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ABSTRACT 

 

In recent years there has been a rapid increase in sales of electric cars 

around the world. This is mainly due to the environmental benefits of 

electrified transportation. At low penetration rates, electric cars do not 

constitute a load capable of causing problems in the country-wide electric 

power system. However, as their use becomes more widespread, their 

uncontrolled charging can lead to system overloading or inability to meet 

energy demands, while at the same time it can be a flexible load, which can 

help the system at the necessary time periods.  

In this work we use real driver behavior data to model not only the charging 

needs of their vehicles during the day but also the ability to supply energy as 

long as they are parked and the energy they have stored is sufficient. We 

propose a modeling method for calculating the load of a large number of 

electric cars in a short run time. Also, time series of the daily price of 

electricity in Greece are used as well as the corresponding daily load in order 

to approach the effects that the penetration scenarios will have on the 

system but also on the price of electricity and how they would respond to 

electricity price variations.  

We study three different penetration scenarios of plug-in electric vehicles. 

The charging techniques applied are simple direct charging and smart 

charging, with or without the ability to supply energy to the system. Finally, 

the obtained results are compared and general conclusions are drawn. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

ΠΕΡIΛΗΨΗ 

 

Τα τελευταία χρόνια έχει παρατηρηθεί μια ραγδαία αύξηση των πωλήσεων των 

ηλεκτρικών αυτοκινήτων σε όλο τον κόσμο. Αυτό οφείλεται κυρίως στα οφέλη 

της ηλεκτροκίνησης ως προς το περιβάλλον. Σε μικρά ποσοστά εισχώρησης τα 

ηλεκτρικά αυτοκίνητα δεν αποτελούν φορτίο ικανό να προκαλέσει προβλήματα 

στο δίκτυο μεταφοράς ενέργειας σε επίπεδο χώρας. Όσο όμως η χρήση τους 

γίνεται πιο διαδεδομένη, η ανεξέλεγκτη φόρτιση τους μπορεί να οδηγήσει σε 

υπερφορτώσεις μετασχηματιστών ή σε αδυναμία κάλυψης των ενεργειακών 

αναγκών ενώ παράλληλα αρχίζει να αποτελεί ενα ευέλικτο φορτίο, το οποίο 

μπορεί να προσφέρει βοήθεια στο σύστημα τις απαραίτητες χρονικές στιγμές 

που η ζήτηση ενέργειας είναι υψηλή . 

Σε αυτή την εργασία χρησιμοποιούμε πραγματικά δεδομένα συμπεριφοράς των 

οδηγών για να μοντελοποιήσουμε όχι μόνο τις ανάγκες φόρτισης των οχημάτων 

τους μέσα στην μέρα αλλά και την δυνατότητα προσφοράς ενέργειας όσο είναι 

σταθμευμένα και η ενέργεια που έχουν αποθηκευμένη είναι επαρκής. 

Προτείνουμε μια μέθοδο μοντελοποίσης για τον υπολογισμό του φορτίου 

μεγάλου αριθμού ηλεκτρικών αυτοκινήτων σε μικρό χρονο εκτέλεσης. Επίσης, 

χρησιμοποιούνται χρονοσειρές της ημερίσιας τιμής ηλεκτρικής ενέργειας της 

Ελλάδας καθώς και το αντίστοιχο ημερίσιο φορτίο ώστε να προσεγγίσουμε τις 

επιπτώσεις που θα έχουν τα σενάρια διείσδυσης στο σύστημα αλλά και στην 

τιμή της ηλεκτρικής ενέργειας.  

Μελετάμε τρία διαφορετικά σενάρια διείσδυσης σύμφωνα με το πόσο αισιόδοξη 

θα είναι η προσαρμογή στην ηλεκτροκίνηση.Οι τεχνικές φόρτισης που 

εφαρμόζονται είναι η απλή άμεση φόρτιση και η έξυπνη φόρτιση, με ή χωρίς 

την δυνατότηα προσφοράς ενέργειας στο σύστημα, ώστε να συγκριθούν τα 

αποτελέσματα τους. 
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Introduction 

1.1 General 

It is widely known that unless some measures are taken to mitigate global 

warming, its effects will be devastating to our planet and everyday life. Due 

to the uncertain future of fossil fuels and the huge amount of emissions they 

produce, the whole world is moving towards a more energy secured future 

planning.  

Europe in particular, has made a rather ambitious plan in order to limit the 

global warming to 2 degrees Celsius [1]. The objectives for 2030 are to 

reduce the greenhouse gasses at least 40% compared to 1990 as well as 

reaching 27% energy production from renewable resources. This entails the 

transformation of Europe’s energy market and economy, making it more 

secure and sustainable.  

As part of this transformation, special consideration has been given to the 

transportation sector [2]. Regarding private cars, the goal is to limit the use 

of conventionally fueled vehicles in urban areas by 2030 and phase them out 

by 2050. This way the air pollution in cities can be limited to healthy levels. 

It has to be noted that, although electrical vehicles have zero direct 

emissions, there are still some emissions from battery manufacturing as well 

as from electricity generation [3]. If the vehicle is fueled by energy provided 

from renewable resources, then it is truly a clean means of transport. 

Analyses have shown that battery electric vehicles (EV) on average emit less 

CO2 than their conventional counterparts over their lifetimes. Even with 

electricity produced by fossil fuel, EVs produce about half CO2 emissions 

than an average EU conventional vehicle. In addition, even if the energy 

generation is based on fossil fuel, the emissions are shifted from denser 

populated urban places to rural power generation sites. 

Some countries have made aggressive policy decisions so they can achieve 

the aforementioned goals. Norway is planning to ban sales of internal 

combustion engine cars by 2025 followed by France and UK (2040)[4]. This 

will lead to electric vehicle penetration rate to drastically increase. As a 
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result, a large number of battery electric vehicles will simultaneously 

connect to the grid so they can satisfy their charging needs. From the power 

system operator’s side, this will create not only new challenges to overcome 

but also new opportunities to take advantage of. 

1.2 Aims and Objectives 

The main objective of this thesis is to develop an electric vehicle aggregator 

model that can realistically simulate the charging behavior of a large number 

of battery electric vehicles and therefore evaluate the impact of the excess 

power demand in large electric power systems. 

The sub-objectives that are derived from the main are the following: 

 The development of a method to generate daily trips containing 

different purposes and various mileage that each driver will follow 

during the day. 

 Estimate the ability of the vehicle to inject power into the power 

system when it is under heavy load 

 Provide a fast method to calculate the load of an aggregated fleet of 

EVs 

 Evaluate the impact that the load from the EVs will have on the 

national price of the electricity and vice versa. 

1.3 Related Work 

In the last decade many studies have been made in order to evaluate the 

impact of plug-in electric vehicle (PEV) load. A wide range of methods are 

used to model the estimation of the final fleet load, each with different 

advantages and accuracy. 

One of the most commonly used methods is agent based modelling [5] , [6] 

where agents are responsible for the decision making resulting in fair load 

distribution. There are also studies like [7], [8] where authors choose to use 

reinforcement learning to model driving patterns and optimal charging 

policies. Another modelling method is statistical representation of driving 

characteristics, where both real world driving data [9] and arbitrary 

probability density functions based on experience have been used [10].  

In many studies it is assumed that drivers only charge their vehicles at their 

homes during the night[11][12] but as the PEV penetration increases and 

public charging stations become commonly available, the charging load will 

have a different profile so a multipurpose daily tour method must be 

implemented. This is referred in the literature as activity based modelling 
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[13]. Furthermore, despite G2V having an important role in the PEV 

integration, it is not always included in the relative works [10], [14], [15]. 

In [10] real driving cycles in urban setting were used and fuzzy logic system 

was implemented to emulate the charging decision probability of drivers. In 

our methodology, fuzzy logic is used to quantify the desirable target energy 

at the time of departure, as when the electricity price is higher a driver may 

opt to charge his vehicle enough to return home and not at full capacity. 

Also the V2G option is added through the fuzzy system. 

In [9], all parameters like mileage and all electric range, were formulated as 

random variables in order to incorporate all possible future EVs. An 

extensive database of travel characteristics was used to model the behavior 

of drivers. The same database will be used in this study but with a new way 

to generate daily trips. 

While many studies discuss the importance of electricity price for the 

charging scheduling, the fact that the introduction of a large PEV fleet will 

affect the price is usually ignored. Hence there is also the need to assess the 

impact that the new total load (including PEV load) will eventually have to 

the electricity price 

In Greece, not many studies have been made as PEV penetration is still in 

early stage. A recent study is focused only in the autonomous system of 

Crete [17], so in our study the load of the whole country is investigated. 

In order to be able to process the large number of PEVs that an entire 

country will have, an aggregated dynamic battery model is introduced, that 

emulates an entity like an aggregator [18] and enables smaller simulation 

time. 

1.4 Document Structure 

In chapter 2, some background information is presented regarding the 

electrical vehicle state of art technology, as well as some current regulations 

about the charging modes. 

In chapter 3, the driving characteristics of conventional vehicles are analyzed 

and an algorithm is presented to generate daily trips with different starting 

times and mileage for each vehicle. 

In chapter 4, the load estimation algorithms for the two charging strategies 

are presented with the necessary mathematical modelling, as well as the 

price iteration model to simulate the load-price interaction. 
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In chapter 5, the case study with all the necessary input parameters is 

presented.  The respective results for each charging strategy and for each 

penetration scenario are given and general conclusions are drawn. 
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Background 

2.1 Electric Vehicles 

EV can be any vehicle that has a battery and runs at least partly on an 

electric drive train. Despite their fame lately, EVs are not a new concept The 

first practical electric vehicles were produced back in 1880s but advances in 

conventional internal combustion engine vehicles led them out of the global 

market. Recent improvements of battery technology and environmental 

concern have elicited the use of electro-mobility. 

 

 

Figure 2-1: First practical electric vehicle [19] 

 

2.2 EV types 

Depending on the degree that electricity is used as propulsion energy EVs 

are classed by three main types [20][22]. 
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 Hybrid Electric Vehicles (HEV) 

HEVs have both an internal combustion engine and an electric drive train 

with a small battery. When HEVs start, they use the electric motor but when 

they reach a certain speed or low state of charge, the gasoline engine assists 

the propulsion. Because HEVs cannot plug in to the electricity, they are able 

to recharge their batteries using the ICE and with their braking system as it 

can use the energy that otherwise converts to heat by the brakes. 

 

 

 

Figure 2-2: Hybrid Electric Vehicle –HEV [20] 

 

 Plug in Hybrid Electric Vehicle (PHEV) 

 

PHEVs use batteries to power an electric motor and some fuel like gasoline 

or diesel to power an ICE. Like HEVs, those vehicles can recharge the battery 

through the braking system, but they also can connect to an external source 

of electrical power like a public charging station or the driver’s home. They 

usually have bigger battery capacity than typical HEVs and their fuel 

economy depends on how often the grid is being used for battery charge. 
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Figure 2-3: Plug in Hybrid Electric Vehicle- PHEV [21] 

 

 Battery Electric Vehicles (BEV) 

 

BEVs don’t have an ICE so they are fully electric. They use high capacity 

batteries that can provide large autonomy of mileage. This driving range can 

be affected by the driving conditions such as extreme outside temperatures 

and rapid acceleration. They have special chargers that support very fast dc 

charging so they can be fully charge in the time span of minutes. 

 

 

Figure 2-4: Battery Electric Vehicle-BEV[20] 

 

2.3 Benefits and Disadvantages of Electric Vehicles 

The most important advantages of EVs are the following [23]: 
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 They are eco-friendly as they do not directly emit toxic greenhouse 
gases. If the energy that is used for the charge of their batteries comes 

from renewable resources, then they are truly green. Even if the 
electricity used is produces by oil fuels, the air pollution is limited to 

electricity generation sites rather than the cities. 

 Their maintenance cost is lower because tasks related to ICE such as 

lubrication of the engines is not needed 

 Limited noise pollution as electric motors are much quieter. This is 

especially significant in urban setting because of the substantial 
number of vehicles. 

  Their driving is easier. Commercial electric vehicles are automatic and 

include a transmission that has one long gear. Thus, there is no need 
for a clutch mechanism and the driver only uses the brake and 

acceleration pedal enabling him to focus his attention on his 
surroundings 

 They can be cost-effective as there are many government policies that 
significantly reduce car registration taxes. BEVs also do not depend on 

fuel prices. They only recharge at special recharge points or at the 
driver’s home from the electricity grid 

 

Despite the benefits described above, there are many problems that are 

delaying the establishment of EVs as the main car type choice: 

 

 The driving range of EVs is being limited by their battery capacity 

although this problem is addressed by latest research and technology. 
As of now the most recent EVs have a range of 80-160 km and some 

models can reach up to 300 km range 

 They still have a higher price than conventional vehicles even on the 

more affordable brands. This is due to the equipment used and mostly 
to the batteries. As EV penetration rate rises, the technology used will 
become mainstream and their price will gradually fall. 

 Their batteries need replacement because of the limited life cycle. 
Depending on the type and usage, they have to be changed every 3 to 

10 years. Most recent models try to tackle this problem 

 They have longer recharge time than the refueling of an ICE vehicle. It 

can take 4 to 6 hours or even more to fully charge an EV, depending 
on the battery. With special charging station it can reduced to a few 

minutes 
 

2.4 PEV Charging Strategies 

There are three main charging strategies that allow the driver to have varied 

control of the timing that the charging process starts: 
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 Uncontrolled or Dumb charging: This is currently the most used 

strategy because of the low EV penetration. PEVs are charged with 

steady power until the target SOC is reached. The charging process 

begins immediately when the PEV is connected and as so it can 

overlap with load peaks through the day. So there is no option to 

minimize impact on the distribution network and on large penetration 

number this can be devastating for the system. 

 Time of use tariff: in this strategy the day is divided in 2-3 time periods 

and a different price is allocated in each period. For peak load hours 

the price is higher and the driver prefers to charge on off-peak cheaper 

hours. TOU tariff can be useful in low penetration of PEVs but with 

higher penetration where the PEV load is substantial, it can cause 

overload problems just like the dumb charging strategy. 

 Smart charging: It is the most efficient strategy. The charging rate of 

every PEV is actively controlled in order to ensure that the distribution 

network is not overloaded and the charging cost for the driver is as low 

as possible for the target SOC that he decided. 

 

V2G: The ability of the PEV to inject energy into the grid on periods of the 

day where the load is maximum. In the context of smart grid, V2G with 

smart charging can provide great technical and economic benefits. 

 

2.5 PEV charging modes 

There are 4 charging modes for the PEVs defined by standard IEC 61851-1 
[24][26] 
 

 

 Mode 1: slow charging (AC) 

The rated values of voltage and current must not surpass 250V and 16 A in 
single-phase and about 400 V in three-phase. The vehicle is connected 
directly to a home type socket and there is no protection or safety system 

like a residual current device. 
 

 

Figure 2-5: Mode 1 charging [26] 
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 Mode 2: slow charging (AC) with safety 

The rated values of voltage are the same with the previous mode but the 

rated value of the current must not exceed 32A. A safety system is placed in 
the charging cable called Control Box. It is mostly found in portable 
chargers. 

 
 

 

Figure 2-6: Mode 2 charging [26] 

 

 Mode 3: slow to semi-fast charging (AC)  

In this mode a specific power system supply is required which is 
permanently connected to the electricity grid. The Control Box is integrated 

to the supply system. The maximum voltage and current values are the same 
with mode 2 but charging is a bit faster because of the communication 

between the charger and the vehicle. 
 

 

Figure 2-7: Mode 3 charging [26] 

 

 Mode 4: Fast charging (DC) 

In this mode the charging time can be minimized as the electrical power can 

vary from 40kW to 350 kW. An external current converter is required that 

transforms the current from AC to DC before passing through the charging 

cable. The safety system is integrated in the external charger and there is 

continuous communication with the vehicle for optimal charging. 
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Figure 2-8: Mode 4 charging [26] 

 

 Wireless charging 

The battery is charged using an electromagnetic field to transfer energy from 

an induction coil to the vehicle. High frequencies are used to overcome the 
air gap and usually the coils from the two sides are tuned to the same 

resonance frequency for optimal results. The electric power output is about 
20 kW and the efficiency close to 70%. Some recent research is focusing on 
integrating wireless chargers on the roads so the vehicle can recharge its 

battery while moving 

 

Figure 2-9: Wireless charging [27] 

 

2.6 Charging station infrastructure  

The charging infrastructure of a Country is perhaps the most important 

factor to ensure that the transition from conventional to electrical vehicles is 

smooth and that it is sufficient to support the needs of everyday mileage. As 

the penetration rate rises, the availability of public chargers will also 

increase to compensate for the increased numbers of PEVs on the streets. 

While simple chargers may be available in every single family home, 

workplace and public stations are becoming the norm with different levels of 
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charging. There is also the option of public chargers near on the streets as 

well as wireless charging at stopping lights or on a road lane while moving 

 

The current state of Greece’s infrastructure can be seen in the following 

figure: 

 

 

Figure 2-10:Charging stations in Greece (green=Public, orange=High power) [28] 
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Travel Pattern Model 

In order to estimate the daily load of PEVs, it is essential to define some 

realistic mobility characteristics of the vehicles. In the literature, there are 

many studies that assume that PEVs only charge during the night when 

they return home. Some of them use home arrival times extracted from real 

data, while others use probability functions based on reasonable 

assumptions. 

In this study, a large database [29]  will be utilized that contains real world 

driving data and an opportunity charging scenario will be adopted, which 

enables vehicles to charge on all locations (home, work, shopping and social 

activities). As EVs become more dominant in the market, in comparison to 

ICE vehicles, more public or private charging stations will be constructed in 

strategic locations to ensure the mobility of EVs. That is why opportunity 

charging resembles a realistic future scenario. 

 

3.1 NATIONAL HOUSEHOLD TRAVEL SURVEY (NHTS) 

NHTS [29] is widely used in transportation studies as it provides assistance 

to transportation planners and policymakers who need extensive data of 

travel patterns. It is a source of North America’s travel patterns and contains 

information about various trips that household drivers participate during the 

day. The trips included comprise all modes of travel and for different 

purposes but in this study only those made by private cars were included. 

While the vehicles in this study are not PEVs, it can be assumed that as the 

electric car market penetration rises (and public charge stations become 

widely available), the habits of the drivers will match those of conventional 

vehicles. From the NHTS website, the corresponding csv file (named 

trippub.csv) that contains the information necessary in this study can be 

downloaded. The columns that were used are: HOUSEID, PERSONID, 

TDTRPNUM, STRTTIME, ENDTIME, TRVLCMIN, TRPMILES, DWELTIME, 

TDWKND, WHYTRP1S, URBRUR. 

Using information from those columns, realistic trips that the vehicles have 

to do during the day can be produced.  
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3.2 NHTS database processing 

Daily driving characteristics are one of the key factors that will affect both 

the charging load throughout the day, and as consequence, the final impact 

on the electricity grid. 

By analyzing the NHTS data base, important information was extracted 

regarding the average daily mileage of a vehicle, the number of daily trips it 

does, starting times and dwelling times for different types of travels (work, 

social, shopping and home). Also this information is available for both rural 

and urban areas. Some preprocessing was needed in order to clean the data 

from invalid or incomplete rows or extreme values. 

A brief review of the columns used and their data follows: 

 

 HOUSEID and PERSONID: unique house and person identifier 

respectively 

 TDTRPNUM: incrementing trip number starting at 1 for each person in 

the file 

 STRTTIME: trip departure time 

 ENDTIME: trip arrival time 

 TRVLCMIN: trip duration in minutes 

 TRPMILES: trip distance in miles. It was multiplied by 1.61 to be 

converted to km 

 DWELTIME: time parked at the destination 

 TDWKND: weekend trip (1=Yes, 2=No) 

 WHYTRP1S: trip purpose 

 URBRUR: Household in urban/rural area (1=Urban,2=Rural) 

 

Departure and arrival times were in army hours so they had to be converted 

to minutes using: 

 
𝑚𝑖𝑛𝑢𝑡𝑒𝑠 = 𝑓𝑙𝑜𝑜𝑟 (

𝑎𝑟𝑚𝑦𝐻𝑜𝑢𝑟

100
) ∗ 60 + 𝑚𝑜𝑑(𝑎𝑟𝑚𝑦𝐻𝑜𝑢𝑟, 100) ( 3.1) 

 

The end result of this chapter is to develop an algorithm that generates daily 

tours and ensures that they are as realistic as possible.  

3.3 Driving characteristics 

Each tour consists of different number of trips. First, a distribution of the 

number of daily trips is needed. Columns HOUSEID, PERSONID and 

TDTRPNUM were used with the matlab function grpstats, which provides 
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Figure 3-1: Distribution of daily trips 

(urban) 
Figure 3-2: Distribution of daily trips 

statistics organized by group, in order to calculate in how many trips each 

person, of every different household, participates in. 

 

 

 

 

 

 
 

 

 

 

 

As it can be seen in this figure most drivers travel only 2 trips (e.g. from 

home to work and back home) while the numbers of 5 and 6+ trips are 

minimum. In this study tours that consist of 4 trips at most are considered.  

 

Figure 3-3: time of departure from home at the start of the day 

 Departure times for different purposes 

The departure times for different travelling purposes that are necessary for 
this study can be obtained by columns STRTTIME and WHYTRP1S. The 
matlab function fitdist is used on the data.  
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Figure 3-4: Time of departure for work 

 

 

Figure 3-5:Time of departure for shopping 
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Figure 3-6: Time of departure for social activities 

 

 

 

Figure 3-7:Time of departure for home stopover 

The departure times for all the different purposes are similar for urban and 

rural locations. What mostly varies between those locations are the distance 

travelled for each trip and its travelling time. 

 

 



18 
 

 Dwelling times at different locations 

Dwelling times were extracted from column DWELTIME with the 

corresponding code on column WHYTRP1S for different purposes. 
 

 

Figure 3-8: Dwelling time at home 

  

Figure 3-9:Dwelling time at work 
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Figure 3-10: Dwelling time for shopping 

 

 

Figure 3-11: Dwelling time for social activities 

 

 

It is observed that, like the departure times, the dwelling times are identical 

with minimum differences between the city and the countryside. 

 

 Travel distance and time 

Daily distance travelled and total driving time were extracted from columns 
TRPMILES and TRVLCMIN by again using grpstats, with HOUSEID and 
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PERSONID, to estimate the total distance covered for the distinct trips that 
each person did during the day. 

 

Figure 3-12: Daily distance distribution 

 
The daily travel distance had to be limited, as travel distances in north 

America are typically longer than in Greece and the following pdf was 
obtained. 

 

 

Figure 3-13: Daily distance after modification (Greece) 
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Figure 3-16: Time-distance relation of urban 

places 

 

Figure 3-14: Daily travelling time distribution 

  

The most noticeable difference is on the daily travel distance as people in 

rural areas have to travel more kilometers to reach their destinations and 

they may also need to travel between cities. 

In order to assign the distance travelled for each trip during the day, a daily 

distance value is initially generated from the probability distribution function 

and then the total distance is allocated among the number of trips that the 

driver will do during this day.  

 

 

 

 

Using the relation of travelling time and distance we try to estimate the 

driving time for the distance that was allocated in each trip. In this way all 

Figure 3-15: Time-distance relation of rural 

places 
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Figure 3-18: Distribution of trips based on 

purpose (rural) 

the necessary statistics are available to produce a big number of realistic 

tours the drivers will do in order to satisfy their needs. 

 

3.4 Trip purpose decision making 

The purpose of the next trip is very important because it determines how 

much time will the vehicle be parked in the target destination. During the 

trip generation process, the cumulative distribution functions (CDF) of the 

departure times are used, for the different purposes of travelling. 

A time interval (a,b) is defined and by using equation (3.3) the area 

corresponding to the current time is selected (Figure 3-19). The chosen time 

interval is 15 minutes before and 15 minutes after the time that the driver is 

going to depart for his next trip. Then, the difference of the CDFs is 

multiplied with the percentage from the purpose distribution for each 

respective purpose. As a result, the probabilities are now normalized for all 

the purposes and the ratio depends on both the current time of departure 

and the total number of every purpose of travelling. This way the sum of the 

probabilities is equal to 1 and by generating randomly a positive number 

below or equal to 1, the most probable next purpose for the driver is picked. 

 

Figure 3-17: Distribution of trips based on purpose 

 (urban) 
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 𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥)  (3.2) 

 𝑃(𝑎 < 𝑋 ≤ 𝑏) = 𝐹𝑋(𝑏) − 𝐹𝑋(𝑎)  (3.3) 

 

 

 

 

Figure 3-19:Area formed from the time interval (t-15,t+15) 

 

3.5 Tour Generation algorithm 

Using the travel pattern characteristics described in the previous sections, 

the following logic for generating daily tours is applied: 

 

1. All vehicles start from home and a number of trips N is generated from 

Figures 3-1 or 3-2. 

2. A departure time is assigned for the first trip from the distribution in 

Figure 3-3. 

3. The total day distance is generated from Figure 3-12 

4. Using the method described in paragraph 3.4, the purpose of the next 

trip that depends on the known departure time is assigned. 

5. Allocate a part of day’s total distance to the current trip and assign the 

travelling time of the trip using the time-distance relation in Figures  

3-14,3-15. 

6. The parking time is generated from the dwelling time distributions of 

each purpose of parking. 

7. If the current trip is not the second before the last, then go to step 4 

and decide the next trip purpose 
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8. If it is then the last trip is for returning home and the remaining 

distance is allocated to it. 

 

 
 

 

 

3.6 Tour generation results 

By executing the tour generation algorithm enough times, the distribution of 

the vehicle fleet location can be shown throughout the day. 

As it can be seen, urban and rural results do not have much divergence due 

to the highly similar statistics and while the driving distance is longer for 

rural areas, driving time is similar due to higher speeds. The difference will 

be apparent only in the energy consumed as a result of longer mileage. 

Figure 3-20: Flowchart for tour generation algorithm 
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Figure 3-21: Vehicle location distribution during the day 
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Load Estimation Algorithm 

In this part of the study, the method that was applied for the load 

calculation of a PEV fleet will be described. Tours generated from the travel 

characteristics of the previous chapter are used and two charging strategies, 

namely; Dumb charging and Smart charging, are implemented. A fuzzy logic 

based method was developed to emulate each driver’s decision regarding the 

target state of charge when the vehicle will depart for the next trip.  

4.1 Desired State of Charge at departure – Fuzzy logic 

An important part of this study is the target energy that each driver will 
decide upon, to ensure that the available energy will be sufficient for the 

next trip. The selected target must also be feasible considering the 
infrastructure and equipment available. Even if the driver wishes so, he may 

not exceed the maximum capacity of his PEV battery or if the parking 
duration is not long enough, the desirable charging state may not be 
achieved (though it is ensured that it will be enough for the next trip). In 

these cases, the target energy has to be set to the highest possible value. 
Due to the high number of vehicles that are considered in this study a fast 

but reliable method must be applied to minimize the calculation time 
requirements of the problem but also represent the way of thinking that real 
drivers would have. The tool that was chosen to fulfill these criteria is fuzzy 

logic. 
 
 

 Fuzzy logic 

The term fuzzy is used when a problem has variables that are not true or 

false like in the Boolean system but can be partially true or false. Fuzzy logic 

provides flexibility for decision making because it considers these 

uncertainties of the variables. It consists of four core parts: 

 

 Rule Base: It contains the representation knowledge of the system that 

is being studied in the form of a set of rules and IF THEN conditions. 

Those rules are usually provided by experts of the study field to make 

the decision making more realistic 
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 Fuzzification: It converts real numbers (e.g. from the system’s sensors) 

into fuzzy sets that are used in the rules defined in the Rule Base 

 Inference Engine: It decides the matching degree of the fuzzy inputs 

according to each rule and determines which rules are to be applied 

depending on the input 

 Defuzzification: It converts the fuzzy output of the inference engine to 

a crisp value so it can be used by real systems. 

 

The Membership function that is mentioned above is a graph that correlates 

the input value to a membership value between 0 and 1. 

 

Figure 4-1: Architecture of a fuzzy logic system 

For this study analysis, two fuzzy models were created. The first emulates 

the decision making of a driver when energy can only be transferred from the 

grid to the vehicle and only when it is necessary. The second enables the 

driver to inject excess energy to the grid from his vehicle (G2V). The inputs of 

those two fuzzy systems are identical (SOC and price) while there are some 

changes regarding the rules and the target output. 

A representation of the fuzzy system can be shown in the following figure: 

Figure 4-2: Representation of the proposed Fuzzy System 
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 Inputs 

Two identical inputs were created in the two systems. The assigned linguistic 

values are based on logical assumptions and the membership functions were 

designed with symmetry in mind to provide more uniform values.   

The membership function of  electricity price is shown in Figure 4-3. It has 

to be noted that the average price, for the time periods that the vehicle is 

parked, is used as input and not the price at the time of arrival to the 

parking spot. Three linguistic terms describe the price as cheap, average and 

expensive. The bounds were set after examining the electricity price of 

Greece for the day that is used in this study. In the majority of time, it is 

between 67 and 72 €/MWh and that is why this area is defined as average.  

State of charge is known to the driver of the vehicle at any time and it is the 

most important factor for him when is making the decision to charge and 

how much. The linguistic terms used are low, medium and high. The 

membership function is shown in Figure 4-4. SOC represents the percentage 

of the available energy according to the maximum usable capacity and not 

the nominal value. 

 

Figure 4-3: Membership function of price 
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Figure 4-4: Membership function of SOC 

 

 

 Rules 

Two sets of rules were created for the different fuzzy systems. Each of them 

has 9 rules yielded by every different combination of fuzzy inputs. The most 
of the differences between those two are observed when the SOC or price are 

high and expensive respectively. When there is no energy injection option, 
then the driver is less likely to charge his vehicle while if he had that option 
then he would probably decide to make some profit by transferring energy to 

the grid. 
For the defuzzification, the centroid method was selected, which is based on 
the center of gravity of the fuzzy set. For the maximum and minimum, OR 

and AND operators were used respectively.  
  

 
Table 4-1. Fuzzy Rules for the simple charging inference system 

If SOC  
is 

AND price  
is 

Then target  
is 

low cheap high 

low average medium-high 

low expensive medium-low 

medium cheap medium-high 

medium average medium 

medium expensive nocharge 

high cheap medium-low 

high average nocharge 

high expensive nocharge 
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Table 4-2. Fuzzy Rules for the V2G charging inference system 

If SOC 
is 

AND price 
is 

Then target 
is 

low cheap high 

low average Medium 

low expensive medium-low 

medium cheap medium-high 

medium average medium 

medium expensive medium-low 

high cheap high 

high average Medium-high 

high expensive medium 

 
 

 Output 

There is only one output for both fuzzy systems. It represents the target 
energy that the vehicle will have at departure time and it is expressed as a 

percentage quantity. For the V2G fuzzy system, the percentage refers to the 
whole usable capacity because drivers have the option to have less energy at 
departure in comparison to the energy when they arrived at the parking 

spot. It must be noted, that this fuzzy system emulates the driver’s desired 
target and that may not be feasible, due to technical constraints like short 

parking duration. In these cases, the closest value possible to the desired 
target is assigned.  
For the simple charging fuzzy system, the percentage refers to only the 

available charging capacity and not the whole capacity. The difference from 
the previous fuzzy system is that is has one additional possible output value 
named “nocharge” which is assigned when the SOC is sufficient for the next 

trip or the price is high during the parking period. It can be seen in Figure 
4-5 on the edge bottom left corner to ensure null charging energy. Additional 

checks are done on the target value in both systems to ensure that there is 
enough energy for the next trip. 
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Figure 4-5: Output of fuzzy system (G2V only) 

 

 

Figure 4-6: Output of fuzzy system (V2G) 

 

 



32 
 

4.2 Dumb charging 

With the dumb charging strategy, the vehicle is charged with constant 

electrical power, from the beginning of the parking event until SOC reaches 
the assigned target. Aside from the fact that the fuzzy charging system 

ensures that the SOC target is lower during high price periods, no other 
measures are taken to distribute the charging load away peak load times 
which burdens both the power network operators and the cost of charging.  

To model this charging strategy, the total time frame of the simulation was 
divided in 144 time slots of 10 minutes each (Δt). The state of the vehicle is 

recorded at each time slot. Using the departure and arrival times obtained 
from the travel patterns, the state is updated if necessary from driving to 
parked/charging and vice versa at each time slot. An overview of the 

transitions is shown in Figure 4-7. 
 

 

Figure 4-7:Possible states and transitions 

 
In charging state, the SoC of the battery is updated with equation ( 4.1) 
which uses the available charging power that depends on the location that 

the vehicle is parked and the efficiency of charging. 
An overview of the algorithm for this charging strategy can be seen in Figure 
4-8. The starting time of the algorithm (t=0 in the flowchart) is considered to 

be 4 in the morning and the total simulation time frame is 24 hours, that is, 
until 4 am of the next day. The reason for that is to examine the charging 

behavior during early hours of the morning without cutting them off at 00:00 
and compare the results with the respective ones from the smart charging 
that will shift the load to the off-peak hours. 

 
 

 

𝑆𝑜𝐶(𝑖, 𝑡) = 𝑆𝑜𝐶(𝑖, 𝑡 − 1) + 100 ∗
𝑃𝑐ℎ(𝑖, 𝑡) ∗ 𝑛

𝐸𝑏𝑎𝑡,𝑚𝑎𝑥
∗ 𝛥𝑡 ( 4.1) 
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where SoC (in %) is the state of charge of PEV’s battery, i denotes the ith 
PEV, t denotes tth time period from a set of T periods (144 periods for a 

whole day), 𝑃𝑐ℎ (in kWh) is the electrical power used for charging, n (in %) is 
the efficiency of charging and 𝐸𝑏𝑎𝑡,𝑚𝑎𝑥 (in kWh) is the maximum energy that 

can be stored in the battery. 
During the driving state, the energy consumed in each time slot is calculated 

by equation ( 4.2) in order to estimate the SoC of the battery at the arrival 
time. 
 

𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑑 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ∗ 𝑐𝑜𝑠𝑚𝑢𝑚𝑝𝑡𝑖𝑜𝑛 ( 4.2) 

Where distance (in km) is distance travelled in the previous trip and 

consumption (in kWh/km) is the energy consumption per km for the specific 
vehicle type.  

The time needed to reach the target energy by charging with maximum 
power can be found with: 
 

𝑡𝑐ℎ =
𝑆𝑜𝐶𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑆𝑜𝐶𝑎𝑟𝑟

𝑃𝑐ℎ
∗ 𝐸𝑏𝑎𝑡,𝑚𝑎𝑥 ( 4.3) 

Where, 𝑆𝑜𝐶𝑡𝑎𝑟𝑔𝑒𝑡 (in %) is the desired SoC at the end of the charging period 

and 𝑆𝑜𝐶𝑎𝑟𝑟 (in %) is the SoC at arrival. 

For the worst case scenario, 𝑃𝑐ℎ(𝑡)= 𝑃𝑚𝑎𝑥, but with some minimum 
communication with the charger a smoother load can be obtained for the 
same target ( 4.4) 
 

𝑃𝑐ℎ(𝑡) =
𝑆𝑜𝐶𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑆𝑜𝐶𝑎𝑟𝑟

𝑡𝑑𝑡 − 𝑡𝑎𝑟𝑟
∗ 𝐸𝑏𝑎𝑡,𝑚𝑎𝑥 ( 4.4) 

Where 𝑡𝑑𝑡 and 𝑡𝑎𝑟𝑟 (in hours) is the departure and arrival time, respectively. 
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Figure 4-8: Flowchart of dump charging tour simulation 
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4.3 Smart charging 

The Smart charging strategy can be applied by using linear programming 

optimization and more specifically the fmincon matlab function. In order to 

use fmincon, the problem must be formulated in the appropriate matrices 

that the function accepts as inputs. Also the right constraints that describe 

the problem must be defined. 

The optimization problem that must be solved is the following: 

 

 
𝑚𝑖𝑛∑𝑃𝑐ℎ(𝑡) ∗ 𝐸𝑃(𝑡) ∗ 𝛥𝑡  

𝑡𝑑

𝑡0

 ( 4.5) 

 

Where, 𝑃𝑐ℎ (in kW) is the electric power the PEV exchanges with the 

electricity grid and it can be positive while it is charging and negative when it 

injects power to the grid (V2G enabled), EP(t) (in €/MWh) is the electricity 

price during time period t, Δt is the time interval used (set to 10 minutes in 

this study).  

t0 is the time that the vehicle reaches its destination and connects to the 

grid and td is the time that it is unplugged from the network and departs 

from the parking location. Since the same vehicle may have to stop multiple 

times during the day, the objective function has to be applied for every stop 

and for every vehicle. 

 

The optimization function is subject to some linear constraints in order to 

describe the limitations of both the PEV charging process and the driver’s 

needs. 

 𝑃𝑚𝑖𝑛 ≤ 𝑃𝑐ℎ ≤ 𝑃𝑚𝑎𝑥 ( 4.6) 

 𝑆𝑜𝐶𝑚𝑖𝑛 ≤ 𝑆𝑜𝐶 ≤ 𝑆𝑜𝐶𝑚𝑎𝑥 ( 4.7) 

 

 
𝑆𝑜𝐶𝑡𝑑 = 𝑆𝑜𝐶𝑡𝑎𝑟𝑔𝑒𝑡  ( 4.8) 

Where, Pmin(max)  (in kW) is the minimum (maximum) electric power the PEV 

can exchange with the electric grid, SoCmin(max) (in %) is the minimum 

(maximum) electric energy that can be stored by the PEV and 𝑆𝑜𝐶𝑡𝑑(in %)  is 

the stored energy at the time of departure. 
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 Extensive approach 

These constraints need to be in the form  𝐴 ∗ 𝑥 ≤ 𝑏. Where, A is a matrix 

which in this case represent the time slots that the vehicle is parked, x is a 

vector representing the electrical power that will be used to charge the 

battery and b is a vector used to define the current energy stored to the 

battery. 

Each element of x defines the electrical power that will be used in that 

particular time slot and is constrained by ( 4.6) 

For the matrix A, 2 sub-matrices are needed in lower triangular form, in 

order to ensure that energy in the battery is within the bounds of capacity in 

every time slot of the day. The first sub-matrix (SoC<0) has the following 

form: 

 

 

𝐴1 = 

(

 
 

1 0 0 … 0
1 1 0 … 0
1 1 1 … 0
1 1 1 ⋱ 0
1 1 1 … 1)

 
 

  ( 4.9) 

 

In every timeslot,( 4.10) must be satisfied: 

 
𝐸𝑖𝑛𝑖𝑡 + 𝑐ℎ𝑎𝑟𝑔𝑒𝑑𝐸𝑛𝑒𝑟𝑔𝑦 − 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑𝐸𝑛𝑒𝑟𝑔𝑦 ≤ 𝐸𝑏𝑎𝑡,𝑚𝑎𝑥  ( 4.10) 

So, by reformulating the equation above, the first part of b vector will be 

 
𝑏1(𝑡) = 𝐸𝑏𝑎𝑡,𝑚𝑎𝑥 − 𝐸𝑖𝑛𝑖𝑡 + 𝐸𝑐𝑜𝑛𝑠(𝑡) ( 4.11) 

Where 𝐸𝑖𝑛𝑖𝑡 (in kWh) is the initial stored energy at t=0 and 𝐸𝑐𝑜𝑛𝑠(𝑡) is the 

energy in kWh, that the vehicle has consumed for its previous trips until 

timeslot t. 

The second sub-matrix (SoC>0) is the same with the first but must be 

multiplied with -1 to change the direction of the inequality, as fmincon 

accepts only constraints in the form of 𝐴 ∗ 𝑥 ≤ 𝑏. 

 
𝐴2 = −𝐴1 ( 4.12) 

Again, the charged Energy for every timeslot is bounded by ( 4.13) 

 
𝐸𝑖𝑛𝑖𝑡 + 𝑐ℎ𝑎𝑟𝑔𝑒𝑑𝐸𝑛𝑒𝑟𝑔𝑦 − 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑𝐸𝑛𝑒𝑟𝑔𝑦 ≥ 𝐸𝑏𝑎𝑡,𝑚𝑖𝑛  ( 4.13) 

And the respective b vector will be: 

 
𝑏2(𝑡) = 𝐸𝑏𝑎𝑡,𝑚𝑖𝑛 − 𝐸𝑖𝑛𝑖𝑡 + 𝐸𝑐𝑜𝑛𝑠(𝑡) ( 4.14) 

For the stored energy target constraint, a vector is necessary for each stop 

that the vehicle does during the day. The number and the places of non-zero 

elements depend on the time of parking during the day. 
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𝐴3 = [0…0 0 1 1…1 1  0  0…0  ] ( 4.15) 

Regarding the charging energy, it must correspond to the target energy as in 

the following: 

 
𝐸𝑎𝑟𝑟 + 𝑐ℎ𝑎𝑟𝑔𝑒𝑑𝐸𝑛𝑒𝑟𝑔𝑦 = 𝐸𝑡𝑑 ( 4.16) 

Where 𝐸𝑎𝑟𝑟 (kWh) and 𝐸𝑡𝑑 (kWh) is the energy at time of arrival and departure 

respectively. 

Hence, the final subvector b3 vector will be: 

 𝑏3 = 𝐸𝑡𝑑 − 𝐸𝑎𝑟𝑟  ( 4.17) 

 

By concatenating the Sub-matrices, the final form of A is obtained: 

 

 

𝐴 =
𝛥𝑡

60
∗ (
𝐴1
𝐴2
𝐴3

) =
𝛥𝑡

60
 

(

 
 
 
 
 
 
 
 

1 0 0 … 0
1 1 0 … 0
1 1 1 … 0
1 1 1 ⋱ 0
1 1 1 … 1
−1 0 0 … 0
−1 −1 0 … 0
−1 −1 −1 … 0
−1 −1 −1 ⋱ 0
−1 −1 −1 … −1
0 1… 1 0… 0 )

 
 
 
 
 
 
 
 

 ( 4.18) 

 

Finally, the full mathematical expression for this problem will have the 

following form: 

 𝐴 ∗ 𝑥 ≤ 𝑏 ⇒ 

 

𝛥𝑡

60
 

(

 
 
 
 
 
 
 
 

1 0 0 … 0
1 1 0 … 0
1 1 1 … 0
1 1 1 ⋱ 0
1 1 1 … 1
−1 0 0 … 0
−1 −1 0 … 0
−1 −1 −1 … 0
−1 −1 −1 ⋱ 0
−1 −1 −1 … −1
0 1… 1 0… 0 )

 
 
 
 
 
 
 
 

∗

(

 
 

𝑥1
𝑥2
𝑥3
⋮
𝑥𝑛)

 
 
≤

(

 
 
 
 
 
 
 

𝑏1(1)
𝑏1(2)
⋮

𝑏1(𝑁)
−𝑏2(1)
−𝑏2(2)
⋮

−𝑏2(𝑁)
𝑏3 )

 
 
 
 
 
 
 

 

  

( 4.19) 

 

 Dynamic aggregated battery model 

Normally the optimization process would be implemented for every vehicle in 

the simulation and then then load would be aggregated. In our case though, 
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due to the amount of vehicles, it would take a lot of time to be processed and 

we wouldn’t be able to assess the impact of introduced load to the electricity 

price. 

In order to solve these problems, we use a different method, a dynamical 

battery that represents the aggregated energy of all the parked vehicles 

throughout the whole day. When a vehicle departs from a parking location 

the dynamic battery will lose the target energy that was assigned to this 

particular vehicle. The results obtained by the aggregate model must be very 

similar to the detailed simulation, so the linear constraints have to be 

aggregated too. 

The aggregated available charging power at each time slot is the sum of the 

individual charging powers of all vehicles charging at this particular time 

slot ( 4.24). 

Next, the bounds of the dynamical battery must be determined as in ( 4.22)( 

4.23). The bounds of each individual vehicle are calculated in ( 4.20)( 4.21) 

and then the superposition of the entire fleet produces the lower and upper 

bounds of the dynamical battery. For the upper and lower bounds, again two 

lower triangle matrices are needed to implement the battery constraints 

 

When a vehicle departs from a charging parking spot, the charging power 

and the available energy is removed from the dynamical battery and when it 

arrives to the next location, they are added again minus the energy 

consumed on the road. Those changes can be seen in Figure 4-13 for 2 

vehicles. 

 

The upper and lower bounds of the dynamic battery (in kWh) are calculated 

by: 

 

𝑆𝑜𝐸𝑙𝑜𝑤(𝑡) = {
 max (𝐸𝑎𝑟𝑟 − (𝑡 − 𝑡𝑎𝑟𝑟) ∙

𝛥𝑡

60
∙ 𝑃𝑚𝑎𝑥  , 𝐸𝑏𝑎𝑡,𝑚𝑖𝑛) , 𝑆𝑜𝐸𝑙𝑜𝑤(𝑡 − 1) + 𝐸𝑎𝑣,𝑐ℎ(𝑡) > 𝐸𝑡𝑑

𝐸𝑡𝑑 − 𝐸𝑎𝑣,𝑐ℎ(𝑡) , 𝑒𝑙𝑠𝑒
  ( 4.20) 

 
𝑆𝑜𝐸𝑢𝑝(𝑡) = {

 min (𝐸𝑎𝑟𝑟 + (𝑡 − 𝑡𝑎𝑟𝑟) ∙
𝛥𝑡

60
∙ 𝑃𝑚𝑎𝑥  , 𝐸𝑏𝑎𝑡,𝑚𝑎𝑥) , 𝑆𝑜𝐸𝑢𝑝(𝑡 − 1) − 𝐸𝑎𝑣,𝑐ℎ(𝑡) < 𝐸𝑡𝑑

𝐸𝑡𝑑 + 𝐸𝑎𝑣,𝑐ℎ(𝑡), 𝑒𝑙𝑠𝑒
  ( 4.21) 

 

Where 𝐸𝑎𝑣,𝑐ℎ(𝑡) (in kWh) is the maximum possible energy left to charge 

during the time before departure. 

Specifically for the lower bound, it is defined according to the following logic. 

When the vehicle arrives it begins to inject energy to the grid until it reaches 

minimum permitted SoC or when 𝐸𝑎𝑣,𝑐ℎ(𝑡) is barely enough to reach the 

target SoC by charging at maximum power before leaving. For the upper 

bound the same logic applies but the vehicle first charges at maximum 

power and then injects the energy until the target SoC. 

For the time slots that the vehicle will be in the road, both bounds are set to 

zero. 
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Figure 4-9: SoC bounds (optimization window) 

 

Then both bounds are aggregated to represent the capacity of the total 

battery of the fleet 

 
𝑆𝑜𝐸𝑢𝑝

𝑎𝑔𝑔𝑟(𝑡) =∑𝑆𝑜𝐸𝑢𝑝(𝑡, 𝑖)

𝑛

𝑖=1

 ( 4.22) 

 
𝑆𝑜𝐸𝑙𝑜𝑤

𝑎𝑔𝑔𝑟(𝑡) =∑𝑆𝑜𝐸𝑙𝑜𝑤(𝑡, 𝑖)

𝑛

𝑖=1

 ( 4.23) 

 

The available maximum electrical power must also be aggregated to match 

the power of the whole battery. 

 
𝑃𝑚𝑎𝑥
𝑎𝑔𝑔𝑟

(𝑡) =  ∑𝑃𝑚𝑎𝑥(𝑡, 𝑖)

𝑛

𝑖=1

 ( 4.24) 

Like the detailed method, two lower triangle matrices are needed but no 

extra vectors are used because the target energy at departure is taken 

account of during the calculation of the bounds. 

So the final form of the optimization will be: 
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𝛥𝑡

60
 

(

 
 
 
 
 
 
 

1 0 0 … 0
1 1 0 … 0
1 1 1 … 0
1 1 1 ⋱ 0
1 1 1 … 1
−1 0 0 … 0
−1 −1 0 … 0
−1 −1 −1 … 0
−1 −1 −1 ⋱ 0
−1 −1 −1 … −1)

 
 
 
 
 
 
 

∗

(

 
 

𝑥1
𝑥2
𝑥3
⋮
𝑥𝑛)

 
 
≤

(

 
 
 
 
 
 

𝑆𝑜𝐸𝑢𝑝
𝑎𝑔𝑔𝑟

(1)

𝑆𝑜𝐸𝑢𝑝
𝑎𝑔𝑔𝑟

(2)

⋮
𝑆𝑜𝐸𝑢𝑝

𝑎𝑔𝑔𝑟
(𝑁)

−𝑆𝑜𝐸𝑙𝑜𝑤
𝑎𝑔𝑔𝑟

(1)

−𝑆𝑜𝐸𝑙𝑜𝑤
𝑎𝑔𝑔𝑟

(2)
⋮

−𝑆𝑜𝐸𝑙𝑜𝑤
𝑎𝑔𝑔𝑟

(𝑁))

 
 
 
 
 
 

 

  

( 4.25) 

The aggregated stored energy at every time slot is estimated by: 

 

 
An example of the aggregation of two vehicles s shown in the following 
figures. Note that in Figure 4-12 the current SoC continues to remain inside 

the bounds by using dSOC to dynamically add or subtract energy when an 
arrival or departure has occurred. 
Furthermore, a representation of a bigger fleet is provided in Figure 4-14. 

 
 

 

Figure 4-10: 1st vehicle 

 𝑆𝑜𝛦𝑎𝑔𝑔𝑟(𝑡 + 1) = 𝑆𝑜𝛦𝑎𝑔𝑔𝑟(𝑡) + 𝑑𝑆𝑜𝐶(𝑡) + 𝑥(𝑡) ∗ 𝑛 ∗ 𝛥𝑡  ( 4.26) 
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Figure 4-11: 2nd vehicle 

 

Figure 4-12: aggregation of the two vehicles 
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Figure 4-13: Energy additions and deductions during arrivals and departures 

 

Figure 4-14: aggregation for 1000 vehicles 
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Figure 4-15: electricity price used for the simulations 

 

 

 Detailed vs Aggregate Battery model   

The comparison of the two different methods using the same input 
parameters can lead to some interesting conclusions. While the shape of the 
load during the day is similar, there are some minor differences that reflect 

the advantages of a centralized approach e.g. an aggregator to the 
application of smart charging. During the extensive optimization a single 

vehicle may opt to provide energy to the grid even on low price time periods 
just because its current SoC is more that its target SoC. With the Dynamic 
Battery however, the “greater picture” is known to the system and the 

optimization will decide to charge more energy in low price periods and inject 
the energy only when the price is high. While in real systems such perfect 
knowledge for the whole fleet may not be obtainable, it can provide the 

margin of improvement of the single vehicle optimization by using an 
aggregator and is nonetheless a good indication of the best case scenario. 

The main advantage of the aggregated method still remains the vastly 
reduced processing time for a large PEV fleet. Comparison between the 
simulation times can be seen in Table 4-3. 

 
In the following table the simulation times are recorded. The CPU used is the 

i7-4790 (4 cores) and parallel execution (parfor) is applied.  
 

Table 4-3. Simulation times for different number of vehicles. 

 100 1000 10000 100000 1000000 

Detailed 12.4 s 125 s 682 s 5840 s ~50000 s 

Aggregated 11 s 17 s 20 s 90 s 625 s 
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Figure 4-16: similarity between extensive and aggregated methods 

 

4.4 PEV load impact to the price 

While in small PEV penetration scenarios the introduced load of PEVs would 

not affect the electricity price, a large fleet can modify the electricity price to 
a great extent. This will in turn alter the behavior of the fleet to 
accommodate for the changes to the expensive-cheap time periods until the 

price reach a steady state which will define the equilibrium of the system. 
A simple price model is developed to calculate the final price evolution 

throughout the day. From ADMIE site, the hourly price for a whole year is 
extracted (24*365 values) and, after removing some outliers, a relation 
between load and price is formulated that will be used to produce a new 

daily electricity price by providing the total load of the system with the 
introduced EV load. 
This relation is approximated by a polynomial function ( 4.27) as shown in 

Figure 4-17.  
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Figure 4-17: Polynomial function of price-load 

 
An iterative process is the applied starting from the reference price, 

calculating the new load with the dynamic battery smart charging strategy 
and then using the function ( 4.27), as well as ( 4.28) to get the new system 

price 
 

𝑓 = 5.2 ∙ 10−10𝐿3 − 9.6 ∙ 10−6𝐿2 + 0.06𝐿 − 64.08  ( 4.27) 

Where, L is the current total load of the system in MW 
 
The new price is found by calculating the difference between the current and 

old price and adjusting by a small factor l, in order to enhance the 
convergence stability of the price (otherwise, with big enough load, it would 

cause oscillations between the iterations).  
 

𝐸𝑃𝑛𝑒𝑤(𝑡) = 𝐸𝑃𝑜𝑙𝑑(𝑡) + 𝑙 ∗ (𝑓(𝐿𝑡𝑜𝑡) − 𝐸𝑃𝑜𝑙𝑑(𝑡)) ( 4.28) 

The iterative process will be repeated until the new price will be almost 

identical to the price of the previous round by using the ending condition in ( 
4.29) or has completed a max amount of iterations and that is when the 

system has reached an equilibrium or quite close to it. 
 
 

∑
|𝐸𝑃𝑛𝑒𝑤(𝑡) − 𝐸𝑃𝑜𝑙𝑑(𝑡)|

max (𝐸𝑃𝑛𝑒𝑤(𝑡)) ∙ 144
< 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒

𝑡𝑛

𝑡=0

 ( 4.29) 

 
The iteration process is illustrated in the following flowchart: 
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Figure 4-18: Price alteration flowchart 
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Simulation Results 

In this section, the parameters and the inputs of the proposed model will be 
presented, as well as the respective results for the different PEV penetration 

scenarios. The model parameters such as the load or the vehicle fleet 
population can be changed to represent the national power system of a 
different country or region. 

Three different penetration scenarios are studied, based on how optimistic 
the integration of EVs will be in Greek market. The results of the developed 

iteration process are presented for each alternative charging strategy and in 
every penetration scenario, as well as, important observations about the new 
load peaks during the day are done. 

It must also be noted, that a necessary assumption has been made in this 
study. According to that assumption the electricity network of Greece is 
presumed to be entirely interconnected. In reality, both Crete and the 

smaller islands are not connected to the mainland of Greece, although the 
interconnection between Attica and Crete is expected to be completed in 

2022 (Ariadne interconnection). The number of vehicles in smaller islands is 
really small so it should not have a large impact in the final results. 
However, several significant islands are planned to be interconnected with 

the mainland power system over the next years. 
 

5.1 Simulation Parameters 

In this study, one vehicle type is assumed to possess a battery large enough 
to meet the needs of the drivers in their everyday tour. It is logical to assume 

that a driver will buy a vehicle that is suitable to his daily mileage needs. In 
Greece, the mileage is not that high and a battery of 30 kWh will suffice 
according to Table 5-1. The consumption includes the energy required for 

heating or cooling. 
 

Table 5-1. Battery Specifications 

Battery capacity 

(kWh) 

Usable 

capacity (kWh) 

Consumption 

(kWh/km) 

Autonomy 

range (km) 

30 25 18/100 ~200 

 
The initial SoC, when the vehicle departs from home at the start of the day is 

assigned from a normal distribution shown in Figure 5-1, where it is 
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assumed that vehicles depart from home with 80% to 100% of their (usable) 
battery capacity. 

 

 

Figure 5-1: Initial SoC during the 1st departure 

 
Regarding the initial 24-hour load, the system load in Figure 5-2 was 

selected, which can be found in ADMIE [30]. The site has a variety of data, 
including renewable energy source injections and net interconnections. The 
time series are recorded in hourly values, so linear interpolation was 

necessary to obtain load values for every time period (10 minutes) of the 
simulation. This particular load corresponds to the load on 19/1/2019. 

 

Figure 5-2: Initial System Load (19/1/2019) 
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For the respective electricity price, the relation in Figure 4-17 was used to 
model the electricity price with regard to the load, as it will be used for the 

initialization of the electricity price.  
 

 

 

Figure 5-3: Initial Electricity Price 

 
The level of charging power holds an important role in estimating the electric 
load profile. In this study, 3 levels of charging were assumed. Furthermore, 

charging efficiency is set to 90% to accommodate ac/dc converter and losses 
from the wall outlet to the battery. 

 

Table 5-2. Charging levels for the different locations 

Charging level location Power level(kW) 

Level 1 Home 2 

Level 2a Work 4 

Level 2b Shopping & Social 6 

 

 

5.2 Penetration scenarios 

In order to quantify the number of EVs that will be used throughout Greece, 

the population of conventional private vehicles has to be considered. The 
Hellenic Statistical Authority has recorded detailed information of the 
national vehicle fleet regarding the distribution of vehicles in every region of 

Greece [31]. For the purpose of this study and by using the driving 
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characteristics from chapter 2, urban behavior will be allocated only in the 
area of Athens (Attiki) and Thessaloniki. This decision is based on the fact, 

that the size of cities in North America is greater than those in Greece. 
Vehicles in other regions will be allocated rural behaviors and mileage. 
 

Table 5-3. Distribution of conventional vehicles in each region 

Region Number of Conventional 
Vehicles 

Percentage 

Central Greece 3,160,664 59% 

Peloponnese 228,570 4.2% 

Ionian Islands 86,030 1.6% 

Epirus 118,827 2.2% 

Thessaly 246,774 4.5% 

Macedonia 949,114 17.6% 

Thrace 125,746 2.3% 

Aegean Islands 178,395 3.4% 

Crete 278,871 5.2% 

 
The final distribution of urban/rural locations can be seen in the following 
Table. 

 

Table 5-4. Fleet population of large cities 

 Number of Conventional 

Vehicles 

Percentage 

Athens 2,974,649 55% 

Thessaloniki 531,675 10% 

Other 1,866,667 35% 

Total 5,372,991 100% 

 

 
The world (and especially Greece) is still in early stages of EV penetration so 
only estimations can be made about the exact numbers in the following 

years. For this reason, different scenarios must be considered. 
The project Mobile Energy Resources in Grids of Electricity (MERGE)[32] has 

completed many evaluations about the impact that EV deployment will have 
on electricity demand and the market issues that will ensue. In this project, 
a case study regarding Greece is included. It describes three different 

penetration scenarios for 2030: 
 

 Low EV penetration rate: It is the most feasible scenario, which states 

that there will be 5% integration rate. 
 

 Medium EV penetration rate: It is an optimistic scenario. Although it is 
less likely to occur in reality, this scenario is the recommended as the 

main focus of the project because valuable information can be 
obtained about mass integration of EVs to the gird. The rate is around 

10% 
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 High EV penetration rate: It is a very aggressive scenario, very unlikely 
to occur and it might be used for reference. The integration rate is set 

to 20%. 
 

 
 

Table 5-5. Final urban/rural distribution 

 Number of 

conventional vehicles 

Low(5%) Medium(10%) High(20%) 

Urban 3,506,324 175,316 350,632 701,264 

Rural 1,866,667 93,333 186,666 373,333 

Total 5,372,991 268,659 537,298 1,074,597 

 

5.3 Dumb charging 

As mentioned before, in the dumb charging strategy the charging process is 
not actively controlled, resulting in new load peaks. In Figure 5-4, the PEV 
fleet load can be seen for both versions of dumb charging and for every 

penetration scenario. 

 

Figure 5-4: Results for the two different dumb charging versions 

 
As it can be observed, the PEV load shape correlates with the human driving 

activity. In the first case of dumb charging (nominal) the PEVs charge with 
maximum power. In this case the load peak is around 8:00-9:00 in all 

scenarios. This occurs because most of the vehicles travel around 7:00-8:00 
especially for work purposes and then they are being charged with maximum 
power, thus resulting in a quite steep load peak. A smaller peak can be seen 
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around 18:00 when many drivers return home from their work or start their 
evening activities. Moreover, in the early morning hours (3:00-6:00) the 

introduced load is minimal to nonexistent, as the mobility is reduced in 
these hours and most of PEVs have finished charging by then. 
In the second case of dumb charging (smooth), the new load is more evenly 

spread out. Now the peak is around 10:00-11:00 due to the fact that this is 
the time of most concurrent charging. Most vehicles are in a workplace or a 

public station by that time and they have not departed yet. After that, the 
load decreases steadily until the morning hours, at which again the number 
of concurrent charging is higher due to vehicles not having reached the 

target for the end of the day. 
In all scenarios, the results are quite similar for the same mode of dumb 
charging. Only the PEV load magnitude is amplified, due to the increased 

number of vehicles. While in the low penetration scenario, the difference is 
not that tremendous, in the high penetration scenario the difference between 

the respective peaks can be more than 300 MW, proving the need of at least 
a primary control of the charging process, even if it is not smart charging. 
 

In the following figures, the new total load of the power system (PEV 
included) can be seen in each penetration scenario and in comparison with 
the initial load of the system. The power demand of PEVs burden the system 

during peak load periods while load valleys during the morning or the 
midday are not altered significantly. This is extremely evident in the high 

penetration scenario, where the new peak is 8000 MW, while the initial was 
7400 MW. 

 

 

Figure 5-5: Total load for the low penetration scenario 
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Figure 5-6: Total load for the medium penetration scenario 

 

 

Figure 5-7: Total load for the high penetration scenario 

 

5.4 Smart Charging – G2V 

With smart charging, PEVs tend to be supplied with energy during low 

system load and avoid peaks of load when it is possible. Note that V2G is not 
used in this section. In our case, this availability is constrained by the 
bounds of the dynamic battery, as well as the number of vehicles charging at 

each time period of the day. In Figure 5-8, the smart charging load results 
can be seen for every scenario. 
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Figure 5-8: Load results when smart charging is applied 

The results have similar shape in every scenario. The optimization process 

leads to zero charging power in the time periods from 18:00 to 21:00, where 
the electricity price is at its highest, in all scenarios. It also tries to minimize 

the charging energy during 8:00-9:00 due to the local maximum of the price. 
In contrast, the PEV load maximizes at 5:00 and 14:00 when the electricity 
price has global and local minimum values, respectively. 

 
 

 Low penetration scenario 

In this scenario, the introduced load is quite small compared to the initial 
load of the power system. This is why only small variations appear in both 

price and load iterations, although it is evident that the increase of price in 
the peak of 9:00 causes a slight increase to load valleys. The dynamic 
battery cannot be charged more during the morning hours due to the 

downward trend of its bounds (caused by the rush hour in the morning). 

 

Figure 5-9: Price alterations during the iterations (G2V only-Low) 

 

 



55 
 

 

 

Figure 5-10: Load alterations during the iterations (G2V only-Low) 

 

 

Figure 5-11: Aggregated battery representation for the final iteration (G2V only-Low) 

 

 

 Medium penetration scenario 

In this scenario, the PEV load is substantial compared to the initial load of 
the power system. PEVs recharge their batteries during the morning hours 
as much as possible (bounded by the dynamic battery and aggregated 

electric power) or fulfill their midday charging needs during the valley 
(10:00-16:00) of the load and they avoid the load peaks.   
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Figure 5-12:Price alterations during the iterations (G2V only-Medium) 

 

Figure 5-13: Load alterations during the iterations (G2V only-Medium) 
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Figure 5-14: Aggregated battery representation for the final iteration (G2V only-Medium) 

 
 

  

 High penetration scenario 

In this case, the electricity price change is significantly affected by PEV load. 

Due to the high enough PEV load, the midday valley is not deep enough to 
satisfy the charging needs, so some charging during the smaller peak (9:00) 

is necessary. Nevertheless, the highest peak is yet again avoided, so the 
system does not need further facilities to accommodate the increased load.  

 

Figure 5-15: Price alterations during the iterations (G2V only-High) 
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Figure 5-16: Load alterations during the iterations (G2V only-High) 

 

Figure 5-17: Aggregated battery representation for the final iteration (G2V only-High) 

 

5.5 Smart Charging – G2V & V2G 

With V2G enabled, PEVs are able to inject energy to the grid and shift their 
charging in low price time periods. As it can be seen in the figure below, the 

introduced load has essentially the reverse shape of the initial load of the 
power system, supporting the grid in high electricity price periods and 

charging during low price periods. While in higher penetration scenarios 
there should be a higher energy injection availability (greater vehicle 

 



59 
 

number), it is observed that the support load is similar in all 3 cases. This 
happens due to the proportional charging need, as well as the increased 

value of the electricity price equilibrium. What mostly changes between 
scenarios, is the charging load during the morning hours, as it still remains 
the most economic time of recharging. 

 

 

Figure 5-18: Load results when V2G is applied 

 

 Low penetration scenario 

In this scenario, the electricity price is affected more than in the simple 

smart charging due to the benefits of V2G. On the other hand, the load is 
not altering that much during the iterations, because the optimal load stays 
almost the same. PEVs are injecting energy at almost full rate during the 

peak of 19:00, while the same happens to a smaller extent at the smaller 
peak of 9:00. The total charged energy during the morning valley is a little 

higher, as a result of the ability to inject energy when possible and not 
storing the extra energy for the next day. 
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Figure 5-19: Price alterations during the iterations (G2V&V2G-Low) 

 

Figure 5-20: Load alterations during the iterations (G2V&V2G-Low) 
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Figure 5-21: Aggregated battery representation for the final iteration (G2V&V2G-Low) 

 

 Medium penetration scenario 

In this case, the electricity price is greatly affected by the PEV load, which in 
turn results in an increased effect on the PEV load. As the price gradually 
falls during the peak of 19:00, the total load is rising because it is no longer 

so profitable to inject more energy. It can be seen that the highest peak 
(19:00) has in fact become equal to the smaller one (9:00) due to the 

auxiliary service of V2G, while the midday valley has been risen a little. 

 

Figure 5-22:Price alterations during the iterations (G2V&V2G-Medium) 
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Figure 5-23: Load alterations during the iterations (G2V&V2G-Medium) 

 

 

Figure 5-24: Aggregated battery representation for the final iteration (G2V&V2G-Medium) 

 
 

 High penetration scenario 

In this aggressive scenario for PEV penetration rate, the PEV load is of the 
comparable magnitude as the initial load, which causes major changes to 

electricity price and an unsteady convergence of the load. This results in a 
quite flat price and load where the difference between valleys and peaks is 
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around 350 MW. This proves that the electricity distribution grid can 
support the penetration of a large fleet provided that the entire fleet can offer 

auxiliary services to the system, which is an ideal condition. 

 

Figure 5-25: Price alterations during the iterations (G2V&V2G-High) 

 

 

Figure 5-26: Load alterations during the iterations (G2V&V2G-High) 

 

 



64 
 

 

Figure 5-27: Aggregated battery representation for the final iteration (G2V&V2G-High) 

 

5.6 Mixed charging strategy 

The scenarios in the previous sections showcase the algorithms that were 

developed in this study but assume that all the drivers will follow the same 
charging strategy. In this paragraph, the PEV load results of a more realistic 
mixed charging strategy are presented for every penetration scenario. It is 

assumed that the shares of the charging strategies are the following: 

 40% simple smart charging 

 40% dumb charging (20% nominal and 20% smooth) 

 20% smart charging with V2G  

 

Figure 5-28: Total system load by applying the mixed strategy 
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It can be observed from Figure 5-29 and Figure 5-28 that, even with only 
20% of PEVs actually applying V2G, the new system load does not have 

higher peaks during the 19:00 peak and in the aggressive penetration 
scenario the two peaks are equal at 7000 MW. The load valleys are 
adequately filled, despite the quite large percentage of dumb charging, 

although the difference from the ideal pure smart charging is evident 
 

 

Figure 5-29: Load results from the mixed strategy 
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Conclusion 

6.1 Achieved aims and objectives 

This study aimed at estimating the possible future impact of plug-in electric 
vehicle charging load, that will be introduced to a large electric power system 
by 2030. Three different penetration scenarios were assumed according to 

the study “Merge” to assess the effects of varied number of PEVs.  
Traffic patterns from an extensive survey were analyzed and some 
distributions like travel distances were truncated to fit Greek standards. 

By applying different charging strategies, some interesting inference has 
been drawn. The timing of the charging is a vital factor in the smooth 

operation of the electric grid. If vehicles are left uncontrolled, the introduced 
load can occur during peak load periods, which can have various 
consequences both to the quality of service and to the cost of electricity. So 

regulations must be encouraged in order to prevent increased load peaks. By 
enabling the vehicles to inject energy to the grid, PEVs can actually become a 
significant auxiliary service instead of a stability threat. 

Finally, the iteration based method that has been used to model the impact 
of the new load from PEVs to the electricity price, provides more realistic 

results, as not only the PEVs respond to the system price, but also the price 
is widely affected by new load. 
With the observations of the results, it is concluded that the infrastructure 

of Greece can support the penetration of 1,000,000 EVs but only if G2V and 
smart charging is widely practiced. 

 

6.2 Future work 

The proposed method for PEV load forecasting can already be applied to a 

large fleet but can become more accurate by using real life mobility of EVs. 
This can happen when their use is more widespread and the relevant data 
become publicly accessible. 

Furthermore, the model can be enhanced by adding the ability of frequency 
support to the grid by the PEVs, so they can suppress its fluctuations. 

Lastly, the price model and fuzzy target system used in this study can be 
enhanced by taking into account more parameters to ensure higher 
accuracy. 
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