multiplications due to the chain rule lead to a

marginal zeroing of the change, which prevents weight from changing their values and thus stop
training. The second problem is occurs in the case where the derivative is of great value. Now the

chain rule causes the change to get quite high prices which lead to extreme increases in the value of

weights, which also stops the training process.
Below are the results of applying a sigmoid function multiple times, where the slope gradually

disappears.

 Figure 3-3: Results of applying the sigmoid function multiple times.[40]

3.1.4 Long Short-Term Memory (LSTM)

To overcome the problems mentioned above, Hochreiter and Schmidhuber in 1997 proposed long-

short term memory networks (LSTM)[27][28]. Since then, LSTM networks have revolutionized the

fields of speech recognition, machine translation, etc. Like conventional RNNs, LSTMs also have a
chain-like structure, but the recurrent units have a different structure. Instead of having a single layer

of neural network, there are four, which interact in a specific way.

28 Other Types of Neural Networks

 Figure 3-4: Architecture of an LSTM. [41]

The most common architecture consists of a cell and three gates that regulate the flow of information

within lstm: an input gate, an output gate, and a forget gate. They are called gates, because the

sigmoid function compresses the values of these vectors between 0 and 1 and with the multiplication
per element with another vector, they can determine how much information the other vector wishes to

hold. The cell is responsible for monitoring the dependencies between the elements in the input

sequence. The input gate controls the extent to which a new value flows into the cell. The forget gate
controls the extent to which a value in the cell remains and the output gate controls the extent to

which the value in the cell is used to calculate the LSTM output. There are connections to and from

the LSTM gates, some of which are retrospective. The weights of these connections, which need to be

trained during training, determine how the gates work.
To better understand how LSTMs work, let's see how the hidden state ht is calculated:

 (3.5)

 (3.6)

 (3.7)

 (3.8)

 (3.9)

The key behind the LSTM network is the horizontal line at the top, known as cell state. The cell state

passes through all the repeating sections and modifies them from each other with the help of a gate.

This causes the maintenance of information in the network. More specifically:

 Forget gate ft : Decides what information is to be "thrown" by the cell state. This is done by

looking at ht-1 and xt and generating a number between 0 and 1 for each number in the cell

state Ct-1.The number 1 represents "totally keeping the number" while 0 represents "totally

forgetting the number".

 Input gate it: determines what new information is to be stored in cell sate. This process has

two parts. First, a sigmoid layer that decides which values will be updated. Then, a tanh layer

creates a vector of new candidate values, Ct ', which could be added to the state. In the next

step, we will combine these two parts to update the new state.

 Output gate ot: decides how much information from the internal state wants to expose to the

external network. The output is based on the cell state, but it is a filtered version of it. We run

a sigmoid layer that decides which parts of the cell state will exit.

Other Types of Neural Networks 29

 Internal memory Ct: We multiply the old state with the ft, forgetting the things we decided to

forget earlier. Then we add it * Ct '. These are the new candidate values, scaled by how much

we decided to update each situation.

 Hidden state ht: the cell state goes through a tanh (to push the values to be between -1 and 1)

and multiplies with the output gate so that we can only export the parts we have decided.

 Figure 3-5: Cell structure of an LSTM cell. [41]

3.2 CONVOLUTIONAL NEURAL NETWORKS (CNN)

Convolutional neural networks [1],[5],[6] are deep neural networks that are primarily used to

categorize images, detect objects within images, or group them into content-based clusters. It is
similar to ordinary neural networks since they are composed of neurons with weights and biases. Each

neuron receives inputs, executes an internal product, and optionally uses a non-linear function. They

still have a loss function (e.g. Softmax) in the last fully connected layer and all the tricks we have
developed for training neural networks continue to apply.

In contrast to traditional neural networks, CNN architectures explicitly admit that the inputs are

images that allow us to encode certain properties in architecture. These, therefore, make forward

function more efficient to implement and significantly reduce the amount of parameters in the
network.

3.2.1 Architecture

First, we will analyze the shape of an image that enters such a network. The input is a 3-dimensional

array of the form H x W x 3, where H (heigth) corresponds to the number of pixels of the image on

the vertical axis, W (width) corresponds to the number of pixels of the image on the horizontal axis
and 3 is the 3 RGB color channels (Red, Green, Blue). Each parameter (red, green, blue) determines

the color intensity with an integer from 0 to 255. If the images are black and white the input array will

be in the form H x W x 1.

30 Other Types of Neural Networks

 Figure 3-6: Form of a color image. [42]

The input then goes through a series of processing that result from a combination of the following
levels: a convolutional layer, a pooling layer, Relu layer and a fully connected layer.

3.2.2 Convolutional Layer

The convolutional layer, as described in [1], is the basic unit of construction of a Convolutional

Network, which performs the most demanding calculations. The main purpose of this level is to

extract attributes from the input image.
The Convolution layer uses a set of filters that detect the presence of specific features or motifs

presented in the original image given in the input. They usually have smaller dimensions than those of

the original image, but retain the depth dimension the same as that, i.e. 3. Each filter slides across the
input image, and an inner product is calculated to provide an activation map. Different filters that

detect different characteristics rotate in the input image and a set of activation maps are the output.

The term activation maps refers to image areas that have been mapped to attributes associated with
the filters. Intuitively, the network will be trained on filters that are activated when they see a type of

visual feature such as the edge of an orientation or the spot of some color on the first level. Thus, we

have now acquired a whole set of filters at each convolutional level, each of which will produce a

two-dimensional activation map. We will stack these activation maps at the third dimension (depth)
and finally get the three-dimensional output.

 Figure 3-7: A representation of convolutional layer. [1]

Other Types of Neural Networks 31

. In the example that follows, neurons use different filters but they process the same part of the image.

 Figure 3-8: Processing an image using different filters. [1]

Before we analyze the remaining levels, we should mention some hyperparameters that control the

size of the output:

1. The stride determines how many pixels the filter moves over the image. For example, when

the stride has a value of 1, the filter will be moved by one pixel, whereas if it has a value of 2

it will be moved by two, etc. This not only reduces the size of the output, but also the overlap

of neighboring levels. Given an image of NxN dimensions, FxF dimensional filter, and S the

size of output G will be:

 Figure 3-9: Example of a filter with stride = 1. [1]

2. The convolutional layer tend to lose information from the borders of the image. An effective

way to solve this problem is to apply zero-padding in order to fill the image borders with

zeros.

32 Other Types of Neural Networks

 Figure 3-10: Application of zero padding at the borders of an image. [1]

Corresponding to the previous case, if P is the number of levels of zero padding, the

output will have a size:

Summarizing, the convolutional layer has the following characteristics: It takes as input an image size

H1 x W1 x D1 and it is determined by the following parameters:
1. Number of filters K

2. Their spatial size F

3. Step S

4. The zero padding number P

When given these parameters, the resulting output will have a size of H2 x W2 x D2, where
 W2 = 1 + (W1 + 2P-F)/S

 H2 = 1 + (H1 + 2P-F)/S

 D2 = K

3.2.1.2 Relu Layer

The next level after convolution is the implementation of a non-linear function. This level does not

affect the size of the output but is applied to saturate or limit the output. Any of the known functions

such as tanh or sigmoid can be used as a non-linear function but the one most used is ReLu for the
following reasons:

 Due to the simple definition of the function itself and its derivative

 The tanh and sigmoid functions cause backpropagation problems. In deep neural networks,

the gradient gradually disappears because the derivative of these functions is close to 0 in

almost the whole set of values except the center.

ReLU is an element-wise operation (applied per pixel) and replaces all negative pixel values in the

attribute map with zero. The purpose of ReLU is to introduce non-linearity to ConvNet, as most of the
real-world data we would like the network to learn will be nonlinear.

3.2.1.3 Pooling Layer

The Pooling Layer is a layer that is usually introduced between successive convolutional levels in

Convolutional Network architecture. The idea behind this level is sampling to reduce complexity for

Other Types of Neural Networks 33

the next layers while retaining important image information. The method may be considered to be

equivalent to reducing the resolution of an image. The pooling method used in most cases is max
polling. It separates the image into smaller orthogonal regions and returns from each subregion the

pixel with the highest value.

 Figure 3-11: Application of a 2x2 Max-pooling. [1]

Instead of taking the largest element, we can also get the Average Pooling or the sum of all items in

this window. In practice, Max Pooling has been proven to work best.

The pooling layer has the following characteristics: It accepts an image size H1 x W1 x D1 and it is
determined by the following parameters:

1. Their spatial size F

2. Step S

When given these parameters the resulting output will have a size of H2 x W2 x D2, where

 W2 = 1 + (W1 -F)/S

 H2 = 1 + (H1 -F)/S

 D2 = D1

3.2.1.4 Fully Connected Layer

This is a common neural network with only one layer. Each node is connected to each node of both

the previous and the next layer and uses an activation function at its output. The purpose of the fully

connected layer is to use these attributes to classify the input image into different classes, based on the
set of data used for training.

 Figure 3-12: Example of a FC layer after a convolutional layer. [1]

34 Other Types of Neural Networks

3.2.3 Training

The technique used for training convolutional networks [7] is similar to that of feed forward networks.

Firstly, there is one forward pass and an output is produced. Then the error is calculated and the error
of each weight / filter is updated to pass parameters backwards.

Algorithm 3.2 : BackPropagation for CNN

1. Initialize filters and parameters with random values

2. An image is inserted into the network, passing through all existing levels (convolutional,

pooling, etc.) and calculate the output probabilities for each class.

3. Calculate total error at output level.

4. Using the backpropagation method mentioned above, we calculate the error gradients

with respect to all the weights of the network and then apply the gradient descent to

update all filter values / weights and parameter values to minimize the output error as

follows:

a) The weights are adjusted according to their contribution to the overall error

b) Parameters such as the number of filters, filter sizes, network architecture,

etc., are pre-set before step 1 and do not change during training - only filter

values and connection weights are updated.

5. Repeat steps 2-4 for each pictures in the training data.

Related Work 35

 Related Work Chapter 4:

4.1 OBJECT DETECTION

The first efficient algorithm in object detection was one created for face detection in 2001 by Pau

Viola and Michael Jones and it was name Viola-Jones Algorithm. They hand-coded features like the
location of eyes, nose, mouth and the relations to each other and fed them into a classifier, a support

vector machine. In 2005 a paper published by Navneet Dalal and Bill Triggs featuring the Histograms

of Oriented Gradients (HOG) outperformed any algorithm created until that moment.

Deep Learning algorithms became widely used in computer vision with its resounding success at the
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) of 2012, where they outperformed all

other algorithms.

The most advanced methods solving the task of object detection using again CNNs is Faster R-CNN
[8]. Faster R-CNN, is composed of two modules. The first module is a deep fully convolutional

network that proposes regions, and the second module is the Fast R-CNN detector that uses the

proposed regions. The entire system is a single, unified network for object detection. In ILSVRC and

COCO 2015 competitions, Faster R-CNN and RPN are the basis of several 1st-place entries in the
tracks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

RPNs completely learn to propose regions from data, and thus can easily benefit from deeper and

more expressive features. These results suggest that this method is not only a cost-efficient solution
for practical usage, but also an effective way of improving object detection accuracy. For this thesis

we used Mask RCNN which is an extension of Faster RCNN, explained in detail in the next section.

4.1.1 Mask RCNN

Mask RCNN [8] (Regional Convolutional Neural Network) is the most modern approach that instance

segmentation It consists of two stages: one generates regions where it is likely to be an object and

second it generates masks in pixel level.

 Figure 4-1: Mask R-CNN structure. [43]

36 Related Work

Backbone is the first stage of the mask-RCNN and it is a convolutional neural network typically,

ResNet50 or ResNet101that extracks features. The early layers detect low level features (edges and
corners), and later layers successively detect higher level features (car, person, sky).The backbone can

be improved using the Feature Pyramid Network known as FPN whish is created by adding a second

pyramid in the standard feature extraction pyramid that takes the high level features from the first

pyramid and passes them down to lower layers, it allowing features at every level to have access to
both, lower and higher level features.

 Figure 4-2: Feature Pyramid Networks. [44]

The first part of the network is a Region Proposal Network.The RPN is a lightweight neural network

that scans all FPN top-bottom pathway in a sliding-window fashion and finds areas that contain
objects. The regions that the RPN scans over are called anchors, which are boxes distributed over the

image area. The RPN generates two outputs for each anchor a binary anchor class and does bounding

box refinement.
Using the RPN predictions, we pick the top anchors that are likely to contain objects and refine their

location and size. One of the great advantages of the RPN is that it does not scan the actual image, the

network scans the feature map, making it much faster.
Next is the ROI Classifier. This stage runs on the regions of interest (ROIs) proposed by the RPN and

produces a class of the 80 total classes that it is trained to recognize, does some more refinement on

the bounding boxes and produces the final results. At this stage ROIAlign is order to have all

bounding boxes the same size.
At the last stage the regions suggested by the previous layer are used from the model in order to create

masks. Masks are low 28x28 pixels resolution and are represented with float numbers.

4.1.2 Image Classification

Image Classification is an important task within the field of computer vision. Image classification
refers to the labelling of images into one of a number of predefined categories. Classification includes

image sensors, image pre-processing, feature extraction and object classification. Many classification

techniques have been developed for image classification like Artificial Neural Network (ANN),

Decision Tree (DT), Support Vector Machine(SVM) and Fuzzy Classification.
For the purpose of this thesis we will focus on approaches based on Artificial Neural Networks. In the

most recent work in computer vision, variations of neural networks trained with stochastic gradient
descent are mostly used. One of the state of the art pre-trained models for this task is VGG-16[12]

proposed by Karen Simonyan & Andrew Zisserman from the University of Oxford in 2014. The

model achieves 92.7% top-5 test accuracy in ImageNet, which is a dataset of over 14 million images
belonging to 1000 classes. It was one of the famous models submitted to ILSVRC-2014. It makes the

improvement over AlexNet by replacing large kernel-sized filters (11 and 5 in the first and second

Related Work 37

convolutional layer, respectively) with multiple 3×3 kernel-sized filters one after another. VGG16

was trained for weeks and was using NVIDIA Titan Black GPU‟s.
Another state of the art model is Inception V3[2]. Inception-v3 is a convolutional neural network that

is trained on more than a million images from the ImageNet database. The network is 48 layers deep

and can classify images into 1000 object categories. Inception-v3 is a widely-used image recognition

model that has been shown to attain greater than 78.1% accuracy on the ImageNet dataset. The model
is the culmination of many ideas developed by multiple researchers over the years.

These models are trained to classify an image, i.e. assign a class label to it. It proved to be very
efficient to utilize a pre-trained image classification model in similar tasks. From the great variety of

pre-trained models, VGG-16 and Inception V3 achieve the state-of-the-art performance. We choose to

implement Inception V3 in our model for the task of feature extraction from the images.

4.1.3 Inception_V3

The convolutional neural network discussed in this section is the next generation of GoogleNet by

Christian Szegedy, Google's researcher on Machine Learning, Artificial Intelligence and Computer

Vision, through deep learning. Inception_V3 is a widely used image classification model that has
been proven to achieve a precision of more than 78.1% in the ImageNet data set.

The model itself consists of symmetrical and asymmetric structural elements such as convolutions,

average pooling, max pooling, concatenations, dropouts and fully connected layers. The training of

this network has been done in a thousand classes, meaning it is capable of recognizing a thousand
different objects.

The basic principles governing this network and making it effective compared to other similar

networks are:
 Avoid bottleneck, especially at the beginning of the network.

 High-resolution rendering as it is easier to move locally to a network.

 Implementation of spatial aggregation in small dimensional implants. For example, before

implementing a 3x3 convolution, we can reduce the dimensions of the representation of the

entrance, without having to deal with some serious consequences.

 Balance between the width and depth of the network

The core concept behind this model is the inception module shown in Figure 4-4. Inception module
was firstly introduced in Inception-v1 / GoogLeNet. The input goes through 1×1, 3×3 and 5×5

convolution, as well as max pooling simultaneously and concatenated together as output. The 1×1

Convolutional layers before applying another layer, is used for dimensionality reduction.

The aim of factorizing Convolutional is to reduce the number of connections/parameters without

decreasing the network efficiency. Convolutions with larger spatial filters tend to be computationally

expensive.

38 Related Work

Figure 4-3: (a) Original Inception module (b) 5 × 5 convolution is replaced by two 3 × 3 convolution. [2]

For example, by using 1 layer of 5x5 filter the number of parameters for this layer is 5x5=25 and

using 2 layers of 3x3 filters the number of parameters is 3x3 +3x3 = 18, the number is reduced by

28%.
These suggest that the convolutions with filters larger than 3x3 might not be useful as they can always
be replaced into a sequence of 3x3 convolutional layers. A bigger improvement it would be to use

asymmetric convolutions For example using a 3x1 asymmetric convolutions followed by a 1x3

convolution.

Figure 4-4: (a) Factorization of the n × n convolutions. (b) One 3×1 convolution followed by one 1×3 convolution replaces

one 3×3 convolution. [2]

For example, by using 3×3 filter, the number of parameters is 3×3=9, whereas by using 3×1 and 1×3

filters, the number of parameters is 3×1+1×3=6. If we use two 2×2 filters, the number of parameters is

2×2×2=8, number of parameters is only reduced by 11%.

Related Work 39

Figure 4-5:(a) Inception modules. (b) Auxiliary classifier [2]

The architectures shown in Figure 4-5(a) and Figure 4-6(a) are the 2 different inception modules

suggested by the author. With factorization, number of parameters is reduced for the whole network,

it is less likely to be overfitting.

Auxiliary Classifier are used to push useful gradients to the lower layers in order to make them

immediately useful and improve the convergence during training by combating the vanishing gradient

problem in very deep networks. In GoogLeNet / Inception-v1, auxiliary classifiers are used for having
deeper network. In Inception-v3, auxiliary classifier is used as regularizer. An example is shown in

Figure 4-6 (b) where one auxiliary classifier is used on the top of the last 17×17 layer.

In most cases, convolutional networks use the pooling operation to decrease the grid size of the

feature maps. In [2], an efficient grid size reduction is proposed as follows: with the efficient grid size

reduction, 320 feature maps are done by convolution with stride 2. 320 feature maps are obtained by
max pooling. And these 2 sets of feature maps are concatenated as 640 feature maps and go to the

next level of inception module. With this approach the model is less expensive but still efficient.

 Figure 4-6: Inception module for grid-size reduction. [2]

Inception v3 network stacks 11 inception modules where each module consists of pooling layers and

convolutional filters with rectified linear units as activation function.

All the above modules are combined to create the total inception_v3 model, shown below. The model
has 3 modules like the ones shown in Figure 4-5(a) at the beginning of the model. Then there is a grid

size reduction layer, and after there are again 4 inception modules like in Figure 4-5 (a) followed by

40 Related Work

another grid size reduction module and an auxiliary classifier (shown in Figure 4-8 at the bottom

right). Last, two modules from Figure 4-6(a) are connected to the model and at the end a fully
connected layer with a softmax classifier for the classification task.

 Figure 4-7: Schematic diagram of Inception V3. [46]

4.2 IMAGE CAPTIONING

One of the first approaches in image captioning, using attention, is the one explained in the paper

“Show, Attend and Tell: Neural Image Caption Generation with Visual Attention‟‟ [13]. This

approach utilizes the encoder-decoder architecture with another mechanism in between, the attention
mechanism. This paper, describe approaches to caption generation that attempt to incorporate a form

of attention with two variants: a “hard” attention mechanism and a “soft” attention mechanism. It

shows how we can gain insight and interpret the results of this framework by visualizing “where” and

“what” the attention focused on. Before this work attention was only used for machine translation.

Another state of the art approach is the one described in the “Bottom-Up and Top-Down Attention for

Image Captioning and Visual Question Answering”[14], where our model is based on. The innovation
about this model is that typically, attention models operate on CNN features corresponding to a

uniform grid of equally-sized image regions. In this approach attention is calculated at the level of

objects and other salient image regions. Applying this approach to image captioning, the results on the
MSCOCO test server establish a new state-of-the-art for the task.

For the purpose of this thesis, we also examined other similar implementations like [53], in order to

compare our methods and results .

Our Image Captioning Model 41

 Our Image Captioning Model Chapter 5:

In this chapter we will analyze the neural model we used to produce descriptions of the content of
images. For this we use recurrent and convolutional neural networks to encode the input image into a

vector and use this encoding to decode the desired output sequence. Some examples are shown in

Figure 5.1.

 Figure 5-1: Image Captioning Examples. [47]

5.1 OVERVIEW OF MODEL ARCHITECTURE

The model we developed it is based on sequence to sequence model [9]. Introduced for machine

translation in 2014 by Google, a sequence to sequence model aims to map a fixed length input with a
fixed length output where the length of the input and output may differ. In its general form the model

consists of 3 parts: encoder, intermediate (encoder) vector and decoder.

The Encoder consists of several recurrent units where each accepts a single element of the input

sequence, collects information for that element and propagates it forward. The Encoder Vector is the
final hidden state produced from the encoder part of the model. This vector aims to encapsulate the

information for all input elements in order to help the decoder make accurate predictions a. The

Decoder also consists of several recurrent units where each predicts an output for each time step.
Our approach maintains a similar structure. First, the image enters as an input to the encoder. The

encoder undertakes to extract features from the image and represent them in the form of vectors so

that they can be processed by the next part of the network, the decoder. The decoder receives this
information and tries to express it in natural language. The difference is that our encoder model does

not contain an RNN network. Instead, the encoding of the image is a combination of two pre-trained

models: Inception V3 and Mask-RCNN. More analytically, the encoder consists of a convolutional

network, as those discussed in Chapter 2. These networks are widely used in image detection and
recognition. The object detection has been greatly emphasized and models have been developed, such

as those described here, which perform best compared to other methods.

The decoder is an LSTM network. Words are entered into the network through an Embedding Layer,

coding words into vectors that neural networks can process. These vectors then enter as an input into

the LSTM, which given a word undertakes to predict the next. In contrast to the decoder mentioned
above, our decoder has an attention layer. The attention layer will process different parts of the image

and decide where more emphasis should be placed.

42 Our Image Captioning Model

 Figure 5-2: A high-level block diagram of our model.

In the following sections we will analyze step by step each component of the above model.

5.2 ENCODER

In recent years, the performance of convolutional neural networks in classification problems has risen

steeply due to continued improvements in the field of deep learning, particularly in neural networks.

Most importantly, these improvements have not only been made by the development of hardware and
larger data sets, but also by new ideas and algorithms that improve network architecture. The Encoder

model consists of the following parts:

 A mask R-CNN for detecting important regions from the input image.

 Inception_V3 model for extracting features from the whole image and each region.

 Another dense layer for reducing the size of the feature vector.

 Dropout layers for preventing overfitting.

 Figure 5-3: Encoder model architecture

5.2.1 Mask R-CNN and Inception_V3 in our System

The input image first enters the mask-RCNN model. The purpose of this model is to scan the image

and then detect the different regions of interest containing objects. These objects must belong to the

80 class objects that the model is trained to detect. From the regions that are produced by this model
we keep only the top-4 regions. By top-4 we mean the 4 regions with the highest probabilities to

contain an object that belong to one of the 80 classes mentioned above. After these regions are

produced we use the bounding boxes to crop the initial image at the places suggested by the mask-

RCNN model. Now instead of only one image, we have also another 4 that contain the most
interesting part of it. The reason we choose number four is because we calculated that the mean of the

number of objects in the training images detected is 3.9.

Our Image Captioning Model 43

↓Mask -RCNN

↓keep the 4 regions with higher likelihood

 Figure 5-4: A visual example of how we use the Mask-RCNN model

These regions are then passed through Inception_V3 model for feature extraction. As previously

mentioned, it is the second part of the model where five 299x299x3 images enter, pass through some

processing steps and a feature vector is created for each one of them that contains useful image
characteristics. It is worth noting, that we are not interested in what is contained in the pictures

explicitly, as at this point it is not an image classification problem. What interests us is to get some

important image features that will be promoted to the LSTM. For this reason, we do not take the

output from the last layer of the network where the softmax is located because it will give us a
probabilistic distribution among the thousands of classes it has been trained on. Instead, the output

will result from the third from the end layer, which is a trigger restriction level. From this layer, we

get a tensor of size 1x2048 for each image region and the whole image. So in total 5x2048 feature
vectors are computed.

44 Our Image Captioning Model

5.2.2 Image Embedding

The outputs of the Inception V3, as we have already mentioned, will be the input to the LSTM

network, which is responsible for generating reasonable suggestions for describing images. For this,

we must do some modifications. In order to reduce computational costs and for better data
management, we should change the size of the 5 parts of the images from 2048 to 256. For this

transformation, we will need to add a fully connected layer, as the ones mentioned in Chapter 2,

immediately after producing the feature vectors. We also added a dropout layer to increase the
generalization power of the encoder and prevent overfitting. The output of this layer will be a tensor

of size (batch_size x 5 x 256). Now we have created the encoder vector that will be propagated to the

decoder.

5.3 DECODER

The purpose of this model is to decode the feature vectors, produced by the encoder, into rational
sentences. The decoding of the images and the words goes through the following stages:

 Word Embedding for encoding every word to a vector that can be processed by the neural

network.

 Attention for focusing on specific parts of the input image.

 LSTM for combining all the above to produce a word at each time step.

The full decoder model is shown in the next figure.

 Figure 5-5: Decoder model architecture

5.3.1 Word Embedding

Neural networks, by their nature, are so constructed that they can process only numbers. As a result,

the representation of words as a string is impossible and therefore it is necessary to find a mechanism
that will represent each word with a single vector made up only of numbers.

The first step in the representation process is to determine how many different words our model can

detect, i.e. to create a vocabulary. The set of training data that we have at our disposal, which will be
discussed in more detail in the next chapter, consists of a number of images and their respective

descriptions in character sequences in English. The vocabulary will be produced from all the different

Our Image Captioning Model 45

words that appear in the descriptions of the images of the training dataset. To do this, we first need to

do a Tokenization, in order to divide the sentences into tokens, in the way illustrated below:

<start> two cars parked on the sidewalk on the street <end> →

[<start>, two, cars, parked, on, the, sidewalk, on, the, street, <end>]

Two additional tokens have been added to each sentence. A token <start> that marks the beginning of
the sentence and a token <end> that marks the end and are also included in our vocabulary. We also

added a token <unk> for the words that are in the training sentences but not in our vocabulary and the

<pad> token for the zeros produced by the zero padding. In all, the vocabulary consists of words,
sorted in descending order, based on their frequency of occurrence in the descriptions of the training

dataset.
The next step is to encode words in numbers in a unique way, so that each number that corresponds to

a word is not used to encode any other word. The method followed is the representation of each word
with a number corresponding to the position of that word in the vocabulary. Thus the word „<pad>‟ as

the most common in descriptions is first in the vocabulary and for this it has the number 0.

Correspondingly, „<unk>‟ has the number 1, „a‟ has the number 2, „<start >‟ has the number 3, „<end

>‟ has the number 4 etc. Now each sentence can be represented by a vector of integers as shown

below:

<start> two cars parked on the sidewalk on the street <end> →

[<start>, two, cars, parked, on, the, sidewalk, on, the, street, <end>] →

[3, 16, 204, 68, 5, 7, 193, 5, 7, 25, 4]

Many Natural Language Processing systems and techniques handle words as individual units, without

the concept of similarity between words, as they are represented as indicators in a dictionary, in the

way we have described the process of representation of words so far. Below are some of these
methods and the reasons why we had to reject them.
One way would be to apply the bag of words (BoW). It is called bag of words because in this

approach we only concern about the number of words that appear, not the order in which they appear.
In more detail, after first tokenizing the sentences in individual words and constructing a vocabulary,

we calculate the number of occurrences of each word in the sentence we look at each time as shown in

Figure 5-6. So in the case of the first sentence, where every word is unique, each word that appears

will have the number one, and in the remaining positions it will have zero. Similarly, in the fourth
sentence there are two words that appear twice, is and a. There will be number two.

The bag of words model is used as a tool for generating attributes. After we turn into a bag of words

we can calculate frequency to characterize it.

 Figure 5-6: An example of bag of words model. [49]

We notice that in this case there is no information about the semantics of words, and if two words are

semantically identical.

46 Our Image Captioning Model

Another method would be to apply One-Hot coding. Each word is encoded by a vector as long as the

vocabulary, with zeros in all positions except the position corresponding to that word. We see that in
this case there is no information about the semantics of the words and the resulting vectors are quite

large.

The above methods, although simple, present several problems that come to solve the embedding
vectors. The basic idea of these vectors is to convert words into fixed length vectors, which contain

real numbers. The purpose is to create representations of words whose size will be independent of the

size of the vocabulary and also have a much smaller number of dimensions. This conversion is
necessary as most engineering learning algorithms require inputs to be true value vectors. Two are the

main advantages of using word embedding:

 Dimensionality Reduction. In the case that we would use one-hot encoding for word

representation, each word would be encoded by a vector of numbers of which in positions

would have been zeroes and only in one place there would be 1. That as it is obvious is not

computationally efficient.

 Contextual Similarity. This means that the representation will be in such a way that words

with common semantics should have similar representations.

 Figure 5-7: Semantic similarities using word embedding. [48]

In Figure 5-7, we can see some semantic similarities between words. For example, the word "king"
and the word "queen" will be close enough and will be as far away as the words man and woman.

Also, the words "swimming" and "swam" will be in close proximity, since this model will have

identified the relationship between the two verbs, that is, they are the same verb at another time.

In our model, the dimensions of the embedding vectors were set to 256. This means that each word -

which we refer to as an integer - is represented by a 256 size vector, which contains real values that

express the semantic similarity of that word with some other words. Thus, the set of word depictions
in vectors is implemented by using a two-dimensional array that has dimensions 14369 x 256, where

the number 14369 refers to the number of words in the vocabulary, while 256 is the dimensions of the

embedding vectors.

5.3.2 Attention

Attention mechanism is an architecture that enables a neural network to concentrate on the most

important parts of the image. A neural attention mechanism equips a neural network with the ability to

Our Image Captioning Model 47

focus on a subset of its inputs (or features). Its purpose is to apply the same tactics followed by

people. Human visual attention allows us to focus on a certain region with “high resolution” while
perceiving the surrounding image in “low resolution”, and then adjust the focal point or do the

inference accordingly.

Attention in deep learning can be interpreted as a vector of importance weights: in order to predict or

infer one element, such as a pixel in an image or a word in a sentence, we estimate using the attention
vector how strongly it is correlated with other elements and take the sum of their values weighted by

the attention vector as the approximation of the target.

By utilizing this mechanism, it is possible for the decoder to capture somewhat global information
rather than solely to infer based on one hidden state.

Attention can be applied to any kind of inputs, regardless of their shape. In the case of matrix-valued

inputs, such as images, we can talk about visual attention. The attention mechanism is better
explained in the next algorithm.

The attention model can be represented with the structure shown in Figure 5-8.

 Figure 5-8: Attention Model Structure. [50]

Algorithm 4.1 : attention

1. Given a feature vector C of an image and a previous hidden yi vector

2. Multiply C and yi with weights W1 and W2, respectively
3. Add the results

4. Pass the new vector through a tanh activation function

5. Multiplied the result vector with V weights
6.Then pass this vector from a softmax function

7. Multiply the output of the softmax again with feature vector C

8. Add the results

48 Our Image Captioning Model

The algorithm can be described with the following mathematical equations:

 (5.1)

∑
 (5.2)

 ∑ (5.3)

Where yi is the feature vector, C is the previous hidden state of the LSTM, si the attention weights and

z the context vector.
In our system attention mechanism follows the same structure. The 5x256 feature vector produced by

the image embedding is the input to the attention model, which based on the previous hidden state of

the LSTM, with size 1x512, will determine where it must give the most attention among the input
vectors. The output of this model is a 1x256 context vector and it is concatenated with the embedding

vector of the word at the current time step, producing a vector of size 1x512. This is the input to the

LSTM unit. The attention model has another output, called attention weights. These weights are used
to visualize the attention mechanism on the image.

At this point it is worth mentioning that attention models operate on CNN features corresponding to a

uniform grid of equally-sized image regions, irrespectively of the content of the image. As proposed

by [14] to generate more human-like captions we use a different approach where attention is
calculated at the level of objects, as shown in Figure 5-9, like the ones suggested by the Mask-RCNN

model, as they are a much more natural basis for attention.

Figure 5-9: A typical attention model with a uniform grid of equally-sized image regions (left). Our approach enables

attention to be calculated at the level of objects (right). [14]

An example of what attention does in our model is the following. In the Figure 5-10 below we see
how our model focuses on specific part of the image in order to produce a word at each timestep.

Μore examples are in the appendix section.

Our Image Captioning Model 49

 Figure 5-10: Attention Example

5.3.3 Caption Generator Based on LSTM

In this paragraph we will analyze the most important part of our system, which is the LSTM network,

as those described in the Chapter 3, which is responsible for creating reasonable suggestions for

describing the content of the images. As mentioned in Chapter 3, they not only have a memory, so

there is a continuity between the foregoing and subsequent costs, but they also have the advantage of
dealing effectively with the problem of vanishing and exploding gradients. The LSTM network takes

as input a vector that contains the representation of both the image and a word, represented by an

embedding vector, from the known sentences describing the image during training. For this image, a
word enters at each timestep the LSTM and it outputs the word with the highest probability. Apart

from the embedding vector LSTM takes as input the hidden state of the previous timestep. This

processing is repeated until all words in the sentence describing the image are passed through the
LSTM.

During training we used the teacher forcing method. Teacher forcing works by using the actual or

expected output from the training dataset at the current time step as input in the next time step, rather

than the output generated by the network. This method is used in order to reduce learning errors and
improve the model skill and stability.

The LSTM unit has an input of size (1, 512) and so will have its output. As we have already
mentioned we want to make prediction of a word and for this we need a probabilistic distribution

among all words in the vocabulary in order to choose the one with the highest probability. For this we

added two more fully connected layers at the end of our model. The first one is used in order to make

the model more complex and have more parameters describing the output of the previous layer and
the last one for giving the output the size of our vocabulary in order to predict a specific word. At the

last layer we use a softmax classifier for creating probabilistic distribution among the words in the

vocabulary and then choose the one with the highest probability.

In the figure below we can see an example of how the process of creating a caption works in detail.

The sentence describing the image is “<start> A man is sitting on a chair <end>”. The tokens <start>
and <end> was added by us, as mentioned before. The input sentence, which will be fed into the

LSTM word by word is “<start> A man is sitting on a chair‟‟ and the target sentence that our model

should be trained to predict is “A man is sitting on a chair <end>”. This is due to the fact that our

model must be trained to stop when it meets the <end> token, so there is no need for it to exist in the
input sentence and also the <start> token marks the start of the prediction so there is no need for it to

be in the output.

50 Our Image Captioning Model

 Figure 5-11: An example of how LSTM is used for generating captions

The code used for creating the total model of image captioning can be found here:

https://github.com/NadiaFrh/Diploma_thesis

https://github.com/NadiaFrh/Diploma_thesis

Model Training 51

 Model Training Chapter 6:

In this chapter we will analyze the sources from which we derived our data, algorithms and the
techniques used to train our model, as well as the results presented by our system.

6.1 DATABASE MSCOCO 2015

The set of data on the database of which we have implemented the training functions of the evaluation
and operational control is the MSCOCO 2015 dataset [10]. This is a dataset used for the COCO

competition Captioning 2015. The selection of this particular dataset was due to its large number of

training examples. More specifically, the training dataset included:

 80000 training images

 40000 validation images

 80 categories of common objects

The data, as officially provided by the COCO website, consists of the images that are in JPEG format,
along with their descriptions that are in JSON files. Each image has 5 descriptions. The form in which

descriptions are provided in the JSON file is a collection of “info”, “licenses”, “images”,

“annotations”, “categories” (in most cases), and “segment info” (in one case).

1. {
2. "info": {...},
3. "licenses": [...],
4. "images": [...],
5. "annotations": [...],
6. "categories": [...],
7. "segment_info": [...]
8. }

For the object detection model we used the file instances_train2014.json and instances_val2014.json

for training and validation respectively, which has the above format. From this file for the object

detection model we needed only the “categories” and “annotations” object.

1. "categories": [
2. {
3. "supercategory": "person",
4. "id": 1,
5. "name": "person",
6. "keypoints": [
7. "nose","left_eye","right_eye","left_ear","right_ear",
8. "left_shoulder","right_shoulder","left_elbow","right_elbow",
9. "left_wrist","right_wrist","left_hip","right_hip",
10. "left_knee","right_knee","left_ankle","right_ankle"
11.],
12. "skeleton": [
13. [16,14],[14,12],[17,15],[15,13],[12,13],[6,12],[7,13],[6,7],
14. [6,8],[7,9],[8,10],[9,11],[2,3],[1,2],[1,3],[2,4],[3,5],[4,6],[5,7]
15.]
16. }
17.]

52 Model Training

There are 80 different categories contained in the dataset plus the one category given by the Mask-

RCNN for the background:

1. Class Count: 81
2. {0.BG 1.person 2.bicycle 3.car 4.motorcycle 5.airplane
3. 6.bus 7.train 8.truck 9.boat 10.traffic light

4. 11.fire hydrant 12.stop sign 13.parking meter 14.bench 15.bird
5. 16.cat 17.dog 18.horse 19.sheep 20.cow

6. 21.elephant 22.bear 23.zebra 24.giraffe 25.backpack
7. 26.umbrella 27.handbag 28.tie 29.suitcase 30.frisbee

8. 31.skis 32.snowboard 33.sports ball 34.kite 35. baseball bat
9. 36.baseball glove 37.skateboard 38.surfboard 39.tennis racket 40.bottle

10. 41.wine glass 42.cup 43.fork 44.knife 45.spoon
11. 46.bowl 47.banana 48.apple 49.sandwich 50.orange

12. 51.broccoli 52.carrot 53.hot dog 54.pizza 55.donut
13. 56.cake 57.chair 58.couch 59.potted plant 60.bed

14. 61.dining table 62.toilet 63.tv 64.laptop 65.mouse
15. 66.remote 67.keyboard 68.cell phone 69.microwave 70.oven

16. 71.toaster 72.sink 73.refrigerator 74.book 75.clock
17. 76.vase 77.scissors 78.teddy bear 79.hair drier 80.toothbrush
18. }

The annotations object contains the following objects:

1. Segmentations : are regions of interest which are usually a list of polygon vertices around the

object.

2. is_Crowd : specifies if there is a single object or a group of objects.

3. image_id : a specific image in the dataset.

4. category_id : a single category specified in the categories section.

1. "annotations": [
2. {
3. "segmentation": [[510.66,423.01,511.72,420.03,...,510.45,423.01]],
4. "area": 702.1057499999998,
5. "iscrowd": 0,
6. "image_id": 289343,
7. "bbox": [473.07,395.93,38.65,28.67],
8. "category_id": 18,
9. "id": 1768
10. },
11. ...
12. {
13. "segmentation": {
14. "counts": [179,27,392,41,…,55,20],
15. "size": [426,640]
16. },
17. "area": 220834,
18. "iscrowd": 1,
19. "image_id": 250282,
20. "bbox": [0,34,639,388],
21. "category_id": 1,
22. "id": 900100250282
23.]

Model Training 53

For training our captioning model we used the files annotations_train2014.json and annotations
_val2014.json and it is only the annotations object as shown below. There is all the information

needed for the captioning process. For each image there is an identifier called “image_id”, which is

unique for every one of them in our dataset, an identifier “id” which is the identification number of

the caption and the identifier “caption” which is the description of the image. The following is an
example of the format of this file:

1. "annotations": [
2. {
3. "image_id": 289343,
4. "id": 433580,
5. "caption": "A person riding a very tall bike in the street."
6. },
7. ...
8. {
9. "image_id": 250282,
10. "id": 511309,
11. "caption": "A group of school children posing for a picture. "
12. },
13.]

6.2 MODEL TRAINING

In this section we will deal with the process of training our system, analyzing the exact algorithm used

for training, but also the choice of hyperparameters we have done so to optimize this process.

6.2.1 Training Variables

Having described all the components of the system we implemented, it's time to see which of these

pieces were parts of the whole system training. The challenges of designing and selecting the training
variables we faced during the creation of our system were several and they had to do mainly

with the problem of overfitting. Nevertheless, we applied techniques that were capable of dealing with

this problem.

First of all, the most obvious way to deal with this problem was to initialize the weights of our
Inception V3 Neural Network, with weights of an already trained model into quite large datasets, such

as ImageNet, which is capable of identifying and categorizing objects that are in pictures. We applied

it to all our examples and it helped quite a lot, mainly in the field of generalization. This means that
the weights of Inception V3 were initialized with pre-trained weights and did not change at all during

the training process. On the contrary, the weights of the fully connected layer after the inception

model took part in the training process and so were all the parts of the decoder model coming after.
More specifically, the attention mechanism needed to adjust its weights during the training in order to

learn where are the most important features in the input images in relation to the expected output.

Even though there are pre-trained models capable of representing millions words with fixed length

vectors, such as word2vec or glove, we observed that the use of such a model did not show any
improvement, and therefore for simplicity reasons, it was preferred not to include them in our system,

but to train the weights of embedding layer normally. Finally, the weights of the two fully connected

layers, which are at the output of the model and at the input of the Softmax classifier after LSTM,
were variables that needed training, as it did, of course, the weights of LSTM network.

At this point we must mention that Mask-RCNN model was initialized with pre-trained weights as

well but then it was fine-tuned using COCO dataset.

In summary, the weights that were trained were the following:

 Mask-RCNN model in order to be fine-tuned with our model.

54 Model Training

 The weights of the fully connected layer, which is at its output Inception_V3 network and

matches the dimensions of the table it contains image features from 2048 to 256.

 The weights of the attention model, which decide what part of the input image are the most

important.

 The weights of the word embedding matrix in fixed length vectors 256, which converts words

into real value vectors.

 The weights of the LSTM network, with size 512, which is responsible for making proposals

descriptions of pictures.

 The weights of the fully connected layers, located between the LSTM and the Softmax

classifier, which corresponds the 512 dimensions output of LSTM, firstly at size 512 and then

at the size of the vocabulary.

6.2.2 Training Algorithm

The general purpose of our system is to train the LSTM network so that it can predict every word of a

sentence describing a picture, having first seen the picture as well as all the previous words which are
represented by the embedding vectors. Attention model has a very important role to this, because of

its ability to focus on the most important parts of an image and as a result it can help the LSTM to

make more accurate predictions. The input of the LSTM is a combination of the context vector

produced by the attention model and a word. At each timestep a word from the training sentences
enters the embedding layer and a new one is produced. In more detail the train process of our model

given an input image I and the training caption S = (S0,...,SN) is:

 , = 1, … , , corresponding to n different objects in an image (6.1)

 , (6.2)

 , t ∈ (6.3)

 , (6.4)
 , (6.5)
 (6.6)

The image I first enters the mask-RCNN where n objects are created. These objects are then passed

through a CNN, in this thesis an Inception_V3 model, for feature extraction and the attention

mechanism uses these features to produce the context vector zt, where t is the timestep. Each word is

represented with an embedding vector We . Then the whole model is trained to minimizing the cost
function as follows

But let's look at the steps that are performed in a more detail.

Model Training 55

6.2.3 Hyperparameter Selection

In order for our system to produce the best possible results, it should be trainedin the best possible

way. For this to happen, an important role in system training plays the right choice of
hyperparameters. In order to come up with the specific choices we will present later, we had to try

different values, search for values used in corresponding systems and have shown satisfactory results.

Thus, the values of the hyperparameter we ended up using are:

 The number of images that will be processed simultaneously by our system (batch size) is

equal to 64.

 As an optimizer of our training, we chose Adam.

 As already mentioned, the number of LSTM network units as 512

 The output dimensions of the embedding table were 256.

 The learning rate of our system in the first stage started at 0.001 and gradually reached almost

zero using a decreasing function.

 Since our training data set consisted of 80000 images with their descriptions, the epochs in

which they were trained our system was about 20.

Algorithm 6.1 Training of the total model

1. Given an input image I, pass it through Mask-RCNN and get the top 4 regions of interest.

2. Combine these 4 images with the total image and pass them through the Inception_V3

model. Get a feature vector for each of the 5 images.

3. Promote the Inception_V3 outputs to the fully connected layer in order to transform the

dimensions of the images feature vector.

4. Repeat, until a complete sentence for the description of image I is produced:

a. If t=0:

 Initialize the hidden state that passes to both LSTM and attention at zero

Else:

 Use the previous hidden state

b. Pass the feature vectors as well as the hidden state of the LSTM into the attention

model and create a context vector.

c. Pass one word through the embedding layer.

d. Concatenate the output of the attention and the embedding layer.

e. Use the new vector as input to the LSTM unit.

f. Pass the output of the LSTM through two fully connected layers and make a

prediction for a word.

g. Calculate the value of the loss function L(I, S) between the probability provided

by the LSTM network and the actual word.

h. Through the technique of error backpropagation and with the help of the Adam

Optimizer update the values of the trained variables, so they make a more accurate

prediction next time.

56 Model Training

Table 6-1: The hyperparameters used in our model.

During the inference, there are several techniques that can be used to create captions. The first and

most common technique is Sampling, where we chose the word with higher probability and then we

input this word to the embedding layer at the next step and the process continues until we meet the
<end> token or the proposal reaches a maximum length that we have set. The second technique is

called Beam Search. In this method, we consider the set of k better propositions as candidates to

create proposals and we only hold the k better. In our implementation we used the sampling method.

6.3 METRICS

To evaluate our system we used four of the most common metrics used for image captioning. Those

metrics are BLEU [11], ROUGE-L[21] and METEOR [17] which were originally created for
evaluating machine translation. We also used CIDEr [16] that is the only metric created specifically

for image caption. In the next section we will analyse in detail how those metrics work.

6.3.1 BLEU

BLEU or Bilingual Evaluation Understudy[11] is an algorithm for evaluating the quality of text which

has been machine-translated from one natural language to another. First we count the number of
matches between n-grams of candidate and reference sentences and then we divide by the total

number of n-grams in the candidate sentences.

The precision score is pn is then calculated:

∑ ∑

∑ ∑
 (6.1)

Then a penalty is computed for short candidate sentences:

 {

 (6.2)

Where c is the length of the candidate and r is the length of the reference

The cumulative scores are produced by calculation individual n-gram scores at all orders from 1 to n
and weighting them by calculating the weighted geometric mean.

 ∑

 (6.3)

Hyperparameter Value

Learning rate 0.001

Batch size 64

Epochs 20

Dropout rate 0.3

Attention size 256

Embedding size 256

LSTM size 512

Model Training 57

Where wn are positive weights summing to one

6.3.2 ROUGE

ROUGE or Recall-Oriented Understudy for Gisting Evaluation [21] finds the common subsequences
(LCS) between the reference and candidate sentences and calculates the recall and precision:

 (6.4)

 (6.5)

Then uses this values to compute the term β = Plcs/Rlcs and the final score:

 (6.6)

6.3.3 METEOR

Metric for Evaluation of Translation with Explicit Ordering[17] is a metric for the evaluation of

machine translation output. Given a pair of translations, METEOR creates an alignment between the

two strings by mapping unigrams, such that every unigram in each string maps to zero or one unigram
in the other string, and to no unigrams in the same string. Once a final alignment has been produced

the Meteor score for this pairing is computed by calculate unigram precision P = m/t and unigram

recall R = m/r where:

m: unigrams found between the reference and candidate
t: total number of unigrams in the candidate

r: total number of unigrams in the reference

We then compute the harmonic mean of P and R:

 (6.7)

METEOR, also, computes a penalty for a given alignment as follows:

 (6.8)

Chunks are the unigrams in adjacent positions in the candidate that are also mapped to unigrams that

are in adjacent positions in the reference. Finally, the METEOR Score is computed as follows:

 (6.9)

6.3.4 CIDEr

Consensus-based Image Description Evaluation[16] is used to evaluate how well a candidate sentence
ci matches a descriptions Si = {si1, . . . , sim} of an image. This metric is the only one that uses the

stems of the words. It produces the score by calculating the TF-IDF score, calculating the frequency

an n-gram occurs in the reference sentence and uses a penalty for n-grams that commonly occur

across all images in the dataset.:

 ()
 ()

∑ ()

| |

∑ ∑ ()
 (6.10)

58 Model Training

where :
Ω is the vocabulary of all n-grams

hk(sij) a reference sentence sij

hk(ci) a candidate sentence ci

I the set of all images in the dataset.
Then we compute the average cosine similarity between the candidate sentence and the reference

sentences:

∑

|| || ||
 ()||

 (6.11)

Where:

 g
n
(ci) is a vector corresponding to all n-grams of length n

||g
n
(ci)|| is the magnitude of the vector g

n
(ci).

Similarly we compute for g
n
(sij).

At the last step we combine the scores from n-grams as follows:

 ∑

 (6.12)

The authors of the paper propose to use uniform weights wn = 1/N as they produce the best results.

Results 59

 Results Chapter 7:

In the previous chapter we explained in detail how the model we created worked. In this chapter we
will analyse the COCO dataset that it was used, at the first step, for training our system and then for

evaluation using the metrics BLEU, METEOR, ROUGE-L and CIDEr, described in the next section.

Our baseline model is the one proposed in [29]. In this approach the image is divided into 64 parts of
the same size and shape. Attention is then split among these 64 parts and a caption is produced with

help of an LSTM.

In the table below we present our results compared to the baseline model.

 Table 7-1: Evaluation Results

Our approach is an improvement compared to the baseline and we observe a significant increase at the

value of each metric. As we can see from the table 6-2 the increase is 14.1 for BLEU-1, 13.1 for

BLEU-2, 11.2 for BLEU-3, 8.7 for BLEU-4,13.2 for METEOR, 20.1 for CIDer and 6.4 for

ROUGE-L.

We present the captions with the highest Bleu_4 score:

Score: 0.999

Caption: A baseball player swinging a bat at a ball.

Score: 0.999

Caption: A group of people standing around a table.

Metric Our Model Baseline

BLEU-1 65.9 51.8

BLEU-2 44.1 31.0

BLEU-3 29.1 17.9

BLEU-4 19.1 10.4

METEOR 24.5 11.3

CIDer 54.6 34.5

ROUGE-L 51.0 44.6

60 Results

Score: 0.967

Caption: A man is playing tennis on a tennis court.

Score: 0.919

Caption: A fire truck driving down a street.

Score: 0.863

Caption: A herd of sheep grazing in a field.

Score: 0.84

Caption: A group of people standing on a beach.

Score: 0.819

Caption: A man riding a wave on a surfboard.

Results 61

Score: 0.817

Caption: A group of people sitting at a table.

Score: 0.813

Caption: A group of zebras are standing in a field.

Score: 0.813

Caption: A clock tower with a clock on it.

7.1.1 Qualitative Examples and Discussion

So far, we evaluated our models using the automatic metrics, but the metrics are only approximate in

judging the correctness of the captions. In the previous section we saw some sample captions
generated by our model on images from the validation set. It is obvious that the generated captions are

often fairly accurate, but still sometimes contain errors.
One of the errors which still persist is in counting, where the captions tend to get the number of

objects wrong and in some cases it repeats the words referring to objects instead of using numerals.
This can be seen in the Figure 7-1, where, even though the caption accurately describes the image, it

produces two times the word „clock‟ because it was two times located in the picture by the image

detection model, or in the second picture where it understood that the picture contained a lot of wine
glasses but it output two times the phrase „wine glasses‟.

62 Results

 Figure 7-1 : Examples of how our model fails to get the number of objects in an image.

Another important error in the function of our model is that, even though it was trained to recognize

almost 14300 words, the number of words in the vocabulary, during the testing process we calculated

that it was able to produce only 837. This is a problem occurring in most cases of similar problem,
even in the state of the art approaches, due to the fact that the model is removing secondary

information during the processing of the image. This problem becomes apparent due to the small

length of the predicted captions but also from the repeating of the same degraded n-gram distribution.

Some examples are shown in the next figure. We can see that for pictures with similar content the
model produces almost the same caption.

Results 63

 Figure 7-2: Examples of how the small variety of words produced by our model affects the captions

Of courses some of the errors occur because the model produces captions based on similar examples

in the training set. For example, our model has trouble distinguishing between laptops and computers.

This happens due to the fact that in the dataset there more pictures featuring laptops than computers.
In Figure 6-3 we can see that our model either ignores completely the computer in the image or

confuses it with a laptop.

64 Results

 Figure 7-3: An example of our model being biased.

Here we present in detail the output of our model, both the word produced in each timestep and the

regions in the image where attention was given in order to produce that specific word. The following

are some of the successful results:

Results 65

66 Results

Results 67

68 Results

Results 69

Of courses there where some images where the caption didn‟t accurately describe their content:

70 Results

Results 71

Now we present the output of our model not from using COCO dataset, but from images taken by us

inside the Technical University of Crete:

72 Results

Results 73

74 Epilogue

 Epilogue Chapter 8:

8.1 SUMMARY AND CONCLUSIONS

In this diploma thesis, we presented a system of neural networks which can automatically see an

image and create a rational description of it in English language. Our system is based on a
convolutional neural network which encodes the input image in a representation of a fixed-length

vector, then followed by a recurrent neural network, responsible for creating the corresponding

description of the image. The model was trained so as to maximize the likelihood of producing a

rational description for a given image.
In Chapter 1 we discussed the source of inspiration behind neural networks, some of their wide

variety of use, the characteristics that makes them very useful and efficient but also some of problems

resulting from their use.
In Chapter 2 we studied in detail the structure and the function of both single and multilayer networks

and how the training algorithms, like backpropagation can modify the network in a way that

generalizes and makes reasonable prediction for every unknown input.

In Chapter 3 the thesis focuses on some specific networks like Recurrent Neural Networks and
Convolutional Neural Networks and how they work in detail.

In Chapter 4 we discussed the evolution of object detection, image classification and image captioning

in general and some of the pre-trained model we used and was the inspiration behind our system.
Chapter 5 is the most important of this thesis. We discussed the model we developed, the idea behind

every layer we added and how are all these combined to achieve our goal.

In Chapter 6 we analyzed the training dataset and how it was used for the purpose of our model. We
also described the training method and the final results during testing.

The purpose of this thesis was to study and implement some of the state of the art mechanisms

developed in computer vision and Natural Language Processing. This includes models like Mask-
RCNN and Inception_V3, which are state of the art in terms of object detection and image

classification respectively, and mechanisms like attention which, as we concluded, gave a significant

improvement to our results. Another very important aspect of our approach is the fact that attention is
calculated at the level of objects and not in a uniform grid of equally-sized image regions as most

similar approaches suggest [13].

8.2 FUTURE WORK

In any machine learning problem it is necessary to present the scope for improvement of our approach

as well as future issues related to this particular problem. As it makes sense, there are many ways in
which one can improve the results and one of them is training. When a network is as deep as

Inception-v3, then we are given the opportunity to train it with more and more data while of course

requiring more training iterations and therefore more time. So, simply by a large amount of data, as
long as the network will be trained to more features, it will succeed and be accurate to random

images.

Another key change that can lead to greater accuracy is the change in the CNN we are training.

Inception-v3 is a state-of-the-art CNN, but other CNNs are published, either new or improved
versions of Inception, such as Inception-v4 and Inception-ResNet. The comparison of these networks

with Inception-v3 is presented in [18]. Also, the same can be applied to the object detection model we

used. Other approaches like the YOLO [20] have very satisfying results and it could be an
improvement after being trained with our dataset.

One idea that can be implemented is to produce expressions using the Bidirectional Recurrent Neural

Networks (BRNN) according to [19] instead of using simple LSTM units. Bidirectional Recurrent

Epilogue 75

Neural Networks connect two hidden layers of opposite directions to the same output. With this form

of generative deep learning, the output layer can get information from past (backwards) and future
(forward) states simultaneously.

Another method proven to improve the performance of an NLP problem is beam search algorithm.

Instead of greedily choosing the most likely next step as the sequence is constructed, the beam search

expands all possible next steps and keeps the k most likely, where k is a user-specified parameter and
controls the number of beams or parallel searches through the sequence of probabilities.

Finally, it is very common in cases of transfer learning, for the pre-trained models to be fine-tuned.

This refers to the process of training some of the layers of pre-trained models that were frozen during
training, so that the model can adjust better to the specific problem.

76 References

References

[1] Saad ALBAWI , Tareq Abed MOHAMMED, Saad AL-ZAWI Understanding of a

Convolutional Neural Network, The International Conference on Engineering and

Technology 2017, At Antalya, Turkey

[2] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, Zbigniew Wojna

Rethinking the Inception Architecture for Computer Vision 2015 arXiv:1512.00567v3 2015

[3] https://folk.idi.ntnu.no/keithd/classes/advai/lectures/backprop.pdf

[4] George Saon, Hagen Soltau, Ahmad Emami, Michael Picheny Unfolded Recurrent Neural

Networks for Speech Recognition, IBM T. J. Watson Research Center, Yorktown Heights,

NY, 10598 2014

[5] Tianyi Liu, Shuangsang Fang, Yuehui Zhao, Peng Wang, Jun Zhang Implementation of

Training Convolutional Neural NetworksUniversity of Chinese Academy of Sciences,

Beijing, China I

[6] Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton ImageNet Classification with Deep

Convolutional Neural Networks

[7] Yann LeCun, Leon Bottou, Yoshua Bengio, Patrick Haffner Gradient-Based Learning

Applied to Document Recognition Proc. Of the IEEE, November

[8] Kaiming He, Georgia Gkioxari, Piotr Dollar, Ross Girshick Facebook AI Research

(FAIR) Mask R-CNN arXiv:1703.06870v3, 2018

[9] Ilya Sutskever, Oriol Vinyals, Quoc V. Le Sequence to Sequence Learning with Neural

Networks arXiv:1409.3215v3 2014

[10] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James

Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, Piotr Dollar Microsoft COCO:

Common Objects in Context arXiv:1405.0312v3 2015

[11] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu IBM T. J. Watson

Research Center Yorktown Heights BLEU: a Method for Automatic Evaluation of Machine

Translation Proceedings of the 40th Annual Meeting of the Association for Computational

Linguistics (ACL), Philadelphia, July 2002, pp. 311-318.

[12] Karen Simonyan, Andrew Zisserman Visual Geometry Group, Department of

Engineering Science, University of Oxford VERY DEEP CONVOLUTIONAL NETWORKS

FOR LARGE-SCALE IMAGE RECOGNITION arXiv:1409.1556v6 2015

[13] Kelvin Xu, Jimmy Lei Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan

Salakhutdinov, Richard S. Zemel, Yoshua Bengio Show, Attend and Tell: Neural Image

Caption Generation with Visual Attention arXiv:1502.03044v3 2016

https://folk.idi.ntnu.no/keithd/classes/advai/lectures/backprop.pdf

References 77

[14] Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney, Mark Johnson, Stephen

Gould1 Lei Zhang Bottom-Up and Top-Down Attention for Image Captioning and Visual

Question Answering arXiv:1707.07998v3 2018

[15] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun Faster R-CNN: Towards Real-

Time Object Detection with Region Proposal Networks arXiv:1506.01497v3 2016

[16] Ramakrishna Vedantam, C. Lawrence Zitnick, Devi Parikh CIDEr: Consensus-based

Image Description Evaluation arXiv:1411.5726v2 2015

[17] Satanjeev Banerjee, Alon Lavie METEOR: An Automatic Metric for MT Evaluation

with Improved Correlation with Human Judgments

[18] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alex Alemi. «Inceptionv4,

inception-resnet and the impact of residual connections on learning». arXiv:1602.07261

(2016).

[19] Andrej Karpathy and Li Fei-Fei. «Deep visual-semantic alignments for generating image

descriptions». In: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition. 2015.

[20] Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi You Only Look Once:

Unified, Real-Time Object Detection arXiv:1506.02640v5 2016

[21] Lin, C.-Y. (2004). Rouge: A package for automatic evaluation of summaries. Text

summarization branches out: Proceedings of the ACL-04 workshop.

[22] Diederik P. Kingma and Jimmy Lei Ba A method for stochastic optimization. CoRR,

arXiv:1412.6980v9 2017

[23] John Duchi, Elad Hazan, Yoram Singer , Adaptive Subgradient Methods for Online

Learning and Stochastic Optimization , Journal of Machine Learning Research 12 (2011)

[24] Matthew D. Zeiler, ADADELTA: AN ADAPTIVE LEARNING RATE METHOD,

arXiv:1212.5701v1 2012

[25] Alex Graves Department of Computer Science University of Toronto, Generating

Sequences With Recurrent Neural Networks arXiv:1308.0850v5 2014

[26]
https://www.tutorialspoint.com/artificial_neural_network/artificial_neural_network_supervised_learni

ng.htm

[27] Alex Sherstinsky, Fundamentals of Recurrent Neural Network (RNN) and Long Short-

Term Memory (LSTM) Network, arXiv:1808.03314v4 2018

[28] Klaus Greff, Rupesh K. Srivastava, Jan Koutn´ık, Bas R. Steunebrink, Jurgen

Schmidhuber LSTM: A Search Space Odyssey arXiv:1503.04069v2 2017

[29] https://www.tensorflow.org/tutorials/text/image_captioning

https://www.tutorialspoint.com/artificial_neural_network/artificial_neural_network_supervised_learning.htm
https://www.tutorialspoint.com/artificial_neural_network/artificial_neural_network_supervised_learning.htm
https://www.tensorflow.org/tutorials/text/image_captioning

78 References

[30] https://towardsdatascience.com/derivative-of-the-sigmoid-function-536880cf918e

[31] https://towardsdatascience.com/why-data-should-be-normalized-before-training-a-

neural-network-c626b7f66c7d

[32] https://www.researchgate.net/figure/5-Activation-functions-in-comparison-Red-curves-

stand-for-respectively-sigmoid_fig10_317679065

[33] https://commons.wikimedia.org/wiki/File:Single-Layer_Neural_Network-Vector-

Blank.svg

[34] https://stats.stackexchange.com/questions/182734/what-is-the-difference-between-a-

neural-network-and-a-deep-neural-network-and-w

[35] https://www.sciencedirect.com/science/article/pii/S088523081400093X#fig0010

[36] https://hackernoon.com/gradient-descent-aynk-7cbe95a778da

[38] https://medium.com/ai-journal/lstm-gru-recurrent-neural-networks-81fe2bcdf1f9

[39] https://wiki.tum.de/display/lfdv/Recurrent+Neural+Networks+-

+Combination+of+RNN+and+CNN?focusedCommentId=25007595

[40] https://skymind.ai/wiki/lstm

[41] https://hackernoon.com/understanding-architecture-of-lstm-cell-from-scratch-with-code-

8da40f0b71f4

[42] https://www.researchgate.net/figure/A-three-dimensional-RGB-matrix-Each-layer-of-

the-matrix-is-a-two-dimensional-matrix_fig6_267210444

[43] https://medium.com/@alittlepain833/simple-understanding-of-mask-rcnn-134b5b330e95

[44] https://engineering.matterport.com/splash-of-color-instance-segmentation-with-mask-r-

cnn-and-tensorflow-7c761e238b46

[45] https://modelzoo.co/model/mask-r-cnn-keras

[46] https://sefiks.com/2017/12/10/transfer-learning-in-keras-using-inception-v3/

[47] https://towardsdatascience.com/image-captioning-in-deep-learning-9cd23fb4d8d2

[48] https://towardsdatascience.com/deep-learning-4-embedding-layers-f9a02d55ac12

[49] https://www.oreilly.com/library/view/feature-engineering-for/9781491953235/ch04.html

[50] https://lab.heuritech.com/attention-mechanism

[51] https://towardsdatascience.com/the-differences-between-artificial-and-biological-neural-

networks-a8b46db828b7

https://towardsdatascience.com/derivative-of-the-sigmoid-function-536880cf918e
https://towardsdatascience.com/why-data-should-be-normalized-before-training-a-neural-network-c626b7f66c7d
https://towardsdatascience.com/why-data-should-be-normalized-before-training-a-neural-network-c626b7f66c7d
https://www.researchgate.net/figure/5-Activation-functions-in-comparison-Red-curves-stand-for-respectively-sigmoid_fig10_317679065
https://www.researchgate.net/figure/5-Activation-functions-in-comparison-Red-curves-stand-for-respectively-sigmoid_fig10_317679065
https://commons.wikimedia.org/wiki/File:Single-Layer_Neural_Network-Vector-Blank.svg
https://commons.wikimedia.org/wiki/File:Single-Layer_Neural_Network-Vector-Blank.svg
https://stats.stackexchange.com/questions/182734/what-is-the-difference-between-a-neural-network-and-a-deep-neural-network-and-w
https://stats.stackexchange.com/questions/182734/what-is-the-difference-between-a-neural-network-and-a-deep-neural-network-and-w
https://www.sciencedirect.com/science/article/pii/S088523081400093X#fig0010
https://hackernoon.com/gradient-descent-aynk-7cbe95a778da
https://medium.com/ai-journal/lstm-gru-recurrent-neural-networks-81fe2bcdf1f9
https://wiki.tum.de/display/lfdv/Recurrent+Neural+Networks+-+Combination+of+RNN+and+CNN?focusedCommentId=25007595
https://wiki.tum.de/display/lfdv/Recurrent+Neural+Networks+-+Combination+of+RNN+and+CNN?focusedCommentId=25007595
https://skymind.ai/wiki/lstm
https://hackernoon.com/understanding-architecture-of-lstm-cell-from-scratch-with-code-8da40f0b71f4
https://hackernoon.com/understanding-architecture-of-lstm-cell-from-scratch-with-code-8da40f0b71f4
https://www.researchgate.net/figure/A-three-dimensional-RGB-matrix-Each-layer-of-the-matrix-is-a-two-dimensional-matrix_fig6_267210444
https://www.researchgate.net/figure/A-three-dimensional-RGB-matrix-Each-layer-of-the-matrix-is-a-two-dimensional-matrix_fig6_267210444
https://medium.com/@alittlepain833/simple-understanding-of-mask-rcnn-134b5b330e95
https://engineering.matterport.com/splash-of-color-instance-segmentation-with-mask-r-cnn-and-tensorflow-7c761e238b46
https://engineering.matterport.com/splash-of-color-instance-segmentation-with-mask-r-cnn-and-tensorflow-7c761e238b46
https://modelzoo.co/model/mask-r-cnn-keras
https://sefiks.com/2017/12/10/transfer-learning-in-keras-using-inception-v3/
https://towardsdatascience.com/image-captioning-in-deep-learning-9cd23fb4d8d2
https://towardsdatascience.com/deep-learning-4-embedding-layers-f9a02d55ac12
https://www.oreilly.com/library/view/feature-engineering-for/9781491953235/ch04.html
https://lab.heuritech.com/attention-mechanism
https://towardsdatascience.com/the-differences-between-artificial-and-biological-neural-networks-a8b46db828b7
https://towardsdatascience.com/the-differences-between-artificial-and-biological-neural-networks-a8b46db828b7

References 79

[52] http://uc-r.github.io/ann_fundamentals

[53] Nikolaos Panagiaris. "Natural Language Description of Images : A Qualitative

Analysis.", Master's Thesis, Department of Informatics, University of Piraeus, October 2018.

http://uc-r.github.io/ann_fundamentals

