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Abstract 

Cancer, a disease first documented thousands of years ago, remains one of the most 

important issues of medicine, troubling numerous scientists and researchers, as well as 

individual patients. In this study, a non-linear mathematical model of tumor growth with 

immune response, under the effects of chemotherapeutic treatment, is presented. After 

analyzing the dynamics of the cells and the possible equilibria of the drug-free system, their 

interactions with the drug are examined. Later on, two cost-efficient optimal control 

approaches are reviewed, based on direct collocation and state-dependent Riccati equation 

methods, and then they are extended further so that they can be practically applied to patients. 

Ultimately, the results from each method are presented, providing an overall better regimen, 

when compared to previous studies, by successfully eradicating the tumor and keeping the 

side-effects of chemotherapy to a minimum. 

 

Keywords: Cancer, Tumor growth, Cancer model, Chemotherapy, Drug Dosage, Toxicity, 
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Πρόλογος 

Ο καρκίνος αποτελεί μια ασθένεια που πρωτοεμφανίστηκε πριν από χιλιάδες 

χρόνια και εξακολουθεί να παραμένει ένα από τα σημαντικότερα ζητήματα της ιατρικής. 

Στην παρούσα μελέτη παρουσιάζεται και αναλύεται ένα μη γραμμικό μαθηματικό μοντέλο 

που προσομοιώνει την εξέλιξη ενός αρχικά μεγάλου όγκου, υπό την επήρεια ενός 

αποδυναμωμένου ανοσοποιητικού συστήματος και χημειοθεραπευτικής αγωγής. Το 

πρόβλημα εύρεσης της βέλτιστης δοσολογίας για αυτήν την περίπτωση αποτελεί μία 

πρόκληση. Για τον λόγο αυτό, αναπτύσσονται δύο μέθοδοι θεραπείας, εφαρμόζονται και 

συγκρίνονται, βάσει των αποτελεσμάτων τους. 

Αρχικά, παρουσιάζεται το μη γραμμικό μαθηματικό μοντέλο, βάσει του οποίου 

προσομοιώνονται οι αντιδράσεις μεταξύ των καρκινικών κυττάρων, των υγειών κυττάρων 

και των κυττάρων του ανοσοποιητικού συστήματος του ασθενή. Έπειτα, γίνεται μια 

ανάλυση σχετικά με τα σημεία ισορροπίας του συστήματος και την ευστάθεια τους, χωρίς 

την επίδραση της χημειοθεραπείας. Όμως, προκειμένου να μετατοπιστεί το σύστημα σε ένα 

ευσταθές «υγιές» σημείο ισορροπίας, πρέπει να χορηγηθεί κάποια ποσότητα φαρμάκου. 

Επομένως, εισάγεται η επίδραση του φαρμάκου στο μαθηματικό μοντέλο και εξετάζονται 

δύο προσεγγίσεις για τη χημειοθεραπευτική αγωγή του ασθενή. 

Στην πρώτη προσέγγιση εφαρμόζεται η μέθοδος ελέγχου άμεσης ταξινόμησης 

Hermite-Simpson, ώστε να βρεθεί ένα βέλτιστο πρόγραμμα χορήγησης φαρμάκου, 

αποφέροντας πολύ ικανοποιητικά αποτελέσματα (η μέθοδος παρουσιάζεται αναλυτικά 

στο Παράρτημα 1). Ωστόσο, η απαίτηση της για χορήγηση φαρμάκου κάθε μέρα, καθ’ όλη 

τη διάρκεια της θεραπείας, δεν την καθιστά υλοποιήσιμη. Συνεπώς, μετατρέπεται σε 

μέθοδο ελέγχου Bang-Bang, διατηρώντας την ίδια συνολική ποσότητα φαρμάκου, αλλά 

επιλέγοντας συγκεκριμένες ημέρες για τη χορήγησή του. Τα αποτελέσματα που 

λαμβάνονται είναι εξίσου ικανοποιητικά, καθώς ο όγκος εξαλείφεται, αποφεύγονται 

επικίνδυνα επίπεδα τοξικότητας και μειώνεται παράλληλα η διάρκεια της διαδικασίας. 
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Στη δεύτερη προσέγγιση, εφαρμόζεται η μέθοδος ελέγχου State-Dependent Riccati 

Equation (SDRE), η οποία απαιτεί μικρότερο όγκο υπολογισμών, άρα και λιγότερο χρόνο 

για την προσομοίωση (η μέθοδος παρουσιάζεται αναλυτικά στο Παράρτημα 2). Δυστυχώς, 

η προσέγγιση βάσει της SDRE εισάγει το ζήτημα της υψηλής τοξικότητας (συγκέντρωση 

φαρμάκου στη περιοχή του όγκου), το οποίο αντιμετωπίζεται, είτε ορίζοντας ένα άνω 

φράγμα στην ποσότητα του χορηγούμενου φαρμάκου, είτε δημιουργώντας ένα περιοδικό 

πρόγραμμα ενεργών και ανενεργών ημερών χορήγησης. Και τα δύο σενάρια προσφέρουν 

αποτελεσματικές θεραπευτικές αγωγές, με το περιοδικό πρόγραμμα να ξεχωρίζει, καθώς 

επιτυγχάνει να ελαττώσει τη συνολική ποσότητα φαρμάκου που απαιτείται, περιορίζοντας 

ταυτόχρονα τις αρνητικές παρενέργειες της χημειοθεραπείας. 

Εν κατακλείδι, συγκρίνονται τα αποτελέσματα των προσομοιώσεων από τις 

παραπάνω προσεγγίσεις χημειοθεραπευτικής αγωγής. Και οι δύο περιπτώσεις είναι 

αποτελεσματικές κατά των καρκινικών κυττάρων, εξαλείφοντας τον όγκο που είχε 

δημιουργηθεί, ενώ ταυτόχρονα ελαχιστοποιούν την συνολική ποσότητα χορηγούμενου 

φαρμάκου και διατηρούν τα επίπεδα τοξικότητας, στο σώμα του ασθενή, σε χαμηλές τιμές. 

Με αυτόν τον τρόπο, περιορίζονται οι παρενέργειες της χημειοθεραπείας και ο πληθυσμός 

των υγιών κυττάρων ανακάμπτει πιο γρήγορα. 
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Chapter 1 : Introduction 

Topic of interest 

Our bodies’ tissues are made of billions of individual cells. These cells divide 

throughout our whole lifespan, by splitting into two identical new cells. Thus, where there was 

one cell, there are now two, later will be four, eight and so on. Once we are fully grown, the 

multiplication rate of those cells is reduced and mainly occurs if there is any sort of damage, 

so that it can be repaired. However, because of various reasons, certain cells keep on dividing 

irregularly, until a mass is formed. This mass of cells eventually becomes a lump, which is 

called a tumor. Cancer research focuses on how and when these abnormal cells start 

developing, as well as their ability to infiltrate and destroy the normal body tissue. 

This disease has troubled the scientific society for many years and definitely lies among 

the most important issues of modern medicine. It is the second-leading cause of death in the 

world, especially in developing countries, due to the increased appearance of established risk 

factors such as smoking, alcohol, physical inactivity, obesity, unhealthy lifestyle and varying 

reproductive patterns related with urbanization and monetary development. However, survival 

rates are improving for many types of cancer, thanks to improved screening and treatment 

techniques. 

Many methods have been developed, in order to deal with cancer, such as surgery, 

radiotherapy, chemotherapy, hormone therapy, and immunotherapy. Amidst the above, 

chemotherapy has been established as an essential approach and is applied frequently to 

patients. Its primary goal is to inhibit the division of the cancerous cells or destroy them. 

Halting the cells’ division process (mitosis) is the reason why chemotherapy is such an effective 

treatment method.  Some drugs damage cells at the point of splitting, while others damage the 

cells while they are making copies of all their genes before they split. In general, chemotherapy 

is much less likely to damage cells that are not proliferating, such as most normal cells, making 

it more precise. 
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Cancer cells are easily distinct, since their growth and division rates are higher and 

without order or control, compared to those of normal cells. Hence, chemotherapy can focus 

on them more efficiently. Nevertheless, some types of normal cells, such as cells in hair follicles, 

nails, the mouth, the digestive tract and bone marrow do not grow and divide in an accurate, 

structured manner.  Chemotherapy can, also, damage these other types of frequently dividing 

cells unintentionally, causing what is known as side effects. Commonly, a combination of 

different chemotherapy drugs is used, in order to damage cells at different stages, throughout 

the process of mitosis. Therefore, the chances of killing more cancerous cells are higher. 

Along with the process described above, some efforts have been made in the scientific 

and engineering fields to portray the dynamics of cancer. One of the most promising 

approaches is mathematical modeling, which includes identification of the cells responsible for 

the cancer propagation, interactions between these bodies and description of the dynamics of 

these interactions. This powerful tool has helped us identify and formulate such problems (e.g. 

calculation of biologically relevant parameters), perform stability analysis, and understand 

clinically observed phenomena such as tumor dormancy, tumor size oscillations and 

regressions, nonspatial mathematical models of tumor and immune system interactions and 

the relation between tumor growth and chemotherapy. Last but not least, mathematical 

modeling offers a low-cost and time-efficient solution to what would otherwise require months 

of experiments in labs alongside with a significant financial investment. 

Definition of the cancer chemotherapy optimization problem 

Up to this day, the issue of drug dosage in cancer chemotherapy eludes consistent 

quantitative responses, even though it is extremely crucial for a successful treatment. Modern 

oncology increasingly takes the point of view of a tumor as an aggregation of cancer cells 

subgroups, with a variety of therapeutic sensitivities embedded into its microenvironment. 

This microenvironment is formed by the tumor vasculature, the tumor-immune system 

interactions, and several other structures (e.g., fibroblasts and the extracellular matrix), all of 
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which are located into healthy tissue. When all these excessive factors are ignored, the concept 

of ideal chemotherapy protocols can be applied and provide us with clear and simple answers. 

For example, if a homogenous tumor population of chemotherapeutically sensitive cells is 

assumed and other aspects of the tumor microenvironment are ignored, then undoubtedly an 

optimal treatment schedule would come up with correct and realistic results.  

The purpose of the drug is to control the populations of three major biological cell 

types (normal, immune and tumor cells) under given cancer mathematical model parameters, 

by finding the optimal regimen for its administration. Optimality can be translated into either 

a quick eradication of the tumor, by destroying healthy cells as well for a short period of time, 

or a moderate regimen, lasting longer but keeping any side effects to the bare minimum. In 

order to achieve this goal, an optimal controller is proposed for a non-linear mathematical 

model, which describes the interactions between the drug, normal, immune and tumor cells. 

The drug dosage is constantly adapted to the current state of the mathematical model, in order 

to control the tumor growth and preserve immune and normal cells within the desired levels.  

Having said all the above, the scientific community has resulted in a series of regimens 

(e.g. bang-bang control, quadratic control, state-dependent Riccati equation (SDRE) based 

optimal control, maximum tolerated doses (MTD), etc.), most of which are commonly used 

in control theory. Yet, when they are applied in practice, other characteristics of the tumor 

microenvironment are also taken into consideration, making the bigger picture fuzzy, and the 

question of proper drug dosage remains unanswered. 

Related work 

To analyze the dynamics between tumor and immune systems under chemotherapy, 

numerous mathematical models have been proposed and extensively studied by many 

researchers. Initial studies focused on exponential, Gompertz, Bertalanffy and logistic 

mathematical models, with analysis of the data based on non-linear regression methods [88]. 

It is crucial to highlight how much useful work has been done on simplified yet fundamental 



 

 

4 

mathematical models, shedding light on the interactions between tumor cells and immune 

cells alone [36][60][78], between tumor cells and normal cells alone [20][21][32] and between 

tumor cells and chemotherapy drugs alone [1][39][40][50][54][55][68][77]. 

While these mathematical models were extremely useful in offering an interpretation 

of the tumor growth and treatment from different perspectives, they were not able to imprint 

certain qualitative factors, concerning the clinicians who applied them in practice. Therefore, 

they became a stepping stone to the more recent research, leading to the production of a 

mathematical model that incorporates the interactions among tumor cells, normal cells, 

immune cells and chemotherapy drugs [13][14][17][18][82]. 

Advancing even further, scientists took under consideration the regimen of the drug 

administration and later confirmed that, if it had been optimal, the patients’ survival rates in 

cancer treatment were higher. A mathematical model of the above form has allowed researchers 

to test and compare various optimal control strategies, some of which are linear control, 

quadratic control, (by taking advantage of Pontryagin’s Maximum/Minimum Principle) and 

state-constraints [14]. Once the existence of the optimal control is proved, it is applied in both 

the quadratic and the linear case. Although, when the problem is approached linearly, we are 

confronted with the problem of singular control.  

Various techniques in the literature [8][9][37][39][77] attempted to solve optimal 

control problems for non-linear systems; specifically, cancer mathematical models, which are 

highly non-linear and high dimensional. Unfortunately, since they were carefully addressed to 

have an optimal solution, the methods produced cannot be generalized, because of the 

considerable computational efforts to obtain them. An additional optimal control method for 

cancer treatment is then suggested, in which the non-linear cancer dynamics are presented as 

Linear Time Varying (LTV) approximations [26]. Thus, the well-known Linear Quadratic 

Regulator (LQR) techniques could take place. This approach, despite the valid results which 

produces by recursively solving an infinite series of LQR problems for LTV systems, is bound 

to the pre-computation of the optimal control parameters.  
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This issue can be dealt with a more recent technique, which is called State-Dependent 

Riccati Equation (SDRE) optimal control and has been applied effectively to plenty non-linear 

systems, not only in theory, but also in practice [3][6][10][41][42][70]. Given its 

computational simplicity and satisfactory performance in simulations and practice, SDRE 

optimal control can be considered an appealing approach for the control of certain non-linear 

systems, as long as they can be represented as a series of Linear Time Invariant (LTI) systems. 

A lot of research has also been carried out in the development of stochastic 

mathematical models [64][75][80]. A stochastic approach can be useful, specifically when 

studying the interactions among populations with low densities. On the contrary, other parties 

have developed continuous-time deterministic mathematical models of tumor growth and 

treatment [17]. This approach seems to be more efficient, since classical optimal control theory 

can be applied, which, as one would expect, suggests an improved chemotherapy 

administration schedule. Thus, the optimal control problem of tumors, in cancer treatment 

under chemotherapy and/or immunotherapy has been highlighted as a research topic in cancer 

treatment strategies [8][14][17][18]77[40][41][56][61][66]. Specifically, De Pillis and 

Radunskaya (2003) [18] focused on the phase-space analysis of an Ordinary Differential 

Equations (ODE) mathematical model of tumor growth, including interactions with the 

immune response and chemotherapy, and proved that if the drug administration follows an 

optimal control method, the state trajectory can be moved into a basin of attraction of a healthy 

equilibrium point. 

Other studies have taken advantage of the Extended Kalman Filter (EKF) in order to 

estimate the drug level, in cases where it is considered unmeasurable. Linear Parameter Varying 

(LPV) mathematical models are used both at controller design (difference-based control 

oriented LPV mathematical model) and EKF development. By using the Tensor Product (TP) 

model transformation accompanied by the Linear Matrix Inequality (LMI) optimization 

technique, a Parallel Distributed Compensator (PDC) kind controller is designed 

[33][43][63][69][70][73][84]. 
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The present thesis’ contribution 

In this study, the dynamics of a non-linear mathematical tumor model based on the 

previous work of L. G. de Pillis and A. Radunskaya in [17][18] are reviewed, with emphasis 

on the equilibria points. Afterwards, two optimal control methods of previous research, based 

on the Direct Collocation method [18] and on the State-Dependent Riccati Equation method 

[41], are examined for this certain mathematical model and, later on, are modified, so that 

better results can be obtained. More specifically, the effectiveness of the methods is enhanced 

and at the same time their cost-efficiency in increased. In other words, the cost function 

presented in [18] is extended, so that the total amount of drug can be reduced even further, 

and a periodic optimal chemotherapy treatment is determined and applied by modifying the 

method initially proposed in [41], which limits the side-effects of chemotherapy and at the 

same time decreases the total amount of administered drug, while maintaining the efficacy of 

the treatment against the tumor.  
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Chapter 2 : Presentation and analysis of the cancer 
growth non-linear dynamic mathematical model 
first proposed by L. G. de Pillis and A. Radunskaya 
[17][18] 

The design of a biological system's mathematical model is driven by the need to 

synthesize the system's basic actions and to address specific questions about it. Specifically, the 

aim is to use the mathematical model in order to develop an improved chemotherapy regimen, 

which delivers a better result, by reducing the final size of the tumor without causing significant 

losses in the population of normal cells. Moreover, the mathematical model should explain 

clinically observed phenomena brought to light by the oncologists working on this area, such 

as “Jeff’s phenomenon” and tumor dormancy.  

In this chapter, an Ordinary Differential Equation (ODE) based tumor growth 

mathematical model is presented. ODE-based cancer dynamics mathematical modeling is an 

active research area, and many different mathematical models have been proposed. Among 

many of these, the mathematical model proposed by de Pillis and Radunskaya (2003) [18] 

stands out, since its composition combines some of the most useful aspects of previously 

existing mathematical models and at the same time considers the growth of tumor cells and 

their interaction with normal cells and immune cells, alongside with the effects of 

chemotherapy. 

Tumor dormancy 

Under hostile conditions, microorganisms adopt different mechanisms for survival. 

They are undergoing drastic changes in cell physiology to form the surrounding 

microenvironment in order to best meet their needs [27]. In response to a stressor such as 

chemotherapy, stressed tumor cells that survive apoptosis become dormant. After the therapy 
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has been discontinued, the dormant cells may repopulate, resulting in tumor recurrence and 

development of chemotherapy-resistant cancer cells [87][89]. 

Dormant cells may be identified as circulating tumor cells (CTCs) in the bloodstream 

or disseminated cells (DTCs) within secondary sites, such as bone marrow. When metastatic 

cells find a new place to reside, they can take different destinies: either they die, remain silent 

(restrictive soil), or develop with an even more violent and lethal behavior than before 

(permissive soil).The implication of tumor cell dormancy is very well established in the 

development of tumor outgrowth and metastatic relapse, leading to cancer treatment failure. 

Previous mathematical models [31][36] have shown that immune and tumor cells 

compete in what is known as a "predator-prey" relationship, in which the immune cells play 

the role of the predator and the tumor cells play the role of the prey. This competition can 

lead to repetitive procedure of growth and reduction of the cell population. Firstly, the 

existence of tumor cells biochemically stimulates the production of immune cells. At the same 

time, the presence of immune cells counters the multiplication of the tumor cells’ population. 

When a considerable number of tumor cells has perished, the immune cell population 

inevitably decreases, since they are no longer needed. However, this decrease will enable the 

regrowth of the tumor cells. This cycle could either keep on going indefinitely, or eventually 

converge to an equilibrium point, depending on the system parameters. 

As a result, the mathematical model’s equations have embedded the interaction of the 

immune and tumor cells, since it greatly affects the dynamics of the tumor growth. Should the 

immune system be removed, the cyclical routine cannot arise. Instead, there would be either 

one globally stable equilibrium point (stable competition) or two stable equilibria and a saddle 

point (competitive exclusion) [7]. For the mathematical model of this study, the existence of 

possible periodic orbits is analyzed in [18] in detail. When applying the parameters presented 

below and initial values from the positive octant, all orbits of the system have exactly one of 

the equilibria as their limit set. More specifically, all orbits are bounded and the system does 

not have any nontrivial periodic orbits.  
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Key elements of the cancer growth mathematical model 

The mathematical model presented below is a mixture of previously developed 

mathematical models, with its key features being: 

•  Immune response: The presence of tumor cells causes an increase in the immune cells’ 

population, whose purpose is to combat the tumor first through a kinetic process. A 

phenomenon often observed, even though cancerous cells are immunogenic, is that the 

immune system response fails to effectively combat the rapid growth of cancerous cells 

on its own, leading to the formation of a tumor. Thus, the tumor has not completely 

escaped active immunosurveillance; it is simply strong enough to encounter it. 

•  Competition terms: There is antagonism between normal and tumor cells, competing 

for available resources required for their survival and multiplication, and between 

immune and tumor cells competing in a predator-prey fashion. 

•  Optimal control theory for chemotherapy: a method of optimal treatment regimen is 

presented, in order to keep the tumor population at the bare minimum by the end of 

the treatment period, while keeping the normal cells above a percentage considered 

safe; these solutions are then put to practice, simulation a practical administration 

protocol. 

•  Chemotherapy effects: every type of cell is affected by the drug used in the process. 

Tumor cells are targeted the most, but immune and normal cells die as well, with a 

lower rate, as a negative side effect. 

The framework of the mathematical model is near the tumor site, assuming a homogeneous 

tumor, whose reactions with the immune system follows the same concept as in [36]. 

A comparison has been carried out for the growth law terms, considering mathematical 

models based on exponential, Gompertz or logistic growth. Should the exponential growth 

law be applied, the rate of multiplication of the tumor cells, at any given moment, is expected 

to be proportional to the size of the tumor population at that time; without restricting the 

exponential curve as time progresses. Likewise, Gompertz law dictates an increase rate similar 
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to that of the exponential growth in the early stages, but reaches an upper limit as tumor size 

increases, since its curve is sigmoid. Lastly, the logistic growth law again does not differ from 

the exponential growth law, with the addition of including a built-in upper bound for the size 

of the population, beyond which it cannot expand. 

Since the mathematical model which is presented has a qualitative character and is 

meant to handle a wide variety of tumor types, it is vague which growth law reflects reality 

better. It turns out, however, that none of them has any significant difference from the others, 

until a certain point in tumor size is reached. Due to the initially small tumor mass, relative to 

the carrying capacity of the system, alternating between the growth laws mentioned above has 

no significant effect to the end result, thus the qualitative behavior of the mathematical model 

is retained.  
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Differential equations of the non-linear cancer growth mathematical 

model 

Moving on to the mathematical analysis of the model, the major cell types presented 

are three. Given a specific time 𝑡𝑡, immune, tumor and normal (host) cells are denoted by 𝐼𝐼(𝑡𝑡), 

𝑇𝑇(𝑡𝑡) and 𝑁𝑁(𝑡𝑡) respectively. The increase of immune cells in the tumor area is achieved by an 

external source (immune system), therefore a constant influx rate 𝑠𝑠 is expected. Moreover, 

should the tumor be eliminated, immune cells will no longer be required, thus they will start 

decreasing at a per capita rate 𝑑𝑑1, converging to a long-term population size of 𝑠𝑠/𝑑𝑑1 cells. In 

other words, a scenario where the tumor area is overwhelmed by immune cells is not feasible. 

The existence of a tumor triggers the defensive mechanism of the body (immune response), 

thus the growth rate of immune cells is presented by the non-linear term 

𝜌𝜌𝜌𝜌(𝑡𝑡)𝑇𝑇(𝑡𝑡)
𝛼𝛼 + 𝑇𝑇(𝑡𝑡)  

where 𝜌𝜌 and 𝛼𝛼 are positive constants, representing the intensity and threshold rate of the 

immune system respectively.  

Additionally, when immune and tumor cells come in contact, the outcome is the 

elimination of either the first or the second, resulting in the two competition terms of the 

populations 

𝑑𝑑𝐼𝐼
𝑑𝑑𝑡𝑡 = −𝑐𝑐1𝐼𝐼(𝑡𝑡)𝑇𝑇(𝑡𝑡)     and     

𝑑𝑑𝑇𝑇
𝑑𝑑𝑡𝑡 = −𝑐𝑐2𝐼𝐼(𝑡𝑡)𝑇𝑇(𝑡𝑡). 

 As far as the proliferation of the tumor and normal cells is concerned, it follows 

a logistic growth law with growth rate 𝑟𝑟𝑖𝑖 and maximum carrying capacity 𝑏𝑏𝑖𝑖−1, where the index 

𝑖𝑖 = {1,2} refers to tumor or normal cells accordingly. Combining all the above, the following 

equations occur  
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 𝑁̇𝑁 = 𝑟𝑟2𝑁𝑁(1− 𝑏𝑏2𝑁𝑁)− 𝑐𝑐4𝑇𝑇𝑇𝑇,  

 𝑇̇𝑇 = 𝑟𝑟1𝑇𝑇(1 − 𝑏𝑏1𝑇𝑇) − 𝑐𝑐2𝐼𝐼𝐼𝐼 − 𝑐𝑐3𝑇𝑇𝑇𝑇, ( 1 ) 

 𝐼𝐼̇ = 𝑠𝑠 +
𝜌𝜌𝜌𝜌𝜌𝜌
𝛼𝛼 + 𝑇𝑇 − 𝑐𝑐1𝐼𝐼𝐼𝐼 − 𝑑𝑑1𝐼𝐼, 

 

which express the dynamics of the mathematical model, without the injection of any drug. 

In order to combat the tumor, however, a dose of drug 𝑣𝑣(𝑡𝑡) in 𝑚𝑚𝑚𝑚/𝑚𝑚2 will have to 

be administered to the patient, at time 𝑡𝑡. Its concentration at the tumor site is denoted by 

𝑀𝑀(𝑡𝑡) in 𝑚𝑚𝑚𝑚/𝐿𝐿. It is rational to consider that all types of cells are affected by the drug, but in 

a different extent, with the response curve being in the exponential form of 

𝑎𝑎𝑖𝑖(1− 𝑒𝑒−𝑘𝑘𝑘𝑘). 

Given the unknown pharmacokinetics and pharmacodynamics, it is considered that 

𝑘𝑘 = 1. The coefficients regarding how each cell type is affected by the drug are denoted by 

𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3 for immune, tumor and normal cells respectively. Also, the drug is metabolized by 

the organism as time progresses, displaying a per capita decay rate 𝑑𝑑2, starting from the 

moment it enters the patient’s body. By merging all the above terms, the final form of the 

mathematical model becomes 

 𝑁̇𝑁 = 𝑟𝑟2𝑁𝑁(1 − 𝑏𝑏2𝑁𝑁) − 𝑐𝑐4𝑇𝑇𝑇𝑇 − 𝑎𝑎3(1 − 𝑒𝑒−𝑀𝑀)𝑁𝑁, 

        ( 2 ) 

 𝑇̇𝑇 = 𝑟𝑟1𝑇𝑇(1 − 𝑏𝑏1𝑇𝑇) − 𝑐𝑐2𝐼𝐼𝐼𝐼 − 𝑐𝑐3𝑇𝑇𝑇𝑇 − 𝑎𝑎2(1 − 𝑒𝑒−𝑀𝑀)𝑇𝑇, 

 𝐼𝐼̇ = 𝑠𝑠 +
𝜌𝜌𝜌𝜌𝜌𝜌
𝛼𝛼 + 𝑇𝑇 − 𝑐𝑐1𝐼𝐼𝐼𝐼 − 𝑑𝑑1𝐼𝐼 − 𝑎𝑎1(1− 𝑒𝑒−𝑀𝑀)𝐼𝐼, 

 𝑀̇𝑀 = 𝑣𝑣(𝑡𝑡) − 𝑑𝑑2𝑀𝑀. 
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Drug-free mathematical model analysis 

In order to achieve the best result, the dynamics of the mathematical model have to be 

studied without any perturbation. The state of the mathematical model is considered healthy 

when it has reached either a tumor-free equilibrium point or a coexisting state, where the size 

of the tumor is small enough to no longer be considered a threat. 

 The null-surfaces occurring from the equations in eq. ( 2 ) are presented below. 
• Normal cells: 

 
𝑁̇𝑁 = 0 ⇒�

𝑁𝑁 = 0,

𝑁𝑁 =
1
𝑏𝑏2
−

𝑐𝑐4
𝑟𝑟2𝑏𝑏2

𝑇𝑇, 
(𝐼𝐼 − 𝑇𝑇 coordinate plane) 
 (𝑃𝑃𝑁𝑁 plane) 

Thus, a function describing 𝑃𝑃𝑁𝑁 proportionally to the tumor population, could be 

defined as 

𝑔𝑔(𝑇𝑇) ≡
1
𝑏𝑏2
−

𝑐𝑐4
𝑟𝑟2𝑏𝑏2

𝑇𝑇 

• Tumor cells: 

 
𝑇̇𝑇 = 0⇒ �

𝑇𝑇 = 0,

𝑇𝑇 =
1
𝑏𝑏1
−

𝑐𝑐2
𝑟𝑟1𝑏𝑏1

𝐼𝐼 −
𝑐𝑐3
𝑟𝑟1𝑏𝑏1

𝑁𝑁, 
(𝐼𝐼 − 𝑁𝑁 coordinate plane) 
(𝑃𝑃𝑇𝑇 plane) 

• Immune cells: 

 𝐼𝐼̇ = 0 ⇒ 𝐼𝐼 =
𝑠𝑠(𝛼𝛼 + 𝑇𝑇)

(𝑐𝑐1𝑇𝑇 + 𝑑𝑑1)(𝛼𝛼 + 𝑇𝑇)− 𝜌𝜌𝜌𝜌, (𝑃𝑃I plane) 

as long as (𝑐𝑐1𝑇𝑇 + 𝑑𝑑1)(𝛼𝛼 + 𝑇𝑇) ≠ 𝜌𝜌𝑇𝑇. The 𝑃𝑃𝐼𝐼 plane has the form of a cylinder, parallel 

to the N-axis and it can be expressed proportionally to the tumor population by 

defining 

𝑓𝑓(𝑇𝑇) ≡
𝑠𝑠(𝛼𝛼 + 𝑇𝑇)

𝑐𝑐1𝑇𝑇(𝛼𝛼 + 𝑇𝑇) + 𝑑𝑑1(𝛼𝛼 + 𝑇𝑇) − 𝜌𝜌𝜌𝜌 . 

The planes are depicted in Figure 1, given a specific set of parameter values. 
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Figure 1 – Plane surfaces corresponding to the cells’ populations recalculated and 
reevaluated in the present work. 
The planes 𝑃𝑃𝑁𝑁, 𝑃𝑃𝑇𝑇, 𝑃𝑃𝐼𝐼  as described above. The marked points correspond to equilibrium 
points. The healthy tumor-free point is marked as “H”, the two dead points are marked as 
“D1”, “D2” (indicating the absence of normal cells) and the two points where all three types 
of cells coexist are marked as “C1”, “C2”. 

The types of the equilibrium points are divided into three categories: 

• Tumor-free: A healthy organism, without any tumor cells. The equilibrium point has 

the form 

� 
1
𝑏𝑏2

, 0,
𝑠𝑠
𝑑𝑑1

 � 

• Dead: An organism overwhelmed by cancer, leaving no room to normal cells, hence, 

the population of the latter is equal to zero. There are two types of these equilibria 

1. Tumor cells have died as well, producing the form (0, 0, 𝑠𝑠/𝑑𝑑1). 
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2. Tumor cells have survived, producing the form ( 0,𝛼𝛼, 𝑓𝑓(𝛼𝛼)), where 𝛼𝛼 ≥ 0 and is 

a solution of 

 
𝛼𝛼 + �

𝑐𝑐2
𝑟𝑟1𝑏𝑏1

�𝑓𝑓(𝛼𝛼)−
1
𝑏𝑏1

= 0. ( 3 ) 

• Coexisting: Both normal and tumor cells’ populations are positive and the equilibrium 

point is in the form 

(𝑔𝑔(𝑏𝑏), 𝑏𝑏,𝑓𝑓(𝑏𝑏) ), 

where 𝑏𝑏 ≥ 0 and 𝑏𝑏 is a solution of  

 𝑏𝑏 + �
𝑐𝑐2
𝑟𝑟1𝑏𝑏1

�𝑓𝑓(𝑏𝑏) + �
𝑐𝑐3
𝑟𝑟1𝑏𝑏1

�𝑔𝑔(𝑏𝑏)−
1
𝑏𝑏1

= 0. ( 4 ) 

The optimal result for the mathematical model is to reach any equilibrium point which 

is tumor-free or coexisting with a trivial amount of tumor cells (𝑏𝑏 tends to zero and 𝑔𝑔(𝑏𝑏) tends 

to one), since such a point would ultimately drive the mathematical model to a healthy state. 

Tumor-free equilibria 

In order to reach a tumor-free equilibrium point (which is the mathematical model’s 

ultimate goal), it has to be locally stable. To ensure that, the linearization of the equations 

around this point produces the mathematical model 

�
𝑁̇𝑁
𝑇̇𝑇
𝐼𝐼̇
� =

⎣
⎢
⎢
⎢
⎢
⎡
𝑟𝑟2 − 2𝑟𝑟2𝑏𝑏2

0
0

−𝑐𝑐4
𝑟𝑟1 −

𝑐𝑐2𝑠𝑠
𝑑𝑑1

− 𝑐𝑐3
𝜌𝜌𝜌𝜌
𝑑𝑑1𝛼𝛼

− 𝑐𝑐1𝑠𝑠
𝑑𝑑1

0
0
−𝑑𝑑1

⎦
⎥
⎥
⎥
⎥
⎤

�
𝑁𝑁
𝑇𝑇
𝐼𝐼
� 

with eigenvalues 

𝜆𝜆1 = 𝑟𝑟2 − 2𝑟𝑟2𝑏𝑏2, 𝜆𝜆2 = 𝑟𝑟1 −
𝑐𝑐2𝑠𝑠
𝑑𝑑1

− 𝑐𝑐3, 𝜆𝜆3 = −𝑑𝑑1. 
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The condition for the tumor-free equilibrium to be stable is 𝜆𝜆1,𝜆𝜆2 and 𝜆𝜆3 to have 

negative real parts, as control theory dictates. The death rate d1 is a positive constant, as 

presented in previous work [36], thus 𝜆𝜆3 < 0. Also, the normal cells’ population is normalized, 

therefore 𝑏𝑏2 = 1, making 𝜆𝜆1 < 0. Last but not least, for 𝜆𝜆2 < 0 it is required that 

𝑟𝑟1 <
𝑐𝑐2 𝑠𝑠
𝑑𝑑1

+ 𝑐𝑐3. 

The latter inequality sets a bound to the “resistance coefficient” (𝑐𝑐2𝑠𝑠)/𝑑𝑑1, which represents 

the efficiency of the immune system against the per capita growth rate of the tumor cells 𝑟𝑟1. If 

the above condition is not met, the current mathematical model is pointless, since no amount 

of chemotherapy drug will be able to successfully combat the tumor. Such a mathematical 

model is presented in [78]. 

Normal cells’ dead equilibria 

Following the same steps as above, it is easily proved that all Type 1 dead equilibria 

(0, 0, 𝑠𝑠/𝑑𝑑1) are always unstable. On the contrary, the stability of Type 2 dead equilibria 

(0,𝛼𝛼,𝑓𝑓(𝛼𝛼)) depends on the selection of the parameters, making them either stable or unstable. 

In any case, normal cells’ dead equilibria are not a desired state and their analysis is not crucial. 

Coexisting normal and tumor cells equilibria 

This sort of equilibria points occurs where all three planes 𝑃𝑃𝑁𝑁,𝑃𝑃𝑇𝑇 ,𝑃𝑃𝐼𝐼 intersect, 

excluding coordinate planes. There are two points where these conditions are met and are 

presented in Figure 1. Further analysis of these equilibria needs to be done, since they are 

considered an intermediate state of the mathematical model towards the healthy state 

(1,0, 𝑠𝑠/𝑑𝑑1), should the treatment be successful. 
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The stability of the coexisting equilibria points, as previously mentioned, depends on 

the values of the parameters. Below is portrayed the relation between the stability of these 

points and the range of parameters 𝑠𝑠 ∈ [0, 0.35] and 𝜌𝜌 ∈ [0, 2].  

 
Figure 2 – Stability of coexisting equilibria in relation to 𝑠𝑠 and 𝜌𝜌 reevaluated in the present 
work. 
Each set of (𝜌𝜌, 𝑠𝑠) values produces a different number and/or stability of coexisting equilibria 
points. The highlighted area refers to the analysis of figure 3, where s is has a constant value of 
0.33. 

The surface 𝜌𝜌 − 𝑠𝑠 can be divided into regions, in order to make the distinction of the 

points clearer.  

• Region 1 (grey dots) has no equilibria. 

• Region 2 (blue circles) has one stable and one unstable equilibrium. 
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• Region 3 (red dots) has one unstable equilibrium. 

• Region 4 (black x) has two stable and one unstable equilibrium. 

• Region 5 (green circles) has two unstable and one stable equilibrium. 

• Region 6 (red circles) has one stable equilibrium. 

To further explain the nature of the equilibria, one of the variables is restricted to a 

constant value (𝑠𝑠 =  0.33) and the other (𝜌𝜌) remains an element of the same set as previously. 

When 𝜌𝜌 = 0.09 all three populations transit from Region 2 to Region 1. Also, the value of 

𝑏𝑏 (i.e. 𝑇𝑇) and therefore 𝑔𝑔(𝑏𝑏) and 𝑓𝑓(𝑏𝑏) defines the stability of the equilibrium. By examining 

the value of the derivative 𝑏̇𝑏 within an offset 𝑏̇𝑏𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 0.01, it becomes clear that as long as 

the tumor population remains above a threshold, 𝑏𝑏𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟 = 0.4103, the equilibrium point is 

stable, otherwise it is unstable. 
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Figure 3 – Normal, tumor and immune cell populations’ evolution and stability recalculated 
in the present work. 
As 𝜌𝜌 starts increasing from zero, there are two possible states for each population, both of 
which are coexisting equilibria, followed by only one, which does not represent an equilibrium 
point. Immune cells’ population is hidden for 𝜌𝜌 > 1.25 due to very high values. This 
progression is also highlighted with orange color in figure 2. 
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Figure 4 – Tumor cells’ population and stability evolution and stability recalculated in the 
present work. 
The threshold 𝑏𝑏𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟 = 0.4103 is shown, separating the stable from the unstable equilibria, 
as long as 𝜌𝜌 < 0.09. When 𝜌𝜌 exceeds that value, the mathematical model no longer has any 
equilibria. 

It is evident that the mathematical model is very sensitive to the selection of 𝜌𝜌, the 

tumor response rate, and 𝑠𝑠, the steady source rate of immune cells to the tumor site, because 

a slight change in their values leads to different equilibria. In the final mathematical model, 

the values 𝜌𝜌 = 0.01 and 𝑠𝑠 = 0.33 were chosen, which place the mathematical model within 

Region 2.  
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Numerical values of the parameters of the tumor growth 

mathematical model eq. (2) 

The complete list of the parameters used are presented in the following table 

𝑎𝑎1 = 0.2 𝑎𝑎2 = 0.3 𝑎𝑎3 = 0.1 𝛼𝛼 = 0.3 

𝑏𝑏1 = 1.0 𝑏𝑏2 = 1.0 𝑠𝑠 = 0.33 𝜌𝜌 = 0.01 

𝑐𝑐1 = 1.0 𝑐𝑐2 = 0.5 𝑐𝑐3 = 1.0 𝑐𝑐4 = 1.0 

𝑑𝑑1 = 0.2 𝑑𝑑2 = 1.0 𝑟𝑟1 = 1.5 𝑟𝑟2 = 1.0 

The cells’ units of all three populations (𝑁𝑁,𝑇𝑇, 𝐼𝐼) have been rescaled, so that one unit is 

at the order of the carrying capacity of the normal cells at the cancerous area. There can be 

some variations, depending on the type of tumor, but a realistic number to consider is 1011 

cells per unit in the y axis [17]. As a result, all cell populations are normalized at the value of 

1011. By assuming that healthy body tissue consists of 108 to 109 cells per 𝑐𝑐𝑚𝑚3, the normal 

cells’ population at carrying capacity form an area with a diameter between 5.8 and 12.4 𝑐𝑐𝑐𝑐. 

The purpose of each parameter in the mathematical model is analyzed further below. 

• 𝑎𝑎𝑖𝑖 (𝐿𝐿/𝑚𝑚𝑚𝑚) : Fraction cell kill rate, representing how much each cell type is affected by 

chemotherapy. Cancerous cells are the main target, followed by immune and then 

normal cells, as a side effect. Thus  𝑎𝑎2 > 𝑎𝑎1 > 𝑎𝑎3. 

• 𝑏𝑏𝑖𝑖  (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠−1) : Carrying capacities for the proliferation of normal and tumor cells.  

• 𝑐𝑐𝑖𝑖 (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠−1 ∗ 𝑑𝑑𝑑𝑑𝑦𝑦−1) : Competition terms between cell types. Positive values indicate 

that normal and immune cells are destroyed once they encounter tumor cells and vice 

versa. 

• 𝑑𝑑𝑖𝑖 (𝑑𝑑𝑑𝑑𝑦𝑦−1) : Per capita death rates of normal cells and injected drug, 𝑑𝑑1 and 𝑑𝑑2 

respectively. 

•  𝑟𝑟𝑖𝑖 (𝑑𝑑𝑑𝑑𝑦𝑦−1) : Per unit growth rates of tumor and normal cells. Time is normalized so 

that normal cells increase at a constant rate 𝑟𝑟2 = 1. Cancerous cells are known to have 

a more aggressive behavior than healthy ones, which gives  𝑟𝑟1 >  𝑟𝑟2. There are types of 

cancer, however, where  𝑟𝑟1 can be smaller than  𝑟𝑟2, [34][53]. 
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• 𝑠𝑠 (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐/𝑑𝑑𝑑𝑑𝑑𝑑) : Immune source rate, providing constantly the cancerous area with 

immune cells, in order to combat the tumor cells.  

• 𝛼𝛼 (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) : Immune threshold rate, determining how fast the response of the immune 

system is. If the value of tumor cells’ population 𝑇𝑇 is equal to 𝛼𝛼, the immune response 

rate is located at the half of its maximum value (𝜌𝜌 = 1.25).  

• 𝜌𝜌 (𝑑𝑑𝑑𝑑𝑦𝑦−1) : Immune response rate, a term of high importance for the behavior of the 

mathematical model, ranging within a set of values (0, 2.5) [17]. Different values of 

the term reflect different states of the mathematical model. Figure 3 and Figure 4 show 

how all populations are affected by the choice of 𝜌𝜌. A low value of immune response 

rate, as in the current study (𝜌𝜌 = 0.01), is interpreted as a weakened immune system, 

making the treatment process even more challenging. 

• 𝑣𝑣(𝑡𝑡) (𝑚𝑚𝑚𝑚/𝑚𝑚2) : Drug input at time 𝑡𝑡, proportional to the surface of the patient’s 

body in 𝑚𝑚2, calculated by the body surface area (BSA) formula. [25][32][50]. 

• 𝑁𝑁(𝑡𝑡) (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) : Population of the normal cells, normalized at 1011. 

• 𝑇𝑇(𝑡𝑡) (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) : Population of the tumor cells, normalized at 1011. 

• 𝐼𝐼(𝑡𝑡) (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) : Population of the immune cells, normalized at 1011. 

• 𝑀𝑀(𝑡𝑡) (𝑚𝑚𝑚𝑚/𝐿𝐿) : Drug concentration, proportional to the liters of plasma at the area of 

the tumor. The maximum value of this term (𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚) determines the toxicity effects of 

the drug to the patient; therefore, it is crucial to keep the drug input to a minimum, 

yet effective, level. [25][32]. 

By applying these values to the normal, tumor and immune cells (𝑁𝑁,𝑇𝑇, 𝐼𝐼) equations, the 

equilibria which occur are 

• Two unstable dead equilibria, located at (0, 0, 1.65) and (0, 0.899244, 0.302268). 

• Two coexisting equilibria 

o one stable at (0.435204, 0.564796, 0.435204) and  

o one unstable at (0.763197, 0.236803, 0.763197). 

• One stable tumor-free equilibrium at (1, 0, 1.65). 
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A tumor can be detected by clinical equipment as long as its radius is above 1.2 𝑚𝑚𝑚𝑚 

[52], which translates to approximately 1.05 ∗ 105 cells. The experiments carried out in this 

study consider a large initial tumor population of 𝑇𝑇(0) = 0.25 ∗ 1011 cells, a number within 

the detection limits of modern technology. It is important to note that the presence of such a 

tumor does not indicate that immuno-surveillance has failed to recognize it, but that the 

actions of the immune system alone are not enough to eliminate it. Also, the initial normal 

cells’ population is 𝑁𝑁(0) = 1 ∗ 1011, considering the tumor has not started spreading yet and 

immune cells start at two possible values 𝐼𝐼(0) = 0.10 ∗ 1011 and 𝐼𝐼(0) = 0.15 ∗ 1011, both 

of which indicate a weakened immune system. A numerical simulation of the mathematical 

model under the above conditions is executed in Figure 5. 
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Figure 5 – Drug-free mathematical model response for varying initial immune cells’ 
populations 𝐼𝐼0, recalculated and reevaluated in the present work. 
On the first figure, the initial immune cells’ population is 𝐼𝐼(0) = 0.10 and on the second, 
𝐼𝐼(0) = 0.15. Both cases are ineffective, resulting in a state where the tumor spreads and 
surpasses the population of normal and immune cells.  
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Chapter 3 : Optimal cancer chemotherapy treatment 
based on the Direct Collocation method 

The problem of finding an optimal solution of therapy to the presented mathematical 

model arises. In order to provide such a solution, the Direct Collocation (DirCol) method 

will be used. This method belongs to the family of transcription methods, alongside with 

shooting methods, and is a very effective non-linear programming (NLP) optimization 

technique [28][29][49][59]. It aims to simplify the complex calculations of the system 

equations’ integrals by estimating the state and control values of the mathematical model, using 

a piecewise linear function of time for the control and piecewise continuous polynomials, of a 

certain degree, for the states. The values of the states and control at each point in the time 

domain (knot point) are the decision variables. The concept is to correlate these polynomials 

with a second set of points in the time domain (collocation points) and to enforce them to 

satisfy the dynamics of the mathematical model at the collocation points. Consequently, the 

differentiations and any other calculations involved are replaced by algebraic equations, which 

require less computational power, thus the time of execution is significantly reduced. 

Moreover, collocation methods are suitable for problems with state constraints, as is the one 

presented in this study. The behavior of each collocation method relies on the way the state 

and control variables are discretized and how the dynamic constraints are satisfied [47]. In this 

chapter a treatment regimen based on the DirCol method is proposed. 

The Direct Collocation (DirCol) method 

Direct Collocation methods are categorized according to the choice of polynomials 

which represent the state dynamics, the method of numerical integration (quadrature) of the 

cost function and the state propagation scheme, producing the correlated non-linear 

programming method. The above three main components are further analyzed below: 
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1. Piece-wise polynomial for state and control: The selection of the polynomial is of 

high importance. For states, as in the current analysis, piecewise cubic polynomials 

produce good results. However, depending on the specific problem domain, some 

methods may be preferred over another. For example, in the trajectory 

optimization of a robot’s gait, Bezier polynomials are used, while in the 

determination of wave functions of electrons, Legendre polynomials are more 

common. 

2. Integrating method of the cost function: Cost function, in most cases, is defined 

as an integral term that depends on the entire trajectory. Quadrature, the process 

of constructing a square with an area equal to that of a figure bounded by a curve, 

is then used to calculate the integral at each timestep. Therefore, the integration 

process is converted to a summation, using fewer intermediate values. The manner 

in which quadrature is performed produces different results [44]. 

3. Propagation method: In order to represent the mathematical model, the states in 

each timestep must be propagated to the next one, which is achieved by writing 

the equations of the mathematical model dynamics in either integral or derivative 

form. In the first case, the state trajectory must match the integral of the dynamics 

with respect to time (𝑥𝑥(𝑡𝑡)  =  ∫  𝑓𝑓(𝑥𝑥(𝑡𝑡),𝑢𝑢(𝑡𝑡)) 𝑑𝑑𝑑𝑑). In the second, the derivative 

of the current state with respect to time must be equal to the dynamics function 

(𝑥̇𝑥(𝑡𝑡) =  𝑓𝑓(𝑥𝑥(𝑡𝑡), 𝑢𝑢(𝑡𝑡))). The derivative is estimated at the segment’s midpoint, 

using the state and dynamics values at knot points. The midpoint is chosen for 

differentiation, because for a cubic polynomial with fixed end points (value and 

derivative), the derivative is farthest away from either of the end points’ derivatives. 

It is important to note that, for a cubic polynomial, once the derivatives and state 

values are defined at a segment, the cubic is completely defined in the 

corresponding segment, thus the values at midpoint can be changed only if the 

state values and their derivatives also change. 
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The above steps are repeated, until a feasible solution is found. In each iteration, the 

direct collocation method attempts to minimize the error between the mathematical model’s 

dynamics and state variables’ derivatives at the collocation points, which occur from 

polynomial differentiation. That error tends to zero with only a few iterations. Additionally, 

there is a divergence between the optimal control and the control obtained from direct 

collocation, which is greatly reduced when the time domain is divided in additional segments. 

Therefore, the solution becomes more accurate. Below, a specific direct collocation method, 

called Hermite-Simpson collocation method, is presented and is, afterwards, applied for 

optimal control. 

The Hermite-Simpson Collocation method 

A basic form of collocation is the Hermite-Simpson Collocation method [23], 

illustrated in Figure 6. For each segment of time [𝑡𝑡𝑘𝑘, 𝑡𝑡𝑘𝑘+1] the two knot points (denoted as 

blue dots) represent the state and control NLP variables, which correspond to 

[𝑥𝑥𝑘𝑘,𝑢𝑢𝑘𝑘, 𝑥𝑥𝑘𝑘+1, 𝑢𝑢𝑘𝑘+1]. The dynamics of the mathematical model are used to provide time 

derivative values at the two knot points, so the four datasets 

[𝑥𝑥𝑘𝑘,𝑥𝑥𝑘𝑘+1,𝑓𝑓(𝑥𝑥𝑘𝑘,𝑢𝑢𝑘𝑘), 𝑓𝑓(𝑥𝑥𝑘𝑘+1, 𝑢𝑢𝑘𝑘+1)] can be used to generate a third-order Hermite 

interpolation polynomial (cubic spline), which satisfies the equations of the mathematical 

model only at the knot points 𝑡𝑡𝑘𝑘, 𝑡𝑡𝑘𝑘+1, but not at any other given time within (𝑡𝑡𝑘𝑘 , 𝑡𝑡𝑘𝑘+1). Let 

[𝑥𝑥𝑐𝑐 ,𝑢𝑢𝑐𝑐] be the state and control at 𝑡𝑡𝑐𝑐, the middle point of [𝑡𝑡𝑘𝑘, 𝑡𝑡𝑘𝑘+1]; the collocation point 

(red diamond). By enforcing 𝛥𝛥 = 𝑥̇𝑥𝑐𝑐 − 𝑓𝑓(𝑥𝑥𝑐𝑐 ,𝑢𝑢𝑐𝑐) = 0 it is possible to have a polynomial that 

not only satisfies the dynamics at the two knot points but also does that at the collocation 

point. If a large number of segments is used, the approximation of the state approaches the 

real dynamics throughout the whole time domain (see Appendix 1 for further details). 

Moreover, this method is based on the hypothesis that the dynamics and control are quadratic, 

which is true for the states of the current mathematical model. 
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Figure 6 – Hermite-Simpson collocation method. 
A time segment of the algorithm, where 𝑡𝑡𝑘𝑘 , 𝑡𝑡𝑘𝑘+1 are the knot points and 𝑡𝑡𝑐𝑐 is the collocation 
point. If 𝛥𝛥 is enforced, the dynamics 𝑓𝑓(𝑥𝑥,𝑢𝑢) apply to the collocation point as well, not only 
to the knot points. Figure taken from [57]. 

Formulation of the problem  

After having thoroughly examined the mathematical model and the algorithm which 

will be used, it is time to add the effects of chemotherapy, in order to formulate an optimal 

administration protocol for the treatment. The goal is to determine the quantity of drug that 

should enter the mathematical model and the exact day it should be done, so that the tumor 

will be eradicated by the end of the chemotherapy. For brevity, the four states of the 

mathematical model and the drug input will be denoted as  

{𝑥𝑥1,𝑥𝑥2,𝑥𝑥3, 𝑥𝑥4} = {𝑁𝑁,𝑇𝑇, 𝐼𝐼,𝑀𝑀}, 

𝑢𝑢 = 𝑣𝑣. 

The optimal control problem of treatment for the mathematical model of this analysis 

can be expressed as an objective function 𝐽𝐽 which must be minimized by the final time 𝑡𝑡𝑓𝑓, 

subject to the states  
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𝑥̇𝑥 = 𝑓𝑓(𝑥𝑥,𝑢𝑢) = �

𝑥𝑥1̇
𝑥𝑥2̇
𝑥𝑥3̇
𝑥𝑥4̇

� =

⎣
⎢
⎢
⎢
⎡ 𝑟𝑟2𝑥𝑥1(1− 𝑏𝑏2𝑥𝑥1)− 𝑐𝑐4𝑥𝑥2𝑥𝑥1 − 𝑎𝑎3(1 − 𝑒𝑒−𝑥𝑥4)𝑥𝑥1
𝑟𝑟1𝑥𝑥2(1− 𝑏𝑏1𝑥𝑥2)− 𝑐𝑐2𝑥𝑥3𝑥𝑥2 − 𝑐𝑐3𝑥𝑥2𝑥𝑥1 − 𝑎𝑎2(1− 𝑒𝑒−𝑥𝑥4 )𝑥𝑥2

𝑠𝑠 +
𝜌𝜌𝑥𝑥3𝑥𝑥2
𝛼𝛼 + 𝑥𝑥2

− 𝑐𝑐1𝑥𝑥3𝑥𝑥2 − 𝑑𝑑1𝑥𝑥3 − 𝑎𝑎1(1− 𝑒𝑒−𝑥𝑥4)𝑥𝑥3

𝑢𝑢 − 𝑑𝑑2𝑥𝑥4 ⎦
⎥
⎥
⎥
⎤

, 

with initial conditions 𝑥𝑥(0) = 𝑥𝑥0, the control input (drug) 𝑢𝑢 and the following constraints 

𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑢𝑢 ≤ 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑥𝑥 ≤ 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 , 

where 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 = 0 and 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 = ∞, because the amount of drug input cannot be negative and 

the saturation point  of the states is embedded in the growth terms of the above eq. ( 2 ). 

As long as the lower bound 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 is concerned, the constraint of keeping the normal 

cells’ population at a healthy level is depicted, so that rehabilitation of the organism can be 

achieved after the tumor has been confronted. A robust organism is one which maintains the 

population of normal cells at levels above 75% of its carrying capacity, throughout the entire 

process [17][18]. All cell populations have been normalized in such a manner (1011), so that 

the carrying capacity of normal cells is 1 (𝑏𝑏2 = 1) for the presented mathematical model, 

therefore, the above constraint is expressed as the following lower bound 

𝑥𝑥1(𝑡𝑡) ≥ 𝑥𝑥1𝑚𝑚𝑚𝑚𝑚𝑚
(𝑡𝑡) = 0.75, 𝑡𝑡 ∈ [0, 𝑡𝑡𝑓𝑓]. 

The rest of the cell populations (tumor, immune) and drug concentration are 

considered non-negative quantities, thus 

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 = �

0.75
0
0
0

�. 

An additional constraint is set for the previous issue, but this time from the perspective 

of the input. High toxicity levels in the tumor area are prevented, by setting an upper bound 

to the amount of drug administered each day, which is translated to 

𝑢𝑢 ≤ 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 = 1 , 𝑡𝑡 ∈ [0, 𝑡𝑡𝑓𝑓]. 

Primal studies have presented objective functions, which focus only on the tumor size 

at final time 𝑥𝑥2�𝑡𝑡𝑓𝑓� and later evolved, by including the total tumor population ∫ 𝑥𝑥2(𝑡𝑡)𝑡𝑡𝑓𝑓
0 𝑑𝑑𝑑𝑑, 
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the maximum value it could reach max 𝑥𝑥2(𝑡𝑡) and weights 𝑤𝑤1,𝑤𝑤2,𝑤𝑤3, for each of those terms 

accordingly, indicating the degree of their impact. In this study, the objective function is 

further evolved, including the total amount of drug given 𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = ∑ 𝑣𝑣(𝑡𝑡)𝑡𝑡𝑡𝑡
𝑡𝑡=0 , with a 

corresponding weight 𝑤𝑤4, making the approach more cost-efficient. Final time 𝑡𝑡𝑓𝑓 is set to 150 

days, approximating the four to six months chemotherapy usually lasts. The resulting objective 

function weighted by 𝑤𝑤1 = 1500, 𝑤𝑤2 = 150, 𝑤𝑤3 = 1000, 𝑤𝑤4 = 40 is  

𝐽𝐽(𝑢𝑢) = 𝑤𝑤1 ∗ 𝑥𝑥2�𝑡𝑡𝑓𝑓� + 𝑤𝑤2 ∗ � 𝑥𝑥2(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑡𝑡𝑓𝑓

0
+ 𝑤𝑤3 ∗ 𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡∈�0,𝑡𝑡𝑓𝑓�
𝑥𝑥2 (𝑡𝑡) + 𝑤𝑤4 ∗  𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 . 

The Bang-Bang conversion of the Direct Collocation method 

By executing simulations with the above approach, the final results are very satisfying, 

since the main goal, which is the tumor eradication, is achieved and at the same time, the 

healthy tissue is not critically damaged, allowing the normal cells to rebuild their population 

and return to the desired healthy level. However, a practical matter arises. Optimal control 

dictates that drug should be administered in a daily basis, even though a number of days the 

amount of drug is trivial, making it very difficult for patients to be present every day at the 

place of administration e.g. hospital, continuously, for a period of five months (𝑡𝑡𝑓𝑓 = 150). 

Thus, a slight modification to the regimen is required, keeping the current results as guidelines. 

The solution is to force the regimen to have a bang-bang style, by finding a threshold 

for the drug input 𝑢𝑢𝑡𝑡ℎ and maximize or set to zero all values above or below that, respectively. 

In other words 

𝑢𝑢𝑏𝑏𝑏𝑏(𝑡𝑡) = � 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑢𝑢(𝑡𝑡) ≥ 𝑢𝑢𝑡𝑡ℎ
0,                𝑢𝑢(𝑡𝑡) < 𝑢𝑢𝑡𝑡ℎ

 , 

where 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 = 1, 𝑢𝑢(𝑡𝑡) is the drug dosage as DirCol dictates and 𝑢𝑢𝑏𝑏𝑏𝑏(𝑡𝑡) is the converted drug 

dosage, on day 𝑡𝑡. The threshold value has derived from a number of experimental simulations 

and aims to force the bang-bang approach use the same amount of drug as in DirCol, so that 

the effectiveness of these methods can be compared clearly. 
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Simulation results of the application of the determined treatment by 

using the Hermite-Simpson Collocation method and its modified 

Bang-Bang approach 

In the following section, the simulations for the above control method are presented. 

As originally mentioned, there are two cases, each one starting from different populations of 

immune cells 𝑥𝑥3(0) = 0.10 (case 1) and 𝑥𝑥3(0) = 0.15 (case 2). The initial values for the 

populations of the tumor and normal cells are 𝑥𝑥2(0) = 0.25 and 𝑥𝑥1(0) = 1 in both cases, 

while the desired final values are �𝑥𝑥1�𝑡𝑡𝑓𝑓�,𝑥𝑥2�𝑡𝑡𝑓𝑓�,𝑥𝑥3�𝑡𝑡𝑓𝑓�� = {1, 0, 1.65}, which correspond 

to the tumor-free equilibrium, as discussed in Chapter 2. The drug concentration starts at a 

zero value 𝑥𝑥4(0) = 0, considering that this is the first treatment of the patient or a 

considerable amount of time has passed since his last one, and the desired final value is again 

zero 𝑥𝑥4�𝑡𝑡𝑓𝑓� = 0, indicating that the tumor has been eradicated at some point before the period 

of 𝑡𝑡𝑓𝑓 = 150 days ends. The aim is to generate a schedule which will be effective against the 

tumor, gentle with normal cells and economic for production.  

For clarity, the previous notation {𝑁𝑁,𝑇𝑇, 𝐼𝐼,𝑀𝑀} is used for the states and {𝑣𝑣} for the 

control input in the following diagrams. The tool which implements the direct collocation 

method is “OptimTraj” by M.P. Kelly [30], the segments for the Hermite-Simpson method 

are 149 and the iterations’ limit is set to 50, the combination of which yields very efficient 

results, as seen below. All cell populations are normalized at the value of 1011 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 which 

corresponds to the normalized cells’ population value 1 (one). The drug concentration and 

drug input dosage are measured in 𝑚𝑚𝑚𝑚 per 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 of blood plasma in the tumor area and 𝑚𝑚𝑚𝑚 

per 𝑚𝑚2 of the patient’s body surface, respectively.  
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Case 1 : Highly weakened immune system, 𝐼𝐼0 = 0.10 

Starting with case 1, the DirCol simulation results for the states (cell populations 

𝑁𝑁,𝑇𝑇, 𝐼𝐼) and the control (drug input 𝑣𝑣) are the following 

 
Figure 7 – Cell populations and drug input for DirCol treatment (case 1). 
The treatment is effective with a total drug administration of 15.8379 𝑚𝑚𝑚𝑚/𝑚𝑚2. 
The eradication of the tumor is achieved on and the 𝑡𝑡𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 = 118th day. 
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Figure 8 – Maximum/minimum state values for DirCol treatment (case 1). 
The constraint of 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 0.75 is satisfied, while at the same time tumor cells do not increase 
noticeably, compared to their initial value 𝑇𝑇(0) = 0.25. Drug concentration, after an initial 
increase, remains at trivial levels. 
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By converting the above data to a bang-bang regimen, following the ruleset presented 

in the previous section, with a threshold 𝑣𝑣𝑡𝑡ℎ = 0.1455 𝑚𝑚𝑚𝑚/𝑚𝑚2, the results for the states (cell 

populations 𝑁𝑁,𝑇𝑇, 𝐼𝐼) and the control (drug input 𝑣𝑣) are the following 

 
Figure 9 – Cell populations and drug input for bang-bang conversion (case 1). 
The treatment is effective with a total drug administration of 16 𝑚𝑚𝑚𝑚/𝑚𝑚2.  
The eradication of the tumor is achieved on and the 𝑡𝑡𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 = 72th day. 
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Figure 10 – Maximum/minimum state values for bang-bang conversion (case 1). 
The constraint of 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 0.75 is not satisfied, however it is close to that value and the tumor 
is countered effectively. Drug concentration has a few peaks at the beginning and then drops 
to zero. 
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Case 2 : Less weakened immune system, 𝐼𝐼0 = 0.15 

Continuing with case 2, the DirCol simulation results for the states (cell populations 

𝑁𝑁,𝑇𝑇, 𝐼𝐼) and the control (drug input 𝑣𝑣) are the following 

 
Figure 11 – Cell populations and drug input for DirCol treatment (case 2). 
The treatment is effective with a total drug administration of 14.9764 𝑚𝑚𝑚𝑚/𝑚𝑚2.  
The eradication of the tumor is achieved on and the 𝑡𝑡𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 = 122th day. 
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Figure 12 – Maximum/minimum state values for DirCol treatment (case 2). 
The constraint of 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 0.75 is satisfied, while at the same time tumor cells do not increase 
noticeably, compared to their initial value 𝑇𝑇(0) = 0.25. Drug concentration, after an initial 
increase, remains at trivial levels. 
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Again, the above data are converted to a bang-bang regimen, which has a threshold 

𝑣𝑣𝑡𝑡ℎ = 0.12 𝑚𝑚𝑚𝑚/𝑚𝑚2. The results for the states (cell populations 𝑁𝑁,𝑇𝑇, 𝐼𝐼) and the control (drug 

input 𝑣𝑣) are the following 

 
Figure 13 – Cell populations and drug input for bang-bang conversion (case 2). 
The treatment is effective with a total drug administration of 15 𝑚𝑚𝑚𝑚/𝑚𝑚2.  
The eradication of the tumor is achieved on and the 𝑡𝑡𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 = 63th day. 
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Figure 14 – Maximum/minimum state values for bang-bang conversion (case 2). 
The constraint of 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 0.75 is not satisfied, however it is close to that value and the tumor 
is countered effectively. Drug concentration has a few peaks at the beginning and then drops 
to zero. 
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A synopsis of the simulations’ final data is presented in the table below. The variables 

of particular interest are:  

• 𝐼𝐼0 (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ 1011): initial immune cells’ population. 

• 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ 1011): minimum normal cells’ population. 

• 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚  (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ 1011): maximum tumor cells’ population. 

• 𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚  (𝑚𝑚𝑚𝑚/𝐿𝐿 ): maximum drug concentration. 

• 𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  (𝑚𝑚𝑚𝑚/𝑚𝑚2): total amount of administered drug. 

• 𝑣𝑣𝑡𝑡ℎ (𝑚𝑚𝑚𝑚/𝑚𝑚)2: threshold for DirCol to Bang-Bang conversion. 

• 𝑡𝑡𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧  (𝑑𝑑𝑑𝑑𝑑𝑑): day of tumor eradication (𝑇𝑇(𝑡𝑡𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧) < 0.005, practically 0). 

Table 1: DirCol treatment results. 

 Case 1 Case 2 

 DirCol Bang-Bang DirCol Bang-Bang 

𝑰𝑰𝟎𝟎 0.10 0.15 

𝑵𝑵𝒎𝒎𝒎𝒎𝒎𝒎  0.75 0.708716 0.75 0.714429 

𝑻𝑻𝒎𝒎𝒎𝒎𝒎𝒎  0.25362 0.254896 0.252142 0.252122 

𝑴𝑴𝒎𝒎𝒎𝒎𝒎𝒎 0.722654 0.98603 0.660461 0.997847 

𝒗𝒗𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 15.8379 16 14.9764 15 

𝒗𝒗𝒕𝒕𝒕𝒕 0.1455 0.12 

𝒕𝒕𝒛𝒛𝒛𝒛𝒛𝒛𝒛𝒛 118 72 122 63 

To begin with, the main difference which is noted concerns the case selection. When 

𝐼𝐼0 is low, in the first case, the amount of drug suggested (15.8379 𝑚𝑚𝑚𝑚/𝑚𝑚2) is slightly higher 

than the amount suggested in the second case (14.9764 𝑚𝑚𝑚𝑚/𝑚𝑚2). That can be explained, 

since the immune system is more fatigued and cannot combat the tumor to the same extent, 

thus it demands an additional aid, i.e. drug, in order to achieve the desired results. 
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Moving on, the DirCol and Bang-Bang approaches diverge in most results. As far as 

the lower bound of normal cells 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 is concerned, DirCol manages to satisfy it in both cases, 

but Bang-Bang does not. That does not translate to ineffectiveness of the latter, since Bang-

Bang suggests that all of the drug must be given at the early days, a fact confirmed by the 

increase in maximum drug concentration 𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚. On the other hand, DirCol proposes a 

smoother regimen, with a significant amount of drug being administered during the initial 

days, followed by smaller amounts throughout the entire treatment period. Therefore, the side 

effects of the drug can be seen clearly now, due to which 𝛮𝛮𝑚𝑚𝑚𝑚𝑚𝑚 has a lower value when the 

drug concentration in the tumor area is higher. Ultimately, the differences between these two 

methods have an obvious impact on the swiftness of the treatment, making DirCol 1.6-2 times 

slower than Bang-Bang, when the day of tumor eradication 𝑡𝑡𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 is compared. 

Last but not least, all of the above cases present a peak value in the tumor cells’ 

population which is very close to the initial 𝑇𝑇(0) = 0.25. This value indicates the efficacy of 

the treatment regimens, because there is no further increase of an already notably sized tumor. 

However, Bang-Bang is preferred, due to practicality issues, as previously discussed.  
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Chapter 4 : Optimal cancer chemotherapy treatment 
based on  the State-Dependent Riccati Equation 
(SDRE) optimal non-linear control method 

The optimal control problem of dynamical mathematical models has been studied in 

depth for a given cost function to be minimized and is well-established for Linear Time 

Invariant (LTI) mathematical models, subjected to linear quadratic functions. In most cases, 

the solution of Algebraic Riccati Equations (ARE) yields enough information to compute the 

optimal feedback gain(s). Hence, the stabilization problem of LTI mathematical models, 

which is known as Linear Quadratic Regulator (LQR), is solved in optimal way. 

On the other hand, the above approach cannot be generally applied to non-linear 

mathematical models, because Hamilton Jacobi Bellman (HJB) equations do not yield 

straightforward solutions. Analytical solutions for the optimal control may be obtained for 

only a few restricted cases, since the control equations for optimality are also non-linear and 

their solutions should satisfy the state conditions. Moreover, numerical solutions for the 

optimal control cannot be obtained with precision, due to the unknown number of possible 

candidates for the optimal solution. This issue has forced researchers to form approximate 

solutions to the HJB equation, which are suboptimal to the optimal control problem of non-

linear dynamical mathematical models. 

One of these approaches is the State-Dependent Riccati Equation (SDRE) technique. 

This method presents a systematic way of designing non-linear feedback controllers that 

approximates the solution of the infinite time horizon optimal control problem and is 

described in detail in Appendix 2, as well as  [6][10][42][65]. Firstly, the non-linear 

mathematical model is converted to a pseudo-linear mathematical formulation of a non-linear 

dynamics mathematical model, also referred to as extended linear form, in which it is treated 

as a sequence of LTI mathematical models. Afterwards, the suboptimal solution is computed 

via solving the ARE for the LTI mathematical models obtained in each time step. 
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Over the past decade, SDRE has become very well-known within the control 

community, providing a very effective algorithm for implementing non-linear feedback 

controllers, including non-linearities in the mathematical model’s states, and offering great 

design flexibility through its state-dependent weighting matrices. Moreover, SDRE gives the 

time responses of the non-linear mathematical model in real time, making it feasible to be 

implemented on-line by using microprocessors with adequate computational power in the 

controller structure. As a result, it has been applied successfully to non-linear mathematical 

models both in theory and in experimental practice [3][41][65][76]. Among the various 

applications of SDRE optimal control, control of drug administration in cancer dynamics is 

also included [3][41]. In this chapter, that application will be extended further, by adding a 

periodic character of active and inactive days to the control input, introducing a periodic 

SDRE drug administration. 

Pseudo-linear state space equations formulation 

In this section, the mathematical model’s equations presented in eq. ( 2 ) will be 

converted to a pseudo-linear mathematical model, which will later allow the SDRE technique 

to find an optimal solution for the drug input (for more detail see Appendix 2). Therefore, 

the non-linear mathematical model can be represented as 

 𝑥̇𝑥(𝑡𝑡) = 𝑓𝑓�𝑥𝑥(𝑡𝑡)� + 𝐺𝐺 �𝑥𝑥(𝑡𝑡)�𝑢𝑢(𝑡𝑡), 𝑥𝑥(0) = 𝑥𝑥0, ( 5 ) 

where 𝑥𝑥 ∈ ℝ𝑛𝑛 is the state vector and 𝑢𝑢 ∈ ℝ𝑚𝑚 is the input vector. The above mathematical 

model can be written in the pseudo-linear form 

 𝑥̇𝑥 = 𝐴𝐴�𝑥𝑥�𝑥𝑥 + 𝐵𝐵�𝑥𝑥�𝑢𝑢, ( 6 ) 

where 𝑓𝑓�𝑥𝑥� = 𝐴𝐴�𝑥𝑥�𝑥𝑥, 𝐴𝐴(𝑥𝑥) ∈ ℝ𝑛𝑛x𝑛𝑛 and 𝐺𝐺�𝑥𝑥� = 𝐵𝐵�𝑥𝑥�, 𝐵𝐵(𝑥𝑥) ∈ ℝ𝑛𝑛x𝑚𝑚. The 𝐴𝐴(𝑥𝑥) and 

𝐵𝐵�𝑥𝑥� are called state-dependent coefficient (SDC) matrices and their role is to transform the 

mathematical model in eq. ( 5 ) into a linearized form. There are many alternative 

parameterizations to choose from when constructing the SDC matrices, but the one which 
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will be chosen must ensure pointwise controllability, in order to apply the SDRE control law 

[42]. That can be achieved if the state-dependent controllability matrix 

𝑀𝑀�𝑥𝑥� = [𝐵𝐵�𝑥𝑥�   𝐴𝐴�𝑥𝑥�𝐵𝐵�𝑥𝑥�   ⋯   𝐴𝐴𝑛𝑛−2�𝑥𝑥�𝐵𝐵�𝑥𝑥�   𝐴𝐴𝑛𝑛−1�𝑥𝑥�𝐵𝐵�𝑥𝑥�] 

has full rank for the time segment where the control is applied to the mathematical model. 

Moving on to the control strategy, SDRE attempts to determine the sub-optimal 

controller of the mathematical model in eq. ( 6 ), in order to minimize to cost function 

𝐽𝐽 =
1
2
��𝑥𝑥𝑇𝑇𝑄𝑄�𝑥𝑥�𝑥𝑥 + 𝑢𝑢𝑇𝑇𝑅𝑅�𝑥𝑥�𝑢𝑢�𝑑𝑑𝑑𝑑
∞

0

, 

where 𝑄𝑄(𝑥𝑥) ∈ ℝ𝑛𝑛𝑛𝑛𝑛𝑛 and 𝑅𝑅(𝑥𝑥) ∈ ℝ𝑛𝑛𝑛𝑛𝑛𝑛 are state-dependent matrices and determine the 

weight of each state and the control, thus 𝑄𝑄�𝑥𝑥� ≥ 0 and 𝑅𝑅�𝑥𝑥� ≥ 0 for ∀𝑥𝑥 [48]. Some optimal 

control problems require constraints on the mathematical model states and/or control input 

to be satisfied, as the current is concerned with drug toxicity and the normal cells’ minimum 

population. Satisfying such requirements heavily depends on the proper selection of the 

matrices 𝑄𝑄(𝑥𝑥) and 𝑅𝑅(𝑥𝑥) for the optimal control problem. Another approach is introducing 

hard bounds on the control input by penalizing the Hamiltonian [5]. The Hamiltonian for 

the optimal control problem is given by 

𝐻𝐻�𝑥𝑥,𝑢𝑢,𝜆𝜆� =
1
2
�𝑥𝑥𝑇𝑇𝑄𝑄�𝑥𝑥�𝑥𝑥  +  𝑢𝑢𝑇𝑇𝑅𝑅�𝑥𝑥�𝑢𝑢� +  𝜆𝜆𝑇𝑇�𝐴𝐴�𝑥𝑥�𝑥𝑥  + 𝐵𝐵�𝑥𝑥�𝑢𝑢� 

− 𝑤𝑤�𝑇𝑇(𝑢𝑢 −  𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚)− 𝑤𝑤�𝑇𝑇(𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚  −  𝑢𝑢), 

where 𝑤𝑤� and 𝑤𝑤� represent the penalty, as non-negative 𝑚𝑚-dimensional multiplier vectors. 

Their role is to constrain the control input so that it satisfies the conditions 

𝑤𝑤�𝑇𝑇(𝑢𝑢 − 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚) = 𝑤𝑤�𝑇𝑇(𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑢𝑢) = 0. 

The Hamiltonian dictates that the necessary conditions for optimality are 
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 𝑥̇𝑥 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜆𝜆 = 𝐴𝐴�𝑥𝑥�𝑥𝑥 + 𝐵𝐵�𝑥𝑥�𝑢𝑢,  

 
𝜆̇𝜆 = −

𝜕𝜕𝜕𝜕
𝜕𝜕𝜆𝜆 = −𝑄𝑄�𝑥𝑥� − �

𝑑𝑑𝑑𝑑�𝑥𝑥�𝑥𝑥
𝑑𝑑𝑥𝑥

�
𝑇𝑇

𝜆𝜆 − �
𝑑𝑑𝑑𝑑�𝑥𝑥�𝑢𝑢
𝑑𝑑𝑥𝑥

�
𝑇𝑇

𝜆𝜆, ( 7 ) 

 0 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 𝑅𝑅�𝑥𝑥�𝑢𝑢 + 𝐵𝐵𝑇𝑇�𝑥𝑥�𝜆𝜆 − 𝑤𝑤� + 𝑤𝑤� .  

The last equation of eq. ( 7 ) produces the optimal control input, which is  

 𝑢𝑢�𝑥𝑥� = −𝑅𝑅−1�𝑥𝑥��𝐵𝐵𝑇𝑇�𝑥𝑥�𝜆𝜆 − 𝑤𝑤� + 𝑤𝑤��. ( 7a ) 

It is important to always keep in mind that the current research embodies a simulation, not a 

real-life experiment. It is practically impossible, from both the economic and time aspect to 

measure the response of the patient’s body to the tumor progression following a chemotherapy, 

on a daily or even more frequent basis; it is done more scarcely. Hence, the value of the control 

input of the feedback loop is calculated using the same realistic non-linear mathematical model 

developed and presented previously in Chapter 2. Afterwards, an optimized chemotherapeutic 

cancer treatment schedule is generated off-line, which could be applied in the real clinical 

practice. Its effectiveness could be evaluated by applying the protocol of the clinical 

examinations, and if there would be any deviations from those expected (the tumor remains 

the same or increases in size), then a re-run of the chemotherapy optimization should take 

place, by setting as initial states of the mathematical model and of the chemotherapy 

optimization procedure those of the current states-measurements of the normal, tumor, 

immune cell populations and the drug concentration, as obtained by the most recent patient’s 

tumor evolution examinations. Such an approach would lead to an adaptive control. 

When the control of LQR is applied, the adjoint state matrix obtains the form of  

𝜆𝜆 = 𝑃𝑃�𝑥𝑥�𝑥𝑥, where 𝑃𝑃(𝑥𝑥) ∈ ℝ𝑛𝑛x𝑛𝑛  is a state-dependent symmetric matrix. Therefore, if the 

control is unbounded, by substituting 𝜆𝜆, it becomes 

 𝑢𝑢�𝑥𝑥� = −𝑅𝑅−1(𝑥𝑥)𝐵𝐵𝑇𝑇(𝑥𝑥)𝑃𝑃(𝑥𝑥)𝑥𝑥 ≜ −𝐾𝐾�𝑥𝑥�𝑥𝑥. ( 7b ) 
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In the case of a bounded control input, the sub-optimal input for the mathematical model is 

 𝑢𝑢𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏�𝑥𝑥� = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑚𝑚𝑚𝑚𝑚𝑚(𝑢𝑢, 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚) ,𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚), ( 7c ) 

with 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 being the lower and upper bounds, accordingly. The term 

−𝑅𝑅−1�𝑥𝑥�𝐵𝐵𝑇𝑇�𝑥𝑥�𝑃𝑃�𝑥𝑥� is also referred to as feedback gain matrix, with 𝑃𝑃(𝑥𝑥) being a symmetric 

positive definite matrix and a solution of the algebraic Riccati equation 

 𝐴𝐴𝑇𝑇(𝑥𝑥)𝑃𝑃(𝑥𝑥) + 𝑃𝑃(𝑥𝑥)𝐴𝐴(𝑥𝑥)  − 𝑃𝑃�𝑥𝑥�𝐵𝐵�𝑥𝑥�𝑅𝑅−1�𝑥𝑥�𝐵𝐵𝑇𝑇(𝑥𝑥)𝑃𝑃(𝑥𝑥) +  𝑄𝑄(𝑥𝑥) =  0, ( 7d ) 

where it is prerequisite that 𝐴𝐴�𝑥𝑥�,𝐵𝐵(𝑥𝑥) are pointwise controllable ∀𝑥𝑥. As a result, the 

dynamics of the pseudo-linearized closed-loop mathematical model become 

 𝑥̇𝑥 = �𝐴𝐴�𝑥𝑥� −  𝐵𝐵�𝑥𝑥�𝐾𝐾�𝑥𝑥��𝑥𝑥 =  𝐴𝐴𝐶𝐶𝐶𝐶�𝑥𝑥�𝑥𝑥. ( 7e ) 

The local asymptotic stability of this final form of the mathematical model is proved in 

Appendix 2, as well as in [6][10][42].  



 

 

47 

Reconstruction of the mathematical model of eq. (2) in pseudo-linear 

form 

The mathematical model of the previous chapters, presented in eq. ( 2 ), is examined 

once again. The dynamics of growth, death and interactions between cell populations remain 

the same, apart from the regression rate 1 − 𝑒𝑒−𝑀𝑀, caused by the drug, which is now a linear 

function of the drug concentration 𝑀𝑀. The equivalent of a regression rate as in eq. ( 2 ) can be 

achieved by setting an upper bound to the drug input 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 = 1. This modification provides 

the possibility to apply SDRE to a practically similar cancer growth mathematical model, 

which also enables the examination of the possible effects of higher drug dosages. 

 𝑁̇𝑁 = 𝑟𝑟2𝑁𝑁(1− 𝑏𝑏2𝑁𝑁)− 𝑐𝑐4𝑇𝑇𝑇𝑇 − 𝑎𝑎3𝑀𝑀𝑀𝑀, 

        ( 8 ) 

 𝑇̇𝑇 = 𝑟𝑟1𝑇𝑇(1− 𝑏𝑏1𝑇𝑇)− 𝑐𝑐2𝐼𝐼𝐼𝐼 − 𝑐𝑐3𝑇𝑇𝑇𝑇 − 𝑎𝑎2𝑀𝑀𝑀𝑀, 

 𝐼𝐼̇ = 𝑠𝑠 +
𝜌𝜌𝜌𝜌𝜌𝜌
𝛼𝛼 + 𝑇𝑇 − 𝑐𝑐1𝐼𝐼𝐼𝐼 − 𝑑𝑑1𝐼𝐼 − 𝑎𝑎1𝑀𝑀𝑀𝑀, 

 𝑀̇𝑀 = 𝑣𝑣(𝑡𝑡) − 𝑑𝑑2𝑀𝑀. 

In the previous chapter, a cost function was defined in terms of drug input and tumor 

cells’ population, which was later minimized by using special computer software [30], through 

an iterative method, following the non-linear dynamics. The final result was the proposed 

optimal control input. Moreover, the existence of such an optimal control had to be proved 

beforehand. 

On the other hand, the SDRE control method does not require any additional burden, 

neither in computing the optimal drug regimen, nor in proving the existence of an optimal 

control, since the original LQR algorithm is used for the optimal control’s computation. In 

order to implement the SDRE based optimal control, the mathematical model of eq. ( 8 ) 

must be rewritten in the form of eq. ( 6 ).  
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Thus, the tumor-free equilibrium point (1/𝑏𝑏2, 0, 𝑠𝑠/𝑑𝑑1, 0) is shifted to the origin, in 

terms of the following states 

𝑥𝑥1 = 𝑁𝑁 −
1
𝑏𝑏2

, 𝑥𝑥2 = 𝑇𝑇, 𝑥𝑥3 = 𝐼𝐼 −
𝑠𝑠
𝑑𝑑1

, 𝑥𝑥4 = 𝑀𝑀, 

where 𝑥𝑥𝑇𝑇 = [𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3,𝑥𝑥4]𝑇𝑇 represents the shifted state vector for the normal, tumor, immune 

cells and drug concentration 𝑥𝑥 vector elements, respectively. As a result, the mathematical 

model’s equations are rewritten as 

 𝑥̇𝑥1 = −𝑟𝑟2𝑥𝑥1(1 + 𝑏𝑏2𝑥𝑥1)−
𝑐𝑐4
𝑏𝑏2
𝑥𝑥2 −

𝑎𝑎3
𝑏𝑏2
𝑥𝑥4 − 𝑐𝑐4𝑥𝑥2𝑥𝑥1 − 𝑎𝑎3𝑥𝑥4𝑥𝑥1, 

( 9 ) 
 𝑥̇𝑥2 = 𝑟𝑟1𝑥𝑥2(1− 𝑏𝑏1𝑥𝑥2) − �

𝑐𝑐2𝑠𝑠
𝑑𝑑1

+
𝑐𝑐3
𝑏𝑏2
� 𝑥𝑥2 − 𝑐𝑐2𝑥𝑥3𝑥𝑥2 − 𝑐𝑐3𝑥𝑥2𝑥𝑥1 − 𝑎𝑎2𝑥𝑥4𝑥𝑥2, 

 𝑥̇𝑥3 = −
𝑐𝑐2𝑠𝑠
𝑑𝑑1

𝑥𝑥2 − 𝑑𝑑1𝑥𝑥3 −
𝑎𝑎1𝑠𝑠
𝑑𝑑1

𝑥𝑥4 +
𝜌𝜌𝜌𝜌
𝑑𝑑1

𝑥𝑥2
(𝑎𝑎 + 𝑥𝑥2)  +

𝜌𝜌𝑥𝑥3𝑥𝑥2
𝛼𝛼 + 𝑥𝑥2

− 𝑐𝑐1𝑥𝑥3𝑥𝑥2 − 𝑎𝑎1𝑥𝑥4𝑥𝑥3 , 

 𝑥̇𝑥4 = 𝑢𝑢(𝑡𝑡) − 𝑑𝑑2𝑥𝑥4, 

where 𝑢𝑢(𝑡𝑡) is the control input (drug dosage). 

The non-linear mathematical model of the above equations is now in the form of eq. 

( 5 ), thus it can be written in the form of 𝑥̇𝑥 = 𝐴𝐴�𝑥𝑥�𝑥𝑥 + 𝐵𝐵�𝑥𝑥�𝑢𝑢, eq. ( 6 ). In order to achieve 

this, the SDC matrices 𝐴𝐴�𝑥𝑥�,𝐵𝐵(𝑥𝑥) must be defined, one of the main difficulties of the SDRE 

technique, because the SDC representation is not unique and the selection procedure for the 

factorization of 𝑓𝑓�𝑥𝑥� = 𝐴𝐴�𝑥𝑥�𝑥𝑥 cannot be expressed with clear steps. However, this obstacle 

can be used in our favor, producing a variety of different sub-optimal solutions, as long as the 

selected SDC matrices are pointwise controllable. It is important to remember that the 

pointwise controllability of the selected pair (𝐴𝐴(𝑥𝑥),𝐵𝐵(𝑥𝑥)) does not have any implication on 

the controllability of the non-linear mathematical model [10][42]. Therefore, the resulting 

SDC matrices, as suggested in [41], are
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𝐴𝐴�𝑥𝑥� ≜

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡−𝑟𝑟2(1 + 𝑏𝑏2𝑥𝑥1) −𝑐𝑐4 �𝑥𝑥1 +

1
𝑏𝑏2
� 0 −𝑎𝑎3 �𝑥𝑥1 +

1
𝑏𝑏2
�

−𝑐𝑐3𝑥𝑥2 𝑟𝑟1(1− 𝑏𝑏1𝑥𝑥2) − �
𝑐𝑐2𝑠𝑠
𝑑𝑑1

+
𝑐𝑐3
𝑏𝑏2
� −𝑐𝑐2𝑥𝑥2 −𝑎𝑎2𝑥𝑥2

0
𝜌𝜌 �𝑥𝑥3 + 𝑠𝑠

𝑑𝑑1
�

(𝑎𝑎 + 𝑥𝑥2) − 𝑐𝑐1 �𝑥𝑥3 +
𝑠𝑠
𝑑𝑑1
� − 𝑥𝑥4 −𝑑𝑑1 −𝑎𝑎1 �𝑥𝑥3 +

𝑠𝑠
𝑑𝑑1
� + 𝑥𝑥2

0 0 0 −𝑑𝑑2 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 

𝐵𝐵�𝑥𝑥�
𝑇𝑇
≜ [0, 0, 0, 1]𝑇𝑇 .

     By combining all the above, the final non-linear state space equations take the form 

𝑥̇𝑥 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡−𝑟𝑟2(1 + 𝑏𝑏2𝑥𝑥1) −𝑐𝑐4 �𝑥𝑥1 + 1

𝑏𝑏2
� 0 −𝑎𝑎3 �𝑥𝑥1 + 1

𝑏𝑏2
�

−𝑐𝑐3𝑥𝑥2 𝑟𝑟1(1− 𝑏𝑏1𝑥𝑥2)− �𝑐𝑐2𝑠𝑠
𝑑𝑑1

+ 𝑐𝑐3
𝑏𝑏2
� −𝑐𝑐2𝑥𝑥2 −𝑎𝑎2𝑥𝑥2

0
𝜌𝜌�𝑥𝑥3+

𝑠𝑠
𝑑𝑑1
�

(𝑎𝑎+𝑥𝑥2)
− 𝑐𝑐1 �𝑥𝑥3 + 𝑠𝑠

𝑑𝑑1
� − 𝑥𝑥4 −𝑑𝑑1 −𝑎𝑎1 �𝑥𝑥3 + 𝑠𝑠

𝑑𝑑1
� + 𝑥𝑥2

0 0 0 −𝑑𝑑2 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

�

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4

�+ �

0
0
0
1

� 𝑢𝑢. 

As a result, the relation 𝑓𝑓�𝑥𝑥� = 𝐴𝐴�𝑥𝑥�𝑥𝑥 is verified and the optimal control attempts to 

minimize the quadratic cost function𝐽𝐽 = ∫ �𝑥𝑥𝑇𝑇𝑄𝑄�𝑥𝑥�𝑥𝑥 + 𝑅𝑅�𝑥𝑥�𝑢𝑢2�𝑑𝑑𝑑𝑑∞
0 , 

where 𝑄𝑄(𝑥𝑥) and 𝑅𝑅(𝑥𝑥) are the state-dependent weighting matrices for the states and the 

input, accordingly [48]. Their role is very important, since they determine the level of impact 

each term has on the regulation process; a great advantage the SDRE technique provides. 

More specifically, the states which have to be minimized are the tumor cells’ population and 

the drug concentration, so that the mathematical model ends up to the tumor-free 

equilibrium point. Thus, the form of 𝑄𝑄�𝑥𝑥� will be 

𝑄𝑄�𝑥𝑥� = 𝑄𝑄 = �

0 0 0 0
0 𝑤𝑤2 0 0
0 0 0 0
0 0 0 𝑤𝑤4

 �, 

where 𝑤𝑤2,𝑤𝑤4 are non-negative constants, with values 𝑤𝑤2 = 150,𝑤𝑤4 = 0. 1 [41]. The 

elements of the main diagonal of the weighting matrix 𝑄𝑄, {𝑄𝑄11,𝑄𝑄22 ,𝑄𝑄33,𝑄𝑄44}= 

{0,𝑤𝑤2, 0,𝑤𝑤4}, correspond to the weights of each state (𝑥𝑥1, 𝑥𝑥2,𝑥𝑥3,𝑥𝑥4). In other words, by 
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setting a zero value to the weights 𝑄𝑄11,𝑄𝑄33 , which refer to the populations of normal (𝑥𝑥1) and 

immune (𝑥𝑥3) cells, the proliferation of these cells is not inhibited at all by the controller; a 

desirable result, since they aim to shift the mathematical model to a healthy state. On the other 

hand, the positive values of the weights 𝑄𝑄22 ,𝑄𝑄44, which refer to the population of tumor cells 

and the drug concentration, indicate that the controller must focus on minimizing the values 

of 𝑥𝑥2 and 𝑥𝑥4. Moreover, the notable difference between the values of these weights (𝑤𝑤2 = 150 

compared to 𝑤𝑤4 = 0.1), does not represent any relation between them, since they refer to 

different units (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 compared to 𝑚𝑚𝑚𝑚/𝑚𝑚2). 

 For the weight matrix 𝑅𝑅(𝑥𝑥) three scenarios will be examined. A constant value and 

two functions of the tumor cells’ population, affected incrementally or decrementally. The 

scenarios can be expressed as 

𝑅𝑅�𝑥𝑥� = �  
𝑟𝑟𝐶𝐶 ,                             𝑜𝑜𝑜𝑜
𝑟𝑟𝐶𝐶 + 𝛽𝛽1 ∗ 𝑥𝑥2(𝑡𝑡),     𝑜𝑜𝑜𝑜
𝑟𝑟𝐶𝐶 − 𝛽𝛽2 ∗ 𝑥𝑥2(𝑡𝑡),         

 

where 𝑟𝑟𝐶𝐶 ,𝛽𝛽1,𝛽𝛽2 are positive constants, with values 𝑟𝑟𝐶𝐶 = 4.7,𝛽𝛽1 = 2,𝛽𝛽2 = 15 [41]. The value 

of 𝑅𝑅(𝑥𝑥) determines the cost of the input (drug). A low value of 𝑅𝑅(𝑥𝑥) will allow a greater 

amount of drug to be administered, compared to a higher one. When 𝑅𝑅(𝑥𝑥) remains constant, 

the drug intake rate is related only to the factor 𝑟𝑟𝐶𝐶. On the contrary, when 𝑅𝑅(𝑥𝑥) is a function 

of the tumor population (𝑥𝑥2), the drug input can vary according to the state of the tumor. In 

the case where the tumor expands (𝑥𝑥2 increases), the cost of the control input is affected and, 

as a result, the amount of suggested drug is decremented when 𝑅𝑅�𝑥𝑥� = 𝑟𝑟𝐶𝐶 + 𝛽𝛽1 ∗ 𝑥𝑥2(𝑡𝑡), or it 

is incremented when 𝑅𝑅�𝑥𝑥� = 𝑟𝑟𝐶𝐶 − 𝛽𝛽2 ∗ 𝑥𝑥2(𝑡𝑡). 

The estimation of both 𝑄𝑄�𝑥𝑥� and 𝑅𝑅(𝑥𝑥) is a very delicate process (see [48]).An initial 

calculation of their values has been done in [41], yet in this approach they are reevaluated 

through trial and error, so that the tumor can be eradicated with a lesser amount of drug, 

which also results in lower toxicity levels in the patient’s body.  
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By inserting the above terms into the cost function, the following form is obtained 

𝐽𝐽 = � � 𝑤𝑤2(𝑥𝑥2(𝑡𝑡))2 + 𝑤𝑤4(𝑥𝑥4(𝑡𝑡))2 + 𝑅𝑅�𝑥𝑥�(𝑢𝑢(𝑡𝑡))2 �𝑑𝑑𝑑𝑑
∞

0
, 

where 𝑥𝑥2(𝑡𝑡) are the tumor cells, 𝑥𝑥4(𝑡𝑡) is the drug concentration and 𝑢𝑢(𝑡𝑡) is the drug input, 

at a specific time (day) 𝑡𝑡. 

Periodic application of the determined optimal chemotherapy 

treatment 

The above approach can be extended even further, by adding a restriction of active and 

inactive days. SDRE technique as much as effective it can be, it might need to be slowed down 

slightly, in cases of excessive drug dosage, so that high toxicity scenarios can be avoided. 

Therefore, a periodic controller is proposed, with a period of 𝑡𝑡𝑝𝑝 days, 𝑡𝑡𝑝𝑝 ≥ 2. If the control is 

active during the first 𝑡𝑡𝑜𝑜𝑜𝑜 days, where 1 ≤ 𝑡𝑡𝑜𝑜𝑜𝑜 < 𝑡𝑡𝑝𝑝, it is then turned off for the remaining 

𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑡𝑡𝑝𝑝 − 𝑡𝑡𝑜𝑜𝑜𝑜 days. An active controller is one which applies the control input suggested by 

SDRE, based on the state and control responses of the previous timestep, while an inactive 

controller sets the control input to zero, ignoring what SDRE dictates as optimal control.  

As one might speculate, during the time window of inactive days 𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜, the state’s values 

change according to the mathematical model’s dynamics. When a new period is about to start, 

the control input based on SDRE is applied once again, throughout the whole set of active 

days 𝑡𝑡𝑜𝑜𝑜𝑜. As simulations have shown, the mathematical model’s state and control in this 

approach differ from those of a mathematical model with continuous SDRE control input, a 

phenomenon which was anticipated, since the absence of drug input during the inactive days 

allowed the normal, tumor and immune cells to recover, up to a certain point. Such a recovery, 

can produce improved results by reducing the toxicity levels, thus preventing the normal cells’ 

population from degenerating below a safe level. However, it can also be damaging, if the 

inactive days are unreasonably more than the active, offering a lot of time for the tumor to 
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regrow. In such cases, either a great amount of drug is required to restore the mathematical 

model to a treatable state, which also critically reduces the normal cells’ population, or the 

tumor has reached an uncontrollable level, implying a great risk for the patient’s health. 

Subsequently, examining numerous combinations of active and inactive days is of high 

importance, so that the periodic effects can be determined for the mathematical model of the 

current analysis. 

Simulation results of the application of the determined treatment by 

using the pseudo-linear SDRE optimal control method of eq.  

(7a) … (7e) 

In this section, the simulations for the above control method are presented. This time, 

only the initial value of 𝑥𝑥3(0) = 0.15 will be taken under consideration, keeping the rest of 

the starting cells’ populations the same as in Chapter 3. Therefore the initial values of the 

mathematical model are {𝑥𝑥1(0),𝑥𝑥2(0),𝑥𝑥3(0),𝑥𝑥4(0)} = {1, 0.25, 0.15, 0}, referring to 

normal, tumor, immune cells and drug concentration in the tumor area, respectively. The 

desired final values are once again the tumor-free equilibrium, as discussed in Chapter 2, which 

translates to �𝑥𝑥1�𝑡𝑡𝑓𝑓�,𝑥𝑥2�𝑡𝑡𝑓𝑓�,𝑥𝑥3�𝑡𝑡𝑓𝑓�� = {1, 0, 1.65}. The drug concentration starts and ends 

at a zero value 𝑥𝑥4(0) = 𝑥𝑥4�𝑡𝑡𝑓𝑓� = 0, indicating a pure organism at first, as far as drug existence 

goes, which will no longer require medicine by the end of the treatment, since the tumor will 

have been eradicated. Lastly, the final time 𝑡𝑡𝑓𝑓 does not require any constrains for the SDRE 

approach. 

A number of cases will be reviewed. At first, the impact of different values in the weight 

matrix of the control 𝑅𝑅(𝑥𝑥) will be examined. In case 1, 𝑅𝑅(𝑥𝑥) will be set to a constant value of 

𝑟𝑟𝐶𝐶 = 4.7, which will also represent the base value for the following cases. In case 2, 𝑅𝑅(𝑥𝑥) will 

be affected incrementally by a linear function of the tumor cells’ population, thus 𝑅𝑅(𝑥𝑥) =

𝑟𝑟𝐶𝐶 + 𝛽𝛽1𝑥𝑥2(𝑡𝑡), 𝛽𝛽1 = 2. Case 3 will follow the same idea of case 2, but with a negative 
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coefficient for the tumor cells’ population, that is 𝑅𝑅(𝑥𝑥) = 𝑟𝑟𝐶𝐶 − 𝛽𝛽2𝑥𝑥2(𝑡𝑡), 𝛽𝛽2 = 15. 

Afterwards, case 4 will be similar to case 1, but with the introduction of an upper bound 

𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 = 1 to the control input, in an attempt to minimize the toxicity levels in the tumor area, 

while maintaining the effectiveness of the treatment. As the results will later tell, the differences 

between the above cases are mainly located between case 1 and case 4. Thus, in a second phase, 

a periodic-SDRE approach will be applied to both of them, in order to examine how the 

mathematical model corresponds to various periods of active and inactive days.  

The main goal is, once again, to limit the drug side effects to the normal cells, by 

keeping the global minimum of their population 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 at a relatively safe level. Moreover, the 

total amount of drug administered 𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  needs to be monitored. An unreasonably high 

amount of drug is used as an indicator, showing that the tumor was able to regrow during the 

inactive days. The above terms are directly related to the maximum concentration of the drug 

𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 and the day of tumor eradication 𝑡𝑡𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧, all of which are recorded, alongside with the 

maximum population reached by the tumor cells 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚.  

For clarity, the notation {𝑁𝑁,𝑇𝑇, 𝐼𝐼,𝑀𝑀} will be used for the states and {𝑣𝑣} for the drug 

input in the following diagrams. All cell populations are normalized at the value of 1011 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 

drug concentration and drug input are measured in 𝑚𝑚𝑚𝑚 per 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 of plasma in the tumor area 

and 𝑚𝑚𝑚𝑚 per 𝑚𝑚2 of the patient’s body surface, respectively.  
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Case 1 : The drug input’s weight 𝑅𝑅(𝑥𝑥) has a constant value 

 

 

Figure 15 – Mathematical model’s response and drug input for constant 𝑅𝑅(𝑥𝑥) = 4.7. 
The tumor is eradicated with a total amount of drug 𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 15.1177 𝑚𝑚𝑚𝑚/𝑚𝑚2. 
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Case 2 : The tumor increases the drug input’s weight 𝑅𝑅(𝑥𝑥(𝑡𝑡)) 

 

 
Figure 16 – Mathematical model’s response and drug input for 𝑅𝑅(𝑥𝑥(𝑡𝑡)) as an increasing 
function of the tumor evolution, i.e. of 𝑥𝑥2(𝑡𝑡), that is as a function of the state vector 𝑥𝑥(𝑡𝑡). 
An increased input weight, when the tumor exists, results in a slightly delayed drug dosage. 
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Case 3 : The tumor decreases the drug input’s weight 𝑅𝑅(𝑥𝑥(𝑡𝑡)) 

 

 
Figure 17 – Mathematical model’s response and drug input for 𝑅𝑅(𝑥𝑥(𝑡𝑡)) as a decreasing 
function of the tumor evolution, i.e. of 𝑥𝑥2(𝑡𝑡), that is as a function of the state vector 𝑥𝑥(𝑡𝑡). 
A decreased input weight, when the tumor exists, results in a slightly hastened drug dosage. 
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Case 4 : The drug input is bounded and the drug input’s weight 
𝑅𝑅(𝑥𝑥) has a constant value 

 

 
Figure 18 – Mathematical model’s response and drug input for bounded drug dosage. 
By setting an upper bound to the drug input, the toxicity levels are reduced dramatically.  
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Based on the previous simulations, case 3 and case 4 seem to be the most interesting, 

since they damage the normal cells the least and combat the tumor successfully. Therefore, the 

periodic-SDRE will be applied to them. The number of active and inactive days will be 

represented as 𝑡𝑡𝑜𝑜𝑜𝑜 and 𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜, creating a total period of 𝑡𝑡𝑝𝑝 = 𝑡𝑡𝑜𝑜𝑜𝑜 + 𝑡𝑡𝑜𝑜𝑜𝑜𝑜𝑜 days. The examined 

values of the period are 𝑡𝑡𝑝𝑝 = {2, 3, 4, 5, 7, 10, 14} days and the active days lie within the range 

of values 1 ≤ 𝑡𝑡𝑜𝑜𝑜𝑜 < 𝑡𝑡𝑝𝑝. It has been observed that 7 continuous active days of drug 

administration are almost the equivalent of a continuous-SDRE approach (see Figures 17-18), 

thus the constrain 𝑡𝑡𝑜𝑜𝑜𝑜 ≤ 7 is also applied. The most important term, according to which the 

effectiveness of the periodic approach will be determined, is the minimum population of the 

normal cells during the treatment. Additionally, the total amount of drug administered will be 

compared, so that the advantages of this approach can be shown better.  
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Case 5 : Reevaluation of the chemotherapeutic schedule by applying a 

periodic drug input dosage 

In case 5, the periodic treatment is being applied and the input weight matrix used is 

𝑅𝑅�𝑥𝑥� = 𝑟𝑟𝐶𝐶 − 𝛽𝛽2𝑥𝑥2(𝑡𝑡) = 4.7 − 15 ∗ 𝑥𝑥2(𝑡𝑡) (same as case 3). Below, the minimum values of 

normal cells 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 are compared for each combination of [𝑡𝑡𝑝𝑝/𝑡𝑡𝑜𝑜𝑜𝑜] days, followed by the total 

amount of drug administered 𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 . 

 
Figure 19 – Comparison of global minima in normal cells when applying a variety of 
periodic treatments (case 5). 
As the scatter plot shows, different combinations of active and inactive days produce different 
results, compared to the continuous treatment (red circle). Of particular interest is the case of 
[𝑡𝑡𝑝𝑝/𝑡𝑡𝑜𝑜𝑜𝑜] = [3/1], where the drug is administered every first day of a three-day period, 
allowing the normal cells’ population to remain close to 0.71, the maximum value of all the 
combinations. This value is significantly higher than the one which results from a continuous 
regimen (0.635). Thus, the drug’s side effects are diminished. For active days 𝑡𝑡𝑜𝑜𝑜𝑜 ≥ 2, the 
minima seem to be overlapping and as the number of active days increases, the populations’  
minima converge to the continuous treatment’s value. 
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Figure 20 – Comparison of total drug amount administered when applying a variety of 
periodic treatments (case 5). 
The indicated case of [𝑡𝑡𝑝𝑝/𝑡𝑡𝑜𝑜𝑜𝑜] = [3/1] requires a lower amount of drug, compared to the 
continuous administration treatment, making it more cost-efficient. 
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Figure 21 – Mathematical model’s response and drug input when a periodic treatment of 
[3/1] days is applied, the drug input is unbounded and the input weight 𝑅𝑅(𝑥𝑥(𝑡𝑡)) is a 
decreasing function of the tumor evolution, i.e. of 𝑥𝑥2(𝑡𝑡). 
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Case 6 : Reevaluation of the chemotherapeutic schedule by applying a 

periodic bounded drug input dosage 

In case 6, the periodic treatment is being applied, the control input is restricted to an 

upper bound 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 = 1  and the input weight matrix remains constant 𝑅𝑅�𝑥𝑥� = 𝑟𝑟𝐶𝐶 = 4.7 

(same as case 4). The following results compare the minimum values of normal cells 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 for 

each combination of [𝑡𝑡𝑝𝑝/𝑡𝑡𝑜𝑜𝑜𝑜] days, as well as the total amount of drug administered 𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 . 

 
Figure 22 – Comparison of global minima in normal cells when applying a variety of 
periodic treatments (case 6). 
As the scatter plot shows, different combinations of active and inactive days produce different 
results, compared to the continuous treatment (red circle). Of particular interest is the case of 
[𝑡𝑡𝑝𝑝/𝑡𝑡𝑜𝑜𝑜𝑜] = [4/3], where the drug is administered on the first three days of a four-day period, 
producing the maximum value of all the minima. This time, the increase is not very distinct, 
due to the already bounded drug input. For active days 𝑡𝑡𝑜𝑜𝑜𝑜 ≥ 3, the minima converge to the 
continuous treatment’s value. Moreover, the cases of [7,1], [10,1], [14,1] and [14,2] produce 
very low values of minima, which translate to ineffectiveness of these combinations and 
uncontrollable growth of the tumor. 
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Figure 23 – Comparison of total drug amount administered when applying a variety of 
periodic treatments (case 6). 
The indicated case of [𝑡𝑡𝑝𝑝/𝑡𝑡𝑜𝑜𝑜𝑜] = [4/3] requires a lower amount of drug, compared to the 
continuous administration treatment, making it more cost-efficient. 
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Figure 24 – Mathematical model’s response and drug input when a periodic treatment of 
[4/3] days is applied, the drug input is bounded and the input weight 𝑅𝑅(𝑥𝑥(𝑡𝑡)) has a 
constant value.  
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A synopsis of the simulations’ final data is presented in the tables below. The variables 

of particular interest are:  

• 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐): minimum normal cells’ population. 

• 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚  (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐): maximum tumor cells’ population. 

• 𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚  (𝑚𝑚𝑚𝑚/𝐿𝐿 ): maximum drug concentration. 

• 𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  (𝑚𝑚𝑚𝑚/𝑚𝑚2): total amount of administered drug. 

• 𝑡𝑡𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧  (𝑑𝑑𝑑𝑑𝑑𝑑): day of tumor eradication (𝑇𝑇(𝑡𝑡𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧) < 0.005, practically 0). 

• �𝑡𝑡𝑝𝑝/𝑡𝑡𝑜𝑜𝑜𝑜� (𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑): total days of the period 𝑡𝑡𝑝𝑝, with only the first 𝑡𝑡𝑜𝑜𝑜𝑜 being active, i.e., 

drug is administered. 

Table 2: Continuous-SDRE treatment results 

 Case 1 Case 2 Case 3 Case 4 

𝑹𝑹(𝒙𝒙) 4.7 4.7 + 2 ∗ 𝑥𝑥2(𝑡𝑡) 4.7 − 15 ∗ 𝑥𝑥2(𝑡𝑡) 4.7 

𝒗𝒗𝒎𝒎𝒎𝒎𝒎𝒎 ∞ ∞ ∞ 1 

𝑵𝑵𝒎𝒎𝒎𝒎𝒎𝒎  0.631064 0.630809 0.635007 0.70641 

𝑻𝑻𝒎𝒎𝒎𝒎𝒎𝒎  0.2511 0.2512 0.2502 0.2518 

𝒗𝒗𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 15.1177 15.071 15.564 17.8966 

𝒕𝒕𝒛𝒛𝒛𝒛𝒛𝒛𝒛𝒛 32 33 31 44 

𝑴𝑴𝒎𝒎𝒎𝒎𝒎𝒎 2.95999 2.95907 2.98878 1 
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Table 3: Periodic-SDRE treatment results 

 Case 5 – Periodic [3/1] Case 6 – Periodic [4/3] 

𝑹𝑹(𝒙𝒙) 4.7− 15 ∗ 𝑥𝑥2(𝑡𝑡) 4.7 

𝒗𝒗𝒎𝒎𝒎𝒎𝒎𝒎 ∞ 1 

𝑵𝑵𝒎𝒎𝒎𝒎𝒎𝒎  0.7084 0.7129 

𝑻𝑻𝒎𝒎𝒎𝒎𝒎𝒎  0.2502 0.2518 

𝒗𝒗𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 11.0541 16.6134 

𝒕𝒕𝒛𝒛𝒛𝒛𝒛𝒛𝒛𝒛 46 49 

𝑴𝑴𝒎𝒎𝒎𝒎𝒎𝒎 2.033 0.9679 

The first difference which occurs is linked to the control input weight 𝑅𝑅(𝑥𝑥) in the first 

three cases. When 𝑅𝑅(𝑥𝑥) is constant (case 1), the minimum normal cells’ population is relatively 

low (𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 = 0.631064). Responsible for this issue is the high level of drug concentration in 

the tumor area (𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚 = 2.95999) which is hazardous for the healthy tissue. By relating 𝑅𝑅(𝑥𝑥) 

to the tumor cells incrementally (case 2) the results become even worse. This is an expected 

outcome, since the existence of tumor cells is translated to a greater weight for the control 

input (drug), thus the controller applies a smaller amount of drug. As a result, it becomes 

harder to combat the tumor and at the same time the normal cells are reduced even further. 

On the other hand, when 𝑅𝑅(𝑥𝑥) is related to the tumor decrementally (case 3) the treatment 

turns out to be more effective, allowing more drug to be administered when the population of 

tumor cells is large and gradually restricting it when tumor cells start to perish. 

Unfortunately, in all of the above cases high toxicity levels are present. A first attempt 

to reduce them is by setting an upper bound 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚  to the control input (case 4), which greatly 

improves the final results. The maximum drug concentration drops almost to a third of its 

previous value (𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚 = 1) and, consequently, the minimum population of normal cells 

reaches a higher number (𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 = 0.70641). The cost for all of these advantages is an increase 
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to the total amount of drug given 𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  at the order of 15% to 18% and a longer duration 

for the therapy (approx. 10 more days).  

A second attempt to tame the drug toxicity is to apply the previously discussed periodic 

regimen. After selecting the two best cases from the above (case 3 & 4), a variety of simulations 

are conducted, under different conditions of active and inactive days. Afterwards, the least 

harmful treatment is selected, according to the minimum population of normal cells 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚. 

Higher values translate to a healthier organism; thus, the maximum of all minima is chosen 

for each case, which are 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 = 0.7084 for case 3 and 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 = 0.7129 for case 4. These 

values correspond to regimens with [total/active] days [3, 1] and [4, 3], respectively. 

Interestingly enough, case 3 shows a rise of 11.5%, as far as 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 is concerned, which is a 

great improvement. Additionally, maximum drug concentration is reduced (𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚 = 2.033), 

alongside with the total amount of drug required (𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 11.0541). The results of the 

periodic schedule for case 4 follow the same guidelines, but at a lower scale, since the already 

bounded drug input had reduced the toxicity levels noticeably, leaving less room for 

improvement. The only drawback presented by both periodic cases is an increased treatment 

duration, which in either scenario does not surpass the rational period of 1.5 − 2 months. 

Last but not least, the maximum tumor size 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 does not show any signs of noticeable 

oscillations in any of the examined cases. More specifically, its value is almost identical to the 

initial one (𝑇𝑇(0) = 0.25), a fact indicating that all of the approaches that have been reviewed 

prevent it from growing even further.  
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Chapter 5 : Conclusion 

The treatment of cancer by chemotherapy is a very complex procedure, including a 

plethora of interactions between the host’s cells, the tumor’s cells and the drug applied. In this 

study, a non-linear mathematical model, which is burdened by a relatively big tumor and a 

weakened immune response, is used to simulate a scenario of cancer. The problem of finding 

an optimal solution for such a case can be very challenging. For that reason, two treatment 

methods are implemented, tested and compared. 

In the first approach, the Hermite-Simpson Direct Collocation method is used to 

provide an optimal regimen, yielding very effective results. However, the drawback of drug 

administration every day, during the whole treatment period, makes it impractical for real-

world implementation. Thus, it is converted to a Bang-Bang method, maintaining the same 

amount of total drug, but selecting only specific days for its administration. The results 

obtained are equally satisfying, since the tumor is eradicated, extreme levels of toxicity are 

avoided and the duration of the process is reduced. 

In the second approach, the State-Dependent Riccati Equation method is applied, 

with the crucial advantage of lower computational requirements, leading to a faster simulation 

time, because it does not depend on an iterative loop of optimizations, opposed to DirCol. 

However, the unconstrained optimal chemotherapy dosage determined using the pseudo-

linear SDRE optimization introduces the issue of high toxicity, i.e. excessive drug 

concentration in order to eliminate the tumor. That problem is confronted successfully in the 

present work, either by setting an upper bound to the drug input, or by embedding a periodic 

application of the determined optimal chemotherapy treatment consisting of active and 

inactive days of the drug administration. Both scenarios offer effective regimens and, 

particularly, the achieved optimal periodic drug application achieves to limit even further the 

hazardous side-effects and to lessen the total amount of drug required.  
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Interpretation of the Results 

After executing the simulations of the above approaches, four scenarios are obtained, 

with the treatment being based on a Bang-Bang method in the first two cases (highly and less 

weakened immune system) and on a SDRE optimal periodic drug application method in the 

last two cases (unbounded and bounded input). The results of those cases, concerning the most 

important factors (𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑣𝑣𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ,𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑡𝑡𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 ,𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚) are presented and compared below. When 

the color of case’s bar tends to a lighter grey color, it indicates that that specific case produces 

a better result for the factor examined in each figure. 

 
Figure 25 – Comparison of the normal cells’ minimum population (best cases). 
In all four examined cases, the treatment managed to maintain the population of normal cells 
within a satisfying limit (𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 > 0.708), showcasing their subtle impact on the healthy tissue 
within the tumor area. 
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Figure 26 – Comparison of the total amount of administered drug (best cases). 
In all four examined cases, the amount of drug is kept within relatively low levels. Specifically, 
in case 5 a noticeable decrease is observed, which is, paradoxically, linked to an increased drug 
concentration (Figure 27). This phenomenon occurs (because only a small amount of drug is 
available and it has to be given to the patient within a short period of time) so that the 
treatment can be effective. 
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Figure 27 – Comparison of the maximum drug concentration (best cases). 
The maximum drug concentration is once again kept at low levels and is related conversely to 
the total amount of drug given. It is obvious that the maximum drug concentration in case 5 
is double, compared to the other three cases, which occurs due to the unbounded drug input. 
Moreover, the controller manages these levels of drug concentration by preferring a slightly 
longer treatment duration to a quick one (Figure 28). 
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Figure 28 – Comparison of the treatment’s duration (best cases). 
When the regimens based on Bang-Bang are examined, case 1 seems to last longer, due to the 
highly weakened immune system (𝐼𝐼0 = 0.10), compared to case 2 (𝐼𝐼0 = 0.15). Moreover, the 
periodic-SDRE method (𝐼𝐼0 = 0.15) presents a further decrease in the treatment’s duration, 
by taking advantage of the method’s feedback loop and a process of trial and error, through 
many possible variations of active and inactive days of drug administration. 
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Figure 29 – Comparison of the tumor cells’ maximum population (best cases). 
In all four examined cases, the tumor size does not present any significant increase. Case 1 
displays a trivial increase of 1.9%, which is the maximum among all the cases. Thus, apart 
from ultimately eradicating the tumor, the treatment also inhibits its further development; a 
very important achievement.  
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Future Work 

As previously mentioned, the current research depicts a simulation of a real-life 

scenario. Therefore, it is expected that deviations will occur when the treatment is applied to 

a patient, since there has always been a gap between simulated results and praxis. The scientific 

community is not able to counter that gap yet, and may never be, but a lot of work can be 

done to minimize it. As a result, an adaptive and/or predictive optimal control based 

chemotherapeutic treatment can be interpolated into the current analysis, so that the regimen 

could be reevaluated, if there are any differences between the simulation and the clinical results, 

e.g. the tumor’s size remains the same or increases. Thus, the possibility of successfully 

combating cancer will undoubtedly increase.  
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Appendix 1 :  
Hermite-Simpson Direct Collocation method 

In Hermite-Simpson collocation method, the state trajectories are expressed as cubic 

polynomials, and the control is expressed as a piecewise linear function. The dynamic 

equations are imposed as constraints at collocation points that are midpoints of the 

discretization segments of the time domain [59].The implementation of the method is 

analyzed in the following sections. 

Discretize the time domain 

Suppose we discretize time 𝑡𝑡𝑓𝑓 into 𝑁𝑁 segments as, 

𝑡𝑡0 = 0 ≤ 𝑡𝑡1 ≤ 𝑡𝑡2 ≤ ⋯ ≤ 𝑡𝑡𝑘𝑘 ≤ 𝑡𝑡𝑘𝑘+1 ⋯ ≤ 𝑡𝑡𝑁𝑁 = 𝑡𝑡𝑓𝑓, 

then the states between 𝑡𝑡𝑘𝑘  and 𝑡𝑡𝑘𝑘+1 can be represented as 

𝑥𝑥(𝑡𝑡) = 𝑎𝑎𝑘𝑘,0 + 𝑎𝑎𝑘𝑘,1𝑡𝑡 + 𝑎𝑎𝑘𝑘,2𝑡𝑡2 + 𝑎𝑎𝑘𝑘,3𝑡𝑡3, 

which yields 

𝑥̇𝑥(𝑡𝑡) = 𝑎𝑎𝑘𝑘,1 + 2𝑎𝑎𝑘𝑘,2𝑡𝑡 + 3𝑎𝑎𝑘𝑘,3𝑡𝑡2, 

where 𝑎𝑎𝑘𝑘,0,𝑎𝑎𝑘𝑘,1, 𝑎𝑎𝑘𝑘,2 and 𝑎𝑎𝑘𝑘,3 are coefficients of the polynomial approximation in 𝑘𝑘𝑡𝑡ℎ interval. 

Compute state derivatives at the collocation point 

A collocation point is the midpoint of the time interval 

𝑡𝑡𝑘𝑘,𝑐𝑐 =
𝑡𝑡𝑘𝑘 + 𝑡𝑡𝑘𝑘+1

2 . 
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As the value of the state or its derivatives will not change by shifting the interval from 

[𝑡𝑡𝑘𝑘, 𝑡𝑡𝑘𝑘+1] to [0,ℎ], where ℎ = 𝑡𝑡𝑘𝑘+1 − 𝑡𝑡𝑘𝑘 , we shift the time interval. We now have 

𝑥𝑥(0) = 𝑥𝑥𝑘𝑘, 

𝑥𝑥(ℎ) = 𝑥𝑥𝑘𝑘+1, 

𝑥̇𝑥(0) = 𝑥𝑥𝑘𝑘 = 𝑓𝑓(𝑥𝑥𝑘𝑘,𝑢𝑢𝑘𝑘), 

𝑥̇𝑥(ℎ) = 𝑥𝑥𝑘𝑘+1 = 𝑓𝑓(𝑥𝑥𝑘𝑘+1, 𝑢𝑢𝑘𝑘+1). 

The same can be computed from the polynomial representations too. This gives us 

�

𝑥𝑥(0)
𝑥̇𝑥(0)
𝑥𝑥(ℎ)
𝑥̇𝑥(ℎ)

� = �

1 0 0 0
0 1 0 0
1 ℎ ℎ2 ℎ3
0 1 2ℎ 3ℎ2

� �

𝑎𝑎𝑘𝑘,0
𝑎𝑎𝑘𝑘,1
𝑎𝑎𝑘𝑘,2
𝑎𝑎𝑘𝑘,3

�. 

Taking the inverse gives 

�

𝑎𝑎𝑘𝑘,0
𝑎𝑎𝑘𝑘,1
𝑎𝑎𝑘𝑘,2
𝑎𝑎𝑘𝑘,3

� =

⎣
⎢
⎢
⎢
⎢
⎡

1 0 0 0
0 1 0 0

−
3
ℎ2 −

2
ℎ

3
ℎ2 −

1
ℎ

2
ℎ3

1
ℎ2 −

2
ℎ3

1
ℎ2 ⎦

⎥
⎥
⎥
⎥
⎤

�

𝑥𝑥(0)
𝑥̇𝑥(0)
𝑥𝑥(ℎ)
𝑥̇𝑥(ℎ)

�. 

With these coefficients, we can compute the value of states and their derivatives at 

collocation points as 

𝑥𝑥𝑐𝑐 = 𝑥𝑥 �
ℎ
2� =

1
2

(𝑥𝑥𝑘𝑘 + 𝑥𝑥𝑘𝑘+1) +
ℎ
8

[𝑓𝑓(𝑥𝑥𝑘𝑘,𝑢𝑢𝑘𝑘)− 𝑓𝑓(𝑥𝑥𝑘𝑘+1,𝑢𝑢𝑘𝑘+1)]. 

The time-derivative at midpoint is given by, 

𝑥𝑥𝑐̇𝑐 = 𝑥̇𝑥 �
ℎ
2� = −

3
2ℎ

(𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑘𝑘+1) −
1
4

[𝑓𝑓(𝑥𝑥𝑘𝑘,𝑢𝑢𝑘𝑘) + 𝑓𝑓(𝑥𝑥𝑘𝑘+1, 𝑢𝑢𝑘𝑘+1)]. 

This derivative depends on the states and control at the interval or knot points. By 

choosing the states and controls appropriately, we can make sure that the derivative at the 

collocation point matches the dynamics. The control at the collocation point is given by 
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𝑢𝑢𝑐𝑐 =
𝑢𝑢𝑘𝑘 + 𝑢𝑢𝑘𝑘+1

2 . 

We construct a defect 𝛥𝛥𝑘𝑘 for each interval such that, 

𝛥𝛥𝑘𝑘 = 𝑥̇𝑥𝑐𝑐 − 𝑓𝑓(𝑥𝑥𝑐𝑐 ,𝑢𝑢𝑐𝑐), 

𝛥𝛥𝑘𝑘 = −
3
2ℎ

(𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑘𝑘+1) −
1
4

[𝑓𝑓(𝑥𝑥𝑘𝑘,𝑢𝑢𝑘𝑘) + 𝑓𝑓(𝑥𝑥𝑘𝑘+1,𝑢𝑢𝑘𝑘+1)]− 𝑓𝑓(𝑥𝑥𝑐𝑐 ,𝑢𝑢𝑐𝑐), 

𝛥𝛥𝑘𝑘 = −
3
2ℎ

�(𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑘𝑘+1) +
ℎ
6

[𝑓𝑓(𝑥𝑥𝑘𝑘,𝑢𝑢𝑘𝑘) + 4𝑓𝑓(𝑥𝑥𝑐𝑐 ,𝑢𝑢𝑐𝑐) + 𝑓𝑓(𝑥𝑥𝑘𝑘+1,𝑢𝑢𝑘𝑘+1)]�, 

We redefine the state constraint as 

𝛥𝛥𝑘𝑘 = �(𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑘𝑘+1) +
ℎ
6

[𝑓𝑓(𝑥𝑥𝑘𝑘,𝑢𝑢𝑘𝑘) + 4𝑓𝑓(𝑥𝑥𝑐𝑐 ,𝑢𝑢𝑐𝑐) + 𝑓𝑓(𝑥𝑥𝑘𝑘+1, 𝑢𝑢𝑘𝑘+1)]�. 

The last term in the expression above is implicit Hermite integration of system 

dynamics. We call this integration implicit because the last term in the bracket is equal to the 

Hermite integration only when the collocation point satisfies the system dynamics. 

Express the cost function in terms of optimization parameters 

The next step is to approximate the cost function. The cost function can be computed 

by using various numerical integration (or quadrature) schemes. Say we choose to use trapezoid 

method, the cost function expressed as, 

𝐽𝐽(𝑢𝑢) = 𝛷𝛷(𝑥𝑥𝑓𝑓) + � ℒ(𝑡𝑡, 𝑥𝑥, 𝑢𝑢)𝑑𝑑𝑑𝑑.
𝑡𝑡𝑓𝑓

𝑡𝑡=0
 

We can use trapezoid integration and integrate the above in an interval as 

𝐽𝐽𝑛𝑛𝑛𝑛𝑛𝑛 = 𝛷𝛷(𝑥𝑥𝑁𝑁) +
1
2 �

�ℒ(𝑡𝑡𝑘𝑘+1, 𝑥𝑥𝑘𝑘+1, 𝑢𝑢𝑘𝑘+1) + ℒ(𝑡𝑡𝑘𝑘, 𝑥𝑥𝑘𝑘,𝑢𝑢𝑘𝑘)�
𝑁𝑁−1

𝑘𝑘=1

(𝑡𝑡𝑘𝑘+1 − 𝑡𝑡𝑘𝑘). 
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For the special case where we have linear quadratic regulator, with time points 

discretized evenly at segments of ℎ, we have 

𝐽𝐽𝑛𝑛𝑛𝑛𝑛𝑛 = 𝛷𝛷(𝑥𝑥𝑁𝑁) +
1
2 �

(𝑥𝑥𝑘𝑘+1𝑇𝑇 𝑄𝑄𝑥𝑥𝑘𝑘+1 + 𝑢𝑢𝑘𝑘+1𝑇𝑇 𝑅𝑅𝑢𝑢𝑘𝑘+1 + 𝑥𝑥𝑘𝑘𝑇𝑇𝑄𝑄𝑥𝑥𝑘𝑘 + 𝑢𝑢𝑘𝑘𝑇𝑇𝑅𝑅𝑢𝑢𝑘𝑘)
𝑁𝑁−1

𝑘𝑘=1

ℎ. 

Define Additional Constraints 

The constraints on states and controls can be expressed as 

𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑢𝑢𝑘𝑘 ≤ 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 , 

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑥𝑥𝑘𝑘 ≤ 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 , 

𝐶𝐶𝑒𝑒𝑒𝑒(𝑥𝑥𝑘𝑘,𝑢𝑢𝑘𝑘) = 0, 

𝐶𝐶(𝑥𝑥𝑘𝑘,𝑢𝑢𝑘𝑘) ≤ 0, 

where 𝐶𝐶𝑒𝑒𝑒𝑒(𝑥𝑥,𝑢𝑢) and 𝐶𝐶(𝑥𝑥,𝑢𝑢) correspond to constraint equality and inequality matrices, 

respectively, should there be any additional restrictions for the system.  
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Appendix 2 : 
State-Dependent Riccati Equation (SDRE) method 

This appendix presents a section of [10], in order to further understand the nature of 

the SDRE technique. 

Problem formulation 

Consider the deterministic, infinite-horizon non-linear optimal regulation 

(stabilization) problem, where the system is full-state observable, autonomous, non-linear in 

the state, and affine in the input, represented in the form  

 𝑥̇𝑥(𝑡𝑡) = 𝑓𝑓(𝑥𝑥) + 𝐵𝐵(𝑥𝑥)𝑢𝑢(𝑡𝑡), 𝑥𝑥(0) = 𝑥𝑥0 (2.1) 

Where 𝑥𝑥 ∈ ℝ𝑛𝑛 is the state vector, 𝑢𝑢 ∈ ℝ𝑚𝑚 is the input vector, and 𝑡𝑡 ∈ [0,∞), with 

𝐶𝐶1(ℝ𝑛𝑛) functions 𝑓𝑓: ℝ𝑛𝑛 → ℝ𝑛𝑛 and 𝐵𝐵: ℝ𝑛𝑛 → ℝ𝑛𝑛x𝑚𝑚, 𝐵𝐵(𝑥𝑥) ≠ 0  ∀𝑥𝑥. Without any loss of 

generality, the origin 𝑥𝑥 = 0 is assumed to be an equilibrium point, such that 𝑓𝑓(0) = 0. In 

this context, the minimization of the infinite-time performance criterion 

 𝐽𝐽�𝑥𝑥0, 𝑢𝑢(∙)� =
1
2
� {𝑥𝑥𝑇𝑇(𝑡𝑡)𝑄𝑄(𝑥𝑥)𝑥𝑥(𝑡𝑡) + 𝑢𝑢𝑇𝑇(𝑡𝑡)𝑅𝑅(𝑥𝑥)𝑢𝑢(𝑡𝑡)}𝑑𝑑𝑑𝑑
∞

0
 (2.2) 

is considered, which is non-quadratic in 𝑥𝑥 but quadratic in 𝑢𝑢. The state and input weighting 

matrices are assumed state-dependent such that: 𝑄𝑄: ℝ𝑛𝑛 → ℝ𝑛𝑛x𝑛𝑛 and 𝑅𝑅: ℝ𝑛𝑛 → ℝ𝑚𝑚x𝑚𝑚 . These 

design parameters satisfy 𝑄𝑄(𝑥𝑥) ≥ 0 and 𝑅𝑅(𝑥𝑥) ≥ 0 for all 𝑥𝑥 . Under the specified conditions, 

a control law 

 𝑢𝑢(𝑥𝑥) = 𝑘𝑘(𝑥𝑥) = −𝐾𝐾(𝑥𝑥)𝑥𝑥, 𝑘𝑘(0) = 0, (2.3) 

where 𝑘𝑘(∙) ∈ 𝐶𝐶1(ℝ𝑛𝑛), is then sought that will (approximately) minimize the cost 𝐽𝐽 subject to 

the input-affine non-linear differential constraint 𝑥̇𝑥(𝑡𝑡), while regulating the system to the 

origin ∀𝑥𝑥, such that lim
𝑡𝑡→∞

 𝑥𝑥(𝑡𝑡) = 0. This problem forms the basis of the SDRE method for 

non-linear regulation. 
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Extended linearization 

Extended linearization, also known as apparent linearization or SDC 

parameterization, is the process of factorizing a non-linear system into a linear-like structure 

which contains SDC matrices. Under the assumptions 𝑓𝑓(0) = 0 and 𝑓𝑓(∙) ∈ 𝐶𝐶1(ℝ𝑛𝑛), a 

continuous non-linear matrix-valued function 𝐴𝐴(𝑥𝑥) always exists such that 

 
𝑓𝑓(𝑥𝑥) =  𝐴𝐴(𝑥𝑥), (2.4) 

where 𝐴𝐴: ℝ𝑛𝑛 → ℝ𝑛𝑛x𝑛𝑛 is found by mathematical factorization and is, clearly, nonunique 

when 𝑛𝑛 > 1. Hence, extended linearization of the input-affine non-linear system becomes 

 
𝑥̇𝑥(𝑡𝑡) = 𝐴𝐴(𝑥𝑥)𝑥𝑥(𝑡𝑡) + 𝐵𝐵(𝑥𝑥)𝑢𝑢(𝑡𝑡), 𝑥𝑥(0) = 𝑥𝑥0, (2.5) 

which has a linear structure with SDC matrices 𝐴𝐴(𝑥𝑥),𝐵𝐵(𝑥𝑥). The application of any linear 

control synthesis method to the above linear-like SDC structure, where 𝐴𝐴(𝑥𝑥) and 𝐵𝐵(𝑥𝑥) are 

treated as constant matrices, forms an extended linearization control method. These represent 

a rather broad class of control design methods, leading to non-linear control laws of the form 

of 𝑢𝑢(𝑥𝑥) that render the closed-loop dynamics (SDC) matrix 

 𝐴𝐴𝐶𝐶𝐶𝐶(𝑥𝑥) = 𝐴𝐴(𝑥𝑥)− 𝐵𝐵(𝑥𝑥)𝐾𝐾(𝑥𝑥) (2.6) 

pointwise Hurwitz. 

The recoverability of non-linear state feedback laws using extended linearization 

control techniques has been investigated by Cloutier, Stansbery & Sznaier (1999). By 

recoverable it is meant that a given non-linear state feedback law of form 𝑢𝑢(𝑥𝑥) can be obtained 

(or recovered) from a given control design method. Necessary and sufficient conditions for the 

recoverability of a given non-linear state feedback control law by some extended linearization 

control technique, and in particular, by the SDRE method, have been provided by Cloutier, 

Stansbery & Sznaier (1999). 
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Controller structure 

The SDRE methodology uses extended linearization as the key design concept in 

formulating the non-linear optimal control problem. The underlying linear control synthesis 

method in this case is the LQR synthesis method. Motivated by the LQR problem, which is 

characterized by an ARE, SDRE feedback control is an “extended linearization control 

method” that provides a similar approach to the non-linear regulation problem for the input-

affine system 𝑥̇𝑥(𝑡𝑡) = 𝑓𝑓(𝑥𝑥) + 𝐵𝐵(𝑥𝑥)𝑢𝑢(𝑡𝑡)  with cost functional 𝐽𝐽(𝑥𝑥0,𝑢𝑢(∙)). By mimicking the 

LQR formulation, the state feedback controller is obtained in the form 

 
𝑢𝑢(𝑥𝑥) = −𝑅𝑅−1(𝑥𝑥)𝐵𝐵𝑇𝑇(𝑥𝑥)𝑃𝑃(𝑥𝑥)𝑥𝑥 (2.7) 

where 𝑃𝑃(𝑥𝑥) is the unique, symmetric, positive-definite solution of the algebraic State-

Dependent Riccati Equation  

 
𝑃𝑃(𝑥𝑥)𝐴𝐴(𝑥𝑥) + 𝐴𝐴𝑇𝑇(𝑥𝑥)𝑃𝑃(𝑥𝑥)− 𝑃𝑃(𝑥𝑥)𝐵𝐵(𝑥𝑥)𝑅𝑅−1(𝑥𝑥)𝐵𝐵𝑇𝑇(𝑥𝑥)𝑃𝑃(𝑥𝑥) + 𝑄𝑄(𝑥𝑥) = 0, (2.8) 

hence the name SDRE control. The resulting SDRE-controlled trajectory becomes the 

solution of the quasilinear closed-loop dynamics 

 𝑥̇𝑥(𝑡𝑡) = [𝐴𝐴(𝑥𝑥)− 𝐵𝐵(𝑥𝑥)𝑅𝑅−1(𝑥𝑥)𝐵𝐵𝑇𝑇(𝑥𝑥)𝑃𝑃(𝑥𝑥)]𝑥𝑥(𝑡𝑡), (2.9) 

such that the state-feedback gain in 𝐴𝐴𝐶𝐶𝐶𝐶  for minimizing 𝐽𝐽�𝑥𝑥0,𝑢𝑢(∙)� is 

𝐾𝐾(𝑥𝑥) = 𝑅𝑅−1(𝑥𝑥)𝐵𝐵𝑇𝑇(𝑥𝑥)𝑃𝑃(𝑥𝑥). 

Therefore, the SDRE solution to the originally presented infinite-horizon autonomous 

non-linear regulator problem is a true generalization of the infinite-horizon time-invariant 

LQR problem, where all of the coefficient matrices are state-dependent. At each instant, the 

method treats the state-dependent coefficients matrices as being constant, and computes a 

control action by solving an LQ optimal control problem. As is evident from the algebraic 

State-Dependent Riccati Equation, the resulting controller relies on a solution, pointwise in 

ℝ𝑛𝑛, of an ARE thereby leading to the SDRE terminology. There is no attempt to solve the 

HJB equation. The clearest benefit of the SDRE algorithm is its simplicity and its apparent 
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effectiveness. When the coefficient and weighting matrices are constant, the non-linear 

regulator problem collapses to the LQR problem and the SDRE control method collapses to 

the steady-state linear regulator. 

Existence of stabilizing feedback controls 

Cloutier, Stansbery & Sznaier (1999) derived the necessary condition on 𝑓𝑓(𝑥𝑥) and 

𝐵𝐵(𝑥𝑥) for the existence of any feedback gain matrix, 𝐾𝐾(𝑥𝑥), that results in eq. (2.6) being 

pointwise Hurwitz. First, let us state the following system-theoretic concept definitions, 

pointwise in 𝑥𝑥, associated with the existence of SDRE stabilizing feedback controls. 

Definition 1. The SDC representation (2.5) is a stabilizable (controllable) 

parameterization of the non-linear system (2.1) in a region Ω ∈ ℝ𝑛𝑛  if the pair {𝐴𝐴(𝑥𝑥),𝐵𝐵(𝑥𝑥)} 

is pointwise stabilizable (controllable) in the linear sense for all 𝑥𝑥 ∈ Ω. 

Definition 2. The SDC representation (2.5) is a detectable (observable) 

parameterization of the non-linear system (2.1) in a region Ω ∈ ℝ𝑛𝑛  if the pair 

{𝐴𝐴(𝑥𝑥),𝑄𝑄1/2(𝑥𝑥)} is pointwise detectable (observable) in the linear sense for all 𝑥𝑥 ∈ Ω. 

Definition 3. The SDC representation (2.5) is pointwise Hurwitz in a region Ω if the 

eigenvalues of 𝐴𝐴(𝑥𝑥) are in the open left half plane 𝑅𝑅𝑅𝑅(𝑠𝑠) < 0 (that is, have negative real parts) 

for all 𝑥𝑥 ∈ Ω. 

Definition 4. A 𝐶𝐶1(ℝ𝑛𝑛) control law (2.3) is said to be recoverable by SDRE control 

in a region Ω if there exists a pointwise stabilizable SDC parameterization {𝐴𝐴(𝑥𝑥),𝐵𝐵(𝑥𝑥)}, a 

pointwise positive-semidefinite state weighting matrix 𝑄𝑄(𝑥𝑥) and a pointwise positive-definite 

control weighting matrix 𝑅𝑅(𝑥𝑥) such that the resulting state-dependent controller (2.7) satisfies 

(2.3) for all 𝑥𝑥. 

Theorem 1 (Cloutier, Stansbery & Sznaier, 1999).  

A 𝐶𝐶1(ℝ𝑛𝑛) control law (2.3) is recoverable by SDRE control in a region Ω if there exists a 

pointwise stabilizable SDC parameterization {𝐴𝐴(𝑥𝑥),𝐵𝐵(𝑥𝑥)} such that the closed-loop dynamics 

matrix (2.6) is pointwise Hurwitz in Ω , and the gain 𝐾𝐾(𝑥𝑥) satisfies the pointwise minimum-
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phase property in Ω , that is, the zeros of the loop gain 𝐾𝐾(𝑥𝑥)[𝑠𝑠𝑠𝑠 − 𝐴𝐴(𝑥𝑥)]−1𝐵𝐵(𝑥𝑥) lie in the 

closed left half plane 𝑅𝑅𝑅𝑅(𝑠𝑠) ≤ 0, pointwise. 

Although Theorem 1 provides the necessary and sufficient conditions for recoverability 

of SDRE controls, it is difficult to apply this theorem due to the fact that there are an infinite 

number of SDC parameterizations. 

Local asymptotic stability 

The following conditions are required for guaranteeing local asymptotic stability: 

Hypothesis 3. 𝐴𝐴(∙),𝐵𝐵(∙),𝑄𝑄(∙) and 𝑅𝑅(∙) are 𝐶𝐶1(ℝ𝑛𝑛) matrix-valued functions. 

Hypothesis 4. The respective pairs {𝐴𝐴(𝑥𝑥),𝐵𝐵(𝑥𝑥)} and {𝐴𝐴(𝑥𝑥),𝑄𝑄1/2 (𝑥𝑥)} are pointwise 

stabilizable and detectable SDC parameterizations of the non-linear system (2.1) for all 𝑥𝑥. A 

sufficient test for the second stability condition is to check that the controllability matrix 

𝑀𝑀𝑐𝑐 = [𝐵𝐵(𝑥𝑥)   𝐴𝐴(𝑥𝑥)𝐵𝐵(𝑥𝑥)  ⋯   𝐴𝐴𝑛𝑛−1(𝑥𝑥)𝐵𝐵(𝑥𝑥)] 

has rank (𝑀𝑀𝑐𝑐) = 𝑛𝑛,∀𝑥𝑥 ∈ ℝ𝑛𝑛.  

Similarly, a sufficient test for detectability is that the observability matrix 

𝑀𝑀𝑜𝑜 = [𝑄𝑄1/2 (𝑥𝑥)   𝑄𝑄1/2 (𝑥𝑥)𝐴𝐴(𝑥𝑥)  ⋯  𝑄𝑄1/2 (𝑥𝑥)𝐴𝐴𝑛𝑛−1(𝑥𝑥)] 

has rank (𝑀𝑀𝑜𝑜) = 𝑛𝑛,∀𝑥𝑥 ∈ ℝ𝑛𝑛, which can be guaranteed by ensuring that 𝑄𝑄(𝑥𝑥) is positive 

definite ∀𝑥𝑥 ∈ ℝ𝑛𝑛. 

Theorem 2 (Mracek & Cloutier, 1998). 

Consider the non-linear multivariable system (2.1) with feedback control (2.7) applied, where 

𝑥𝑥 ∈ ℝ𝑛𝑛  ( 𝑛𝑛 >  1 ) and 𝑃𝑃(𝑥𝑥) is the unique, symmetric, positive-definite, pointwise-

stabilizing solution of the SDRE (2.8). Then, under Hypotheses 3 and 4, the SDRE method 

produces a closed-loop solution which is locally asymptotically stable. 

Proof. Using SDRE control, the closed-loop solution becomes 𝑥̇𝑥 = 𝐴𝐴𝐶𝐶𝐶𝐶(𝑥𝑥)𝑥𝑥 , where 

𝐴𝐴(𝑥𝑥)𝐶𝐶𝐶𝐶 is the closed-loop SDC matrix given by (2.6). From Riccati equation theory, 𝐴𝐴(𝑥𝑥)𝐶𝐶𝐶𝐶 
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is guaranteed to be stable at every point 𝑥𝑥. Under the smoothness assumptions of Hypotheses 

3, 𝑃𝑃(𝑥𝑥) is 𝐶𝐶1(ℝ𝑛𝑛) and hence so is 𝐴𝐴𝐶𝐶𝐶𝐶(𝑥𝑥). Applying the Mean Value Theorem to 𝐴𝐴𝐶𝐶𝐶𝐶(𝑥𝑥) 

gives 

𝐴𝐴𝐶𝐶𝐶𝐶(𝑥𝑥) = 𝐴𝐴𝐶𝐶𝐶𝐶(0) +
𝜕𝜕𝜕𝜕𝐶𝐶𝐶𝐶(𝑧𝑧)
𝜕𝜕𝜕𝜕 𝑥𝑥, 

where 𝜕𝜕𝐴𝐴𝐶𝐶𝐶𝐶(𝑧𝑧)/𝜕𝜕𝜕𝜕 generates a tensor, and the vector 𝑧𝑧 is that point on the line segment 

joining the origin 0 and 𝑥𝑥. By substitution, 

𝑥̇𝑥 = 𝐴𝐴𝐶𝐶𝐶𝐶(0)𝑥𝑥 + 𝑥𝑥𝑇𝑇
𝜕𝜕𝜕𝜕𝐶𝐶𝐶𝐶(𝑧𝑧)
𝜕𝜕𝜕𝜕 𝑥𝑥, 

which gives 

𝑥̇𝑥 = 𝐴𝐴𝐶𝐶𝐶𝐶(0)𝑥𝑥 + 𝜓𝜓(𝑥𝑥, 𝑧𝑧) ∥ 𝑥𝑥 ∥, 

where 𝜓𝜓(𝑥𝑥, 𝑧𝑧) ≜ 1
∥𝑥𝑥∥

𝑥𝑥𝑇𝑇 𝜕𝜕𝜕𝜕𝐶𝐶𝐶𝐶(𝑧𝑧)
𝜕𝜕𝜕𝜕

𝑥𝑥, such that lim
∥𝑥𝑥∥ →0

 𝜓𝜓(𝑥𝑥, 𝑧𝑧) = 0. Hence, in a neighborhood 

about the origin, the linear term which has a constant stable coefficient matrix 𝐴𝐴𝐶𝐶𝐶𝐶(0) 

dominates the higher-order term, yielding local asymptotic stability. 

Theorem 2 presents the rather mild conditions that guarantee local asymptotic stability 

of the SDRE closed-loop solution. Since the characterization of the resulting SDRE controller 

has a similar structure to the LQR problem, in order that the SDRE (2.8) have a positive-

semidefinite solution for all 𝑥𝑥, it is sufficient that {𝐴𝐴(𝑥𝑥),𝐵𝐵(𝑥𝑥 ),𝑄𝑄1/2(𝑥𝑥)} be pointwise 

stabilizable and detectable for all 𝑥𝑥. The SDRE algorithm then gives a smooth feedback. 
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