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Abstract 

 
Hyperspectral Imaging is a powerful analytical tool that enables the acquisition of a series of 
images in narrow spectral bands. This technique makes it possible to combine both spatial 
and spectral information about the scene under investigation. Therefore, it is widely used for 
non-destructive and non-invasive analysis in various fields, ranging from food quality 
assessment to biomedical applications. The study of aging and the effects that causes on the 
human's skin texture has been for years investigated from both medical science and the 
cosmetic industry. For years, experts have relied on the evaluation of the human's skin texture 
with "naked eye" which has effects on the objective diagnosis and appropriate treatment. 
Until today, several imaging devices have been developed to contribute as additional tools 
for better and more objective diagnosis, but with several disadvantages that still affect it. The 
aim of this study is to develop an imaging system that will not only capture appearance of 
skin texture but also quantify it. Several approaches have been reported in the literature using 
image processing methods to analyze and quantify the texture of the skin, but restrict the 
analysis only in specific skin texture characteristics that are affected during the aging process. 
This study proposes a new method that is proving to be more effective and provides a 
quantitative assessment of skin texture characteristics, compared to the most widely used 
methods for this purpose, such as GLCM matrix, histogram and image processing in the 
frequency domain. Finally, using an innovative hyper-spectral dermoscope and a hyper-
spectral imaging system, it is possible to collect images of the skin surface in narrow spectral 
bands extended beyond the visible spectrum perceived by the human eye. By using the 
appropriate image processing method and the appropriate spectral image band, more 
accurate and objective measurements can be extracted that will contribute to the objective 
diagnosis of specialists and the selection of more effective treatments. 
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Περίληψη  

 
Η Υπερφασματική απεικόνιση είναι ένα πoλύ ισχυρό αναλυτικό εργαλείo πoυ επιτρέπει την 
απόκτηση μιας σειράς εικόνων σε στενές φασματικές ζώνες. Αυτή η τεχνική καθιστά δυνατή 
την απόσπαση τόσo της χωρικής όσo και της φασματικής πληρoφoρίας για τη σκηνή υπό 
διερεύνηση. Ως εκ τoύτoυ, χρησιμoπoιείται ευρέως για μη καταστρoφική και μη επεμβατική 
ανάλυση σε διάφoρoυς τoμείς, πoυ κυμαίνoνται από την αξιoλόγηση της πoιότητας των 
τρoφίμων έως τις βιoϊατρικές εφαρμoγές. Η μελέτη της γήρανσης και των επιπτώσεων πoυ 
πρoκαλεί στo ανθρώπινo δέρμα έχει απoτελέσει εδώ και χρόνια αντικείμενo έρευνας τόσo 
στην ιατρική επιστήμη όσo και στη βιoμηχανία θεραπευτικών καλλυντικών. Για χρόνια oι 
ειδικoί βασίζoνταν στην αξιoλόγηση της υφής τoυ δέρματoς με «γυμνό μάτι»  με επιπτώσεις 
στην αντικειμενική διάγνωση και την απoτελεσματική θεραπεία. Μέχρι σήμερα αρκετές 
συσκευές απεικόνισης έχoυν αναπτυχθεί με σκoπό να συμβάλλoυν ως επιπλέoν εργαλεία 
στην καλύτερη και πιo αντικειμενική διάγνωση έχoντας ωστόσo αρκετά μειoνεκτήματα πoυ 
εξακoλoυθoύν να την επηρεάζoυν. Στόχoς αυτής της μελέτης είναι η ανάπτυξη ενός 
συστήματoς απεικόνισης πoυ όχι μόνo θα απεικoνίζει την υφή τoυ δέρματoς αλλά και να την 
πoσoτικoπoιεί. Στη βιβλιoγραφία υπάρχoυν διάφoρες μέθoδoι επεξεργασίας εικόνας για την  
ανάλυση και την πoσoτικoπoίηση της υφής τoυ δέρματoς με βάση τα χαρακτηριστικά της 
γήρανσης. Αυτή η μελέτη πρoτείνει μία νέα μέθoδo η oπoία απoδεικνύεται ότι είναι πιo 
απoτελεσματική και παρέχει πoσoτική αξιoλόγηση των χαρακτηριστικών της υφής, σε 
σύγκριση με τις πιo ευρέως χρησιμoπoιoύμενες μεθόδoυς για αυτό τo σκoπό, όπως o 
πίνακας συνεμφάνισης, τo ιστόγραμμα και o μετασχηματισμός της εικόνας στo πεδίo των 
συχνoτήτων. Τέλoς, χρησιμoπoιώντας ένα καινoτόμo υπερφασματικό δερματoσκόπιo είναι 
η δυνατή η συλλoγή εικόνων της επιφάνειας τoυ δέρματoς σε στενές φασματικές ζώνες και 
εκτός τoυ oρατoύ φάσματoς πoυ αντιλαμβάνεται τo ανθρώπινo μάτι. Χρησιμoπoιώντας την 
κατάλληλη μέθoδo επεξεργασίας εικόνας και την κατάλληλη φασματική ζώνη εικόνας 
μπoρoύν να εξαχθoύν περισσότερo ακριβείς και αντικειμενικές μετρήσεις πoυ θα 
συμβάλλoυν στην αντικειμενική διάγνωση των ειδικών και στην επιλoγή 
απoτελεσματικότερων θεραπειών. 
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Part 1: Introduction 
 

1.1 Introduction 

 
For centuries, experts such as dermatologists, plastics surgeons or aesthetics have depended 
on their eyes and fingers to assess visible and tactile changes of the skin.  Although “naked 
eye” assessment of the skin is important for skin examination and documenting changes 
before and after aesthetic procedures, it does not provide quantitative information. 
 
Digital image analysis is a widely used method in beauty industry to study skin features and 
evaluate efficacy of skin care and cosmetic products. Nowadays, it becomes an extraordinarily 
powerful tool that may be used to not only capture appearance, but also measure it. Images 
define the nature and extent of the problem being treated, document before-and-after 
comparisons, and facilitate the monitoring of skin changes over time. 
Skin imaging devices that visualize and display information about the skin conditions, have 
emerged as useful tools for skin analysis in aesthetic medicine. One obvious advantage of skin 
imaging devices is that they are non-invasive tools and allow enhanced clinical examination 
and improved methods of analyzing, grading and standardizing the results of therapeutic 
effects without interfering with the skin area.  
 
Skin texture has become an important issue in recent research with applications in the 
cosmetic industry and medicine. Establishing a direct relationship between the human skin 
aging process and some characteristic properties of skin structural components is essential 
for quantitative assessment of the aging process. Many studies have been undertaken to 
date, most of them being focused on skin texture analysis. 

 
The task assigned to this thesis is the possibility of using hyperspectral texture analysis to 
enrich the amount of information about skin aging. Spectral imaging combines spectroscopy 
and imaging. Each of these fields is well developed and is being used intensively in many fields 
including life sciences. The combination of these two is, however, not trivial, mainly because 
it requires creating a three-dimensional (3D) data set that contains many images of the same 
object, where each one of them is measured at a different wavelength.  
 
First of all, we propose a new method for quantification of the skin texture and compare it 
with the most popular images processing methods in order to prove which is better for 
measuring and quantifying texture. Afterward, spectral images are acquired by the hyper-
spectral imaging system and the Qcell Snapshot Hyperspectral Dermoscope, which are 
available at the Optoelectronics & Imaging Diagnostics Laboratory, and using the selected 
image processing method, we analyze skin surface texture with both of them.  
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1.2 Thesis Outline 
 

Part 2 consists general information about the theoretical background about spectroscopy and 
spectral imaging. 
 
In Part 3 we analyze our proposal and the most commonly used image processing methods 
for quantification of the skin aging texture characteristics. 
 
In part 4 we show the results that extracted from each method and compare them with each 
other in order to choose the best image processing method for quantifying the skin texture. 
 
Part 5 is the most important one, because it consists the hyperspectral analysis of skin aging 
characteristics using both a Snapshot Hyperspectral Dermoscope and a Hyperspectral Imaging 
system and discuss the results which obtained at each wavelength from these devices. 
 
In Part 6 we summarize the conclusions we were guided towards and the possible future 
research directions on the problem. 
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Part 2: Theoretical Background   
 

 2.1 Imaging 
 

Imaging is the representation or reproduction of an object’s form; especially a visual 
representation (i.e., the formation of an image). At this time, digital imaging is the most 
advanced and applicable method where data are recorded using a digital camera, such as a 
charged coupled device (CCD). 

 

The amount of information that can be extracted from an image is determined by the quality 
of it, and the following list describes the most common parameters that characterize the 
acquired images. 

 

• Spatial resolution determines the closest distinguishable features in the objects. It 
depends mainly on the wavelength (λ), the numerical aperture (NA) of the objective 
lens, the magnification, and the pixel size of the array-detector, usually a CCD camera. 
The latter two play an important role because they determine the sampling frequency 
which must be sufficiently high to achieve full resolution. Spatial resolution also 
depends on the signal quality. 

• Lowest detectable signal depends on the quantum efficiency of the detector (the 
higher the better), the noise level of the system (the lower the better), the NA 
(numerical aperture) of the optics (the higher the better), and the quality of the optics. 

• Dynamic range of the acquired data determines the number of different intensity 
levels that can be detected in an image. It depends on the maximal possible number 
of electrons at each pixel and on the lowest detectable signal (basically it is the ratio 
of these two values). If, however, the measured signal is low, so that the CCD well 
associated with a pixel is only partially filled, the dynamic range will be limited 
accordingly. As an example, if a CCD well if fulfilled to only 10% of its maximum 
capacity, the dynamic range will be reduced to 10% of its nominal value. 

• Field of view (FOV) determines the maximal area that can be imaged. 

• Other parameters include the exposure time range (usually determined by the 
detector) and the binning of the CCD pixels to gain sensitivity (by trading-off spatial 
resolution). 
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Category Property Typical 

Imaging Spatial resolution 

Field of view 

Dynamic range 

 

Lowest detectable signal 

250nm (in plane) at λ=500nm 

~50 μm (high magnification) 

8-16bits (256 – 65.536 intensity 
levels) 

Shot-noise limited 

Spectroscopy Spectral resolution 

Spectral range 

1-20nm (may depend on λ) 

400-900nm 
Table 2. 1: Characteristics parameters of a spectral imaging system. 

 

The use of imaging in dermatological diagnosis is currently a very rapidly growing branch of 
medicine and computer science. Computer-assisted medical diagnosis gives much wider 
possibilities than the methods of traditional evaluation performed by a medical diagnostician. 
The results obtained from computer analysis are automatic, re-producible, calibrated and 
independent of human factors related to both the patient and the medical diagnostician who 
performs the examination. The most common methods of imaging are ultraviolet, infrared 
and visible light. In this respect, the methods of assessment of various types of dermatological 
conditions, based on modern digital image processing and analysis methods of image are 
extremely popular. 

As for imaging in visible light, a group of methods which enable morphometric measurements 
or profiled methods of image analysis and processing are used, for example, to determine the 
brightness of the RGB components in a segmented skin area. Hyperspectral imaging, which is 
also used in dermatology, offers much wider capabilities. Multispectral images are acquired 
using profiled multispectral cameras working in different spectra ranges. Additionally, 
depending on the frequency and spectrum range, various types of illuminators are used. 
Matching these two elements (camera and illuminator) is extremely important because of the 
need to obtain a flat spectrum of the illuminator (lamp) in the range covered by the camera. 

 

 2.2 Spectroscopy 
 

Spectroscopy responds to the field of study including the interaction between matter and 
radiated energy. Historically, it is originated from the dispersion of visible light according to 
its wavelength. Later on, the concept was greatly expanded to comprise any interaction with 
radiative energy as a function of its wavelength (λ) or frequency (ν). As a result, the definition 
of spectroscopy was expanded to an alternative field, that one of frequency ν. A further 
extension added energy (E) as a variable, due to the equation E =h·ν. Spectroscopic data is 
often represented by a spectrum, meaning the plot of the response in proportion of 
wavelength or frequency [1] . 

 

 



14 
 

 

 

 

 

 

 

 

 

 

 

 

 

As it has been mentioned above, spectroscopy is strictly associated with the measurement of 
radiation intensity with reference to the wavelength or frequency. This sort of measurements 
can be conducted by experimental spectroscopic devices such as spectrometers, 
spectrophotometers, spectrographs or spectral analyzers 

 

 

2.2.1 Electromagnetic Spectrum 

The electromagnetic spectrum is the complete range of the wavelengths of electromagnetic 
radiation, beginning with the longest radio waves (including those in audio range) and 
extending through visible light (a very small part of the spectrum) all the way to the extremely 
short gamma rays that are a product of radioactive atoms. Visible light lies toward the shorter 
end, with wavelengths from 400 to 700 nanometers. Nearly all types of electromagnetic 
radiation can be used for spectroscopy, to study and characterize matter.  

 

2.2.2.1 Range of the spectrum 
Electromagnetic waves are typically described by any of the following three physical 
properties: the frequency f, wavelength λ, or photon energy E. Wavelength is inversely 
proportional to the wave frequency, so gamma rays have very short wavelengths that are 
fractions of the size of atoms, whereas wavelength on the opposite end of the spectrum can 
be of thousand kilometers. Photon energy is directly proportional to the wave frequency, so 
gamma ray photons have the highest energy (around a billion electron volts), while radio 
wave photons have very low energy (approximately a femtoelectronvolt). These relations are 
illustrated by the following equations: 

 

𝑓 =
𝑐

𝜆
, 𝑜𝑟 𝑓 =

𝐸

ℎ
, 𝑜𝑟 𝐸 = ℎ ∗

𝑐

𝜆
 

 

The behavior of EM radiation depends on its wavelength. When EM radiation interacts with 
single atoms and molecules, its behavior also depends on the amount of energy per quantum 

Figure 2. 1: How spectroscopy works 
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(photon) it carries. 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2.1.2 Visible spectrum 
 

The visible spectrum is the part of the electromagnetic spectrum that is visible to the human 
eye. Electromagnetic radiation with a wavelength between 400 nm and 700 nm is detected 
by the human eye and perceived as visible light. 

 

2.2.1.3 Reflectance spectrum of human skin 
 

As we mentioned above, spectroscopy is the study of how substances absorb, transmit, or 
reflect light. Ultraviolet (UV),Visible(Vis) and Near infrared (NIR) spectroscopy is applied for 
optical absorbance and reflectance measurements in the wavelength range 200–1500 nm. 
Because a substance has its own unique reflectance characteristics,   it can be distinguished 
by analyzing the light reflectance. 

 

 

Figure 2.3 shows only a reflectance spectrum of human skin. Skin has a lower reflectance at 

Figure 2. 2: Electromagnetic spectrum showing the visible light region 

Figure 2. 3: Reflectance spectra of human skin Figure 2. 4: Spectra of various human skin 
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shorter wavelengths (about 350nm) than at longer wavelengths (about 1050nm). In 
particular, skin has a unique property that it absorbs light around a wavelength of 970nm in 
the NIR region. Spectra of various human skin revealed that light was absorbed at a 
wavelength of 970nm, as shown in Figure 2.4. 

 

2.3 Spectrometry 
 

Spectrometry constitutes the technique that is being used so as to assess the concentration 
or amount of a specific chemical compound. It is a common practice to combine spectrometry 
along with spectroscopy, mentioned above, in physical and analytical chemistry for the 
identification of substances through the spectrum either emitted from or absorbed by them. 
In addition, they contribute to the field of astronomy and remote sensing as well. The majority 
of large telescopes is equipped with spectrometers, since the last ones have been 
instrumental to measurements, as far as chemical compositions and natural properties of 
astronomical objects are concerned. 
 
 

 2.4 Spectral Imaging (SI) 

 

Spectral imaging is also known as imaging spectroscopy, which refers to the technology that 
integrates conventional imaging and spectroscopy methods to obtain both spatial and 
spectral information of an object. It was originally defined by Goetz in the 1980s and discussed 
for remote sensing of the Earth. Whereas the human eyes sees color of visible in 
mostly three (long wavelengths - perceived as red, medium wavelengths - perceived as green, 
and short wavelengths - perceived as blue), spectral imaging divides the spectrum into many 
more bands. This technique of dividing images into bands can be extended beyond the visible. 
Applications related to astronomy, solar physics, analysis of plasmas in nuclear fusion 
experiments, planetology, and Earth remote sensing are sparked by the benefits of spectral 
imaging. 

Spectral imaging can be divided into Multi-spectral imaging, Hyper-spectral imaging (HSI), full 
spectral imaging, imaging spectroscopy or chemical imaging, according to its spectral 
resolution, number of bands, width, and contiguousness of bands. These terms are seldom 
applied to the use of only four or five bands that are all within the visible light range. 

In spectral imaging, each pixel of the image collect spectral information, which is added as a 
third dimension to the two dimensional image, generating a three dimensional data cube, 
known as spectral cube. The spectral cube can be considered as a stack of images, each of 
them acquired at a different wavelength. Combined spatial and spectral information offers 
great potential for the non-destructive/invasive investigation of a variety of studied samples. 

Spectroscopy finds application in analytical chemistry since a long time. Different 
spectroscopy types and modalities exist, depending on the optical property that it is intended 
to be measured, namely, absorption, spontaneous emission (fluorescence, 
phosphorescence), scattering (Rayleigh elastic, Raman inelastic) spectroscopy, etc. As the 
light travels into the sample, photons are experiencing absorption, which may result in 
fluorescence emission and multiple scattering due to the local variation of the index of 
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refraction. Spectrometers measure the intensity of the light emerging from the sample as a 
function of the wavelength. The collected light passes through a light-dispersing element 
(grating), which spatially splits the light wavelengths onto the surface of an optical sensor 
array, interfaced with a computer for recording and processing the spectrum. Sample 
illumination can be provided by either a broadband (e.g., white light) or a narrow-band light 
source. In the first case, the measured spectra provide information for the absorption and 
scattering characteristics of the tissue. In the second case, the measured spectra probe the 
fluorescence characteristics of the sample. Particularly, in steady-state fluorescence 
spectroscopy, a narrow-band light source is used for fluorescence excitation, such as lasers, 
LEDs, or filtered light sources, emitting typically in the blue-ultraviolet band. A sensitive 
optical sensor is used for collecting the emission spectra [2]. 

The collected emission spectra can provide diagnostic information for the composition of the 
sample. This makes spectroscopy an indispensable tool for non-destructive analysis and for 
the development of novel, non-invasive diagnostic approaches. Particularly, in biomedical 
sciences, the diagnostic potential of tissue spectroscopy is based on the assumption that the 
absorption, fluorescence, and scattering characteristics of the tissue change during the 
progress of the disease.  

Over the last 20 years, spectroscopy has been extensively investigated as a tool for identifying 
various pathologic conditions on the basis of their spectral signatures. It had been 
demonstrated that spectroscopy can successfully probe intrinsic or extrinsic chromophores 
and fluorophores, the concentration of which changes during the development of the disease. 
In its conventional configuration, spectroscopy uses single-point probes that cannot easily 
sample large areas or small areas at high spatial resolution (SR). It is obvious that this 
configuration is clearly suboptimal when solid and highly heterogeneous materials, such as 
the biological tissues, are examined. In these cases, the collected spectrum is the result of the 
integration of the light emitted from a great number of area points. This has the effect of 
mixing together signals originating from both pathologic and healthy areas, which makes the 
spectral signature-based identification problematic. Looking at the same problem from 
another perspective, point spectroscopies are considered as inefficient in cases where the 
mapping of some characteristics, spectrally identifiable property, is of the utmost 
importance.. 

Spectroscopy probes optical signals with high spectral resolution but with poor spatial 
resolution (SR). The vastly improved computational power together with the recent 
technological developments in tunable optical filter and imaging sensor technologies have 
become the catalysts for merging together imaging and spectroscopy. Both areas, imaging 
and spectroscopy, continue to be affected by technological innovations that enable faster 
acquisition of superior quality data. SI has the unique feature of combining the advantages 
of both imaging and spectroscopy (high spatial and spectral resolution) in a single 
instrument. In SI, light intensity is recorded as a function of both wavelength and location. In 
the image domain, the data set includes a full image at each individual wavelength. In the 
spectroscopy domain, a fully resolved spectrum at each individual pixel can be recorded. 
These devices can measure the spectral content of light energy at every point in an image. 
Multiple images of the same scene at different wavelengths are acquired for obtaining the 
spectra. As an example, an SI device integrating an imaging sensor with 1000×1000 pixels 
provides 1 million individual spectra. A spectrum containing 100 data points results from an 
equal number of spectral images. Assuming that the intensity in each pixel is sampled at 8 
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bits, then the size of the resulting spectral cube equals to 100 Mbytes. Due to the huge size 
of the collected data sets, SI data processing, analysis, and storage require fast computers and 
huge mass memory devices. Several mathematical approaches are used for spectral 
classification and image segmentation on the basis of the acquired spectral characteristics. 
The spectra are classified using spectral similarity measures, and the resulting different 
spectral classes are recognized as color-coded image clusters. SI can be easily adapted to a 
variety of OI instruments such as camera lenses, telescopes, microscopes, endoscopes, etc. 
For this reason, applications of SI span from earth observation including ground and 
atmosphere (remote sensing) to general medicine and molecular biology [3]. 

 

2.4.1 Spectral Reflectance 

 

It has already been mentioned how materials print a spectral signature on the light they 
reflect. Different surface features reflect or absorb the sun's electromagnetic radiation in 
different ways. The reflectance properties of an object depend on the material and its physical 
and chemical state, the surface roughness as well as the geometric circumstances (e.g. 
incidence angle of the sunlight). The reflectance of a material also varies with the wavelength 
of the electromagnetic energy. Spectral reflectance represents the ratio between reflected 
and incident light, as a function of wavelength. This dependence is due to the fact that light 
is scattered or absorbed to different degrees at certain wavelengths, and it exists for almost 
every material. 

There are several physical processes involved that determine the nature of the reflected light, 
and thus, the spectral signature of the material. In the first place, almost every object shows 
some degree of specular reflection, which means that some of the light rebounds directly on 
the surface of the material, as on a mirror. In this case, the spectrum of the reflected light 
remains the same as that of the incident light. There is no signature printed. In the second 
place, part of the light diffuses into the material where some is absorbed and some is 
randomly scattered, which is known as diffuse reflection. Finally, fluorescence, which is the 
emission of light by a substance that has absorbed light or other electromagnetic radiation, 
may also take place. In this case, a photon at shorter wavelength is absorbed and a photon at 
longer wavelength is emitted consequentially. 

A white-colored material, for example, does not absorb any wavelength while a multi-colored 
material will absorb some wavelengths and diffusely reflect others. These reflected 
wavelengths are responsible for the color of the material. In a way, they shape the nature of 
the incident light to create what we perceive as color. This effect can be thought from the 
continuous spectrum point of view: it explains why matter prints a signature on the incident 
light depending on how different spectral components of light are absorbed or reflected. 
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2.4.2 The concept of Spectral cubes 

 

The information that is collected by spectral imagers and then appropriately processed based 
on the kind of application running, is stored in 3D data structures for further analysis. This 
sort of data are known as Spectral Cubes. A spectral cube consists of the three dimensional 
projection of a great number of consecutive and registered sets of hyperspectral or multi-
spectral images. For the accuracy, the first two dimensions respond to spatial dimensions, 
that is the pixel coordinates, and the third dimension refers to spectral dimension, which 
contains a specific wavelength of the electromagnetic spectrum. One of the important 
advantages of this technique is that it can acquire reflectance, absorption, or fluorescence 
spectrum for each pixel in the image, which can be used to detect several changes of objects 
that cannot be identified with traditional gray or color imaging methods. In the figure below 
shows the concept of a spectral cube.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Simply put, an imaging spectrometer acquires the spectrum of each pixel in a two-
dimensional spatial scene. As shown in Figure 2.6, the easiest way to think of such a scheme 
is a band sequential imaging, in which multiple images of the same scene at different 
wavelengths are acquired. A key point is that the spectra be sampled densely enough to 
reassemble a spectrum. There are many technological means of obtaining these data. The 
images are typically stacked in a computer, from the lowest wavelength to the highest, to 
create an image cube of the data set.  

 

 

 

Figure 2. 5: Hyperspectral cubes 
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The hyper-spectral cube consists of a series of contiguous sub-images one behind each other 
at different wavelengths. Each sub-image provides the spatial distribution of the spectral 
intensity at a certain wavelength. That means a hyper-spectral image described as I(x, y, λ) 
can be viewed either as a separate spatial image I(x, y) at each individual wavelength (λ), or 
as a spectrum I(λ) at each individual pixel (x, y). From the first viewpoint, any spatial image 
within the spectral range of the system can be picked up from the hyper-spectral cube at a 
certain wavelength within the wavelength sensitivity. From the second viewpoint, the 
resulting spectrum of a certain position within the specimen can be considered as its own 
unique spectral fingerprint of this pixel to characterize the composition of that particular 
pixel. 

 

2.4.2.1 Methods for hyperspectral Image acquisition 

 

Hyperspectral images are three- dimensional [3-D] in nature. Generally there are four 
approaches that can be used for acquiring 3-D hyperspectral image cubes [hypercubes (x, y, 
λ)]. They are point scanning, line scanning, area scanning, and the single shot method, as 
illustrated in figure 2.8. In the point-scanning method (also known as the whiskbroom 
method), a single point (Fig. 2.8.a) is scanned along two spatial dimensions [x and y] by moving 
either the sample or the detector. A spectrophotometer equipped with a point detector is 
used to acquire a spectrum for each pixel in the scene. Hyperspectral image data are 
accumulated pixel by pixel in an exhaustive manner. Two-axis motorized positioning tables 

Figure 2. 6: Schematic representation of a hypercube showing the relationship between 
spatial and spectral dimensions. 
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are usually needed to finish the image acquisition. The line-scanning method (also known as 
the Pushbroom method) can be considered as an extension of the point-scanning method 
(Fig. 2.8.b). Instead of scanning one point each time, the method simultaneously acquires a 
slit of spatial information as well as spectral information corresponding to each spatial point 
in the slit. A special 2-D image [y, λ] with one spatial dimension [y] and one spectral dimension 
[λ] is taken at a time. A complete hypercube is obtained as the slit is scanned in the direction 
of motion [x]. Hyperspectral systems based on imaging spectrographs with either fixed or 
moving slits work in the line-scanning mode. Both point scanning and line scanning are spatial-
scanning methods. The area scanning method (also known as band sequential method), on 
the other hand, is a spectral-scanning method (Fig. 2.8.c). This approach acquires a single 
band 2-D grayscale image (x, y) with full spatial information at once. A hypercube containing 
a stack of single band images is built up as the scanning is performed in the spectral domain 
through a number of wavelengths. No relative movement between the sample and the 
detector is required for this method. Imaging systems using filters (e.g., filter wheels 
containing fixed bandpass filters and electronically tunable filters) or Fourier transform 
imaging spectrometers belong to the area-scanning method. At last, the single shot method 
(Fig. 2.8.d) is intended to record both spatial and spectral information on an area detector 
with one exposure. No scanning in either spatial or spectral domains is needed for obtaining 
a 3-D image cube, making it attractive for applications requiring fast hyperspectral image 
acquisitions. 

The 3-D hyperspectral image cubes acquired by point scanning, line-scanning, and are-
scanning methods are generally stored in the formats of Band Interleaved by Pixel (BIP), Band 
Interleaved by Line (BIL), and Band Sequential (BSQ), respectively. Different formats have 
different advantages in terms of image processing operations and interactive analysis. The 
BIP and BSQ formats offer optimal performance for spectral and spatial accesses of the 
hyperspectral image data, respectively. The BIL format gives a compromise in performance 
between spatial and spectral analysis. The three data storage formats can be converted to 
each other. The single shot method usually utilizes a large area detector to capture the 
images. The spatial and spectral contents from each frame can be transformed in either 
format mentioned above using appropriate reconstruction algorithms.  

 

 

 

Figure 2. 7: The file layout of the: (A) BSQ, (B) BIL, and (C) BIP interleave. 
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2.4.2.2 Image sensing modes 

 
A hyperspectral imaging system is generally carried out in reflectance, transmittance or 
interactance modes according to the specific light-output captured by hyperspectral imaging 
system. Position of light source and the optical detector (camera, spectrograph, and lens) are 
different for each acquisition mode. In reflectance mode, the detector captured the reflected 
light from the illuminated sample in a specific conformation to avoid specular reflection. 
External quality features are typically detected using reflectance mode, such as size, shape, 
color, surface texture and external defects. In transmittance mode, the detector is located in 
the opposite side of the light source (Fig. 2.8.f), and captures the transmitted light through 
the sample which carries more valuable internal information but is often very weak. 
Transmittance mode is usually used to determine internal component concentration and 
detect internal defects of relative transparent materials. However, transmittance mode has a 
low signal level from light attenuation and is affected by the thickness of sample. In 
interactance mode, both light source and the detector are located in the same side of sample 
and parallel to each other (Fig. 2.8.g). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
On the basis of such setup, the interactance mode can detect deeper information into the 
sample and has less surface effects compared to reflectance mode. Meanwhile, the 
interactance mode reduces the influence of thickness, which is a practical advantage over 
transmission. It should be noted that a special setup is required in the transmittance mode to 
seal light in order to prevent specular reflection directly entering the detector. 

Figure 2. 8: Acquisition approaches of hyperspectral images and image sensing modes. 
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2.4.3 Color vs. Spectral Imaging 

 

Photons encountering the pixels of an imaging sensor create electrons in pixel cells 
(photoelectric effect); thereby, the number of photons is proportional to the number of 
electrons. The photon’s wavelength information, however, is not “transferred” to the 
electrons. Hence, unfiltered imaging chips are color blind. Color or SI devices employ optical 
filters placed in front of the imaging chip. Color imagers use either Si charge-coupled devices 
(CCD) or C-MOS sensors, which are sensitive in the visible and in the near-infrared (NIR) part 
of the spectrum (400-1000nm). A band-pass filter is used for rejecting the NIR band (700-
1000nm). In 3-chip configurations, three photon channels are created with the aid of a 
trichroic prism assembly, which directs the appropriate wavelength ranges of light to their 
respective sensors. Camera electronics combine the red, green, and blue (R, G, B) imaging 
channels composing a high-quality color image, which is delivered to external devices through 
an analog or digital interface. An alternative, cheaper, and more popular color camera 
configuration employs a single chip, where the color filters are spread, similar to a mosaic, 
across all pixels of the sensor. Due to the fact that each pixel “sees” only one primary color, 
three pixels are required to record the color of the corresponding area of the object. This 
reduces significantly the standard range (SR) of the imager. This unwanted effect is partially 
compensated with a method called “spatial color interpolation” carried out by the camera 
electronics. The interpolation algorithm estimates the two missing primary color values for a 
certain pixel by analyzing the values of its adjacent pixels. In practice, even the most excellent 
color space interpolation methods cause a low-pass effect. Thus, single chip cameras yield 
images that are more blurred than those of 3-chip or of monochrome cameras. This is 
especially evident in cases of subtle, fiber-shaped image structures.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 9: Image data capturing and representation in color (a-c) 
and spectral (d-f ) cameras 
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Color cameras emulate the human vision for color reproduction and are real-time devices 
since they record three spectral bands simultaneously at very high frame rates. Human vision-
emulating color imaging devices usually describe color with three parameters (RGB values), 
which are easy to interpret since they model familiar color perception processes. They share, 
however, the limitations of human color vision. Color cameras and human color vision allocate 
the incoming light to three color coordinates, thus missing significant spectral information. 
Due to this fact, objects emitting or remitting light with completely different spectral 
components can have precisely the same RGB coordinates, a phenomenon known as 
metamerism. The direct impact of the metamerism is the inability of the color imaging 
systems to distinguish between materials having the same color appearance but different 
chemical composition. This sets serious limitations to their analytical power and consequently 
to their diagnostic capabilities [3]. 

Unlike images taken with standard color (RGB) cameras, SI information is not discernible to 
the human eye. In SI, a series of images is acquired at many wavelengths, producing a spectral 
cube. Each pixel in the spectral cube, therefore, represents the spectrum of the scene at that 
point. The nature of imagery data is typically multidimensional, spanning spatial and spectral 
dimensions (x, y, λ).  

A color camera captures typically three images corresponding to the band-pass characteristics 
of the RGB primary color filters. Color image pixels miss significant spectral information as it 
is integrated into three, broad spectral bands. The color of a pixel can be represented as 
vector in a three-dimensional “color space” having the RGB values as coordinates. SI systems 
collect a stack of pictures, where each image is acquired at a narrow spectral band and all 
together compose the spectral cube. A complete spectrum can be calculated for every image 
pixel, which can be otherwise represented as a vector in a “multidimensional spectral space”. 

 

2.4.4 Multi-Spectral Imaging 

 

Multi-Spectral Imaging (MI) is responsible for capturing image data at specific frequencies 
across the electromagnetic spectrum. The wavelengths may be separated by filters or by the 
use of instruments that are sensitive to particular wavelengths, including light from 
frequencies beyond the visible light range, such as infrared. MI images are the main type of 
images acquired by remote sensing (RS) radiometers. Dividing the spectrum into many bands, 
MI is the opposite of panchromatic, which records only the total intensity of radiation falling 
on each pixel. Multispectral imaging measures light in a small number (typically 3 to 15) 
of spectral bands. Spectral imaging with more numerous bands, finer spectral resolution or 
wider spectral coverage may be called Hyper-Spectral or Ultra-Spectral. 

 

 

2.4.5 Hyper-Spectral Imaging 

 

Hyperspectral imaging, known also as chemical or spectroscopic imaging, is an emerging 
technique that integrates conventional imaging and spectroscopy to simultaneously collect 
spatial and spectral information from an object. The term “hyperspectral imaging” was 
derived from works in remote sensing first mentioned by Goetz et al. in [4] to make a direct 
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identification of surface materials in the form of images. Although originally developed for 
remote sensing, hyperspectral imaging system is gradually found to have natural advantages 
over the traditional computer vision systems [5] in such diverse fields as agriculture [6–9]. 
With the development of optical sensing and imaging techniques, hyperspectral imaging has 
recently emerged as a scientific and efficient inspection and assessment tool for quality of 
fruits and vegetables. The goal of hyperspectral imaging is to obtain the spectrum for each 
pixel in the image of a scene, with the purpose of finding objects, identifying materials, or 
detecting processes [10]. To obtain high spectral resolution and narrow band image data, 
hyperspectral imaging is generally combined with spectroscopic technique, two-dimensional 
geometric space and one-dimensional spectral information detection. 

 

2.4.6 Multi-Spectral vs. Hyper-Spectral Imaging 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
The main difference between multispectral and hyperspectral is the number of 
bands and how narrow the bands are. Multispectral imagery is produced by sensors that 
measure reflected energy within several specific sections (also called bands) of the 
electromagnetic spectrum. Multis-spectral also deals with several images at discrete and 
somewhat narrow bands. Being “discrete and somewhat narrow” is what distinguishes MI in 
the visible from color photography. MI images do not produce the “spectrum” of an object.  
Hyperspectral sensors measure energy in narrower and more numerous bands than 
multispectral sensors and produce the spectra of all pixels in the scene. The numerous narrow 
bands of hyperspectral sensors provide a continuous spectral measurement across the entire 
electromagnetic spectrum and therefore are more sensitive to subtle variations in reflected 

Figure 2. 10: Multi-Spectral vs. Hyper-Spectral Imaging 
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energy. Images produced from hyperspectral sensors contain much more data than images 
from multispectral sensors. So, a sensor with only 20 bands can also be HI when it covers the 
range from 500 to 700 nm with 20 bands each 10 nm wide. Fig. 2.10 above helps us looking 
at the differences pinpointed above more closely. 

 

2.6 Hyper-Spectral Analysis 

 
Spectral analysis when combined with spatial data adds a significant amount of information 
that can be used to improve image exploitation and interpretation. To combine spectral 
information with spatial imagery, the sensor or camera has to be able to create images within 
the user defined narrow spectral bands rather than the wide-band imagery that the 
conventional cameras produce. Compared to conventional filter based imaging systems, 
spectral cameras provide higher spectral and spatial resolution, flexible wavelength selections 
in software, broader spectral coverage and shorter acquisition times. 

 

2.7 Hyper-Spectral Cameras 

 
Hyper-spectral analysis can be achieved by a hyper-spectral camera system that includes 
optics, an imaging spectrograph, a camera displaying the spectral information and a software 
package to display and calculate the results. Hyper-spectral cameras are used to acquire the 
hyper-spectral target image at tens or hundreds of wavelengths simultaneously. Such 
developed software creates new possibilities for imaging applications where spectroscopy 
methods can be totally attuned to standard and efficient image processing methods. The 
recorded full spectrum for each pixel of the image can be leveraged to a wide variety of 
purposes, such as classification, material detection, accurate color calculations or 
chemometrics over the full range [3]. 

 

2.7.1 SI Camera Hardware Configuration & Calibration 

 

SI camera systems consist of a monochrome sensor, an electronically controlled spatial or 
spectral scanning mechanism, imaging optics, and a computer platform for storage, display 
analysis, and processing of imaging data. Control electronics synchronize the scanning and 
the data capturing processes, so that a set of spectral images are collected as members of the 
spectral cube [3]. 

The number of the spectral bands that an SI system is capable of acquiring determines the 
distinction between Multi-spectral imaging (MSI) and Hyper-spectral imaging (HSI).  MSI 
devices typically acquire 5-20 spectral bands, while HIS systems acquire up to a few hundreds 
of spectral bands. Ultra-Spectral imaging (USI) devices are currently under development with 
capacity of acquiring thousands of very narrow spectral bands. 

SI systems use monochrome sensors or sensor arrays, which can capture only two of the three 
spectral dimensions of the spectral cube at a time. To capture the third dimension, spatial or 
spectral scanning is required. Depending on the method employed for building the spectral 
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cube, SI devices are classified as follows: 

 

1. Whiskbroom SI devices, where a linear sensor array is used to collect the spectrum (λ 
dimension) from a single point at a time; the other two spatial coordinates are 
collected with (x, y) spatial scanning. 

2. Pushbroom SI devices in which a 2D sensor array is used, the one dimension of which 
captures the first spatial (x) coordinate and the other the spectral coordinate in each 
camera frame; the second spatial coordinate (y) is captured with line (slit) scanning. 

3. Staring SI devices, where a 2D sensor array is coupled with an imaging 
monochromator, which is tuned to scan the spectral domain and in each scanning 
step, a full spectral image frame is recorded. 

Whiskbroom and Pushbroom imagers utilizing spatial scanning for building the spectral cube 
do not provide live display of spectral images, since they are calculated from the spectra after 
the completion of the spatial scanning of the corresponding area. Staring imagers, on the 
other hand, are based on the tuning of the imaging wavelength and the spectra are calculated 
from the spectral cube composed by the spectral images that are captured in time sequence. 
Compared to the other approaches, staring imagers have the advantage of displaying live 
spectral images, which is essential for aiming and focusing.  

 

Selecting the SI camera optimal configuration and components requires a “system” approach. 
The intended application determines the SI system’s spectral range and resolution. Si CCD 
detectors can be used to cover the spectral range ultraviolet (UV)-visible and NIR up to 1μm. 

Figure 2. 11: Typical spectral imaging techniques. (A) Whiskbroom. (B) Pushbroom. (C) Staring. (D) Snapshot. 
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InGaAs detectors are suitable for the up to 1.7μm NIR range. For longer infrared wavelengths, 
HgCdTe or InSb cameras must be used. Ideally, the wavelength range of the monochromators 
should match at least a significant part of the spectral range within which the selected 
detector is sensitive. Narrowband imaging and monochromator optics reduce the overall light 
throughput of an SI system. Moreover, the light throughput of the monochromator depends 
on the wavelength. Furthermore, the quantum efficiency (QE) of the detector also changes 
with the wavelength.  
Accurate calibrations for a hyperspectral imaging system are necessary to guarantee the 
stability and acceptability of the extracted hyperspectral image data and the consistent 
performance of the system. Even if the environment of data measurement is carefully 
controlled, inconsistent spectral profiles of reference spectra may be acquired by some 
systems. Therefore, it is necessary to eliminate this variability by using a standardized and 
objective calibration, and a validation protocol. The goals of calibration process are to 
standardize the spectral and spatial axes of the hyper-spectral image, validate the 
acceptability and reliability of the extracted spectral and spatial data, determine whether the 
hyper-spectral imaging system is in running condition, evaluate accuracy and reproducibility 
of the acquired data under different operating conditions, and diagnose instrumental errors 
if necessary. 
SI system's calibration is very essential in order to achieve “device-independent" spectral 
measurements. Calibration can be performed with the aid of a reference sample displaying a 
known or a at spectrum over the entire operating wavelength range. A calibration curve or a 
lookup table can be obtained by comparing the known spectral characteristics of the 
calibration sample with that measured by the SI system spectra. Image brightness can be 
corrected on the basis of the calibration data, after spectral image acquisition. The calibration 
curve or the lookup table can also be integrated into the system's software for controlling the 
detector's exposure time during image acquisition, in all tuning steps of the filter. By changing 
the detector's exposure or gain settings, the wavelength dependence of the SI system's 
response is compensated and the spectral images that are acquired and captured are 
calibrated [1]. 

 

2.7.2. Scanning Spectral Imaging Systems Based on Electronically Tunable Filters 

 

Spectral scanning SI systems can be categorized on the basis of the technological approaches 
employed for tuning the imaging wavelength. Two general classes of devices can be defined 
depending on whether their imaging monochromator contains or not moving parts. In the 
first case, mechanical parts, onto which filters or mirrors, etc. are mounted, are spatially 
translated for selecting the imaging wavelength. We can therefore name this category as 
electromechanical tunable filters (EMTF). The second category refers to systems based on 
nonmoving optical modules whose spectral transmission can be electronically controlled 
through the application of voltage or acoustic signal, etc. For this reason, the members of this 
class of instruments are knows as electronically tunable filters (ETF). 

An alternative categorization could be done depending on whether the SI system provides or 
not live (real time) display of spectral images. A simple and rather trivial EMTF is a set of 
discrete band-pass filters, which are swapping in front of the sensor. The filters can be 
mounted on a rotating disk or on a translating stage. Linearly variable filters (LVF), with 
transmission centre wavelength varying linearly along their surface, comprise an alternative 
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to discret filters option but they are more suitable as monochromators of the illuminating 
source. In all these cases, the motion of the filter arrangements is driven by a stepper motor, 
and in most cases, it is synchronized with the successive image capturing. 

 

 

 

 

 

 

 

 

 

 

 

 

 
A linear variable filter (LVF) is an optical interference filter whose spectral functionality varies 
along one direction of the filter, compared to a traditional optical filter whose spectral 
functionality is intended to be identical at any location of the filter. The term linear relates to 
the goal of making the wavelength variation a linear function of the position on the filter. The 
wavelength variation is achieved by an interference coating that is intentionally wedged in 
one direction, creating a linear shift of the center or edge wavelength along the same 
direction of the filter (fig. 2.13). 

 

(a) Linearly Variable Band-pass Filter 

 
 

 

 
 

(b) Linearly variable filter; tuning is 
achieved by translating the filter along its 
length with a stage 

 
 

Figure 2. 12: Linearly Variable Filters 
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2.8 Hyper-Spectral Imaging Applications 

 
There are numerous applications emerging from the spectral analysis that is being provided 
by hyper-spectral imaging. For nearly a decade, this technology was primarily used for 
purposes like surveillance, reconnaissance, environmental and geological studies. However, 
the application of hyper-spectral imaging in the biomedical area has been negligible due to 
high-instrumentation costs and problems arising from the clinical use of hyper-spectral 
sensors. With recent achievements in sensor technology and increasing affordability of high 
performance spectral imagers, hyper-spectral imaging systems constitute one of the most 
important key areas in medical imaging. The early diagnosis of cancer, one of the most 
thorniest medical problems, is now possible, since the evolution of hyper-spectral sensors 
allows the scanning of a patient's body to identify precancerous lesions or to provide critical 
spectral data through endoscopic procedures. The extension and improvement of hyper-
spectral imaging in biomedical and clinical diagnosis is within the grasp of researchers [11]. 
The advantages of this technology regarding diagnostic health care applications include a 
high-resolution imaging of tissues either at macroscopic or cellular levels and the capability 
to generate highly accurate spectral information related to the patient, tissue sample, or any 
other disease condition. In particular, the vast investment of hyper-spectral imaging in 
medicine lies on the generation of wavelength-specific criteria for disease conditions on 
spectral features. As a consequence, an ideal technology for high-throughput patient 
screening and non-invasive diagnosis is begotten. 
Due to their unparalleled ability to reveal abnormal spectral signatures, hyper-spectral 
medical instruments hold great potential for non-invasive diagnosis of cancer, retinal 
abnormalities and assessment of wound conditions, for instance diabetes, etc. A portable 
hyper-spectral imager could also aid the analysis of human body fluids, such as blood, urine, 
saliva, semen and determine blood oxygenation levels of tissues, which could be of prime 
importance during surgeries. Yet importantly, it could perform diagnosis for dental diseases. 
It is a great advantage for a patient the fact that not only does an early diagnosis of an ailment 
take place, but an appropriate treatment may also be applied at the same time [3]. 
Hyper-spectral signatures when combined with targeting algorithms would in essence offer 
unique diagnostic information. There is an increasing level of interest on the part of health 
care providers to investigate possible ways of reducing health care costs by providing timely 
treatments for many types of disease conditions. Hyper-Spectral scanning imaging is expected 
to contribute a lot in this pursuit [2]. 

Figure 2. 13: Design Principle of standard and Linearly Variable Filter 
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Part 3: Skin aging features analysis 

 

 3.1 Quantification of skin texture through digital image processing  
 
Determination of skin surface texture is of particular importance in the field of dermatology 
as such measurements can be used for skin diagnostics and evaluation of therapeutic or 
cosmetic treatments. For centuries, experts such as dermatologists, plastics surgeons or 
aesthetics have depended on their eyes and fingers to assess visible and tactile changes of 
the skin.  Although “naked eye” assessment of the skin is important for skin examination and 
documenting changes before and after aesthetic procedures, it does not provide quantitative 
information. 

With the advances in technology the ability to document skin texture has become an adjunct 
methodology when evaluating a skin condition. In defining the texture of skin we are faced 
with the challenge of documenting a complex attribute, intimately connected to visual 
perception. Texture relates to the detailed geometry of the surface of skin as well as the 
mental factors that affect visual perception of texture. The task of measuring skin texture 
involves determination of parameters in different scales ranging from the organization of the 
corneocytes (at the cellular level, i.e. through electron microscopy or confocal microscopy) to 
the organization of skin microrelief lines and ⁄or surface glyphic structures (in the order of 
10–100 lm, i.e. through video microscopy) and the measurement of larger features such as 
wrinkles and furrows (in the millimetric range, i.e. through close-up photography). In general, 
methods for in vivo skin texture measurements have to be noninvasive and nondestructive, 
hence optical methods are preferred. 

Skin is the outermost part of the human body. It protects the body from infection, injury, and 
water loss, while helping regulate body temperature. Additionally, the skin maintains 
homeostasis and produces vitamin D. Skin performance is impaired with age and visual beauty 
is lost. This impairment and loss can proceed more quickly because of various factors, such as 
persistent sunlight exposure, smoking, and excessive drinking. Because of its visibility and 
role, considerable attention has been given to its condition, and substantial efforts have been 
taken to mitigate skin aging and damage progression.  

To accurately access the skin condition, a method to objectively evaluate the skin is required. 
To date, this evaluation has been typically performed by dermatologists based on their 
personal experience and knowledge. Therefore, evaluation results can differ depending on 
the dermatologist. The degree of skin damage can be measured based on various features, 
such as texture pattern, skin elasticity, and moisture. Among these aspects, skin texture has 
the most visual effect and can be seen with the naked eye. A standard metric to evaluate the 
skin condition can be established using the diverse features of skin texture. 

Therefore, by analyzing the texture of the skin by acquiring the texture image of the skin and 
exposing human skin to imaging devices, the health of the skin can be determined, but this is 
not enough. For a more accurate diagnosis or more effective treatment it is important to 
quantify the changes in the skin surface texture, according to the factors that affect it and 
that were mentioned.  
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In computer science, digital image processing concerns the transformation of an image to a 
digital format and its processing by digital computers. Image processing is a method to 
perform some operations on an image, in order to get an enhanced image or to extract some 
useful information from it. It is a type of signal processing in which input is an image and 
output may be image or characteristics/features associated with that image. Nowadays, 
image processing is among rapidly growing technologies. It forms core research area within 
engineering and computer science disciplines too. The three general phases that all types of 
data have to undergo while using digital technique are pre-processing, enhancement, and 
display, information extraction. 
Several methods have been developed to measure skin texture aging damage. The texture 
discrimination can be obtained by choosing a set of attributes, the texture features, which 
account for the spatial organization of the image. Following are the most popular image 
processing algorithms and our proposal for analyzing and quantifying skin surface texture. 

 

3.2 Digital image processing methods 
 

3.2.1 Our Proposal Method 

 

This method is based on the analysis of the spatial profile of an image in the spatial domain. 
It extracts information about the values of intensity, taken from regularly spaced points along 
a line segment or multi-line path in an image. Images are processed as follows: 

 

• First the blue channel of the original image and its Spatial Profile are extracted. The 
blue channel is preferred, because it shows the greatest texture component and it 
used to quantify skin texture characteristics. 

• Then, in the blue channel of the image is filtered with Gaussian blurring.  

 

In image processing, a Gaussian blur (also known as Gaussian smoothing) is the result of 
blurring an image by a Gaussian function (named after mathematician and scientist Carl 
Friedrich Gauss). Gaussian blur is a low-pass filter. It is a widely used effect in graphics 
software, typically to reduce image and reduce detail. The formula of a Gaussian function in 
one dimension is: 

 

 

 

In two dimensions, it is the product of two such Gaussian functions, one in each dimension: 

 

 

 

where x is the distance from the origin in the horizontal axis, y is the distance from the origin 
in the vertical axis, and σ is the standard deviation of the Gaussian distribution. When applied 

https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
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in two dimensions, this formula produces a surface whose contours are concentric circles 
with a Gaussian distribution from the center point. Values from this distribution are used to 
build a convolution matrix which is applied to the original image. In theory, the Gaussian 
function at every point on the image will be non-zero, meaning that the entire image would 
need to be included in the calculations for each pixel. In practice, when computing a discrete 
approximation of the Gaussian function, pixels at a distance of more than 3σ have a small 
enough influence to be considered effectively zero. Thus contributions from pixels outside 
that range can be ignored.  

From the intensity values of spatial profiles of the initial blue channel image and the 
smoothed one, the root mean square error value is calculated. The root-mean-square error 
(RMSE) or root-mean-square deviation (RMSD) is a frequently used measure of the 
differences between values (sample or population values) predicted by a model or an 
estimator and the values observed. The RMSE represents the square root of the second 
sample moment of the differences between predicted values and observed values or the 
quadratic mean of these differences. These deviations are called residuals when the 
calculations are performed over the data sample that was used for estimation and are called 
errors (or prediction errors) when computed out-of-sample. 

RMSE is always non-negative, and a value of 0 (almost never achieved in practice) would 
indicate a perfect fit to the data. In general, a lower RMSD is better than a higher one. 
However, comparisons across different types of data would be invalid because the measure 
is dependent on the scale of the numbers used. 

In this case, the predicted values are the values derived from the blurring image which 
representing the skin free of aging characteristics and the actual values are the values 
resulting from the analysis of the skin being studied. The root mean square error is defined 
as: 

   

 

 

 

 

Therefore, this value is low when there are no significant fluctuations in the intensity of pixels 
of the image, so the Spatial Profile of the image will be smoother and its values will be close 
to the Spatial Profile values of the image after blurring. 

On the contrary, when appears aging features to the skin (e.g. wrinkles, aging spots), there 
are significant fluctuations in the intensity, so the Spatial Profile of the initial blue image 
channel image will be rougher compared to the smoothed image and the difference between 
spatial profiles values is greater.   

In this study, the spatial profiles for each image were analyzed in four different directions, 
starting from the analysis in the horizontal direction and rotating this line 45 degrees along 
the image and thus obtained four RMSE values in each direction. From these values the mean 
RMSE value is calculated. In this way, better accuracy in the analysis of skin texture is 
achieved and this value is more representative. 
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3.2.2 Grey Level Co-occurrence Matrix   

 

GLCM is one of the effective methods for quantitative analysis of skin texture. This concept is 
proposed by Haralick in the 1970s, and it focuses on transforming the gray level information 
to texture information conveniently, which has been proven both in theory and experiments. 
It indicates the probability of gray-level i occurring in the neighborhood of gray-level j at 
distanced and direction y [12]. 

GLCM provides a supportive theory for the description of skin texture state. According to the 
principle of GLCM, if the image consists of pixel block, the diagonal element values of GLCM 
will be big. If the gray value of skin image pixel has a big change in some fields, the element 
values which keep away from the diagonal element will be big. As there is an internal 
mathematical relationship between GLCM and distribution of image texture, therefore GLCM 
has a good effect on skin texture analysis. It can evaluate skin texture, roughness and degree 
of consistency of skin condition. At present, the main characteristics parameters of GLCM for 
skin texture estimation, include angular second moment (ASM), contrast (Con), entropy 
(ENT), correlation (COR) and other indicators. 

Texture c in total sets of value of imputing focuses on GLCM calculation. Take any point (x, y) 
in MxN image and another point (x+dx, y+dy) which deviates a s distance to form point pair 
and we assume the gray value of the point pair is (g1,g2). To begin with, the point (x, y) is 
moved on the whole image and several different values of (g1, g2) are acquired. Then the 
series of image gray values is supposed as k, and there will be k2 sets of value of (g1, g2) in 
total. For the whole picture the frequency of every (g1, g2) is counted and arranged them in 
a matrix. Moreover, according to the total number of appearing (g1, g2), the matrix members 
need to be normalized transformed into the probability P(g1, g2). This matrix is called, the 
GLCM matrix. As can be seen from it, GLCM is a function of distance and direction whose 
order is determined by gray values of the image and it is a symmetrical matrix. When (dx, dy) 
has different values it can be obtained joint probability matrix in different situations. The 
value of (dx, dy) should be chosen from distribution of texture. Small divided difference need 
to be acquired for the thinner texture, for example, (1, 0), (1, 1), (1, 1), (-1, -1). At the same 
time, calculating the four individual orientations (0, 45°,90°,135°) reflects the statistics 
features of skin texture comprehensively, according to the concept of pixel neighborhood. 

 

 

The main features extracted from this table are the following: 

 

Figure 3. 1: Distance between the pixel of interest 
and its neighbor Figure 3. 2: Shows how graycomatrix calculates several values in 

the GLCM of the 4-by-5 image I. 
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• Angular Second Moment (ASM): also called energy and is a measure of textural 
uniformity of an image (the thickness measurement of the image texture). Energy 
reaches its highest value when gray level distribution has either a constant or a 
periodic form. A homogenous image contains very few dominant gray tone 
transitions, and therefore the P matrix for this image will have fewer entries of larger 
magnitude resulting in large value for energy feature. In contrast, if all element values 
of P matrix are equal, the ASM is small. Therefore, the ASM value is maximum when 
the skin texture situation is the best. The definition of Angular Second Moment is: 

 
• Entropy (ENT): measures the disorder of an image and it achieves its largest value 

when all elements in P matrix are equal. When the image is not texturally uniform 
many GLCM elements have very small values, which implies that entropy is very large. 
Therefore, entropy is inversely proportional to GLCM energy, so its value is minimum 
when the skin texture situation is the best. Entropy is calculated from the following 
formula: 

 

 
 

• Contrast (CON): Contrast is a difference moment of the P and it measures the amount 
of local variations in an image and is defined as: 
 

 
 
 

Where k=g1-g2. 
 
 

• Correlation (COR): Correlation is used to measure the similar extent of GLCM 
elements in a certain direction. Its definition of COR is: 
 
 
 
 
  

3.2.3 Fast Fourier Transform (FFT) – Butterfly pattern 

 

In digital image processing, the most ordinary way to represent an image is in the spatial 
domain by column (χ), row(y) and value (z). But sometimes image processing routines may be 
slow or inefficient in the spatial domain, requiring a transformation to a different domain that 
offers compression benefits. A usual transformation is from the spatial domain to the 
frequency (or Fourier) domain. The frequency domain is the basis for many image filters which 
used to remove noise, sharpen an image, analyze repeating patterns, or extract features and 
pixel location is represented by its x- and y-frequencies as its value is represented by 
amplitude. 
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Digital images, unlike light wave and sound wave in real life, are discrete because pixels are 
not continuous. That means it should be implemented Discrete Fourier Transformation (DFT) 
instead of Fourier Transformation. However, DFT process is often too slow to be practical. 
The Fast Fourier Transform is the most used method to transform an image from spatial 
domain into the frequency domain and decomposes an image into its real and imaginary 
components. The number of frequencies is equal to the number of pixels in the spatial domain 
of an image. Low frequencies represent gradual variations and they contain the most 
information because they determine the overall shape or pattern in the image. Also they are 
often shown by a large peak in the center of the data. High frequencies correspond to abrupt 
variations in the image and they provide more detail, but they contain more noise.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Fourier transform of a MxN image described by Jean-Baptiste-Joseph Fourier in 1807 and 
given by following equation: 

Figure 3. 3: The lowest frequencies are shown by a large peak in the center 
of the data. 

Figure 3. 4: Low frequencies in the center and high frequencies 
around which reveals that the image has some background noise. 
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Where ƒ(x,y) is an image function and this expression must be computed for values of u = 0, 
1, 2, ..., M− 1 and also for v = 0, 1, 2, ...N – 1. Similarly, the same function can be represented 
in the Fourier domain without loss of information due to transforming an image between 
spatial and frequency domain using inverse Fourier transform: 

 

 

 

 

The image processing algorithm using FFT transform is as follows: 

Step 1: Computing Fast Fourier Transform of a gray scale image.  

 

The result from FFT process is a complex number array which is very difficult to visualize 
directly. Therefore, we have to transform it into 2-dimension space.  There are two ways which 
can visualize this FFT result, Spectrum and phase angle. Here is an example: 

 
In the spectrum image there are some symmetric patterns on the four corners. The white area 
show the high power of frequency. The corners in the spectrum image represent low 
frequencies. Therefore, combining two points above, the white area on the corner indicates 
that there is high energy in low/zero frequencies which is a very normal situation for most 
images. 

 

 
Figure 3. 5: (From left to right) Spectrum and Phase Angle 

 

On the other side, it is hard to identify any noticeable patterns from phase angle image. This 
did not indicate that the phase angle of FFT is useless because, the phase preserves the shape 
characteristics which is an indispensable information for an image. 

Step 2: Shift the zero-frequency component to the center of the spectrum.  

2-D FFT has translation and rotation properties, so it can shift frequency without losing any 
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piece of information. When the zero-frequency component shifted to the center of the 
spectrum, makes the spectrum image more visible for human. Moreover, this translation 
helps to implement high/low-pass filter easily. 

 

 
Figure 3. 6: Centered Spectrum after shifting the zero-frequency component 

 

Step 3: Inverse of Step 2. Shifting the zero-frequency component back to original location. 

Step 4: Inverse of Step 1. Computing of the 2-dimensional inverse Fast Fourier Transform.  

The processes of step 3 and step 4 are converting the information from spectrum back to gray 
scale image. It could be done by applying inverse shifting and inverse FFT function. 

In this approach the analysis of skin texture based on the imaging of micro-relief of the skin 
surface texture. An important feature of micro-relief is its pattern that is, the two-dimensional 
relationship between primary and secondary lines (skin texture) and its grade of irregularity. 
Using fast Fourier transform (FFT), it was possible to convert the space field into the frequency 
field and to obtain important information on this feature of the skin. The Fourier Transform 
is used in this case because it needed access in the geometric characteristics of skin surface 
micro-relief. Because the image in the Fourier domain is decomposed into its sinusoidal 
components, it is easy to examine or process certain frequencies of the image, thus 
influencing the geometric structure in the spatial domain.   

In the frequency field, skin network line set is allowed to be displayed as a series of light 
points, more or less assembled depending on the regularity of the pattern. According to this 
method, the micro-relief of a young and an older skin shows different drawings. In the young 
skin pattern, primary and secondary lines are clearly visible and nearly of the same depth. 
Their cross points form a ‘‘star’’ pattern (like apexes of triangles converging at the same 
point). In aged skin, primary lines are more evident than secondary ones and the pattern is 
flattened and almost directional, not being able to form repeated regular geometrical figures.  

So, in that case image function ƒ(x,y) is a skin micro-relief image in black and white 
representation. In the frequency domain, the disposition of pixels varies from a ‘‘butterfly’’ 
pattern at younger ages, representing a very regular texture, to a directional one as the skin 
ages (see Fig 3.7). Therefore, the image processing includes only step 1 and step 2, because 
we need the image spectrum to represent these skin micro-relief patterns in the frequency 
domain.  
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By means of irregularity skin index, it was possible to quantify skin texture variations that 
correlated with the intrinsic ageing process. To quantify the irregularity grade of each texture, 
two curves from the density of pixels are calculated. Irregularity skin index (ISI) of the u and v 
axis represent the integrals of area delimited by the two curves derived from the density of 
pixels in the u and v axis. According to this, as age increases, the irregularity skin indexes 
increases too [13].  

 

3.2.4 Fast Fourier Transform (FFT) – Butterworth Filtering 

 
This method is also based on image analysis and processing in the frequency domain for the 
evaluation of skin surface roughness. Compared to the previous method, the Fourier 
transform is used to enhance the image by filtering it in the frequency domain, in order to 
highlight specific features that represent roughness of the skin. Image enhancement, can be 
done in the spatial domain using both linear and non-linear filters or in the frequency domain 
using linear filters. The new image g(x,y) after filtering is the result of the convolution of the 
original image f(x,y) with a mask h(x,y) of a linear filter: 

 
𝑔(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) ∗ ℎ(𝑥, 𝑦) 

 
The corresponding procedure in the frequency domain is based on that the convolution in the 
spatial domain is equivalent to the product of the spectrums in the frequency domain: 
 

𝐺(𝑢, 𝑣) = 𝐹(𝑢, 𝑣)𝐻(𝑢, 𝑣) 
Frequency Domain Filters are used for smoothing and sharpening of image by removal of high or low 
frequency components. Sometimes it is possible of removal of very high and very low frequency. 

Figure 3. 7: Various patterns of skin texture on the lateral aspect of the thighs and corresponding FFT 
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Frequency domain filters are different from spatial domain filters as it basically focuses on the 
frequency of the images. It is basically done for two basic operation i.e., Smoothing and Sharpening.  

These are of 3 types: 

1. Low pass filters: Low pass filter removes the high frequency components that means 
it keeps low frequency components. It is used to smoothen the image by attenuating 
high frequency components and preserving low frequency components. 

2. High pass filters: High pass filter removes the low frequency components that means 
it keeps high frequency components that represents the edges of an image and it is 
used for sharpening the image. 

3. Band pass filters: Band pass filter removes the very low frequency and very high 
frequency components that means it keeps the moderate range band of frequencies. 
Band pass filtering is used to enhance edges while reducing the noise at the same time. 

 
According to this method, the image function f(x,y) is the blue channel of a given image (B-
delta image), which is converted to the frequency field by the Fourier transform. Then, the 
image in the frequency domain is filtered with Butterworth low-pass digital filter to decrease 
the contribution from the skin area curvature. Moreover, in the same image, a high-pass 
Butterworth filter is applied to sharpen the image and show how rough the surface of the skin 
is. The transfer function of a Butterworth low-pass filter of order n with cutoff frequency at 
distance D0 from the origin is defined as: 
 

𝐻(𝑢, 𝑣) =
1

1 + [
𝐷(𝑢, 𝑣)

𝐷0 ]
2𝑛 

The Butterworth high pass filter given as: 

𝐻(𝑢, 𝑣) =
1

1 + [
𝐷0

𝐷(𝑢, 𝑣)]
2𝑛 

The basic steps to filter an image in the frequency domain using Fast Fourier Transform are 
the following: 

1. First we calculate the Fourier Transform of an image, F(u,v). 
2. Subsequently, we multiply the transformation F(u,v) by the filter transfer function 

H(u,v). 
3. We calculate the inverse Fourier Transform of the result of step 2. 
4. We use only the real part of the result of step 3. 



41 
 

 

 

Skin texture can be determined by measuring the width of the intensity distribution 
(histogram) of the B-delta image, which is proportional to the roughness of the sample. A 
rougher sample, e.g. the skin of an older person, will have a wider intensity distribution due 
to the larger dimension and the heterogeneity of the topographical landmarks (such as 
wrinkles, fine lines etc.). Also, the skin texture image of an older person will be more 
sharpened after filtering with high pass Butterworth filter than a younger person. In case of 
image filtering with a low-pass Butterworth filter, the resulting smoothed image of a young 
person will be appear more uniform, in contrast with the smoothed image of an older person 
(fig. 15,16) [14]. 
 

 
  

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 8: Frequency domain filtering operation 

Figure 3. 9: Image processing steps. From left to right the images are: copolarized perpendicular orientation;); blue channel 
of the delta image (B-delta image); Fast Fourier Transform of the B-delta image; the high-frequency component of the B-
delta image; and the low-frequency component of the B-delta image. The top row shows the images for the old subject 
and the bottom row for the young subject. 
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Figure 3. 10: The pixel intensity distribution of the B-delta images for the old and 
young subjects of Figure 3. The width of the distribution for the older subject 
(rougher skin) is larger than that of the young subject as pointed by the arrows. 
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Part 4: Measurements and Results 

 

 4.1 Skin Surface Texture Analysis 
 

In this section we compare the results obtained by analyzing images of skin surface samples, 
with the most popular image processing techniques for measuring and analyzing skin surface 
texture, that have been collected and described previously (see Part 3). In a first stage, the 
images of skin surface texture that we have collected from the internet were used in each 
method, in order to select which one is better and more accurate to analyze and quantify skin 
surface texture. These images represent different skin surface textures and different skin 
color types as shown below. 
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Observing the above images with «naked eye», it seems that images 1,2 and 3 have the 
smoothest skin surfaces textures compared to the others, while the most intense skin lesions 
are shown in Figures 8,9 and 10. Figures 4-7 can be described as an average skin condition 
compared to the rest (neither smooth nor intense lesion of the skin surface texture). 
 

 4.1.1 Results from our Proposal Method 
 
The following graphs show the intensity profiles of all the above images and the table shows 
the corresponding RMSE values derived from the values of the intensity profiles of the blue 
channel of images.  Assuming that all images have the same dimensions NxM, then the line 
from which the intensity profile of each image is calculated, has the point (N/2, 0) as starting 
point and the point (N/2, M-1) as the end point. The size of the Gaussian filter which is used 
to blur the image is hsize=15 with standard deviation σ=8 on 183x279 image size. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
  
 
 
 
 
 
 
 
 
 
 

(10) 

 
 

(1) RMSE=1.64 

 
 

(2)   RMSE=2.79 

 

 

(3) RMSE=2.83 

 
(3) RMSE=2.83 

(4) RMSE=3.75 

 

 

Figure 4. 1: Skin surface texture samples collected from the Internet. 
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(5) RMSE=3.82 

 

 

(6) RMSE=5.64 

 

 

(7) RMSE=7.06 

 

 

(8) RMSE=7.11 

 

 

(9) RMSE=7.33 

 

 

(10) RMSE=8.15 

 

 

Figure 4. 2: Spatial profiles of images of Fig 4.1 with the corresponding RMSE values 
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Table 4. 1 RMSE values of each image of Fig 4.1 

 
Looking at Figure 4.2, we notice that as the lesions appear on the skin, the profile of the 
original image (blue line) becomes denser and the values are farther apart than the profile of 
the filtered image (red line). This is because skin lesions create gradations in the intensity 
between the pixels of the images. 
Verily, we see that image 1 has the lowest RMSE value. If we look carefully at all skin texture 
samples and compare them with each other, then this value is reasonable, because the 
smoothest surface is shown in image 1 and it has the best skin condition. Images 2 and 3 are 
the next images which have low RMSE value and differ little to each other in the decimal part, 
where the highest RMSE value between these two images, results from the profile of image 
3. If we compare images 2 and 3, we can observe that have minimal differences between 
them, whereas image 3 is a little more intense than image 2. 
Furthermore, the skin texture of Figure 2 seems to be very close to the texture of image 1, 
but if we look more closely at image 2, more skin details are beginning to appear, which also 
explains the difference in the value of RMSE between them. 
About images 8, 9 and 10 and according to Table 4.1, we notice that they have the highest 
values of all, whereas the largest RMSE value is obtained by analyzing the intensity profile of 
Figure 10. The differences between Figures 8 and 9 are not significant, while the smallest 
value results from the intensity profile of Figure 8. Image 10 shows the most severe skin 
lesions of all, which seems to has a rougher skin surface texture than the others skin samples. 
For the rest of the images from Table 4.1 and in ascending order, samples 4 and 5 are 
obtained, followed by 6 and 7. The values of the first two are very close to each other and do 
not differ much from the RMSE values of the smooth surfaces skin textures. Looking at the 
pictures above, it can be seen that they tend to be smooth surfaces, however some details of 
the texture are distinct, especially on image 5. The same happens with the 6 and 7 images, 
but their RMSE values is close to the values of the skin surface textures with skin lesions, 
which apparently these textures tend to start to have a better visible deterioration.  
 
 
 
 
 

Image RMSE 

1 1.64 
2 2.79 
3 2.83 
4 3.75 
5 3.82 
6 5.64 
7 7.06 
8 7.11 
9 7.33 

10 8.15 
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4.1.2 Results from Gray Level Co-occurrence Matrix Method 
 

  
 
 
 
 
 
 
 

 
Fig. 4.3(a) shows the calculations of angular second moment, which was shown in the 10 
images of Fig. 7 in the 0°, 45°, 90°, 135°directions. As can be seen from the Figs. 4.3a)-(c) 
image 5 has the maximum ASM value of which the skin texture situation is not the best, while 
image 10 has the minimum ASM value of which the skin texture situation is the worst indeed. 

(a) 

 
(a) 

(b) 

 
(b) 

(c)  

 
(c)  

(d) 

 
(d) 

Figure 4. 3: The relation of Characteristics Parameters 
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Angular second moment (ASM) welly reflects the uniformity of skin texture coarseness and 
gray distribution (see 3.2.2). Moreover, image 4 has also a high ASM value, but both skin 
textures of images 4,5 show an average skin texture condition but quite close to textures with 
a smooth surface, which does not justify the high ASM values of them. Respectively, the ASM 
values of images 6 and 7 have a small deviation from the ASM value of 10, which is not 
reasonable, because their skin surface textures are much better than the texture of image 10. 
On the other hand, image 1 whose texture is obviously the best, its ASM value should be the 
highest. On the contrary, as shown in Fig 4.3(a), the ASM value of image 1 suggests that it 
belongs to those who should represent an average skin texture and is between images 2 and 
8 ASM values. The value of Figure 8 tends to be low which means better texture than 9 and 
10 which is valid, but also similar texture than 2 which belongs to smooth surfaces. 
Furthermore, energy value of image 3 is lower than value of image 2, which is correct because 
skin surface texture of image 2 is better than image 3, but energy value of image 3 is very low 
and close to the value of image 10, whose skin surface texture is the worst. One other thing 
that does not exists, is the energy value of image 7 which is very close to the value of images 
10 and 6, and lower than the value of image 8 and it means that its skin surface texture is 
similar to the skin surface texture of image 6 which is true, but it is not similar to texture of 
image 10 and it has neither better surface texture than image 8. 
 
Fig. 4.3(b) shows the calculation results of entropy in the directions of 0°, 45°, 90°, 135°. The 
entropy indicates the randomness of skin image gray distribution. The better skin condition 
is, the less value of entropy is. Images 4 and 5 have the two lowest values, but they do not 
belong to those with the best texture. The highest values are obtained by image 10 which has 
the worst skin surface texture, indeed. Entropy values of images 6 and 7 are close enough 
each other as well as their textures, but are also close enough to the entropy value of image 
10 with the worst surface texture, which does not exists. The entropy values of images 1, 2 
and 3 show that the condition of the skin is neither smooth nor so altered, while they are 
included in the images with a smooth skin surface, compared to the rest. Finally, for images 
8, 9 the entropy value of image 9 is quite higher than image 8, but their textures is similar to 
each other, while entropy of image 8 is close enough to image 2 which has a much better skin 
surface texture.  
 
The results of contrast and correlation are shown in Figs. 4.3 (c)-(d). Correlation reflects the 
similarity of skin texture in a certain direction. The experiment shows that if the contrast of 
skin image is small, its correlation will be big. However, if contrast is big, its correlation will be 
small. In addition, the diagram of contrast shows a large dissimilarity in the curves for each 
image, which may affect the results. 
 
 

4.1.3 Results from FFT-Butterfly Method 
 
As has already been mentioned, this method based on the geometrical characteristics of the 
skin surface texture (see 3.2.4). Extrinsic aging occurs in addition to intrinsic aging as a result 
of sun and environmental damage. Extrinsic aging shows up as thickening of the cornified 
layer, precancerous changes such as lesions called actinic keratosis, skin cancer, freckle and 
sun spot formation, and exaggerated loss of collagen, elastin, and GAGs. Alone or in concert, 
these processes give the skin the appearance of roughness, thin skin and deep wrinkles. 
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Wrinkles and fine lines that appear to the skin give a geometric characteristic to the skin 
surface texture, such as the skin surface microrelief.  
However, this method, using our own samples, does not satisfy the algorithm, as it is not 
possible to convert images to binary images, due to the fact that there are no sharp changes 
in the surface of the skin compared to microscopic samples (see Fig. 3.7). The algorithm was 
also performed by omitting the conversion step to binary, but even in this case, there were 
no significant results that satisfied the relationship between the skin surface texture as age 
increased. The results obtained from the Fourier transform algorithm and the centered 
Spectrum after shifting the zero-frequency component of images in Fig. 4.1 are presented 
below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

            

                                                       Figure 4. 4: Fast Fourier Transform of images of Fig 4.1 
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The parameter, called ‘‘irregularity skin index’’ (ISI), was identified from FFT. ISI was calculated 
by FFT in two different directions (referred to the x and y axis of the diagram of the FFT and 
named, respectively, ISIwx and ISIwy). ISIwx and ISIwy (irregular skin index of the wx axis and the 
wy axis) represent the integrals of areas delimited by the two curves derived from density of 
pixels in the wx and wy axes. Table 4.2 shows the results of ISIwx and ISIwy indexes.  
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From the results obtained from Table 4.2, it is obvious that the irregularity skin indexes of the 
wx and wy axis are not correlated with the skin condition. ISIwx has large values on images 1, 
2 and 3 and image 7 which has neither the best nor the worst skin condition, has the maximum 
value of ISIwx. ISIwy does not provide significant changes on its value. Therefore, there is no 
correlation between skin texture condition and irregularity skin index by analyzing our skin 
texture images. Moreover, from fig. 4.4 we can see that does not appear any pattern (such as 
butterfly or directional) that could be correlate the skin texture condition. 
 
 

4.1.4 Results from FFT-Butterworth Filtering Method 
 
In this case the Fourier transform is used indirectly to enhance the image with a high-pass and 
a low-pass Butterworth filter in the frequency domain. High-pass butterworth filter is applied 
to enhance the edges of the image in order to show how rough is the skin surface texture, 
while the low-pass butterworth filter is applied to remove high frequencies and to decrease 
the contribution from the skin’s curvature (see 3.2.4). The split in two frequency components 
was done through a low-pass digital Butterworth filter with spatial frequency 7. 
Skin texture can be determined by measuring the width of the intensity distribution 
(histogram) of the image, which is proportional to the roughness of the sample. 
 
 
 

Image ISIwx (x1000) ISIwy (x1000) 
1 9.69 1.48 
2 9.31 1.32 
3 9.97 1.52 
4 1.01 1.53 
5 1.08 1.77 
6 1.16 1.64 
7 12.17 1.85 
8 1.16 1.77 
9 1.21 1.86 

10 1.23 1.89 

Table 4. 2: Results of Irregularity Skin index 
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Figure 4. 5: blue channel, low pas (lp) frequency component and high pass (hp) frequency component of each 
image of Fig. 4.1 
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Fig 4.5 shows above are two of the results of this algorithm. From these, it seems that image 
3, which has a better texture, which is also observed from the high frequency component of 
the filtered image, has a larger width of intensity distribution than image 8. This should not 
happen, as a smooth skin surface texture image does not show significant changes in gray 
levels, which means that the intensity value of gray levels in each Pixel is very close to its 
neighbors, so the width of the histogram will be smaller. In addition, in the low-frequency 
component depict strongly the shadows that exist in each image and does not decrease the 
curvature of the skin. According to the rest of samples of Fig. 8, there is no correlation 
between them, as images with an altered texture has a smaller width of the pixel intensity 
distribution than images with a smooth surface. 
 

Figure 4. 6: The pixel intensity distribution of each image of Fig. 4.1 
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4.1.5 Conclusions 
 
From the results obtained from each of the above methods, the following conclusions can be 
drawn: 
 

▪ The only method whose results are related to the condition of the skin and quantify it 
appropriately (better skin surface texture smaller RMSE), is Image Spatial Profile in 
Relation to the Smooth Method. Another important advantage of this method is that 
it is not affected by shadows which is likely to be present in a digital image, so it makes 
it more flexible compared to other methods. Another important benefit is that this 
method  can be easily  implemented in real-time on-line applications. 
 

▪ The next best method is the GLCM method, which gives us more information about 
the skin texture, but is quite affected by the contrast of images or shadows that may 
be present in them and creates false results. 
 

▪ The method used by the FFT & Butterwort filter responds better concerning to skin 
roughness and requires the same way of taking digital images for their comparison, as 
the results are quite affected by the contrast. In addition, it is limited to areas of the 
skin (especially on the face) where roughness is visible and becomes more starkly as 
age increases. 
 

▪ FFT-Butterfly method is limited to taking digital images that show the microrelief of 
the skin surface texture (mainly under a microscope). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 4. 7: Map of the regional differences of skin texture. 
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Given all of the above, the best way to quantify skin texture is through the variable RMSE, 
which is extracted from spatial profiles of the blue channel of the image and its smoothed. As 
the texture of the skin changes over time or is affected by exogenous factors as mentioned 
above and thus changes appear on it, this value increases. In addition, this method is flexible 
for the area under medical examination, because while the skin with the naked eye seems to 
have the same pattern, but observing it with a magnifier or a simple dermoscope, can easily 
see that the pattern is different in some areas of the skin as shown in Fig 4.6. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Our Proposal 
Method 

GLCM FFT-ISI index 
FFT-Butterworth 
filter- Histogram 

Correlation with skin 
texture condition 

 

 
  

Not Affected by 
brightness 
gradations 

 

 
 

 

Measurements in all 
types of skin aging 
texture features 

 

 
 

 

Table 4. 3: Comparison of methods 
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Part 5: Hyperspectral Analysis of Skin Texture 
 

5.1 Introduction 
 

Visual observation has an important role in dermatology as the skin is the most visible organ. 
This makes dermatology a good candidate for utilizing digital imaging and automatic 
diagnostic tools. Hyper-spectral imaging is now one of the most developed methods of visible 
light imaging. It enables to acquire data of an object in any spectral range set in the camera. 
This method is entirely non-contact and non-invasive, and measurements can be carried out 
remotely. With these advantages, hyper-spectral cameras are used in many fields of 
technology and medicine. In particular, they are used in dermatology. The issue of 
dermatological research concerns spectral skin analysis in almost all cases. 
The surface of the body is an excellent area for deployment of optical research methods, and 
HSI technology is being applied in ever more applications in dermatology for non-invasively 
targeting cancer detection, skin oxygenation mapping for diabetic ulcers, spectral unmixing 
of fluorescently labeled antigens, and more. 

 

5.1.1 Tissue Optics Principles 
 
The human skin presents a complex heterogeneous medium, where the blood and pigment 
content are spatially distributed variably in depth. The human skin is named cutis, and is 
composed of two layers; a top layer called epidermis and a bottom layer called dermis. Below 
dermis, there is a subcutaneous fat layer. 
Information about skin physiology, morphology, and composition can be obtained non-
invasively by optical imaging methods. When light interacts with tissue, it is usually altered in 
some way before being remitted and detected by an image sensor. Photons can be scattered 
because of the refractive index fluctuations on a microscopic level by collagen fibers or by 
membranes, have their polarization altered after multiple scattering events, or be absorbed 
by molecules such as hemoglobin or melanin. 
The epidermis varies in thickness from 0.3 mm to 1.5 mm, and consists of a multilayer plate 
epitel. Almost all of the cells in epidermis, around 90%, are keratinocytes. The epidermis is 
further divided into layers called strata. These layers are the basale layer, the spinous layer, 
the granular layer and the corneum layer, as seen in Fig. 5.1. Melanin is found in the epidermis 
in the form of red/yellow pheomelanin and/or brown/black eumelanin that absorbs very 
broadly in the visible spectrum with higher values for shorter wavelengths. 
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The dermis, which is located below the epidermis, varies in thickness from 1.4 mm to 4 mm. 
Dermis consists of collagen and elastic fibers, and is divided into two layers, where the lower 
is called the reticular dermis and the upper is called the papillary dermis. An illustration of the 
composition of dermis can be seen in Fig. 5.2. The layers are composed of connective tissues, 
blood vessels, and nerves. In the blood cells there are several natural chromophores, primarily 
hemoglobin, which absorbs blue and green light and gives blood its reddish color. Other 
chromophores present can include bilirubin and _-carotene that when found in the dermis 
contribute to the yellowish or olive tint of human skin. Fig. 5.5 displays the absorption spectra 
of major skin constituents that have a distinctive spectral absorption signature. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. 1: The composition of epidermis 

Figure 5. 2: The composition of dermis 
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Light entering tissues can also have its wavelength distribution shifted by interaction at the 
atomic or molecular levels, producing fluorescence or Raman signals. Interpreting these 
changes can provide diagnostically useful information about the underlying structure of the 
tissue, provided that there is a plausible biological rationale for the change. Changes in the 
spectral characteristics in different wavelength regions produce a distinguishable spectral 
signature that reflects the underlying biology. Spectral imaging technology has a unique 
capability for skin characterization because it can take advantage of the spatial relationships 
among the different tissue absorption spectra in a neighborhood. Spectral data cube analysis 
can incorporate complex spectral-spatial models that can provide more accurate classification 
of image features specific to a targeted disease. The technology unlocks new capabilities in 
medicine by which spatial and functional relationships among biologically active molecules 
can be observed, helping to noninvasively identify and quantify changes in living organisms, 
and enhancing histopathological and fluorescent biomarker image analyses to improve 
biological knowledge of diseases.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. 3: Absorption spectra of skin constituents 

Figure 5. 4: The penetration of light of different wavelengths in the skin 
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The penetration depth of light into biological tissues depends on how strongly the tissue 
absorbs and scatters light. High melanin concentration at the topmost layer of skin 
(epidermis) absorbs light in the ultraviolet (UV) and visible range, leading to low penetration 
depth for wavelengths shorter than 600 nm. In the wavelength range from 600 to 1300 nm, 
skin has sufficiently weak absorbers to permit significant light penetration. Because of this 
characteristic, this wavelength range is often called the therapeutic window. Fig. 5.6 shows a 
schematic of light penetration depth at different wavelengths for human skin. 
 

5.1.2 Spectral Imaging Technique for Assessing Skin Aging Progress 

 
Aging of the human hand reflects the cumulative effects of time on the properties and 
functions of the skin and other deeper structural components of the hand. The main changes 
associated with normal aging of the hands are related to skin texture changes,1 the reduction 
of muscle strength as a consequence of decreasing muscle mass,2 joint deformity, bone spur 
formation and reducing the degrees of motion of the hand and fingers,3 and nerve changes 
and hand motor control problems. 
 
Establishing a direct relationship between the human hand aging process and some 
characteristic properties of hand structural components is essential for quantitative 
assessment of the aging process of a hand. Many studies have been undertaken to date, most 
of them being focused on skin texture analysis. 
Over the years, skin texture analysis became a great focus point in scientific literature, 
especially for computeraided diagnosis in dermatology and cosmetic products testing. The 
ability of skin texture analysis to provide different skin texture features as indicators of skin 
aging has been demonstrated by some researchers. 
 
Hyperspectral imaging (HSI) has the advantage to provide both spectral and spatial 
information about each pixel from a skin image scene. Therefore, we assume that by adding 
spectral information to the classical texture analysis methods that only treat gray-level spatial 
variations, a better characterization of skin aging could be achieved. 
The primary goal of this study is to analyze the skin texture features related to wavelength 
using the Root mean Square Error value calculated from HSI of inside hand area between wrist 
and elbow at a more accurate quantitative assessment of the aging process.   The main issues 
addressed are as follows: (1) extracting the mean RMSE values of hand skin area between 
wrist and elbow from hyperspectral images acquired at different wavelengths; (2) selection 
of the highest RMSE value in the corresponding wavelength. (3) establishing a correlation 
between mean RMSE value and absorption spectra of the main chromophores in human skin 
tissue; 
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 5.2 Hyper-Spectral Skin texture analysis using a dermoscope 
 
Macroscopic morphological examination of skin disorders is, besides history taking, general 
physical examination, and laboratory investigation, one of the pilots of the diagnostic 
methods in dermatology. An extension of the morphological examination is the invasive 
technique of biopsy taking for histopathology, histochemistry, immune-histochemistry, and 
autoradiographic methods.  
Many imaging devices have been developed for skin texture analysis such as VISIA SYSTEM 
(Visia Complexion Analysis, Visia-CR, Canfield Imaging System) [15], 3D Lifeviz Micro 
(QUANTIFICARE INC. (US)) [16], Clarity 2D & 3D Research Systems (BrighTex Bio-Photonics) [17] 
and Antera 3D (Miravex Limited, Ireland) [18]. However, they have disadvantages as they measure 
skin texture appearance using RGB images and labeling algorithms which enhance the images and 
show the skin texture characteristics using different colors depending on the degree of damage. 
Moreover, more of them are not portable devices and capture images only from face area and 
analyze specific features, such as only the depth wrinkles and curve lines, or roughness by labeling 
the spots that affect the smooth area.  
Dermoscopy, which is a non-invasive micromorphological method, can be considered as a 
trait d’union between microscopic morphological investigations and invasive histological 
techniques. From the historical point of view epiluminescence microscopy has been used for 
two different applications: capillary microscopy and dermoscopy. Dermoscopy is a readily 
available diagnostic method, allowing us to appreciate the fine details not normally seen with 
the naked eye. It furnishes us with the overall detail, which is not the case in low-power 
scanning electron microscopy, the latter being, moreover, an elaborate and very expensive 
technique. The unexpected details seen with the dermoscope often give us answers regarding 
the pathophysiology of various skin diseases, as well as the urge to pose questions requiring 
further investigation. As such, the dermoscope can be applied as an objective tool in research, 
e.g., follow up of ultraviolet (UV)-erythema reaction, skin texture measurements, etc. With 
the existing techniques of UV, infrared (IR), and fluorescence photography, dermoscopy is 
used to apply these methods to the fine detail of the skin.  
Dermoscopic photography provides the clinical instructor with a new valuable teaching aid 
that not only enhances what is seen clinically, but also creates a surprisingly pleasing visual 
image of color, shadows, texture, and form. 
 
Skin is the main organ in which age-related changes are visible. Skin aging is a complex process 
that composed of chronologic (intrinsic) aging associated with people’s genetics 
characteristics and extrinsic aging associated with ultraviolet (UV) such as brown spots, 
alcohol, smoking, malnutrition, and adverse environmental conditions. Skin performance 
impair with age and with the influence of these factors and visual beauty is lost. In fact, aging 
skin appears thicker, paler, and clear (translucent). Large pigments, including age spots, liver 
spots or liver lenses, may appear in areas exposed to the sun.  
All these features of skin aging can be detected easily with dermoscopy. Measurement of skin 
aging with dermoscopy will give more reliable and objective results than the scales using 
clinical criteria. Prevention and treatment of skin aging can be measured using dermoscopy 
and efficacy of many therapeutic techniques can be investigated. 
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5.2.1 Skin texture analysis based on RGB color space 

 
Using the Qcell Snapshot HyperSpectral Dermoscope, a sophisticated and evolving 
dermoscope, we collected the following images. Four of them are from the area on the inside 
of the hand between the wrist and elbow and two are from the facial area. It is important that 
the images do not contain hairs because they affect the results of the algorithm. Image 
processing is now done using the RMSE algorithm, as it emerged from the comparison of the 
results in Part 4, it is the best method to measure and quantify the texture of the skin. More 
specifically, in order to be more accurate and valid in terms of quantifying the skin texture, 
we calculate the mean RMSE value, which results from the RMSE values given to us by the 
spatial profiles in the horizontal, vertical and the two diagonal directions as shown in Fig 5.5. 
In this case, all intensity profiles of the images are derived from the blue channel of the RGB 
color space of the images. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The size of the Gaussian filter which is used to blur the images is hsize=30 with sigma=16 on 
292x392 image size. Comparison of the skin samples is achieved separately for those taken 
from the face’s area and inside of the hand between the wrist and elbow area, as the skin 
pattern observed with a dermoscope varies depending on the area of the body, as previously 
reported. 
 
 

Figure 5. 5: Intensity Profiles directions 
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Image 
RMSE values in all directions 

Mean RMSE 
0⁰ 45⁰ 90⁰ 135⁰ 

a 4.23 4.44 4.25 4.37 4.32 
b 5.14 5 4.81 5.09 5.01 
c 5.23 5.46 5.47 5.66 5.45 
d 6.61 5.86 5.77 6.27 6.13 

 

Table 5. 1: Analytic results of RMSE values (hand area) 

 
According to Figure 5.2, image (a) is the best one of the skin situation among these four 
images, following by image (b) while the skin situation of image (d) is the worst. More 
specifically, in Figure 5.2.b we observe that the fine lines appear strongly in relation to the 
previous one while in relation to the next ones it maintains a smoother texture. Ιn image (c) 
the skin appears drier while it also shows some white signs. The same holds for image (d) in 
which the white signs are much more noticed. The table 5.1 shows that the mean PMSE value 
of the images increases from images (a) to (d) which is completely related to the condition of 
the skin. The mean RMSE value of image (b) is very close to the mean RMSE value of image 
(c), which has the largest value, and it appear fine lines and white signs which make the skin 
drier than skin in image (b) which contains only the fine lines.  
 
 

(a) (b) 

(c) (d) 

Figure 5. 6: Skin texture from inside of the hand between the wrist and elbow area 
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Image 
RMSE values in all directions 

Mean RMSE 
0⁰ 45⁰ 90⁰ 135⁰ 

a 4.13 3.49 3.49 3.76 3.72 
b 9.66 9.79 10.99 9.89 10.08 

 

Table 5. 2: Analytic results of RMSE values (facial area) 

 

In this case, we have more obvious results, both visually and algorithmically. As shown in Fig 
5.2, image (b) appears a more rough skin surface texture than image (a). Image (a) has also 
some signs like spots but the skin is smoother and obviously has much better skin condition. 
This also results from the RMSE values in Table 5, with the mean RMSE value of image (b) 
being much higher than the value of image (a). 

 

5.2.2 Skin texture analysis on specific spectra 

 
The Qcell Snapshot HyperSpectral Dermoscope has also the ability to capture image data at 
specific frequencies across the electromagnetic spectrum. Hyper-spectral images acquired in 
the visible to near-infrared spectrum may help experts and cosmetic industry to quantify and 
assess the aging of the human hand, by reflect the cumulative effects of time on the 
properties and functions of the skin and other deeper structural components of the hand.  
Our aim is to evaluate which frequency band reflects the most skin characteristics and 
therefore the highest mean RMSE value results from it. In addition, another important 
observation is the establishment of a correlation between the absorption spectra of the main 
chromophores in human skin with the maximum mean RMSE value that results in the 
corresponding frequency band.  
This device outputs these bands: 400nm, 460nm, 540nm, 640nm, 780nm and 880nm. We 
analyze skin hand area between wrist and elbow at these bands, using mean RMSE value as 
an assessment measure. The size of Gaussian filter is hsize=60 with sigma=25 on a 950x1500 
image size. 
 

(a) (b) 
Figure 5. 7: Skin texture from facial area 
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Figure 5. 8: Color Image with spatial profile directions 

Figure 5. 9: Image at the frequency of 400nm 
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Figure 5. 10: Spatial profiles of image at the frequency of 400nm in all directions, meanRMSE=0,76 

Figure 5. 11: Image at the frequency of 460nm 
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Figure 5. 12: Spatial profiles of image at the frequency of 460nm in all directions, meanRMSE=1.18 

 
 
 
   
 
 
 
 
 
  
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 

 
 
  
 
 
 
 
 
 
 
 
 
 

 

Figure 5. 13: Image at the frequency of 540nm 
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Figure 5. 14: Spatial profiles of image at the frequency of 540nm in all directions, meanRMSE=2.02 

Figure 5. 15: Image at the frequency of 640nm 
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Figure 5. 16: Spatial profiles of image at the frequency of 640nm in all directions, meanRMSE=1.52 

 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
  
 
 
 
 

Figure 5. 17: Image at the frequency of 780nm 
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Figure 5. 18: Spatial profiles of image at the frequency of 780nm in all directions, meanRMSE=1.36 

 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
  
 
 
 
 
 

Figure 5. 19: Image at frequency of 880nm 
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Figure 5. 20: Spatial profiles of image at the frequency of 880nm in all directions, meanRMSE=1.31 

 
 
 
 
 
 
 
 
  
  
 
 
 
 
 
 
 

Wavelength 
of Image  

RMSE values in all direction Mean RMSE 
value 0⁰ 45⁰ 90⁰ 135⁰ 

400nm 0.68 0.76 0.88 0.71 0.76 
460nm 1.11 1.23 1.23 1.16 1.18 
540nm 2.06 1.98 1.99 2.05 2.02 
640nm 1.42 1.53 1.50 1.62 1.52 
780nm 1.33 1.43 1.29 1.46 1.36 
880nm 1.18 1.39 1.37 1.28 1.31 

 

Table 5. 3: Analytic results of RMSE values of spectral images 

 
Table 5.3 contains in detail all the values that result from the spatial profiles of the images at 

each spectrum, as shown in the above figures (Fig. 5.5-5.15), in all directions as well as their 

mean RMSE value. The maximum mean RMSE resulted by the the image in the frequency of 

540 nm. Observing the spatial profiles of each spectral image in all directions, the values of 

spatial profiles of original image (not filtered) at the 540nm are far from the reference point 

(smooth image) and the spatial profiles is also denser than the profiles of the other spectral 

images. This justifies the maximum RMSE values in this range. In the spectra of 400 and 460 

we observe smoother profiles in the original image, which means that the characteristics of 

the skin are not well represented in them. The same happens in the other spectra larger than 

540nm. The profile curve of the original image tends to be closer to the curve of the smooth 

image. Therefore, it can be concluded that the spectrum of 540nm shows extra details and 

potentially skin lesions of the skin texture, that create gradations in the values of the intensity 

of the profiles and this wavelength is associated also with better visualization of the upper 
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affected skin layers. Moreover, the spectrum of 540nm is very close to the maximum 

absorption spectrum of oxyhemoglobin (with maximum absorption peaks at 542 nm and 576 

nm) and it is a fact that some degree of venous stasis is associated with aging. 

 

5.3 Skin Texture Analysis using Hyperspectral Imaging System 

 
5.3.1 Set up of Image Acquisition System Model  

Hyperspectral image of the inside area of the hand between wrist and elbow of the participant 
was acquired using a staring hyperspectral imaging system consisting of an imaging 
spectrograph (MUSES9-HS) and containing 2x50 W halogen lamps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
MUSES9-HS is a staring hyperspectral imager. Τhe heart of this camera model is an electro-
optic filter module (EOFM) that selects and tunes the imaging central wavelength. The EOFM 
is synchronized with the imaging sensor(s), so that several images are captured 
during spectral scanning. The acquired dataset (spectral cube) comprise the basis for 
calculating the spectra in every, pixel-size image location. Notably, in every tuning step, live 
spectral images are immediately available for real time spectral inspection. 

Competing technologies, based on the spatial scanning of a point or a line spectrometer (push 
broom systems) cannot generate live spectral images, while, at the same time, the camera 

Figure 5. 21: Image Acquisition System Model 
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and scanning package is bulky and heavy. As such, they are suitable mostly for table-top, 
indoor applications. 

The staring and portable design of MUSES9-HS is clearly advantageous over traditional 
solutions, by providing live spectral image inspection and handheld operation. This expands 
the addressable range of applications and allows for examining precious samples in their 
natural location. 

The MUSES9-HS software offers high level of automation, requiring no technical skills for 
system’s operation. It also offers advanced tools for spectral classification, which generates and 
displays spectral maps depicting the spectral topography of the sample/scene. Importantly, 
when this is combined with spectral libraries and proper machine learning models, the system’s 
analytical capabilities are greatly improved. 

Basic Specifications: 

• 4-6 Megapixels C-MOS @ 25 f/s (Plus InGaAs sensor for model-HS1700) in the 370-
1100nm spectral range (370-1700nm for model-HS1700) 

• 5-20 nm FWHM and 2-5nm tuning step 
• >150 spectral images 4-6 millions of spectra 
• 5-15 s scanning time 
• Spectral and color imaging 
• USB 3 interface 
• Integrated software for camera control image handling, achieving and processing and 

spectral mapping 
• accepts all kinds of lenses and microscopes 
• low power-battery operation is supported 
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5.3.2 Results  

  
 
We collect 21 images at range of 400nm to 1000nm per 30nm from the hand area between 
wrist and elbow. The diagram below shows the resulting mean RMSE value at each image 
band which extracted from RMSE values in four directions as we explained previously. We 
suppose that higher mean RMSE value shows more details about skin texture condition. 
 

 

 
Looking at Figure 5.22 and the corresponding Table 5.4 below we observe that the maximum 
peak of mean RMSE value is at 550nm. 
Image at channel of 550nm shows also a high mean RMSE value which means more details 
about skin condition. From the results obtained using the Qcell Snapshot Hyperspectral 
Dermoscope, the maximum RMSE values and the corresponding mean RMSE value show at 
image of 540nm. The results obtained by the HSI system confirm that the images at 540-
550nm are suitable to measure and quantify the condition of the skin texture. This will help 
in the objective diagnosis by the dermatologists and in the selection of the appropriate 
treatment depending on the degree of skin texture damage. 
 
 
 
 

Figure 5. 22: The resulting RMSE value of 21 images which collected at each wavelength in the range of 400nm-
1000nm. 
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Image 
band(nm) 

RMSE 
0⁰ 

RMSE 
45⁰ 

RMSE 
90⁰ 

RMSE 
135⁰ 

Mean RMSE 
value 

400 2,21 2,55 2,08 2,42 2.34 
430 2,32 2,59 2,18 2,74 2.46 
460 2,23 2,16 2,55 2,26 2.29 
490 2,15 2,54 2,36 2,27 2.33 
520 1,91 2,35 2,17 2,45 2.22 
550 2,45 2,63 2,46 2,61 2.54 
580 2,39 2,47 2,07 2,32 2.31 
610 2,31 2,25 2,27 2,17 2.25 
640 1,91 2,19 2,00 2,06 2.04 
670 1,79 2,09 1,93 1,82 1.90 
700 1,75 1,71 1,87 1,69 1.75 
730 1,71 1,73 1,78 1,70 1.73 
760 1,36 1,54 1,78 1,61 1.57 
790 1,55 1,52 1,52 1,56 1.54 
820 1.85 1.64 1.68 1.83 1.74 
850 1,86 1,81 2,03 1,77 1.87 
880 1,92 1,82 1,75 1,62 1.77 
910 2,03 2,06 1,65 2,08 1.95 
940 1,80 1,88 1,73 2,01 1.85 
970 1,72 1,78 1,69 1,86 1.76 

1000 1,87 1,91 1,83 1,66 1.81 

Table 5. 4: RMSE values in all directions and the corresponding mean RMSE for each image band 

Figure 5. 23: Image at the maximum peak of mean RMSE value 
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Part 6: Conclusion and Future Work 

The major benefit of hyper-spectral imaging is that an entire spectrum of information is 

acquired at every pixel of the object being examined. It is a non-destructive and non-invasive 

method, and hence could be used for on-line quality inspection and monitoring. The main 

advantage of hyper-spectral imaging is that it is possible to visualize the various biochemical 

components present in a sample based on spectral signature in a region of specific chemical 

composition where spectral properties may be similar. 

Although, Hyperspectral Imaging has some disadvantages. The primary disadvantages are 

cost and complexity. It requires fast computers, sensitive detectors, and large data storage 

capacities in order to analyze hyperspectral data. It also necessary to contain Significant data 

storage capacity, since hyperspectral cubes are large, multidimensional datasets, potentially 

exceeding hundreds of megabytes. All of these factors greatly increase the cost of acquiring 

and processing hyperspectral data.  

Hence, availability of a new diagnostic tool in aesthetic medicine, such as a dermoscope, have 

a high potential in the objective diagnosis and assessment of the skin texture and aging 

process related to its. The benefits of the dermoscope devices are that they are hand held 

and cheaper devices which have the ability to consist of spectral cameras which outputs 

specific spectrums and in connection with a digital computer can capture not only the 

appearance of human skin texture but also measure it in less time, using real-time 

applications in combination with effective image processing algorithm. 

In this thesis, it has been proven, that RMSE is more efficient method in comparison with the 

most widely used algorithms and methods of skin texture aging quantification so far. The aim 

of current study is not only to quantify skin condition but also to introduce a hyperspectral 

imaging device and the method for monitoring age-related human skin topographical and in 

vivo changes. The results show that spectral images at 540 & 550nm can be used to analyze 

the condition of skin texture and provide better and more objective results in the evaluation 

of skin by dermatologists. By extracting a texture quantification index, such as RMSE value as 

demonstrated in this study, even an inexperienced specialist can assess skin texture damage 

and provide appropriate treatment.  

Not only does RMSE represent a useful tool for evaluating skin texture in respect to age but 

it could also be useful for investigating before/after comparisons of topically treated skin. In 

addition, many others skin areas of the human body which have different skin texture 

topography and pattern could be investigated for both women and men separately from all 

of ages, using our method in order to correlate the RMSE value with age. Moreover, a hair 

removal algorithm will be very useful for automatic hair removal on a skin texture image, 

which affected by them and creates false results at the value of quantification index (in our 

case at the RMSE value).  
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Finally, all the above can form the basis for the development of innovative screening medicine 

and self-management medicine. Thus, the development of new optical diagnostic methods 

has potential to find promising application in aesthetic medicine. By means of Root Mean 

Square Error (RMSE) value, it was possible to quantify skin texture variations that correlated 

with the aging process.  
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