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Abstract 

Image captioning is a complex problem that combines the fields of computer vision 

and natural language processing. It generates natural language sentences that describe the 

content of an image. Image captioning has several applications in the real world with 
significant practical impact, from assisting users with visual impairments to personal 

assistants through human-robot interaction. 

The progress in image captioning is a major success of Artificial Intelligence. It has 
been reported that under some metrics, such as BLUE or CIDEr, the most up-to-date 

techniques even outperform human performance. 

In this thesis, we implement and present a model based on machine learning 

techniques that combines the latest developments in computer vision and machine translation 
that can be used to create natural sentences that describe an image. Specifically, a 

combination of Convolutional Neural Networks together with Recurrent Neural Networks 

was used to obtain the desired results. The models were trained to maximize the likelihood 
of a target description given the training image. 

Experiments on a huge set of training data, such as the MSCOCO 2015 used in this 

thesis, demonstrate the accuracy of the model and the fluency of the language that is 

acquired through the image descriptions alone. It has been tested qualitatively and 
quantitatively that the model is often quite accurate. 
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Περίληψη 

Ο ππνηηηιηζκόο εηθόλαο είλαη έλα πνιύπινθν πξόβιεκα πνπ ζπλδπάδεη ηνλ ηνκέα 

ηεο κεραληθήο όξαζεο θαη ηεο επεμεξγαζίαο θπζηθήο γιώζζαο. Σηνρεπεη ζηελ παξαγσγή 

πξνηάζεσλ ζε θπζηθή γιώζζα πνπ πεξηγξάθνπλ ην πεξηερόκελν θάπνηαο εηθόλαο. Ο 
ππνηηηιηζκόο εηθόλαο έρεη αξθεηέο εθαξκνγέο ζηνλ πξαγκαηηθό θόζκν κε ζεκαληηθό 

πξαθηηθό αληίθηππν, από ηελ παξνρή βνήζεηαο ζε ρξήζηεο κε πξνβιήκαηα όξαζεο έσο 

πξνζσπηθνύο βνεζνύο κέζσ ηεο αιιειεπίδξαζεο αλζξώπνπ-ξνκπόη. 
Η πξόνδνο ζηνλ ππνηηηιηζκό εηθόλαο είλαη κηα ζεκαληηθή επηηπρία ηεο Τερλεηήο 

Ννεκνζύλεο. Έρεη αλαθεξζεί όηη ππν νξηζκέλεο κεηξηθέο, όπσο ην BLUE ή ην CIDEr, νη πην 

ζύγρξνλεο ηερληθέο μεπεξλνύλ αθόκα θαη ηηο αλζξώπηλεο επηδόζεηο. 

Σε απηή ηε δηπισκαηηθή εξγαζία, πινπνηνύκε θαη παξνπζηάδνπκε έλα κνληέιν 
βαζηζκέλν ζε ηερληθέο κεραληθήο κάζεζεο πνπ ζπλδπάδεη ηηο πην ζύγρξνλεο εμειίμεηο ζηελ 

κεραληθή όξαζε θαη ηε κεραληθή κεηάθξαζε θαη πνπ κπνξεί λα ρξεζηκνπνηεζεί γηα ηε 

δεκηνπξγία θπζηθώλ πξνηαζεσλ πνπ πεξηγξάθνπλ κηα εηθόλα. Σπγθεθξηκέλα, 
ρξεζηκνπνηήζεθε έλαο ζπλδπαζκόο ζπλειηθηηθώλ λεπξσληθώλ δηθηύσλ καδί κε 

αλαηξνθνδνύκελα λεπξσληθά δίθηπα γηα ηελ απόθηεζε ησλ επηζπκεηώλ απνηειέζκαησλ. Τα 

κνληέια εθπαηδεύηεθαλ έηζη ώζηε λα κεγηζηνπνηνύλ ηελ πηζαλόηεηα πεξηγξαθήο ζηόρνπ 

δεδνκέλεο ηεο εηθόλαο εθπαίδεπζεο. 
Πεηξάκαηα ζε έλα πνιύ κεγάιν ζύλνιν δεδνκέλσλ εθπαίδεπζεο, όπσο ην MSCOCO 

πνπ ρξεζηκνπνηήζεθε ζε απηή ηε δηπισκαηηθή, δείρλνπλ ηελ αθξίβεηα ηνπ κνληέινπ θαη ηελ 

επρέξεηα πνπ απνθηά ε γιώζζα απνθιεηζηηθά κέζα από ηηο πεξηγξαθέο ησλ εηθόλσλ. Τν 
κνληέιν, ην νπνίν ειέγζεθε πνηνηηθά θαη πνζνηηθά, είλαη ζπρλά αξθεηά αθξηβέο. 

 

 

 

 

 

 

 

 

 

 

 

 



iv  

Acknowledgements 

At this point, I would like to thank my supervisor, Mr. Michail Lagoudakis and the rest of 

my committee Mr. Dionisios Pnevmatikatos and Mr. Michael Zervakis for the opportunity 

they gave me to prepare my diploma thesis, and the confidence they showed from the 
beginning at my work and myself. Then, I have to thank Mr. Antonis Nikitakis in particular 

for his constant guidance and for his immediate response for everything needed while 

writing this thesis. 

  



 

 v 

Table of contents 

Abstract ...............................................................................................................................ii 

Πεξίιεςε ........................................................................................................................... iii 

Acknowledgements ............................................................................................................. iv 

Table of contents .................................................................................................................. v 

Table of Figures ................................................................................................................. vii 

 Introduction .................................................................................... 9 Chapter 1:

1.1 Introduction ............................................................................................................... 9 

1.2 Thesis Contibution ..................................................................................................... 9 

1.3 Introduction to Neural Networks ................................................................................ 9 

1.4 Main Characteristics of Neural Networks ................................................................. 11 
1.4.1 Advantages of Neural Networks ..................................................................... 11 
1.4.2 Disadvantages of Neural Networks ................................................................. 11 

1.5 Learning Process ...................................................................................................... 12 
1.5.1 Supervised Learning ....................................................................................... 12 
1.5.2 Unsupervised Learning ................................................................................... 12 
1.5.3 Reinforcement Learning ................................................................................. 12 

 Neural Networks .......................................................................... 14 Chapter 2:

2.1 Neuron ..................................................................................................................... 14 

2.2 Activation Functions ................................................................................................ 15 
2.2.1 Sigmoid or Logistic ........................................................................................ 15 
2.2.2 Tanh (Hyperbolic tangent) .............................................................................. 16 
2.2.3 ReLu (Rectified Linear Units) ........................................................................ 16 
2.2.4 Softmax .......................................................................................................... 17 

2.3 Networks architecture............................................................................................... 17 
2.3.1 Single layer Feed-Forward Networks .............................................................. 17 
2.3.2 Multi layer Feed-Forward Networks ............................................................... 18 
2.3.3 Recurrent Networks ........................................................................................ 19 

2.4 Network Training ..................................................................................................... 20 
2.4.1 Cost Function ................................................................................................. 20 
2.4.2 Gradient Descent ............................................................................................. 20 
2.4.2 Error BackPropagation ................................................................................... 21 

 Other Types of Neural Networks ................................................. 25 Chapter 3:

3.1 Recurrent neural networks (RNN) ................................................................................ 25 
3.1.1 Architecture ................................................................................................... 25 
3.1.2 Backpropagation Through Time ..................................................................... 26 
3.1.3 Vanishing/Exploding Gradients ...................................................................... 27 
3.1.4 Long Short-Term Memory (LSTM) ................................................................ 27 

3.2 ConvolutionaL Neural Networks (CNN)................................................................... 29 
3.2.1 Architecture ................................................................................................... 29 
3.2.2 Convolutional Layer ....................................................................................... 30 
3.2.3 Training ......................................................................................................... 34 



vi  

 Related Work ............................................................................... 35 Chapter 4:

4.1 Object Detection ...................................................................................................... 35 
4.1.1 Mask RCNN .................................................................................................. 35 
4.1.2 Image Classification ....................................................................................... 36 
4.1.3 Inception_V3.................................................................................................. 37 

4.2 Image Captioning ..................................................................................................... 40 

 Our Image Captioning Model ...................................................... 41 Chapter 5:

5.1 Overview of Model Architecture .............................................................................. 41 

5.2 Encoder .................................................................................................................... 42 
5.2.1 Mask R-CNN and Inception_V3 in our System ............................................... 42 
5.2.2 Image Embedding .......................................................................................... 44 

5.3 Decoder ................................................................................................................... 44 
5.3.1 Word Embedding ........................................................................................... 44 
5.3.2 Attention ........................................................................................................ 46 
5.3.3 Caption Generator Based on LSTM ................................................................ 49 

 Model Training ............................................................................. 51 Chapter 6:

6.1 Database MSCOCO 2015 ......................................................................................... 51 

6.2 Model Training ........................................................................................................ 53 
6.2.1 Training Variables .......................................................................................... 53 
6.2.2 Training Algorithm......................................................................................... 54 
6.2.3 Hyperparameter Selection............................................................................... 55 

6.3 Metrics ..................................................................................................................... 56 
6.3.1 BLEU............................................................................................................. 56 
6.3.2 ROUGE ......................................................................................................... 57 
6.3.3 METEOR ....................................................................................................... 57 
6.3.4 CIDEr ............................................................................................................ 57 

 Results........................................................................................... 59 Chapter 7:
7.1.1 Qualitative Examples and Discussion ............................................................. 61 

 Epilogue ........................................................................................ 74 Chapter 8:

8.1 Summary and Conclusions ....................................................................................... 74 

8.2 Future Work ............................................................................................................. 74 

References ............................................................................................................. 76 
 



Introduction 

 vii 

Table of Figures 

FIGURE 1-2 : STRUCTURE OF A REAL NEURAL NETWORK IN COMPARISON WITH AN ARTIFICIAL NEURAL NETWORK.[51] .. 10 
FIGURE 2-1 : ARTIFICIAL NEURON MODEL [52] .......................................................................................... 14 
FIGURE 2-2 : SIGMOID FUNCTION AND ITS DERIVATIVE.[30] .......................................................................... 15 
FIGURE 2-3 : HYPERBOLIC TANGENT FUNCTION. [31] ................................................................................... 16 
FIGURE 2-4 : RECTIFIED LINEAR UNITS FUNCTION.[32]................................................................................. 16 
FIGURE 2-5: STRUCTURE OF SINGLE LAYER NEURAL NETWORK. [33] ................................................................. 17 
FIGURE 2-6 : STRUCTURE OF A MULTILAYERED NEURAL NETWORK. [34] ............................................................ 18 
FIGURE 2-7 : DIFFERENCE BETWEEN AN RNN (LEFT) AND A FEED FORWARD NETWORK (RIGHT). [35] ....................... 19 
FIGURE 2-8: VISUALIZATION OF GRADIENT DESCENT. [36] ............................................................................ 21 
FIGURE 3-1: SCHEMATIC REPRESENTATION OF AN RNN. [38] ........................................................................ 25 
FIGURE 3-2: VARIOUS FORMS THAT AN RNN NETWORK MAY HAVE. [39].......................................................... 26 
FIGURE 3-3: RESULTS OF APPLYING THE SIGMOID FUNCTION MULTIPLE TIMES.[40] .............................................. 27 
FIGURE 3-4: ARCHITECTURE OF AN LSTM. [41] ......................................................................................... 28 
FIGURE 3-5: CELL STRUCTURE OF AN LSTM CELL. [41]................................................................................. 29 
FIGURE 3-6: FORM OF A COLOR IMAGE. [42] ............................................................................................. 30 
FIGURE 3-7: A REPRESENTATION OF CONVOLUTIONAL LAYER. [1] .................................................................... 30 
FIGURE 3-8: PROCESSING AN IMAGE USING DIFFERENT FILTERS. [1] ................................................................. 31 
FIGURE 3-9: EXAMPLE OF A FILTER WITH STRIDE = 1. [1] .............................................................................. 31 
FIGURE 3-10: APPLICATION OF ZERO PADDING AT THE BORDERS OF AN IMAGE. [1] .............................................. 32 
FIGURE 3-11: APPLICATION OF A 2X2 MAX-POOLING. [1] ............................................................................ 33 
FIGURE 3-12: EXAMPLE OF A FC LAYER AFTER A CONVOLUTIONAL LAYER. [1] ..................................................... 33 
FIGURE 4-1: MASK R-CNN STRUCTURE. [43] ............................................................................................ 35 
FIGURE 4-2: FEATURE PYRAMID NETWORKS. [44] ...................................................................................... 36 
FIGURE 4-4: (A) ORIGINAL INCEPTION MODULE (B) 5 × 5 CONVOLUTION IS REPLACED BY TWO 3 × 3 CONVOLUTION. [2]

.............................................................................................................................................. 38 
FIGURE 4-5: (A) FACTORIZATION OF THE N × N CONVOLUTIONS. (B) ONE 3×1 CONVOLUTION FOLLOWED BY ONE 1×3 

CONVOLUTION REPLACES ONE 3×3 CONVOLUTION. [2] ........................................................................ 38 
FIGURE 4-6:(A) INCEPTION MODULES. (B) AUXILIARY CLASSIFIER [2] ............................................................ 39 
FIGURE 4-8: INCEPTION MODULE FOR GRID-SIZE REDUCTION. [2] .................................................................... 39 
FIGURE 4-9: SCHEMATIC DIAGRAM OF INCEPTION V3. [46] ........................................................................... 40 
FIGURE 5-1: IMAGE CAPTIONING EXAMPLES. [47] ...................................................................................... 41 
FIGURE 5-2: A HIGH-LEVEL BLOCK DIAGRAM OF OUR MODEL. ......................................................................... 42 
FIGURE 5-3: ENCODER MODEL ARCHITECTURE ............................................................................................ 42 
FIGURE 5-4: A VISUAL EXAMPLE OF HOW WE USE THE MASK-RCNN MODEL...................................................... 43 
FIGURE 5-5: DECODER MODEL ARCHITECTURE ............................................................................................ 44 
FIGURE 5-6: AN EXAMPLE OF BAG OF WORDS MODEL. [49] ........................................................................... 45 
FIGURE 5-7: SEMANTIC SIMILARITIES USING WORD EMBEDDING. [48] .............................................................. 46 
FIGURE 5-8: ATTENTION MODEL STRUCTURE. [50] ..................................................................................... 47 
FIGURE 5-9:  A TYPICAL ATTENTION MODEL WITH A UNIFORM GRID OF EQUALLY-SIZED IMAGE REGIONS (LEFT). OUR 

APPROACH ENABLES ATTENTION TO BE CALCULATED AT THE LEVEL OF OBJECTS (RIGHT). [14] ......................... 48 
FIGURE 5-10: ATTENTION EXAMPLE ........................................................................................................ 49 
FIGURE 5-11: AN EXAMPLE OF HOW LSTM IS USED FOR GENERATING CAPTIONS ................................................ 50 
FIGURE 7-1 : EXAMPLES OF HOW OUR MODEL FAILS TO GET THE NUMBER OF OBJECTS IN AN IMAGE. ........................ 62 
FIGURE 7-2: EXAMPLES OF HOW THE SMALL VARIETY OF WORDS PRODUCED BY OUR MODEL AFFECTS THE CAPTIONS .... 63 
FIGURE 7-3: AN EXAMPLE OF OUR MODEL BEING BIASED. .............................................................................. 64 

 





 

Introduction  9 

  Introduction Chapter 1:

1.1 INTRODUCTION 

Image captioning is a major problem of artificial intelligence, which combines the field of Computer 

Vision with Natural Language Processing. The ability of a system to be able to automatically generate 
descriptions of the content of the images by producing correct, syntax and semantically, proposals 

seem to be a fairly demanding challenge which, however, could have a great effect, such as helping 

people with impaired vision to better understand the content of images that are available either online 

or in the real world. This problem is much more difficult than the problem of image classification or 
of problems that are related to the detection of objects in images, which mainly deals with computer 

vision problems. This is due to the fact that we not only need to identify the individual objects in an 

image, but must also express how these objects are interconnected, by determining which features and 
activities are related. In addition, the above semantic information must be expressed in a natural 

language such as English, which means that one needs a model of natural language in addition to 

visual comprehension of the image. 

 

1.2 THESIS CONTIBUTION  

In this thesis we combine deep convolutional networks for image feature extraction and recurrent 
networks (RNN) responsible for modeling the proposals so that we can create a unified network that 

will produces descriptions of images. This thesis utilizes some of the state of the art approaches in the 

fields of object detection and image classification, as well as, attention mechanism that was created 

for machine translation and used it in order to give more focus on the important parts of the input 
image, thus producing more accurate results.  

 

Chapter 1 analyzes how neural networks work and how biological networks have been the inspiration 
behind them, as well as what are some of the main benefits that make them produce best results in a 

wide variety of problems. Chapter 2 emphasizes in the algorithm used for their training and how it 

changes the parameters of the network in way that minimizes the cost function. Some of the most well 
know networks are Recurrent Neural Networks and Convolution Neural Networks, which are 

described in detail in this thesis and are explained Chapter 3. Τhen, in Chapter 5, we discuss the image 

captioning model created for the purpose of this thesis in detail and how we used each part of the 

model to achieve our goal. COCO dataset is, then ,explained in detain in Chapter 6 and the way it was 
used to train our model. In Chapter 7, we discuss the metrics we used to evaluate the accuracy of our 

system, we calculate the result and present some examples of the successful captions. Apart from the 

accurate descriptions it is important to view some unsuccessful example and figure out what caused 
this unsuccessful behavior. Finally in Chapter 8, we end this thesis by suggesting some modification 

that may improve even more the accuracy of the system. 

 

 

1.3 INTRODUCTION TO NEURAL NETWORKS 

Neural nets are a relatively new area in the natural sciences, since they have become known and 
developed only in the last forty years. Their main feature is that their principles and functions are 

based on the nervous system of living organisms, but their study and use has gone far beyond 

biological organisms, and today neural networks are used to solve any kind of problem associated 

with computers.  
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Their philosophy, however, is different from the way in which classical computers work. Their 

function tries to combine the thinking of the human brain with the abstract mathematical way of 
thinking. Thus, in neural networks we use ideas such as learning, memory etc. things we have so far 

attributed only to human thought. 

The brain consists predominantly of a wide range of neurons (approximately 10,000,000,000), which 

are mass interconnected, with an average of 1,000 interconnections per neuron. The central building 
block of the brain is neurons, nerve cells that create a dense communication network between them. 

Anatomically the neuron consists of the body, the dendrites and the axon. In each dendrite there is an 

infinitely short void called a synapse. In particular, dendrites are the neural entry gates as they 
receive electrical signals from other neurons. The axon is the gate of the neuron. Sends signals to 

other neurons in the form of electric pulses of fixed amplitude but of variable frequency. The 

synapses are the points in which the branches of the axon of a neuron are joined to the dendrites of 
other neurons. The percentage of electrical activity finally transmitted to the dendrite is the synaptic 

weight. 

The synapses are divided into excitatory and inhibitory depending on whether the charge released by 

the synapse irritates the neuron to produce pulses more frequently or suppresses it by preventing it 
from producing pulses. The most important feature of the neuron is its sensitivity, its ability to react to 

various external stimuli. This reaction results in the generation of short-duration pulses. The pulses 

travel on the axis of each neuron and through the synapses propagate to the dendrites of other 
neurons. Each neuron collects all the electrical charge it receives from each synapse in dendrites. If 

the sum of the load exceeds a threshold then the neuron's axis begins to generate electrical pulses at a 

high frequency so we say the neuron shoots. If the load does not pass this limit then the neuron 
produces very little pulses at random moments, so we say that the neuron is inactive. All empirical 

knowledge thus acquired by the neural network from the environment is coded in synaptic weights. 

These are the characteristic that gives the network the ability to evolve and adapt to the environment.  

 

 

   Figure 1-1 : Structure of a real neural network in comparison with an artificial neural network.[51] 

 

In analogy with a network of brain neurons, an artificial neural network consists of a set of artificial 

neurons that are linked and interact with each other by the so-called synapses. The degree of 
interaction is different for each pair of neurons and is determined by the so-called synaptic weights. 

As the neural network interacts with the environment and learns from it, synaptic weights are 

constantly changing, potentiating or weakening the strength of each bond.  
 
The simplest definition of a neural network, more properly referred to as an 'artificial' neural network 

(ANN), is provided by the inventor of one of the first neurocomputers, Dr. Robert Hecht-Nielsen. He 
defines a neural network as: 

 

"...a computing system made up of a number of simple, highly interconnected processing elements, 
which process information by their dynamic state response to external inputs." 
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In "Neural Network Primer: Part I" by Maureen Caudill, AI Expert, Feb. 1989 

 

 

1.4 MAIN CHARACTERISTICS OF NEURAL NETWORKS 

A neural network owes its computational power firstly to its parallel, distributed structure and 

secondly to its ability to learn and generalize. The term generalization refers to the production of 
reasonable outputs for inputs that the neural network has not met during the training. These two 

features enable neural networks to find good approximate solutions to complex problems. 

 

1.4.1 Advantages of Neural Networks 

Neural networks provide the following useful properties: 
 

1. Non-Linearity: An artificial neuron can be either linear or nonlinear. A neural network 

consisting of interconnected non-linear neurons is by nature non-linear. This non-linearity is 

distributed across the network and is an extremely important property, especially if the 

physical mechanism for producing the input signals is non-linear. 

 

2. Adaptability: Neural Networks have the ability to adapt their weights to changes in their 

environment. Sometimes adjustments lead to a reduction in system performance. 

3. Indicative Response: A Neural Network is designed to provide information not only on the 

specific example chosen but also on the confidence in the decision taken. 

4. Content related information: Knowledge is represented by the highly structured and active 

state of the Neural Network. Each neuron in the network may be affected by the overall 

activity of all other network neurons. This means that a neural network manipulates the 

content-related information in a natural way. 

5. Tolerance to failures: Neural Networks have great tolerance for structural errors. This means 

that the malfunctioning or destruction of a neuron or some connections is not capable of 

significantly disrupting their operation as the information that it encloses is not localized at a 

specific point but diffused throughout the network. 

6. Implementability in VLSI: the massively parallel nature of the Neural Network, makes it 

possible to implement VLSI technology so that neural networks can be used in very large-

scale integration applications. 

7. Analysis and Design Uniformity: The concept is that the same symbolism is used in all fields 

that contain neural network implementation, which is indicated in several ways: Neurons 

define a component common to all neural networks. This property makes it possible to share 

learning theories and algorithms in different applications of neural networks. 

8. Analogue with Neurobiology: Neural Network Design is done in analogy with the brain. 

Neurobiologists see neural networks as the subject of research to explain neurobiological 

phenomena. Similarly, engineers see neurobiology for new ideas to solve complex problems. 

 

1.4.2 Disadvantages of Neural Networks 

Below are listed the disadvantages of Neural Networks and their use: 

 



12 Introduction 

1. Hardware dependence: Artificial neural networks require processors with parallel computing 

power. For this reason, the implementation of the equipment depends. 

2. Determination the network structure: There is no specific rule on how to build a neural 

network. Appropriate networking is achieved through experience, testing, trial and error. 

3. Unexplained network behavior: This is the most important problem of NN. When the NN 

produces a solution, there is no explanation of why and how. This reduces the trust of the 

network. 

4. Explanation and translation of weights in Neural Nets are impossible because of their non-

linearity. 

5. Difficulty in displaying the problem in the network: Neural networks can only process 

numeric information. Problems must be translated into numerical values before they are 

entered in the SW. The imaging mechanism to be determined here directly affects the 

performance of the network. 

 

1.5 LEARNING PROCESS 

As there are different ways people learn from their environment, the same goes for neural networks. 

In a broad sense, we can categorize the learning processes through which neural networks work as 
follows: supervised learning, unsupervised learning and reinforcing learning.  

1.5.1 Supervised Learning 

Learning with an instructor is also referred to as supervised learning. The neural network receives 
pairs of input-desired output vectors and generates with the current weight state an output that initially 

differs from the desired output. This difference is then calculated and the weights are adjusted based 

on that error. More specifically, the teacher has knowledge of the environment and this knowledge is 
represented by a set of input-output examples. However, the environment is unknown in the neural 

network. If the network is exposed to an environmental training resource, because of his knowledge, 

the trainer may provide the neural network with the desired response for that particular vector. The 

desired response represents the optimal action to be performed by the neural network. The network 
parameters are influenced by the training vector in combination with the error signal. The error signal 

is defined as the difference between the desired response and the actual network response. This 

process is repeated in order to bring the network into a situation where it will simulate the teacher's 
situation. 

 

1.5.2 Unsupervised Learning 

In unsupervised learning there is no external trainer to oversee the learning process. Instead, there is a 

process-independent measure of the representation quality that is required to learn the network and the 
network parameters are optimized in relation to it. Training samples are now only input samples and 

do not contain samples of the desired output. Training stops when the network stops changing the 

weight values. 

 

1.5.3 Reinforcement Learning 

In reinforcing learning, learning an output-matching input is performed through continuous 
interactions with the environment, aiming at minimizing a scalar performance measurement. In this 

type of learning the network is again fed with sample inputs but is not fed with the desired responses 

to these outputs. Now we use a general measure of the adequacy of the resulting judgment that can 

lead the network to the desired behavior. This measure is known as a reinforcement signal and is 
being fed back to the network in order to reward good behavior and punish the wrong ones. In 
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summary, reinforcement learning works as follows: Initially, the neural network calculates the outputs 

produced by the current input with current weight values. The system then evaluates the output and 
the reinforcement signal is fed into the network. The weights are adjusted based on the reinforcement 

signal, increasing the weight values that contributed to good behavior or reducing the weight values 

that caused bad behavior. 
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  Neural Networks Chapter 2:

2.1 NEURON  

A neuron is an information processing unit that is fundamental for the operation of a neural network 

and is the basis for designing a larger network. An artificial neuron is a computational model whose 
parts are directly matched with those of the biological neuron. Each neuron receives information, 

processes it and gives an output value. Its inputs are either the outputs of other neurons, or the input 

signal of the network. 

A neuron usually receives many simultaneous inputs. Every input has its corresponding weight. These 
weights have the same type of operation as synaptic forces of biological neurons. The weights are 

adaptive coefficients within the network that determine its intensity of the input signal as they enter 

the artificial neuron. The weight shows us just how important the contribution of this signal is to the 
configuration of the network structure for the two connecting neurons.  Accordingly to how big or 

small the weight is, the contribution of the signal is great or small respectively. These forces can be 

modified according to the different training standards and according to the specific network topology 

or through the training rules. 
 

 

                

       Figure 2-1 : Artificial Neuron model [52] 

        

 
The basic parts of which a neuron is composed (shown in Figure 2-1) are: 

 

1. A set of synapses each of which is characterized by its own weight. More specifically, a 

signal xk at the input of synapse j associated with the neuron j is multiplied by the synaptic 

weight wkj. The synaptic weight of an artificial neuron can receive both positive and negative 

values. 

2. An adder for summing the input signals weighted by the corresponding synaptic weights. 

3. An activation function for limiting the amplitude of the output signal of the neuron. 

4. The neuron model also includes an externally applied bias bj. Bias results in an increase or 

decrease in network excitation of the activation function, depending on whether it is positive 

or negative respectively. Bias is an external parameter of the neuron and is equal to the 

synaptic weight wj0 of the fixed input x0 = +1 

In mathematical terms we can describe the neuron with the following pair of equations: 
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        ∑      
 
             (2.1) 

     
 
                     (2.2) 

 

 

Where x1,  x2,  ... , xi are the input signals and wj1, wjk, ..., wji are the respective synaptic weights of the 

neuron j, bj is the bias, θ() the activation function and yj the output signal of neuron j. 

 

 

2.2 ACTIVATION FUNCTIONS 

They are used to convert the input signal of a neuron to a non-linear output signal. If an activation 
function is not applied then the output signal would be a simple linear function which, although easy 

to solve, is unable to learn complex mappings from data such as images, video, audio, speech, etc. A 

neural network should be able to learn and compute not only linear functions but also more complex 

non-linear functions. Non-linear functions are those that have a degree greater than one and their 
curve is non-linear. 

Another important feature of the activation function is that it should be differentiable so that 

backpropagation can be applied to optimize the algorithm as we propagate back into the network to 
calculate the error in relation to weights and gradually optimize the weights using Gradient Descend.  

Therefore, we conclude that in order for the network to be powerful, to have the ability to learn 

complicated processes and to be able to process complex data, an activation function must be applied. 

Four are the most common functions : 
1. Sigmoid or Logist 

2. Tanh — Hyperbolic tangent 

3. ReLu (Rectified linear units) 

4. Softmax 

 

2.2.1 Sigmoid or Logistic   

Sigmoid function is the most common activation function. It is defined as a strictly increasing 

function, receives values from a continuous range of values from 0 to 1 and is differentiable. 

The sigmoid function is defined as: 

 

     
 

              (2.3) 

 

 

      Figure 2-2 : Sigmoid function and its derivative.[30]  
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2.2.2 Tanh (Hyperbolic tangent)  

This function is also a sigmoidal function in terms of its shape, it‟s difference is in the fact that it gets 

values in range (−1,1). The fact that the output values are zero – centered make it preferable to the 
sigmoidal function. The tanh function is differentiable and is given: 

 

                                                          
      

                                  (2.4) 

 

 

 

      Figure 2-3 : Hyperbolic tangent function. [31] 

 

2.2.3 ReLu (Rectified Linear Units) 

The rectifier non-linearity is defined as follows: 

 

                             (2.5) 

 
where x is the input to a neuron. 

This function ensures that the output will not get a value below zero.  

 

 
 

      Figure 2-4 : Rectified Linear Units function.[32] 
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2.2.4 Softmax 

The Softmax regression is a form of logistic regression that normalizes an input value into a vector of 

values that follows a probability distribution whose total sums up to 1. The output values are between 
the range [0, 1] and it is used most cases in the last layer of the networks. The softmax function used 

for multi-classification model returns the probabilities of each class and the target class will have the 

high probability. 

 

     |   
 
    

∑       
   

                (2.6) 

 
Our objective is to predict if the trained set of features x, each with its own set of weights wj, are a 

class of j. The formula 2.6 computes the exponential of the given input value and the sum of 
exponential values of all the values in the inputs. Then the ratio of the exponential of the input value 

and the sum of exponential values is the output of the softmax function. 

 

 

2.3 NETWORKS ARCHITECTURE  

Neural networks are characterized by their architecture, the function they perform and their training 

method. The network architecture determines the layout of the connections, the number and the type 

of neurons. The way in which neurons of a network are structured is closely related to the learning 
algorithm used to train the network. Generally there are three fundamental architectures: 

 

 

2.3.1 Single layer Feed-Forward Networks  

In a neural network, the neurons are organized in the form of layers. In the simplest form there is an 

input layer, which is directly connected to a layer of output neurons but not vice versa. Such a 
network is called single layer due to the output level. Input layer is not counted because it does not 

perform any calculations. 

The network of this type is also called feed forward network. The feedforward neural network was 
the first and simplest type of artificial neural network. In this network, the information moves in only 

one direction, forward, from the input nodes to the output nodes. There are no cycles or loops in the 

network. 

 
 

 

      Figure 2-5: Structure of single layer neural network. [33] 
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The first layer is the d-dimension inputs. In the second layer, the outputs are combined to give the 

activations of the M output units. The output at this network structure is calculated by the following 
equations: 

      ∑    
 
           j =0, 1, ... , M    (2.7) 

 
Where, wji is the weight for input xi connected to neuron j in the output layer and f() is an activation 
function like those described in section 2.2. 

    

 

2.3.2 Multi layer Feed-Forward Networks 

This category of neural networks is characterized by the number of hidden layers, whose nodes are 
called hidden neurons. The operation of these neurons is to interfere between the external input and 

output of the network by doing some processing. 

 

    

     Figure 2-6 : Structure of a multilayered neural network. [34] 

 

 
The Input nodes provide information from the outside world to the network and are together referred 

to as the “Input Layer”. No computation is performed in any of the Input nodes – they just pass on the 

information to the hidden nodes. The Hidden nodes have no direct connection with the outside world. 
They perform computations and transfer information from the input nodes to the output nodes. A 

collection of hidden nodes forms a “Hidden Layer”. The Output nodes are collectively referred to as 

the “Output Layer” and are responsible for computations and transferring information from the 

network to the outside world. 

 
The first layer is the d-dimension inputs. In the second layer, the outputs of the hidden units are 
combined to give the activations of the M output units: 

 

      ∑    
 
           j =0, 1, ... , M            (2.8) 
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Then the output of the last layer will be calculated, for K output units, as: 

 

          ∑    
 
           k= 0, 1, … , K           (2.9) 

 
Or if we combine all the above equations the output of the network is: 

 

      ∑    
 
     ∑    

 
                       (2.10) 

 
 

 

 

2.3.3 Recurrent Networks  

A recurrent neural network differs from a feed forward neural network in having at least one feedback 

loop. The output of each network neuron feeds the input of other neurons of the same layer and, in 
some cases, even its own input (self-feedback). The presence of feedback loops affects the learning 

ability of the network and its performance.  

     

 

    Figure 2-7 : Difference between an RNN (left) and a feed forward network (right). [35]  

 

 

 

                           (2.11) 

 

                     (2.12) 

 
Where, Whh is the array of weights of the hidden state to the hidden state, Wxh is the array of weights 

from the input to the hidden state, Why is the array of weights from the output to the hidden output 
and  f an activation function applied per element. Recurrent neural networks will be discussed in more 

detail in Chapter 3. 

 
In all the above cases the networks were fully connected because each node of each network layer is 

connected to each other node of the next level. In the case of missing network connections, then we 

are talking about a partially connected network. 
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2.4 NETWORK TRAINING 

The main purpose of an artificial neural network is to be able to perform certain processes e.g. to 

recognize images, but having been first properly trained. Each network receives some inputs and 

gives some outputs. Learning is done by giving the network as inputs some standards for which we 

know what the output should be. The network with these data modifies its internal structure to make 
the same match based on the data given to it. This modification is based on a cost function and a 

training algorithm which in most cases is gradient descent. The cost functions calculates the deviation 

from the right response and the training algorithm updates the weights of the models in a way that the 
cost function in minimized. 

After finding the right internal structure, then it can solve other similar problems that it has not seen 

before. However, these problems should be of the same nature and characteristics as those of training. 

The training process will be further explained in the next sections. 

 

2.4.1 Cost Function 

The cost function of a supervised learning problem computes the compatibility between model 

prediction and its true value. Depending on the type of problem we need to resolve, we also use a 

different cost functions. In this case, we have to solve a classification problem, so we chose the 
Cross-entropy cost function. Cross-entropy loss measures the performance of a classification model 

whose output is a probability between 0 and 1 and expresses how far the prediction is from the actual 

distribution. The loss of Cross-entropy increases as the predicted probability deviates from the actual 
label. In case we have a binary classification, where the number of classes M equals 2 Cross-entropy 

can be calculated from the equation: 

    

                                        (2.13) 
 

Where y is the ground truth and p is the prediction. 
If we classify multiple classes, then we calculate separately the error for each class, based on the 

labels, for one entry, and then we add the results. 

 

L = ∑        (    )
 
                (2.14) 

 

Where M is the number of different categories, y is a binary marker (0 or 1) on whether the c tag is 

the correct categorization for observing ν and p the probability predicted by the model to be a class c 
entry. 

 

The total loss for all data takes the form of an average loss from each separate example, ie it takes the 
form of: 

       
 

 
∑    

               (2.15) 

 
With N the set of training data and Li the error calculated by the Cross-entropy for the given i. 

 

 

2.4.2 Gradient Descent 

The idea behind the gradient descent [3] is the gradual but repetitive reduction of the error by 

adjusting the weights. Intuitively, we know that if a change in weight increases (reduce) the error, 
then we want to reduce (increase) that weight. Mathematically, this is written: ∂J / ∂w, which 

represents the change in error relative to a change of weight. Once we calculate this derivative, we 

will update the weight through the following equations: 
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                       (2.16) 

 

Where, n is the learning rate and  J(w) is the gradient of the cost function J(w) with respect to the 

parameter w. 

If we update all weights using equation (2.16) it means that the parameters move in the direction of 

the steeper descent along the error function - hence the name, gradient descent. 
The general idea of Gradient Descent is: 

1. Calculate the slope, which is the first derivative of the cost function at the given time. 

2. Update parameters by adding the quantity calculated in the previous step towards the negative 

gradient of the slope. 
3. After each weight update the gradient is re-examined for the new weight vector and the 

procedure is repeated. 

 

 

     Figure 2-8: Visualization of Gradient Descent. [36] 

     

There are three types of Gradient Descent: 

1. Batch Gradient Descent 

2. Stochastic Gradient Descent 
3. Mini-batch Gradient Descent 

The pseudocode for stochastic gradient descent (sgd) has the following form: 

 

 

2.4.2 Error BackPropagation 

Backpropagation algorithms, short for "backward propagation of errors", is used in order to train 

artificial neural networks following a gradient descent approach. Backpropagation computes the 
gradients, whereas gradient descent uses the gradients to train the model. 

The "backwards" part of the name stems from the fact that calculation of the gradient proceeds 

backwards through the network, with the gradient of the final layer of weights being calculated first 
and the gradient of the first layer of weights being calculated last. Partial computations of the gradient 

Algorithm 2.1 : stochastic gradient descent 

 
1. Select initial weight vector w and learning rate n. 

2. Repeat until a minimum is reached: 

a) Randomly mix training the examples 

b) Calculate the slope: ∂J/ ∂w 

c) Calculate the update direction: Δw = -η ∂J / ∂w 

d) Run a parameter update: w = w + Δw 
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from one layer are reused in the computation of the gradient for the previous layer. This backwards 

flow of the error information allows for efficient computation of the gradient at each layer versus the 
naive approach of calculating the gradient of each layer separately. 

The backward propagation process for training a neural network consists of two passes across the 

different layers of the network: a forward pass and a backward pass. In the forward passage an input 

vector is applied to the network input neurons and its effect is propagated within the network from 
one layer to the next and in the direction of the input layer to the output layer. Eventually a set of 

outputs is generated as the actual network response. Comparing the final output values with the 

desired result we calculate the error for each of them.  During the first pass, the weights of the 
network remain stable.During the backward pass weights are adjusted according to the error 

correction rule produced by the forward passage. More specifically, the actual response of the 

network is subtracted from the desired response to produce an error signal propagating back into the 
network, on the opposite direction of the connections (direction from the output level to the input 

level), from which the name 'error back propagation' emerges. The synaptic weights are adjusted to 

make the actual network response approximate the desired response. 
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𝑄𝑗  𝑓 𝑄𝑖𝑛𝑗  

𝑦𝑘  𝑓 𝑦𝑖𝑛𝑗  

𝛿𝑘   𝑡𝑘   𝑦𝑘 𝑓′ 𝑦𝑖𝑛𝑗  

𝛥𝑢𝑗𝑘  𝛼𝛿𝑘𝑄𝑖𝑛𝑗 

𝛥𝑏 𝑘  𝛼𝛿𝑘  

𝛿𝑗  𝛿𝑖𝑛𝑗𝑓′ 𝑄𝑖𝑛𝑗  

𝛥𝑤𝑖𝑗  𝛼𝛿𝑗𝑥𝑖 

𝛥𝑏 𝑗  𝛼𝛿𝑗 

Algorithm 2.2: BackPropagation[26] 
 

1. Initialize weights w, v and learning rate α. 

2. Repeat until the number of epochs is reached: 

I. Repeat for each training pair in the dataset: 

a) Each input unit receives input signal xi and sends it to the hidden unit for all i = 1 

to n 

b) Calculate the net input at the hidden unit using the following relation: 

𝑄𝑖𝑛𝑗  𝑏 𝑗   (𝑥𝑖𝑢𝑖𝑗)
𝑛

𝑖  
   j= 1 to p 

 

Where b0j is the bias on hidden unit, vij is the weight on j unit of the hidden layer 

coming from i unit of the input layer. Now calculate the net output by applying 

the following activation function 

        Send these output signals of the hidden layer units to the output layer units. 

 

c) Calculate the net input at the output layer unit using the following relation: 

𝑦𝑖𝑛𝑗  𝑏 𝑘    𝑄
𝑗
𝑤𝑗𝑘 

𝑛

𝑖  
   k= 1 to m 

   Where b0k is the bias on output unit, wjk is the weight on k unit of the output                

layer coming from j unit of the hidden layer. Calculate the net output by applying the  

following activation function: 

 
d) Compute the error correcting term, in correspondence with the target pattern 

received at each output unit, as follows: 

      On this basis, update the weight and bias as follows: 

         

    

       Then, send δk back to the hidden layer. 

e) Now each hidden unit will be the sum of its delta inputs from the output units. 

𝛿𝑖𝑛𝑗  𝑏 𝑗   (𝛿𝑘𝑤𝑗𝑘)
𝑚

𝑘  
    

 
       Error term can be calculated as follows: 

   
        On this basis, update the weight and bias as follows: 
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The steps described above train the neural network, ie all weights and network parameters have been 

optimized so they can correctly predict an output for a given input. After training if a new input enters 
the network, it will perform a forward pass from all the individual levels and produce a probability for 

each unit of the output layer. If the training is done properly then the network will generalize the new 

data well enough and will produce the desired output even on input data it has never seen. 

𝑢𝑗𝑘 𝑛𝑒𝑤  𝑢𝑗𝑘 𝑜𝑙𝑑  𝛥𝑢𝑗𝑘 𝑛𝑒𝑤  

𝑏 𝑘 𝑛𝑒𝑤  𝑏 𝑘 𝑜𝑙𝑑  𝛥𝑏 𝑘 𝑛𝑒𝑤  

𝑤𝑖𝑗 𝑛𝑒𝑤  𝑤𝑖𝑗 𝑜𝑙𝑑  𝛥𝑤𝑖𝑗 𝑛𝑒𝑤  

𝑏 𝑗 𝑛𝑒𝑤  𝑏 𝑗 𝑜𝑙𝑑  𝛥𝑏 𝑗 𝑛𝑒𝑤  

  f)  Each output unit yk, with k = 1 to m, updates the weight and bias as follows: 

 

g) Each output unit zj, with j = 1 to p, updates the weight and bias as follows : 
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 Other Types of Neural Networks Chapter 3:

Depending on the type of problem and set of parameters required to determine the output, there are 
different neural networks based on different mathematical functions. Below we will analyze some 

"special" neural networks that were used to implement our own model. 

 

3.1 RECURRENT NEURAL NETWORKS (RNN) 

In a Feed-Forward neural network, the data move only in one direction, from the input layer, through 

the hidden layers, to the output layer. The information moves directly through the network and for this 
information passes through every node only once. Feed-forward neural networks have no memory for 

the input they received before, and therefore cannot predict the data to follow. Thus, it is impossible 

to use them in cases where the network inputs are sequences. In contrast, in RNNs the information 
passes through a loop, so that when a decision is made, it will take into account the current input but 

also what it learned from the inputs it received in the past according to the formula ht = f (ht-1, xt), 

where f is an activation function, ht-1 the previous state and xt the input. Therefore, RNN have two 

input sources, the current input and the previous hidden state, which are combined to determine how 
they react to new data. 

 

3.1.1 Architecture 

If an RNN [4], [27] unfolds in time it will take the form below: 

 

 

 

      Figure 3-1: Schematic representation of an RNN. [38] 

   

 
If we denote by (x1, ..., xT) an input sequence, with (h1, ..., hT) the corresponding hidden state 

sequence and with (y1, ..., yT) the output sequence calculated by network, then an RNN with only one 

recurrent unit is described by the following equations that are repeated for 1 to T: 

 

                           (3.1) 

 

                          (3.2) 
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Where, Whh is the array of weights of the hidden state to the hidden state, Wxh is the array of weights 

from the input to the hidden state, Why is the table of weights from the output to the hidden output and  
ζ , are sigmoid and a sotmax function applied per element. 

From (3.1)  is obvious that the hidden layer depends directly on the input sequence x1, ..., xt: 

 

                      
                                       
    … 

 

     =                                       
 
Usually the h0 is initialized with zeros. The hidden state is a function of the input at the current time 

on the Whx weight vector which is added to the hidden state of the previous time ht-1 which in turn is 
multiplied by the hidden state weight vector Whh. The weights act as filters that determine the 

significance to be given at the input and in the previous state. The above sum will pass through an 

activation function ζ. Because of the feedback loop at each time, each hidden state contains 
information not only of the previous state but of each present state. 

It is worth mentioning that while Feed Forward neural networks assign one input to one output, RNNs 

can assign one input to one output, multiple inputs to one output, one input to multiple outputs, and 
multiple inputs to multiple outputs. 

 

 

      

     Figure 3-2: Various forms that an RNN network may have. [39] 

      

 

 

3.1.2 Backpropagation Through Time 

Backpropagation in feedforward networks moves back from the final error through the outputs, 

weights and inputs of each hidden layer, assigning the responsibility of these weights to a part of the 

error by calculating their partial derivatives - ∂E / ∂w. These derivatives are then used by the gradient 
descend to adjust the weights up or down, depending on which direction reduces the error. The 

training of recurrent networks is based on an extension of backpropagation called Backpropagation 

Through Time (BPTT). Time, in this case, is simply expressed by a well-defined set of parameters 
linking one step to the next. The BPTT works by unfolding all timesteps. Every step in time has an 

input step, a copy of the network, and one output. Errors are counted and summed for each time 

period. The network is folded again and weights are updated, using the following formulas: 

 
 

   

  
  ∑

   

   

 
   

   

   

   

   

   

  
             (3.3) 
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  ∑

   

                (3.4) 

 

  

3.1.3 Vanishing/Exploding Gradients 

Recurrent networks seek to create links between a final output and events that preceded many steps in 

the past, so it is very difficult to know how much importance should be given to older inputs. This is 

mainly because the information, flowing through the neural networks, passes through multiple stages 

of multiplication. Any quantity that is frequently multiplied by an amount slightly larger than one can 
become incalculably large, and vice versa, a number multiplied by an amount less than one can 

become incomprehensibly small. If the gradient becomes so small that it disappears we say we have a 

problem of vanishing gradients. On the contrary, if gradient values are greater than 1, the continuous 
multiplication of the tables begins to increase the value of the derivatives exponentially. This is 

defined as an exploding gradients problem. 

More specifically, the problem of vanishing gradients is a problem we encounter in artificial neural 
networks due to the gradient descent learning mechanism. Each weight receives a change according to 

the error factor in relation to the specific weight at each repetition of the training. The first problem 

arises when the derivative is small enough. Continuous multiplications due to the chain rule lead to a 

marginal zeroing of the change, which prevents weight from changing their values and thus stop 
training. The second problem is occurs in the case where the derivative is of great value. Now the 

chain rule causes the change to get quite high prices which lead to extreme increases in the value of 

weights, which also stops the training process. 
Below are the results of applying a sigmoid function multiple times, where the slope gradually 

disappears. 

 

 

     Figure 3-3: Results of applying the sigmoid function multiple times.[40] 
 

 

3.1.4 Long Short-Term Memory (LSTM) 

To overcome the problems mentioned above, Hochreiter and Schmidhuber in 1997 proposed long-

short term memory networks (LSTM)[27][28]. Since then, LSTM networks have revolutionized the 

fields of speech recognition, machine translation, etc. Like conventional RNNs, LSTMs also have a 
chain-like structure, but the recurrent units have a different structure. Instead of having a single layer 

of neural network, there are four, which interact in a specific way. 
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       Figure 3-4: Architecture of an LSTM. [41] 

        

The most common architecture consists of a cell and three gates that regulate the flow of information 

within lstm: an input gate, an output gate, and a forget gate. They are called gates, because the 

sigmoid function compresses the values of these vectors between 0 and 1 and with the multiplication 
per element with another vector, they can determine how much information the other vector wishes to 

hold. The cell is responsible for monitoring the dependencies between the elements in the input 

sequence. The input gate controls the extent to which a new value flows into the cell. The forget gate 
controls the extent to which a value in the cell remains and the output gate controls the extent to 

which the value in the cell is used to calculate the LSTM output. There are connections to and from 

the LSTM gates, some of which are retrospective. The weights of these connections, which need to be 

trained during training, determine how the gates work. 
To better understand how LSTMs work, let's see how the hidden state ht is calculated: 

 

                                (3.5) 

                               (3.6) 

                               (3.7) 

                                            (3.8) 

                         (3.9) 

 
The key behind the LSTM network is the horizontal line at the top, known as cell state. The cell state 

passes through all the repeating sections and modifies them from each other with the help of a gate. 

This causes the maintenance of information in the network. More specifically: 

 Forget gate ft : Decides what information is to be "thrown" by the cell state. This is done by 

looking at ht-1 and xt and generating a number between 0 and 1 for each number in the cell 

state Ct-1.The number 1 represents "totally keeping the number" while 0 represents "totally 

forgetting the number". 

 Input gate it: determines what new information is to be stored in cell sate. This process has 

two parts. First, a sigmoid layer that decides which values will be updated. Then, a tanh layer 

creates a vector of new candidate values, Ct ', which could be added to the state. In the next 

step, we will combine these two parts to update the new state. 

 Output gate ot: decides how much information from the internal state wants to expose to the 

external network. The output is based on the cell state, but it is a filtered version of it. We run 

a sigmoid layer that decides which parts of the cell state will exit.  
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 Internal memory Ct: We multiply the old state with the ft, forgetting the things we decided to 

forget earlier. Then we add it * Ct '. These are the new candidate values, scaled by how much 

we decided to update each situation. 

 Hidden state ht: the cell state goes through a tanh (to push the values to be between -1 and 1) 

and multiplies with the output gate so that we can only export the parts we have decided. 

 

 

      Figure 3-5: Cell structure of an LSTM cell. [41] 

 

3.2 CONVOLUTIONAL NEURAL NETWORKS (CNN) 

Convolutional neural networks [1],[5],[6] are deep neural networks that are primarily used to 

categorize images, detect objects within images, or group them into content-based clusters. It is 
similar to ordinary neural networks since they are composed of neurons with weights and biases. Each 

neuron receives inputs, executes an internal product, and optionally uses a non-linear function. They 

still have a loss function (e.g. Softmax) in the last fully connected layer and all the tricks we have 
developed for training neural networks continue to apply. 

In contrast to traditional neural networks, CNN architectures explicitly admit that the inputs are 

images that allow us to encode certain properties in architecture. These, therefore, make forward 

function more efficient to implement and significantly reduce the amount of parameters in the 
network. 

 

3.2.1 Architecture 

First, we will analyze the shape of an image that enters such a network. The input is a 3-dimensional 

array of the form H x W x 3, where H (heigth) corresponds to the number of pixels of the image on 

the vertical axis, W (width) corresponds to the number of pixels of the image on the horizontal axis 
and 3 is the 3 RGB color channels (Red, Green, Blue). Each parameter (red, green, blue) determines 

the color intensity with an integer from 0 to 255. If the images are black and white the input array will 

be in the form H x W x 1. 
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       Figure 3-6: Form of a color image. [42] 

 

 
The input then goes through a series of processing that result from a combination of the following 
levels: a convolutional layer, a pooling layer, Relu layer and a fully connected layer. 

 

3.2.2 Convolutional Layer 

The convolutional layer, as described in [1], is the basic unit of construction of a Convolutional 

Network, which performs the most demanding calculations. The main purpose of this level is to 

extract attributes from the input image. 
The Convolution layer uses a set of filters that detect the presence of specific features or motifs 

presented in the original image given in the input. They usually have smaller dimensions than those of 

the original image, but retain the depth dimension the same as that, i.e. 3. Each filter slides across the 
input image, and an inner product is calculated to provide an activation map. Different filters that 

detect different characteristics rotate in the input image and a set of activation maps are the output. 

The term activation maps refers to image areas that have been mapped to attributes associated with 
the filters. Intuitively, the network will be trained on filters that are activated when they see a type of 

visual feature such as the edge of an orientation or the spot of some color on the first level. Thus, we 

have now acquired a whole set of filters at each convolutional level, each of which will produce a 

two-dimensional activation map. We will stack these activation maps at the third dimension (depth) 
and finally get the three-dimensional output. 

 

 

      Figure 3-7: A representation of convolutional layer. [1] 
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. In the example that follows, neurons use different filters but they process the same part of the image. 

 

 

     Figure 3-8: Processing an image using different filters. [1] 

     

   
Before we analyze the remaining levels, we should mention some hyperparameters that control the 

size of the output: 

1. The stride determines how many pixels the filter moves over the image. For example, when 

the stride has a value of 1, the filter will be moved by one pixel, whereas if it has a value of 2 

it will be moved by two, etc. This not only reduces the size of the output, but also the overlap 

of neighboring levels. Given an image of NxN dimensions, FxF dimensional filter, and S the 

size of output G will be: 

                  

 

 

 

       Figure 3-9: Example of a filter with stride = 1. [1] 

     

2. The convolutional layer tend to lose information from the borders of the image. An effective 

way to solve this problem is to apply zero-padding in order to fill the image borders with 

zeros. 
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     Figure 3-10: Application of zero padding at the borders of an image. [1] 

       

 

Corresponding to the previous case, if P is the number of levels of zero padding, the 

output will have a size: 

                      

 

Summarizing, the convolutional layer has the following characteristics: It takes as input an image size 

H1 x W1 x D1 and it is determined by the following parameters: 
1. Number of filters K 

2. Their spatial size F 

3. Step S 

4. The zero padding number P 

When given these parameters, the resulting output will have a size of H2 x W2 x D2, where 
 W2 = 1 + (W1 + 2P-F)/S 

 H2 = 1 + (H1 + 2P-F)/S 

 D2 = K 

 

3.2.1.2  Relu Layer 

The next level after convolution is the implementation of a non-linear function. This level does not 

affect the size of the output but is applied to saturate or limit the output. Any of the known functions 

such as tanh or sigmoid can be used as a non-linear function but the one most used is ReLu for the 
following reasons: 

 Due to the simple definition of the function itself and its derivative  

                                                       

 The tanh and sigmoid functions cause backpropagation problems. In deep neural networks, 

the gradient gradually disappears because the derivative of these functions is close to 0 in 

almost the whole set of values except the center. 

ReLU is an element-wise operation (applied per pixel) and replaces all negative pixel values in the 

attribute map with zero. The purpose of ReLU is to introduce non-linearity to ConvNet, as most of the 
real-world data we would like the network to learn will be nonlinear. 

 

 

3.2.1.3 Pooling Layer 

The Pooling Layer is a layer that is usually introduced between successive convolutional levels in 

Convolutional Network architecture. The idea behind this level is sampling to reduce complexity for 
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the next layers while retaining important image information. The method may be considered to be 

equivalent to reducing the resolution of an image. The pooling method used in most cases is max 
polling. It separates the image into smaller orthogonal regions and returns from each subregion the 

pixel with the highest value.  

 

 

 

     Figure 3-11: Application of a 2x2 Max-pooling. [1] 

       

Instead of taking the largest element, we can also get the Average Pooling or the sum of all items in 

this window. In practice, Max Pooling has been proven to work best. 

The pooling layer has the following characteristics: It accepts an image size H1 x W1 x D1 and it is 
determined by the following parameters: 

1.  Their spatial size F 

2.  Step S 

When given these parameters the resulting output will have a size of H2 x W2 x D2, where 

 W2 = 1 + (W1 -F)/S 

 H2 = 1 + (H1 -F)/S 

 D2 = D1 

 

3.2.1.4 Fully Connected Layer 

This is a common neural network with only one layer. Each node is connected to each node of both 

the previous and the next layer and uses an activation function at its output. The purpose of the fully 

connected layer is to use these attributes to classify the input image into different classes, based on the 
set of data used for training. 

 

 

     Figure 3-12: Example of a FC layer after a convolutional layer. [1] 
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3.2.3  Training 

The technique used for training convolutional networks [7] is similar to that of feed forward networks. 

Firstly, there is one forward pass and an output is produced. Then the error is calculated and the error 
of each weight / filter is updated to pass parameters backwards. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm  3.2 : BackPropagation for CNN 
 

1. Initialize filters and parameters with random values 

2. An image is inserted into the network, passing through all existing levels (convolutional, 

pooling, etc.) and calculate the output probabilities for each class. 

3. Calculate total error at output level. 

4. Using the backpropagation method mentioned above, we calculate the error gradients 

with respect to all the weights of the network and then apply the gradient descent to 

update all filter values / weights and parameter values to minimize the output error as 

follows:  

a) The weights are adjusted according to their contribution to the overall error 

b) Parameters such as the number of filters, filter sizes, network architecture, 

etc., are pre-set before step 1 and do not change during training - only filter 

values and connection weights are updated. 

5. Repeat steps 2-4 for each pictures in the training data. 
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 Related Work Chapter 4:

4.1 OBJECT DETECTION 

The first efficient algorithm in object detection was one created for face detection in 2001 by Pau 

Viola and Michael Jones and it was name Viola-Jones Algorithm. They hand-coded features like the 
location of eyes, nose, mouth and the relations to each other and fed them into a classifier, a support 

vector machine. In 2005 a paper published by Navneet Dalal and Bill Triggs featuring the Histograms 

of Oriented Gradients (HOG) outperformed any algorithm created until that moment. 

Deep Learning algorithms became widely used in computer vision with its resounding success at the 
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) of 2012, where they outperformed all 

other algorithms.   

The most advanced methods solving the task of object detection using again CNNs is Faster R-CNN 
[8]. Faster R-CNN, is composed of two modules. The first module is a deep fully convolutional 

network that proposes regions, and the second module is the Fast R-CNN detector that uses the 

proposed regions. The entire system is a single, unified network for object detection. In ILSVRC and 

COCO 2015 competitions, Faster R-CNN and RPN are the basis of several 1st-place entries in the 
tracks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation. 

RPNs completely learn to propose regions from data, and thus can easily benefit from deeper and 

more expressive features. These results suggest that this method is not only a cost-efficient solution 
for practical usage, but also an effective way of improving object detection accuracy. For this thesis 

we used Mask RCNN which is an extension of Faster RCNN, explained in detail in the next section. 
 

4.1.1 Mask RCNN 

Mask RCNN [8] (Regional Convolutional Neural Network) is the most modern approach that instance 

segmentation It consists of two stages: one generates regions where it is likely to be an object and 

second it generates masks in pixel level. 
 

 

              Figure 4-1: Mask R-CNN structure. [43] 
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Backbone is the first stage of the mask-RCNN and it is a convolutional neural network typically, 

ResNet50 or ResNet101that extracks features. The early layers detect low level features (edges and 
corners), and later layers successively detect higher level features (car, person, sky).The backbone can 

be improved using the Feature Pyramid Network known as FPN whish is created by adding a second 

pyramid in the standard feature extraction pyramid that takes the high level features from the first 

pyramid and passes them down to lower layers, it allowing features at every level to have access to 
both, lower and higher level features.  

 

 

      Figure 4-2: Feature Pyramid Networks. [44] 

 

 

 
The first part of the network is a Region Proposal Network.The RPN is a lightweight neural network 

that scans all FPN top-bottom pathway in a sliding-window fashion and finds areas that contain 
objects. The regions that the RPN scans over are called anchors, which are boxes distributed over the 

image area. The RPN generates two outputs for each anchor a binary anchor class and does bounding 

box refinement. 
Using the RPN predictions, we pick the top anchors that are likely to contain objects and refine their 

location and size. One of the great advantages of the RPN is that it does not scan the actual image, the 

network scans the feature map, making it much faster. 
Next is the ROI Classifier. This stage runs on the regions of interest (ROIs) proposed by the RPN and 

produces a class of the 80 total classes that it is trained to recognize, does some more refinement on 

the bounding boxes and produces the final results. At this stage ROIAlign is order to have all 

bounding boxes the same size. 
At the last stage the regions suggested by the previous layer are used from the model in order to create 

masks. Masks are low 28x28 pixels resolution and are represented with float numbers. 

 
 

4.1.2 Image Classification 

Image Classification is an important task within the field of computer vision. Image classification 
refers to the labelling of images into one of a number of predefined categories. Classification includes 

image sensors, image pre-processing, feature extraction and object classification. Many classification 

techniques have been developed for image classification like Artificial Neural Network (ANN), 

Decision Tree (DT), Support Vector Machine(SVM) and Fuzzy Classification.  
For the purpose of this thesis we will focus on approaches based on Artificial Neural Networks. In the 

most recent work in computer vision, variations of neural networks trained with stochastic gradient 
descent are mostly used. One of the state of the art pre-trained models for this task is VGG-16[12] 

proposed by Karen Simonyan  & Andrew Zisserman from the University of Oxford in 2014. The 

model achieves 92.7% top-5 test accuracy in ImageNet, which is a dataset of over 14 million images 
belonging to 1000 classes. It was one of the famous models submitted to ILSVRC-2014. It makes the 

improvement over AlexNet by replacing large kernel-sized filters (11 and 5 in the first and second 
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convolutional layer, respectively) with multiple 3×3 kernel-sized filters one after another. VGG16 

was trained for weeks and was using NVIDIA Titan Black GPU‟s. 
Another state of the art model is Inception V3[2]. Inception-v3 is a convolutional neural network that 

is trained on more than a million images from the ImageNet database. The network is 48 layers deep 

and can classify images into 1000 object categories.  Inception-v3 is a widely-used image recognition 

model that has been shown to attain greater than 78.1% accuracy on the ImageNet dataset. The model 
is the culmination of many ideas developed by multiple researchers over the years. 
 

These models are trained to classify an image, i.e. assign a class label to it. It proved to be very 
efficient to utilize a pre-trained image classification model in similar tasks. From the great variety of 

pre-trained models, VGG-16 and Inception V3 achieve the state-of-the-art performance. We choose to 

implement Inception V3 in our model for the task of feature extraction from the images. 
 

 

4.1.3 Inception_V3 

The convolutional neural network discussed in this section is the next generation of GoogleNet by 

Christian Szegedy, Google's researcher on Machine Learning, Artificial Intelligence and Computer 

Vision, through deep learning. Inception_V3 is a widely used image classification model that has 
been proven to achieve a precision of more than 78.1% in the ImageNet data set. 

The model itself consists of symmetrical and asymmetric structural elements such as convolutions, 

average pooling, max pooling, concatenations, dropouts and fully connected layers. The training of 

this network has been done in a thousand classes, meaning it is capable of recognizing a thousand 
different objects. 

The basic principles governing this network and making it effective compared to other similar 

networks are: 
 Avoid bottleneck, especially at the beginning of the network. 

 High-resolution rendering as it is easier to move locally to a network. 

 Implementation of spatial aggregation in small dimensional implants. For example, before 

implementing a 3x3 convolution, we can reduce the dimensions of the representation of the 

entrance, without having to deal with some serious consequences. 

 Balance between the width and depth of the network 

The core concept behind this model is the inception module shown in Figure 4-4. Inception module 
was firstly introduced in Inception-v1 / GoogLeNet. The input goes through 1×1, 3×3 and 5×5 

convolution, as well as max pooling simultaneously and concatenated together as output. The 1×1 

Convolutional layers before applying another layer, is used for dimensionality reduction.  

 

 
The aim of factorizing Convolutional is to reduce the number of connections/parameters without 

decreasing the network efficiency. Convolutions with larger spatial filters tend to be computationally 

expensive. 
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Figure 4-3: (a) Original Inception module (b) 5 × 5 convolution is replaced by two 3 × 3 convolution. [2] 

 

For example, by using 1 layer of 5x5 filter the number of parameters for this layer is 5x5=25 and 

using 2 layers of 3x3 filters the number of parameters is 3x3 +3x3 = 18, the number is reduced by 

28%. 
These suggest that the convolutions with filters larger than 3x3 might not be useful as they can always 
be replaced into a sequence of 3x3 convolutional layers. A bigger improvement it would be to use 

asymmetric convolutions For example using a 3x1 asymmetric convolutions followed by a 1x3 

convolution. 
 

     

Figure 4-4: (a) Factorization of the n × n convolutions. (b) One 3×1 convolution followed by one 1×3 convolution replaces 

one 3×3 convolution. [2] 

 

For example, by using 3×3 filter, the number of parameters is 3×3=9, whereas by using 3×1 and 1×3 

filters, the number of parameters is 3×1+1×3=6. If we use two 2×2 filters, the number of parameters is 

2×2×2=8, number of parameters is only reduced by 11%. 
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Figure 4-5:(a) Inception modules. (b) Auxiliary classifier [2]   

  

The architectures shown in Figure 4-5(a) and Figure 4-6(a) are the 2 different inception modules 

suggested by the author. With factorization, number of parameters is reduced for the whole network, 

it is less likely to be overfitting. 

 
Auxiliary Classifier are used to push useful gradients to the lower layers in order to make them 

immediately useful and improve the convergence during training by combating the vanishing gradient 

problem in very deep networks. In GoogLeNet / Inception-v1, auxiliary classifiers are used for having 
deeper network. In Inception-v3, auxiliary classifier is used as regularizer. An example is shown in 

Figure 4-6 (b) where one auxiliary classifier is used on the top of the last 17×17 layer. 

 
In most cases, convolutional networks use the pooling operation to decrease the grid size of the 

feature maps. In [2], an efficient grid size reduction is proposed as follows: with the efficient grid size 

reduction, 320 feature maps are done by convolution with stride 2. 320 feature maps are obtained by 
max pooling. And these 2 sets of feature maps are concatenated as 640 feature maps and go to the 

next level of inception module. With this approach the model is less expensive but still efficient. 

 

      Figure 4-6: Inception module for grid-size reduction. [2] 

 
Inception v3 network stacks 11 inception modules where each module consists of pooling layers and 

convolutional filters with rectified linear units as activation function.  

 

All the above modules are combined to create the total inception_v3 model, shown below. The model 
has 3 modules like the ones shown in Figure 4-5(a) at the beginning of the model. Then there is a grid 

size reduction layer, and after there are again 4 inception modules like in Figure 4-5 (a) followed by 
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another grid size reduction module and an auxiliary classifier (shown in Figure 4-8 at the bottom 

right). Last, two modules from Figure 4-6(a) are connected to the model and at the end a fully 
connected layer with a softmax classifier for the classification task. 

 

      Figure 4-7: Schematic diagram of Inception V3. [46] 

 

 

4.2 IMAGE CAPTIONING 

One of the first approaches in image captioning, using attention, is the one explained in the paper 

“Show, Attend and Tell: Neural Image Caption Generation with Visual Attention‟‟ [13]. This 

approach utilizes the encoder-decoder architecture with another mechanism in between, the attention 
mechanism. This paper, describe approaches to caption generation that attempt to incorporate a form 

of attention with two variants: a “hard” attention mechanism and a “soft” attention mechanism. It 

shows how we can gain insight and interpret the results of this framework by visualizing “where” and 

“what” the attention focused on. Before this work attention was only used for machine translation. 
 

Another state of the art approach is the one described in the “Bottom-Up and Top-Down Attention for 

Image Captioning and Visual Question Answering”[14], where our model is based on. The innovation 
about this model is that typically, attention models operate on CNN features corresponding to a 

uniform grid of equally-sized image regions. In this approach attention is calculated at the level of 

objects and other salient image regions. Applying this approach to image captioning, the results on the 
MSCOCO test server establish a new state-of-the-art for the task. 

 

For the purpose of this thesis, we also examined other similar implementations like [53], in order to 

compare our methods and results . 
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 Our Image Captioning Model Chapter 5:

In this chapter we will analyze the neural model we used to produce descriptions of the content of 
images. For this we use recurrent and convolutional neural networks to encode the input image into a 

vector and use this encoding to decode the desired output sequence. Some examples are shown in 

Figure 5.1. 
 

 

       Figure 5-1: Image Captioning Examples. [47] 
 

 

5.1 OVERVIEW OF MODEL ARCHITECTURE 

The model we developed it is based on sequence to sequence model [9]. Introduced for machine 

translation in 2014 by Google, a sequence to sequence model aims to map a fixed length input with a 
fixed length output where the length of the input and output may differ. In its general form the model 

consists of 3 parts: encoder, intermediate (encoder) vector and decoder.  

The Encoder consists of several recurrent units where each accepts a single element of the input 

sequence, collects information for that element and propagates it forward. The Encoder Vector is the 
final hidden state produced from the encoder part of the model. This vector aims to encapsulate the 

information for all input elements in order to help the decoder make accurate predictions a. The 

Decoder also consists of several recurrent units where each predicts an output for each time step.  
Our approach maintains a similar structure. First, the image enters as an input to the encoder. The 

encoder undertakes to extract features from the image and represent them in the form of vectors so 

that they can be processed by the next part of the network, the decoder. The decoder receives this 
information and tries to express it in natural language. The difference is that our encoder model does 

not contain an RNN network. Instead, the encoding of the image is a combination of two pre-trained 

models: Inception V3 and Mask-RCNN. More analytically, the encoder consists of a convolutional 

network, as those discussed in Chapter 2. These networks are widely used in image detection and 
recognition. The object detection has been greatly emphasized and models have been developed, such 

as those described here, which perform best compared to other methods.  

 
The decoder is an LSTM network. Words are entered into the network through an Embedding Layer, 

coding words into vectors that neural networks can process. These vectors then enter as an input into 

the LSTM, which given a word undertakes to predict the next. In contrast to the decoder mentioned 
above, our decoder has an attention layer. The attention layer will process different parts of the image 

and decide where more emphasis should be placed.  
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     Figure 5-2: A high-level block diagram of our model. 

 
In the following sections we will analyze step by step each component of the above model. 

 

5.2 ENCODER 

In recent years, the performance of convolutional neural networks in classification problems has risen 

steeply due to continued improvements in the field of deep learning, particularly in neural networks. 

Most importantly, these improvements have not only been made by the development of hardware and 
larger data sets, but also by new ideas and algorithms that improve network architecture. The Encoder 

model consists of the following parts: 

 A mask R-CNN for detecting important regions from the input image.  

 Inception_V3 model for extracting features from the whole image and each region. 

 Another dense layer for reducing the size of the feature vector. 

 Dropout layers for preventing overfitting. 

 

 

 

       Figure 5-3: Encoder model architecture 

 

5.2.1 Mask R-CNN and Inception_V3 in our System 

The input image first enters the mask-RCNN model. The purpose of this model is to scan the image 

and then detect the different regions of interest containing objects. These objects must belong to the 

80 class objects that the model is trained to detect. From the regions that are produced by this model 
we keep only the top-4 regions. By top-4 we mean the 4 regions with the highest probabilities to 

contain an object that belong to one of the 80 classes mentioned above. After these regions are 

produced we use the bounding boxes to crop the initial image at the places suggested by the mask-

RCNN model. Now instead of only one image, we have also another 4 that contain the most 
interesting part of it. The reason we choose number four is because we calculated that the mean of the 

number of  objects in the training images detected is 3.9. 
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↓Mask -RCNN 

   

↓keep the 4 regions with higher likelihood 

 

  

      Figure 5-4: A visual example of how we use the Mask-RCNN model 

 

These regions are then passed through Inception_V3 model for feature extraction. As previously 

mentioned, it is the second part of the model where five 299x299x3 images enter, pass through some 

processing steps and a feature vector is created for each one of them that contains useful image 
characteristics. It is worth noting, that we are not interested in what is contained in the pictures 

explicitly, as at this point it is not an image classification problem. What interests us is to get some 

important image features that will be promoted to the LSTM. For this reason, we do not take the 

output from the last layer of the network where the softmax is located because it will give us a 
probabilistic distribution among the thousands of classes it has been trained on. Instead, the output 

will result from the third from the end layer, which is a trigger restriction level. From this layer, we 

get a tensor of size 1x2048 for each image region and the whole image. So in total 5x2048 feature 
vectors are computed. 
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5.2.2 Image Embedding 

The outputs of the Inception V3, as we have already mentioned, will be the input to the LSTM 

network, which is responsible for generating reasonable suggestions for describing images. For this, 

we must do some modifications. In order to reduce computational costs and for better data 
management, we should change the size of the 5 parts of the images from 2048 to 256. For this 

transformation, we will need to add a fully connected layer, as the ones mentioned in Chapter 2, 

immediately after producing the feature vectors. We also added a dropout layer to increase the 
generalization power of the encoder and prevent overfitting.  The output of this layer will be a tensor 

of size (batch_size x 5 x 256). Now we have created the encoder vector that will be propagated to the 

decoder. 

 

5.3 DECODER 

The purpose of this model is to decode the feature vectors, produced by the encoder, into rational 
sentences. The decoding of the images and the words goes through the following stages: 

 Word Embedding for encoding every word to a vector that can be processed by the neural 

network. 

 Attention for focusing on specific parts of the input image. 

 LSTM for combining all the above to produce a word at each time step. 

The full decoder model is shown in the next figure. 

 

 

 

       Figure 5-5: Decoder model architecture 

5.3.1 Word Embedding 

Neural networks, by their nature, are so constructed that they can process only numbers. As a result, 

the representation of words as a string is impossible and therefore it is necessary to find a mechanism 
that will represent each word with a single vector made up only of numbers.  

The first step in the representation process is to determine how many different words our model can 

detect, i.e. to create a vocabulary. The set of training data that we have at our disposal, which will be 
discussed in more detail in the next chapter, consists of a number of images and their respective 

descriptions in character sequences in English. The vocabulary will be produced from all the different 
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words that appear in the descriptions of the images of the training dataset. To do this, we first need to 

do a Tokenization, in order to divide the sentences into tokens, in the way illustrated below: 
 

<start>  two cars parked on the sidewalk on the street <end> →   

[<start>, two, cars, parked, on, the, sidewalk, on, the, street, <end>] 

 
Two additional tokens have been added to each sentence. A token <start> that marks the beginning of 
the sentence and a token <end> that marks the end and are also included in our vocabulary. We also 

added a token <unk> for the words that are in the training sentences but not in our vocabulary and the 

<pad> token for the zeros produced by the zero padding. In all, the vocabulary consists of words, 
sorted in descending order, based on their frequency of occurrence in the descriptions of the training 

dataset.  
The next step is to encode words in numbers in a unique way, so that each number that corresponds to 

a word is not used to encode any other word. The method followed is the representation of each word 
with a number corresponding to the position of that word in the vocabulary. Thus the word „<pad>‟ as 

the most common in descriptions is first in the vocabulary and for this it has the number 0. 

Correspondingly, „<unk>‟ has the number 1, „a‟ has the number 2, „<start >‟ has the number 3, „<end 

>‟  has the number 4 etc. Now each sentence can be represented by a vector of integers as shown 

below: 

 

<start>  two cars parked on the sidewalk on the street <end> →   

[<start>, two, cars, parked, on, the, sidewalk, on, the, street, <end>] →  

[3, 16, 204, 68, 5, 7, 193, 5, 7, 25, 4] 

 
Many Natural Language Processing systems and techniques handle words as individual units, without 

the concept of similarity between words, as they are represented as indicators in a dictionary, in the 

way we have described the process of representation of words so far. Below are some of these 
methods and the reasons why we had to reject them. 
One way would be to apply the bag of words (BoW). It is called bag of words because in this 

approach we only concern about the number of words that appear, not the order in which they appear. 
In more detail, after first tokenizing the sentences in individual words and constructing a vocabulary, 

we calculate the number of occurrences of each word in the sentence we look at each time as shown in 

Figure 5-6. So in the case of the first sentence, where every word is unique, each word that appears 

will have the number one, and in the remaining positions it will have zero. Similarly, in the fourth 
sentence there are two words that appear twice, is and a. There will be number two. 

The bag of words model is used as a tool for generating attributes. After we turn into a bag of words 

we can calculate frequency to characterize it.  

 

      Figure 5-6: An example of bag of words model. [49] 

       

 

We notice that in this case there is no information about the semantics of words, and if two words are 

semantically identical.  
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Another method would be to apply One-Hot coding. Each word is encoded by a vector as long as the 

vocabulary, with zeros in all positions except the position corresponding to that word. We see that in 
this case there is no information about the semantics of the words and the resulting vectors are quite 

large. 

 

The above methods, although simple, present several problems that come to solve the embedding 
vectors. The basic idea of these vectors is to convert words into fixed length vectors, which contain 

real numbers. The purpose is to create representations of words whose size will be independent of the 

size of the vocabulary and also have a much smaller number of dimensions. This conversion is 
necessary as most engineering learning algorithms require inputs to be true value vectors. Two are the 

main advantages of using word embedding: 

 Dimensionality Reduction. In the case that we would use one-hot encoding for word 

representation, each word would be encoded by a vector of numbers of which in positions 

would have been zeroes and only in one place there would be 1. That as it is obvious is not 

computationally efficient. 

 Contextual Similarity. This means that the representation will be in such a way that words 

with common semantics should have similar representations. 

 

 

      Figure 5-7: Semantic similarities using word embedding. [48] 

 

 
In Figure 5-7, we can see some semantic similarities between words. For example, the word "king" 
and the word "queen" will be close enough and will be as far away as the words man and woman. 

Also, the words "swimming" and "swam" will be in close proximity, since this model will have 

identified the relationship between the two verbs, that is, they are the same verb at another time. 
 

In our model, the dimensions of the embedding vectors were set to 256. This means that each word - 

which we refer to as an integer - is represented by a 256 size vector, which contains real values that 

express the semantic similarity of that word with some other words. Thus, the set of word depictions 
in vectors is implemented by using a two-dimensional array that has dimensions 14369 x 256, where 

the number 14369 refers to the number of words in the vocabulary, while 256 is the dimensions of the 

embedding vectors.  
 

 

5.3.2 Attention 

Attention mechanism is an architecture that enables a neural network to concentrate on the most 

important parts of the image. A neural attention mechanism equips a neural network with the ability to 
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focus on a subset of its inputs (or features). Its purpose is to apply the same tactics followed by 

people. Human visual attention allows us to focus on a certain region with “high resolution” while 
perceiving the surrounding image in “low resolution”, and then adjust the focal point or do the 

inference accordingly. 

Attention in deep learning can be interpreted as a vector of importance weights: in order to predict or 

infer one element, such as a pixel in an image or a word in a sentence, we estimate using the attention 
vector how strongly it is correlated with other elements and take the sum of their values weighted by 

the attention vector as the approximation of the target. 

By utilizing this mechanism, it is possible for the decoder to capture somewhat global information 
rather than solely to infer based on one hidden state. 

Attention can be applied to any kind of inputs, regardless of their shape. In the case of matrix-valued 

inputs, such as images, we can talk about visual attention. The attention mechanism is better 
explained in the next algorithm. 

 

 

 

 
The attention model can be represented with the structure shown in Figure 5-8. 

 

       Figure 5-8: Attention Model Structure. [50] 

 

Algorithm 4.1 : attention 

 
1. Given a feature vector C of an image and a previous hidden yi vector 

2. Multiply C and yi with weights W1 and W2, respectively 
3. Add the results 

4. Pass the new vector through a tanh activation function 

5. Multiplied the result vector with V weights 
6.Then pass this vector from a softmax function 

7. Multiply the output of the softmax again with feature vector C 

8. Add the results 
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The algorithm can be described with the following mathematical equations: 

                
         (5.1)  

   
   

∑     
       (5.2)  

        ∑             (5.3) 

Where yi is the feature vector, C is the previous hidden state of the LSTM, si the attention weights and 

z the context vector. 
In our system attention mechanism follows the same structure. The 5x256 feature vector produced by 

the image embedding is the input to the attention model, which based on the previous hidden state of 

the LSTM, with size 1x512, will determine where it must give the most attention among the input 
vectors. The output of this model is a 1x256 context vector and it is concatenated with the embedding 

vector of the word at the current time step, producing a vector of size 1x512. This is the input to the 

LSTM unit. The attention model has another output, called attention weights. These weights are used 
to visualize the attention mechanism on the image.  

At this point it is worth mentioning that attention models operate on CNN features corresponding to a 

uniform grid of equally-sized image regions, irrespectively of the content of the image. As proposed 

by [14] to generate more human-like captions we use a different approach where attention is 
calculated at the level of objects, as shown in Figure 5-9, like the ones suggested by the Mask-RCNN 

model, as they are a much more natural basis for attention. 

 

 

Figure 5-9:  A typical attention model with a uniform grid of equally-sized image regions (left). Our approach enables 

attention to be calculated at the level of objects (right). [14] 

 

 

An example of what attention does in our model is the following. In the Figure 5-10 below we see 
how our model focuses on specific part of the image in order to produce a word at each timestep. 

Μore examples are in the appendix section. 
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       Figure 5-10: Attention Example 
 

 
 

5.3.3 Caption Generator Based on LSTM  

In this paragraph we will analyze the most important part of our system, which is the LSTM network, 

as those described in the Chapter 3, which is responsible for creating reasonable suggestions for 

describing the content of the images. As mentioned in Chapter 3, they not only have a memory, so 

there is a continuity between the foregoing and subsequent costs, but they also have the advantage of 
dealing effectively with the problem of vanishing and exploding gradients. The LSTM network takes 

as input a vector that contains the representation of both the image and a word, represented by an 

embedding vector, from the known sentences describing the image during training. For this image, a 
word enters at each timestep the LSTM and it outputs the word with the highest probability. Apart 

from the embedding vector LSTM takes as input the hidden state of the previous timestep. This 

processing is repeated until all words in the sentence describing the image are passed through the 
LSTM.  

During training we used the teacher forcing method.  Teacher forcing works by using the actual or 

expected output from the training dataset at the current time step as input in the next time step, rather 

than the output generated by the network. This method is used in order to reduce learning errors and 
improve the model skill and stability.  

 

The LSTM unit has an input of size (1, 512) and so will have its output. As we have already 
mentioned we want to make prediction of a word and for this we need a probabilistic distribution 

among all words in the vocabulary in order to choose the one with the highest probability. For this we 

added two more fully connected layers at the end of our model. The first one is used in order to make 

the model more complex and have more parameters describing the output of the previous layer and 
the last one for giving the output the size of our vocabulary in order to predict a specific word. At the 

last layer we use a softmax classifier for creating probabilistic distribution among the words in the 

vocabulary and then choose the one with the highest probability. 
 

In the figure below we can see an example of how the process of creating a caption works in detail. 

The sentence describing the image is “<start> A man is sitting on a chair <end>”. The tokens <start> 
and <end> was added by us, as mentioned before. The input sentence, which will be fed into the 

LSTM word by word is “<start> A man is sitting on a chair‟‟ and the target sentence that our model 

should be trained to predict is “A man is sitting on a chair <end>”. This is due to the fact that our 

model must be trained to stop when it meets the <end> token, so there is no need for it to exist in the 
input sentence and also the <start> token marks the start of the prediction so there is no need for it to 

be in the output. 
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     Figure 5-11: An example of how LSTM is used for generating captions 

 

 

 

 
The code used for creating the total model of image captioning can be found here: 

https://github.com/NadiaFrh/Diploma_thesis 

 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

https://github.com/NadiaFrh/Diploma_thesis
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 Model Training  Chapter 6:

In this chapter we will analyze the sources from which we derived our data, algorithms and the 
techniques used to train our model, as well as the results presented by our system. 

 

6.1 DATABASE MSCOCO 2015 

The set of data on the database of which we have implemented the training functions of the evaluation 
and operational control is the MSCOCO 2015 dataset [10]. This is a dataset used for the COCO 

competition Captioning 2015. The selection of this particular dataset was due to its large number of 

training examples. More specifically, the training dataset included: 

 
 80000 training images 

 40000 validation images 

 80 categories of common objects 

The data, as officially provided by the COCO website, consists of the images that are in JPEG format, 
along with their descriptions that are in JSON files. Each image has 5 descriptions. The form in which 

descriptions are provided in the JSON file is a collection of “info”, “licenses”, “images”, 

“annotations”, “categories” (in most cases), and “segment info” (in one case). 

1. {   
2.     "info": {...},   
3.     "licenses": [...],   
4.     "images": [...],   
5.     "annotations": [...],   
6.     "categories": [...],    
7.     "segment_info": [...]   
8. }   

 

For the object detection model we used the file instances_train2014.json  and instances_val2014.json 

for training and validation respectively, which has the above format. From this file for the object 

detection model we needed only the “categories” and “annotations” object.  
 

1. "categories": [   
2.     {   
3.         "supercategory": "person",   
4.         "id": 1,   
5.         "name": "person",   
6.         "keypoints": [   
7.             "nose","left_eye","right_eye","left_ear","right_ear",   
8.             "left_shoulder","right_shoulder","left_elbow","right_elbow",   
9.             "left_wrist","right_wrist","left_hip","right_hip",   
10.             "left_knee","right_knee","left_ankle","right_ankle"   
11.         ],   
12.         "skeleton": [   
13.             [16,14],[14,12],[17,15],[15,13],[12,13],[6,12],[7,13],[6,7],   
14.             [6,8],[7,9],[8,10],[9,11],[2,3],[1,2],[1,3],[2,4],[3,5],[4,6],[5,7]   
15.         ]   
16.     }   
17. ]   
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There are 80 different categories contained in the dataset plus the one category given by the Mask-

RCNN for the background: 

1. Class Count: 81   
2. {0.BG   1.person  2.bicycle  3.car   4.motorcycle   5.airplane      
3.  6.bus   7.train   8.truck  9.boat  10.traffic light                               

         
4.  11.fire hydrant  12.stop sign  13.parking meter  14.bench   15.bird       
5.  16.cat   17.dog   18.horse   19.sheep   20.cow                                    

              
6.  21.elephant  22.bear  23.zebra  24.giraffe   25.backpack     
7.  26.umbrella  27.handbag  28.tie  29.suitcase   30.frisbee                         

                     
8.  31.skis   32.snowboard   33.sports ball 34.kite 35. baseball bat    
9.  36.baseball glove 37.skateboard 38.surfboard  39.tennis racket  40.bottle         

                                      
10.  41.wine glass  42.cup  43.fork  44.knife  45.spoon     
11.  46.bowl  47.banana  48.apple  49.sandwich  50.orange                              

                 
12.  51.broccoli   52.carrot   53.hot dog   54.pizza  55.donut     
13.  56.cake  57.chair  58.couch  59.potted plant   60.bed                             

                     
14.  61.dining table  62.toilet  63.tv   64.laptop  65.mouse     
15.  66.remote  67.keyboard  68.cell phone  69.microwave 70.oven                       

                          
16.  71.toaster  72.sink  73.refrigerator 74.book  75.clock     
17.  76.vase   77.scissors  78.teddy bear  79.hair drier  80.toothbrush    
18.  }   

 
The annotations object contains the following objects: 

1. Segmentations : are regions of interest which are usually a list of polygon vertices around the 

object. 

2. is_Crowd : specifies if there is a single object or a group of objects. 

3. image_id : a specific image in the dataset. 

4. category_id : a single category specified in the categories section. 

1. "annotations": [   
2.     {   
3.         "segmentation": [[510.66,423.01,511.72,420.03,...,510.45,423.01]],   
4.         "area": 702.1057499999998,   
5.         "iscrowd": 0,   
6.         "image_id": 289343,   
7.         "bbox": [473.07,395.93,38.65,28.67],   
8.         "category_id": 18,   
9.         "id": 1768   
10.     },   
11.     ...   
12.     {   
13.         "segmentation": {   
14.             "counts": [179,27,392,41,…,55,20],   
15.             "size": [426,640]   
16.         },   
17.         "area": 220834,   
18.         "iscrowd": 1,   
19.         "image_id": 250282,   
20.         "bbox": [0,34,639,388],   
21.         "category_id": 1,   
22.         "id": 900100250282   
23. ]   
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For training our captioning model we used the files annotations_train2014.json and annotations 
_val2014.json and it is only the annotations object as shown below. There is all the information 

needed for the captioning process. For each image there is an identifier called “image_id”, which is 

unique for every one of them in our dataset, an identifier “id” which is the identification number of 

the caption and the identifier “caption” which is the description of the image. The following is an 
example of the format of this file: 

1. "annotations": [   
2.     {   
3.         "image_id": 289343,   
4.         "id": 433580,   
5.         "caption": "A person riding a very tall bike in the street."   
6.     },   
7.     ...   
8.     {   
9.         "image_id": 250282,   
10.         "id": 511309,   
11.         "caption": "A group of school children posing for a picture. "   
12.     },   
13. ]   

 

6.2 MODEL TRAINING 

In this section we will deal with the process of training our system, analyzing the exact algorithm used 

for training, but also the choice of hyperparameters we have done so to optimize this process. 

6.2.1 Training Variables 

Having described all the components of the system we implemented, it's time to see which of these 

pieces were parts of the whole system training. The challenges of designing and selecting the training 
variables we faced during the creation of our system were several and they had to do mainly 

with the problem of overfitting. Nevertheless, we applied techniques that were capable of dealing with 

this problem.  

First of all, the most obvious way to deal with this problem was to initialize the weights of our 
Inception V3 Neural Network, with weights of an already trained model into quite large datasets, such 

as ImageNet, which is capable of identifying and categorizing objects that are in pictures. We applied 

it to all our examples and it helped quite a lot, mainly in the field of generalization. This means that 
the weights of Inception V3 were initialized with pre-trained weights and did not change at all during 

the training process. On the contrary, the weights of the fully connected layer after the inception 

model took part in the training process and so were all the parts of the decoder model coming after. 
More specifically, the attention mechanism needed to adjust its weights during the training in order to 

learn where are the most important features in the input images in relation to the expected output. 

Even though there are pre-trained models capable of representing millions words with fixed length 

vectors, such as word2vec or glove, we observed that the use of such a model did not show any 
improvement, and therefore for simplicity reasons, it was preferred not to include them in our system, 

but to train the weights of embedding layer normally. Finally, the weights of the two fully connected 

layers, which are at the output of the model and at the input of the Softmax classifier after LSTM, 
were variables that needed training, as it did, of course, the weights of LSTM network. 

At this point we must mention that Mask-RCNN model was initialized with pre-trained weights as 

well but then it was fine-tuned using COCO dataset. 

 
In summary, the weights that were trained were the following: 

 Mask-RCNN model in order to be fine-tuned with our model. 
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 The weights of the fully connected layer, which is at its output Inception_V3 network and 

matches the dimensions of the table it contains image features from 2048 to 256. 

 The weights of the attention model, which decide what part of the input image are the most 

important. 

 The weights of the word embedding matrix in fixed length vectors 256, which converts words 

into real value vectors. 

 The weights of the LSTM network, with size 512, which is responsible for making proposals 

descriptions of pictures. 

 The weights of the fully connected layers, located between the LSTM and the Softmax 

classifier, which corresponds the 512 dimensions output of LSTM, firstly at size 512 and then 

at the size of the vocabulary. 

 

6.2.2 Training Algorithm 

The general purpose of our system is to train the LSTM network so that it can predict every word of a 

sentence describing a picture, having first seen the picture as well as all the previous words which are 
represented by the embedding vectors. Attention model has a very important role to this, because of 

its ability to focus on the most important parts of an image and as a result it can help the LSTM to 

make more accurate predictions. The input of the LSTM is a combination of the context vector 

produced by the attention model and a word. At each timestep a word from the training sentences 
enters the embedding layer and a new one is produced. In more detail the train process of our model 

given an  input image I and the training caption  S = (S0,...,SN) is: 

 

                 ,      = 1, … ,  , corresponding to n different objects in an image              (6.1) 

          
 
 ,                         (6.2) 

                ,       t ∈                             (6.3) 

        ,                                   (6.4) 
          ,                         (6.5) 
                                             (6.6) 

 
The image I first enters the mask-RCNN where n objects are created. These objects are then passed 

through a CNN, in this thesis an Inception_V3 model, for feature extraction and the attention 

mechanism uses these features to produce the context vector zt, where t is the timestep. Each word is 

represented with an embedding vector We . Then the whole model is trained to minimizing the cost 
function as follows 

                     

 

   

 

 
But let's look at the steps that are performed in a more detail. 
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6.2.3 Hyperparameter Selection 

In order for our system to produce the best possible results, it should be trainedin the best possible 

way. For this to happen, an important role in system training plays the right choice of 
hyperparameters. In order to come up with the specific choices we will present later, we had to try 

different values, search for values used in corresponding systems and have shown satisfactory results. 

Thus, the values of the hyperparameter we ended up using are: 

 The number of images that will be processed simultaneously by our system (batch size) is 

equal to 64. 

 As an optimizer of our training, we chose Adam. 

 As already mentioned, the number of LSTM network units as 512 

 The output dimensions of the embedding table were 256. 

 The learning rate of our system in the first stage started at 0.001 and gradually reached almost 

zero using a decreasing function. 

 Since our training data set consisted of 80000 images with their descriptions, the epochs in 

which they were trained our system was about 20. 

 

 

 

 

Algorithm 6.1 Training of the total model 
 

1. Given an input image I, pass it through Mask-RCNN and get the top 4 regions of interest. 

2. Combine these 4 images with the total image and pass them through the Inception_V3 

model. Get a feature vector for each of the 5 images. 

3. Promote the Inception_V3 outputs to the fully connected layer in order to transform the 

dimensions of the images feature vector. 

4. Repeat, until a complete sentence for the description of image I is produced: 

a. If t=0: 

     Initialize the hidden state that passes to both LSTM and attention at zero 

Else: 

     Use the previous hidden state 

b. Pass the feature vectors as well as the hidden state of the LSTM into the attention 

model and create a context vector. 

c. Pass one word through the embedding layer. 

d. Concatenate the output of the attention and the embedding layer. 

e. Use the new vector as input to the LSTM unit. 

f. Pass the output of the LSTM through two fully connected layers and make a 

prediction for a word. 

g. Calculate the value of the loss function L(I, S) between the probability provided 

by the LSTM network and the actual word. 

h. Through the technique of error backpropagation and with the help of the Adam 

Optimizer update the values of the trained variables, so they make a more accurate 

prediction next time. 
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Table 6-1: The hyperparameters used in our model. 

 

 
During the inference, there are several techniques that can be used to create captions. The first and 

most common technique is Sampling, where we chose the word with higher probability and then we 

input this word to the embedding layer at the next step and the process continues until we meet the 
<end> token or the proposal reaches a maximum length that we have set. The second technique is 

called Beam Search. In this method, we consider the set of k better propositions as candidates to 

create proposals and we only hold the k better. In our implementation we used the sampling method. 

 

6.3 METRICS 

To evaluate our system we used four of the most common metrics used for image captioning. Those 

metrics are BLEU [11], ROUGE-L[21] and METEOR [17] which were originally created for 
evaluating machine translation. We also used CIDEr [16] that is the only metric created specifically 

for image caption. In the next section we will analyse in detail how those metrics work. 

 

6.3.1 BLEU 

BLEU or Bilingual Evaluation Understudy[11] is an algorithm for evaluating the quality of text which 

has been machine-translated from one natural language to another. First we count the number of 
matches between n-grams of candidate and reference sentences and then we divide by the total 

number of n-grams in the candidate sentences. 

The precision score is pn is then calculated: 
 

    
∑ ∑                                           

∑ ∑                                           
    (6.1) 

 
Then a penalty is computed for short candidate sentences: 

 

   {
        

               
      (6.2) 

 

Where c is the length of the candidate and r is the length of the reference  

The cumulative scores are produced by calculation individual n-gram scores at all orders from 1 to n 
and weighting them by calculating the weighted geometric mean. 

 

             ∑   
 
       

 
      (6.3) 

 

Hyperparameter Value 

Learning rate 0.001 

Batch size    64 

Epochs    20 

Dropout rate    0.3 

Attention  size   256 

Embedding size   256 

LSTM size   512 
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Where wn are positive weights summing to one 

6.3.2 ROUGE 

ROUGE or Recall-Oriented Understudy for Gisting Evaluation [21] finds the common subsequences 
(LCS) between the reference and candidate sentences and calculates the  recall and precision: 

 

          
             

                
     (6.4) 

 

      
             

                
     (6.5)  

 
Then uses this values to compute the term β = Plcs/Rlcs and the final score: 

                
              

            
   (6.6) 

 

 

6.3.3 METEOR 

Metric for Evaluation of Translation with Explicit Ordering[17] is a metric for the evaluation of 

machine translation output. Given a pair of translations, METEOR creates an alignment between the 

two strings by mapping unigrams, such that every unigram in each string maps to zero or one unigram 
in the other string, and to no unigrams in the same string. Once a final alignment has been produced 

the Meteor score for this pairing is computed by calculate unigram precision P = m/t and unigram 

recall R = m/r where: 

m: unigrams found between the reference and candidate  
t: total number of unigrams in the candidate 

r: total number of unigrams in the reference 

We then compute the harmonic mean of P and R: 

 

       
     

    
             (6.7) 

 
METEOR, also, computes a penalty for a given alignment as follows: 

 

             
       

                
               (6.8) 

 
Chunks are the unigrams in adjacent positions in the candidate that are also mapped to unigrams that 

are in adjacent positions in the reference. Finally, the METEOR Score is computed as follows: 
 

                             (6.9) 

 

 

6.3.4 CIDEr 

Consensus-based Image Description Evaluation[16] is used to evaluate how well a candidate sentence 
ci matches a descriptions Si = {si1, . . . , sim} of an image. This metric is the only one that uses the 

stems of the words. It produces the score by calculating the TF-IDF score, calculating the frequency 

an n-gram occurs in the reference sentence and uses a penalty for n-grams that commonly occur 

across all images in the dataset.: 
 

  (   )   
  (   )

∑   (   )    
     

| |

∑        ∑   (   )      
             (6.10) 
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where : 
Ω is the vocabulary of all n-grams  

hk(sij )  a reference sentence sij 

hk(ci)  a candidate sentence ci 

I  the set of all images in the dataset.  
Then we compute the average cosine similarity between the candidate sentence and the reference 

sentences: 

                  
 

 
∑

       
      

||      || || 
 (   )||

                (6.11) 

 

Where: 

 g
n
(ci) is a vector corresponding to all n-grams of length n  

||g
n
(ci)|| is the magnitude of the vector g

n
(ci).  

Similarly we compute for g
n
(sij ).  

At the last step we combine the scores from n-grams as follows: 

              ∑                
 
                (6.12) 

The authors of the paper propose to use uniform weights wn = 1/N as they produce the best results. 
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 Results Chapter 7:

In the previous chapter we explained in detail how the model we created worked. In this chapter we 
will analyse the COCO dataset that it was used, at the first step, for training our system and then for 

evaluation using the metrics BLEU, METEOR, ROUGE-L and CIDEr, described in the next section. 

Our baseline model is the one proposed in [29]. In this approach the image is divided into 64 parts of 
the same size and shape. Attention is then split among these 64 parts and a caption is produced with 

help of an LSTM.  

In the table below we present our results compared to the baseline model. 

 
 

 

 
 

 

 
 

 

 

     Table 7-1: Evaluation Results 
 

 
Our approach is an improvement compared to the baseline and we observe a significant increase at the 

value of each metric. As we can see from the table 6-2 the increase is 14.1 for BLEU-1, 13.1 for 

BLEU-2, 11.2 for BLEU-3, 8.7 for BLEU-4,13.2 for METEOR, 20.1 for CIDer and 6.4 for 

ROUGE-L. 

 

We present the captions with the highest Bleu_4 score: 

 

 
Score: 0.999 

Caption: A baseball player swinging a bat at a ball. 

 

 

 

 

 

Score: 0.999 

Caption: A group of people standing around a table. 

 

 

 

Metric Our Model Baseline 

BLEU-1 65.9 51.8 

BLEU-2 44.1 31.0 

BLEU-3 29.1 17.9 

BLEU-4 19.1 10.4 

METEOR 24.5 11.3 

CIDer 54.6 34.5 

ROUGE-L 51.0 44.6 
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Score: 0.967 

Caption: A man is playing tennis on a tennis court. 

 

 

 

 

 

Score: 0.919 

Caption: A fire truck driving down a street. 

 

 

 

 

 

Score: 0.863 

Caption: A herd of sheep grazing in a field. 

 

 

 

 

 

Score: 0.84 

Caption: A group of people standing on a beach. 
 

 

 

 

 

Score: 0.819 

Caption: A man riding a wave on a surfboard. 
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Score: 0.817 

Caption: A group of people sitting at a table. 

 

 

 

 

 

Score: 0.813 

Caption: A group of zebras are standing in a field. 

 

 

 

 

 

 

Score: 0.813 

Caption: A clock tower with a clock on it. 

 

7.1.1 Qualitative Examples and Discussion 

So far, we evaluated our models using the automatic metrics, but the metrics are only approximate in 

judging the correctness of the captions. In the previous section we saw some sample captions 
generated by our model on images from the validation set. It is obvious that the generated captions are 

often fairly accurate, but still sometimes contain errors. 
One of the errors which still persist is in counting, where the captions tend to get the number of 

objects wrong and in some cases it repeats the words referring to objects instead of using numerals. 
This can be seen in the Figure 7-1, where, even though the caption accurately describes the image, it 

produces two times the word „clock‟ because it was two times located in the picture by the image 

detection model, or in the second picture where it understood that the picture contained a lot of wine 
glasses but it output two times the phrase „wine glasses‟.  
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    Figure 7-1 : Examples of how our model fails to get the number of objects in an image. 
 

 
Another important error in the function of our model is that, even though it was trained to recognize 

almost 14300 words, the number of words in the vocabulary, during the testing process we calculated 

that it was able to produce only 837. This is a problem occurring in most cases of similar problem, 
even in the state of the art approaches, due to the fact that the model is removing secondary 

information during the processing of the image. This problem becomes apparent due to the small 

length of the predicted captions but also from the repeating of the same degraded n-gram distribution. 

Some examples are shown in the next figure. We can see that for pictures with similar content the 
model produces almost the same caption. 
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 Figure 7-2: Examples of how the small variety of words produced by our model affects the captions 

 
 
Of courses some of the errors occur because the model produces captions based on similar examples  

in the training set. For example, our model has trouble distinguishing between laptops and computers. 

This happens due to the fact that in the dataset there more pictures featuring laptops than computers. 
In Figure 6-3 we can see that our model either ignores completely the computer in the image or 

confuses it with a laptop.  
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      Figure 7-3: An example of our model being biased. 

 

 
Here we present in detail the output of our model, both the word produced in each timestep and the 

regions in the image where attention was given in order to produce that specific word. The following 

are some of the successful results: 
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Of courses there where some images where the caption didn‟t accurately describe their content: 
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Now we present the output of our model not from using COCO dataset, but from images taken by us 

inside the Technical University of Crete: 
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 Epilogue Chapter 8:

8.1 SUMMARY AND CONCLUSIONS 

In this diploma thesis, we presented a system of neural networks which can automatically see an 

image and create a rational description of it in English language. Our system is based on a 
convolutional neural network which encodes the input image in a representation of a fixed-length 

vector, then followed by a recurrent neural network, responsible for creating the corresponding 

description of the image. The model was trained so as to maximize the likelihood of producing a 

rational description for a given image. 
In Chapter 1 we discussed the source of inspiration behind neural networks, some of their wide 

variety of use, the characteristics that makes them very useful and efficient but also some of problems 

resulting from their use.  
In Chapter 2 we studied in detail the structure and the function of both single and multilayer networks 

and how the training algorithms, like backpropagation can modify the network in a way that 

generalizes and makes reasonable prediction for every unknown input. 

In Chapter 3 the thesis focuses on some specific networks like Recurrent Neural Networks and 
Convolutional Neural Networks and how they work in detail. 

In Chapter 4 we discussed the evolution of object detection, image classification and image captioning 

in general and some of the pre-trained model we used and was the inspiration behind our system. 
Chapter 5 is the most important of this thesis. We discussed the model we developed, the idea behind 

every layer we added and how are all these combined to achieve our goal. 

In Chapter 6 we analyzed the training dataset and how it was used for the purpose of our model. We 
also described the training method and the final results during testing. 

 

The purpose of this thesis was to study and implement some of the state of the art mechanisms 

developed in computer vision and Natural Language Processing. This includes models like Mask-
RCNN and Inception_V3, which are state of the art in terms of object detection and image 

classification respectively, and mechanisms like attention which, as we concluded, gave a significant 

improvement to our results. Another very important aspect of our approach is the fact that attention is 
calculated at the level of objects and not in a uniform grid of equally-sized image regions as most 

similar approaches suggest [13]. 

 

8.2 FUTURE WORK 

In any machine learning problem it is necessary to present the scope for improvement of our approach 

as well as future issues related to this particular problem. As it makes sense, there are many ways in 
which one can improve the results and one of them is training. When a network is as deep as 

Inception-v3, then we are given the opportunity to train it with more and more data while of course 

requiring more training iterations and therefore more time. So, simply by a large amount of data, as 
long as the network will be trained to more features, it will succeed and be accurate to random 

images. 

Another key change that can lead to greater accuracy is the change in the CNN we are training. 

Inception-v3 is a state-of-the-art CNN, but other CNNs are published, either new or improved 
versions of Inception, such as Inception-v4 and Inception-ResNet. The comparison of these networks 

with Inception-v3 is presented in [18]. Also, the same can be applied to the object detection model we 

used. Other approaches like the YOLO [20] have very satisfying results and it could be an 
improvement after being trained with our dataset. 

One idea that can be implemented is to produce expressions using the Bidirectional Recurrent Neural 

Networks (BRNN) according to [19] instead of using simple LSTM units. Bidirectional Recurrent 
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Neural Networks connect two hidden layers of opposite directions to the same output. With this form 

of generative deep learning, the output layer can get information from past (backwards) and future 
(forward) states simultaneously. 

Another method proven to improve the performance of an NLP problem is beam search algorithm. 

Instead of greedily choosing the most likely next step as the sequence is constructed, the beam search 

expands all possible next steps and keeps the k most likely, where k is a user-specified parameter and 
controls the number of beams or parallel searches through the sequence of probabilities. 

Finally, it is very common in cases of transfer learning, for the pre-trained models to be fine-tuned. 

This refers to the process of training some of the layers of pre-trained models that were frozen during 
training, so that the model can adjust better to the specific problem. 
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