
TECHNICAL UNIVERSITY OF CRETE
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

TELECOMMUNICATIONS DIVISION

Experimental Study of Simultaneous

Localization and Mapping Algorithms on

the Turtlebot Platform

by

Emmanouil Andrianakis

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DIPLOMA OF

ELECTRICAL AND COMPUTER ENGINEERING

February 2020

THESIS COMMITTEE

Professor Aggelos Bletsas, Thesis Supervisor
Professor Kostas Kalaitzakis

Associate Professor Michail G. Lagoudakis



Abstract

This work merges robotics and radio frequency identification (RFID) tech-

nologies, with the goal to enable precise RFID tag localization. A low-cost

robotic platform was used to create a mobile robot equipped with multiple

modules for RFID inventorying and enhanced perception of robot’s environ-

ment. Various modifications were performed on the robot, so it could sup-

port all the additional modules. Open source software was exploited for the

creation of accurate maps and estimation of the robot’s pose. Prior art local-

ization methods, based on optimization and particle filtering were exploited,

using phase measurements of the RF signal. Implementation and experimen-

tal results showed mean location estimation error of 0.2 m and 0.04 m, for two

dimensions and one dimension, respectively. Execution times suggest that

for robot velocity of 10 cm/sec, the offered implementations were real time.

Thesis Supervisor: Professor Aggelos Bletsas



Acknowledgments

First of all, I would like to thank my supervisor Prof. Aggelos Bletsas for his

guidance and support throughout this work as well as the Telecommunica-

tions Lab for providing all the necessary equipment for fulfilling this thesis.

My friends and colleagues from Telecommunications Lab, especially G.

Vougioukas and K. Skyvalakis for the looting of knowledge we performed

together.

My family and friends, especially E. Giannelos, A. Doko, A. Neli, A.

Polychronakis, A. Zgourakis and E. J. Kenway for all the wonderful time we

spent together.



4

Table of Contents

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Robot Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Our Robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 The Turtlebot Platform . . . . . . . . . . . . . . . . . 9

2.1.2 Kobuki Base . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.3 Hokuyo UST-20LX . . . . . . . . . . . . . . . . . . . . 12

2.1.4 Orbbec Astra Camera . . . . . . . . . . . . . . . . . . 14

2.1.5 RFID Tag Readers . . . . . . . . . . . . . . . . . . . . 15

2.1.6 Ethernet Switch . . . . . . . . . . . . . . . . . . . . . 16

2.1.7 Power Distribution . . . . . . . . . . . . . . . . . . . . 17

2.1.8 Computing Unit . . . . . . . . . . . . . . . . . . . . . 19

2.1.9 Other . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.10 Robot Overview . . . . . . . . . . . . . . . . . . . . . 21

2.2 ROS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 Rviz . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.2 TF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.3 Log Synchronization . . . . . . . . . . . . . . . . . . . 24

3 Robot Localization Algorithms . . . . . . . . . . . . . . . . . 26

3.1 Google Cartographer . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Localization - AMCL . . . . . . . . . . . . . . . . . . . . . . 30



Table of Contents 5

4 RFID Tag Localization Algorithms . . . . . . . . . . . . . . . 33

4.1 Phase Relock . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Particle Filter Based . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.1 PF1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.2 PF2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 41

5.1 Robot Localization . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 RFID Tag Localization . . . . . . . . . . . . . . . . . . . . . 44

6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51



6

List of Figures

2.1 Our Robot Fully Assembled. . . . . . . . . . . . . . . . . . . . 9

2.2 Turtlebot Family. . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Kobuki Base. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Hokuyo UST-20LX mounted on Turtlebot. . . . . . . . . . . . 12

2.5 Laser Scan Example. Red Bots represent distance measure-

ments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Lidar’s Base. . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.7 Front View of the Depth Camera. . . . . . . . . . . . . . . . . 14

2.8 Depth Camera Examples. . . . . . . . . . . . . . . . . . . . . 15

2.9 RFID Tag Readers. . . . . . . . . . . . . . . . . . . . . . . . . 16

2.10 Utilized Ethernet Switch (TP-Link TL-SG1005D). . . . . . . . 16

2.11 Power Distribution Board in action. . . . . . . . . . . . . . . . 17

2.12 Power Distribution Board. . . . . . . . . . . . . . . . . . . . . 17

2.13 Power Distribution Board Assembled. . . . . . . . . . . . . . . 18

2.14 Cable Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.15 ESP32 based Turtlebot Controller. . . . . . . . . . . . . . . . 20

2.16 FlexiRay SF-2110. . . . . . . . . . . . . . . . . . . . . . . . . 20

2.17 Final robot structure used in our experiments. . . . . . . . . . 21

2.18 Some photographs around the robot. . . . . . . . . . . . . . . 22

2.19 Rviz Navigation. . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.20 TF tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Level 0, East Wing, Science Building, TUC. . . . . . . . . . . 27

3.2 An example of a map used for robot localization. . . . . . . . 31

3.3 Particle cloud visualized. . . . . . . . . . . . . . . . . . . . . . 32

4.1 Phase Unwrap Example. . . . . . . . . . . . . . . . . . . . . . 35



List of Figures 7

4.2 Distances visualized. . . . . . . . . . . . . . . . . . . . . . . . 38

5.1 Science’s Building West Wing and Core Level 1 Map. . . . . . 41

5.2 Map creation process. . . . . . . . . . . . . . . . . . . . . . . . 42

5.3 Loop Closure Example. . . . . . . . . . . . . . . . . . . . . . . 42

5.4 Robot navigation example. . . . . . . . . . . . . . . . . . . . . 43

5.5 Book arragement overview. . . . . . . . . . . . . . . . . . . . . 44

5.6 Scenario overview. . . . . . . . . . . . . . . . . . . . . . . . . 45

5.7 Particle filters location estimation. . . . . . . . . . . . . . . . 47

5.8 Phase Relock location estimation. . . . . . . . . . . . . . . . . 47



Chapter 1

Introduction

Nowadays, inventorying and asset tracking are very important problems in

almost every organization. The most common example is that of a library

and misplaced or missing books. In this case, someone has to find any kind

of mistake, but this is time-consuming and humans are not perfect so more

mistakes may occur. Another example could be at a warehouse, if something

gets lost or if you have boxes with items and you need a specific item but

you can’t remember in which box it is placed.

In situations like these, where line of sight (LOS) methods are not avail-

able, RFID tags are a possible solution. They can be read in non-LOS

scenarios, but the reading range is often some meters, so the exact location

remains unknown. The goal of this thesis is to test whether the scenarios

described above, can be resolved in an automated way in order to precisely

estimate (within centimeters) the location of these assets using RFID tags.

Similar approaches, for example in [1], are trying to include reference

tags in known locations and calculate the angle of arrival of unknown tags.

Furthermore, in [2] the use of excessive bandwidth is exploited. Finally, ap-

proaches like [3], are taking advantage of optimization processes to estimate

the tag’s location but many consecutive measurements are required.

In this thesis, the latter approach is implemented as well as a particle fil-

ter approach found in [4] [5]. Chapter 2 offers a description of hardware and

software used. Chapters 3 and 4 describe algorithms used for robot localiza-

tion and RFID tag localization respectively. Finally Chapter 5 presents all

the experimental results and Chapter 6 includes our conclusions and possible

future improvements.



Chapter 2

Robot Architecture

2.1 Our Robot

Figure 2.1: Our Robot Fully Assembled.

2.1.1 The Turtlebot Platform

Turtlebot is a low-cost and easy-to-use robotic platform designed for edu-

cation and research on state-of-the-art robotics. It was created at Willow

Garage by Melonee Wise and Tully Foote in November 2010. The kit in-

cludes a mobile base, a 3D sensor, a computer and a stack-able structure



2.1. Our Robot 10

Figure 2.2: Turtlebot Family.

where additional modules can be mounted. Its software is open source and

there are plenty ready-to-use ROS packages available.

The original Turtlebot (Fig. 2.2a) was based on the iRobot Create which

was an upgraded version of the well-known robotic vacuum cleaner Roomba.

In 2012, Turtlebot’s mobile base was upgraded to a Kobuki Base, manufac-

tured by Yujin Robot (Turtlebot 2 Fig. 2.2b). The new base offered more

features like analog inputs, more power connectors, touch buttons, indica-

tion LEDs and a better battery. Finally in 2017, Turtlebot 3 (Fig. 2.2c)

was announced. It was developed by ROBOTIS and Open Source Robotics

Foundation. This was a major upgrade offering a lower overall cost, a smaller

footprint, better motors, a Single Board Computer and a laser distance sen-

sor.

2.1.2 Kobuki Base

The Base of our robot is a Kobuki Mobile Base made by Yujin Robot. It is

responsible for motion control as well as providing power to the additional

modules installed on the robot. The base is powered by a 4S2P Lithium-Ion

battery pack with a nominal voltage of 14.8 V and a capacity of 4400 mA h.

The battery can power the system for up to 7 hours according to manufac-

turer specifications. This proved to be quite accurate from our experience

operating the robot. The base provides the following connectors for supplying

power to the additional modules:



2.1. Our Robot 11

• 19 V/2 A: Laptop power supply.

• 12 V/5 A: Arm power supply.

• 12 V/1.5 A: Microsoft Kinect power supply.

• 5 V/1 A: General power supply.

Figure 2.3: Kobuki Base.

The 19 V/2 A provides power when the base is charging so it can’t be

used during operation. The 2nd port is designed to provide power to high

power accessories like a robotic arm. We use this port to provide power to

all of our 12 V modules through a custom made distribution board further

described in Sec. 2.1.7. The next port is provided for supplying power to a

Microsoft Kinect but in our case, we don’t use a Kinect as a 3D sensor so

this spare port is used for DC-to-DC converters, so we can provide various

voltage levels depending on our needs.

The base is configured as a differential drive base, with one wheel on each

side. Wheels are powered through a geared motor and each wheel contains a

built-in encoder with a resolution of 2578.33 ticks
wheel rev

or 11.7 ticks
mm

. The base

can achieve a maximum translational velocity of 70 cm/s and a maximum

rotational velocity of 180 deg/s. The base supports payloads up to 5 kg.



2.1. Our Robot 12

In respect to sensors, Kobuki base contains a factory calibrated single-axis

Gyroscope, 3 bumpers for collision detection, 3 cliff sensors and one wheel

drop sensor in each wheel. The base also provides some basic programmable

input-output interfaces: 4 analog inputs, 4 digital inputs, 4 digital outputs, 2

bi-color LEDs, 3 touch buttons and a serial port. PC connectivity is achieved

via a USB port. Finally, all the above are controlled through an STM 32-bit

microcontroller.

2.1.3 Hokuyo UST-20LX

Figure 2.4: Hokuyo UST-20LX mounted on Turtlebot.

As a range finder, a Hokuyo UST-20LX is deployed. This device is based on

Light Detection and Ranging (LiDAR) technology. Its working principle is

to send rapid light pulses and measure the reflection time. Then it calculates

the distance from the point that the pulse got reflected from the equation,

Distance =
c ·∆τ

2
, (2.1)

where c is the speed of light and ∆τ is the duration of the pulse’s round trip.

Hokuyo UST-20LX is a 2D laser scanner which means that this measure-

ment is repeated for different angles on a 270◦ field of view with a resolution



2.1. Our Robot 13

of 0.25◦. The detection distance ranges from 0.06 m to 20 m with an accuracy

of ±40mm. The device is rated for 10 V to 30 V, it draws 450 mA at start up

and 150 mA during operation, so it can be safely powered from the Kobuki

Base. PC connectivity is achieved via an Ethernet port.

Figure 2.5: Laser Scan Example. Red Bots represent distance measurements.

This device is installed on the top mounting surface of the Turtlebot

Platform. The hole grid pattern on the mounting surface (Fig. 2.6b) was

incompatible with the mounting holes of the LiDAR (Fig. 2.6a). A special

base had to be designed so that the LiDAR could be mounted safely and

reliably without any modification to either device. Taking into account the

dimensions of the device and the hole grid pattern a base was designed (Fig.

2.6c)1. Then it was manufactured using 3D printing technology.

1The base was designed by Evaggelos Giannelos (Thanks).



2.1. Our Robot 14

Lidar’s Dimensions. Top Plate Blueprint. 3D Design.

Figure 2.6: Lidar’s Base.

2.1.4 Orbbec Astra Camera

Figure 2.7: Front View of the Depth Camera.

For depth perception, our robot utilized an Orbbec Astra Camera. Depth

map is calculated by projecting a unique IR dot pattern not visible by the

human eye. Figure 2.8a demonstrates such a pattern projected on a wall.

Then a CMOS sensor captures a frame of the environment and with the

help of epipolar geometry, depth information can be extracted. To view

that information, a depth image can be used where darker areas represent

objects closer from the camera while lighter areas represent objects far from

the camera (see Fig. 2.8b). 3D representation is also available using Point

Clouds (see Fig. 2.8c). Also, Astra camera contains an RGB Image Sensor.

Both images (depth and RGB) come with a resolution of 640 x 480 pixels

and a Field of View of 60°H x 49.5°V x 73°D. Objects can be detected from

0.6 m up to 8 m. Accuracy is not listed in the manufacturer’s specifications.



2.1. Our Robot 15

This device is powered from a USB 2.0 connection.

Dot Pattern. Depth Image. Point Cloud.

Figure 2.8

2.1.5 RFID Tag Readers

An RFID Tag Reader was mandatory in our experiments. Two commercial

readers were tested to find out which one better satisfies our requirements.

The first one was a Thingmagic Sargas (Fig. 2.9a) and the second an Impinj

Speedway R420 (Fig. 2.9b). Both of them are small factor UHF Gen2 RFID

Tag Readers with a maximum transmit power of 30 dbm and support of

multiple antennas. Each one had its dedicated API. In the early stages of the

robot’s development, Thingmagic Sargas was used because it requires 5 V to

operate. This ensured that it could be powered directly from Kobuki’s Base

General power supply port, in contrast to 24 V required by Impinj Speedway

R420. Furthermore, the API supplied by Thingmagic was much simpler to

use, in combination with ROS API. But after further review, it was found

that phase measurements were unstable and had half of the expected range.

We decided to continue our experiments with Impinj Speedway R420. That

was a challenge because of three main reasons:

• It required a different voltage level from that supplied by Kobuki Base.

• Problems with the provided API further described in Sec. 2.2.3.

• Requirement for an additional Ethernet port in the system.



2.1. Our Robot 16

To solve the last problem, an Ethernet 5-Port Switch was installed on our

robot.

Figure 2.9: RFID Tag Readers.

2.1.6 Ethernet Switch

As described in Sec. 2.1.5 an additional Ethernet port was required. The sim-

plest solution was to add an Ethernet Switch and assign static IP addresses

from the same subnet to each device. That created a local area network on

our robot. The only challenge was that the Ethernet Switch required a 9 V

power supply. To cope with this issue, the Ethernet Switch was disassem-

bled, to find out if the internal IC chips could handle a 12 V power supply.

That proved to be true according to the manufacturer’s data-sheets. So this

device could be powered directly from Kobuki’s Base 12 V port.

Figure 2.10: Utilized Ethernet Switch (TP-Link TL-SG1005D).



2.1. Our Robot 17

2.1.7 Power Distribution

Figure 2.11: Power Distribution Board in action.

Turtlebot platform is designed to include a variety of additional devices and

modules. Even from the early stages of development, it was known that we

were going to install 3-4 devices on the robot. Almost all of them require

some kind of power supply which in most cases is 12 V. It is necessary for

all those devices to get power safely, with the proper voltage level and not

get damaged from some kind of human error, for example, reverse polarity

or over-voltage. In addition, it must be simple to add or remove devices.

Furthermore, the capability of disabling a device without disconnecting it

must be included. There might be some cases where a device is not required

for a particular experiment. This could increase the battery life of the robot

as well as the overall life span of the device.

Eagle Design. Bare PCB. PCB Solder Joints.

Figure 2.12



2.1. Our Robot 18

Taking all the above into account, a Power Distribution Board was de-

signed and created. It included all the features for safety, expand-ability and

ease-of-use. Eagle CAD was used to create a PCB which was then CNC

milled, using an LPKF ProtoMat S1032. Then all the required components

were soldered. The board offers a single power inlet, which is connected to

the Kobuki’s Base 12 V/5 A port using a custom made connector (Fig. 2.14a)

and 5 power outlets individually controllable through jumper blocks. Then

custom cables were made for each device. Some of our devices are rated for

a different voltage level than 12 V. In these cases DC-to-DC converters were

attached to their cables, so they can be powered properly. This is shown in

Figures 2.14b and 2.14c.

Figure 2.13 : Power Distribution Board Assembled.

Figure 2.14 : Cable Examples

2with the help of George Vougioukas.



2.1. Our Robot 19

2.1.8 Computing Unit

All devices described in Sec. 2.1 are slave devices and need some kind of

master device which communicates with each of them, collects all necessary

data (e.g. laser scans or depth maps), processes them and then calculates

all the required actions. Such a device could be a Single Board Computer,

a mini PC, a laptop or any kind of device with sufficient computing power

and the ability to run Linux OS. Our Turtlebot offered an Intel NUC with

a 2.2 GHz Intel i5 processor, 8 GB of RAM and a 120 GB Solid State Disk

for storage. In our experiments, we did not use this Mini PC because of

power supply issues. Instead, we used a Dell Latitude laptop with similar

specifications. All the required software was installed and the laptop was

placed on the dedicated position on the Turtlebot Platform. The laptop was

operated via a Remote Desktop Application.

2.1.9 Other

Additional modifications and addons are listed below. These modifications

were made to increase our system’s stability and functionality.

2.1.9.1 Joystick Controller

When it was necessary to manually move the robot, we wanted to have the

ability to control it remotely. The only way to achieve this out of the box

was with the help of computer keyboard arrows. This proved to be difficult

because it was necessary to use a second PC as well due to the lack of analog

control. Taking all of these into account, we built a remote controller using

a 2 axis analog joystick and an ESP32 microcontroller power by a 5 V USB

power bank. Micro-controller included WiFi capabilities so it was easy to

send UDP packages and then received them on the Computing Unit. A

picture of the controller described above is shown in Figure 2.15.



2.1. Our Robot 20

Figure 2.15 : ESP32 based Turtlebot Controller.

2.1.9.2 Antenna Mount

A FlexiRay SF-2110 5 dBi antenna had to be mounted on the robot for the

RFID tag reader to work. A wooden stick was mounted on the robot and the

FlexiRay antenna was placed on top of it (see Fig. 2.16). Wood was chosen

to reduce possible reflections of RF signals transmitted and received by the

antenna.

Figure 2.16 : FlexiRay SF-2110.



2.1. Our Robot 21

2.1.9.3 Pole Modification

Turtlebot’s Platform Plate structure is held together with 12 mm aluminum

rods. Those rods are threaded together with M4 bolts, which quickly failed.

The robot was disassembled and those rods were modified to support M6

bolts. This modification was done in Micro-machining and Manufacturing

Modeling Lab, School of Production Engineering And Management, Techni-

cal University of Crete.

2.1.10 Robot Overview

After installing all necessary devices, cable management was done to ensure

that no cable was loose and all connections were made reliably. The final

robot structure is presented in the following figures.

Figure 2.17 : Final robot structure used in our experiments.



2.1. Our Robot 22

Figure 2.18 : Some photographs around the robot.



2.2. ROS 23

2.2 ROS

Robots are usually complex systems containing many subsystems. To accom-

plice the desired tasks, all these systems have to communicate so they can

exchange information and calculate the next action. Furthermore, it must

be simple and fast to install new modules in the system. All those problems

are solved with the help of the Robot Operating System (ROS) [6].

The code in ROS is organized into Nodes. Nodes run as individual pro-

cesses so a system can include many Nodes. Typically a Node performs a

single task, for example, a Node is launched to communicate with Hokuyo

LiDAR and publish laser scan data to a dedicated topic. Nodes communi-

cate through topics and services. Topics are used for message exchange and

a node can publish or subscribe to many topics. The same applies to topics,

many nodes can publish or subscribe to the same topic. Messages contain

data in a structured way. Services provide a way to call functions from other

nodes. Manufacturers of almost every device designed for robotic use, pro-

vide the appropriate ROS package. This is very important because we don’t

have to write our drivers for each device and we only have to learn to use a

single API.

In addition, ROS provides many useful tools for data visualization, data

logging and playback, robot simulators and many more. ROS was initially

developed by Stanford University and got released in 2007. All of its features

made it the standard middleware for writing robot software.

2.2.1 Rviz

Rviz is a powerful visualization tool included in ROS. Its Graphical User

Interface is straightforward and easy-to-use. It can visualize laser scans (Fig.

2.5), point clouds (Fig. 2.8c), maps, robot models and any other data type

which can be visualized. Its main window provides a 3D viewer, a 2D viewer

is available in a separate window and is used to visualize images like a depth

map (Fig. 2.8b). Furthermore, it provides some basic robot navigation func-

tionality like sending navigation goals. An example of a navigation viewer is

shown in Figure 2.19.



2.2. ROS 24

Figure 2.19 : Rviz Navigation.

2.2.2 TF

Another useful tool provided by ROS is the TF library. This library orga-

nizes the coordinate frames of a system in a tree like structure and provides

transformations from one coordinate frame to another. Every device on our

robot, which performs some kind of measurement, has its coordinate frame.

We adjusted those frames position in the dedicated files. For example, the

depth camera’s default position is on the rear position of the middle plate

and we mounted it on the middle position. Also, we installed an antenna

that had to be included in the TF tree. So we defined a static transformation

from our robot frame to the antenna frame. An example of a TF tree can be

seen in Figure 2.20.

2.2.3 Log Synchronization

There were some compiler issues interfering with APIs of ROS and Impinj

RFID Reader. The problem was that the free version of Impinj API could

only work with GCC v4.8, while ROS required v5. As a result, we couldn’t

compile a node that could publish ROS messages to a topic containing infor-

mation about the RFID Tags read by the Reader. This was an issue because

the requirement was to log the tag’s information as well as the exact location



2.2. ROS 25

Figure 2.20 : TF tree.

of the robot calculated by AMCL, when the tag was read. Named FIFOs

and sub-processes were tested as a solution but they introduce a huge syn-

chronization error because of the Operating System’s delays. Finally, the

solution was found with the help of time-stamps. Two executables were cre-

ated, the first one logged the robot’s pose measurements and the second one

the Tags read measurements. Each measurement contained a time-stamp

and logs were saved into separate files. After the execution of the loggers, a

simple script can open these files, merge them according to time-stamps and

then save the merged data which can then be used as an input to RFID tag

Localization Algorithms.



26

Chapter 3

Robot Localization Algorithms

One of the fundamental problems for a robot is to determine its pose in an un-

known environment as well as simultaneously map that environment. This

problem is referred as simultaneous localization and mapping (or SLAM).

The only data available are those of action control ut and measurement data

zt. Examples of control actions are robot movement and object manipula-

tion. Measurement data include sensor measurements (e.g. laser scans) at a

specific point in time. The 2D pose xt of a robot is modeled as,

xt =

xy
θ

 , (3.1)

where x, y are 2D coordinates and θ represents robot’s heading. Robot’s

translation from one pose to another can be modeled as,

bel(xt) = p(xt | xt−1, ut), (3.2)

where xt represents the current pose and xt−1 the previous. Further analysis

of the aforementioned model can tell that when the robot takes an action ut

the result is a transition from xt−1 to xt. Similarly, measurement data take

the form:

bel(zt) = p(zt | xt). (3.3)

Probability distributions are used because action control and sensor measure-

ments are governed by probabilistic laws. Simply put, sensor measurements

introduce noise and action control can’t be precise. The probabilistic model

(3.2) can be reffered as motion model while (3.3) as measurement model.

A map of the environment m is a representation of objects in the environ-



Chapter 3. Robot Localization Algorithms 27

ment. Maps are very useful for path planning as well as obstacle avoidance.

Thus, the robot must estimate a map so that the robot can revisit locations

if that is required or avoid them. There are many map representations but

the most common is the occupancy grid map, where space is divided into

cells with a specific resolution (e.g. 0.05 m/cell edge) and each cell repre-

sents the probability of occupancy. An example of an occupancy grid map

can be seen in Figure 3.1, where white color represents free space, black cells

are obstacles and grey are unknown areas.

Figure 3.1 : Level 0, East Wing, Science Building, TUC.

The SLAM can be solved with two main approaches. One is known as

Full-SLAM in which the complete path (x1:t) of the robot as well as the map

m are estimated:

p(x1:t,m | z1:t, u1:t). (3.4)

The second approach is called Online-SLAM where just the current pose is

estimated:

p(xt,m | z1:t, u1:t). (3.5)

Both approaches are equally important and there is extensive literature that



3.1. Google Cartographer 28

addresses them. In our experiments we used Google Cartographer SLAM [7]

approach because it is fairly new and it produces acceptable results.

3.1 Google Cartographer

Google Cartographer was released in 2016 as an open source project [7]. It

provides a real-time simultaneous localization and mapping algorithm in 2D

and 3D space. Cartographer comes with Robot Operation System (see Chap.

2.2) support and ready to use packages for popular robotic platforms like the

Turtlebot. Among its more important features is the capability to close loops

over large trajectories. Loop closing is defined as the problem of revisiting

a location. In this case, the robot must be able to identify that location in

the estimated map and not insert it as a new. This proved to be a legit

claim and the Loop Closure capabilities can be seen in a real example from

our experiments in Figure 5.3. In many cases, due to measurement error

accumulation, this is not possible and the other approaches would fail to

produce an accurate map.

Cartographer divides the SLAM problem into a Local SLAM and a Global

SLAM. In their local SLAM approach, laser scans {hk} are matched against

a small portion of the map. Those portions are called submaps {si}. Scan

points are modeled in the following form:

H = {hk}k=1,2...K , hk ∈ R2. (3.6)

Then a transformation Txhk of the scan points from the scan’s frame to the

submap frame is define as:

Txhk =

(
cosxθ − sinxθ

sinxθ cosxθ

)
hk +

(
xx

xy

)
, (3.7)

where x is the pose of the scan frame in the submap frame. Scan Matching is

achieved using a non-linear optimization process. The optimization process

seeks a transformation Tx that aligns the pose of the laser scan x frame in

the submap frame. This is achieved using a Ceres based [8] scanner matcher



3.1. Google Cartographer 29

formulated in a nonlinear least squares problem:

argmin
x

K∑
k=1

(1−Msmooth(Txhk))
2, (3.8)

where function Msmooth : R2 → R is a smooth version of the probability

values in the local submap si which is calculated using bi-cubic interpolation.

This smooth version is used because usually gives a better precision than the

resolution of the map.

The local SLAM approach slowly accumulates error which is acceptable

only for a few dozen scans. So, many submaps are created and the Global

SLAM approach tries to align all submaps and scans poses to estimate an

accurate map m of the unknown environment. This optimization process

follows sparse pose adjustment (SPA) [9] and like scan matching, it is cast as

a nonlinear least squares problem. This process runs every few seconds and

Ceres is used to calculate a solution to:

argmin
Xs,Xh

1

2

∑
i,j

ρ(E2(xsi , x
h
j ,Σi,j, xi,j)), (3.9)

where Xs = {xsi}i=1,2...n are submap poses and Xh = {xhj }j=1,2...ξ are scan

poses which are optimized given some constraints. These constraints take

the form of relative poses xi,j and associated covariance matrices Σi,j. The

pose xi,j describes where in the submap si the scan was matched. The term

ρ represents a loss function and it is used to reduce the influence of outliers.

Then a branch-and-bound scan matching approach is executed and seeks for

the optimal, pixel accurate match:

x? = argmax
x∈W

K∑
k=1

Mnearest(Txhk), (3.10)

where W is the search window size and Mnearest an extended version of the

submap. Search window is divided into steps, angular δθ step size is chosen

based on the maximum range dmax of each scan and the resolution r of the



3.2. Localization - AMCL 30

map:

dmax = max
k=1,..,K

‖hk‖, (3.11)

δθ = arccos(1− r2

2d2
max

). (3.12)

Then each step is defined as:

wx =

⌈
Wx

r

⌉
, wy =

⌈
Wy

r

⌉
, wθ =

⌈
Wθ

dmax

⌉
. (3.13)

Finally the pose x? can be efficiently calculated using a Branch-and-bound

approach. A more detailed description of the overall approach can be found

in [7].

3.2 Localization - AMCL

In many situations, a robot is placed in a known environment where it per-

forms the required task. For example, a robot could be placed in a library

in order to find misplaced books. In this case, the map is given so it is not

necessary to estimate it. This scenario is referred to as the Mobile robot

localization problem where only the pose of the robot needs to be estimated.

Robot Localization problems are distinguished into three types according to

[10](see Chap. 7.2):

• Position Tracking, where initial pose is known.

• Global Localization, where initial pose is unknown.

• Kidnapped Robot Problem, where robot can be kidnapped and

teleported to some other location.



3.2. Localization - AMCL 31

Figure 3.2 : An example of a map used for robot localization.

A variety of algorithms are available trying to solve the robot localiza-

tion problem. The most popular of them is the Monte Carlo Localization

(MCL), which takes advantage of particle filters to estimate the robot’s

pose. Algorithm 1 shows the basic MCL functionality. A set of M Par-

ticles Xt = {x[1]
t , x

[2]
t , ..., x

[M ]
t } represents the belief bel(xt). The initial belief

is calculated by uniformly spreading particles across the map. Line 4 of the

algorithm samples from the motion model, using particles from present belief

as starting points. Then measurements are used to calculate the importance

weight of each particle (Line 5). Initial weight is set to 1
M

for all particles.

Lines 7-9 are the resampling step. Particles with stronger weights are more

likely to be chosen for the next round. This lead to a new set of particles

concentrated to more likely locations of the true pose.

Monte Carlo Localization can be modified to solve more challenging lo-

calization problems like Kidnapped Robot Problem. Those variations are

further described in [10](Chapter 8.3). A popular approach is the Adaptive

Monte Carlo Localization (AMCL) which is based on KLD sampling [11].

The basic idea of this algorithm is to dynamically change the number of



3.2. Localization - AMCL 32

Algorithm 1 MCL

1: procedure MCL(Xt−1, ut, zt,m)
2: X̄t = Xt = ∅
3: for m = 1 to M do
4: x

[m]
t = sample motion model(ut, x

[m]
t−1)

5: w
[m]
t = measurement model(zt, x

[m]
t )

6: X̄t = X + 〈x[m]
t , w

[m]
t 〉

7: for m = 1 to M do
8: draw i with probability ∝ w

[i]
t

9: add x
[i]
t to Xt

10: return Xt

particles based on a statistical approach. In our experiments, we used an

implementation of this algorithm. The implementation is provided through

a ROS package [12]. The package is included as a part of Navigation Stack.

Navigation Stack contains packages for localization, path planning, obstacle

avoidance, cost map creation and action planning. An example of navigation

visualized by rviz can be seen in Figure 2.19. An example of AMCL initial

particle spread can be seen in Figure 3.3.

Figure 3.3 : Particle cloud visualized.



33

Chapter 4

RFID Tag Localization

Algorithms

Radio Frequency Identification or RFID is a wireless, non-contact, battery-

less method of data transfer. An RFID tag contains an antenna and an

IC chip. Its tiny size factor makes it possible to be integrated into cards,

key-chains or even stickers. RFID technology can be used for access control,

inventorying, object tracking etc. There 3 main RFID bands: Low Frequency

(120 kHz to 150 kHz), High Frequency (13.56 MHz) and Ultra High Frequency

(865 MHz to 868 MHz Europe, 902 MHz to 928 MHz USA). We are interested

in UHF RFID Tags. RFID Tags are passive and are powered from the energy

of the electromagnetic wave transmitted from the Reader. They do not

transmit some kind of signal, they just reflect the incoming signal in such

a way that they encode the necessary data. Each tag is identified by a

unique code called the Electronic Product Code (EPC). This is achieved

with antenna load switching and it is based on the backscatter effect.

Because of the distance between Reader and tag, a phase offset is intro-

duced in the received signal. This phase offset can be modeled as follows:

φR − 2πfcτ = φR − 2
2πd0

λ
= φR − 2kd0, (4.1)

where τ = 2d0
c

= 2 d0
λfc

, c is the speed of light, fc is the carrier frequency,

φR is the carrier phase, d0 is the Euclidean distance between Reader and

tag which is multiplied by 2 because signal travels from reader-to-tag and

back and k = 2π
λ

is the angular wavenumber. The reader calculates that

offset for each read and report it in 2π intervals. This measurement θmeas

also include phase offset due to cabling φcable, phase noise φnoise from reader’s



4.1. Phase Relock 34

receive chain, a constant offset θtag introduced by tag electronics and phase

θrefl caused by the effect of the RF signal reflections (multipath). So each

phase measurement can be modeled as follows:

θmeas =

θi︷ ︸︸ ︷
φR − 2kd0 + θtag + φcable︸ ︷︷ ︸

θt

+φnoise + φrefl︸ ︷︷ ︸
φvar

. (4.2)

In this thesis φvar is omitted, so we assume that θmeas = θi. Then the equation

φi(xt, yt, θt) is defined as:

φi(xt, yt, θt) =

(
2π

λ
2di + θt

)
mod 2π

=

(
4π

λ

√
(xt − xi)2 + (yt − yi)2 + θt

)
mod 2π,

(4.3)

where i = 1, ..., N , (xi, yi) are reader’s coordinates and (xt, yt) are tag’s

coordinates. Reader’s coordinates are known from Robot Localization. Con-

sequently the only unknowns that need estimation are tag’s coordinates and

constant phase offset.

4.1 Phase Relock

An interesting approach for Phase based RFID Tag Localization is proposed

in [3]. The proposed method is trying to minimize the following function:

F (xt, yt, θt) =
N∑
i=1

[φit(xt, yt, θt)− θi]2

=
N∑
i=1

[((
4π

λ

√
(xt − xi)2 + (yt − yi)2 + θt

)
mod 2π − θi

)
mod 2π

]2

,

(4.4)



4.1. Phase Relock 35

where θi is the measured phase. This problem is treated as an nonlinear

optimization problem. The global minimum of F (xt, yt, θt) are the estimated

tag coordinates (xt, yy) and the constant phase offset θt. Measured phase

samples contain discontinuities because of the mod function. These discon-

tinuities introduce many local minimums to F (xt, yt, θt) and the optimization

would fail to find the global one. To overcome this issue, a phase unwrapping

method is applied to eliminate those discontinuities. Samples are divided into

groups that need to be shifted vertically by k · 2π; k ∈ Z, k is calculated so

that a continuous curve is produced. This method is modeled as follows:

Θ̂j = Θj + k · 2π, j = 1, ...,m , (4.5)

where Θj are phase sample groups. An example of this process can be seen

in Figure 4.1.

−2.0 −1.5 −1.0 −0.5 0.0 0.5
0

2

4

6

−1.50 −1.25 −1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50
−10

−5

0

5

X Axis (m)

Ph
as

e 
(ra

d)

Tag: 6 Phase Raw
Phase Unwrapped

Figure 4.1 : Phase Unwrap Example.



4.2. Particle Filter Based 36

Now F (xt, yt, θt) is simplified to:

F̂ (xt, yt, θt) =
N∑
i=1

[φi(xt, yt, θt)− θ̂i]2

=
N∑
i=1

[(
4π

λ

√
(xt − xi)2 + (yt − yi)2 + θt

)
− θ̂it

]2

,

(4.6)

and it is ready for further processing.

The optimization process that we used is Gradient Descent and it is based

on derivative observation. An initial point of ε1 is randomly chosen. Then

next ε (εn+1) is calculated from the following equation:

εn+1 = εn − α∇F̂ (εn), (4.7)

where α ∈ R+ represents a small number (e.g. 0.0000001) and ε is defined

as:

εn =

xtyt
θt

 (4.8)

This calculation is repeated over a finite amount of times. When ε does not

significantly change, calculation is stopped and ε is our estimate. Algorithm

2 provides a brief overview of the optimization process. Partial derivatives

of F̂ (xt, yt, θt) were calculated using Python’s library Sympy [13]. Another

useful library for our implementation was Scipy [14].

4.2 Particle Filter Based

4.2.1 PF1

Another approach taking advantage of phase measurements for RFID Tag

Localization is by using particle filters [4] [5]. Antenna’s trajectory and

orientation are known from Robot Localization (Chap. 3) and TF tree (Chap.



4.2. Particle Filter Based 37

Algorithm 2 Gradient Descent

1: procedure GD(Θ, X)
2: phase unwrap
3: ε = random(X)
4: for n = 0 to N do
5: xt = xt − α∂F (xt,yt,θt)

∂xt

6: yt = yt − α∂F (xt,yt,θt)
∂yt

7: θt = θt − α∂F (xt,yt,θt)
∂θt

8: if xt, yt, θt does not significantly change then
9: break

10: return xt, yt, θt

2.2.2). Particles are defined as follows:

p[m] =


x[m]

y[m]

θ[m]

w[m]

 , m = 1, 2, ...,M, (4.9)

where (x[m], y[m]) are particle’s coordinates, θ[m] is the phase offset a tag would

introduce and w[m] is particle’s weight. Particles are spread uniformly on

the 2D plane, around some point based on robot’s trajectory and antenna’s

orientation. For each particle, the constant phase offset θ[m] is uniformly

assigned and initial weight is set to w[m] = 1. On every round, Euclidean

distance d[m] between each particle and robot is calculated:

d[m] =
√

(x[m] − xi)2 + (y[m] − yi)2. (4.10)

Then we test whether a phase measurement for a tag at the particle’s location

could introduce that offset. Phase measurement θi is converted into distance

δ0 using the following formula:

δ0 =
λθi
4π

. (4.11)



4.2. Particle Filter Based 38

Taking into account that θi ∈ [0, 2π) , δ0 ∈ [0, λ
2
) can be deduced. Then the

calculated distance dm distance can be model as follows:

d[m] = δ[m] + n
λ

2
, n ∈ N, (4.12)

δ[m] = d[m] mod
λ

2
. (4.13)

Then we set:

δρ1 = max(δ[m], δ0), δρ2 = min(δ[m], δ0). (4.14)

Particles that are more likely to introduce the measured phase offset are these

with the minimum distance ∆ where:

∆[m] = min

(
δρ1 − δρ2,

λ

2
− (δρ1 − δρ2)

)
. (4.15)

This formula ensures that the minimum distance is always calculated even

in cases where δρ1, δρ1 are near 0 or λ
2
. In Figure 4.2 an example is shown.

Figure 4.2 : Distances visualized.

Then a Gaussian Distribution N (∆[m], µ, σ2) is used to update the parti-

cles’ weight:

N (∆[m], µ, σ2) =
1

σ
√

2π
e
−(∆[m]−µ)

2
/

2σ2

(4.16)

where µ is the distribution’s mean value and σ is the standard deviation. So

the new weight ŵ[m] will be:

ŵ[m] = w[m]N (∆[m], 0, σ2). (4.17)



4.2. Particle Filter Based 39

Finally the RFID Tag’s Location estimate is calculated as a weighted mean:

xt =

M∑
m=1

w[m]x[m]

M∑
m=1

w[m]

, yt =

M∑
m=1

w[m]y[m]

M∑
m=1

w[m]

. (4.18)

Algorithm 3 implements the particle filter described above. This version of

the algorithm is called PF1.

4.2.2 PF2

Constant phase offset of each particle is subtracted from phase measurement.

This way that offset can be also estimated. An improved version of PF1

ignores the estimation of θt and sets θ[m] to a constant value θc ∈ [0, 2π).

Then the estimation algorithm is executed K times and the final location

estimation is the mean of all estimations. In every execution, θc is set to a

different value according to the following formula:

θc = k

⌈
2π

K

⌉
, k = 0, ..., K − 1. (4.19)

So algorithm’s 3 line 6 can be changed to θ[m] = θc. Because of smaller

search space, only xt, yt need estimation, the number of particles M can be

reduced. Carefully choosing K,M , total execution time can be improved.



4.2. Particle Filter Based 40

Algorithm 3 PF1

1: procedure PF1(Θ, Xr)
2: calculate spread point P
3: for m = 1 to M do
4: x[m] = U(P ± r)
5: y[m] = U(P ± r)
6: θ[m] = U [0, 2π)
7: w[m] = 1
8: for n = 1 to N do . N is number of measurements
9: for m = 1 to M do
10: δ0 = λ(θn−θ[m]) mod 2π

4π

11:

12: d[m] =
√

(x[m] − xn)2 + (y[m] − yn)2

13: δ[m] = d[m] mod λ
2

14: δρ1 = max(δ[m], δ0)
15: δρ1 = min(δ[m], δ0)

16: ∆[m] = min

(
δ[m] − δ0,

λ
2
− (δ[m] − δ0)

)
17: w[m] = w[m]N (∆[m], 0, σ2)

18: xt, yt = calculate weighted mean
19: return xt, yt



41

Chapter 5

Experimental Results
5.1 Robot Localization
To evaluate the functionality of the complete system as well as the accuracy

of implemented algorithms, real world experiments were conducted. First of

all, robot localization had to be tested, so the creation of maps was necessary.

All required ROS nodes were launched and we drove our robot around

so it could map the environment. In our first experiments, only our lab was

mapped (Fig. 3.2). Map results were acceptable, so we proceeded to larger

scale mapping like Science’s Building East Wing, Level 0 (Fig. 3.1 or West

Wing and Core Level 1 (Fig. 5.1). In Figure 5.3 loop closing optimization

can be seen. Indeed the claim for large trajectory loop closing was confirmed.

Figure 5.1 : Science’s Building West Wing and Core Level 1 Map.

Maps were saved using a special version of map server package, created

to support Cartographer. From the experiments above we acquired maps

useful for our next experiments and the capabilities of the selected SLAM

algorithm got explored. In Figure 5.2 map creation snapshots can be found.



5.1. Robot Localization 42

Figure 5.2 : Map creation process.

Before After

Figure 5.3 : Loop Closure Example.

Afterward, AMCL and Navigation Stack got tested. Modification to pa-

rameters were made to improve the performance as well as to include all



5.1. Robot Localization 43

of the installed sensors. For example, the default Turtlebot AMCL package

converts depth images to laser scans because LiDAR is an optional module.

Localization using depth images does not provide the desired results because

of the smaller field of view, so the dedicated files were changed so that Li-

DAR’s node is launched and used for AMCL. Depth information was used

only for obstacle avoidance. Rviz was very useful in those experiments be-

cause it visualizes all navigation stack information and makes troubleshooting

very simple. An example of a navigation goal action can be seen in Figure

5.4. Red arrows represent AMCL particles. It is worth mentioning that the

initial pose estimate is spread over a large area but as the robot moves, that

estimate is corrected and quickly converges around the true pose.

Figure 5.4 : Robot navigation example.

At this point mapping and localization provided us with acceptable results

so the next step was to evaluate the RFID Tag Localization Algorithms. But

before that Log Synchronization had to be tested. As described in Chap.



5.2. RFID Tag Localization 44

2.2.3 initial attempts failed but our proposed method based on timestamp

synchronization produced the desired results. Some minor modifications were

made to the Pose Logger’s log rate so it could match the RFID Reader’s read

rate. The result of the synchronization was a file containing the following

information for each tag interrogation:

• x, y coordinates of the antenna location, when the tag was read,

• RSSI,

• Phase,

• EPC.

5.2 RFID Tag Localization
The scenario for RFID tag localization follows: 15 books were arranged in a

bookshelf spaced approximately 5.5 cm apart. Then, Alien ALN9740 (Higgs-

4) RFID tags were attached to the books in such a way that the center of the

tag was at the same height as the reader’s antenna (1.1 m). To find each tag’s

true location, a measuring tape was used. Reader’s transmit power is set to

30 dBm (maximum). The map is created beforehand and AMCL provides

robot’s pose estimate.

Figure 5.5 : Book arragement overview.

Our robot moves on a straight line approximately 1 m away from tags,

with its antenna facing the tags. Robot moves with a translational velocity

of 10 cm/s along a 3 m trajectory.



5.2. RFID Tag Localization 45

Figure 5.6 : Scenario overview.

Loggers are executed and when the trajectory is finished, the synchroniza-

tion script produces the log file described above. Finally, Tag Localization

Algorithms are executed for each tag and 1D, 2D errors are calculated using

Euclidean distance. For PF1 and PF2, the number of particles M is set to

105 and 104 respectively. The experimental results are presented in Table

5.1.
Table 5.1 : Experimental errors (meters) across all tags.

Relock PF1 PF2
TagID 1D error 2D error 1D error 2D error 1D error 2D error

6 0.059 0.256 0.051 0.137 0.0516 0.1392
7 0.163 0.326 0.031 0.045 0.0332 0.0496
8 0.095 0.427 0.075 0.281 0.0756 0.278
9 0.042 0.436 0.044 0.314 0.0436 0.3168
10 0.066 0.207 0.075 0.223 0.0748 0.2256
11 0.078 0.312 0.082 0.319 0.08 0.3176
12 0.037 0.175 0.047 0.159 0.0484 0.1548
13 0.006 0.340 0.003 0.308 0.0008 0.3132
14 0.009 0.178 0.067 0.157 0.0656 0.1612
15 0.014 0.157 0.023 0.147 0.0236 0.1444
16 0.034 0.159 0.043 0.157 0.042 0.158
17 0.004 0.083 0.013 0.158 0.0124 0.1608
18 0.031 0.070 0.003 0.077 0.002 0.0788
19 0.030 0.230 0.037 0.258 0.0376 0.2572
20 0.096 0.389 0.069 0.253 0.0684 0.2576



5.2. RFID Tag Localization 46

In this experiment 14 506 measurements were logged and processed (ap-

proximately 937 logs-per-tag). Mean values of errors and execution time are

shown in Table 5.2. A visualization of estimated-true locations for each al-

gorithm, are shown in figures 5.7a, 5.7b, 5.8 (tag IDs increase from right to

left).

Table 5.2 : Experimental mean values and standard deviation.

Relock PF1 PF2

Mean 1D error 0.05 m 0.04 m 0.04 m
STD 1D error 0.043 m 0.025 m 0.025 m
Mean 2D error 0.25 m 0.2 m 0.2 m
STD 2D error 0.114 m 0.084 m 0.083 m

Mean Ex. Time 5.6 s 18.6 s 1.70 s

Taking a look at mean error values, it is clear that all methods are simi-

larly accurate. Particle filter methods provide better results. The reason PF1

is slower than PF2 is that we use more particles. This is essential because,

in PF1, more unknowns are estimated, so more particle combinations are

needed. The lack of importance re-sampling also contributes because parti-

cles are not renewed. Improved results can be obtained if more parameters

are taken into account, for example, the estimation of phase noise. Phase’s

Relock execution time is slower than expected because our Python script

implementation is not optimized. Single axis error is smaller than tag-to-tag

distance so tag order can be retrieved. This proves to be true in almost every

case if we observe Figures 5.7a, 5.7b, 5.8. In all three algorithms, 13 tags’

order is calculated correctly. Another worth mentioning fact is that all the

estimations are located behind the true location. From this, we can assume

that the measured phase does not correspond only to the direct path of the

signal but also to possible reflections coming from objects in the environment

(e.g. walls). Furthermore, if we take a closer look at the robot’s logged tra-

jectory, some inconsistencies can be noticed. These “jumps” are present due

to floor tiling. This causes some z-axis movement when the robot’s wheels

fall into tiling grooves. Finally taking into account execution times suggest

and robot’s velocity all implementations were real time.



5.2. RFID Tag Localization 47

PF1. PF2.

Figure 5.7 : Particle filters location estimation.

Figure 5.8 : Phase Relock location estimation.



Chapter 6

Conclusions

6.1 Conclusion

The purpose of this work was to combine RFID tags with robotics. This was

accomplished and a mobile system was created, capable of autonomously nav-

igating on a known map. During navigation RFID tags can be read and then

using the implemented RFID tag localization algorithms, their location can

be accurately estimated. Experimental results demonstrate that satisfactory

estimation can be obtained, taking into account that some parameters were

ignored (e.g. phase noise). This is visible if we compare true and estimated

locations. All estimations are located further away from true locations so we

can assume that the complete phase model is correct and further examina-

tion is needed. The importance of middlewares, like ROS, was appreciated,

because of all the advantages frameworks like these can provide. Finally, all

the implemented hardware modifications ensure that the robot is flexible and

ready for any kind of experiment.

6.2 Future Work

This work exploited only a few of the possible capabilities of a system like

this. There are a lot of possible improvements to both hardware and software.

From the hardware’s perspective, some of them refereed below. First of all

multiple antennas can be installed, so tags can be read in more directions.

A multicopter can be used so tags can be localized at more heights (e.g.

huge warehouses shelves). A software-defined radio can be installed on the

robot, so more detailed data can be obtained. Furthermore, a single board

computer can be used instead of a laptop. This will make it easier to start



6.2. Future Work 49

an experiment because until now, the laptop has to be placed on the robot

every time it is required. Lastly, a smaller and cheaper robot can be created,

so we can deploy multiple of them in an environment and program them to

collaborate.

Regarding software improvements, a major one could be to include more

noise parameters into the modeled phase. This will probably reduce the

error because as it is suspected the multipath component of the phase mea-

surement is a significant term. Multipath estimation could be possible by

map examination. Also, 3D RFID localization can be performed with some

modifications to our implementations. This means that we would localize

tags at a height different from that of the robot’s antenna. Another ma-

jor improvement could be to implement importance resampling and particle

position variations based on the robot’s movement in PF algorithms. Then

even fewer particles will be needed and their population could be dynami-

cally changed. Finally, we can use a single particle set for all tags instead of

a set-per-tag.



50



51

Bibliography

[1] J. Wang and D. Katabi, “Dude, where’s my card? rfid positioning that

works with multipath and non-line of sight,” in Proceedings of the ACM

SIGCOMM 2013 Conference on SIGCOMM, ser. SIGCOMM ’13, Aug

2013, p. 51–62.

[2] Z. Luo, Q. Zhang, Y. Ma, M. Singh, and F. Adib, “3D backscatter local-

ization for fine-grained robotics,” in 16th USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI 19), Boston, MA,

Feb. 2019, pp. 765–782.

[3] A. Tzitzis, S. Megalou, S. Siachalou, T. Yioultsis, A. Kehagias, E. Tsar-

doulias, A. Filotheou, A. Symeonidis, L. Petrou, and A. G. Dimitriou,

“Phase ReLock - Localization of RFID tags by a moving robot,” in Proc.

IEEE Europ. Conf. on Antennas and Propagation (EuCAP), Krakow,

Poland, Mar. 2019, pp. 1–5.

[4] E. Giannelos, K. Skyvalakis, M. Andrianakis, A. G. Dimitriou, and

A. Bletsas, “Robust RFID Localization in Multipath with Phase-Based

Particle Filtering and a Mobile Robot,” submitted to IEEE Int.Conf.

on RFID, Orlando, USA, April 2020.

[5] E. Giannelos, “Intelligent Wireless Networks and Robots for Low-Cost

Battery-less Sensing and Localization,” Ph.D dissertation, School of

ECE, TUC, in preparation, Feb. 2020.

[6] Stanford Artificial Intelligence Laboratory et al., “Robotic operating

system.” [Online]. Available: https://www.ros.org

https://www.ros.org


Bibliography 52

[7] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure

in 2D LIDAR SLAM,” in IEEE Int. Conf. on Robotics and Automation

(ICRA), Stockholm, Sweden, May 2016, pp. 1271–1278.

[8] S. Agarwal, K. Mierle, and Others, “Ceres solver.” [Online]. Available:

http://ceres-solver.org

[9] K. Konolige, G. Grisetti, R. Kümmerle, W. Burgard, B. Limketkai,

and R. Vincent, “Efficient sparse pose adjustment for 2D mapping,”

in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Taipei, Tai-

wan, Oct 2010, pp. 22–29.

[10] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent

Robotics and Autonomous Agents). The MIT Press, 2005.

[11] D. Fox, “KLD-sampling: Adaptive particle filters,” in Proc. Int. Conf.

on Neural Information Processing Systems: Natural and Synthetic

(NIPS), Vancouver, Canada, Oct. 2001, pp. 713–720.

[12] Brian P. Gerkey, “AMCL ROS package.” [Online]. Available:

http://wiki.ros.org/amcl

[13] A. Meurer, C. Smith, M. Paprocki, O. Čert́ık, S. Kirpichev, M. Rock-

lin, A. Kumar, S. Ivanov, J. Moore, S. Singh, T. Rathnayake, S. Vig,

B. Granger, R. Muller, F. Bonazzi, H. Gupta, F. Johansson, F. Pe-

dregosa, and A. Scopatz, “Sympy: Symbolic computing in python,”

PeerJ Computer Science, vol. 3, p. e103, 01 2017.

[14] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,

D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright,

S. J. van der Walt, M. Brett, J. Wilson, K. Jarrod Millman, N. May-

orov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. Carey, İ. Polat,

Y. Feng, E. W. Moore, J. Vand erPlas, D. Laxalde, J. Perktold, R. Cim-

rman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H.

Ribeiro, F. Pedregosa, P. van Mulbregt, and S. . . Contributors, “SciPy

1.0: Fundamental Algorithms for Scientific Computing in Python,” Na-

ture Methods, 2020.

http://ceres-solver.org
http://wiki.ros.org/amcl

	Table of Contents
	List of Figures
	Introduction
	Robot Architecture
	Our Robot
	The Turtlebot Platform
	Kobuki Base
	Hokuyo UST-20LX
	Orbbec Astra Camera
	RFID Tag Readers
	Ethernet Switch
	Power Distribution
	Computing Unit
	Other
	Robot Overview

	ROS
	Rviz
	TF
	Log Synchronization


	Robot Localization Algorithms
	Google Cartographer
	Localization - AMCL

	RFID Tag Localization Algorithms
	Phase Relock
	Particle Filter Based
	PF1
	PF2


	Experimental Results
	Robot Localization
	RFID Tag Localization

	Conclusions
	Conclusion
	Future Work

	Bibliography

