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Abstract

Cancer is a global problem as it is described in the World Cancer Report. Today’s technology can give

approaches that reveal the cellular and molecular level of cancer. In a cancer disease sample such a cell
biopsy to be processed, thousands of genes at a time can be subjected simultaneously for analysis in a
single chip, called Microarray.

Machine learning is a branch of artificial intelligence that employs a variety of statistical, probabilistic
and optimization techniques that allows computers to “learn” from past examples and to detect hard-
to-discern patterns from large, noisy or complex data sets. This capability is particularly well-suited to
medical applications, especially those that depend on complex proteomic and genomic measurements.
As a result, machine learning is frequently used in cancer diagnosis and detection. More recently
machine learning has been applied to cancer prognosis and prediction. This latter approach is
particularly interesting as it is part of a growing trend towards personalized, predictive medicine.

Our goal was, firstly, to construct a framework for statistical analysis, description and visualization of
real biological data and secondly, build a predictive model for binary classification of cancer based on
machine learning algorithms and feature selection techniques. We use six algorithms of supervised
machine learning such as Logistic Regression (LR), Linear Discriminant Analysis (LDA), k-Nearest
Neighbors (KNN), Classification and Regression Trees (CART), Naive Bayes (NB) and Linear Support
Vector Machines (SVM) to be tested in different datasets of Cervical, Breast, Acute Myeloid Leukemia
and Pancreatic cancer, publicly available on Gene Expression Omnibus platform.

During the learning procedure, the data were split to validation and train sets. The train set, is used in 5-
fold cross-validation for three different scenarios: on primary data, on standardized data, and finally on
standardized data that have been transformed by the dimensionality reduction technique of Principal
Component Analysis (PCA) and other feature reduction techniques. Finally we compare the results and
use the validation dataset to evaluate our models’ predictions on unseen data.

We end up with prediction accuracy: 100% of models trained with LR, NB and SVM on Cervical dataset,
90% of models built with LDA on Breast dataset, 95.4% of models trained with NB on AML dataset and
94.4% trained with LR Pancreatic dataset, respectfully. During the procedure, we compare the results of
5-fold cross-validation on each step and finally we estimate more evaluation metrics such as precision,
sensitivity, f1-score and ROC curves, in order to extract useful insights.

Keywords: cancer diagnosis, predictive model, machine learning, microarrays, gene expression, feature
selection techniques, dimensionality reduction, Logistic Regression, Linear Discriminant Analysis, k-
Nearest Neighbors, Classification And Regression Trees, Naive Bayes, Support Vector Machines, Principal
Component Analysis.



NepiAnyn

H Maykoopia ExkBeon yla tov Kapkivo meplypadel tnv acBEvela Tou KapKivou cav €va Taykoolo mpoBAnua.
H onuepvn texvoloyia pmopel va pag SWosL TPOCEYYIOELG TTOU QITOKAAUTITOUV TOV KOPKIVO O KUTTAPLKO Kot
poplako eminedo. e éva Seiypa KOPKWVIKAG vOoou Omwe pia Blodia kuttdpwy, XIAadeg yovidia kabe dpopd
propouv va urtoPAnBoulv oe avaluon Ue TNV texvoloyia pikpoouaototwy. Ot pikpoouotolyieg BonBolv otnv
Tautoxpovn avaluon twv mpodik yoviSloKAC ékppaong evog peydaAou aplBpol yovidiwv ce €éva povo
neipapa. H kotavonon twv mpotunwy yoviSlakng ékdpacng uropel va Bonbnoet otn dtayvwon kot Stakplon
Sladpopwv tOmwv kopkivou. H pnxavikn padnon eival €vag KAASOG TG TEXVITAC VONUOGUVNC TOU
XPNOLUOTIOLEL pLat TTOWKIALOL TEXVIKWY OTATIOTIKAG, TLOavVOTATWY Kal BeATioTonoinong mou EMTPEMOUV OTOUG
umtoAoyLoteg va "paBaivouv” amo moAld mapadeiypota Kol va avixveuouv popdEg mou elval SUcKoAo va
Slokpivouv amd peydha, BopuBwdn n ovvBeta cUvola Sedopévwy. Auth N LKavotnTa €ival Wlaitepa
KATAAMNAN ylo LtpkéG ePapUOYEG, ELOIKA eKEIVEC TTOU €€QPTWVTOL QO CUVOETEG TPWTEIVIKEG KOl YOVISLOKEC
UETPNOELG. Q¢ AMOTEAECUQ, N UNXAVIKY HABNnon Xpnolpomoleital cuxva otn SLdyvwon Kol oToV EVTOTLOUO
Tou Kapkivou. Mo mpdéodata n pnxavikn padnon €xet epappootel otnv mpodyvwon kapkivou. Auth n
televtaia mpooéyylon eival WSlaitepa evdladEpovoa, kaOWE amoteAel HEPOC HLaG auEavOopuevng TAoNG TNG
TIPOYVWOTLKAG LATPLKAC.

Katoapxnv, 0 otoXog HOC NTAV VA EMEEEPYNOTOUE TIPAYUATLKA BLOAOYIKA SeS0UEVA KAVOVTAG IO OTOTLOTIKA
avaluon, meplypad KoL OMTIKOTOINGN KAl OTn CUVEXELD va eKmaldelooupe povteAo mpoBAEPewy yla
Suadikn taflvopnon tou Kapkivou, BoCLOUEVO GE OAYOPLOMOUG UNXAVLKNG LABNONG KoL TEXVIKEG €€ayWYNG
YVWPLOUATWY. XPNOLUOTOLoUHE €EL aAyoplOpoug unxavikng pabnong emomteiag, onwg Logistic Regression
(LR), Linear Discriminant Analysis (LDA), k-Nearest Neighbors (KNN), Classification and Regression Trees
(CART), Naive Bayes (NB) kat Linear Support Vector Machines (SVM) og Siadpopetikd dedopéva yoviSLlakng
£kdpaong yla Tov Kapkivo tou tpaxiAo, Tou paotol, tg ofeiog pueloeldolg Asuxatpiog Ko Tou Kapkivou
oTo maykpeag, OAa Stabéoua dnpooiwg atnv matdopua GEO.

Katd tn Sidpketa tng Stadikaciog, ta Ssdopéva ywpiotnkav tuxaia os dedopéva ekmaidsuong (train set) twv
oAyopiBuwv kal oe Sedopéva yia T TeAkES TpoPAEPeLg (validation set). To train set ypnowtomoeitat Pe t
nEBodo 5-fold cross-validation yia tpia dtadopetikd oevapla: ota apylka dedopeva, oe dedouéva ou €Xouv
enefepyaotel pe tnv pEBoSo standardization kot TeEAKA ot emefepyacpeva dedopéva Tou  €XOUV
LETAOXNHUOATLOTEL QMO TEXVIKEC €€aywyng Kal Pelwong yvwplopatwy onwe Principal Component Analysis
(PCA). Zto téMog adol ekmatdeVoou e Ta LOVTEAQ, XpnoLpomoloU e To validation set yla afloAoyriooupe tnv
amod00N TWV HOVTEAWV PaG OTLG TIPOBAEYELG.

KataAnyoupe va €xoupe mocootd akpifetag (accuracy) : 100% ota povtéAa mou ekmatdeutnkav pe LR, NB
Kot SVM ota debopéva yovidlakng Ekppacnc Tou KapKivou tou TpaxniAou Tng pntpac, 90% ota LoVTEAQ TTOU
ekratbevtnkav pe LDA ota Sedopéva yovidlakng ekdpaong Tou kapkivou tou pactol, 95,4% ota povieEAd
mou ekmatbevtnkav pe NB ota Sebouéva yovidlakng ekdppaong tng ofeiag pueloeldolg Asuxaluiog Kot
94,4% ota povieha Tou ekmoudeutnkav pe LR ota dedopéva yoviSlakng €kdpaong Tou Kopkivou oto
naykpeag. EmumAéoy, katd tn didpkela tng Stadikaoiog eEeTAlOUNE TA PLOVIEAQ LAG VLo VA a§LOAOYI|COUE
TIEPAUTEPW UETPNOELS TAELVOUNONG OMwG N akpiPela (precision), n evawobnaota (sensitivity) , n BabuoAoyia f1
(f1-score) kot ot kapmUAeg ROC. TEAog, ouykpivoupe ta amoteAéopata tou 5-fold cross-validation oe kaBe
OEVAPLO, TIPOKELUEVOU VA EEAYOULE XPIOLUES YVWOELG.

NE€elg kKAsWbLA: Slayvwon kapkivou, povtélo mpoPAédewyv, pnxaviki pabnon, ULkpoouaoTolxieg, yovidlakn
£kdpoon, TeEXVIKEG e€aywyng YVWPLOUATWY Kal peiwong Slactdoswy, Logistic Regression, Linear Discriminant
Analysis, k-Nearest Neighbors, Classification And Regression Trees, Naive Bayes, Support Vector Machines.
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POLYNUCLEOTIDE CHAINS (DNA STRANDS) HELD TOGETHER BY HYDROGEN BONDS BETWEEN THE PAIRED BASES. THE ARROWS ON THE

DNA STRANDS INDICATE THE POLARITIES OF THE TWO STRANDS, WHICH RUN ANTIPARALLEL TO EACH OTHER IN THE DNA MOLECULE.
(D) ALTHOUGH THE DNA IS SHOWN STRAIGHTENED OUT IN (C), IN REALITY, IT IS WOUND INTO A DOUBLE HELIX, AS SHOWN HERE.
(ALBERTS B H. ) e, 12
FIGURE 2-10 THE TWO STRANDS OF THE DNA DOUBLE HELIX ARE HELD TOGETHER BY HYDROGEN BONDS BETWEEN COMPLEMENTARY
BASE PAIRS. (A) THE SHAPES AND CHEMICAL STRUCTURE OF THE BASES ALLOW HYDROGEN BONDS TO FORM EFFICIENTLY ONLY
BETWEEN A AND T AND BETWEEN G AND C, WHERE ATOMS THAT ARE ABLE TO FORM HYDROGEN BONDS CAN BE BROUGHT CLOSE
TOGETHER WITHOUT PERTURBING THE DOUBLE HELIX. TWO HYDROGEN BONDS FORM BETWEEN A AND T, WHEREAS THREE FORM
BETWEEN G AND C. THE BASES CAN PAIR IN THIS WAY ONLY IF THE TWO POLYNUCLEOTIDE CHAINS THAT CONTAIN THEM ARE
ANTIPARALLEL—THAT IS, ORIENTED IN OPPOSITE POLARITIES. (B) A SHORT SECTION OF THE DOUBLE HELIX VIEWED FROM ITS SIDE.
FOUR BASE PAIRS ARE SHOWN. THE NUCLEOTIDES ARE LINKED TOGETHER COVALENTLY BY PHOSPHODIESTER BONDS THROUGH THE
3’-HYDROXYL (—OH) GROUP OF ONE SUGAR AND THE 5’-PHOSPHATE (—PQO,) OF THE NEXT. THIS LINKAGE GIVES EACH
POLYNUCLEOTIDE STRAND A CHEMICAL POLARITY; THAT IS, ITS TWO ENDS ARE CHEMICALLY DIFFERENT. THE 3’ END CARRIES AN
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UNLINKED —OH GROUP ATTACHED TO THE 3’ POSITION ON THE SUGAR RING; THE 5’ END CARRIES A FREE PHOSPHATE GROUP
ATTACHED TO THE 5’ POSITION ON THE SUGAR RING. (ALBERTS B. H.)..uutieiiiiiiiiiiiiiee ettt e e e 13
FIGURE 2-11 DNA PACKING OCCURS ON SEVERAL LEVELS IN CHROMOSOMES. THIS SCHEMATIC DRAWING SHOWS SOME OF THE LEVELS

THOUGHT TO GIVE RISE TO THE HIGHLY CONDENSED MITOTIC CHROMOSOME. (ALBERTS B. H.) e, 14
FIGURE 2-12 THE CENTRAL DOGMA OF MOLECULAR BIOLOGY. DNA IS TRANSCRIBED TO MAKE MRNA, WHICH IS TRANSLATED TO MAKE A
PROTEIN. (BIOLOGY == OTH ED. ) ceetieiuuiiiteeeeeeesiitttteeeeeeessauttaeeeeeeessaanstsseeeasessannstaaeeeeaeesannstanaeeaeessannsssaneeaesssansnsesnens 17
FIGURE 2-13 THE UPDATED DIRECTION OF INFORMATION FLOW OF THE CENTRAL DOGMA .......ccuuueeiiuneerinneeeennneerennneeresnneessnnneens 18

FIGURE 2-14 A MOLECULE OF DNA CAN UNDERGO DENATURATION AND RENATURATION (HYBRIDIZATION). FOR HYBRIDIZATION TO
OCCUR, THE TWO SINGLE STRANDS MUST HAVE COMPLEMENTARY NUCLEOTIDE SEQUENCES THAT ALLOW BASE-PAIRING. IN THIS
EXAMPLE, THE RED AND ORANGE STRANDS ARE COMPLEMENTARY TO EACH OTHER, AND THE BLUE AND GREEN STRANDS ARE
COMPLEMENTARY TO EACH OTHER. (ALBERTS B. H.) 1eereeriiiiieieiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesessessessessssssssssssssssssssssssssssnnsnnes 20

FIGURE 2-15 ComMPLEMENTARY DNA (cDNA) cAN BE PREPARED FROM MRNA. TOTAL MRNA IS EXTRACTED FROM A PARTICULAR
TISSUE, AND DNA copries (CDNA) oF THE MRNA MOLECULES ARE PRODUCED BY THE ENZYME REVERSE TRANSCRIPTASE. FOR
SIMPLICITY, THE COPYING OF JUST ONE OF THESE MRNAS INTO CDNA IS ILLUSTRATED HERE. (ALBERTS B. H.) evvveeeviiiiiieeeennn, 20

FIGURE 2-16 THE AFFYMETRIX GENECHIP TECHNOLOGY.....cccuuuuueeeeeetiununneeeeeeeruunsneeeseesmtnnnsseeeseemmsssnseeessemmmmnnneeeesemnmmnnnsns 23

FIGURE 2-17 IN-SITU SYNTHESIS OF OLIGONUCLEOTIDES. THE OLIGONUCLEOTIDES ARE BUILT ON THE GLASS ARRAY ONE BASE AT A TIME.
AT EACH STEP, THE BASE IS ADDED VIA THE REACTION BETWEEN THE HYDROXYL GROUP 50F THE TERMINAL BASE AND THE
PHOSPHATE GROUP OF THE NEXT BASE. THERE IS A PROTECTIVE GROUP ON THE 5 OF THE BASE BEING ADDED, WHICH PREVENTS THE
ADDITION OF MORE THAN ONE BASE AT EACH STEP. FOLLOWING ADDITION, THERE IS A DEPROTECTION STEP AT WHICH THE
PROTECTIVE GROUP IS CONVERTED TO A HYDROXYL GROUP TO ALLOW ADDITION OF THE NEXT BASE. ..eeeveevvvvnnneeeeeeennnnnnneeasnnes 24

FIGURE 2-18 THE SPOTTED ARRAY TECHNOLOGY. A ROBOT IS USED TO TRANSFER PROBES IN SOLUTION FROM A MICROTITER PLATE TO A
GLASS SLIDE WHERE THEY ARE DRIED. EXTRACTED MRNA FROM CELLS IS CONVERTED TO CDNA AND LABELED FLUORESCENTLY.
REFERENCE SAMPLE IS LABELED RED AND TEST SAMPLE IS LABELED GREEN. AFTER MIXING, THEY ARE HYBRIDIZED TO THE PROBES ON
THE GLASS SLIDE. AFTER WASHING AWAY UNHYBRIDIZED MATERIAL, THE CHIP IS SCANNED WITH A CONFOCAL LASER AND THE IMAGE
IS ANALYZED BY COMPUTER. (KNUDSEN, 2006) .....uvvveeieeeiiiiurireeeeeesiiiittreeeeeesssassssseseessssasssssessesssssssssssseseessssnnsssssens 25

FIGURE 2-19 AFFYMETRIX TECHNOLOGY. AFFYMETRIX ARRAYS ARE MANUFACTURED USING IN-SITU SYNTHESIS WITH A LIGHT-MEDIATED
DEPROTECTION STEP. DURING EACH ROUND OF SYNTHESIS, A SINGLE BASE IS ADDED TO APPROPRIATE PARTS OF THE ARRAY. A MASK
IS USED TO DIRECT LIGHT TO THE APPROPRIATE REGIONS OF THE ARRAY SO THAT THE BASE IS ADDED TO THE CORRECT FEATURES.
EACH STEP REQUIRES A DIFFERENT MASK. THE MASKS ARE EXPENSIVE TO PRODUCE, BUT ONCE MADE, IT IS STRAIGHTFORWARD TO
USE THEM TO MANUFACTURE A LARGE NUMBER OF IDENTICAL ARRAYS. (REPRODUCED WITH PERMISSION FROM AFFYMETRIX INC.)
(STEKEL) 2003) .eeeiieieiiiitiieee e e eeeeitttee e e e e e e e iettbaaeeeeeeesaaabaaeeeeeeasassttaaaeaaesaaasssaaaeesaaessaassssaaseaeesaansstbaaeeaeessansrerenes 26

FIGURE 2-20 PREPARATION OF SAMPLE FOR GENECHIP ARRAYS. MESSENGER RNA IS EXTRACTED FROM THE CELL AND CONVERTED TO
CDNA. IT THEN UNDERGOES AN AMPLIFICATION AND LABELING STEP BEFORE FRAGMENTATION AND HYBRIDIZATION TO 25-MER
OLIGOS ON THE SURFACE OF THE CHIP. AFTER WASHING OF UNHYBRIDIZED MATERIAL, THE CHIP IS SCANNED IN A CONFOCAL LASER
SCANNER AND THE IMAGE IS ANALYZED BY COMPUTER. (IMAGE COURTESY OF AFFYMETRIX) ...uuuuuuuunnnnnnnnnnnnnnnnnnnsenennnnnns 28

FIGURE 2-21 SCHEMATIC OVERVIEW OF SPOTTED CDNA MICROARRAYS AND HIGH-DENSITY OLIGONUCLEOTIDE ARRAYS. CDNA
MICROARRAYS : ARRAY PREPARATION: INSERTS FROM CDNA COLLECTIONS OR LIBRARIES ARE AMPLIFIED AND THE PCR PRODUCTS
PRINTED AT SPECIFIED SITES ON GLASS SLIDES USING HIGH-PRECISION ARRAYING ROBOTS. THESE PROBES ARE ATTACHED BY CHEMICAL
LINKERS. TARGET PREPARATION: RNA FROM 2 DIFFERENT TISSUES OR CELL POPULATIONS IS USED TO SYNTHESIZE CDNA IN THE
PRESENCE OF NUCLEOTIDES LABELED WITH 2 DIFFERENT FLUORESCENT DYES (EG: CY3 AND CY5). BOTH SAMPLES ARE MIXED IN A
SMALL VOLUME OF HYBRIDIZATION BUFFER AND HYBRIDIZED TO THE ARRAY, RESULTING IN COMPETITIVE BINDING OF DIFFERENTIALLY
LABELED CDNAS TO THE CORRESPONDING ARRAY ELEMENTS. HIGH RESOLUTION CONFOCAL FLUORESCENCE SCANNING OF THE ARRAY
WITH TWO DIFFERENT WAVELENGTHS CORRESPONDING TO THE DYES USED PROVIDES RELATIVE SIGNAL INTENSITIES AND RATIOS OF
MRNA ABUNDANCE FOR THE GENES REPRESENTED ON THE ARRAY. HIGH-DENSITY OLIGONUCLEOTIDE MICROARRAYS : ARRAY
PREPARATION: SEQUENCES OF 16-20 SHORT OLIGONUCLEOTIDES (TYPICALLY 25MER) ARE CHOSEN FROM THE MRNA REFERENCE
SEQUENCE OF EACH GENE, OFTEN REPRESENTING THE UNIQUE PART OF THE TRANSCRIPT. LIGHT-DIRECTED, IN SITU OLIGONUCLEOTIDE
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SYNTHESIS IS USED TO GENERATE HIGH- DENSITY PROBE ARRAYS CONTAINING OVER 300,000 INDIVIDUAL ELEMENTS. TARGET
PREPARATION: TOTAL RNA FROM DIFFERENT TISSUES OR CELL POPULATIONS IS USED TO GENERATE CDNA CARRYING A
TRANSCRIPTIONAL START SITE FOR T7 DNA POLYMERASE. DURING IVT, BIOTIN-LABELED NUCLEOTIDES ARE INCORPORATED INTO THE
SYNTHESIZED CRNA MOLECULES WHICH 1S THEN FRAGMENTED. EACH TARGET SAMPLE IS HYBRIDIZED TO A SEPARATE PROBE ARRAY
AND TARGET BINDING IS DETECTED BY STAINING WITH A FLUORESCENT DYE COUPLED TO STREPTAVIDIN. SIGNAL INTENSITIES OF
PROBE ARRAY ELEMENT SETS ON DIFFERENT ARRAYS ARE USED TO CALCULATE RELATIVE MRNA ABUNDANCE FOR THE GENES
REPRESENTED ON THE ARRAY. IMODIFIED AND REPRINTED WITH PERMISSION FROM NATURE CELL BioLoGy (VoL. 3, No. 8, pp.
E190-E195) CopYRIGHT ©2001 MACMILLAN PUBLISHERS LIMITED. 262 (THE MICROARRAY: POTENTIAL APLICATIONS FOR

OPHTHALMIC RESEARCH) .uuuttttteeeeeeeeuustteeeeseessausssseeesasssasssssssessassssnssssssssesssssnssssssesessssanssssssessessnnnssssseseesssnnnnes 29
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FIGURE 2-24 A BASIC ROC CURVE SHOWING IMPORTANT POINTS, AND THE OPTIMISTIC, PESSIMISTIC AND EXPECTED ROC SEGMENTS FOR
EQUALLY SCORED SAMPLES. (THARWAT, 2018)....cciiiiiiiiiiiiiieeeeee e
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1. INTRODUCTION

1.1 Problem

The number of patients diagnosed with cancer is increasing rapidly. (World cancer report, 2014.) The

World Cancer Report described cancer as a global problem and projected an increase to 20 million new
cases by 2025. Currently, cancer diagnosis is practiced by using image processing techniques, blood
analysis and biopsies. Cancer is caused by the accumulation of excessive amount of damaged cells. (A.
TAsci, 2017) There are approaches in technology that reveals the cellular and molecular level of cancer.
In a cancer disease sample such a cell biopsy to be processed, thousands of genes at a time can be
subjected for analysis in a single chip called microarray. Microarrays are microscopic slides that contain
ordered series of samples of DNA (Deoxyribonucleic acids), RNA (Ribonucleic acids), protein, or tissue
and others. (Wong) Gene expression provides the information of how active a gene is. Microarray is one
of the widely used measurement methods for gene expression. Gene expression values obtained by
microarrays can be employed in cancer diagnosis and the classification of cancer types. (Venugopal
Mikkilineni, 2004)

Microarray chip helps the simultaneous analysis of gene expression profiles of a large number of genes
in a single experiment. Understanding gene expression pattern can help to diagnose and distinguish
different type of cancer. (Gregory Piatetsky-Shapiro, 2003) Generally, Microarray datasets have high
number of features (ranges from 2000 to 30000) compared to the samples size (mostly less than 150)
and this is called “curse of dimensionality”. (Anil Jain, 1997) So, microarray analysis brings an exciting
field of study for Machine Learning researchers. In addition to this, noise and variability of the data
make this domain more exciting. (Saeys Yvan, 2007) (C.ArunKumar, 2017)

Machine learning is a branch of artificial intelligence that employs a variety of statistical, probabilistic
and optimization techniques that allows computers to “learn” from past examples and to detect hard-
to-discern patterns from large, noisy or complex data sets. This capability is particularly well-suited to
medical applications, especially those that depend on complex proteomic and genomic measurements.
As a result, machine learning is frequently used in cancer diagnosis and detection. More recently
machine learning has been applied to cancer prognosis and prediction. This latter approach is
particularly interesting as it is part of a growing trend towards personalized, predictive medicine.

According to the latest PubMed statistics, more than 1500 papers have been published on the subject of
machine learning and cancer. However, the vast majority of these papers are concerned with using
machine learning methods to identify, classify, detect, or distinguish tumors and other malignancies. In
other words machine learning has been used primarily as an aid to cancer diagnosis and detection
(McCarthy et al. 2004). It has only been relatively recently that cancer researchers have attempted to



apply machine learning towards cancer prediction and prognosis. As a consequence the body of
literature in the field of machine learning and cancer prediction/prognosis is relatively small.

The fundamental goals of cancer prediction and prognosis are distinct from the goals of cancer
detection and diagnosis. In cancer prediction/prognosis one is concerned with three predictive foci: 1)
the prediction of cancer susceptibility (i.e. risk assessment); 2) the prediction of cancer recurrence and
3) the prediction of cancer survivability. In the first case, one is trying to predict the likelihood of
developing a type of cancer prior to the occurrence of the disease. In the second case one is trying to
predict the likelihood of redeveloping cancer after to the apparent resolution of the disease. In the third
case one is trying to predict an outcome (life expectancy, survivability, progression, tumor-drug
sensitivity) after the diagnosis of the disease. In the latter two situations the success of the prognostic
prediction is obviously dependent, in part, on the success or quality of the diagnosis. However a disease
prognosis can only come after a medical diagnosis and a prognostic prediction must take into account
more than just a simple diagnosis (Hagerty et al. 2005). (Joseph A. Cruz)

The challenge of cancer classification using microarrays is the application of model based selection and
prediction algorithm that will classify the cancer genes using gene expression data. The computation
time, classification accuracy, and its biological relevance in the cancer classification is still in question.
(Wong) Machine learning based prediction of clinical outcomes can be used for appropriate decision
making and can lead to better patient care. ML is also a great advantage over traditional statistical
models including high power and accuracy to predict disease. To our knowledge, there is no specific
algorithm that performs better for the prediction model. (Md. Mohaimenul Islam)



1.2 Goals of thesis

The main goal of this thesis is to build an efficient, robust and accurate predictive model for binary
classification of cancer and healthy gene expression data. With this aim, this study explores and
examines different machine learning techniques on different cancer datasets and retrieves useful
insights.

This work uses four binary microarray datasets of Cervical, Breast, Acute Myeloid Leukemia and
Pancreatic Cancer which were retrieved by the Gene Expression Omnibus platform (Gene Expression
Omnibus: NCBI gene expression and hybridization array data repository). These datasets are high
dimensional with different number of samples each, and include cases with balanced and imbalanced
classes worthy of further examination in order to derive useful information.

A statistical analysis of the four datasets and their features is necessary in order to determine the
process and the characteristics of gene expression levels’ information. The machine learning procedure,
which was followed for building a predictive model, includes the evaluation of six different well-known
classification algorithms of supervised learning. Logistic Regression, Linear Discriminant Analysis, k-
Nearest Neighbors, Classification and Regression Trees, Naive Bayes and Linear Support Vector
Machines shape the algorithm group which this thesis use for further analysis.

On the other hand on the, we aim not only to build a model but to contribute also by analyzing different
scenarios with these algorithms. For these purposes and knowing the small number of the samples,
cross-validation is chosen to evaluate the performance of the models during the procedure. Three
different scenarios are going to be examined in order to derive insights.

Firstly, we intent to check the behavior of the six algorithms in the primary data. Secondly, as data
transformation is a necessary step on machine learning, we will reevaluate them in order to compare
the results. Finally, we intent to use feature selection techniques, like Principal Component Analysis for
feature dimensionality reduction, and reevaluate the models.

Concluding, in this study we aim to build a predictive machine learning model trained on real biological
data and also contribute by submitting the results and the insights respectfully during to the whole
procedure.






2. THEORETICAL BACKGROUND
2.1 BIOLOGY

2.1.1 Cells

All living things are made of cells: small, membrane-enclosed units filled with a concentrated aqueous
solution of chemicals and endowed with the extraordinary ability to create copies of themselves by
growing and dividing in two. The simplest forms of life are solitary cells. Higher organisms, including

ourselves, are communities of cells derived by growth and division from a single founder cell: each
animal, plant, or fungus is a vast colony of individual cells that perform specialized functions coordinated
by intricate systems of communication.

There are a multitude of specific chemical transformations that not only provide the energy needed by a
cell, but also coordinate all of the events and activities within that cell. The life process involves a wide
array of molecules ranging from water to small organic compounds (e.g., fatty acids and sugars), and
macromolecules (DNA, proteins, and polysaccharides) that define the structure of the cells.
Macromolecules control and govern most of the activities of life.

Deoxyribonucleic acid (DNA) molecules store information about the structure of macromolecules,
allowing them to be made precisely according to cells’ specifications and needs. DNA is a very stable
molecule that forms the “blueprint” of an organism. The DNA structure encodes information as a
sequence of chemically linked molecules that can be read by the cellular machinery and guides the
construction of the linear arrangements of protein building blocks, which eventually fold to form
functional proteins. Molecular biology deals with how information is stored and converted to all the
components and interactions that make up a living organism. (LEE) (Alberts B. H.)

2.1.1.1 Procaryotic and Eucaryotic cells

Of all the types of cells revealed by the microscope, bacteria have the simplest structure and come
closest to showing us life stripped down to its essentials. Indeed, a bacterium contains essentially no
organelles—not even a nucleus to hold its DNA. This property—the presence or absence of a nucleus—is
used as the basis for a simple but fundamental classification of all living things. Organisms whose cells
have a nucleus are called eucaryotes. Organisms whose cells do not have a nucleus are called
procaryotes. The terms “bacterium” and “procaryote” are often used interchangeably, although we
shall see that the category of procaryotes also includes another class of cells, the archaea (singular
archaeon), which are so remotely related to bacteria that they are given a separate name. (Alberts B. H.)



2.1.1.1.1 Procaryotes

Procaryotes are typically spherical, rod
like, or corkscrew-shaped, and small-
just a few micrometers long, although
there are some giant species as much
as 100 times longer than this. They
often have a tough protective coat,
called a cell wall, surrounding the
plasma membrane, which encloses a
single compartment containing the
cytoplasm and the DNA. In the
electron microscope, the cell interior
typically appears as a matrix of varying
texture without any obvious organized
internal structure. The cells reproduce
quickly by dividing in two.

Most procaryotes live as single-celled organisms, although some join together to form chains, clusters,
or other organized multicellular structures. In shape and structure, procaryotes may seem simple and
limited, but in terms of chemistry, they are the most diverse and inventive class of cells. These creatures
exploit an enormous range of habitats, from hot puddles of volcanic mud to the interiors of other living
cells, and they vastly outnumber other living organisms on Earth. Some are aerobic, using oxygen to
oxidize food molecules; some are strictly anaerobic and are killed by the slightest exposure to oxygen.
Mitochondria-the organelles that generate energy for the eucaryotic cell-are thought to have evolved
from aerobic bacteria that took to living inside the anaerobic ancestors of today’s eucaryotic cells. Thus
our own oxygen-based metabolism can be regarded as a product of the activities of bacterial cells.

(Alberts B. H.)

1Tum

Figure 2-1 The bacterium Escherichia coli The bacterium
Escherichia coli (E. coli) is understood more thoroughly than any
other living organism. An electron micrograph of a longitudinal
section is show here; the cell’s Dna is concentrated in the lightly
stained region.

(Courtesy of e. Kellenberger.) (Alberts B. H.)



2.1.1.1.2 Eucaryotes

Eucaryotic cells, in general, are
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Figure 2-2 Membrane-enclosed organelles are distributed throughout
the cytoplasm. (A) a variety of membrane enclosed compartment exist
within eucaryotic cells, each specialized to perform a different function.
subcellular structures that perform (B) the rest of the cell, excluding all these organelles, is called the

specialized functions. Most of these cytosol (colored blue). (Alberts B. H.)

are likewise common to all

goes hand-in-hand with possession
of a variety of other organelles,

eucaryotic organisms. (Alberts B. H.)

We will now take a look at the main organelles found in eucaryotic cells from the point of view of their
functions.

Lysosomes are small, irregularly shaped organelles in which intracellular digestion occurs, releasing
nutrients from food particles and breaking down unwanted molecules for recycling or excretion.

And peroxisomes are small, membrane-enclosed vesicles that provide a contained environment for
reactions in which hydrogen peroxide, a dangerously reactive chemical, is generated and degraded.
Membranes also form many different types of small vesicles involved in the transport of materials
between one membrane-enclosed organelle and another.

If we were to strip the plasma membrane from a eucaryotic cell and then remove all of its membrane-
enclosed organelles, including nucleus, endoplasmic reticulum, Golgi apparatus, mitochondria,
chloroplasts, and so on, we would be left with the cytosol. In other words, the cytosol is the part of the
cytoplasm that is not partitioned off within intracellular membranes. In most cells, the cytosol is the
largest single compartment. It contains a host of large and small molecules, crowded together so closely
that it behaves more like a water-based gel than a liquid solution. The cytosol is the site of many
chemical reactions that are fundamental to the cell’s existence.

The early steps in the breakdown of nutrient molecules take place in the cytosol, for example, and it is
here that the cell performs one of its key synthetic processes—the manufacture of proteins. Ribosomes,
the molecular machines that make the protein molecules, are visible with the electron microscope as
small particles in the cytosol, often attached to the cytosolic face of the endoplasmic.

(Alberts B. H.)



2.1.1.1.2.1 Golgi apparatus

Stacks of flattened membrane-enclosed sacs constitute the Golgi apparatus, which receives and often
chemically modifies the molecules made in the endoplasmic reticulum and then directs them to the

exterior of the cell or to various locations inside the cell. (Alberts B. H.)
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Figure 2-3 The Golgi apparatus resembles a stack of flattened discs. This organelle is just visible under the light
microscope but is often inconspicuous. the Golgi apparatus is involved in the synthesis and packaging of molecules
destined to be secreted from the cell, as well as in the routing of newly synthesized proteins to the correct cellular
compartment. (A) Schematic diagram of an animal cell with the Golgi apparatus colored red. (B) Drawing of the
Golgi apparatus reconstructed from electron microscope images. the organelle is composed of flattened sacs of
membrane stacked in layers. Many small vesicles are seen nearby; some of these have pinched off from the Golgi
stack, while others are destined to fuse with it. Only one stack is shown here, but several can be present in a cell.
(C) electron micrograph of the Golgi apparatus from a typical animal cell. (C, courtesy of Brij J. Gupta.) (Alberts B.

H.)



2.1.1.1.2.2 Mitochondria

Mitochondria are present in
essentially all eucaryotic cells, and
they are among the most
conspicuous organelles in the
cytoplasm mitochondria are
generators of chemical energy for
the cell. They harness the energy
from the oxidation of food
molecules, such as sugars, to
produce adenosine triphosphate,
or ATP—the basic chemical fuel
that powers most of the cell’s

activities. Because the
mitochondrion consumes oxygen
and releases carbon dioxide in the
course of this activity, the entire
process is called cellular
respiration—essentially, breathing
on a cellular level. (Alberts B. H.)

Figure 2-4 Mitochondria have a distinctive structure.

(A) an electron micrograph of a cross-section of a mitochondrion reveals
the extensive folding of the inner membrane. (B) this three-dimensional
representation of the arrangement of the mitochondrial membranes
shows the smooth outer membrane and the highly convoluted inner
membrane. the inner membrane contains most of the proteins
responsible for cellular respiration, and it is highly folded to provide a
large surface area for this activity. (C) In this schematic cell, the interior
space of the mitochondrion is colored. (a, courtesy of Daniel S. Friend.)
(Alberts B. H.)

2.1.1.1.2.3 Endoplasmic Reticulum

The endoplasmic reticulum (ER)—an irregular maze of interconnected spaces enclosed by a membrane -

is the site where most cell membrane components, as well as materials destined for export from the

cell, are made. (Alberts B. H.)

nucleus nuclear envelope endoplasmic reticulum

(A)

Figure 2-5 Many cellular components are
produced in the endoplasmic reticulum.

(A) Schematic diagram of an animal cell
shows the endoplasmic reticulum in green.

(B) electron micrograph of a thin section of
a mammalian pancreatic cell shows a small
part of the endoplasmic reticulum (er), of
which there are vast tracts in this cell type,
which is specialized for protein secretion.
note that the er is continuous with the
membrane of the nuclear envelope. the
black particles studding the particular
region of the er shown here are
ribosomes—the molecular assemblies that
perform protein synthesis. Because of its
appearance, ribosome-coated er is often
called “rough er.” (B, courtesy of Lelio
Orci.) (Alberts B. H.)




envelope

Figure 2-6 The nucleus contains most of the DNA in a eucaryotic cell.
(A) In this drawing of a typical animal cell—complete with its extensive
system of membrane-enclosed organelles—the nucleus is colored
brown, the nuclear envelope is green, and the cytoplasm (the interior of
the cell outside the nucleus) is white. (B) an electron micrograph of a
nucleus in @ mammalian cell. Individual chromosomes are not visible
because the Dna is dispersed as fine threads throughout the nucleus at
this stage of the cell’s growth. (B, courtesy of Daniel S. Friend.)

(Alberts B. H.)

nucleus nuclear envelope
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2.1.1.1.2.4 Nucleus

The nucleus is usually the most prominent
organelle in a eucaryotic. It is enclosed
within two concentric membranes that
form the nuclear envelope, and it contains
molecules of DNA—extremely long
polymers that encode the genetic
information of the organism. In the light
microscope, these giant DNA molecules
become visible as individual chromosomes
when they become more compact as a cell
prepares to divide into two daughter cells.
DNA also stores the genetic information in
procaryotic cells; these cells lack a distinct
nucleus not because they lack DNA, but
because they do not keep their DNA inside
a nuclear envelope, segregated from the
rest of the cell contents. (Alberts B. H.)

condensed chromosomes

Figure 2-7 Chromosomes become visible when a cell is about to divide. As a eucaryotic cell prepares to divide, its
DNA becomes compacted or condensed into threadlike chromosomes that can be distinguished in the light
microscope. The photographs show three successive steps in this process in a cultured cell from a newt’s lung.

(Courtesy of Conly L. rieder.) (Alberts B. H.)
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2.1.2 DeoxyriboNucleic Acid

A molecule of deoxyribonucleic acid (DNA) consists of two long polynucleotide chains. Each of these
DNA chains, or DNA strands, is composed of four types of nucleotide subunits, and the two chains are
held together by hydrogen bonds between the base portions of the nucleotides.

DNA Structure

Nucleosome

DNA

Nucleotide
base pairs:

B Guanine
1! Cytosine

Adenine
B Thymine

Figure 2-8
Cancer is caused by certain changes to genes, the basic physical units of inheritance. Genes are arranged in long
strands of tightly packed DNA called chromosomes.

Credit: Terese Winslow
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Figure 2-9 DNA is made of four nucleotide building blocks. (A) each
nucleotide is composed of a sugar— phosphate covalently linked to a
base.(B) the nucleotides are covalently linked together into
polynucleotide chains, with a sugar—phosphate backbone from which
the bases (a, C, G, and t) extend. (C) a DNa molecule is composed of
two polynucleotide chains (DNa strands) held together by hydrogen
bonds between the paired bases. the arrows on the DNa strands
indicate the polarities of the two strands, which run antiparallel to
each other in the DNa molecule. (D) although the DNa is shown
straightened out in (C), in reality, it is wound into a double helix, as
shown here. (Alberts B. H.)
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Nucleotides

Nucleotides are composed of a five-
carbon sugar to which are attached
one or more phosphate groups and a
nitrogen-containing base. For the
nucleotides in DNA, the sugar is
deoxyribose attached to a single
phosphate group (hence the name
deoxyribonucleic acid); the base may
be either adenine (A), cytosine (C),
guanine (G), or thymine (T). The
nucleotides are covalently linked
together in a chain through the
sugars and phosphates, which thus
form a “backbone” of alternating
sugar—phosphate—sugar. Because it is
only the base that differs in each of
the four types of subunits, each
polynucleotide chain in DNA can be
thought of as a necklace (the
backbone) strung with four types of
beads (the four bases A, C, G, and T).
These same symbols (A, C, G, and T)

are also commonly used to denote
the four different nucleotides—that
is, the bases with their attached sugar
and phosphate groups.
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Figure 2-10 The two strands of the DNA double helix are held together by hydrogen bonds between
complementary base pairs. (A) the shapes and chemical structure of the bases allow hydrogen bonds to form
efficiently only between a and t and between G and C, where atoms that are able to form hydrogen bonds can be
brought close together without perturbing the double helix. two hydrogen bonds form between A and T, whereas
three form between G and C. the bases can pair in this way only if the two polynucleotide chains that contain them
are antiparallel—that is, oriented in opposite polarities. (B) A short section of the double helix viewed from its side.
Four base pairs are shown. The nucleotides are linked together covalently by phosphodiester bonds through the
3’-hydroxyl (—-OH) group of one sugar and the 5’-phosphate (—PO,) of the next. This linkage gives each
polynucleotide strand a chemical polarity; that is, its two ends are chemically different. The 3’ end carries an
unlinked —oh group attached to the 3’ position on the sugar ring; the 5’ end carries a free phosphate group
attached to the 5’ position on the sugar ring. (Alberts B. H.)

The way in which the nucleotide subunits are linked together gives a DNA strand a chemical polarity. If
we imagine that each nucleotide has a knob (the phosphate) and a hole, each chain, formed by
interlocking knobs with holes, will have all of its subunits lined up in the same orientation. Moreover,
the two ends of the chain can be easily distinguished, as one will have a hole (the 3’ hydroxyl) and the
other a knob (the 5’ phosphate). This polarity in a DNA chain is indicated by referring to one end as the
3’ end and the other as the 5’ end. This convention is based on the details of the chemical linkage
between the nucleotide subunits.

The two polynucleotide chains in the DNA double helix are held together by hydrogen-bonding between
the bases on the different strands. All the bases are therefore on the inside of the helix, with the sugar—

phosphate backbones on the outside. The bases do not pair at random, however: A always pairs with T,
and G always pairs with C.
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In each case, a bulkier two-ring base is paired with a single-ring base (a pyrimidine). Each purine—
pyrimidine pair is called a base pair, and this complementary base-pairing enables the base pairs to be
packed in the energetically most favorable arrangement in the interior of the double helix. In this
arrangement, each base pair is of similar width, thus holding the sugar—phosphate back-bones an equal
distance apart along the DNA molecule. The members of each base pair can fit together within the
double helix because the two strands of the helix run antiparallel to each other—that is, they are
oriented with opposite polarities.

DNA encodes information in the order, or sequence, of the nucleotides along each strand. Each base—A,
C, T, or G—can be considered as a letter in a four-letter alphabet that is used to spell out biological
messages in the chemical structure of the DNA. Organisms differ from one another because their
respective DNA molecules have different nucleotide sequences and, consequently, carry different
biological messages. (Alberts B. H.)

2.1.2.1 Chromosomes

In eucaryotic cells, very long double-stranded

DNA molecules are packaged into structures shortregion of //\’\//\’\//‘\//\,\//\’J\i/ %m
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structure. The complex of DNA and protein is (Alberts B. H.)
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called chromatin. In addition to the proteins involved in packaging the DNA, chromosomes are also
associated with many other proteins involved in gene expression, DNA replication, and DNA repair.

In addition to being different sizes, human chromosomes can be distinguished from one another by a
variety of techniques.

Each chromosome can be “painted” a different color using sets of chromosome-specific DNA molecules
coupled to different fluorescent dyes. This involves the technique of DNA hybridization. The most
important function of chromosomes is to carry the genes—the functional units of heredity. (Alberts B.
H.)

2.1.3 RiboNucleic Acid

Once the structure of DNA (deoxyribonucleic acid) had been determined in the early 1950s, it became
clear that the hereditary information in cells is encoded in DNA’s sequence of nucleotides. Even before
the DNA code had been broken, it was known that the information contained in genes somehow
directed the synthesis of proteins. Proteins are the principal constituents of cells and determine not only
their structure but also their functions. We have encountered some of the thousands of different kinds
of proteins that cells can make. The properties and function of a protein molecule are determined by the
linear order—the sequence—of the different amino acid subunits in its polypeptide chain: each type of
protein has its own unique amino acid sequence, and this sequence dictates how the chain will fold to
give a molecule with a distinctive shape and chemistry. The genetic instructions carried by DNA must
therefore specify the amino acid sequences of proteins.

DNA does not direct protein synthesis itself, but acts rather like a manager, delegating the various tasks
to a team of workers. When a particular protein is needed by the cell, the nucleotide sequence of the
appropriate section of an immensely long DNA molecule in a chromosome is first copied into another
type of nucleic acid—RNA (ribonucleic acid). These RNA copies of short segments of the DNA are then
used to direct the synthesis of the protein. Many thousands of these conversions from DNA to protein
occur each second in every cell in our bodies.

Like DNA, RNA is a linear polymer made of four different types of nucleotide subunits linked together by
phosphodiester bonds. It differs from DNA chemically in two respects: (1) the nucleotides in RNA are
ribonucleotides—that is, they contain the sugar ribose (hence the name ribonucleic acid) rather than
deoxyribose; (2) although, like DNA, RNA contains the bases adenine (A), guanine (G), and cytosine (C), it
contains uracil (U) instead of the thymine (T) found in DNA. Because U, like T, can base-pair by
hydrogen-bonding with A, the complementary base-pairing properties described for DNA in Chapter 5
apply also to RNA.

Although their chemical differences are small, DNA and RNA differ quite dramatically in overall
structure. Whereas DNA always occurs in cells as a double-stranded helix, RNA is single-stranded. This
difference has important functional consequences. Because an RNA chain is single-stranded, it can fold
up into a variety of shapes, just as a polypeptide chain folds up to form the final shape of a protein;
double-stranded DNA cannot fold in this fashion. The ability to fold into a complex three dimensional
shape allows RNA to carry out functions in cells in addition to conveying information between DNA and
protein.
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FROM DNA TO RNA

The first step a cell takes in reading out one of its many thousands of genes is to copy the nucleotide
sequence of that gene into RNA. The process is called transcription because the information, though
copied into another chemical form, is still written in essentially the same language—the language of
nucleotides.

Transcription produces RNA Complementary to One strand of DNA

All of the RNA in a cell is made by transcription, a process that has certain similarities to DNA replication.
Transcription begins with the opening and unwinding of a small portion of the DNA double helix to
expose the bases on each DNA strand. One of the two strands of the DNA double helix then acts as a
template for the synthesis of RNA. Ribonucleotides are added, one by one, to the growing RNA chain,
and as in DNA replication, the nucleotide sequence of the RNA chain is determined by complementary
base-pairing with the DNA template. When a good match is made, the incoming ribonucleotide is
covalently linked to the growing RNA chain in an enzymatically catalyzed reaction. The RNA chain
produced by transcription—the transcript—is therefore elongated one nucleotide at a time and has a
nucleotide sequence exactly complementary to the strand of DNA used as the template.

Several Types of RNA are produced in Cells

The vast majority of genes carried in a cell’s DNA specify the amino acid sequence of proteins, and the
RNA molecules that are copied from these genes (and that ultimately direct the synthesis of proteins)
are collectively called messenger RNA (mRNA). In eucaryotes, each mRNA typically carries information
transcribed from just one gene, coding for a single protein; in bacteria, a set of adjacent genes is often
transcribed as a single mRNA that therefore carries the information for several different proteins.

The final product of other genes, however, is the RNA itself. These, non-messenger RNAs, like proteins,
serve as regulatory, structural, and enzymatic components of cells, and they play key parts in translating
the genetic message into protein. Ribosomal RNA (rRNA) forms the core of the ribosomes, on which
mRNA is translated into protein, and transfer RNA (tRNA) forms the adaptors that select amino acids
and hold them in place on a ribosome for their incorporation into protein. Other small RNAs, called
microRNAs (miRNAs), serve as key regulators of eucaryotic gene expression. (Alberts B. H.)

The sequence of messenger RNA is complementary to the sequence of the bottom strand of DNA and is
identical to the top strand of DNA, except for the replacement of T with U. A messenger RNA includes a
sequence of nucleotides that corresponds to the sequence of amino acids in the protein. This part of the
nucleic acid is called the coding region. Because mRNA is an exact copy of the DNA coding regions,
mRNA analysis can be used to identify polymorphisms in coding regions of DNA. A polymorphism is a
DNA region for which nucleotide sequence variants exist in a population of organisms. Such variations
can sometimes explain the occurrence of a disease or enzyme deficiency within a population. Hence, a
considerable effort has been put into trying to identify such variations.

Microarray technology can be used both in the identification of polymorphisms and in the diagnosis of
polymorphism-related disease. In eukaryotic cells, the initial pre-mRNA transcription product can be
many times longer than needed for translation into protein. At the end of a eukaryotic gene, there is a
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regulatory region to which various proteins bind, causing the gene to be transcribed at the right time
and in the right amount. A region at the end of the gene contains a sequence encoding the termination
of transcription. In the genes of many eukaryotes, the protein-encoding sequence is interrupted by
varying numbers of segments called introns. The coding sequence segments interrupted by the introns
are called exons. Introns are removed in the splicing process to generate the final mature mRNA ready
to be translated by the protein synthesis machinery. (LEE)

FROM RNA TO PROTEIN

In contrast, the conversion of the information in RNA into protein represents a translation of the
information into another language that uses quite different symbols. Because there are only 4 different
nucleotides in mRNA but 20 different types of amino acids in a protein, this translation cannot be
accounted for by a direct one-to-one correspondence between a nucleotide in RNA and an amino acid in
protein. The rules by which the nucleotide sequence of a gene, through the medium of mRNA, is
translated into the amino acid sequence of a protein are known as the genetic code.

2.1.4 Central dogma of molecular biology

The conversion of genotype to phenotype

requires information stored in DNA to be = Prokaryotes

converted to protein. The nature of information S :

flow in cells was first described by Francis Crick \ 7 (\({f\ :

as the central dogma of molecular biology. EukaryOtos £ \ G
template

Information passes in one direction from the

gene (DNA) to an RNA copy of the gene, and the

RNA copy directs the sequential assembly of a R4 Transcrlptlon mRNA
chain of amino acids into a protein. Stated briefly, “ \%
DNA > RNA - protein “ v
The central dogma provides an intellectual
Translation
framework that describes information flow in % y

biological systems. We call the DNA-to-RNA step
transcription because it produces an exact copy

Protein

of the DNA, much as a legal transcription

contains the exact words of a court proceeding. Figure 2-12 The central dogma of molecular biology.
DNA is transcribed to make mRNA, which is translated to

The RNA-to-protein step is termed translation =
make a protein. (Biology -- 9th ed.)

because it requires translating from the nucleic

acid to the protein “languages.” Since the original formulation of the central dogma, a class of viruses
called retroviruses was discovered that can convert their RNA genome into a DNA copy, using the viral
enzyme reverse transcriptase. This conversion violates the direction of information flow of the central
dogma, and the discovery forced an updating of the possible flow of information to include this
“reverse” flow from RNA to DNA. (Biology -- 9th ed.)
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Figure 2-13 The updated direction of information flow of the central dogma

2.1.5 Genes

Genes are the units of the DNA sequence that control the identifiable hereditary traits of an organism. A
gene can be defined as a segment of DNA that specifies a functional RNA. The total set of genes carried
by an individual or a cell is called its genome. The genome defines the genetic construction of an
organism or cell, or the genotype. The phenotype, on the other hand, is the total set of characteristics
displayed by an organism under a particular set of environmental factors. The outward appearance of an
organism (phenotype) may or may not directly reflect the genes that are present (genotype). Today the
complete genome sequences of several species are known, including several bacteria, yeasts, and
humans. With microarray technology we can study the expression of all the genes in an organism
simultaneously. Such genome-wide studies will help to uncover and decipher cellular processes from a
completely new perspective. (LEE)

2.1.6 The Genetic Code

The sequence of nucleotides in DNA is important not because of its structure, but because it codes for
the sequence of amino acids that dictate the structure of a protein with a defined function, be it
structural or catalytic. The relationship between a sequence of DNA and the sequence of the
corresponding protein is called the genetic code. The genetic code is read in groups of three nucleotides,
or codons, each of which represents one amino acid. Because each position in the three nucleotide
codon could be one of the four bases A, C, G, and T, there are a total of 4 x 4 x 4 = 64 possible different
codons, each representing an amino acid or a signal to terminate translation. As there are only 20
common amino acids, several different codons can code for the same amino acid (the genetic code is
said to be degenerate due to this many-to-one relationship). Since the genetic code is read in non-
overlapping triplets, there are three possible ways of translating any nucleotide sequence into a protein,
depending on the starting point. These are called reading frames. A reading frame that starts with a
special initiation codon (AUG-methionine) and extends through a series of codons representing amino
acids until it ends at one of three termination codons (UAA, UAG, UGA) can potentially be translated
into a protein and is called an open reading frame (ORF). A long open reading frame is unlikely to exist
by chance. The identification of a lengthy open reading frame is strong evidence that the sequence is
translated into protein in that frame. An open reading frame for which no protein product has been
identified is sometimes called an unidentified reading frame (URF).
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2.1.7 Gene Expression and Microarrays

Gene expression is the process by which mRNA, and eventually protein, is synthesized from the DNA
template of each gene. The first stage of this process is transcription, when an RNA copy of one strand
of the DNA is produced. In eukaryotes it is followed by RNA splicing, during which the introns are cut out
of the primary transcript and a mature mRNA is made. As part of the maturation process, a tail of
adenine nucleotides is added to the 3’ end of the mRNA. This poly A tail can vary greatly in length and is
believed to stabilize the mRNA molecule. Transcription and splicing of RNA occur in the nucleus. The
next stage of gene expression is the translation of the mRNA into protein. This occurs in the cytoplasm.
In the process of gene expression RNA provides not only the essential substrate (mRNA) but also
components of the protein synthesis apparatus (tRNA, rRNA).

Some protein-encoding genes are transcribed more or less constantly; they are sometimes called
housekeeping genes and are always needed for basic reactions. Other genes may be rendered
unreadable or, to suit the functions of the organism, readable only at particular moments and under
particular external conditions. The signal that masks or unmasks a gene may come from outside the cell;
for example, from a nutrient or a hormone. Special regulatory sequences in the DNA dictate whether a
gene will respond to the signals, and they in turn affect the transcription of the protein-encoding gene.
Understanding which genes are expressed under which condition gives invaluable information about the
biological processes in the cell. The power of microarray technology lies in its ability to measure the
expression of thousands of genes simultaneously. (LEE)

2.1.8 Hybridization

The specific base pairing of nucleic acids is the foundation of microarray technology. The specific pairing
of an artificial DNA sequence probe with its biological counterpart allows for exact identification of the
sought-after unique sequence or gene.

Because of the base-pairing arrangments, the two strands of DNA can separate and re-form very quickly
under physiological conditions that disrupt the hydrogen bonds between the bases but are much too
mild to pose any threat to the covalent bonds in the backbone of the DNA. The process of strand
separation is called denaturation or melting. Because of the complementarity of the base pairs, the two
separated complementary strands can be re-formed into a double helix (the two strands are then said to
be annealed). This process is called renaturation. The technique of renaturation can be extended to
allow any two complementary nucleic acid sequences to anneal with each other to form a duplex
structure.
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Figure 2-14 A molecule of DNA can undergo denaturation and renaturation (hybridization). For hybridization to occur, the
two single strands must have complementary nucleotide sequences that allow base-pairing. In this example, the red and
orange strands are complementary to each other, and the blue and green strands are complementary to each other. (Alberts

B. H.)

Hybridization is the biochemical method on which DNA microarray technology is based. Nucleic acid
sequences can be compared in terms of complementarity that is determined by the rules for base
pairing. In a perfect duplex of DNA, the strands are precisely complementary. It is possible to measure

complementarity because the denaturation of DNA is reversible under appropriate conditions. Detecting
and identifying nucleic acid (DNA, mRNA) with a labeled cDNA probe that is complementary to it is an
application of nucleic acid hybridization. DNA microarrays utilize hybridization reactions between single-
stranded fluorescent dye-labeled nucleic acids to be interrogated and single-stranded sequences

immobilized on the chip surface. (LEE)

2.1.9 Complementary DNA
(cDNA)

Complementary DNA (cDNA) is used in recombinant
DNA technology. cDNA is complementary to a given
MRNA and is usually made by the enzyme reverse
transcriptase, first discovered in retroviruses. Reverse
transcription allows a mature mRNA to be retrieved
as cDNA without the interruption of non-coding
introns. The coexistence of MRNA and cDNA
establishes the general principle that information in
the form of either type of nucleic acid sequence can
be converted into the other type. In microarray
technology the process of reverse transcription is
frequently used to incorporate fluorescent dyes into
cDNA complementary to the mRNA transcripts. (LEE)
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Figure 2-15 Complementary DNA (cDNA) can be
prepared from mRNA. Total mRNa is extracted from a
particular tissue, and DNA copies (cDNa) of the mRNa
molecules are produced by the enzyme reverse
transcriptase. For simplicity, the copying of just one of
these mRNas into cDNa is illustrated here. (Alberts B. H.)
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2.1.10 PCR

Now that so many genome sequences are available, genes can be cloned directly without the need to
construct DNA libraries first. A technique called the polymerase chain reaction (PCR) makes this rapid
cloning possible. PCR allows the DNA from a selected region of a genome to be amplified a billion fold,
effectively "purifying" this DNA away from the remainder of the genome. Two sets of DNA
oligonucleotides, chosen to flank the desired nucleotide sequence of the gene, are synthesized by
chemical methods. These oligonucleotides are then used to prime DNA synthesis on single strands
generated by heating the DNA from the entire genome. The newly synthesized DNA is produced in a
reaction catalyzed in vitro by a purified DNA polymerase, and the primers remain at the 5’ ends of the
final DNA fragments that are made.

Nothing special is produced in the first cycle of DNA synthesis; the power of the PCR method is revealed
only after repeated rounds of DNA synthesis. Every cycle doubles the amount of DNA synthesized in the
previous cycle. Because each cycle requires a brief heat treatment to separate the two strands of the
template DNA double helix, the technique requires the use of a special DNA polymerase, isolated from a
thermophilic bacterium, that is stable at much higher temperatures than normal, so that it is not
denatured by the repeated heat treatments. With each round of DNA synthesis, the newly generated
fragments serve as templates in their turn, and within a few cycles the predominant product is a single
species of DNA fragment whose length corresponds to the distance between the two original primers.

In practice, 20 30 cycles of reaction are required for effective DNA amplification, with the products of
each cycle serving as the DNA templates for the next hence the term polymerase "chain reaction." A
single cycle requires only about 5 minutes, and the entire procedure can be easily automated. PCR
thereby makes possible the "cell-free molecular cloning" of a DNA fragment in a few hours, compared
with the several days required for standard cloning procedures. This technique is now used routinely to
clone DNA from genes of interest directly starting either from genomic DNA or from mRNA isolated from
cells. The PCR method is extremely sensitive; it can detect a single DNA molecule in a sample. Trace
amounts of RNA can be analyzed in the same way by first transcribing them into DNA with reverse
transcriptase. The PCR cloning technique has largely replaced Southern blotting for the diagnosis of
genetic diseases and for the detection of low levels of viral infection. It also has great promise in forensic
medicine as a means of analyzing minute traces of blood or other tissues even as little as a single cell
and identifying the person from whom they came by his or her genetic "fingerprint". (Alberts W. J.)



22

2.2 MICROARRAY TECHNOLOGY

A DNA microarray consists of a solid surface, usually a microscope slide, onto which DNA molecules have
been chemically bonded. The purpose of a microarray is to detect the presence and abundance of
labeled nucleic acids in a biological sample, which will hybridize to the DNA on the array via Watson—
Crick duplex formation, and which can be detected via the label. In the majority of microarray
experiments, the labeled nucleic acids are derived from the mRNA of a sample or tissue, and so the
microarray measures gene expression. The power of a microarray is that there may be many thousands
of different DNA molecules bonded to an array, and so it is possible to measure the expression of many
thousands of genes simultaneously.

Also, comparing healthy and diseased cells can vyield vital information on the causes of diseases.
Microarrays have been successfully applied to several biological problems and, as arrays become more
easily available to researchers, the popularity of these kinds of experiments will increase. The demand
for good statistical analysis regimens and tools tailored for microarray data analysis will increase as the
popularity of microarrays grows. The future will likely bring many new microarray applications, each
with its own demands for specialized statistical analysis.

In order to analyze any experimental data correctly, it is fundamental to understand the experiments
that generated the data. Microarray experiments contain many steps, each with its individual noise and
variation. The final result may be affected by any of the steps in the process. Good experimental design
and careful statistical analysis are required for successful interpretation of microarray data. (Stekel)
(LEE)

Microarray technology has evolved from Ed Southern’s insight that labeled nucleic acid molecules could
be used to identify nucleic acid molecules attached to a solid support. Hybridization methods, such as
Southern and Northern blots, colony hybridizations, and dot blots, have long been used to identify and
quantify nucleic acids in biological samples. These methods traditionally attempt to identify and
measure only one gene or transcript at a time.

Hybridization methods have evolved from these early membrane-based, radioactive detection
embodiments to highly parallel quantitative methods using fluorescence detection. Some key
innovations have made it possible to develop techniques that analyze hundreds or thousands of
hybridizations in parallel. The first was the use of non-porous solid supports, such as nylon filters or glass
slides, which facilitate miniaturization. The second was the development of methods for spatial
synthesis and robotic spotting of oligonucleotides and cDNAs on a very small scale. These methods have
made it possible to generate arrays with very high densities of DNA, allowing tens of thousands of genes
to be represented in areas smaller than standard glass microscope slides. In fact, today it is technically
possible to generate arrays of probes representing all the genes of a genome on a single slide. Finally,
improvements in fluorescent labeling of nucleic acids, fluorescent-based detection, and image
processing have improved the accuracy of microarrays.

Before describing the process of generating and using microarrays in more detail, a clarification of the
nomenclature is needed. At least two nomenclature systems currently exist in the literature for referring
to DNA hybridization partners. There is no general consensus on the usage of the terms probe and
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target, and researchers have used these two terms interchangeably in a number of publications. With
respect to the nucleic acids whose entwining represents the hybridization reaction, the identity of one is
defined as it is tethered to the solid phase, making up the microarray itself. The identity of the other is
revealed by hybridization. Nature Genetics14 and Duggan et al.15 adopted the nomenclature that the
tethered nucleic acids spotted on the array are the probes, and the fluor-tagged cDNAs from a complex
mMRNA mixture extracted from cells are the targets. (LEE)

2.2.1 The Technology behind DNA Microarrays

When DNA microarrays are used for measuring the concentration of messenger RNA in living cells, a
probe of one DNA strand that matches a particular messenger RNA in the cell is used. The concentration
of a particular messenger is a result of expression of its corresponding gene, so this application is often
referred to as expression analysis. When different probes matching all messenger RNAs in a cell are
used, a snapshot of the total messenger RNA pool of a living cell or tissue can be obtained. This is often
referred to as an expression profile because it reflects the expression of every single measured gene at
that particular moment. Expression profile is also sometimes used to describe the expression of a single
gene over a number of conditions.
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Figure 2-16 The Affymetrix GeneChip technology.

Gene expression monitoring with oligonucleotide arrays.

a, A single 1.28°1.28 cm array containing probe sets for approximately 40,000 human genes and ESTs. This array contains
features smaller than 22°22 mm and only four probe pairs per gene or EST.

b, Expression probe and array design. Oligonucleotide probes are chosen based on uniqueness criteria and composition design
rules. For eukaryotic organisms, probes are chosen typically from the 3" end of the gene or transcript (nearer to the poly(A) tail)
to reduce problems that may arise from the use of partially degraded mRNA. The use of the PM minus MM differences
averaged across a set of probes greatly reduces the contribution of background and cross-hybridization and increases the
quantitative accuracy and reproducibility of the measurement. (Robert J. Lipshutz)

Expression analysis can also be performed by a method called serial analysis of gene expression (SAGE).
Instead of using microarrays, SAGE relies on traditional DNA sequencing to identify and enumerate the
messenger RNAs in a cell.

Another traditional application of DNA microarrays is to detect mutation in specific genes. The massively
parallel nature of DNA microarrays allows the simultaneous screening of many, if not all, possible
mutations within a single gene. This is referred to as genotyping.
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The treatment of array data does not depend so much on the technology used to gather the data as it
depends on the application in question. For expression analysis the field has been dominated in the past
by two major technologies. The Affymetrix, Inc. GeneChip system uses prefabricated oligonucleotide
chips. Custom-made chips use a robot to spot cDNA, oligonucleotides, or PCR products on a glass slide
or membrane. More recently, several new technologies have entered the market. (Knudsen, 2006)
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Figure 2-17 In-situ synthesis of oligonucleotides. The oligonucleotides are built on the glass array one base at a time. At each
step, the base is added via the reaction between the hydroxyl group 5of the terminal base and the phosphate group of the next
base. There is a protective group on the 5 of the base being added, which prevents the addition of more than one base at each

step. Following addition, there is a deprotection step at which the protective group is converted to a hydroxyl group to allow
addition of the next base.
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2.2.2 Spotted cDNA Arrays

In spotted cDNA arrays full-length cDNA clones or expressed sequence tag (EST) libraries are robotically
spotted and immobilized on the support. Many laboratories already have cDNA libraries, so generation
of these arrays requires only investment in the robotic equipment to spot, or array, the cDNA. Spotted
cDNA arrays have an advantage over other types of arrays in that unknown sequences can be spotted.
Thus, for organisms for which no or only limited genome sequence information is available, spotted
cDNA microarrays are the only choice for genome-wide transcriptional profiling. (LEE)
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Figure 2-18 The spotted array technology. A robot is used to transfer probes in solution from a microtiter plate to a glass slide
where they are dried. Extracted mRNA from cells is converted to cDNA and labeled fluorescently. Reference sample is labeled
red and test sample is labeled green. After mixing, they are hybridized to the probes on the glass slide. After washing away
unhybridized material, the chip is scanned with a confocal laser and the image is analyzed by computer. (Knudsen, 2006)

2.2.3 Spotted Oligonucleotide Arrays

This is the technology by which the first microarrays were manufactured. The array is made using a
spotting robot via three main steps:

1. Making the DNA probes to put on the array

2. Spotting the DNA onto the glass surface of the array with the spotting robot

3. Post spotting processing of the glass slide
There are three main types of spotted array, which can be subdivided in two ways: by the type of DNA
probe, or by the attachment chemistry of the probe to the glass. The DNA probes used on a spotted
array can either be polymerase chain reaction (PCR) products or oligonucleotides. In the first case, highly
parallel PCR is used to amplify DNA from a clone library, and the amplified DNA is purified. In the second
case, DNA oligonucleotides are presynthesised for use on the array. (Stekel, 2003)
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2.2.4 In-Situ Oligonucleotide Arrays

In-situ oligonucleotide arrays were developed by Fodor et al.16 and Affymetrix, Inc. In-situ
oligonucleotide arrays use a combination of photolithography and solid-phase oligonucleotide chemistry
to synthesize short oligonucleotide probes (25-mer oligos) directly on the solid support surface. The
number of oligonucleotides (50,000 probes per 1.28 square centimeters) on a chip manufactured by this
method vastly exceeds what can be achieved by spotting solution robotically. This takes place by
covalent reaction between the 5’ hydroxyl group of the sugar of the last nucleotide to be attached and
the phosphate group of the next nucleotide. Each nucleotide added to the oligonucleotide on the glass
has a protective group on its 5’ position to prevent the addition of more than one base during each
round of synthesis. The protective group is then converted to a hydroxyl group either with acid or with
light before the next round of synthesis.

Affymetrix Inc. has chosen to utilize this advantage to construct an array with several oligonucleotide
probes and cross-hybridization controls for each target gene. However, the researcher has little, if any,
control over what probes are used on pre-manufactured arrays like the Affymetrix GeneChip arrays. On
the other hand, comparison of results between different laboratories is facilitated by the use of
products from a common manufacturer.

For in-situ oligonucleotide arrays, the test and reference samples (or the treatment and control samples)
are hybridized separately on different chips. In contrast, for either spotted cDNA arrays or spotted
oligonucleotide arrays, a test and a reference sample labeled with two different fluorescent dyes are
commonly simultaneously hybridized on the same arrays. This difference affects how microarray data
generated with single-color or two-color arrays are analyzed. (Stekel, 2003) (LEE)
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Figure 2-19 Affymetrix technology. Affymetrix arrays are manufactured using in-situ synthesis with a light-mediated deprotection step.
During each round of synthesis, a single base is added to appropriate parts of the array. A mask is used to direct light to the appropriate
regions of the array so that the base is added to the correct features. Each step requires a different mask. The masks are expensive to
produce, but once made, it is straightforward to use them to manufacture a large number of identical arrays. (Reproduced with Permission
from Affymetrix Inc.) (Stekel, 2003)

a. Light directed oligonucleotide synthesis. A solid support is derivatized with a covalent linker molecule terminated with a photolabile
protecting group. Light is directed through a mask to deprotect and activate selected sites, and protected nucleotides couple to the activated
sites. The process is repeated, activating different sets of sites and coupling different bases allowing arbitrary DNA probes to be constructed
at each site.

b. Schematic representation of the lamp, mask and array. (Robert J. Lipshutz)
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2.2.5 Affymetrix GeneChip Technology

Affymetrix uses equipment similar to that which is used for making silicon chips for computers, and thus
allows mass production of very large chips at reasonable cost. Where computer chips are made by
creating masks that control a photolithographic process for removal or deposition of silicon material on
the chip surface, Affymetrix uses masks to control synthesis of oligonucleotides on the surface of a chip.
The standard phosphoramidite method for synthesis of oligonucleotides has been modified to allow
light control of the individual steps. The masks control the synthesis of several hundred thousand
squares, each containing many copies of an oligo. So the result is several hundred thousand different
oligos, each of them present in millions of copies.

That large number of oligos, up to 25 nucleotides long, has turned out to be very useful as an
experimental tool to replace all experimental detection procedures that in the past relied on using
oligonucleotides: Southern, Northern, and dot blotting as well as sequence specific probing and
mutation detection.

For expression analysis, up to 40 oligos are used for the detection of each gene. Affymetrix has chosen a
region of each gene that (presumably) has the least similarity to other genes. From this region 11 to 20
oligos are chosen as perfect match (PM) oligos (i.e., perfectly complementary to the mRNA of that
gene). In addition, they have generated 11 to 20 mismatch (MM) oligos, which are identical to the PM
oligos except for the central position 13, where one nucleotide has been changed to its complementary
nucleotide. Affymetrix claims that the MM oligos will be able to detect nonspecific and background
hybridization, which is important for quantifying weakly expressed mRNAs. However, for weakly
expressed mRNAs where the signal-to-noise ratio is smallest, subtracting mismatch from perfect match
adds considerably to the noise in the data (Schadt et al., 2000). That is because subtracting one noisy
signal from another noisy signal yields a third signal with even more noise.

The hybridization of each oligo to its target depends on its sequence. All 11 to 20 PM oligos for each
gene have a different sequence, so the hybridization will not be uniform. That is of limited consequence
as long as we wish to detect only changes in mRNA concentration between experiments.

To detect hybridization of a target mRNA by a probe on the chip, we need to label the target mRNA with
a fluorochrome. The steps from cell to chip usually are as follows:

e Extract total RNA from cell (usually using TRIzol from Invitrogen or RNeasy from QIAGEN).

e Separate mRNA from other RNA using poly-T column (optional).

e Convert mRNA to cDNA using reverse transcriptase and a poly-T primer.

e Amplify resulting cDNA using T7 RNA polymerase in the presence of biotin-UTP and biotin-CTP,
so each cDNA will yield 50 to 100 copies of biotin-labeled cRNA.

* Incubate cRNA at 94 degrees Celsius in fragmentation buffer to produce cRNA fragments of
length 35 to 200 nucleotides.

e Hybridize to chip and wash away non hybridized material.

e Stain hybridized biotin-labeled cRNA with streptavidin-phycoerythrin and wash.

e Scan chip in confocal laser scanner (optional).

e Amplify the signal on the chip with goat IgG and biotinylated antibody.

e Scan chip in scanner.
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Usually, 5 to 10 ug of total RNA are required for the procedure. But new improvements to the cDNA
synthesis protocols reduce the required amount to 100 ng. If two cycles of cDNA synthesis and cRNA
synthesis are performed, the detection limit can be reduced to 2 ng of total RNA (Baugh et al., 2001).
MessageAmp kits from Ambion allow up to 1000 times amplification in a single round of T7 polymerase
amplification. (Knudsen, 2006)
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Figure 2-20 Preparation of sample for GeneChip arrays. Messenger RNA is extracted from the cell and converted to cDNA. It
then undergoes an amplification and labeling step before fragmentation and hybridization to 25-mer oligos on the surface of
the chip. After washing of unhybridized material, the chip is scanned in a confocal laser scanner and the image is analyzed by
computer. (Image courtesy of Affymetrix)
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Figure 2-21 Schematic overview of spotted cDNA microarrays and high-density oligonucleotide arrays. cDNA microarrays :
Array preparation: inserts from cDNA collections or libraries are amplified and the PCR products printed at specified sites on
glass slides using high-precision arraying robots. These probes are attached by chemical linkers. Target preparation: RNA from 2
different tissues or cell populations is used to synthesize cDNA in the presence of nucleotides labeled with 2 different
fluorescent dyes (eg: Cy3 and Cy5). Both samples are mixed in a small volume of hybridization buffer and hybridized to the
array, resulting in competitive binding of differentially labeled cDNAs to the corresponding array elements. High resolution
confocal fluorescence scanning of the array with two different wavelengths corresponding to the dyes used provides relative
signal intensities and ratios of mMRNA abundance for the genes represented on the array. High-density oligonucleotide
microarrays : Array preparation: sequences of 16-20 short oligonucleotides (typically 25mer) are chosen from the mRNA
reference sequence of each gene, often representing the unique part of the transcript. Light-directed, in situ oligonucleotide
synthesis is used to generate high- density probe arrays containing over 300,000 individual elements. Target preparation: Total
RNA from different tissues or cell populations is used to generate cDNA carrying a transcriptional start site for T7 DNA
polymerase. During IVT, biotin-labeled nucleotides are incorporated into the synthesized cRNA molecules which is then
fragmented. Each target sample is hybridized to a separate probe array and target binding is detected by staining with a
fluorescent dye coupled to streptavidin. Signal intensities of probe array element sets on different arrays are used to calculate
relative mRNA abundance for the genes represented on the array. Modified and reprinted with permission from Nature Cell
Biology (Vol. 3, No. 8, pp. E190-E195) Copyright ©2001 Macmillan Publishers Limited. 262 (The microarray: Potential aplications
for ophthalmic research)
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2.3 CANCER

We pay a price for having bodies that can renew and repair themselves. The delicately adjusted
mechanisms that control these processes can go wrong, leading to catastrophic disruption of the body’s
structure. Foremost among the diseases of tissue renewal is cancer, which stands alongside infectious
illness, malnutrition, war, and heart disease as a major cause of death among humans. In Europe and
North America, for example, one in four of us will die of cancer.

Cancers arise from violations of the basic rules of social cell behavior. To make sense of the origins and
progress of the disease, and to devise treatments, we have to draw upon almost every part of our
knowledge of how cells work and interact in tissues. Conversely, much of what we know about cell and
tissue biology has been discovered as a byproduct of cancer research.

Cancer is due to failures of the mechanisms that usually control the growth and proliferation of cells.
During normal development and throughout adult life, intricate genetic control systems regulate the
balance between cell birth and death in response to growth signals, growth-inhibiting signals, and death
signals. Cell birth and death rates determine adult body size, and the rate of growth in reaching that
size. In some adult tissues, cell proliferation occurs continuously as a constant tissue-renewal strategy.
Intestinal epithelial cells, for instance, live for just a few days before they die and are replaced; certain
white blood cells are replaced as rapidly, and skin cells commonly survive for only 2—-4 weeks before
being shed. The cells in many adult tissues, however, normally do not proliferate except during healing
processes. Such stable cells (e.g., hepatocytes, heart muscle cells, neurons) can remain functional for
long periods or even the entire lifetime of an organism.

The losses of cellular regulation that give rise to most or all cases of cancer are due to genetic damage.
Mutations in two broad classes of genes have been implicated in the onset of cancer: proto-oncogenes
and tumor-suppressor genes. Proto-oncogenes are activated to become oncogenes by mutations that
cause the gene to be excessively active in growth promotion. Either increased gene expression or
production of a hyperactive product will do it. Tumor-suppressor genes normally restrain growth, so
damage to them allows inappropriate growth. Many of the genes in both classes encode proteins that
help regulate cell birth (i.e., entry into and progression through the cell cycle) or cell death by apoptosis;
others encode proteins that participate in repairing damaged DNA. Cancer commonly results from
mutations that arise during a lifetime’s exposure to carcinogens, which include certain chemicals and
ultraviolet radiation. Cancer-causing mutations occur mostly in somatic cells, not in the germ-line cells,
and somatic cell mutations are not passed on to the next generation. In contrast, certain inherited
mutations, which are carried in the germ line, increase the probability that cancer will occur at some
time. In a destructive partnership, somatic mutations can combine with inherited mutations to cause
cancer.

Thus the cancer-forming process, called oncogenesis or tumorigenesis, is an interplay between genetics
and the environment. Most cancers arise after genes are altered by carcinogens or by errors in the
copying and repair of genes. Even if the genetic damage occurs only in one somatic cell, division of this
cell will transmit the damage to the daughter cells, giving rise to a clone of altered cells. Rarely,
however, does mutation in a single gene lead to the onset of cancer. More typically, a series of
mutations in multiple genes creates a progressively more rapidly proliferating cell type that escapes
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normal growth restraints, creating an opportunity for additional mutations. Eventually the clone of cells
grows into a tumor. In some cases cells from the primary tumor migrate to new sites (metastasis),
forming secondary tumors that often have the greatest health impact.

Metastasis is a complex process with many steps. Invasion of new tissues is nonrandom, depending on
the nature of both the metastasizing cell and the invaded tissue. Metastasis is facilitated if the tumor
cells produce growth and angiogenesis factors (blood vessel growth inducers). Motile, invasive,
aggregating, deformable cells are most dangerous. Tissues under attack are most vulnerable if they
produce growth factors and readily grow new vasculature. They are more resistant if they produce anti-
proliferative factors, inhibitors of proteolytic enzymes, and anti-angiogenesis factors.

Research on the genetic foundations of a particular type of cancer often begins by identifying one or
more genes that are mutationally altered in tumor cells. Subsequently it is important to learn whether
an altered gene is a contributing cause for the tumor, or an irrelevant side event. Such investigations
usually employ multiple approaches: epidemiological comparisons of the frequency with which the
genetic change is associated with a type of tumor, tests of the growth properties of cells in culture that
have the particular mutation, and the testing of mouse models of the disease to see if the mutation can
be causally implicated. A more sophisticated analysis is possible when the altered gene is known to
encode a component of a particular molecular pathway (e.g., an intracellular signaling pathway). In this
case it is possible to alter other components of the same pathway and see whether the same type of
cancer arises.

Because the multiple mutations that lead to formation of a tumor may require many years to
accumulate, most cancers develop later in life. The occurrence of cancer after the age of reproduction
may be one reason that evolutionary restraints have not done more to suppress cancer. The
requirement for multiple mutations also lowers the frequency of cancer compared with what it would
be if tumorigenesis were triggered by a single mutation. However, huge numbers of cells are, in essence,
mutagenized and tested for altered growth during our lifetimes, a sort of evolutionary selection for cells
that proliferate. Fortunately the tumor itself is not inherited.

Tumors arise with great frequency, especially in older individuals, but most pose little risk to their host
because they are localized and of small size. We call such tumors benign; an example is warts, a benign
skin tumor. The cells composing benign tumors closely resemble, and may function like, normal cells.
The cell-adhesion molecules that hold tissues together keep benign tumor cells, like normal cells,
localized to the tissues where they originate. A fibrous capsule usually delineates the extent of a benign
tumor and makes it an easy target for a surgeon. Benign tumors become serious medical problems only
if their sheer bulk interferes with normal functions or if they secrete excess amounts of biologically
active substances like hormones. Acromegaly, the overgrowth of head, hands, and feet, for example,
can occur when a benign pituitary tumor causes overproduction of growth hormone. In contrast, cells
composing a malignant tumor, or cancer, usually grow and divide more rapidly than normal, fail to die
at the normal rate (e.g., chronic lymphocytic leukemia, a tumor of white blood cells), or invade nearby
tissue without a significant change in their proliferation rate (e.g., less harmful tumors of glial cells).
Some malignant tumors, such as those in the ovary or breast, remain localized and encapsulated, at
least for a time. When these tumors progress, the cells invade surrounding tissues, get into the body’s
circulatory system, and establish secondary areas of proliferation, a process called metastasis. Most
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malignant cells eventually acquire the ability to metastasize. Thus the major characteristics that
differentiate metastatic (or malignant) tumors from benign ones are their invasiveness and spread.
(Alberts B. H.) (Lodish)
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2.4 MACHINE LEARNING

Machine learning is an application of artificial intelligence (Al) that provides systems the ability to
automatically learn and improve from experience without being explicitly programmed. Machine
learning focuses on the development of computer programs that can access data and use it learn for
themselves.

The process of learning begins with observations or data, such as examples, direct experience, or
instruction, in order to look for patterns in data and make better decisions in the future based on the
examples that we provide. The primary aim is to allow the computers learn automatically without
human intervention or assistance and adjust actions accordingly. (expertsystem.com)

The name machine learning was coined in 1959 by Arthur Samuel (Some Studies in Machine Learning
Using the Game of Checkers, 1959). Tom M. Mitchell provided a widely quoted, more formal definition
of the algorithms studied in the machine learning field

Definition: A computer program is said to learn from experience E with respect to some class of tasks T
and performance measure P, if its performance at tasks in T, as measured by P, improves with experience
E (Mitchell, 1997)

Generally, there are four types of Machine Learning Algorithms:

e Supervised learning refers to any machine learning process that learns a function from an input
type to an output type using data comprising examples that have both input and output values.
Two typical examples of supervised learning are classification learning and regression. In these
cases, the output types are respectively categorical (the classes) and numeric. Supervised
learning stands in contrast to unsupervised learning, which seeks to learn structure in data, and
to reinforcement learning in which sequential decision-making policies are learned from reward
with no examples of “correct” behavior.

e Unsupervised learning refers to any machine learning process that seeks to learn structure in
the absence of either an identified output or feedback. Three typical examples of unsupervised
learning are clustering, association rules, and self-organizing maps.

e Reinforcement learning describes a large class of learning problems characteristic of
autonomous agents interacting in an environment: sequential decision-making problems with
delayed reward. Reinforcement-learning algorithms seek to learn a policy (mapping from states
to actions) that maximizes the reward received over time. Unlike in supervised learning
problems, in reinforcement learning problems, there are no labeled examples of correct and
incorrect behavior. However, unlike unsupervised learning problems, a reward signal can be
perceived.

e Semi-supervised learning uses both labeled and unlabeled data to perform an otherwise
supervised learning or unsupervised learning task.

(Sammut C., 2010)
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2.4.1 Classification

In common usage, the word classification means to put things into categories, group them together in
some useful way. If we are screening for a disease, we would group people into those with the disease
and those without. We, as humans, usually do this because things in a group, called a class in machine
learning, share common characteristics. If we know the class of something, we know a lot about it. In
machine learning, the term classification is most commonly associated with a particular type of learning
where examples of one or more classes, labeled with the name of the class, are given to the learning
algorithm.

The input data for a classification task is a collection of records. Each record, also known as an instance
or example, is characterized by a tuple (x,y), where x is the attribute set and y is a special attribute,
designated as the class label (also known as category or target attribute). The class label, on the other
hand, must be a discrete attribute. This is a key characteristic that distinguishes classification from
regression, a predictive modeling task in which g is a continuous attribute. (Pang Ning Tan)

Also (Pang Ning Tan) defines classification in his book (Introduction to Data Mining.) as the task of
learning a target function / that maps each attribute set x to one of the predefined class labels y.

The target function is also known informally as a classification model. A classification model is useful for
the following purposes.

e Descriptive Modeling A classification model can serve as an explanatory tool to distinguish
between objects of different classes.

e Predictive Modeling A classification model can also be used to predict the class label of
unknown records. A classification model can be treated as a black box that automatically assigns
a class label when presented with the attribute set of an unknown record.

A classification rule is an IF-THEN rule. The condition of the rule (the rule body or antecedent) typically
consists of a conjunction of Boolean terms, each one constituting a constraint that needs to be satisfied
by an example. If all constraints are satisfied, the rule is said to fire, and the example is said to be
covered by the rule. The rule head (also called the consequent or conclusion) consists of a single class
value, which is predicted in case the rule fires. This is in contrast to association rules, which allow
multiple features in the head. (Sammut C., 2010)

2.4.2 Binary Classification

Binary classification problems (Duda et al. 2001) consider assigning an individual to one of two
categories, by measuring a series of attributes. An example is medical diagnosis for a single medical
condition (say disease vs. no disease) based on a battery of tests. (Science Direct)

There are many influential binary classification methods such as kernel methods (Hofmann et al., 2008),
ensemble methods (Polikar, 2006), and deep learning methods (Bengio, 2009). Support vector machine
(SVM) (Vapnik, 1999) is a classical kernel method. Ensemble methods include boosting (Freund and
Schapire, 1997; Friedman et al., 2000) and random forest (RF) (Breiman, 2001). Deep learning methods
are based on artificial neural networks (ANNs) (Bishop and et al., 1995). (Science Direct)
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2.4.3 Classification Algorithms

There are a very large number of classification algorithms. The most common are separated in linear
and non-linear. A simple way of representing the output from machine learning is a linear model, the
output of which is just the sum of the attribute values, except that weights are applied to each attribute
before adding them together. The trick is to come up with good values for the weights-ones that make
the model’s output match the desired output. Here, the output and the inputs-attribute values-are all
numeric. Linear models can also be applied to binary classification problems. In this case, the line
produced by the model separates the two classes: It defines where the decision changes from one class
value to the other. Such a line is often referred to as the decision boundary. (lan H. Witten)

24.3.1 Logistic Regression
Statisticians use the word regression for the process of predicting a numeric quantity, and regression
model is another term for this kind of linear model.

Logistic regression provides a mechanism for applying the techniques of linear regression to
classification problemes. It utilizes a linear regression model of the form

z=Bo + B1X1 + Poxz + - + +Pnx
where x; to x, represent the values of the n attributes and 3, to B, represent weights. This model is

mapped onto the interval [0,1] using P(C0|X1 Xn) = where C( represents class 0.

1+e~2

2.4.3.2 Linear Discriminant Analysis

A discriminant is a function that takes an input variable x and outputs a class label y for it. A linear
discriminant is a discriminant that uses a linear function of the input variables and more generally a
linear function of some vector function of the input variables f (x). This entry focuses on one such linear
discriminant function called Fisher’s linear discriminant. Fisher’s discriminant works by finding a
projection of input variables to a lower dimensional space while maintaining a class separability
property. (Sammut C., 2010)
Given N observed training data points {(x;, y)}Iv; wherey; €{1,...,Q} is the label for an input variable
X € RY, our task is to find the underlying discriminant function, f: RY - {1,...,Q}. The linear
discriminant seeks a projection of d-dimensional input onto a line in the direction of w € RY, such that
f(x) = w'x
Fisher’s criterion maximizes a large separation between the projected class means while simultaneously
minimizing a variance within each class. (Sammut C., 2010)
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Learning LDA Models
LDA makes some simplifying assumptions about our data:
e That our data is Gaussian, that each variable is is shaped like a bell curve when plotted.
e That each attribute has the same variance, that values of each variable vary around the mean by
the same amount on average.

With these assumptions, the LDA model estimates the mean and variance from our data for each class.
It is easy to think about this in the univariate (single input variable) case with two classes.
The mean (mu) value of each input (x) for each class (k) can be estimated in the normal way by dividing
the sum of values by the total number of values.
mu, = 1/n, * sum(x)
Where muy is the mean value of x for the class k, ny is the number of instances with class k. The variance
is calculated across all classes as the average squared difference of each value from the mean.
0’ =1/ (n-K) * sum((x — mu)?)
Where o is the variance across all inputs (x), n is the number of instances, K is the number of classes
and mu is the mean for input x.
Making Predictions with LDA
LDA makes predictions by estimating the probability that a new set of inputs belongs to each class. The
class that gets the highest probability is the output class and a prediction is made.
The model uses Bayes Theorem to estimate the probabilities. Briefly Bayes’ Theorem can be used to
estimate the probability of the output class (k) given the input (x) using the probability of each class and
the probability of the data belonging to each class:

P(Y =x|X=x) = (Pl * fi(x)) / sum(Pl * fi(x))
Where PI, refers to the base probability of each class (k) observed in your training data (e.g. 0.5 for a 50-
50 split in a two class problem). In Bayes’ Theorem this is called the prior probability.

Pl, = ni/n

The f(x) above is the estimated probability of x belonging to the class. A Gaussian distribution function is
used for f(x). Plugging the Gaussian into the above equation and simplifying we end up with the
equation below. This is called a discriminate function and the class is calculated as having the largest
value will be the output classification (y):

D (x) = x * (mw/ 0%) - (mug/(2* 0%)) + In(Pl)
Dy(x) is the discriminate function for class k given input x, the muy, o® and Pl are all estimated from your
data. (J.Brownlee)
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2433 SVM

A support vector machine (SVM) is a supervised learning technique that has proven useful in
classification problems encountered in working with microarray data. In the simplest case of two class
classification, SVMs find a hyperplane that separates the two classes of data with as wide a margin as
possible. This leads to good generalization accuracy on unseen data and supports specialized
optimization methods that allow SVM to learn from a large amount of data.

SVM has a stronger mathematical basis than some machine learning methods such as neural networks
and is closely related to some well-established theories in statistics. As a linear model, it not only tries to
correctly classify the training data but also maximizes the margin for better generalization performance.
This formulation leads to a separating hyperplane that depends only on the (usually small fraction of)
data points that lie on the margin, which are called support vectors. Hence the whole algorithm is called
support vector machine. In addition, since real-world data analysis problems often involve nonlinear
dependencies, SVMs can be easily extended to model such nonlinearity by means of positive semi-
definite kernels. Moreover, SVMs can be trained via quadratic programming, which (a) makes
theoretical analysis easier and (b) provides much convenience in designing efficient solvers that scale for
large datasets. Finally, when applied to real-world data, SVMs often deliver state of- the-art
performance in accuracy, flexibility, robustness, and efficiency. (C., 2010)

2.4.3.3.1 Linearly Separable Binary Classification

Theory

We have L training points, where each input x; has D attributes (i.e. is of dimensionality D) and is in one
of two classes y; = —1or + 1, i.e our training data is of the form:

{x;, y;} where i=1..L, vy; e{-1,1}, x € RP (1.0)

Here we assume the data is linearly separable, meaning that we can draw a line on a graph of x; vs x,
separating the two classes when D = 2 and a hyperplane on graphs of x4, x5 ... xp forwhen D > 2.

This hyperplane can be described by w-x 4+ b = 0 where:

e wisnormal to the hyperplane.

b

—” i is the perpendicular distance from the hyperplane to the origin.
w

Support Vectors are the examples closest to the separating hyperplane and the aim of Support Vector
Machines (SVM) is to orientate this hyperplane in such a way as to be as far as possible from the closest
members of both classes.
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Figure 2-22 SVM Hyperplane through two linearly separable classes

Referring to Figure 22, implementing a SVM boils down to selecting the variables w and b so that our
training data can be described by:

X, w4+ b=>2+1 for y = +1 (1.1)
X, w+b<-1 for y = -1 (1.2)
These equations can be combined into: y,(x;-w + b) —1 >0V, (1.3)

If we now just consider the points that lie closest to the separating hyper plane, i.e. the Support Vectors
(shown in circles in the diagram), then the two planes H1 and H2 that these points lie on can be
described by:

x, w4+ b=4+1 for H; (1.4)
x,*w+ b=-1 for H, (1.5)
Referring to Figure 21, we define d; as being the distance from H; to the hyperplane and d, from H2 to
it. The hyperplane's equidistance from H1 and H2 means that d1 = d2 - a quantity known as the SVM's

margin. In order to orientate the hyperplane to be as far from the Support Vectors as possible, we need
to maximize this margin.

Simple vector geometry shows that the margin is equal tom and maximizing it subject to the

constraint in is equivalent to finding:

min|lw|| suchthaty,(x; - w + b)—1=0V;

Minimizing ||lw|| is equivalent to minimizing %”W”Z and the use of this term makes it possible to
perform Quadratic Programming (QP) optimization later on. We therefore need to find:

min %”W”Z st. y;-w+b)—1=20V; (1.6)
In order to cater for the constraints in this minimization, we need to allocate them Lagrange multipliers
o, wherea; > 0V;:
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Ly = 5wl — alyCe-w + b) —1 ] (1.7)
= Sl — Tk, auly (- w + b) — 1] (1.8)
= SIwl? — Sk ay (- w + b) + 3k, o (1.9)

We wish to find the w and b which minimizes, and the a which maximizes (whilst keeping a; = 0 V; ).
We can do this by differentiating Lp with respect to w and b and setting the derivatives to zero:
JdLp

W=0 > W= ayx; (1.10)
%’=0 > X1 y,x;=0 (1.11)
Substituting (1.10) and (1.11) into (1.9) gives a new formulation which, being dependent on a, we need
to maximize:

Lp=Yh a;— %Zid- @ ay,yxi-x;s.t.a; =0V, X ay; =0 (1.12)
=Y a;— %Zi'j a; H;ja; where H;; = y;y;x; - x; (1.13)
=Y —%aTHa sit.a; =20V Xk ay; =0 (1.14)

This new formulation Ly, is referred to as the Dual form of the Primary L,, . It is worth noting that the
Dual form requires only the dot product of each input vector x;to be calculated, this is important for the
Kernel Trick.

Having moved from minimizing L,, to maximizing L, we need to find:
max, [ZiL=1 a; —%aTHa] sst. a;=0V; and Xr,a;y,=0 (1.15)

This is a convex quadratic optimization problem, and we run a QP solver which will return a and from
(1.10) will give us w. What remains is to calculate b.
Any data point satisfying (1.11) which is a Support Vector x; will have the form:

ys(xs-w+b)=1

Vs (Z AmYm Xm * Xs +b> =1

meS

Substituting in (1.10):

Where S denotes the set of indices of the Support Vectors. S is determined by finding the indices i where
a; > 0. Multiplying through by y, and then using y? = 1 from (1.1) and (1.2):

ysz (Z AmYm Xm " Xs + b) =Ys

meS

b =ys_zamymxm'xs

meS
Instead of using an arbitrary Support Vector xg, it is better to take an average over all of the Support
Vectorsin S:

1
b= N_SZS eS(YS — Yimes AmYm Xm * xs) (1.16)
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We now have the variables w and b that define our separating hyperplane's optimal orientation and
hence our Support Vector Machine.

Application
In order to use an SVM to solve a linearly separable, binary classification problem we need to:

e Create H, where H;; = y;y;x; - x;.

e Find a so that ZiL=1 a; — %aTHa is maximized, subject to the constraints

a; >0V; and Yi,a;y;=0
This is done using a QP solver.
e Calculate w = Y\, a;yix;.
e Determine the set of Support Vectors S by finding the indices such that a; > 0.
1
e Calculateb = N_SZSES(yS — Yimes AmYm Xm * Xs)

e Each new point x’ is classified by evaluating y' = sgn(w-x’ + b).
2.4.3.3.2 Binary Classification for Data that is not Fully Linearly Separable

Theory

In order to extend the SVM methodology to handle data that is not fully linearly separable, we relax the
constraints for (1.1) and (1.2) slightly to allow for misclassi_ed points. This is done by introducing a
positive slack variable §;, i =1, ....L:

X, w+b=2+1-¢§ for y = +1 (2.2)
X, wW+b=2-1+¢& for y = -1 (2.2)
& = 0vi (2.3)
Which can be combined into:

yi(x;-w+b) —1+¢& = 0where & = 0Vi (2.4)

Figure 2-23 SVM Hyperplane through two non-linearly separable classes
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In this soft margin SVM, data points on the incorrect side of the margin boundary have a penalty that
increases with the distance from it. As we are trying to reduce the number of misclassifications, a
sensible way to adapt our objective function (1.6) from previously, is to find:

min Z[Wl2+CZh & st yGq-w+b)—1+& 20 Vi (2.5)

Where the parameter C controls the trade-off between the slack variable penalty and the size of the
margin. Reformulating as a Lagrangian, which as before we need to minimize with respect to w, b and ¢;
and maximize with respect to a (where a; =0 ,u; =0 V;):

Ly = S lIWli2+ CEi & — = Sy ailnew + b) =14+ &] + Xk, i & (2.6)
Differentiating with respect to w, b and &; and setting the derivatives to zero:

%fﬂ > w =X QX (2.7)
%p=0 > Yk a;y,=0 (2.8)
%’}o SC=a;+u (2.9)

Substituting these in, Lp has the same form as (1.14) before. However (2.9) together with y; = 0 V;,,
implies that &« = C. We therefore need to _nd:

max, [ZiL=1 a; —%aTHa] sst. 0<aq;<CV; and XY ,a;y;=0 (2.10)

b is then calculated in the same way as in (1.6) before, though in this instance the set of Support Vectors
used to calculate b is determined by finding the indices i where 0 < a; < C.

Application

In order to use an SVM to solve a binary classification for data that is not fully linearly separable we
need to:

e Create H, where H;; = y;y;x; - x;.

e Choose how significantly misclassifications should be treated, by selecting a suitable value for
the parameter C.

e Find a so that iL=1 a; — %aTHa is maximized, subject to the constraints
0<a;<CV; and XYl ,a;y;=0
This is done using a QP solver.

e Calculate w = YF a;yx;.

e Determine the set of Support Vectors S by finding the indices such that 0 < a; < C.

1
o Calculate b = N—Zses(ys - Zmes AmYm Xm * xs)

e Each new point x' is classified by evaluating y’' = sgn(w-x" + b).
(Fletcher, 2008)
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24.3.4 KNN

The k-nearest neighbor classifier (kNN) is based on the Euclidean distance between a test sample and
the specified training samples. A test sample x is assigned to the class x of its nearest neighbor, where m;
is a nearest neighbor to x if the distance.

D(mi,x) = minj{D(mi,x)}
Where D(mi,x) = |[|mi,x|| is the Euclidean distance. The k-nearest neighbors to x are identified and
the decision rule is D(x—>w) to assign sample x to the class w which is the most popular among the k
nearest training samples.
The class of nearest-neighbor methods can be viewed as direct estimates of this conditional expectation,
but we have seen that they can fail in at least two ways:
¢ if the dimension of the input space is high, the nearest neighbors need not be close to the target point,
and can result in large errors;
¢ if special structure is known to exist, this can be used to reduce both the bias and the variance of the
estimates.
We anticipate using other classes of models for f(x), in many cases specifically designed to overcome the
dimensionality problems, and here we discuss a framework for incorporating them into the prediction
problem. Nearest neighbors are useful in many machine learning and data mining tasks, such as
classification, anomaly detection and motif discovery and in more general tasks such as spell checking,
vector quantization, plagiarism detection, web search, and recommender systems. The naive method to
find the nearest neighbor to a point q requires a linear scan of all objects in in a data collection M.
(Sammut C., 2010) (Hastie) (Leif E. Peterson, 2008)
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2.4.3.5 NB

Naive Bayes is a simple learning algorithm that utilizes Bayes’ rule together with a strong assumption
that the attributes are conditionally independent given the class. While this independence assumption is
often violated in practice, naive Bayes nonetheless often delivers competitive classification accuracy.
Coupled with its computational efficiency and many other desirable features, this leads to naive Bayes
being widely applied in practice.

Naive Bayes provides a mechanism for using the information in sample data to estimate the posterior
probability P(y|x) of each class y given an object x. Once we have such estimates, we can use them for
classification or other decision support applications.

Naive Bayes’ features include the following:

e Computational efficiency: training time is linear with respect to both the number of training
examples and the number of attributes, and classification time is linear with respect to the
number of attributes and unaffected by the number of training examples.

e Low variance: because nalve Bayes does not directly fit the posterior distribution, it has low
variance, albeit at the cost of high bias.

e Incremental learning: naive Bayes operates from estimates of low-order probabilities that are
derived from the training data. These can readily be updated as new training data are acquired.

e Direct prediction of posterior probabilities.

e Robustness in the face of noise: naive Bayes always uses all attributes for all predictions and
hence is relatively insensitive to noise in the examples to be classified. Because it uses
probabilities, it is also relatively insensitive to noise in the training data.

e Robustness in the face of missing values: because naive Bayes always uses all attributes for all
predictions, if one attribute value is missing, information from other attributes is still used,
resulting in graceful degradation in performance. It is also relatively insensitive to missing
attribute values in the training data due to its probabilistic framework.

Structure of Learning System

Naive Bayes is a form of Bayesian network classifier based on Bayes’ rule:

P(y|x) = P(y)P(x|ly)P(x) (1)
together with an assumption that the attributes are conditionally independent given the class. For
attribute-value data, this assumption entitles

P(ylx) = [Ii, P(xily) (2)

where xi is the value of the i th attribute in x and n is the number of attributes:

P(x) = [IX, P(ci)P(x]|ci) (3)

where k is the number of classes and c¢; is the ith class. Thus, (1) can be calculated by normalizing the
numerators of the right-hand side of the equation. The resulting classifier uses a linear model,
equivalent to that used by logistic regression, differing only in the manner in which the parameters are
chosen.

For categorical attributes, the required probabilities P(y) and P(xily) are normally derived from
frequency counts stored in arrays whose values are calculated by a single pass through the training data
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at training time. These arrays can be updated as new data are acquired, supporting incremental
learning. Probability estimates are usually derived from the frequency counts using smoothing functions
such as the Laplace estimate or an m-estimate.

(Sammut C., 2010)

24.3.6 CART

The induction of decision trees is one of the oldest and most popular techniques for learning
discriminatory models, which has been developed independently in the statistical (Breiman et al. 1984;
Kass 1980) and machine learning (Hunt et al. 1966; Quinlan 1983, 1986) communities. A decision tree is
a tree-structured classification model, which is easy to understand, even by non expert users, and can
be efficiently induced from data.

A decision tree is a largely used non-parametric effective machine learning modeling technique for
regression and classification problems. To find solutions a decision tree makes sequential, hierarchical
decision about the outcomes variable based on the predictor data.

Decision tree builds regression or classification models in the form of a tree structure. It breaks down a
dataset into smaller and smaller subsets while at the same time an associated decision tree is
incrementally developed. The final result is a tree with decision nodes and leaf nodes.

The Understanding Level of Decision Tree algorithm is so easy as compared to classification algorithm.

In Decision tree algorithm we solve our problem in tree representation. Each internal node of the tree
corresponds to an attributes. Each leaf node corresponds to a Class Label.

In decision tree for predicting a class label for a record we start from the root of the tree. We compare
the value of the root attribute with record’s attribute on the basis of comparison. We follow the branch
corresponding to that values & jump to the next node. We continue comparing our record’s attribute
value with other internal nodes of the tree until we reach a leaf node.

Learning Algorithm

Decision trees are learned in a top-down fashion, with an algorithm known as top-down induction of
decision trees (TDIDT), recursive partitioning, or divide-and-conquer learning. The algorithm selects the
best attribute for the root of the tree, splits the set of examples into disjoint sets, and adds
corresponding nodes and branches to the tree. The simplest splitting criterion is for discrete attributes,
where each test has the form t « (A = u)where u is one possible value of the chosen attribute A. The
corresponding set S; contains all training examples for which the attribute A has the value t. This can be
easily adapted to numerical attributes, where one typically uses binary splits of the form t « (4 = u,),
which indicate whether the attribute’s value is above or below a certain threshold value u;.
Alternatively, one can transform the data beforehand using a discretization algorithm.

After splitting the dataset according to the selected attribute, the procedure is recursively applied to
each of the resulting datasets. If a set contains only examples from the same class, or if no further
splitting is possible (e.g., because all possible splits have already been exhausted or all remaining splits
will have the same outcome for all examples), the corresponding node is turned into a leaf node and
labeled with the respective class. For all other sets, an interior node is added and associated with the
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best splitting attribute for the corresponding set as described above. Hence, the dataset is successively
partitioned into non overlapping, smaller datasets until each set only contains examples of the same
class (a so-called pure node). Eventually, a pure node can always be found via successive partitions
unless the training data contains two identical but contradictory examples, i.e., examples with the same
feature values but different class values. (Medium.com) (C., 2010)

CART Algorithm.

function TDIDT(S)
Input: S, a set of labeled examples.
Tree = new empty node
if all examples have the same class ¢
or no further splitting is possible
then //new leaf
LABEL(Tree) = ¢
else // new decision node
(A, T) = FINDBESTSPLIT(S)
for each testt € Tdo
S; = all examples that satisfy t
Node,; = TDIDT(S;)

t
ADDEDGE(Tree = Node,)
endfor
endif

return Tree
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2.4.4 Classification metrics

In practice, a binary classifier [...] can make two types of errors: it can incorrectly assign an individual
who defaults to the no default category, or it can incorrectly assign an individual who does not default
to the default category. It is often of interest to determine which of these two types of errors are being
made. A confusion matrix [...] is a convenient way to display this information. (Gareth James, 2013)
e A false negative is an example of positive class that has been incorrectly classified as negative.
e Afalse positive is an example of a negative class that has been incorrectly classified as positive.
e True negatives are the negative examples that are correctly classified by a classification model.
e True positives are the positive examples that are correctly classified by a classification model.

2.4.4.1 Confusion Matrix

A confusion matrix summarizes the classification performance of a classifier with respect to some test
data. It is a two-dimensional matrix, indexed in one dimension by the true class of an object and in the
other by the class that the classifier assigns.

A special case of the confusion matrix is often utilized with two classes; one designated the positive class
and the other the negative class. In this context, the four cells of the matrix are designated as true
positives (TP), false positives (FP), true negatives (TN), and false negatives (FN).

(Sammut C., 2010)

Predicted Positive  Predicted Negative

Actual Sensitivity or Recall

Positive = True Positive (TP)  False Negative (FN) TP /(TP + FN)

(True)

Actual Specificity

Negative | False Positive (FP)  True Negative (TN) TN /(TN + FP)

(False)
Precision Negative Predictive e Accuracy

value Fy = _ TP+TIN

TP/(TP+FP) TN/(TN+FN) "~ TP+TN+FP+FN

Table 1-Confusion Matrix

2.4.4.2 Sensitivity and Specificity

Sensitivity and specificity are two measures used together in some domains to measure the predictive
performance of a classification model or a diagnostic test. For example, to measure the effectiveness of
a diagnostic test in the medical domain, sensitivity measures the fraction of people with disease (i.e.,
positive examples) who have a positive test result; and specificity measures the fraction of people
without disease (i.e., negative examples) who have a negative test result. They are defined with
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reference to a special case of the confusion matrix, with two classes; one designated the positive class
and the other the negative class, as indicated in Table 1.

Sensitivity is equivalent to recall, sometimes also is called true positive rate.
Specificity is sometimes also called true negative rate.
They are defined as follows:
Sensitivity = TP /(TP + FN)
TN /(TN + FP)

Instead of two measures, they are sometimes combined to provide a single measure of predictive

Specificity

performance as follows:
Sensitivity x Specificity = TP = TN /[ (TP + FN) = (TN + FP)]
(C., 2010)

2.4.4.3 Precision

Precision is defined as the ratio of true positives (TP) and the total number of positives predicted by a
model. This is defined with reference to a special case of the confusion matrix, with two classes: one
designated the positive class and the other the negative class, as indicated in Table 1. Precision can then
be defined in terms of true positives and false positives (FP) as follows.

Precision = TP/(TP + FP)
(C., 2010)

2.4.4.4 Fi-Score

It is often possible to construct baseline models that maximize one metric but not the other. For
example, a model that declares every record to be the positive class will have a perfect recall, but very
poor precision. Conversely, a model that assigns a positive class to every test record that matches one of
the positive records in the training set has very high precision, but low recall. Building a model that
maximizes both precision and recall is the key challenge of classification algorithms. Precision and recall
can be summarized into another metric known as the F1 measure.

__2recall precision 2 XTP
= _

recall+precision 2 xTP+FP+FN

In principle, F1 represents a harmonic mean between recall and precision, i.e.

2
Fl_ 1 1

+ —
recall * precision

The harmonic mean of two numbers z and gr tends to be closer to the smaller of the two numbers.
Hence, a high value of F1-measure ensures that both precision and recall are reasonably high. (Pang
Ning Tan, 2006)
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2.4.4.5 Accuracy

Accuracy refers to a measure of the degree to which the predictions of a model matches the reality
being modeled. Accuracy is also used as a statistical measure of how well a binary classification test
correctly identifies or excludes a condition. That is, the accuracy is the proportion of true results (both
true positives and true negatives) among the total number of cases examined. The formula for
guantifying binary accuracy is:

Accuracy = (TP+TN) /(TP +TN + FP + FN)
(wikipedia.org) (C., 2010)

2.4.4.6 ROC Curve

During the past four decades, ROC analysis has become a popular method for evaluating the accuracy of
medical diagnostic systems. The most desirable property of ROC analysis is that the accuracy indices
derived from this technique are not distorted by fluctuations caused by the use of arbitrarily chosen
decision criteria or cut-offs. In other words, the indices of accuracy are not influenced by the decision
criterion (i.e. the tendency of a reader or observer to choose a specific threshold on the separator
variable) and/or to consider the prior probability of the "signal". The derived summary measure of
accuracy, such as the area under the curve (AUC) determines the inherent ability of the test to
discriminate between the diseased and healthy populations. Using this as a measure of a diagnostic
performance, one can compare individual tests or judge whether the various combination of tests (e.g.
combination of imaging techniques or combination of readers) can improve diagnostic accuracy.

ROC analysis is used in clinical epidemiology to quantify how accurately medical diagnostic tests (or
systems) can discriminate between two patient states, typically referred to as "diseased" and "non-
diseased". An ROC curve is based on the notion of a "separator" scale, on which results for the diseased
and non-diseased form a pair of overlapping distributions. The complete separation of the two
underlying distributions implies a perfectly discriminating test while complete overlap implies no
discrimination.

The receiver operating characteristics (ROC) curve is a two-dimensional graph in which the TPR
represents the y-axis and FPR is the x-axis. The ROC curve has been used to evaluate many systems such
as diagnostic systems, medical decision-making systems, and machine learning systems. It is used to
make a balance between the benefits, i.e., true positives, and costs, i.e., false positives. Any classifier
that has discrete outputs such as decision trees is designed to produce only a class decision, i.e., a
decision for each testing sample, and hence it generates only one confusion matrix which in turn
corresponds to one point into the ROC space. However, there are many methods that were introduced
for generating full ROC curve from a classifier instead of only a single point such as using class
proportions or using some combinations of scoring and voting. On the other hand, in continuous output
classifiers such as the Naive Bayes classifier, the output is represented by a numeric value, i.e., score,
which represents the degree to which a sample belongs to a specific class. The ROC curve is generated
by changing the threshold on the confidence score; hence, each threshold generates only one point in
the ROC curve.
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Figure 22 shows an example of the ROC curve. As shown, Optimal classifier
there are four important points in the ROC curve. The i
point A, in the lower left corner (0,0) represents a B

. e . . P . Optimistic
classifier where there is no positive classification, while 0.8
all negative samples are correctly classified and hence '

TPR=0 and FPR=0 The point C, in the top right corner
(1,1), represents a classifier where all positive samples
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are correctly classified, while the negative samples are
misclassified. The point D in the lower right corner (1,0)
represents a classifier where all positive and negative
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samples are misclassified. The point B in the upper left
corner (0,1) represents a classifier where all positive and A D
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negative samples are correctly classified; thus, this point 0 02 04 06 08 1.0

represents the perfect classification or the Ideal False positive rate (FPR)
operating point. Figure 22 shows the perfect classification

Figure 2-24 A basic ROC curve showing important
performance. It is the green curve which rises vertically points, and the optimistic, pessimistic and expected

from (0,0) to (0,1) and then horizontally to (1,1). This ;glcs)segme”ts for equally scored samples. (Tharwat,
curve reflects that the classifier perfectly ranked the

positive samples relative to the negative samples. A point in the ROC space is better than all other points
that are in the southeast, i.e., the points that have lower TPR, higher FPR, or both. Therefore, any
classifier appears in the lower right triangle performs worse than the classifier appears in the upper left
triangle. A point in the ROC space is better than all other points that are in the southeast, i.e., the points
that have lower TPR, higher FPR, or botn. Therefore, any classifier appears in the lower right triangle
performs worse than the classifier appears in the upper left triangle. (Tharwat, 2018) (INDRAYAN, 2011)
(Hajian-Tilaki, 2013)

The AUC Statistic

The most important statistic associated with ROC curves is the area under (ROC) curve or AUC. Since the
curve is located in the unit square, we have 0 < AUC <1. AUC=1 is achieved if the classifier scores every
positive higher than every negative; AUC= 0 is achieved if every negative is scored higher than every
positive. AUC=1/2 is obtained in a range of different scenarios, including: (i) the classifier assigns the
same score to all test examples, whether positive or negative, and thus the ROC curve is the ascending
diagonal; (ii) the per-class score distributions are similar, which results in an ROC curve close (but not
identical) to the ascending diagonal; and (iii) the classifier gives half of a particular class the highest
scores and the other half the lowest scores. Notice that, although a classifier with AUC close to one half
is often said to perform randomly, there is nothing random in the third classifier: rather, its excellent
performance on some of the examples is counter balanced by its very poor performance on some others
(Sometimes a linear rescaling 2-AUC-1 called the Gini coefficient is preferred, which has a related use in
the assessment of income or wealth distributions using Lorenz curves: a Gini coefficient close to 0
means that income is approximately evenly distributed. Notice that this Gini coefficient is often called
the Gini index, but should not be confused with the impurity measure used in decision tree learning).
AUC has a very useful statistical interpretation: it is the expectation that a (uniformly) randomly drawn
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positive receives a higher score than a randomly drawn negative. It is a normalized version of the
Wilcoxon-Mann-Whitney sum of ranks test, which tests the null hypothesis that two samples of ordinal
measurements are drawn from a single distribution. The “sum of ranks” epithet refers to one method to
compute this statistic, which is to assign each test example an integer rank according to decreasing
score (the highest scoring example gets rank 1, the next gets rank 2, etc.); sum up the ranks of the n°

n-(n"+1)

negatives, which we want to be high; and subtract Z}L—li = to achieve 0 if all negatives are

ranked first. The AUC statistic is then obtained by normalizing by the number of pairs of one positive and
one negative, n™n~. There are several other ways to calculate AUC, for instance, we can calculate, for
each negative, how many positives precede it, which basically is a column wise calculation and yields an
alternative view of AUC as the expected true positive rate if the operating point is chosen just before a
randomly drawn negative. (C., 2010)

2.4.5 Learning Procedure

2.4.5.1  Algorithm Evaluation

Learning the parameters of a prediction function and testing it on the same data is a methodological
mistake: a model that would just repeat the labels of the samples that it has just seen would have a
perfect score but would fail to predict anything useful on yet-unseen data. This situation is
called overfitting". To avoid it, it is common practice when performing a supervised machine learning
experiment to hold out part of the available data as a test set. Note that the word “experiment” is not
intended to denote academic use only, because even in commercial settings machine learning usually
starts out experimentally. Here is a flowchart of typical cross validation workflow in model training.

Figure 2-25 Cross Validation workflow in model training flowchart
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When evaluating different settings (“hyperparameters”) for estimators, such as the C setting that must
be manually set for an SVM, there is still a risk of overfitting" on the test set because the parameters can
be tweaked until the estimator performs optimally. This way, knowledge about the test set can “leak”
into the model and evaluation metrics no longer report on generalization performance. To solve this
problem, yet another part of the dataset can be held out as a so-called “validation set”: training
proceeds on the training set, after which evaluation is done on the validation set, and when the
experiment seems to be successful, final evaluation can be done on the test set.

However, by partitioning the available data into three sets, we drastically reduce the number of samples
which can be used for learning the model, and the results can depend on a particular random choice for
the pair of (train, validation) sets.

A solution to this problem is a procedure called cross-validation (CV for short). A test set should still be
held out for final evaluation, but the validation set is no longer needed when doing CV. In the basic
approach, called k-fold CV, the training set is split into k smaller sets (other approaches are described
below, but generally follow the same principles). The following procedure is followed for each of
the k “folds”. (Scikit-learn: Machine Learning in Python, 2011) (API design for machine learning software:
experiences from the scikit-learn project, 2013)

2.4.5.1.1 Hold Out Evaluation Dataset

Holdout evaluation is an approach to out-of-sample evaluation whereby the available data are
partitioned into a training set and a test set. The test set is thus out-of-sample data and is sometimes
called the holdout set or holdout data. The purpose of holdout evaluation is to test a model on different
data to that from which it is learned. This provides less biased estimate of learning performance than in-
sample evaluation. In repeated holdout evaluation, repeated holdout evaluation experiments are
performed, each time with a different partition of the data, to create a distribution of training and test
sets with which an algorithm is assessed. (C., 2010)

! A model overfits the training data when it describes features that arise from noise or variance in the
data, rather than the underlying distribution from which the data were drawn. Overfitting usually leads
to loss of accuracy on out-of-sample data.
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2.4.5.1.2 K-Fold Cross Validation

Cross-validation is a resampling procedure used to evaluate machine learning models on a limited data
sample. The procedure has a single parameter called k that refers to the number of groups that a given
data sample is to be split into. As such, the procedure is often called k-fold cross-validation. When a
specific value for k is chosen, it may be used in place of k in the reference to the model, such as k=10
becoming 10-fold cross-validation.
Cross-validation is primarily used in applied machine learning to estimate the skill of a machine learning
model on unseen data. That is, to use a limited sample in order to estimate how the model is expected
to perform in general when used to make predictions on data not used during the training of the model.
It is a popular method because it is simple to understand and because it generally results in a less biased
or less optimistic estimate of the model skill than other methods, such as a simple train/test split.
The general procedure is as follows:
1. Shuffle the dataset randomly.
2. Split the dataset into k groups
3. Foreach unique group:
1. Take the group as a hold out or test data set
2. Take the remaining groups as a training data set
3. Fita model on the training set and evaluate it on the test set
4. Retain the evaluation score and discard the model
4. Summarize the skill of the model using the sample of model evaluation scores
Importantly, each observation in the data sample is assigned to an individual group and stays in that
group for the duration of the procedure. This means that each sample is given the opportunity to be
used in the hold out set 1 time and used to train the model k-1 times.
This approach involves randomly dividing the set of observations into k groups, or folds, of
approximately equal size. The first fold is treated as a validation set, and the method is fit on the
remaining k - 1 folds. (An Introduction to Statistical Learning, 2013)
It is also important that any preparation of the data prior to fitting the model occur on the CV-assigned
training dataset within the loop rather than on the broader data set. This also applies to any tuning of
hyperparameters. A failure to perform these operations within the loop may result in data leakage and
an optimistic estimate of the model skill.
Despite the best efforts of statistical methodologists, users frequently invalidate their results by
inadvertently peeking at the test data. (Artificial Intelligence: A Modern Approach (3rd Edition), 2009.)
The results of a k-fold cross-validation run are often summarized with the mean of the model skill
scores. It is also good practice to include a measure of the variance of the skill scores, such as the
standard deviation or standard error.
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Figure 2-26 5-Fold Cross Validation

Configuration of k

The k value must be chosen carefully for data sample.

A poorly chosen value for k may result in a mis-representative idea of the skill of the model, such as a
score with a high variance (that may change a lot based on the data used to fit the model), or a high
bias, (such as an overestimate of the skill of the model).

Three common tactics for choosing a value for k are as follows:

e Representative: The value for k is chosen such that each train/test group of data samples is
large enough to be statistically representative of the broader dataset.

e k=10: The value for k is fixed to 10, a value that has been found through experimentation to
generally result in a model skill estimate with low bias a modest variance.

e k=n: The value for k is fixed to n, where n is the size of the dataset to give each test sample an
opportunity to be used in the hold out dataset. This approach is called leave-one-out cross-
validation.

The choice of k is usually 5 or 10, but there is no formal rule. As k gets larger, the difference in size
between the training set and the resampling subsets gets smaller. As this difference decreases, the bias
of the technique becomes smaller (Applied Predictive Modeling, 2013)
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A value of k=10 is very common in the field of applied machine learning, and is recommend if you are
struggling to choose a value for your dataset.To summarize, there is a bias-variance trade-off associated
with the choice of k in k-fold cross-validation. Typically, given these considerations, one performs k-fold
cross-validation using k = 5 or k = 10, as these values have been shown empirically to yield test error rate
estimates that suffer neither from excessively high bias nor from very high variance. (An Introduction to
Statistical Learning, 2013)If a value for k is chosen that does not evenly split the data sample, then one
group will contain a remainder of the examples. It is preferable to split the data sample into k groups
with the same number of samples, such that the sample of model skill scores are all equivalent.

(Jason, 2018)

2.4.5.2 Data Transformation

It is frequently necessary to transform data from one representation to another. There are many
reasons for changing representations:

e To generate symmetric distributions instead of the original skewed distributions.

e Transformation improves visualization of data that might be tightly clustered relative to a few
outliers.

e Data are transformed to achieve better interpretability.

e Transformations are often used to improve the compatibility of the data with assumptions
underlying a modeling process, for example, to linearize (straighten) the relation between two
variables whose relationship is nonlinear. Some of the data mining algorithms require the
relationship between data to be linear.

Different types of transformation will be referred whereby each data point x; is replaced with a
transformed value y; = f(x;), where f f is the transformation function. Many techniques are applied
for data transformation. Each technique has its own purpose and dependency on the nature of data.
Some of the major transformations are discussed below. (C., 2010)

2.4.5.2.1 Normalization

Min-max normalization projects the original range of data onto a new range. Very common
normalization intervals are [0, 1] and [-1, 1]. This normalization method is very useful when we apply a
machine learning or data mining approach that utilizes distance. For example, in k-nearest neighbor
methods, using un-normalized values might cause attributes whose values have greater magnitudes to
dominate over other attributes. Therefore, normalization aims to standardize magnitudes across
variables. A useful application for min-max scaling is image processing where pixel intensities have to be
normalized to fit within a certain range (i.e., 0—-255 for the RGB color range). Also, typical neural network
algorithms (ANN) require data that is on a 0—1 scale. Normalization provides the same range of values
for each of the inputs to the model.
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2.4.5.2.2 Standardization

Z-score normalization (also referred to as standardization) is a normalization method that transforms
not only the data magnitude but also the dispersion. Some data mining methods are based on the
assumption that data follow a certain distribution. For example, methods such as logistic regression,
SVM, and neural network when using gradient descent/ascent optimization methods assume data
follow a Gaussian distribution. Otherwise, the approaches will be ill conditioned and might not
guarantee a stable convergence of weight and biases. Other approaches such as linear discriminant
analysis (LDA), principal component analysis (PCA), and kernel principal component analysis require
features to be on the same scale to find directions that maximize the variance (under the constraints
that those directions/eigenvectors/principal components are orthogonal). Z-score normalization
overcomes the problem of variables with different units as it transforms variables so that they are
centered on 0 with a standard deviation of 1.

2.4.5.3 Dimensionality Reduction

Every data object in a computer is represented and stored as a set of features, for example, color, price,
dimensions, and so on. Instead of the term features, one can interchangeably use the term dimensions
because an object with n features can also be represented as a multidimensional point in an n-
dimensional space. Therefore, dimensionality reduction (dR) refers to the process of mapping an n-
dimensional point into a lower k-dimensional space. This operation reduces the size for representing
and storing an object or a dataset in general; hence, dimensionality reduction can be seen as a method
for data compression. In addition, this process promotes data visualization, particularly when objects are
mapped onto two or three dimensions. Finally, in the context of classification, dimensionality reduction
can be a useful tool for (a) making tractable classification schemes that are superlinear with respect to
dimensionality tractable, (b) reducing the variance of classifiers that are plagued by large variance in
higher dimensionalities, and (c) removing the noise that may be present, thus boosting classification
accuracy.

Genomic Microarray Data is usually short and fat data — high dimensionality with a small sample size,
which poses a great challenge for computational techniques. Their dimensionality can be up to tens of
thousands of genes, while their sample sizes can only be several hundreds. Furthermore, additional
experimental complications like noise and variability render the analysis of microarray data an exciting
domain. Because of these issues, various feature selection algorithms are adopted to reduce the
dimensionality and remove noise in microarray data analysis.

There are many techniques for dimensionality reduction. The objective of these techniques is to
appropriately select the k dimensions (and also the number k) so that the important characteristics of
the original object are retained. For example, when performing dimensionality reduction on an image,
e.g., using a wavelet based technique, the desirable outcome is that the difference between the original
and the final images is almost imperceptible. When performing dimensionality reduction not on a single
object, but on a dataset, an additional requirement is that the relationship between the objects in the
original space be preserved. This is particularly important for reasons of classification and visualization in
the new space.
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Two important categories of dimensionality reduction techniques exist:

e Feature selection techniques, in which only the most important or descriptive features/dimensions
are retained, and the rest are discarded. More details on such techniques can be found under the entry
Feature Selection

¢ Feature projection methodologies, which project the existing features onto different dimensions or
axes. The aim here is, again, to find those new data axes that retain the dataset structure and preserve
its variance as closely as possible

2.4.5.3.1 Feature Selection

Feature selection, as a dimensionality reduction technique, aims to choose a small subset of the relevant
features from the original ones by removing irrelevant, redundant, or noisy features. Feature selection
usually leads to better learning performance, i.e., higher learning accuracy, lower computational cost,
and better model interpretability. Generally speaking, irrelevant features are features that cannot help
discriminate samples from different classes (supervised) or clusters (unsupervised). Removing irrelevant
features will not affect learning performance. In fact, the removal of irrelevant features may help learn a
better model, as irrelevant features may confuse the learning system and cause memory and
computation inefficiency.

A redundant feature is a feature that implies the copresence of another feature. Individually, each
redundant feature is relevant, but removal of one of them will not affect the learning performance. A
noisy feature is a type of relevant feature. However, due to the noise introduced during the data
collection process or because of the nature of this feature, a noisy feature may not be so relevant to the
learning or mining task. It can discriminate a part of the points from the two classes and may confuse
the learning model for the overlapping points (Noisy features are very subtle. One feature may be a
noisy feature itself. However, in some cases, when two or more noisy features can complement each
other to distinguish samples from different classes, they may be selected together to benefit the
learning model.)

In many real-world applications, such as data mining, machine learning, computer vision, and
bioinformatics, we need to deal with high dimensional data. In the past 30 years, the dimensionality of
the data involved in these areas has increased explosively. The huge number of high-dimensional data
has presented serious challenges to existing learning methods. First, due to the large number of features
and relatively small number of training samples, a learning model tends to overfit, and their learning
performance degenerates. Data with high dimensionality not only degenerates many algorithms’
performance due to the curse of dimensionality and the existence of irrelevant, redundant, and noisy
dimensions, it also significantly increases the time and memory requirement of the algorithms. Second,
storing and processing such amounts of high-dimensional data become a challenge. Dimensionality
reduction is one of the most popular techniques to reduce dimensionality and can be categorized into
feature extraction and feature selection. Both feature extraction and feature selection are capable of
improving performance, lowering computational complexity, building better generalization models, and
decreasing required storage. Feature extraction maps the original feature space to a new feature space
with lower dimensionality by combining the original feature space. Therefore, further analysis of new
features is problematic since there is no physical meaning for the transformed features obtained from
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feature extraction. In contrast, feature selection selects a subset of features from the original feature

set. Therefore, feature selection keeps the actual meaning of each selected feature, which makes it

superior in terms of feature readability and interpretability.

Structure of the Learning System

From the perspective of label availability, feature selection methods can be broadly classified into

supervised, unsupervised, and semi-supervised methods. In terms of different selection strategies,

feature selection can be categorized as filter, wrapper, and embedded models.

Supervised feature selection is usually used for classification tasks. The availability of the class
labels allows supervised feature selection algorithms to effectively select discriminative features
to distinguish samples from different classes. A general framework of supervised feature
selection is shown in Figure 25. Features are first generated from training data. Instead of using
all the data to train the supervised learning model, supervised feature selection will first select a
subset of features and then process the data with the selected features to the learning model.
The feature selection phase will use the label information and the characteristics of the data,
such as information gain or Gini index, to select relevant features. The final selected features, as
well as with the label information, are used to train a classifier, which can be used for
prediction.

Unsupervised feature selection is usually used for clustering tasks. A general framework of
unsupervised feature selection is very similar to supervised feature selection, except that there’s
no label information involved in the feature selection phase and the model learning phase.
Without label information to define feature relevance, unsupervised feature selection relies on
another alternative criterion during the feature selection phase. One commonly used criterion
chooses features that can best preserve the manifold structure of the original data. Another
frequently used method is to seek cluster indicators through clustering algorithms and then
transform the unsupervised feature selection into a supervised framework. There are two
different ways to use this method. One way is to seek cluster indicators and simultaneously
perform the supervised feature selection within one unified framework. The other way is to first
seek cluster indicators, then to perform feature selection to remove or select certain features,
and finally to repeat these two steps iteratively until certain criterion is met. In addition, certain
supervised feature selection criterion can still be used with some modification.

Semi-supervised feature selection is usually used when a small portion of the data is labeled.
When such data is given to perform feature selection, both supervised and unsupervised feature
selection might not be the best choice. Supervised feature selection might not be able to select
relevant features because the labeled data is insufficient to represent the distribution of the
features. Unsupervised feature selection will not use the label information, while label
information can give some discriminative information to select relevant features. Semi-
supervised feature selection, which takes advantage of both labeled data and unlabeled data, is
a better choice to handle partially labeled data. The general framework of semi-supervised
feature selection is the same as that of supervised feature selection, except that data is partially
labeled. Most of the existing semi-supervised feature selection algorithms rely on the
construction of the similarity matrix and select features that best fit the similarity matrix. Both
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the label information and the similarity measure of the labeled and unlabeled data are used to
construct the similarity matrix so that label information can provide discriminative information
to select relevant features, while unlabeled data provide complementary information.

Filter Models For filter models, features are selected based on the characteristics of the data
without utilizing learning algorithms. This approach is very efficient. However, it doesn’t
consider the bias and heuristics of the learning algorithms. Thus, it may miss features that are
relevant for the target learning algorithm. A filter algorithm usually consists of two steps. In the
first step, features are ranked based on certain criterion. In the second step, features with the
highest rankings are chosen. A lot of ranking criteria, which measures different characteristics of
the features, are proposed: the ability to effectively separate samples from different classes by
considering between class variance and within class variance, the dependence between the
feature and the class label, the correlation between feature class and feature-feature, the ability
to preserve the manifold structure, the mutual information between the features, and so on.
Wrapper Models The major disadvantage of the filter approach is that it totally ignores the
effects of the selected feature subset on the performance of the clustering or classification
algorithm. The optimal feature subset should depend on the specific biases and heuristics of the
learning algorithms. Based on this assumption, wrapper models use a specific learning algorithm
to evaluate the quality of the selected features. The feature search component will produce a
set of features based on certain search strategies. The feature evaluation component will then
use the predefined learning algorithm to evaluate the performance, which will be returned to
the feature search component for the next iteration of feature subset selection. The feature set
with the best performance will be chosen as the final set. The search space for m features is
0(2™). To avoid exhaustive search, a wide range of search strategies can be used, including hill-
climbing, best-first, branch-and-bound, and genetic algorithms.

Embedded Models Filter models are computationally efficient, but totally ignore the biases of
the learning algorithm. Compared with filter models, wrapper models obtain better predictive
accuracy estimates, since they take into account the biases of the learning algorithms. However,
wrapper models are very computationally expensive. Embedded models are a tradeoff between
the two models by embedding the feature selection into the model construction. Thus,
embedded models take advantage of both filter models and wrapper models: (1) they are far
less computationally intensive than wrapper methods, since they don’t need to run the learning
models many times to evaluate the features, and (2) they include the interaction with the
learning model. The biggest difference between wrapper models and embedded models is that
wrapper models first train learning models using the candidate features and then perform
feature selection by evaluating features using the learning model, while embedded models
select features during the process of model construction to perform feature selection without
further evaluation of the features. (C., 2010)
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Figure 2-27 Feature Selection. A general framework of supervised feature selection.

2.4.5.3.2 Feature Projection

Feature projection techniques typically exploit the correlations between the various data dimensions,
with the goal of creating dimensions/axes that are uncorrelated and sufficiently describe the data. One
of the most popular dimensionality reduction techniques is principal component analysis or PCA. It
attempts to discover those axes (or components) onto which the data can be projected while
maintaining the original correlation between the dimensions.

PCA uses the Euclidean distance as the measure of dissimilarity among objects. The first principal
component (or axis) indicates the direction of maximum variance in the original dimensions. The second
component shows the direction of the next highest variance
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2.4.5.3.2.1 PCA

PCA is defined as an orthogonal linear transformation with the property that it transforms the data into
a new coordinate system, such that the projection of the data on the first coordinate has the greatest
variance among all projections on a line, the projection of the data on the second coordinate has the
second greatest variance, and so on. Let X denote the data matrix, with each point written as a column
vector in X, and modified so that X has empirical mean zero (i.e., the mean vector is subtracted from
each data point). Then the eigenvectors of the matrix XX T are the coordinates of the new system. To
reduce the dimensionality, keep only the eigenvectors corresponding to the largest few eigenvalues.
Principal components analysis (PCA) produces a low-dimensional representation of a data set. It finds a
sequence of linear combinations of the variables that have maximal variance and are mutually
uncorrelated. Apart from producing derived variables for use in supervised learning problems, PCA also
serves as a tool for data visualization. (Diego Galar, 2017) (C., 2010)

Sort Definitions for PcA steps

2.45.3.2.1.1 Variance

It is a measure of the variability or it simply measures how spread the data set is. Mathematically, it is
the average squared deviation from the mean score. The following formula is used to compute variance
var(x).

2 (x; — %)?

var(x) = N

2.4.5.3.2.1.2 Covariance

Covariance: Itis a measure of the extent to which corresponding elements from two sets of ordered
data move in the same direction. Formula is shown denoted by cov(x, y) as the covariance of x and y.

2 =)y —y)
N
Here, x; is the value of x in iy, dimension. x bar and y bar denote the corresponding mean values.

cov(x,y) =

One way to observe the covariance is how interrelated two data sets are.
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Figure 2-29 Covariance

Positive covariance means X and Y are positively related i.e. as X increases Y also increases. Negative covariance
depicts the exact opposite relation. However zero covariance means X and Y are not related.
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Since we try to find the patterns among the data sets so we want the data to be spread out across each
dimension. Also, we want the dimensions to be independent. Such that if data has high covariance when
represented in some nnumber of dimensions then we replace those dimensions with linear
combination of those n dimensions. Now that data will only be dependent on linear combination of
those related n dimensions. (related = have high covariance)

PCA finds a new set of dimensions (or a set of basis of views) such that all the dimensions are orthogonal
(and hence linearly independent) and ranked according to the variance of data along them. It means
more important principle axis occurs first. (more important = more variance/more spread out data)

How does PCA work:

Calculate the covariance matrix X of data points.

Calculate eigen vectors and corresponding eigen values.

Sort the eigen vectors according to their eigen values in decreasing order.

Choose first k eigen vectors and that will be the new k dimensions.

v A W

Transform the original n dimensional data points into k dimensions.
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2.4.5.3.2.1.3 Eigenvalues-Eigenvectors

Eigenvalues/vectors are instrumental to understanding electrical circuits, mechanical systems, ecology
and even Google's PageRank algorithm. To begin, let v be a vector (shown as a point) and 4 be a matrix
with columns a4 and a, (shown as arrows). If we multiply v by 4, then A sends v to a new vector Av.

Av [ a0 1.00 0.50
4 . A= =
any 0.50 1.00

) k"“ AV = 43

X

Figure 2-30 EigenValues-EigenVectors example

If a line can be drew through the three points (0,0), v and Av, then Av is just v multiplied by a number
A; thatis, Av = Av . In this case, 4 is called an eigenvalue and v an eigenvector. For example, here (1,2)
is an eigvector and 5 an eigenvalue.

(3 2)() )

Below, change the columns of 4 and drag v to be an eigenvector. Note three facts: First, every point on
the same line as an eigenvector is an eigenvector. Those lines are eigenspaces, and each has an
associated eigenvalue. Second, if you place v on an eigenspace (either s; or s,) with associated
eigenvalue 4 <1, then Av is closer to (0,0) than vuv; but when A > 1, it's farther. Third, both
eigenspaces depend on both columns of A: it is not as though a4 only affects s;.
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[Covariance matrix] - [Eigenvector]| = [eigenvalue] - [Eigenvector]

2.4.5.3.2.1.4 Covariance Matrix

As variance and covariance are defined, we shall look into what a Covariance matrix is.
[ Vo Cap Cac Coa Ca,e]
I Cap Vo Cpe Cha Cpe I
| Ca,c Cb,c Vc Cc,d Cc,e |
[Caa Coa Cea Va Cael
lCa,e Che Cee Cae V, J
A covariance matrix of some data set in 4 dimensions a,b,c,d.
V., : variance along dimension a

Cqp : Covariance along dimension a and b

If we have a matrix X of m*n dimension such that it holds n data points of m dimensions, then
covariance matrix can be calculated as

1 _ _
C, = m(X - X)X —-X)T ,XT =Transpose of X

It is important to note that the covariance matrix contains; variance of dimensions as the main diagonal
elements, covariance of dimensions as the off diagonal elements. Also, covariance matrix is symmetric.
As, it’s mentioned earlier data need to be spread out i.e. it should have high variance along dimensions.
Also we want to remove correlated dimensions i.e. covariance among the dimensions should be zero
(they should be linearly independent). Therefore, our covariance matrix should have; large numbers as
the main diagonal elements, zero values as the off diagonal elements. We call it a diagonal matrix. So,
the original data have to be transformed to points such that their covariance is a diagonal matrix. The
process of transforming a matrix to diagonal matrix is called diagonalization.

This defines the goal of PCA:

1. Find linearly independent dimensions (or basis of views) which can losslessly represent the data
points.

2. Those newly found dimensions should allow to predict/reconstruct the original dimensions. The
reconstruction/projection error should be minimized.
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Projection error: Suppose we have to transform a 2 dimensional representation of data points to a one
dimensional representation. So we will basically try to find a straight line and project data points on
them. (A straight line is one dimensional). There are many possibilities to select the straight line, two of
them are:

w
-
.
(]
o b
-
=
a
o]

Figure 2-31 PCA. Principal Axis.

Magenta line will be our new dimension. The red lines (connecting the projection of blue points on
magenta line) i.e. the perpendicular distance of each data point from the straight line is the projection
error. Sum of the error of all data points will be the total projection error. Our new data points will be
the projections (red points) of those original blue data points. As we can see we have transformed 2
dimensional data points to one dimensional data points by projection them on 1 dimensional space i.e. a
straight line. That magenta straight line is called principal axis. Since we are projecting to a single
dimension, we have only one principal axis. Clearly, Second choice of straight line is better because: The
projection error is less than that in the first case, newly projected red points are more widely spread out
than the first case. i.e. more variance. The above mentioned two points are related i.e. if we minimize
the reconstruction error, the variance will increase.
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Now the original data points need to be transformed such that the covariance matrix of transformed
data points is a diagonal matrix.

Oy = covariance matrir of original data set X

Cy = covariance matrir of transformed data set Y

such that,

Y =PX

For simplicity, we discard the mean term and assume the

data to be centered. i.e. X = (X — X)

So, Cp, = +XXT

Cy = %}”—'jr

= Lpx)(Px)T

= LpxXTpPT

= P(LXXT)PT

= pc,pPT

Here’s the trick: If we find the matrix of eigen vectors of C, and use that as P (P is used for transforming
X to Y, see the image above), then C, (covariance of transformed points) will be a diagonal matrix.
Hence Y will be the set of new/transformed data points. Now, if we want to transform points to k
dimensions then we will select first k eigen vectors of the matrix C, (sorted decreasingly according to

eigen values) and form a matrix with them and use them as P.
So, for m dimensional original n data points then

X:mx*xnP: kxm

Y = PX: (kxm)(m=*n) = (k*n)
Hence, our new transformed matrix has n data points having k dimensions.
(Kumar, 2018)
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3. DATA DESCRIPTION & S/W
IMPLEMENTATION

3.1 DATA PLATFORM

The National Center for Biotechnology Information (NCBI) is part of the United States National Library
of Medicine (NLM), a branch of the National Institutes of Health (NIH). The NCBI houses a series of
databases relevant to biotechnology and biomedicine and is an important resource for bioinformatics
tools and services. Major databases include GenBank for DNA sequences and PubMed, a bibliographic
database for the biomedical literature. Other databases include the NCBI Epigenomics database. All
these databases are available online through the Entrez search engine.
The Gene Expression Omnibus (GEO) is a public repository supported by the American National Center
for Biotechnology Information (NCBI) at the American National Library of Medicine (NLM) that accepts
raw and processed data with written descriptions of experimental design, sample attributes, and
methodology for studies of high-throughput gene expression and genomics, also archives and freely
distributes comprehensive sets of microarray, next-generation sequencing, and other forms of high-
throughput functional genomic data submitted by the scientific community. In addition to data storage,
a collection of web-based interfaces and applications are available to help users query and download
the studies and gene expression patterns stored in GEO.
GEO was designed around the common features of most of the high-throughput and parallel molecular
abundance-measuring technologies in use today. These include data generated from microarray and
high-throughput sequence technologies, for example:

e Gene expression profiling by microarray or next-generation sequencing

e Non-coding RNA profiling by microarray or next-generation sequencing

e Chromatin immunoprecipitation (ChIP) profiling by microarray or next-generation sequencing

e Genome methylation profiling by microarray or next-generation sequencing

e High-throughput RT-PCR

e Genome variation profiling by array (arrayCGH)

e SNP arrays

e Serial Analysis of Gene Expression (SAGE)

e Protein arrays
The GEO database has a flexible and open design that is responsive to developing trends.
GEO requires raw data, processed data and metadata. Raw data facilitates the unambiguous
interpretation of the data and potential verification of conclusions. For microarray data, raw data may
be supplied either within the Sample record data tables or as external supplementary data files, e.g.,
Affymetrix CEL. For high-throughput sequencing, GEO brokers the complete set of raw data files, e.g.,
FASTQ, to the SRA database on your behalf.


https://en.wikipedia.org/wiki/GenBank
https://en.wikipedia.org/wiki/NCBI_Epigenomics
https://en.wikipedia.org/wiki/Entrez
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3.1.1 DATATYPES

Processed sequence data files: GEO hosts processed sequence data files, which are linked at the bottom
of Sample and/or Series records as supplementary files. Requirements for processed data files are not

yet fully standardized and will depend on the nature of the study, but data typically include genome
tracks or expression counts.

Raw sequence data files: Raw data are loaded to NCBI's Sequence Read Archive (SRA) database. Use the
SRA Run Selector to list and select Runs to be downloaded or analyzed with the SRA Toolkit.

GEO DataSets is a study-level database which users can search for studies relevant to their interests. The

database stores descriptions of all original submitter-supplied records, as well as curated DataSets.

Geo Database Organization

Platform

Sample

Series

DataSet

Platform records are supplied by submitters

A Platform record is composed of a summary description of the array or sequencer
and, for array-based Platforms, a data table defining the array template.Each
Platform record is assigned a unique and stable GEO accession number (GPLxxx). A
Platform may reference many Samples that have been submitted by multiple
submitters.

Sample records are supplied by submitters

A Sample record describes the conditions under which an individual Sample was
handled, the manipulations it underwent, and the abundance measurement of each
element derived from it. Each Sample record is assigned a unique and stable GEO
accession number (GSMxxx). A Sample entity must reference only one Platform and
may be included in multiple Series

Series records are supplied by submitters

A Series record links together a group of related Samples and provides a focal point
and description of the whole study. Series records may also contain tables describing
extracted data, summary conclusions, or analyses. Each Series record is assigned a
unique and stable GEO accession number (GSExxx).

DataSet records are assembled by GEO curators

As explained above, A GEO Series record is an original submitter-supplied record that
summarizes an experiment. These data are reassembled by GEO staff into GEO
Dataset records (GDSxxx).

A DataSet represents a curated collection of biologically and statistically comparable
GEO Samples and forms the basis of GEQ's suite of data display and analysis tools.
Samples within a DataSet refer to the same Platform, that is, they share a common set
of array elements. Value measurements for each Sample within a DataSet are
assumed to be calculated in an equivalent manner, that is, considerations such as
background processing and normalization are consistent across the DataSet.
Information reflecting experimental factors is provided through DataSet subsets.

Both Series and DataSets are searchable using the GEO DataSets interface, but only
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DataSets form the basis of GEQ's advanced data display and analysis tools including
gene expression profile charts and DataSet clusters. Not all submitted data are
suitable for DataSet assembly and we are experiencing a backlog in DataSet creation,
so not all Series have corresponding DataSet record(s).

Profiles are derived from DataSets

Profile A Profile consists of the expression measurements for an individual gene across all
Samples in a DataSet. Profiles can be searched using the GEO Profiles interface.

3.1.2 Download GEO data

All GEO data” can be downloaded in various formats using a variety of mechanisms. A popular method
for downloading data for specific studies is to download directly from Series pages. At the bottom of
each Series page, there is a banner with the text “Download family” under which there are links for
downloading the data for that Series in 3 different formats:

1. SOFT formatted family file(s) is a link for downloading all of the Series, Sample and Platform data in
a single SOFT formatted file. SOFT is an acronym that stands for “Simple Omnibus Format in Text”
and formats the data as line-based, plain text.

2. MINiIML formatted family file(s) is a link for downloading all of the Series, Sample, and Platform
data in MiNIML formatted files. MiNIML is an acronym that stands for MIAME Notation in Markup
Language, and formats the data as XML with separate data tables. MINIML is essentially an XML
rendering of SOFT format.

3. Series Matrix File(s) is a link for downloading a tab-delimited value-matrix table generated from the
“VALUE” column of each Sample record, headed by Sample and Series metadata. This format is
convenient for uploading into data programs such as Microsoft Excel or R.

The Series page also contains links to any supplementary files associated with the Series and a link to a
tar archive of all supplementary files provided with the Samples, typically raw data files (see Note 10). If
only a subset of the supplementary files are required there is an option to customize the set of files in
the tar archive by clicking the word “custom” on same line as “GSExxx_RAW.tar”. Clicking the “custom”
button expands the page to include a list of all Sample supplementary files in the Series with check
boxes to select the desired files. Once the boxes next to the needed files have been selected, pressing
“Download” initiates the download of a tar archive containing only the selected files. Additional options

? https://www.ncbi.nlm.nih.gov/sites/GDSbrowser/
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for downloading data, including downloading specific portions of records, or programmatic approaches
are described at http://www.ncbi.nlm.nih.gov/geo/info/download.html. (Barrett, 2016)



http://www.ncbi.nlm.nih.gov/geo/info/download.html
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3.2 DATASETS

Sample type

Extracted
molecule

Extraction
protocol

Label

Label
protocol

Hybridization
protocol

Scan
protocol

Data

RNA

total RNA

biotin

RNA extraction was performed as Affymetrix GeneChip expression technical
manual (Affymetrix, Inc., Santa Clara, CA). Briefly, total RNA samples were
extracted, followed by measurement of the A2260/a280 ratio with at least 1.8
for pure RNA. Quality of the RNA was checked by an Agilent 2100
Bioanalyzer. The Bioanalyzer gel profile exhibited a 28S band that is 2 times
more intense than 18S ribosomal RNA. The quality of RNA was assessed by
agarose gel electrophoresis.

Total RNA was isolated from laser-capture microdissected tissue using the
Picopure RNA isolation kit from Arcturus.

Labeling was performed according to Affymetrix Gene Chip technical manual
TRIzol extraction

A dual-round amplification procedure was performed on 100 nanograms total
RNAusing the MessageAMP aRNA kit from Ambion. In the second round, biotin-
labeled cRNA was generated from the double-stranded cDNA template using a
nucleotide mix that contained biotinylated CTP and UTP (Enzo RNA Transcript
Labeling Kit; Enzo Diagnostics, Farmingdale, NY). The biotinylated cRNA was
purified using RNeasy affinity columns (Qiagen, Valencia, MD).

Target was labeled with Enzo BioArray High Yield RNA Trascript Labeling Kit
(Enzo Life TEchnologies, Farmingdale, NY) according to manufacturer's protocol.

The targets for Affymetrix DNA microarray analysis were prepared according to
the manufacturer’s instructions. Biotin-labeled cRNA, produced by in vitro
transcription, was fragmented and hybridized to Affymetrix GeneChip Human
Genome U133 Plus 2.0 Arrays at 45°C for 16 hr and then washed and stained
using the GeneChip Fluidics.

For each GeneChip, 20 micrograms of the labeled product was fragmented in 40
mM Tris-acetate, pH 8.1, 100mM KOAc, 30mM MgOAc, for 35 minutes at 94
degrees-Celsius, to an average size of 35 to 200 bases. 15 micrograms of this
fragmented, biotinylated cRNA, along with hybridization controls supplied by
the manufacturer (Affymetrix), were hybridized to the arrays for 16 hours at 45
degrees-Celsius and 60 rpm. Arrays were washed and stained according to the
standard Antibody Amplification for Eukaryotic Targets protocol (Affymetrix)

The arrays were scanned by a GeneArray Scanner and patterns of hybridization
detected as light emitted from the fluorescent reporter groups incorporated
into the target and hybridized to oligonucleotide probes.

The stained GeneChip arrays were scanned at 488 nm using an Affymetrix Gene
Chip Scanner 3000 (Affymetrix, Santa Clara, CA).

The data were analyzed with Agilent Gene Spring GX 7.3 version using
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Processing Affymetrix default analysis settings and GC-RMA as normalization method.

o .DAT files were generated using GCOS 1.2.1 software (Affymetrix). CEL files
were generated using MAS 5.0 softare (Affymetrix) with target signals for
probe sets scaled to 500. Log2 expression values for individual probe sets
were generated from .CEL files via robust multi-array average (gcRMA).

Table 2 Data Information from https://www.ncbi.nlm.nih.gov/geo/

For the purposes of this study, 4 datasets have been obtained from Gene Expression Omnibus (GEO)

database. The data which were chosen contain both healthy and cancer samples for the classification.

1.

GDS4102-Pancreatic Tumor and Normal tissue samples.

Analysis of tumor tissue and normal tissue in pancreatic cancer samples. The fresh frozen
samples were obtained during surgical procedures. The cell types include: bone marrow,
peripheral blood, bone marrow CD34plus and PBSC CD34plus. This experiment consists of 36
tumor samples and 16 normal samples. A total of 52 samples, with 54,613 gene expression
levels for each sample, which run on Platform GPL96 Affymetrix [Human Genome U133 Plus 2.0
Array] GeneChip® which Technology type is in situ oligonucleotide.

GDS3233-Cervical cancer tumorigenesis

Analysis of cervical cancer (CC) primary tumors and cell lines. A total of 52 samples were
included in this study, which include 33 primary tumors, 9 cell lines, and 24 normal cervical
epithelium with 14,062 gene expression levels for each sample. The gene expression profiles in
cervical cancer run on Platform GPL96 Affymetrix [Human Genome U133A Array] GeneChip®
which Technology type is in situ oligonucleotide.

GDS3139-Breast cancer: histologically normal breast epithelium

Analysis of histologically normal breast epithelia of breast cancer patients. Results provide
insight into the molecular abnormalities in normal appearing breast epithelium in breast cancer
and the roles these abnormalities play in carcinogenesis. 29 samples from histologically normal
microdissected breast epithelium are included in this series. 14 samples are from epithelium
adjacent to a breast tumor, 15 samples were obtained from patients undergoing reduction
mammoplasty without apparent breast cancer. Each sample has 22,283 gene expression levels.
The gene expression data run on Platform GPL96 Affymetrix [Human Genome U133A Array]
GeneChip® which Technology type is in situ oligonucleotide.

GDS3057-Acute myeloid leukemia

Leukemic blasts from 26 acute myeloid leukemia (AML) patients with normal hematopoietic
cells at a variety of different stages of maturation from 38 healthy donors. Results provide
insight into the possible clinical significance of those genes with AML-specific expression
changes. Each sample has 22,283 gene expression levels run on Platform GPL96 Affymetrix
[Human Genome U133A Array] GeneChip® which Technology type is in situ oligonucleotide.


https://www.ncbi.nlm.nih.gov/geo/

73

Cancer Dataset  Reference Platform Total Healthy Cancer Features
Type Series Samples  Samples  Samples

Pancreatic GDS4102 GSE16515  GPL570 52 16 36 54,613
Cervical GDS3233 GSE9750 GPL96 52 24 28 14,062
Breast GDS3139 GSE9574 GPL96 29 15 14 22,283
Acute GDS3057 GSE9476 GPL96 64 38 26 22,283
Myeloid

Leukemia

Table 3 Overview of Study Datasets

In our study, we interest in supervised classification of different cancer cases. In order to do so, we have
assigned the class, in which each sample belongs to, as a separate binary feature with name “class”. So
we created labels for each sample depending on its disease state. The patient state is declared in the
annotation note following the .SOFT file we downloaded. For healthy donors the “class” value is zero (0)
and for cancer patients the “class” value is one (1). This process has been done in Microsoft Excel, where
we can open in tabular view files of big data (like .SOFT files) with thousands of features and transform
them into .csv files, which are the most common and manageable dataset file for machine learning.


https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16515
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL570
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE9750
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL96
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE9574
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL96
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE9476
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL96
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ID_REF GSM414924 GSM414025 GSM414926 GSM414027 GSM414920 GSM414031 GSM414033 GSM414935 GSM414936 GSM414937 GSM414939 GSM414941 GSM414043 GSM414944 GSM414945 GSM414946 GSM414948 GSM414949 GSM414050 GSN
1. 1552563 _a_at 14.75 1529. 18 91. 1443. 35.53 10 83. 21 54. 332. 589. 919. 828 10 54. 922. 10.58 15 33. 15.74 9.96 1221. 39.
2. 1552829_at 1273 138 12.01 1093 "7y 1018 1004 1004 704 10.08 853 998 132 1598 1044 2031 1014 197 2307
3 1552867_at 2083 9075 1962 8205 7995 8891 4541 79.05 44 55 5194 9243 1001 9877 68.28 8968 5229 6912 8371 1032
4 1652961_at 1545 1474 1285 17.31 13.67 128 1376 1273 1083 1167 1227 13.05 1214 1327 19 46 1262 1264 1849 123
5 1552974_at 991 1038 1169 1552 10.07 1055 1342 966 876 931 1006 969 1024 10.31 109 916 1023 1081 896
6 1552975_x_at 981 94 1194 1575 975 1085 133 994 897 1032 1016 878 1024 1022 1108 1013 1026 1098 872
7. 1553069_at 407 4.05 41 431 4.09 4.4 414 388 3.99 3.94 4 4.02 4.01 4.32 412 391 392 4.02 393
B. 1553083 _at 4.05 3.99 408 438 4 522 417 399 39 3.94 391 535 4.02 4 6.44 3.94 403 4.05 3.86
9. 1553275_s_at 299 4267 62.87 379 26.19 73.62 60.68 8297 2722 51.09 69.74 66.92 4227 25.51 19.47 76.03 47.64 1013 424
10 1553354 _a_at 799 8133 847 975 9.03 874 858 756 1075 844 828 899 108 1412 8289 862 874 887
ail 1653355_at 42 387 402 6.01 398 404 486 425 40 402 385 388 395 4.07 9.05 413 396 445 393
12 1553356_at 45 446 463 494 453 452 48 445 443 442 442 439 446 463 463 442 452 458 445
13 1553372_at 896 1071 1121 1597 9.54 963 2215 1015 86 928 1045 1046 1041 1074 15 103 93 1088 932
14. 1553398_at 5.00 478 498 582 4.85 5.03 549 4.86 4.66 4283 483 4.66 4.82 4.99 498 482 494 493 47
15. 1553439_at 464 395 459 491 4.55 4863 471 45 523 458 459 451 467 4.55 469 457 464 468 4.44
15. 1553456_at 489 485 5.02 54 4.9 497 569 487 473 428 476 48 489 491 504 5.58 5.02 4.94 4.69
17 1553462_at 11.66 958 1158 1891 1058 1075 1099 93 943 118 999 968 1085 1027 122 1028 959 109 1012
18 1663475_at 598 57 6.07 6.69 573 596 611 575 545 578 568 562 652 6.64 61 579 6.05 6.09 553
19 1553408_at 1025 a7 1043 1 10.32 114 1038 987 981 993 994 969 1018 10.25 1582 976 974 1029 10.11
20 1553546_at 69 641 72 98 7.03 719 727 68 65 671 6.8 653 701 7.03 722 674 697 7.09 658
21. 1553547 _at 5.05 4.94 5.1 65 5.06 7.89 5 4.96 4.97 497 487 491 501 5.06 519 492 5.02 5.08 4.95
22. 1553881_at 442 4.4 473 594 4.4 454 452 436 4.4 458 438 462 44 4.42 448 4.48 441 4.47 418
23. 1554007 _at mz 1295 192.8 385.6 125.7 8287 188 442 59.58 2419 83.36 2496 75.14 41.57 48.07 269 76.14 304.4 2448
24| 1554232 _a_at 466 459 475 526 465 473 477 488 453 459 457 451 47 47 492 466 468 473 454
25 1554281_at 789 T 851 1116 11.81 857 858 748 8139 74 778 814 871 824 853 819 789 82 812
26 1554372_at 745 692 704 83 752 704 769 746 6.85 71 85 6.66 766 744 681 742 866 749 74
27 1554374_at 536 465 542 547 534 542 685 532 524 528 517 535 537 538 546 527 541 545 473
28| 1554404 _a_at 425 419 427 45 4.21 423 433 417 414 413 417 41 421 422 428 464 421 425 416
29. A1BG 15.49 15.38 15.84 28.54 15.09 16.66 17.39 16.05 15.27 18.92 15.5 18.06 13.98 10.12 15.62 15.05 15.68 15.44 15.39
SU. A1BG-AS1 18.61 14.83 16.28 15.09 12.03 15.04 1258 14.74 1145 11.85 11.49 15.29 121 12.47 10.42 4 1087 14.64 12.03
31. AICF 1377 25295 86555 1972 4161 10615 1019 7726 6849 2795 1157 38485 1551 11115 64105 27165 2083 59.065 47 565
32 AZM 80389 1043475 985 575 1469 04 1536.03 1079.77 254325 22351 1114325 1063.06 1341355 970485 139188 406.255 4622 42 12911 1197915 1666.15 1909985 1
33 A2M-AST 1362 1775 2143 2256 19.59 728 58 1026 871 1856 1247 1047 1973 2257 1356 237 106 2885 3013
ID_REF  GS5M414924 GS5M414925 GSM414926 GSM414927 GSM414929 GSM414931 GSM414933 GS5M414935 GSM414936 GSM414937 GSM414939 GSM414941 GSM414943 GSM414944 GSM414945 GEM414946 GSM414948 GSM414949 GSM414950 GSI)
54582 65635_at 1581 2183 2237 1759 18538 1831 1702 1281 152.8 1384 1427 1587 1578 2048 9724 1791 1729 216.8 1523
54583 65718_at 7041 7724 7518 4791 52 69 106.8 4339 1286 79.51 69.64 1005 92.06 9242 7054 3858 1145 8583 8289 1316
54584 65770_at 1249 1235 1213 86.26 116 130.8 1327 1336 9252 1201 1397 1193 14186 1578 96.67 173 1702 1213 1345
54585 65884 _at 106 1504 1458 6751 1149 1022 1812 1371 1142 1324 1244 102.6 963 1385 6538 1113 93.08 1083 1116
54586 66053_at 3418 67 44 3521 23384 2291 36.89 24 2873 3434 266 3494 22 3058 329 2257 4418 277 14.06 17.48
54587 71933_at 1081 1318 103 2543 939 1057 1276 103 9562 1032 882 11.88 1052 1232 1276 1099 1128 16.79 1363
54583 74694 s_at 2161 1901 2na 1392 175.3 155.8 1515 140.8 126 160.9 199.4 1301 1412 99.45 190 1413 162.7 126.4 139.2
54589 76897_s_at 2755 2376 15.65 19.81 351 2231 24.92 2262 4777 63.35 33.03 23.45 27.08 47.69 20.02 27.52 38.03 43.53 59.73
54590 77508 _r_at 62,67 4315 47.63 55.87 4512 48.73 54.61 4068 46.5 38.88 51.01 39.9 4299 45.54 43.3 43.31 45.46 49.72 43.38
54591 78047 _s_at 1621 1341 153.7 163.9 1303 207.8 3142 1314 1537 173.3 1415 163.8 152.3 102.4 138 142.9 186.7 149.9 163.2
54592 78330_at 6.31 6.44 6.47 6.66 6.17 775 6.51 621 6.18 6.43 6.19 6.13 6.52 6.23 8.66 6.08 6.28 6.37 6.12
54593 78383 _at 65.79 552 41.67 1m3 57.98 49.12 152.8 53.09 59.03 65.57 59.75 5017 67.38 53.01 56.83 66.1 46.45 77.95 709
54594 78495_at 52.99 53.51 73.85 49.32 58.97 5218 39.75 658 59.67 53.59 51.59 62.9 6223 1431 93.46 82.54 78.23 61.21 69.58
54595 79005_at 5715 372 69.61 7731 69.65 7394 65.04 49.81 5995 658 7348 56.74 638 6979 75.49 58.01 62.8 6272 5319
54596 81737 _at 7929 1145 1741 80.85 1016 7593 64.34 4495 8042 7044 82,59 86.88 5117 1125 6739 8575 4548 166.6 95.66
54597 81811_at 1217 1225 1375 7381 9342 61.48 M2 7139 7333 5067 49.58 787 50.01 7825 9493 1415 71.58 73.85 8811
545098 823_at 4083 1962 1863 3396 3195 45.48 1108 1892 5271 1736 9425 1429 5965 6319 3741 5427 56.31 6495 65.68
54599 87100_at 1032 1332 1728 733 2335 1442 3066 356 86.37 8125 G4.41 8423 4125 1675 3322 1224 264.4 81.03 5022
54600 89476_r_at 1167 8786 1143 1087 106.7 1126 1033 8966 7598 1074 1045 8024 844 90.46 9438 86.14 90.05 7345 8842
54601 89943 _at 3357 30 3413 3474 4004 4889 6372 3322 3673 286 3495 3396 50.05 2913 4496 29.16 2945 3519 3326
54602 89977 _at 737 11.83 796 11.05 82 837 819 926 2328 1414 11.84 11.09 1057 861 8509 882 863 19.94 1315
54603 90265_at 8241 4052 853.1 214 4703 394.1 928.2 3729 326.5 363.8 4452 570.5 414 108 260 582.5 318.6 140.5 269.4
54604 90610_at 1302 1413 157.8 154 125 128.8 185.4 152.4 189.9 143.7 154.6 136.1 184.7 106.7 115.4 144.4 1323 14.8 146.4
54605 91580_at 6.38 6.05 6.63 8 6.38 6.56 6.74 623 6.15 6.33 6.24 6.42 6.43 6.43 B.71 6.15 6.45 6.56 B
54606 91617 _at 69.29 7119 96.83 47.52 53.65 46.49 348 4827 52.48 41.99 6111 37.42 3893 4811 76.35 94.37 51.42 51.12 4712
54607 91682_at 783 6.84 B.77 9.54 7.92 857 02 714 8.44 7.45 7.61 71 7.97 777 8.08 6.81 7.87 9.54 7.35
54608 91634_g_at 40.37 3579 47.45 34.41 61.66 62.58 65.55 45.36 47.23 44.43 48.67 44.99 38.94 35.41 43.43 62.95 51.08 26 35.83
54609 91703_at 7823 142 951 17.48 66.33 69.09 4074 7652 5515 106.3 1192 7422 6237 106.9 17.42 813 1262 4238 8717
54610 91816_f_at 2675 2867 31.02 588 1399 42.05 2539 2596 19.04 2339 5247 336 4477 54 1082 24.44 4552 3489 3597
54611 91826_at 5574 2390 7183 95 2681 870 2127 2432 1954 4188 5799 3878 5243 344 1015 9953 5876 2935 306.8
54612 91920_at 835 894 e77 922 93 10.54 1355 894 1195 8.37 10.02 935 965 1072 947 961 942 928 878
54613 91952_at 201 2203 2659 1856 2043 26.46 2615 2377 2124 2543 2971 17.62 2785 2463 3305 3033 2513 2265 2837
54614 class 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 3-1 A tabular view of gene expression levels for GDS4102-Pancreatic tissue samples

The first column titled “ID_REF” contains the gene symbols, our features. As we can see, the last one is the label for each sample with the name class. The
first row contains the Donors’ number.
The GDS4102 data shape is 52 x 54614 (Samples x Features)



75

3.3 SOFTWARE

3.3.1 Python

There are a lot of choices in order to apply machine learning techniques like Matlab and R. For our
study, we chose the programming language Python (version 3.7). Python is an interpreted, high-level,
general-purpose programming language. Created by Guido van Rossum and first released in 1991,
Python's design philosophy emphasizes code readability with its notable use of significant whitespace.
Its language constructs and object-oriented approach aim to help programmers write clear, logical code
for small and large-scale projects. Python is dynamically typed and garbage-collected. It supports
multiple programming paradigms, including procedural, object-oriented, and functional programming.
Python is often described as a "batteries included" language due to its comprehensive standard library.
Python is developed under an OSl-approved open source license, making it freely usable and
distributable, even for commercial use. Python's license is administered by the Python Software

Foundation.

The open-source Anaconda Distribution is the easiest way to perform Python/R data science and
machine learning on Linux, Windows, and Mac OS X. Directly from the platform and without involving
DevOps, data scientists can develop and deploy Al and machine learning models rapidly into production.
In its environment it contains a variety of application. Here, we develop our program in Jupyter
Notebook and JupyterLab.

Project Jupyter is a non-profit, open-source project, born out of the IPython Project in 2014 as it evolved
to support interactive data science and scientific computing across all programming languages. Jupyter
will always be 100% open-source software, free for all to use and released under the liberal terms of the
modified BSD license. Jupyter is developed in the open on GitHub, through the consensus of the Jupyter
community. (Jupyter.org) (anaconda.com/why-anaconda/) (python.org/about/) (Kuhlman, 2013)

3.3.2 Python Libraries

Python provides us with a variety of scientific libraries for data mining and machine learning tasks. In
this study we have used the followings:

e Scipy (version 1.3.1) is a collection of mathematical algorithms and convenience functions
built on the NumPy extension of Python. It adds significant power to the interactive Python
session by providing the user with high-level commands and classes for manipulating and
visualizing data. With SciPy, an interactive Python session becomes a data-processing and
system-prototyping environment rivaling systems, such as MATLAB, IDL, Octave, R-Lab, and
Scilab. (scipy)

e Numpy: (version 1.17.2) is the fundamental package for scientific computing with Python. It
contains among other things: a powerful N-dimensional array, object sophisticated
(broadcasting) functions, tools for integrating C/C++ and Fortran code, useful linear algebra,
Fourier transform, and random number capabilities.


https://www.python.org/psf
https://www.python.org/psf
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Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional
container of generic data. Arbitrary data-types can be defined. This allows NumPy to
seamlessly and speedily integrate with a wide variety of databases.

Matplotlib: (version 3.0.3) is a Python 2D plotting library which produces publication quality
figures in a variety of hardcopy formats and interactive environments across platforms.
Matplotlib can be used in Python scripts, the Python and IPython shells, the Jupyter notebook,
web application servers, and four graphical user interface toolkits.

Pandas: (version 0.24.2) pandasis an open source, BSD-licensed library providing high-
performance, easy-to-use data structures and data analysis tools for the Python programming
language.

Sklearn: (version 0.21.3) is a free software machine learning library for the Python
programming language. It features various classification, regression and clustering algorithms
including support vector machines, random forests, gradient boosting, k-means and DBSCAN,
and is designed to interoperate with the Python numerical and scientific libraries NumPy and
SciPy. (Buitinck et al.) (wiki/Scikit-learn) (scikit-learn.org)


http://ipython.org/
http://jupyter.org/
http://www.python.org/
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4. PROPOSED EXPERIMENT
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All the figures are Cell results from 4 different Notebooks run in Jupyter Notebook.

4.1 Preprocess

A necessary step in machine learning is data preprocess. Before data can be analyzed, they must be

organized into an appropriate form. Data preparation is the process of manipulating and organizing data

prior to analysis. Data preparation is typically an iterative process of manipulating raw data, which is

often unstructured and messy, into a more structured and useful form that is ready for further analysis.

The whole preparation process consists of a series of major activities (or tasks) including data profiling,

cleansing, integration, and transformation. (C., 2010)

In this study, we have loaded the .csv files with the help of pandas read_csv() function and DataFrame

structure. In some of the cases, we had to transpose the matrix in order to get a shape in the form

(samples x feautres) where samples are in rows and their features in columns. The next step is to

drop duplicate values and find the NA tabs, which were filled the median of the data.

4.2 Analyze Data

4.2.1 Peek on Data

We can take a look at our DataFrame by printing it. A useful information to keep here is that the gene

expression datasets have a small number of examples and a large number of features.
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Figure 4-1 (A) Peek at values of Breast Cancer Dataset GDS3139 as an example
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Figure 4-2 (B) Peek at values of Breast Cancer Dataset GDS3139 as an example

4.2.2 Data Dimensions

79

The results are listed in rows then columns. In this study we have chosen 4 different datasets depending

on their shape. We cover cases with big number of samples and also features, big number of samples

but fewer features, small number of samples with also small number of features and finally big number

of samples but small number of features.

data shape:

(52, 54614)

Figure 4-3 Pancreatic Cancer Dataset GDS4102 shape

data shape:

(52, 14063)

Figure 4-4 Cervical Cancer Dataset GDS3233 shape

data shape:

(54, 22284)

Figure 4-5 AML Cancer Dataset GDS3057 shape

data shape:

(29, 22284)

Figure 4-6 Breast Cancer Dataset GDS3139 shape



80

4.2.3 Attribute Data Type

The type of each attribute is important. Strings may need to be converted to floating point values or
integers to represent categorical or ordinal values. We can get an idea of the types of attributes by
peeking at the raw data, as above. (Brownlee) In our experiment, all the features are float64 type.

dataframe types: dataframe types:

ID_REF ID_REF
1552563 a at floatbd 1887 s _at floathd
1552829 _at floathd 1853 at floathd
1552867 _at floathd 117 _at floathd
1552961 at floathd 121_at floathd
1552974 at floathd 1255_g_at floathd
1552975 x at  floathd 1294_at float6d
1553869_at floathd 1316 at floathd
1553083 _at float6d 1320_at float6d
1553275 s at  floathd 1405 _i_at float&d
1553354 a_at floathd 1431 at floathd
1553355 _at float6d 1438_at float6d
1553356_at floathd 1487 at floathd
1553372_at floathd 1494 f at floathd
1553398 _at float6d 1598 _g_at float6d
1553439 _at floathd 168828 at floathd
1553456 _at float6d 1729 _at float6d
1553462 at floathd 1773 _at floathd
1553475_at floathd 177 _at floathd
1553498 at floathd 179_at floathd
1553546_at floathd 1861 at floathd
1553547 _at floathd 2800080_s_at floathd
1553881 at floathd 280001_at floathd
1554887 _at floathd 200082 at floathd
1554232 a at floated 200883 _s_at floated
1554281 _at floathd 200084 _at floatbd
1554372 at float6d 200005_at float6d
1554374 at floathd 2000086 at floathd
1554484 a at floathd 208887_at floathd
A1BG floathd 200088 s at floathd
A1BG-AS1 floathd 200889 at floathd
Figure 4-8 First example of Figure 4-7 Second example of

Data Type Attributes on Data Type Attributes on

GDS4102. GDS3139.

The first column shows the The first column shows the
names of features (genes). names of features (genes).
The second column is each The second column is each

feature’s type. feature’s type.
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4.2.4 Descriptive Statistics

Descriptive statistics can give us great insight into the properties of each attribute. Often you can create

more summaries than you have time to review. The describe () function on the Pandas DataFrame lists 8
statistical properties of each attribute. (Brownlee) They are:

Count. The count of rows (samples)
Mean or average. Symbolically, if we have a data set consisting of the values a, a, ..., a, then

the arithmetic mean p is defined by the formula: u = % noa, = a”aZnﬂ (wiki/Arithmetic_mean)

Standard Deviation is a measure of the amount of variation or dispersion of a set of values. A
low standard deviation indicates that the values tend to be close to the mean (also called the
expected value) of the set, while a high standard deviation indicates that the values are spread

out over a wider range. The formula is: = ﬁZﬁV:l(xi —x)% . Let X be a random variable with

mean value u: [X] = u . Here the operator E denotes the average or expected value of X. Then
the standard deviation of X is the quantity o = \/m (wiki/Standard_deviation)

Minimum and Maximum Value

25" 50" and 75" Percentile. A percentile is a measure used in statistics indicating the value
below which a given percentage of observations in a group of observations fall. (wiki/Percentile)

statistic descriptions:
ID_REF 1@87_s_at 1853_at 117_at 121_at 1255_g_ at 1284 at 1316_at 1320_at 1485_i_at O\

count 29.8ee 29.08e 29.088 29.088 29.000 29.000 29.080 29.888 29.888
mean 2767.828 a@.641 149.397 937.945 83.279 619.883 166.472 43.659 56.562
std 551.828 84.848 79.364 229.819 77.954 254.566 51.461 69.187 66.189
min 1932.588 8.8688 28.00808 785.888 27.688 346.3688 48.7080 5.188 4.6080
25% 2377.788 37.488 98.488 793.588 51.688 421.188 137.588 11.688 15.588
58% 2749.900 83.800 141.¢600 886.5080 66.908 594.408 155.600 17.9@e 26.300
75% 2992.580 1@7.200 168.400 954.208 85.900 679.9688 192.700 57.200 71.300
max 4260.700 456.700 448.300 1747.400 463.000 1452.800 278.5080 369.480 273.408
ID_REF 1431_at ... AFFX-r2-Hs28SrRNA-M_at AFFX-r2-Pl-cre-3_at AFFX-r2-Pl-cre-5_at %

count 29.008 ... 29.888 29.0808 29.088

mean 77.9e3 ... 233.883 51125.797 37813.586

std 42.438 ... 213.595 33218.859 23248.909

min 9.3e8 ... 74.880 15121.288 11495. 488

25% 58.788 ... 162.188 36188.788 25768.288

58% 7@.300 ... 197. @08 41387.200 29828.400

75% 95.480 ... 248.3080 54116. 2080 48469.600

max 218.1e8 ... 1283.9080 194545 .00 136124. 600

ID_REF AFFX-ThrX-3_at AFFX-ThrX-5_at AFFX-ThrX-M_at AFFX-TrpnX-3_at AFFX-TrpnX-5_at \

count 29.6ee 29.eee 29.@ee 29 .66 29.0ee
mean 12.9@3 13.128 17.897 17.621 28.976
std 11.892 17.248 14.956 15.698 17.731
min 4.76080 2.808 2.388 2.768 3.768e
25% 7.588 5.288 5.788 4.808 7.788
58% 9.188 7.488 12.388 11.788 11.888
75% 13.7@e 16.786 24,400 27.080 33.1e0
max 61.48@8 91.280 62.300 57.080 58.300

ID_REF AFFX-TrpnX-M_at class

count 29.808 29.800
mean 6.987 8.483
std 9.155 8.589
min 2.588 0.e08
25% 3.1ee 8.eee
58% 4.0808 .00
75% 6.488 1.eee
max 45.588 1.eee

Figure 4-9 Statistical Description of Features (genes) on Breast Cancer Dataset GDS3139



statistic descriptions:
class A1CF AZM AAGALT AAGNT  AAB53967 AA129989 AA243143 AAIBEBS3
count 52.60@ 52.000 52.808 52.080 52.0800 52.080 52.600 52.600 52.080

mean  0.538 182.037 1349.686 62.915 92.277  11.862  14.838 700.444 1862.887

std 8.503 168.315 911.957 22.874 33.291  10.136  28.588 426.551  556.755

min 6.606  5.000 282.760 10.90@  38.100 0.900 0.660 110.866  393.000

25% 0.600 85.100 670.480 47.825 69.775 3.700 3.850  412.175  699.500

50% 1.008 147.050 1125.500 63.850 90.450 6.600 8.160 620.858 973.850

75% 1.806 255.380 1886.625 76.85@ 168.980  13.425  15.225 871.725 1340.450

max 1.608 447.960 3986.760 111.400 207.860  40.480 201.300 1895.500 3035.000
AA3G5670 ... 222296 at 222299 x at 222323 at 222332 at 222338 x at 222339 x at \

count  52.800 ... 52.000 52.000 52.000 52.000 52.000 52.600

mean  101.975 ... 15.742 6.950 24.987 13.831 311.167 61.531

std 51.189 ... 17.936 8.811 18.844 12.744 98.418 89.461

min 12.100 ... 3.000 0.100 4.100 1.100 182.700 3.800

25% 65.275 ... 6.000 1.000 11.225 3.800 252.525 8.800

50% 91.400 ... 10.250 3.250 15.400 8.850 290.250 26.350

75% 134.150 ... 17.925 9.050 37.350 23.575 341.850 69.600

max 247.400 ... 96.200 34.900 52.500 51.300 650.000 562.300
222358 x_at 222376_x_at 222371_at 91682_at

count 52.000 52.000 52.000  52.800

mean 118.277 104.679  148.1e4  122.154

std 74.363 55.957  102.163  57.641

min 31.700 37.900 10.400  27.800

25% 66.925 69.100 85.358  77.758

50% 97.650 98.360  126.650  115.400

75% 151.225 116.256  193.15@  151.425

max 439.000 363.1060  670.160  275.600

Figure 4-10 Statistical Description of Features (genes) on Cervical Cancer Dataset GDS3233

statistic descriptions:
ID_REF 1552563 _a_at 1552829 at 1552867_at 1552961 at 1552974 at 1552975 x at 1553869 _at

count 52.000 52.000 52.000 52.000 52.000 52.000 52.000
mean 12.006 12.844 94.002 15.807 12.234 12.498 4.163
std 4.787 5.161 48.038 5.750 4.287 4.704 8.227
min 5.890 7.040 33.860 10.830 8.660 8.720 3.880
25% 9.197 10.120 68.933 12.238 9.683 9.908 4,018
50% 10.535 10.915 82.065 12.950 10.345 10.420 4.090
75% 14.510 13.563 99.102 17.595 13.455 13.610 4.280
max 35.530 36.930 250.600 36.560 30.450 34.580 4.960
ID REF 1553083 at 1553275 s at 1553354 a at ... 91580 at 91617 at 91682 at 91684 g at \
count 52.000 52.000 52.00 ...  52.000  52.000  52.000 52.000
mean 4.220 41.602 10.106 ... 7.031  49.137 §.790 49.594
std 0.452 24.827 2.785 1.275  14.803 2.052 10.390
min 3.860 6.000 7.230 5.880  23.260 6.770 23.300
25% 3.968 25.308 8.550 6.316  39.492 7.570 34.590
50% 4.050 40.375 §.940 6.470  46.320 §.105 38.615
75% 4.380 59.068 10.450 ... 7.182  52.753 9.390 45.785
max 6.440 101.300 19.636 ...  12.410  96.830  16.880 68.550

ID REF 91703 at 91816 f at 91826 at 91920 at 91952 at class

count 52.000 52.000 52.000 52.000 52.600 52.000
mean 71.851 29.299  315.782 10.0844 29.862 @.692
std 41.89@ 25.337  388.354 1.53@ 18.124  8.466
min 7.560 4.348 16.15@ 7.708 12.360 ©.000
25% 39.160 12.652 75.060 9.175 22.8087 ©@.o00@
56% 71.655 24.915  285.55@ 9.800 28.11e 1.o0ee
75% 1e4.800 35.828 397.725 18.297 36.225 1.0ee
max 159.600 132.988 23906.000 15.17@ 58.478¢ 1.@ee

Figure 4-11 Statistical Description of Features (genes) on Pancreatic Cancer Dataset GDS4102
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statistic descriptions:
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Figure 4-12 Statistical Description of Features (genes) on AML Cancer Dataset GDS3057
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4.2.5 Class Distribution

On classification problems we need to know how balanced the class values are. Highly imbalanced
problems (a lot more observations for one class than another) are common and may need special
handling in the data preparation stage of our project. (Brownlee)

class
g8.8 16
1.8 36

Figure 4-15 Class Distribution of Pancreatic Cancer Dataset GDS4102.
16 healthy donors are labeled with zero value in “class” and 36 patients are labeled with one value.

class
8.8 15
1.8 14

Figure 4-14 Class Distribution of Breast Cancer Dataset GDS3139.
15 healthy donors are labeled with zero value in “class” and 14 patients are labeled with one value.

class
g.e 38
1.@ 26

Figure 4-13 Class Distribution of AML Cancer Dataset GDS3057.
38 healthy donors are labeled with zero value in “class” and 26 patients are labeled with one value.

class
8 24
1 28

Figure 4-16 Class Distribution of Cervical Cancer Dataset GDS3233.
24 healthy donors are labeled with zero value in “class” and 28 patients are labeled with one value.

As we can observe here, we have datasets with almost equal number of sample in the two classes
(Cervical and Breast Cancer Datasets) and we have the imbalanced distributions with almost double
cancer versus the healthy samples like Pancreatic Dataset or otherwise like AML Dataset.
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4.2.6 Skew of Univariate Distributions

Skew refers to a distribution that is assumed Gaussian (normal or bell curve) that is shifted or squashed
in one direction or another. Many machine learning algorithms assume a Gaussian distribution. Knowing
that an attribute has a skew may allow us to perform data preparation to correct the skew and later
improve the accuracy of your models. (Brownlee)

skew v
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1552867 _at 1.867 | 74694 s_at .022
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1553881 at 1.797 | 91617 at 1.382
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Figure 4-17 Features Skew of Pancreatic Cancer
Dataset GDS4102
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18@?_5_31: 2.875 Jﬁ.FFX-F?-BS-l}l’S-M_at B.819
1853_at 1.@23 | AFFX-r2-Bs-phe-3_at 2.163
117_at 1.898 | AFFX-r2-Bs-phe-5_at -8.297
121 at @.536 | AFFX-r2-Bs-phe-M_at 1.265
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Figure 4-18 Features Skew of AML Cancer Dataset GDS3057
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Figure 4-19 Features Skew of Breast Cancer Dataset GDS3139
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Figure 4-20 Features Skew of Cervical Cancer Dataset GDS3233
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As we can conclude the features distribution are skewed. For models like Logistic Regression that

assumes Gaussian distribution we need to generate a normal symmetric distribution. For fixing this, we

can apply a Data Transformation technique like Standardization (Z-score normalization) overcomes the

problem of variables with different units as it transforms variables so that they are centered on 0 with a

standard deviation of 1.
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4.3 Data Visualization

4.3.1 Histograms

A fast way to get an idea of the distribution of each attribute is to look at histograms. Histograms group
data into bins and provide you a count of the number of observations in each bin. From the shape of the
bins you can quickly get a feeling for whether an attribute is Gaussian, skewed or even has an
exponential distribution. It can also help you see possible outliers. (Brownlee)

As we took a first idea of the statistical analysis of skew on each feature, now we will visualize some
features histogram of our datasets. Due to the large computational power it takes, in order to produce
them we used Orange3. It is open source machine learning and data visualization tool provided in
Anaconda that has an interactive graphical environment for machine learning. (Orange3)

MKMM&\M

Figure 4-21 Histogram Distributions of 10 different features on Pancreatic Cancer Dataset GDS4102

Figure 4-22 Histogram Distributions of 10 different features on Cervical Cancer Dataset GDS3233
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Figure 4-24 Histogram Distributions of 10 different features on AML Cancer Dataset GDS3057

As we can observe from the histograms the data features distribution differs. In most cased the data are
skewed right or left like assuming an exponential distribution. Some others but only few of them in total
are symmetric assuming a Gaussian or nearly Gaussian distribution. This information must be noted,
because many machine learning techniques assume a Gaussian univariate distribution on the input
variables. So, this leads us to apply a data transformation technique like Standardization, which
transform attributes to a standard Gaussian distribution with a mean of 0 and a standard deviation of 1.
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4.3.2 Correlation Matrix Plot

Correlation refers to the relationship between two variables and how they may or may not change
together. The most common method for calculating correlation is Pearson's Correlation Coefficient that
assumes a normal distribution of the attributes involved. A correlation of -1 or 1 shows a full negative or
positive correlation respectively. Whereas a value of 0 shows no correlation at all. Some machine
learning algorithms like linear and logistic regression can suffer poor performance if there are highly
correlated attributes in your dataset. The matrix lists all attributes across the top and down the side, to
give correlation between all pairs of attributes (twice, because the matrix is symmetrical). We can see
the diagonal line through the matrix from the top left to bottom right corners of the matrix shows
perfect correlation of each attribute with itself. (Brownlee)

This task needed high RAM space in order to find thousands of data correlation. To run this part of code,
we used the Google Colaboratory. It is a free Jupyter notebook environment that requires no setup and
runs entirely in the cloud. With Colaboratory we can write and execute code, save and share our
analyses, and access powerful computing resources, all for free from our browser. (Google Colaboratory )

Figure 4-25 Pearson’s Correlation Plot of Pancreatic Cancer Dataset GDS4102 with 54614 features
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Figure 4-26 Pearson’s Correlation Plot of Cervical Cancer Dataset GDS3233 with 14063 features
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Figure 4-27 Pearson’s Correlation Plot of Breast Cancer Dataset GDS3139 with 14063 features
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Figure 4-28 Pearson’s Correlation Plot of AML Cancer Dataset GDS3057 with 22284 features
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4.4 Data Analysis and Preparation

4.4.1 Validation Dataset

As it is mentioned on second chapter, it is a good idea to use a validation hold-out set. This is a sample

of the data that we hold back from our analysis and modeling. We use it right at the end of our project

to confirm the accuracy of our final model. It is a smoke test that we can use to see if we messed up and

to give us confidence on our estimates of accuracy on unseen data. (Brownlee) In our study the 4
datasets will be split randomly in train and validation data with 67% and 33% of total samples each. X
array is the data values (gene expression levels) and the Y array is the binary label (cancer or healthy

class) for the supervised classification process.

X :
[[ 14.75 12.73 288.3 ... 557.4 8.35 20.1]
[ 15.29 13.6 99.75 ... 239@. 8.94  22.83]
[ 18.91 12.01 196.2 ... 718.3 9.77  26.59]
18.65 25.18 72.17 ... 62.49 10.21  39.01]
11.27 11.26 91.@9 ... 41.1 9.72 24.e4]
11.17  11.5 57.23 ... 32.14 18.16 42.41]]

[3.83301 6.68481 3.92363 ...
[3.21275 6.556083 4.25868 ...
[3.4483 6.3419 4.32786 ...

[[3.27542 6.69586 4.41897 ...
[2.96808 7.14802 6.83602 ...
[3.36886 6.97158 4.53694 ...

3.86965 2.35688 3.88049]
2.845  2.26414 2.85561]
3.1989 2.46864 3.11268]

2.943@4 2.318  2.99977]
3.83764 2.35584 3.85351]
2.98938 2.3318 3.@3788]]

1.1.1.1.1.1.1.1.1.1.1. 9. 8. 8. 2. 8. 0. 8. e.8a.8.0.8a.
9. 0. 8.]

X_train shape: (34, 54613)

X_train

. 31.35 8.38 38.88]
79.25 10.87 28.92]

[i
[15.82 18.9 60.62 ...
[ 32.14 18.16 42.41]

11.17 11.5 57.23 ...

[ 8.53 18.48 71.28 ...
[15.33 18.44 89.68 ...
[18.23 17.95 68.37 ...
Y_train shape: (34,)
Y_train:
[6. 8. @8 1.1.1.1.08.1.1.1.1.8.6.1.1. 1. 8. 8. 1. 1. 1. @. 1.
1. 8. 8. 1. 1. 1. 8. 8. 1. 1.]
X_walidation shape: (18, 54613)
X_validation:
[[ 18.53 108.88 97.63 ... 839.3 8.36 43.1 ]
[ 7.86 8.58 2@@.8 ... 861.6 18.28 5B.47]
[ 7.85 1@.24 1@6. . 1129 8.2  41.67]

55.31 9.19 28.91]
18.15 9.47 33.95]
91.74 9.86 52.78]]

oy

[ 18.82 13.55 91.97 ... 389.7 9.13 48.14]
[ 18.83 10.18 88.91 ... 870. 10.54 26.45]
[ 11.27 11.26 91.89 ... 41.1 9.72 24.84]]
Y _wvalidation shape: (18,)
¥_wvalidation:
[1. 1. @ 12.1.1.1.1.1.1.1.8. 1. 1. 1. 1. 1. 8.]
length of X train,Y_train with 33% : 34

Y{class):
[1.1.1.1.1.1.12. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
1. 1. 8. 8. ©. 6. 8. 0. 0. 6. ©. ©. ©. 8. 0. ©. 0. 0. 0. ©. 8. 0. 0. B.
6. 8.98. 0. 8. 0. 6. 8. 0.9. 0. 0. 06.0.0.0.]

X_train shape: (42, 22283)

X_train:
[[3.36886 £.97158 4.53694 ... 3.1983 2.46864 3.11268]
[2.92986 5.78724 5.34953 ... 3,85931 2,.35177 3.84938]
[3.20795 £.91681 4.19324 ... 3.80588 2.34097 3.04468]

[3.43447 7.22201 8.79347 ... 3.14497 2.42889 3.09488]
[2.99483 6.81265 4.82782 ... 2.89861 2.26353 2.98871]
[3.97444 6.48861 4.168 ... 2.7968 2.27287 2.85497]]
Y_train shape: (42,)
¥Y_train:

[1.1.@.90.@8. 1. 0. 1. 8. 1. 8. 0. 8. 8. 0. 1. 1. 1. 8. 1. 1. 1. 8. @.
6. 1.1. 1. 8. 0. 6. 6. 0.0. 1. 1. 1. 0. 8. 0. 1. 8.]

¥_wvalidation shape: (22, 22283)

X_validation:
[[3.1595 £.4328 4.83005 ...
[3.11388 6.52861 4.45671 ...
[2.9859 6.42647 4.88442 ...

2.808179 2.25987 2.98264]
2.81825 2.27889 2.93723]
3.85256 2.36111 3.86402]

[3.23822 6.53584 4.24944 ...

[3.30156 7.91109 4.23883 ...

[3.56498 6.14711 4.18721 ...
Y_validation shape: (22,)
¥Y_validation:

[0. @.0.90.1.0.0.1.0.8. 1. 0.0.08.0.1.0.1. 08.1. 1. 1.]
length of X _train,Y_train with 33% : 42

3.27872 2.58784 3.30729]
3.25319 2.478  3.17297]
3.87469 2.36678 3.05879]]

Figure 4-30 GDS4102 split
X_array stores data values Y_array stores the labels
X_train (34 x 54,613) for modeling Y_train (34 x 1)
X_validation (18 x 54,613) held out data for predictions
and final evaluation Y_validation (18 x 1)

Figure 4-29 GDS3057 split
X_array stores data values Y_array stores the labels
X_train (42 x 22,283) for modeling Y_train (42 x 1)
X_validation (22 x 22,283) held out data for predictions
and final evaluation Y_validation (22 x 1)
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Y(class):
[6. 9. @. ©. B. @. 0. 9. 9. ©. 0.
1. 1. 1. 1. 1.]
X_train shape: (19, 22283)
X_train:

[[2.4B52e+B3 8.3808e+81 8.5800e+01 ...
[3.0889e+03 1.8720e+02 2.0320e+02 ...
[4.12292+03 6.8300e+01 1.23802+02 ...

[2.7890e+83 2.8480e+02 1.4780e+02 ...
[2.7769e+03 8.6700e+01 1.6270e+02 ...
[2.8789e+083 8.4500e+@1 1.4448e+02 ...

Y_train shape: (19,)
Y_train:

[1. 8. 1. 8. 8. 8. 1. 1. 1. 8. 8.
X_validation shape: (1@, 22283)
X_validation:

f[1.9637e+83 5.2000e+01 1.0660e+02 ...
[2.3983e+03 1.1540e+82 7.36082+01 ...
[3.3181e+083 8.8000e+E0 1.4168e+02 ...

[2.4614e+03 2.6700e+@1 8.26082+01 ...
[2.2528e+03 3.9400e+@1 8.1708=+01 ...
[4.2687e+83 3.7488e+B1 2.7860e+02 ...

[[3.08892+03 1.0720e+02 2.0320e+02 ...
[2.3777e+03 1.4870e+82 9.51082+01 ...
[2.3485e+03 3.7000e+01 9.1200e+01 ...

3.118%+03 5.6000e+01 1.1368e+02 ...
2.4852e+083 8.3800e+01 8.5800e+01 ...
[2.3983e+03 1.1548e+02 7.3600e+01 ...

4.9300e+01 §.5000e+00 5.83000e+00]
2.3000e+81 9.10082+00 4.00002+08]
2.7600e+01 4.5100e+01 4.80002+08]

1.5700e+81 2.9008e+01 4.70002+08]
1.5480e+81 5.3508e+81 4.5500e+081]
1.0500e+01 1.4200e+01 3.0000e+00]]

@.@.90.,0.1. 1. 1. 1. 1. 1. 1. 1. 1.

1.5488e+81 5.3580e+01 4.5508e+081]
4.0300e+81 8.5000e:+00 5.8000e+00]
2.9000e+8@ 7.50002+00 4.40002+08]

2.1480e+01 1.0480e+01 3.1080e+08]
4.0000e+80 3.6500e+01 3.0000e+00]
3.2400e+81 B8.10082+00 4.6000e+08]]

8. @.1. 1. 8. 1. 8. 0.]

4.3000e+00 4.7000e+00 2.9000e+00]
1.8500e+81 1.4208e+01 3.00002+08]
1.8480e+81 5.5008e+00 7.4000e+08]

7.0000e+8@ 5.8308e+01 3.3000e+08]
1.1700e+81 3.70082+00 2.60002+08]
3.6980e+01 1.34080e+01 3.5800e+08]]

[[ 7. 3530.7 94.2 ...
[ 186.6 3986.7 50.7 ...
[ 111.2 3146.8  &0.

[ 241.7 1138.4 47, ...

[ 126.4 761.9 48.1 ...

[ 199.7 1434.2 81.9 ...
Y(class):

[e. @. 8. @. 8. 8. @. 8. 0.

1. 1. 1.1.1. 1. 1. 1. 1.

1,1, 1. 1.]
X_train shape: (34, 14862)
X_train:

[[ 224.6 1809.4 60.4 ...
[ 84.8 3782.9 82.9 ...
[ 198.7 1494.2 81.9 ...
[ 156.1 1124.7 52.7 ...
[ 247.8 546.5 68.1 ...
[ 88.4 49%8.1 73.
Y_train shape: (34,)

¥Y_train:
[1. 1. 1. 1. 8. 1. @. 1. 1.
1. 1. 1. 8. 8. 0. 1. 1. 0.

69.4  96. 608.5]
44.8 239. 78.4]
5. 183.4 97.9]

178.9 241.2 131.4]

84,  48.4 119.2]
104, 108.8 114.8]]

9. 9.9.9.0.0.0.0.0.0.0.0.0.0.80.
1.1.1.1.1.1.1.1. 1. 1. 1. 1. 1. 1. 1.

63.2 131.8 137.9]
181.7 383.6 153.8]
1le4. 108.8 114.8]

139.3 152.3
119.7  55.9
108.4 670.1

108.1]
128.7]
141.6]]

@.e.e. 1. 1. 8. 8. 8. 1. 1. 8. 8. 8. 1. 1.
1.]

X_validation shape: (18, 14862)

X _wvalidation:

[[ 9.4 2303.9 60.9 ...
[ 85.2 1985.7 46.8 ...
[ 162.1 1835.  19.6 ...
[ 58. 1126.3 42.8 ...
[ 66.8 1653.4 29.7 ...
[ 126.4 761.9 48.1 ...

Y_validation shape: (18@,)

Y_validation shape: (18,)

130.2 247.9 34. ]

68.2 212.2 63.3]
363.1 263. 15@.9]
67.9 158. 48.1]
87.8 62.1 69.5]

84.  4e.4 119.2]]

Y_validation:

[8. 1. 1. 1. 1. @. 8. 8. 1. 1.]
length of X_train,Y train with 33% : 19

Y_validation:
[1.1.1. 0. 1. 8. @. 1. @. @. 1. 1. 8. @. @. 1. 8. 1.]
length of X_train,Y_train with 33% : 34

Figure 4-32 GDS3139 split

Figure 4-31 GDS3233 split

X_array stores data va
X_train (19 x 22,283)

X_validation (10 x 22,283) held out data for predictions and

lues Y_array stores the labels
for modeling Y_train (19 x 1)

final evaluation Y_validation (10 x 1)

X_array stores data values Y_array stores the labels
X_train (34 x 14,062) for modeling Y_train (34 x 1)
X_validation (18 x 14,062) held out data for predictions
and final evaluation Y_validation (18 x 1)

FEATURES (GENES)
=
=,
4 =}
= vy
= o
e TRAIN DATA g
(%]
s
X
™~
©
F <
::
_ ¢ VALIDATION DATA 5
o o S
Table 4 Overview of Datasets Split on Train and Validation Data
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4.5 Implementation of different Machine
Learning Algorithms: Training and Evaluation

In this section, we evaluate the performance of different Machine Learning Algorithms in 3 scenarios: on
baseline level, on standardized data and last, with the use of PCA for feature extraction on standardized data.
The evaluation is made in two stages. The most important evaluation metric is accuracy which gives us a first
insight on how correct our models are in this binary classification problem. First, we measure the accuracy
with k-fold Cross-Validation on the train dataset to see a first picture on our models. The second and last
stage is to make predictions on unseen data, using the held out validation dataset. As a result, it sums up to a
final accuracy score, a confusion matrix and a classification report.

The Classification Algorithms
In order to find the best performance on our data we have to experiment with different algorithms.
Both linear and non-linear algorithms are selected for this problem. The algorithms all use default tuning
parameters. The suite of six algorithms is

e Logistic Regression (LR)

e Linear Discriminant Analysis (LDA)

e Classification and Regression Trees (CART)

e Linear Support Vector Machines (SVM)

e Gaussian Naive Bayes (NB)

e k-Nearest Neighbors (KNN)

FEATURES (GENES) W

t ,
a 1" -fold
M o)
p 3 g
. 2" fold -
: rd
3 "-fold
o th
2 4" -fold
A
X 5" -fold
& Validation data S

Table 5 Overview of Datasets Structure with 5-Fold Cross-Validation and Split on Train and Validation Data



96

4.6 Algorithm Evaluation: Baseline

4.6.1 Cross-Validation Results

The choice of k must allow the size of each test partition to be large enough to be a reasonable sample
of the problem, whilst allowing enough repetitions of the train-test evaluation of the algorithm to
provide a fair estimate of the algorithms performance on unseen data. For modest sized datasets in the
thousands or tens of thousands of records, k values of 3, 5 and 10 are common. (Brownlee)

In our data we use 5-fold cross-validation. We compare the algorithms, by displaying the mean and
standard deviation of accuracy, on training dataset with 5-fold cross-validation, for each algorithm as we
calculate it and collect the results for use later.

LR Accuracy: ©.9380952380952381 ( ©.0761904761904762 )
LDA Accuracy: ©.85238895238089524 ( 0.89885135251589958 )
KNN Accuracy: @.9142857142857143 ( ©.86998542122237654 )
CART Accuracy: ©.8428571428571429 ( ©.18294648678379567 )
MB Accuracy: ©.9895238895238895 ( 0.87438333024673005 )
SVM Accuracy: ©.98952380895238095 ( ©.87438333024673005 )

Figure 4-33 Cervical Cancer Dataset GDS3233 5-fold Cross-Validation Accuracy Results
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Figure 4-34 Cervical Cancer Dataset GDS3233
Graphical representation of 5-fold Cross-Validation Accuracy Results using box and whisker plots



LR Accuracy: ©.5666666666666667 ( ©.27588242262078883 )
LDA Accuracy: 0.5166666666666667 ( ©.13333333333333336 )
KNN Accuracy: ©.3 ( ©.18708286933869788 )
CART Accuracy: @.5 ( ©.3535533985932738 )
NB Accuracy: 0.5666666666666667 ( ©.16158932858054434 )
SVM Accuracy: ©.6333333333333333 ( ©.2585549396395485 )

Figure 4-35 Breast Cancer Dataset GDS3139 5-fold Cross-Validation Accuracy Results
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Figure 4-36 Breast Cancer Dataset GDS3139
Graphical representation of 5-fold Cross-Validation Accuracy Results using box and whisker plots

LR Accuracy: 8.975 ( @.849999999999999996 )

LDA Accuracy: ©.8855555555555556 ( ©.12576923802968634 )
KNN Accuracy: ©.9@27777777777779 ( ©.89296222517845283 )
CART Accuracy: 8.9855555555555556 ( ©.847628967228784024 )
MB Accuracy: ©.975 ( ©0.849999999999999996 )

SVM Accuracy: ©.975 ( 8.849999999999999996 )

Figure 4-37 AML Cancer Dataset GDS3057 5-fold Cross-Validation Accuracy Results
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Figure 4-38 AML Cancer Dataset GDS3057
Graphical representation of 5-fold Cross-Validation Accuracy Results using box and whisker plots



LR Accuracy: ©.9895238095238895 ( ©.87438333824673085 ) 98
LDA Accuracy: 08.8476190476198476 ( ©.13932132226978852 )
KNN Accuracy: ©.7857142857142858 ( ©.1698388589457833 )
CART Accuracy: ©.8523889523889524 ( 0.15678169174432693 )
MB Accuracy: @.7984761984761984 ( ©.08302664654363187 )
SVM Accuracy: ©.8808952388952381 ( ©.060233860193683424 )

Figure 4-39 Pancreatic Cancer Dataset GDS4102 5-fold Cross-Validation Accuracy Results
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Figure 4-40 Pancreatic Cancer Dataset GDS4102
Graphical representation of 5-fold Cross-Validation Accuracy Results using box and whisker plots

These were the mean accuracy values. We check the distribution of accuracy values calculated across
cross-validation folds. From a quick look, we observe that Logistic Regression and Linear SVM gives us
the best accuracy scores with low variance.

The results on Breast Dataset are surprisingly bad, comparing to others. However we have to take into
consideration that the Breast Cancer Dataset is the dataset with the fewest samples (29 samples, 15
healthy and 14 cancer), only with 19 sample left after split, for cross validation.

93.8 56.6 97.5 90.9

85.2 51.6 80.5 84.7
91.4 30.0 90.2 78.5
84.2 50.0 90.5 85.2
90.9 56.6 97.5 79.0
90.9 63.3 97.5 88.0

Table 6 Overview of 5-fold Cross-Validation Accuracy Results (%)
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4.7 Algorithm Evaluation: Standardized Data

Standardization is a useful technique to transform attributes with a Gaussian distribution and differing
means and standard deviations to a standard Gaussian distribution with a mean of 0 and a standard
deviation of 1. It is most suitable for techniques that assume a Gaussian distribution in the input
variables and work better with rescaled data, such as linear regression, logistic regression and linear
discriminate analysis. (Brownlee)

In order to avoid a negative impact on algorithms’ skill, due to raw data’s differing distribution, now we
revaluate them with a standardized copy of the training dataset. Also, a useful technique that scikit-
learn library provide us in order to avoid data leakage is pipelines. In this stage, we give pipelines the
scaler and the algorithm and after we test the model with 5-fold Cross-Validation.

4.7.1 Cross-Validation Results

ScaledLR Accuracy: ©.9388952380952381 ( 0.8761984761984762 )
ScaledlLDA Accuracy: ©.8523809523809524 ( ©.09885135251589958 )
ScaledKNN Accuracy: 8.9142857142857143 ( 8.11428571428571428 )
ScaledCART Accuracy: 9.8476190476190476 ( ©.13932132226978852 )
ScaledNB Accuracy: 0.9895238095238095 ( ©.87438333824673005 )
ScaledSVM Accuracy: ©.93808952380952381 ( 0.8761984761984762 )

Figure 4-41 Cervical Cancer Dataset GDS3233 5-fold Cross-Validation Accuracy Results on Standardized Data
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Figure 4-42 Cervical Cancer Dataset GDS3233
Graphical representation of 5-fold Cross-Validation Accuracy Results on Standardized Data using box and whisker plots



ScaledlR Accuracy: 8.4666666666666667 ( ©.17159383568311665 )
ScaledlLDA Accuracy: 8.5166666666666667 ( ©.13333333333333336 )
ScaledKNN Accuracy: ©.4833333333333333 (  0.2603416558635552 )
ScaledCART Accuracy: B.5166666666666667 ( ©.2086827389489984761 )
ScaledNB Accuracy: 8.5166666666666667 ( ©.13333333333333336 )
ScaledSVM Accuracy: ©.5166666666666667 ( ©.26083416558635551 )

100

Figure 4-43 Breast Cancer Dataset GDS3139 5-fold Cross-Validation Accuracy Results on Standardized Data
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Figure 4-44 Breast Cancer Dataset GDS3139
Graphical representation of 5-fold Cross-Validation Accuracy Results on Standardized Data using box and whisker plots

ScaledlR Accuracy: ©.975 ( ©.249999999999999996 )
ScaledLDA Accuracy: ©.8855555555555556 ( ©.12576923882968634 )
ScaledKNN Accuracy: 8.7861111111111111 ( @.84614791834954486 )
ScaledCART Accuracy: ©.8885555555555555 ( ©.87934920476158722 )
ScaledNB Accuracy: ©.975 ( ©.249999999999999996 )
ScaledSVM Accuracy: 8.95 ( ©.86123724356957946 )

Figure 4-45 AML Cancer Dataset GDS3057 5-fold Cross-Validation Accuracy Results on Standardized Data
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Figure 4-46 AML Cancer Dataset GDS3057
Graphical representation of 5-fold Cross-Validation Accuracy Results on Standardized Data using box and whisker plots



ScaledlR Accuracy: 0.8428571428571429 ( ©.18294640678379567 ) 101

ScaledlDA Accuracy: 0.8476198476198476 ( ©.13932132226978852 )
ScaledKNN Accuracy: 8.7571428571428571 ( ©.139978842444753 )
ScaledCART Accuracy: ©.9142857142857143 ( 9.11428571428571428 )
ScaledNB Accuracy: 8.7847619847619847 ( ©.91984761984761987 )
ScaledSVM Accuracy: 8.8761984761984763 ( 8.12278578215928693 )

Figure 4-47 Pancreatic Cancer Dataset GDS4102 5-fold Cross-Validation Accuracy Results on Standardized Data
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Figure 4-48 AML Cancer Dataset GDS3057
Graphical representation of 5-fold Cross-Validation Accuracy Results on Standardized Data using box and whisker plots

Primary Scaled Primary Scaled Primary Scaled Primary Scaled

93.8 93.8 56.6 46.6 97.5 97.5 90.9 84.2
85.2 85.2 51.6 51.6 80.5 80.5 84.7 84.7
914 91.4 30.0 48.3 90.2 78.6 78.5 75.7
84.2 84.7 50.0 51.6 90.5 88.0 85.2 91.4
90.9 90.9 56.6 51.6 97.5 97.5 79.0 70.4
90.9 93.8 63.3 51.6 97.5 95.0 88.0 87.6

Table 7 Overview of 5-fold Cross-Validation Accuracy Results (%) before and after Data Standardization
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4.8 Algorithm Evaluation: Feature Reduction
on Standardized Data

The data features that are used to train the machine learning models have a huge influence on the
performance we can achieve. Irrelevant or partially relevant features can negatively impact model
performance.
Feature selection is a process where you automatically select those features in the data that contribute
most to the prediction variable or output in which you are interested. Having irrelevant features in our
data can decrease the accuracy of many models, especially linear algorithms like linear and logistic
regression. Three benefits of performing feature selection before modeling your data are:

e Reduces Overfitting: Less redundant data means less opportunity to make decisions based on

noise.
e Improves Accuracy: Less misleading data means modeling accuracy improves.
¢ Reduces Training Time: Less data means that algorithms train faster. (Brownlee)

4.8.1 PCA

Principal Component Analysis (or PCA) uses linear algebra to transform the dataset into a compressed
form. Generally this is called a data reduction technique. A property of PCA is that you can choose the
number of dimensions or principal components in the transformed result. (Brownlee)

In this stage of our study, we find the how many components to use by selecting 95% of total variance
of the Train Set. After we use PCA, as a part of pipelines, on standardized data and reevaluate our

models.
Explained Variance
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Figure 4-49 Cervical Cancer Dataset GDS3233 Explained Variance
X axis: Number of PCA Components, Y axis: Variance (%)
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Figure 4-50 Breast Cancer Dataset GDS3139 Explained Variance
X axis: Number of PCA Components, Y axis: Variance (%)
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Figure 4-51 AML Cancer Dataset GDS3057 Explained Variance
X axis: Number of PCA Components, Y axis: Variance (%)
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Explained Variance

Variance (%)

0 5 10 15 20 25
Number of Components

Figure 4-52 Pancreatic Cancer Dataset GDS4102 Explained Variance
X axis: Number of PCA Components, Y axis: Variance (%)

The threshold of variance for transforming the train set features into PCA components was set for the
95%. In each dataset, the train set was transformed into a dataset whose features now are compressed
and their information represents the 95% of variance information of the previous dataset.

_ (34, 14062) (34, 20)
_ (19, 22283) (19, 12)
- (42, 22283) (42,27)
- (34, 54613) (34, 16)

Table 8 Train Datasets features transformation with PCA Components
(a) Original shape of Train Dataset (Samples, Features)
(b) Transformed shape of Train Dataset (Samples, Components)
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4.8.2 Cross-Validation Results

There are standard workflows in applied machine learning. Standard because they overcome common
problems like data leakage in your test harness. Python scikit-learn provides a Pipeline utility to help
automate machine learning workflows. Pipelines work by allowing for a linear sequence of data
transforms to be chained together culminating in a modeling process that can be evaluated. The goal is
to ensure that all of the steps in the pipeline are constrained to the data available for the evaluation,
such as the training dataset or each fold of the cross-validation procedure.

In the final stage of the study, we build the pipelines with transformed features and the algorithms. The
pipeline provides a handy tool called the FeatureUnion which allows the results of multiple feature
selection and extraction procedures to be combined into a larger dataset on which a model can be
trained. Importantly, all the feature extraction and the feature union occurs within each fold of the
cross-validation procedure. (Brownlee)

Our study is finalized with pipelines in the steps below:

1. Data Standaridization
2. Feature Extraction with Principal Component Analysis.
3. Feature Extraction with Statistical Selection. Select features according to the k highest
scores with SelectKBest() function. It scores the features using a function (in this case
f _classif) and then removes all but the k highest scoring features. The score function
refers to ANOVA F-value for the classification. (wiki/F-test)
£ n =17
i=1 M (K-1)
_explained variance
B lained vari B 7.)?
unexplained variance S Zni . (Yij _ Yi) /
i=14j=1"1 (N —K)
4. Feature Union. Concatenates results of multiple transformer objects.
5. Learn the six algorithms.

The pipeline is then evaluated using 5-fold cross-validation.

LR: Accuracy: 0.9166666666666666 ( ©.12989944487358858 )
LDA: Accuracy: ©.8833333333333332 (  9.1452966314513558 )
KNN: Accuracy: 8.925 ( ©.11456439237389601 )

CART: Accuracy: B.9166666666666666 ( 0.12909944487358058 )
NB: Accuracy: ©0.95 ( ©.89999999999999999 )

SWM: Accuracy: 8.95 ( ©.89999999999999999 )

Figure 4-53 Cervical Cancer Dataset GDS3233 5-fold Cross-Validation Accuracy Results after PCA on
Standardized Data

LR Accuracy: 8.5 (
LDA Accuracy: 8.55 (
KNN Accuracy: 8.25 (
CART Accuracy: 8.5
NE Accuracy: B.45 (
SVM Accuracy: 6.5 (

0.31622776601683794 )
8.35 )
0.33541019662496846 )

0.31622776601683794 )

0.26925824035672524 )

0.3872983346207417 )
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Figure 4-54 Breast Cancer Dataset GDS3139 5-fold Cross-Validation Accuracy Results after PCA on
Standardized Data

............. ot ettt e aaa et r e

CART Accuracy: ©8.975 ( ©.875 )

NE Accuracy: ©.95 ( ©.89999999999999999 )

SVM Accuracy: 8.975 ( ©.875 )

Figure 4-55 AML Cancer Dataset GDS3057 5-fold Cross-Validation Accuracy Results after PCA on
Standardized Data

LR Accuracy: ©.9083333333333332 ( 8.1416666666666667 )
LDA Accuracy: ©.8333333333333334 ( 9.2236867977499789%6 )
KNN Accuracy: 8.75 ( ©.2886751345948129 )

CART Accuracy: ©.9883333333333332 ( 0.1416666666666667 )
NB Accuracy: 8.65 { ©.317979733808564853 )

SVM Accuracy: ©.8749999999999998 ( ©.1547847968417226 )

Figure 4-56 Pancreatic Cancer Dataset GDS4102 5-fold Cross-Validation Accuracy Results after PCA on
Standardized Data
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90.9 90.9 95.0 97.5 95.0

90.9 93.8 95.0 95.0 975
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Table 9 Overview of 5-fold Cross-Validation Accuracy Results (%) on three different scenarios
(c) Not scaled data (b) Standardized Data (c) with PCA feature extraction on standardized data
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Receiver operating characteristic KNN
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Figure 4-57 ROC Curve of 5-fold cross-validation of 6 Classification models on Cervical Cancer Dataset GDS3233
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Figure 4-58 ROC Curve of 5-fold cross-validation of 6 Classification models on Breast Cancer Dataset GDS3139
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Figure 4-59 ROC Curve of 5-fold cross-validation of 6 Classification models on AML Cancer Dataset GDS3057
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Figure 4-60 ROC Curve of 5-fold cross-validation of 6 Classification models on Pancreatic Cancer Dataset
GDS4102
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4.8.3 Predictions Results

Unlike statistics, where models are used to understand data, predictive modeling is laser focused on
developing models that make the most accurate predictions at the expense of explaining why
predictions are made. Why can't we prepare your machine learning algorithm on our training dataset
and use predictions from this same dataset to evaluate performance? The simple answer is overfitting.
Imagine an algorithm that remembers every observation it is shown during training. If we evaluated our
machine learning algorithm on the same dataset used to train the algorithm, then an algorithm like this
would have a perfect score on the training dataset. But the predictions it made on new data would be
terrible. We must evaluate our machine learning algorithms on data that is not used to train the
algorithm. (Brownlee)

The last stage of our study is to check the performance of our models on unseen data. We will finalize
the models by training them on the entire training dataset and make predictions for the hold-out
validation dataset to confirm our findings.

Confusion matrix here has biological meaning too. Considering how we have assigned the classes
healthy in 0 (Positives) and cancer with 1 (Negatives), the True Negatives (TN) in confusion matrix play
the most important role for medical diagnosis, as they predict the cases of cancer.
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Figure 4-61 Predictions Results of 6 Classification models of Cervical Cancer Dataset GDS3233
(a) Accuracy of predictions on Validation Data (b) Confusion matrix (c) Classification Report
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Figure 4-62 Predictions Results of 6 Classification models of Breast Cancer Dataset GDS3139
(a) Accuracy of predictions on Validation Data (b) Confusion matrix (c) Classification Report
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Figure 4-63 Predictions Results of 6 Classification models of AML Cancer Dataset GDS3057
Accuracy of predictions on Validation Data (b) Confusion matrix (c) Classification Report
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Figure 4-64 Predictions Results of 6 Classification models of Pancreatic Cancer Dataset GDS4102
(a) Accuracy of predictions on Validation Data (b) Confusion matrix (c) Classification Report
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Cross- Cross-
Validation Validation

I 91.6 H“ 50.0 90.8
88.3 55.0 83.3 2 1
1 14
I 92.5 25.0 75.0
I 91.6 50.0 90.8
I 95.0 45.0 65.0
I 95.0 50.0 87.4

Table 9 Summarization of basic study results of Accuracy (%) and Confusion Matrix.
(a) In cross-validation columns we see the accuracy score of 5-fold cross-validation on train data at the 3™ scenario.
(b) In Predictions columns we see the accuracy score and confusion matrix of the 6 models on unseen data
(validation dataset).
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4.9 Final Model

In our study, finally, we picked the most accurate model considering its performance in predictions and
metrics like confusion matrix and classification report. After picking the right model for each dataset we
can save and load the model using the Joblib library. The Joblib library is part of the SciPy ecosystem and
provides utilities for pipelining Python jobs. It provides utilities for saving and loading Python objects
that make use of NumPy data structures, efficiently.

Running the Jupyter Notebook saves the model to file as finalized model.sav and also creates one file for
each NumPy array in the model. After the model is loaded an estimate of the accuracy of the model on
unseen data is reported (Brownlee).

e In case of Cervival Cancer Classification dataset GDS3233 we can pick models between
Logistic Regression, Naive Bayes and Linear SVM algorithms, with final accuracy on unseen
data at 100%.

e In case of Breast Cancer Classification dataset GDS3139 we picked the model trained with
Linear Discriminant Analysis algorithm with final accuracy on unseen data at 90%.

e In case of AML Cancer Classification dataset GDS3057 we picked the model trained with
Naive Bayes algorithm with final accuracy on unseen data at 95.4%.

e In case of Pancreatic Cancer Classification dataset GDS4102 we picked the model trained
with Logistic Regression algorithm with final accuracy on unseen data at 94.4%.
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5. CONCLUSIONS AND FUTURE
WORK

5.1 CONCLUSIONS

The aim of our thesis is to make a robust and efficient binary classification predictive model, which
applies in gene expression datasets with high accuracy, for medical diagnosis of cancer. Through the
whole procedure, useful results came along with interesting thoughts and outcomes.

Firstly, in order to have a spherical view on the problem, we chose to conclude 4 different cancer
datasets of 4 different cancers (Cervical, Breast, AML and Pancreatic) which were retrieved from
different tissues or cell lines. A main characteristic of these datasets is that they are high dimensional
(thousands of gene expression levels), but the number of samples is significantly lower (tens of people).
These 4 different datasets have different shapes (samples x features) as well: The Cervical dataset: 52 x
14063, the AML dataset: 64 x 22284, the Breast dataset: 29 x 22284, the Pancreatic dataset: 52 x 54614

So, we examine big and smaller datasets comparing the one with another. For example the AML dataset
has twice samples than the Breast dataset with the same amount of features. Also, in case of Cervical
cancer we have the same number of sample with the Pancreatic or AML cancer dataset, but under the
half of features. An interesting insight will come up if we see how different algorithms will behavior in
different shaped datasets.

Another criterion is how the data distribute into classes. In this thesis we examine imbalanced and
balanced cases.

a) Cervical and Breast cancer dataset have balanced cases of cancer and healthy samples in
different proportions each. For Cervical 24 healthy and 28 cancer and for Breast 15 healthy and
14 cancer samples.

b) AML dataset has more cases of healthy samples than cancer samples. (38 healthy, 26 cancer)

c) Pancreatic has almost double cancer samples than healthy. (16 healthy, 36 cancer)

Continuing, a very useful result that came up from feature statistics and visualization was that the most
data are skewed right or left, like assuming an exponential distribution, some others, but only few of
them in total, are symmetric assuming a Gaussian or nearly Gaussian distribution. Also, it is shown that
datasets like AML, Breast and Pancreatic Cancer have high correlated features and might cause issues in
models trained with linear algorithms. For algorithms like Linear Regression and Linear Discriminant
Analysis which assume a Gaussian distribution in the input variables we have first to rescale the data.
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The first results from cross-validation accuracy scores Table 6 gives us a first impression on how the 6
algorithms behave on different datasets and how they classify the data. The smallest dataset (Breast)
with the fewest samples gives the worst scores in the evaluation. On the other hand the algorithms give
the best performance on the dataset with the biggest number of samples (AML). Also, if we examine the
results from the algorithms view, we can observe that the Logistic Regression has the highest scores in
all the datasets. Also 10/24 of scores are higher than 90% in accuracy and 16/24 are higher than 80%.

Proceeding in the next stage of the study, we have the results from cross-validation accuracy scores on
the standardized data. In Table 7 we compare the old results with the new and we can find interesting
insights. To begin with from datasets view, the Cervical cancer dataset has the same results, except of
CART and SVM algorithms whose accuracy is now higher. In Breast cancer dataset the results of cross-
validation on standardized data showed same performance for LDA, lower for LR, NB and SVM, but
higher for KNN and CART. In AML cancer dataset LR, LDA and NB had the same results, but KNN, CART
and SVM had lower performance than before. Finally in Pancreatic cancer Dataset LDA performance is
the same, CART’s is higher and LR, KNN, NB, SVM got lower. On the other hand, from the algorithms
view, LDA’s performance stayed the same by the data transformation in all the cancer datasets and we
noted high scores like 97.5% with LR and NB on AML cancer dataset.

In the third step, where we apply PCA and feature extraction techniques on standardized data, useful
insights came up in Table 8. In case of Cervical cancer all the results scaled up, except of LR. In case of
Breast cancer all the results scaled down, except of LDA. In AML case all results scaled up, except of NB
which was 2.5% lower and finally, in Pancreatic cancer the results scaled down except of LR.

The last step of our study was to evaluate our models’ predictions on unseen data and compare them to
the last cross-validation’ results, as it seems in Table 9. At first sight, the accuracy score of all the models
in Breast cancer is significantly higher on unseen data than in cross-validation results. After, in Cervical
cancer three models with LR, NB and SVM scores 100% accuracy on unseen data and the models with
LDA(72.2%) and KNN (94.4%) scores 9/9 cancer samples correctly as it seems on confusion matrix. In
AML cancer the models scored lower accuracy on unseen data, except of NB which also classified
correctly all the cancer cases. At last, in Pancreatic cancer case models scored higher except CART. 9/24
cases scored higher than 90% accuracy on predictions and

Concluding, the best scores achieved in the Cervical cancer dataset which has 52 samples with 14,063
features, the biggest amount of samples with the fewest features, comparing to the other datasets. The
poorest scores were given by the Breast cancer dataset, which has 29 samples with 22,284, the smallest
dataset of them all. From the other hand Logistic Regression performed with high evaluation scores
through all the datasets and Naive Bayes classified all the cancer samples correctly in 3/4 datasets.

Finally, we end this thesis by proposing the models which were built, along with the each step’s results
for more observation and study in the case of supervised cancer classification and prediction. Also we
propose, respectfully any procedure that occurred and can contribute in the classification and prediction
of Cervical, Breast, Acute Myeloid Leukemia and Pancreatic cancer research.
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5.2 FUTURE WORK

Microarrays of gene expression levels challenge nowadays computer science to develop procedures in
order to process and extract knowledge from them. In the field of cancer classification different
approaches of machine learning can be applied in order to identify patterns, develop efficient and
accurate model for classification and finally medical diagnosis. On the other hand, in the big data era of
computational biology, machine learning can progress as well.

In this thesis, we studied different, proposed ways from literature, with the intention of building models
for cancer classification. The three steps sum up to building models among the best performance of 6
different algorithms’ on primary data, on transformed data and finally on dimensionally reduced data.

The framework that was followed in this thesis can be applied with different techniques in each step.
For future studies, more classification algorithms can be examined, with different data transformation
and feature selection techniques in different step or combination.

To continue this thesis, a proposal is to improve performance with Ensembles methods that can boost
the accuracy scores. Bagging, Boosting and Majority Voting are the most proposed methods in order to
combine different models’ predictions. Another step that can be added in this thesis is Algorithm
Tuning. It can be considered as the last step of model finalizing in the applied machine learning
procedure. On a given specific problem, machine learning models’ behavior can be tuned with the
purpose of finding the best combination of parameters.

We can extend this study, by using different classifier such as the Artificial Neural Networks which are
related with cancer classification. The findings in that study can be compared with the finding in this
thesis. Another approach could be to test different datasets in same way of this examination. Different
cases of cancer classification or different shaped datasets could be lead to a better view on the problem
and could extract different and important insights.

Finally as it is massively referred in the literature, machine learning is a field that requires practice of
different experimental methodologies.
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