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In recent years there has been a rapid increase in sales of electric cars
around the world. This is mainly due to the environmental benefits of
electrified transportation. At low penetration rates, electric cars do not
constitute a load capable of causing problems in the country-wide electric
power system. However, as their use becomes more widespread, their
uncontrolled charging can lead to system overloading or inability to meet
energy demands, while at the same time it can be a flexible load, which can
help the system at the necessary time periods.

In this work we use real driver behavior data to model not only the charging
needs of their vehicles during the day but also the ability to supply energy as
long as they are parked and the energy they have stored is sufficient. We
propose a modeling method for calculating the load of a large number of
electric cars in a short run time. Also, time series of the daily price of
electricity in Greece are used as well as the corresponding daily load in order
to approach the effects that the penetration scenarios will have on the
system but also on the price of electricity and how they would respond to
electricity price variations.

We study three different penetration scenarios of plug-in electric vehicles.
The charging techniques applied are simple direct charging and smart
charging, with or without the ability to supply energy to the system. Finally,
the obtained results are compared and general conclusions are drawn.
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CHAPTER 1

It is widely known that unless some measures are taken to mitigate global
warming, its effects will be devastating to our planet and everyday life. Due
to the uncertain future of fossil fuels and the huge amount of emissions they
produce, the whole world is moving towards a more energy secured future
planning.

Europe in particular, has made a rather ambitious plan in order to limit the
global warming to 2 degrees Celsius [1]. The objectives for 2030 are to
reduce the greenhouse gasses at least 40% compared to 1990 as well as
reaching 27% energy production from renewable resources. This entails the
transformation of Europe’s energy market and economy, making it more
secure and sustainable.

As part of this transformation, special consideration has been given to the
transportation sector [2]. Regarding private cars, the goal is to limit the use
of conventionally fueled vehicles in urban areas by 2030 and phase them out
by 2050. This way the air pollution in cities can be limited to healthy levels.

It has to be noted that, although electrical vehicles have zero direct
emissions, there are still some emissions from battery manufacturing as well
as from electricity generation [3]. If the vehicle is fueled by energy provided
from renewable resources, then it is truly a clean means of transport.

Analyses have shown that battery electric vehicles (EV) on average emit less
CO2 than their conventional counterparts over their lifetimes. Even with
electricity produced by fossil fuel, EVs produce about half CO2 emissions
than an average EU conventional vehicle. In addition, even if the energy
generation is based on fossil fuel, the emissions are shifted from denser
populated urban places to rural power generation sites.

Some countries have made aggressive policy decisions so they can achieve

the aforementioned goals. Norway is planning to ban sales of internal

combustion engine cars by 2025 followed by France and UK (2040)[4]. This

will lead to electric vehicle penetration rate to drastically increase. As a
1



result, a large number of battery electric vehicles will simultaneously
connect to the grid so they can satisfy their charging needs. From the power
system operator’s side, this will create not only new challenges to overcome
but also new opportunities to take advantage of.

The main objective of this thesis is to develop an electric vehicle aggregator
model that can realistically simulate the charging behavior of a large number
of battery electric vehicles and therefore evaluate the impact of the excess
power demand in large electric power systems.

The sub-objectives that are derived from the main are the following:

» The development of a method to generate daily trips containing
different purposes and various mileage that each driver will follow
during the day.

» Estimate the ability of the vehicle to inject power into the power
system when it is under heavy load

» Provide a fast method to calculate the load of an aggregated fleet of
EVs

» Evaluate the impact that the load from the EVs will have on the
national price of the electricity and vice versa.

In the last decade many studies have been made in order to evaluate the
impact of plug-in electric vehicle (PEV) load. A wide range of methods are
used to model the estimation of the final fleet load, each with different
advantages and accuracy.

One of the most commonly used methods is agent based modelling [5] , [6]
where agents are responsible for the decision making resulting in fair load
distribution. There are also studies like [7], [8] where authors choose to use
reinforcement learning to model driving patterns and optimal charging
policies. Another modelling method is statistical representation of driving
characteristics, where both real world driving data [9] and arbitrary
probability density functions based on experience have been used [10].

In many studies it is assumed that drivers only charge their vehicles at their
homes during the night[11][12] but as the PEV penetration increases and
public charging stations become commonly available, the charging load will
have a different profile so a multipurpose daily tour method must be
implemented. This is referred in the literature as activity based modelling



[13]. Furthermore, despite G2V having an important role in the PEV
integration, it is not always included in the relative works [10], [14], [15].

In [10] real driving cycles in urban setting were used and fuzzy logic system
was implemented to emulate the charging decision probability of drivers. In
our methodology, fuzzy logic is used to quantify the desirable target energy
at the time of departure, as when the electricity price is higher a driver may
opt to charge his vehicle enough to return home and not at full capacity.
Also the V2G option is added through the fuzzy system.

In [9], all parameters like mileage and all electric range, were formulated as
random variables in order to incorporate all possible future EVs. An
extensive database of travel characteristics was used to model the behavior
of drivers. The same database will be used in this study but with a new way
to generate daily trips.

While many studies discuss the importance of electricity price for the
charging scheduling, the fact that the introduction of a large PEV fleet will
affect the price is usually ignored. Hence there is also the need to assess the
impact that the new total load (including PEV load) will eventually have to
the electricity price

In Greece, not many studies have been made as PEV penetration is still in
early stage. A recent study is focused only in the autonomous system of
Crete [17], so in our study the load of the whole country is investigated.

In order to be able to process the large number of PEVs that an entire
country will have, an aggregated dynamic battery model is introduced, that
emulates an entity like an aggregator [18] and enables smaller simulation
time.

In chapter 2, some background information is presented regarding the
electrical vehicle state of art technology, as well as some current regulations
about the charging modes.

In chapter 3, the driving characteristics of conventional vehicles are analyzed
and an algorithm is presented to generate daily trips with different starting
times and mileage for each vehicle.

In chapter 4, the load estimation algorithms for the two charging strategies
are presented with the necessary mathematical modelling, as well as the
price iteration model to simulate the load-price interaction.



In chapter 5, the case study with all the necessary input parameters is
presented. The respective results for each charging strategy and for each
penetration scenario are given and general conclusions are drawn.



CHAPTER 2

Background

2.1 Electric Vehicles

EV can be any vehicle that has a battery and runs at least partly on an
electric drive train. Despite their fame lately, EVs are not a new concept The
first practical electric vehicles were produced back in 1880s but advances in
conventional internal combustion engine vehicles led them out of the global
market. Recent improvements of battery technology and environmental
concern have elicited the use of electro-mobility.

Figure 2-1: First practical electric vehicle [19]

2.2 EV types

Depending on the degree that electricity is used as propulsion energy EVs
are classed by three main types [20][22].
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2.2.1 Hybrid Electric Vehicles (HEV)

HEVs have both an internal combustion engine and an electric drive train
with a small battery. When HEVs start, they use the electric motor but when
they reach a certain speed or low state of charge, the gasoline engine assists
the propulsion. Because HEVs cannot plug in to the electricity, they are able
to recharge their batteries using the ICE and with their braking system as it
can use the energy that otherwise converts to heat by the brakes.

Hybrid Electric Vehicle
Exhaust System o >
2 ~ Fuel Filler

Internal combustion engine
(spark ignited)

Power Electronics Controller

DCIDC Converter

Thermal System (cooling) Fuel Tank (gasoline)
Traction Battery Pack

~— Electric Traction Motor
Electric Generator

Transmission

~ > Battery (auxiliary)
afdc.energy.gov

Figure 2-2: Hybrid Electric Vehicle -HEV [20]

2.2.2 Plug in Hybrid Electric Vehicle (PHEV)

PHEVs use batteries to power an electric motor and some fuel like gasoline
or diesel to power an ICE. Like HEVs, those vehicles can recharge the battery
through the braking system, but they also can connect to an external source
of electrical power like a public charging station or the driver’s home. They
usually have bigger battery capacity than typical HEVs and their fuel
economy depends on how often the grid is being used for battery charge.



Battery

Power Electronics

Electric
Fuel Motor

Storage

Lightweighting
Materials

Radiator

Figure 2-3: Plug in Hybrid Electric Vehicle- PHEV [21]

2.2.3 Battery Electric Vehicles (BEV)

BEVs don’t have an ICE so they are fully electric. They use high capacity
batteries that can provide large autonomy of mileage. This driving range can
be affected by the driving conditions such as extreme outside temperatures
and rapid acceleration. They have special chargers that support very fast dc
charging so they can be fully charge in the time span of minutes.

All-Electric Vehicle

Electric Traction Motor . / x 7
~ G

Power Electronics Controller

DC/DC Converter

Thermal System (cooli

Traction Battery Pack

"~ Onboard Charger

> Battery (auxiliary)

Figure 2-4: Battery Electric Vehicle-BEV[20]

2.3 Benefits and Disadvantages of Electric Vehicles

The most important advantages of EVs are the following [23]:
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e They are eco-friendly as they do not directly emit toxic greenhouse
gases. If the energy that is used for the charge of their batteries comes
from renewable resources, then they are truly green. Even if the
electricity used is produces by oil fuels, the air pollution is limited to
electricity generation sites rather than the cities.

e Their maintenance cost is lower because tasks related to ICE such as
lubrication of the engines is not needed

e Limited noise pollution as electric motors are much quieter. This is
especially significant in urban setting because of the substantial
number of vehicles.

e Their driving is easier. Commercial electric vehicles are automatic and
include a transmission that has one long gear. Thus, there is no need
for a clutch mechanism and the driver only uses the brake and
acceleration pedal enabling him to focus his attention on his
surroundings

e They can be cost-effective as there are many government policies that
significantly reduce car registration taxes. BEVs also do not depend on
fuel prices. They only recharge at special recharge points or at the
driver’s home from the electricity grid

Despite the benefits described above, there are many problems that are
delaying the establishment of EVs as the main car type choice:

e The driving range of EVs is being limited by their battery capacity
although this problem is addressed by latest research and technology.
As of now the most recent EVs have a range of 80-160 km and some
models can reach up to 300 km range

e They still have a higher price than conventional vehicles even on the
more affordable brands. This is due to the equipment used and mostly
to the batteries. As EV penetration rate rises, the technology used will
become mainstream and their price will gradually fall.

e Their batteries need replacement because of the limited life cycle.
Depending on the type and usage, they have to be changed every 3 to
10 years. Most recent models try to tackle this problem

e They have longer recharge time than the refueling of an ICE vehicle. It
can take 4 to 6 hours or even more to fully charge an EV, depending
on the battery. With special charging station it can reduced to a few
minutes

There are three main charging strategies that allow the driver to have varied
control of the timing that the charging process starts:



Uncontrolled or Dumb charging: This is currently the most used
strategy because of the low EV penetration. PEVs are charged with
steady power until the target SOC is reached. The charging process
begins immediately when the PEV is connected and as so it can
overlap with load peaks through the day. So there is no option to
minimize impact on the distribution network and on large penetration
number this can be devastating for the system.

Time of use tariff: in this strategy the day is divided in 2-3 time periods
and a different price is allocated in each period. For peak load hours
the price is higher and the driver prefers to charge on off-peak cheaper
hours. TOU tariff can be useful in low penetration of PEVs but with
higher penetration where the PEV load is substantial, it can cause
overload problems just like the dumb charging strategy.

Smart charging: It is the most efficient strategy. The charging rate of
every PEV is actively controlled in order to ensure that the distribution
network is not overloaded and the charging cost for the driver is as low
as possible for the target SOC that he decided.

V2G: The ability of the PEV to inject energy into the grid on periods of the
day where the load is maximum. In the context of smart grid, V2G with
smart charging can provide great technical and economic benefits.

There are 4 charging modes for the PEVs defined by standard IEC 61851-1
[24][26]

2.5.1 Mode 1: slow charging (AC)

The rated values of voltage and current must not surpass 250V and 16 A in
single-phase and about 400 V in three-phase. The vehicle is connected
directly to a home type socket and there is no protection or safety system
like a residual current device.

AC T\
@+ o~ %E ) Mode 1

Figure 2-5: Mode 1 charging [26]



2.5.2 Mode 2: slow charging (AC) with safety

The rated values of voltage are the same with the previous mode but the
rated value of the current must not exceed 32A. A safety system is placed in
the charging cable called Control Box. It is mostly found in portable
chargers.

Control &

Communication
D o Ay e

Figure 2-6: Mode 2 charging [26]

2.5.3 Mode 3: slow to semi-fast charging (AC)

In this mode a specific power system supply is required which is
permanently connected to the electricity grid. The Control Box is integrated
to the supply system. The maximum voltage and current values are the same
with mode 2 but charging is a bit faster because of the communication
between the charger and the vehicle.

AC
Y

Control &
Communication

\ W & Mode 3

Figure 2-7: Mode 3 charging [26]

2.5.4 Mode 4: Fast charging (DC)

In this mode the charging time can be minimized as the electrical power can
vary from 40kW to 350 kW. An external current converter is required that
transforms the current from AC to DC before passing through the charging
cable. The safety system is integrated in the external charger and there is
continuous communication with the vehicle for optimal charging.

10



AC »DC

E Control &
Communication

o — 0

Cable connected to charger

Figure 2-8: Mode 4 charging [26]

2.5.5 Wireless charging

The battery is charged using an electromagnetic field to transfer energy from
an induction coil to the vehicle. High frequencies are used to overcome the
air gap and usually the coils from the two sides are tuned to the same
resonance frequency for optimal results. The electric power output is about
20 kW and the efficiency close to 70%. Some recent research is focusing on
integrating wireless chargers on the roads so the vehicle can recharge its
battery while moving

Charging
Controller

Power Capture =~

Resonator
A

Wiring
Power Source Resonator

Figure 2-9: Wireless charging [27]

2.6 Charging station infrastructure

The charging infrastructure of a Country is perhaps the most important
factor to ensure that the transition from conventional to electrical vehicles is
smooth and that it is sufficient to support the needs of everyday mileage. As
the penetration rate rises, the availability of public chargers will also
increase to compensate for the increased numbers of PEVs on the streets.

While simple chargers may be available in every single family home,
workplace and public stations are becoming the norm with different levels of
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charging. There is also the option of public chargers near on the streets as
well as wireless charging at stopping lights or on a road lane while moving

The current state of Greece’s infrastructure can be seen in the following
figure:

Macedonia
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Figure 2-10:Charging stations in Greece (green=Public, orange=High power) [28]

12



CHAPTER 3

In order to estimate the daily load of PEVs, it is essential to define some
realistic mobility characteristics of the vehicles. In the literature, there are
many studies that assume that PEVs only charge during the night when
they return home. Some of them use home arrival times extracted from real
data, while others use probability functions based on reasonable
assumptions.

In this study, a large database [29] will be utilized that contains real world
driving data and an opportunity charging scenario will be adopted, which
enables vehicles to charge on all locations (home, work, shopping and social
activities). As EVs become more dominant in the market, in comparison to
ICE vehicles, more public or private charging stations will be constructed in
strategic locations to ensure the mobility of EVs. That is why opportunity
charging resembles a realistic future scenario.

NHTS [29] is widely used in transportation studies as it provides assistance
to transportation planners and policymakers who need extensive data of
travel patterns. It is a source of North America’s travel patterns and contains
information about various trips that household drivers participate during the
day. The trips included comprise all modes of travel and for different
purposes but in this study only those made by private cars were included.
While the vehicles in this study are not PEVs, it can be assumed that as the
electric car market penetration rises (and public charge stations become
widely available), the habits of the drivers will match those of conventional
vehicles. From the NHTS website, the corresponding csv file (named
trippub.csv) that contains the information necessary in this study can be
downloaded. The columns that were used are: HOUSEID, PERSONID,
TDTRPNUM, STRTTIME, ENDTIME, TRVLCMIN, TRPMILES, DWELTIME,
TDWKND, WHYTRP1S, URBRUR.

Using information from those columns, realistic trips that the vehicles have
to do during the day can be produced.
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Daily driving characteristics are one of the key factors that will affect both
the charging load throughout the day, and as consequence, the final impact
on the electricity grid.

By analyzing the NHTS data base, important information was extracted
regarding the average daily mileage of a vehicle, the number of daily trips it
does, starting times and dwelling times for different types of travels (work,
social, shopping and home). Also this information is available for both rural
and urban areas. Some preprocessing was needed in order to clean the data
from invalid or incomplete rows or extreme values.

A brief review of the columns used and their data follows:

e HOUSEID and PERSONID: wunique house and person identifier
respectively

e TDTRPNUM: incrementing trip number starting at 1 for each person in
the file

e STRTTIME: trip departure time

e ENDTIME: trip arrival time

e TRVLCMIN: trip duration in minutes

e TRPMILES: trip distance in miles. It was multiplied by 1.61 to be
converted to km

e DWELTIME: time parked at the destination

e TDWKND: weekend trip (1=Yes, 2=No)

e WHYTRPI1S: trip purpose

e URBRUR: Household in urban/rural area (1=Urban,2=Rural)

Departure and arrival times were in army hours so they had to be converted
to minutes using:

armyHour

100 > * 60 + mod(armyHour, 100) (3.1)

minutes = floor(

The end result of this chapter is to develop an algorithm that generates daily
tours and ensures that they are as realistic as possible.

Each tour consists of different number of trips. First, a distribution of the
number of daily trips is needed. Columns HOUSEID, PERSONID and
TDTRPNUM were used with the matlab function grpstats, which provides

14



statistics organized by group, in order to calculate in how many trips each
person, of every different household, participates in.

number of daily trips (urban)
T T T

07 number of daily trips (rural)
X T T T

Figure 3-1: Distribution of daily trips Figure 3-2: Distribution of daily trips
(urban)
As it can be seen in this figure most drivers travel only 2 trips (e.g. from
home to work and back home) while the numbers of 5 and 6+ trips are
minimum. In this study tours that consist of 4 trips at most are considered.
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Figure 3-3: time of departure from home at the start of the day

3.3.1 Departure times for different purposes

The departure times for different travelling purposes that are necessary for
this study can be obtained by columns STRTTIME and WHYTRP1S. The
matlab function fitdist is used on the data.
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Figure 3-4: Time of departure for work
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Figure 3-5:Time of departure for shopping
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Figure 3-6: Time of departure for social activities
«1073 departure for home stopover
15 T T T T T T T
/ urban
/ — — —rural
1 4
=
.-(__)
®©
Qo
o
o
0.5 y
0 — —— 1 I I I 1 1

00:00 04:00 08:00 12:00 16:00 20:00 24:00

Figure 3-7:Time of departure for home stopover

The departure times for all the different purposes are similar for urban and
rural locations. What mostly varies between those locations are the distance
travelled for each trip and its travelling time.
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3.3.2 Dwelling times at different locations

Dwelling times were extracted from column DWELTIME with
corresponding code on column WHYTRP1S for different purposes.
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Figure 3-8: Dwelling time at home
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Figure 3-9:Dwelling time at work
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Figure 3-10: Dwelling time for shopping
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Figure 3-11: Dwelling time for social activities

It is observed that, like the departure times, the dwelling times are identical
with minimum differences between the city and the countryside.

3.3.3 Travel distance and time

Daily distance travelled and total driving time were extracted from columns
TRPMILES and TRVLCMIN by again using grpstats, with HOUSEID and
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PERSONID, to estimate the total distance covered for the distinct trips that
each person did during the day.
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Figure 3-12: Daily distance distribution

The daily travel distance had to be limited, as travel distances in north

America are typically longer than in Greece and the following pdf was
obtained.
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Figure 3-13: Daily distance after modification (Greece)
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Figure 3-14: Daily travelling time distribution

The most noticeable difference is on the daily travel distance as people in
rural areas have to travel more kilometers to reach their destinations and
they may also need to travel between cities.

In order to assign the distance travelled for each trip during the day, a daily
distance value is initially generated from the probability distribution function
and then the total distance is allocated among the number of trips that the
driver will do during this day.

distance-time relation (urban
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Figure 3-16: Time-distance relation of urban Figure 3-15: Time-distance relation of rural
places places

Using the relation of travelling time and distance we try to estimate the
driving time for the distance that was allocated in each trip. In this way all
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the necessary statistics are available to produce a big number of realistic
tours the drivers will do in order to satisfy their needs.

3.4 Trip purpose decision making

The purpose of the next trip is very important because it determines how
much time will the vehicle be parked in the target destination. During the
trip generation process, the cumulative distribution functions (CDF) of the
departure times are used, for the different purposes of travelling.

A time interval (a,b) is defined and by using equation (3.3) the area
corresponding to the current time is selected (Figure 3-19). The chosen time
interval is 15 minutes before and 15 minutes after the time that the driver is
going to depart for his next trip. Then, the difference of the CDFs is
multiplied with the percentage from the purpose distribution for each
respective purpose. As a result, the probabilities are now normalized for all
the purposes and the ratio depends on both the current time of departure
and the total number of every purpose of travelling. This way the sum of the
probabilities is equal to 1 and by generating randomly a positive number
below or equal to 1, the most probable next purpose for the driver is picked.
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[ ThomesStop social
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Figure 3-17: Distribution of trips based on purpose Figure 3-18: Distribution of trips based on
(urban) purpose (rural)
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Fx(x) =P(X <x) (3.2)

P(a < X < b) = Fy(b) — Fy(a) (3.3)
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Figure 3-19:Area formed from the time interval (t-15,t+15)

3.5 Tour Generation algorithm

Using the travel pattern characteristics described in the previous sections,
the following logic for generating daily tours is applied:

1. All vehicles start from home and a number of trips N is generated from
Figures 3-1 or 3-2.

2. A departure time is assigned for the first trip from the distribution in
Figure 3-3.

3. The total day distance is generated from Figure 3-12

4. Using the method described in paragraph 3.4, the purpose of the next
trip that depends on the known departure time is assigned.

5. Allocate a part of day’s total distance to the current trip and assign the
travelling time of the trip using the time-distance relation in Figures
3-14,3-15.

6. The parking time is generated from the dwelling time distributions of
each purpose of parking.

7. If the current trip is not the second before the last, then go to step 4
and decide the next trip purpose
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8. If it is then the last trip is for returning home and the remaining
distance is allocated to it.

number of trips N

i=time of depariure
from home, n=1

pdi for different

purpose of next trip

purposes

trip distance & driving
time

n++

t=A+drivingtime+dwellingtime

no

yes

reium to home

Figure 3-20: Flowchart for tour generation algorithm

3.6 Tour generation results

By executing the tour generation algorithm enough times, the distribution of
the vehicle fleet location can be shown throughout the day.

As it can be seen, urban and rural results do not have much divergence due
to the highly similar statistics and while the driving distance is longer for
rural areas, driving time is similar due to higher speeds. The difference will
be apparent only in the energy consumed as a result of longer mileage.
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CHAPTER 4

In this part of the study, the method that was applied for the load
calculation of a PEV fleet will be described. Tours generated from the travel
characteristics of the previous chapter are used and two charging strategies,
namely; Dumb charging and Smart charging, are implemented. A fuzzy logic
based method was developed to emulate each driver’s decision regarding the
target state of charge when the vehicle will depart for the next trip.

An important part of this study is the target energy that each driver will
decide upon, to ensure that the available energy will be sufficient for the
next trip. The selected target must also be feasible considering the
infrastructure and equipment available. Even if the driver wishes so, he may
not exceed the maximum capacity of his PEV battery or if the parking
duration is not long enough, the desirable charging state may not be
achieved (though it is ensured that it will be enough for the next trip). In
these cases, the target energy has to be set to the highest possible value.
Due to the high number of vehicles that are considered in this study a fast
but reliable method must be applied to minimize the calculation time
requirements of the problem but also represent the way of thinking that real
drivers would have. The tool that was chosen to fulfill these criteria is fuzzy
logic.

4.1.1 Fuzzy logic

The term fuzzy is used when a problem has variables that are not true or
false like in the Boolean system but can be partially true or false. Fuzzy logic
provides flexibility for decision making because it considers these
uncertainties of the variables. It consists of four core parts:

e Rule Base: It contains the representation knowledge of the system that
is being studied in the form of a set of rules and IF THEN conditions.
Those rules are usually provided by experts of the study field to make
the decision making more realistic
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o Fuzzification: It converts real numbers (e.g. from the system’s sensors)
into fuzzy sets that are used in the rules defined in the Rule Base

e Inference Engine: It decides the matching degree of the fuzzy inputs
according to each rule and determines which rules are to be applied
depending on the input

e Defuzzification: It converts the fuzzy output of the inference engine to
a crisp value so it can be used by real systems.

The Membership function that is mentioned above is a graph that correlates
the input value to a membership value between O and 1.

Rule Base

Inference Engine

Figure 4-1: Architecture of a fuzzy logic system

crisp output

Crisp Input Fuzzy inputs fuzzy output

For this study analysis, two fuzzy models were created. The first emulates
the decision making of a driver when energy can only be transferred from the
grid to the vehicle and only when it is necessary. The second enables the
driver to inject excess energy to the grid from his vehicle (G2V). The inputs of
those two fuzzy systems are identical (SOC and price) while there are some
changes regarding the rules and the target output.

A representation of the fuzzy system can be shown in the following figure:

SOC (3) fuzzywithV2G

(

mamdani

)

9 rules

target (5)

price (3)

Figure 4-2: Representation of the proposed Fuzzy System
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4.1.2 Inputs

Two identical inputs were created in the two systems. The assigned linguistic
values are based on logical assumptions and the membership functions were
designed with symmetry in mind to provide more uniform values.

The membership function of electricity price is shown in Figure 4-3. It has
to be noted that the average price, for the time periods that the vehicle is
parked, is used as input and not the price at the time of arrival to the
parking spot. Three linguistic terms describe the price as cheap, average and
expensive. The bounds were set after examining the electricity price of
Greece for the day that is used in this study. In the majority of time, it is
between 67 and 72 €/ MWh and that is why this area is defined as average.
State of charge is known to the driver of the vehicle at any time and it is the
most important factor for him when is making the decision to charge and
how much. The linguistic terms used are low, medium and high. The
membership function is shown in Figure 4-4. SOC represents the percentage
of the available energy according to the maximum usable capacity and not
the nominal value.

T T T T T T T T

T
cheap average expensive

0.8 1 b

0.6 i

0.4 r b

Degree of membership

0.2 b

60 62 64 66 68 70 72 74 76 78 80
price (€/MWh)

Figure 4-3: Membership function of price
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Figure 4-4: Membership function of SOC

4.1.3 Rules

Two sets of rules were created for the different fuzzy systems. Each of them
has 9 rules yielded by every different combination of fuzzy inputs. The most
of the differences between those two are observed when the SOC or price are
high and expensive respectively. When there is no energy injection option,
then the driver is less likely to charge his vehicle while if he had that option
then he would probably decide to make some profit by transferring energy to
the grid.

For the defuzzification, the centroid method was selected, which is based on
the center of gravity of the fuzzy set. For the maximum and minimum, OR
and AND operators were used respectively.

Table 4-1. Fuzzy Rules for the simple charging inference system

AND price Then target
is is
low cheap high
low average medium-high
low expensive medium-low
medium cheap medium-high
medium average medium
medium expensive nocharge
high cheap medium-low
high average nocharge
high expensive nocharge

29



Table 4-2. Fuzzy Rules for the V2G charging inference system

If SOC AND price Then target
is is is
low cheap high
low average Medium
low expensive medium-low
medium cheap medium-high
medium average medium
medium expensive medium-low
high cheap high
high average Medium-high
high expensive medium
4.1.4 Output

There is only one output for both fuzzy systems. It represents the target
energy that the vehicle will have at departure time and it is expressed as a
percentage quantity. For the V2G fuzzy system, the percentage refers to the
whole usable capacity because drivers have the option to have less energy at
departure in comparison to the energy when they arrived at the parking
spot. It must be noted, that this fuzzy system emulates the driver’s desired
target and that may not be feasible, due to technical constraints like short
parking duration. In these cases, the closest value possible to the desired
target is assigned.

For the simple charging fuzzy system, the percentage refers to only the
available charging capacity and not the whole capacity. The difference from
the previous fuzzy system is that is has one additional possible output value
named “nocharge” which is assigned when the SOC is sufficient for the next
trip or the price is high during the parking period. It can be seen in Figure
4-5 on the edge bottom left corner to ensure null charging energy. Additional
checks are done on the target value in both systems to ensure that there is
enough energy for the next trip.
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Figure 4-5: Output of fuzzy system (G2V only)
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Figure 4-6: Output of fuzzy system (V2G)
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With the dumb charging strategy, the vehicle is charged with constant
electrical power, from the beginning of the parking event until SOC reaches
the assigned target. Aside from the fact that the fuzzy charging system
ensures that the SOC target is lower during high price periods, no other
measures are taken to distribute the charging load away peak load times
which burdens both the power network operators and the cost of charging.
To model this charging strategy, the total time frame of the simulation was
divided in 144 time slots of 10 minutes each (At). The state of the vehicle is
recorded at each time slot. Using the departure and arrival times obtained
from the travel patterns, the state is updated if necessary from driving to
parked/charging and vice versa at each time slot. An overview of the
transitions is shown in Figure 4-7.

farget
amrival&charge

amval&nocharge

departure

Figure 4-7:Possible states and transitions

In charging state, the SoC of the battery is updated with equation ( 4.1)
which uses the available charging power that depends on the location that
the vehicle is parked and the efficiency of charging.

An overview of the algorithm for this charging strategy can be seen in Figure
4-8. The starting time of the algorithm (t=0 in the flowchart) is considered to
be 4 in the morning and the total simulation time frame is 24 hours, that is,
until 4 am of the next day. The reason for that is to examine the charging
behavior during early hours of the morning without cutting them off at 00:00
and compare the results with the respective ones from the smart charging
that will shift the load to the off-peak hours.

. . Pch(i't)*n
SoC(i,t) = SoC(i,t —1) + 100 x ————— *« At (4.1)

bat,max

32



where SoC (in %) is the state of charge of PEV’s battery, i denotes the ith
PEV, t denotes tth time period from a set of T periods (144 periods for a
whole day), P, (in kWh) is the electrical power used for charging, n (in %) is
the efficiency of charging and Epg¢max (in kWh) is the maximum energy that
can be stored in the battery.

During the driving state, the energy consumed in each time slot is calculated
by equation ( 4.2) in order to estimate the SoC of the battery at the arrival
time.

EnergyConsumed = distance * cosmumption (4.2)

Where distance (in km) is distance travelled in the previous trip and
consumption (in kWh/km) is the energy consumption per km for the specific
vehicle type.

The time needed to reach the target energy by charging with maximum
power can be found with:

_ SOCtarget - SOCarr "

tch - P N bat,max (4' 3)
c

Where, S0Cigrger (in %) is the desired SoC at the end of the charging period
and SoC,, (in %) is the SoC at arrival.

For the worst case scenario, P.,(t)=Bn., but with some minimum
communication with the charger a smoother load can be obtained for the
same target ( 4.4)

SOCtarget - SOCarr
Pep(t) = P * Epat,max (4.9)
dt arr

Where t;: and t,., (in hours) is the departure and arrival time, respectively.
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Figure 4-8: Flowchart of dump charging tour simulation
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The Smart charging strategy can be applied by using linear programming
optimization and more specifically the fmincon matlab function. In order to
use fmincon, the problem must be formulated in the appropriate matrices
that the function accepts as inputs. Also the right constraints that describe
the problem must be defined.

The optimization problem that must be solved is the following:

td
minz P, (£) * EP(¢) * At (4.5
to

Where, P, (in kW) is the electric power the PEV exchanges with the
electricity grid and it can be positive while it is charging and negative when it
injects power to the grid (V2G enabled), EP(t) (in €/MWh) is the electricity
price during time period t, At is the time interval used (set to 10 minutes in
this study).

t0 is the time that the vehicle reaches its destination and connects to the
grid and td is the time that it is unplugged from the network and departs
from the parking location. Since the same vehicle may have to stop multiple
times during the day, the objective function has to be applied for every stop
and for every vehicle.

The optimization function is subject to some linear constraints in order to
describe the limitations of both the PEV charging process and the driver’s
needs.

PminSPchSPmax (4.6)
S0Cpmin < SoC < SoCpax (4.7)
S0Crq = S0Crarget (4.8)

Where, Pninmay (in kW) is the minimum (maximum) electric power the PEV
can exchange with the electric grid, SoCninmay (in %) is the minimum
(maximum) electric energy that can be stored by the PEV and SoC;,(in %) is
the stored energy at the time of departure.
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4.3.1 Extensive approach

These constraints need to be in the form A*x <b. Where, A is a matrix
which in this case represent the time slots that the vehicle is parked, x is a
vector representing the electrical power that will be used to charge the
battery and b is a vector used to define the current energy stored to the
battery.

Each element of x defines the electrical power that will be used in that
particular time slot and is constrained by ( 4.6)

For the matrix A, 2 sub-matrices are needed in lower triangular form, in
order to ensure that energy in the battery is within the bounds of capacity in
every time slot of the day. The first sub-matrix (SoC<0) has the following
form:

1 0 O 0
1 10 0
AA=]1 1 1 0| (4.9)
111 0 /
1 1 1 1
In every timeslot,( 4.10) must be satisfied:
Einie + chargedEnergy — consumedEnergy < Epat max (4.10)

So, by reformulating the equation above, the first part of b vector will be
b1(t) = Epatmax — Einie + Econs(t) (4.11)

Where Ei,;; (in kWh) is the initial stored energy at t=0 and E_,,(t) is the
energy in kWh, that the vehicle has consumed for its previous trips until
timeslot t.

The second sub-matrix (SoC>0) is the same with the first but must be
multiplied with -1 to change the direction of the inequality, as fmincon
accepts only constraints in the form of A x x < b.

A, = —4, (4.12)

Again, the charged Energy for every timeslot is bounded by ( 4.13)
Einit + chargedEnergy — consumedEnergy = Epgt min (4.13)

And the respective b vector will be:
by (t) = Epatmin — Einie + Econs(t) (4.14)

For the stored energy target constraint, a vector is necessary for each stop
that the vehicle does during the day. The number and the places of non-zero
elements depend on the time of parking during the day.

36



A;=10..0011..1100..0] (4.15)

Regarding the charging energy, it must correspond to the target energy as in
the following:

Ey - + chargedEnergy = E;q4 (4.16)
Where E,,.- (kWh) and E;; (kWh) is the energy at time of arrival and departure
respectively.
Hence, the final subvector bz vector will be:

b3 = Etd - Earr (417)

By concatenating the Sub-matrices, the final form of A is obtained:

1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 0

a=X (?) At 11 (1) é (1) (4.18)

= — % 2 —_ — —_— .

60 \4,/ 0| _1 1 o 0
1 -1 -1 0
1 -1 -1 0
1 -1 -1 .. -1
0 1.. 1 0.. 0

Finally, the full mathematical expression for this problem will have the
following form:

Axx<b>

1 0 0 0

1 1 0 0 b, (1)

1 1 1 0 b, (2)

1 1 1 0 X1 5
Al 111 1 Xz\ b, (N) (4.19)
|-t 0 0 0 |*| % |<| —b(D)

-1 -1 0 0 =/ —b,(2)

-1 -1 -1 0 Xn :

-1 -1 -1 0 —b,(N)

-1 -1 -1 -1 bs

0 1.. 1 O0..

[e)

4.3.2 Dynamic aggregated battery model

Normally the optimization process would be implemented for every vehicle in
the simulation and then then load would be aggregated. In our case though,
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due to the amount of vehicles, it would take a lot of time to be processed and
we wouldn’t be able to assess the impact of introduced load to the electricity
price.

In order to solve these problems, we use a different method, a dynamical
battery that represents the aggregated energy of all the parked vehicles
throughout the whole day. When a vehicle departs from a parking location
the dynamic battery will lose the target energy that was assigned to this
particular vehicle. The results obtained by the aggregate model must be very
similar to the detailed simulation, so the linear constraints have to be
aggregated too.

The aggregated available charging power at each time slot is the sum of the
individual charging powers of all vehicles charging at this particular time
slot ( 4.24).

Next, the bounds of the dynamical battery must be determined as in ( 4.22)(
4.23). The bounds of each individual vehicle are calculated in ( 4.20)( 4.21)
and then the superposition of the entire fleet produces the lower and upper
bounds of the dynamical battery. For the upper and lower bounds, again two
lower triangle matrices are needed to implement the battery constraints

When a vehicle departs from a charging parking spot, the charging power
and the available energy is removed from the dynamical battery and when it
arrives to the next location, they are added again minus the energy
consumed on the road. Those changes can be seen in Figure 4-13 for 2
vehicles.

The upper and lower bounds of the dynamic battery (in kWh) are calculated
by:

At
SOElow(t) — {max (Earr - (t - tarr) ' 5 ’ Pmax :Ebat,min) i SOElow(tL - 1) + Eav,ch(t) > Etd (4_20)
Eig — Eqpen(t), else
min (Earr + (t—tarr) - . Bnax » Epat max) ’ SOEu t-1- Eqven(t) < Eeq
SoE (1) = 60 ’ p » (4.21)
Eiqg + Egycn(t), else

Where E,,(t) (in kWh) is the maximum possible energy left to charge
during the time before departure.

Specifically for the lower bound, it is defined according to the following logic.
When the vehicle arrives it begins to inject energy to the grid until it reaches
minimum permitted SoC or when E,,;(t) is barely enough to reach the
target SoC by charging at maximum power before leaving. For the upper
bound the same logic applies but the vehicle first charges at maximum
power and then injects the energy until the target SoC.

For the time slots that the vehicle will be in the road, both bounds are set to
Zero.
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Figure 4-9: SoC bounds (optimization window)

Then both bounds are aggregated to represent the capacity of the total
battery of the fleet

n
SoE, 39" (t) = Z SOE,;(t,1) (4.22)
i=1
n
SoEq, (£) = Z S0Eoy (t, 1) (4.23)
i=1

The available maximum electrical power must also be aggregated to match
the power of the whole battery.

n
PRST () = ) Prax(t,D) (4.24)
i=1

Like the detailed method, two lower triangle matrices are needed but no
extra vectors are used because the target energy at departure is taken
account of during the calculation of the bounds.

So the final form of the optimization will be:
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1 0 0 0 aggr
1 1 0 0 SoEugg (D
1 1 1 0 x SoEy," (2)
1 1 1 0 “
a1 11 1 | <| SoEw (D)
-1 -1 0 0 aggr
X —SoE 2
1 -1 -1 0 " i (2)
~1 -1 -1 0 o aggr
1 -1 -1 . -1 S0Eigw (N)

The aggregated stored energy at every time slot is estimated by:
S0Eqggr(t +1) = S0E 44 (t) + dSoC(t) + x(t) *n * At (4.26)

An example of the aggregation of two vehicles s shown in the following
figures. Note that in Figure 4-12 the current SoC continues to remain inside
the bounds by using dSOC to dynamically add or subtract energy when an
arrival or departure has occurred.

Furthermore, a representation of a bigger fleet is provided in Figure 4-14.
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Figure 4-10: 1st vehicle
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Figure 4-12: aggregation of the two vehicles
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Figure 4-13: Energy additions and deductions during arrivals and departures
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Figure 4-14: aggregation for 1000 vehicles
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Figure 4-15: electricity price used for the simulations

4.3.3 Detailed vs Aggregate Battery model

The comparison of the two different methods using the same input
parameters can lead to some interesting conclusions. While the shape of the
load during the day is similar, there are some minor differences that reflect
the advantages of a centralized approach e.g. an aggregator to the
application of smart charging. During the extensive optimization a single
vehicle may opt to provide energy to the grid even on low price time periods
just because its current SoC is more that its target SoC. With the Dynamic
Battery however, the “greater picture” is known to the system and the
optimization will decide to charge more energy in low price periods and inject
the energy only when the price is high. While in real systems such perfect
knowledge for the whole fleet may not be obtainable, it can provide the
margin of improvement of the single vehicle optimization by using an
aggregator and is nonetheless a good indication of the best case scenario.
The main advantage of the aggregated method still remains the vastly
reduced processing time for a large PEV fleet. Comparison between the
simulation times can be seen in Table 4-3.

In the following table the simulation times are recorded. The CPU used is the
i7-4790 (4 cores) and parallel execution (parfor) is applied.

Table 4-3. Simulation times for different number of vehicles.

100 1000 10000 100000 1000000
Detailed 12.4 s 125 s 682 s 5840 s ~50000 s
Aggregated 11s 17 s 20's 90 s 625 s
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Figure 4-16: similarity between extensive and aggregated methods

4.4 PEV load impact to the price

While in small PEV penetration scenarios the introduced load of PEVs would
not affect the electricity price, a large fleet can modify the electricity price to
a great extent. This will in turn alter the behavior of the fleet to
accommodate for the changes to the expensive-cheap time periods until the
price reach a steady state which will define the equilibrium of the system.

A simple price model is developed to calculate the final price evolution
throughout the day. From ADMIE site, the hourly price for a whole year is
extracted (24*365 values) and, after removing some outliers, a relation
between load and price is formulated that will be used to produce a new
daily electricity price by providing the total load of the system with the
introduced EV load.

This relation is approximated by a polynomial function ( 4.27) as shown in
Figure 4-17.
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Figure 4-17: Polynomial function of price-load

An iterative process is the applied starting from the reference price,
calculating the new load with the dynamic battery smart charging strategy
and then using the function ( 4.27), as well as ( 4.28) to get the new system
price

f=52-10"1°12—-9.6-107°L% + 0.06L — 64.08 (4.27)
Where, L is the current total load of the system in MW

The new price is found by calculating the difference between the current and
old price and adjusting by a small factor [, in order to enhance the
convergence stability of the price (otherwise, with big enough load, it would
cause oscillations between the iterations).

EPnew(t) = EPold(t) + 1= (f(Ltot) - EPold(t)) (4.28)

The iterative process will be repeated until the new price will be almost
identical to the price of the previous round by using the ending condition in (
4.29) or has completed a max amount of iterations and that is when the
system has reached an equilibrium or quite close to it.

tn
|EPnew(t) - EPold(t)l
o max(EP,,, (t)) - 144

< convergence (4.29)

The iteration process is illustrated in the following flowchart:
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CHAPTER 5

Simulation Results

In this section, the parameters and the inputs of the proposed model will be
presented, as well as the respective results for the different PEV penetration
scenarios. The model parameters such as the load or the vehicle fleet
population can be changed to represent the national power system of a
different country or region.

Three different penetration scenarios are studied, based on how optimistic
the integration of EVs will be in Greek market. The results of the developed
iteration process are presented for each alternative charging strategy and in
every penetration scenario, as well as, important observations about the new
load peaks during the day are done.

It must also be noted, that a necessary assumption has been made in this
study. According to that assumption the electricity network of Greece is
presumed to be entirely interconnected. In reality, both Crete and the
smaller islands are not connected to the mainland of Greece, although the
interconnection between Attica and Crete is expected to be completed in
2022 (Ariadne interconnection). The number of vehicles in smaller islands is
really small so it should not have a large impact in the final results.
However, several significant islands are planned to be interconnected with
the mainland power system over the next years.

5.1 Simulation Parameters

In this study, one vehicle type is assumed to possess a battery large enough
to meet the needs of the drivers in their everyday tour. It is logical to assume
that a driver will buy a vehicle that is suitable to his daily mileage needs. In
Greece, the mileage is not that high and a battery of 30 kWh will suffice
according to Table 5-1. The consumption includes the energy required for
heating or cooling.

Table 5-1. Battery Specifications
Battery capacity Usable Consumption Autonomy

kWh capacity (kWh kWh/km range (km
30 25 18/100 ~200

The initial SoC, when the vehicle departs from home at the start of the day is
assigned from a normal distribution shown in Figure 5-1, where it is
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assumed that vehicles depart from home with 80% to 100% of their (usable)
battery capacity.

SoC during first departure from home

012 7

0.08 - 4

0.06 - 7

probability

0.04 7

0.02 - 7

0 1 1 1 1 1 1 Il 1
0 10 20 30 40 50 60 70 80 90 100

SoC (%)

Figure 5-1: Initial SoC during the 1st departure

Regarding the initial 24-hour load, the system load in Figure 5-2 was
selected, which can be found in ADMIE [30]. The site has a variety of data,
including renewable energy source injections and net interconnections. The
time series are recorded in hourly values, so linear interpolation was
necessary to obtain load values for every time period (10 minutes) of the
simulation. This particular load corresponds to the load on 19/1/2019.

Initial Load
8000 [— T T T T T

7500 |- 7

5000 |- .

4500 1 1 1 1 1 1 1
00:00 04:00 08:00 12:00 16:00 20:00 24:00

Time
Figure 5-2: Initial System Load (19/1/2019)
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For the respective electricity price, the relation in Figure 4-17 was used to
model the electricity price with regard to the load, as it will be used for the
initialization of the electricity price.

electricity price
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72 7
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64 1 1 1 1 1 1 1
00:00 04:00 08:00 12:00 16:00 20:00 24:00

time

Figure 5-3: Initial Electricity Price

The level of charging power holds an important role in estimating the electric
load profile. In this study, 3 levels of charging were assumed. Furthermore,
charging efficiency is set to 90% to accommodate ac/dc converter and losses
from the wall outlet to the battery.

Table 5-2. Charging levels for the different locations

Charging level location Power level(kW) \
Level 1 Home 2
Level 2a Work 4
Level 2b Shopping & Social §)

5.2 Penetration scenarios

In order to quantify the number of EVs that will be used throughout Greece,
the population of conventional private vehicles has to be considered. The
Hellenic Statistical Authority has recorded detailed information of the
national vehicle fleet regarding the distribution of vehicles in every region of
Greece [31]. For the purpose of this study and by using the driving
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characteristics from chapter 2, urban behavior will be allocated only in the
area of Athens (Attiki) and Thessaloniki. This decision is based on the fact,
that the size of cities in North America is greater than those in Greece.
Vehicles in other regions will be allocated rural behaviors and mileage.

Table 5-3. Distribution of conventional vehicles in each region
Region Number of Conventional Percentage
Vehicles

Central Greece 3,160,664 59%
Peloponnese 228,570 4.2%
Ionian Islands 86,030 1.6%
Epirus 118,827 2.2%
Thessaly 246,774 4.5%
Macedonia 949,114 17.6%
Thrace 125,746 2.3%
Aegean Islands 178,395 3.4%
Crete 278,871 5.2%

The final distribution of urban/rural locations can be seen in the following
Table.

Table 5-4. Fleet population of large cities

Number of Conventional Percentage
Vehicles
Athens 2,974,649 55%
Thessaloniki 531,675 10%
Other 1,866,667 35%
Total 5,372,991 100%

The world (and especially Greece) is still in early stages of EV penetration so
only estimations can be made about the exact numbers in the following
years. For this reason, different scenarios must be considered.

The project Mobile Energy Resources in Grids of Electricity (MERGE)[32] has
completed many evaluations about the impact that EV deployment will have
on electricity demand and the market issues that will ensue. In this project,
a case study regarding Greece is included. It describes three different
penetration scenarios for 2030:

e Low EV penetration rate: It is the most feasible scenario, which states
that there will be 5% integration rate.

e Medium EV penetration rate: It is an optimistic scenario. Although it is
less likely to occur in reality, this scenario is the recommended as the
main focus of the project because valuable information can be
obtained about mass integration of EVs to the gird. The rate is around
10%
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e High EV penetration rate: It is a very aggressive scenario, very unlikely
to occur and it might be used for reference. The integration rate is set

to 20%.
Table 5-5. Final urban/rural distribution
Number of Low(5%) Medium(10%) High(20%)
conventional vehicles
Urban 3,506,324 175,316 350,632 701,264
Rural 1,866,667 93,333 186,666 373,333
Total 5,372,991 268,659 537,298 1,074,597

5.3 Dumb charging

As mentioned before, in the dumb charging strategy the charging process is
not actively controlled, resulting in new load peaks. In Figure 5-4, the PEV
fleet load can be seen for both versions of dumb charging and for every
penetration scenario.

dumb charging
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0
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Figure 5-4: Results for the two different dumb charging versions

As it can be observed, the PEV load shape correlates with the human driving
activity. In the first case of dumb charging (nominal) the PEVs charge with
maximum power. In this case the load peak is around 8:00-9:00 in all
scenarios. This occurs because most of the vehicles travel around 7:00-8:00
especially for work purposes and then they are being charged with maximum
power, thus resulting in a quite steep load peak. A smaller peak can be seen
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around 18:00 when many drivers return home from their work or start their
evening activities. Moreover, in the early morning hours (3:00-6:00) the
introduced load is minimal to nonexistent, as the mobility is reduced in
these hours and most of PEVs have finished charging by then.

In the second case of dumb charging (smooth), the new load is more evenly
spread out. Now the peak is around 10:00-11:00 due to the fact that this is
the time of most concurrent charging. Most vehicles are in a workplace or a
public station by that time and they have not departed yet. After that, the
load decreases steadily until the morning hours, at which again the number
of concurrent charging is higher due to vehicles not having reached the
target for the end of the day.

In all scenarios, the results are quite similar for the same mode of dumb
charging. Only the PEV load magnitude is amplified, due to the increased
number of vehicles. While in the low penetration scenario, the difference is
not that tremendous, in the high penetration scenario the difference between
the respective peaks can be more than 300 MW, proving the need of at least
a primary control of the charging process, even if it is not smart charging.

In the following figures, the new total load of the power system (PEV
included) can be seen in each penetration scenario and in comparison with
the initial load of the system. The power demand of PEVs burden the system
during peak load periods while load valleys during the morning or the
midday are not altered significantly. This is extremely evident in the high
penetration scenario, where the new peak is 8000 MW, while the initial was
7400 MW.
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Figure 5-5: Total load for the low penetration scenario
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Figure 5-6: Total load for the medium penetration scenario
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Figure 5-7: Total load for the high penetration scenario

5.4 Smart Charging — G2V

With smart charging, PEVs tend to be supplied with energy during low
system load and avoid peaks of load when it is possible. Note that V2G is not
used in this section. In our case, this availability is constrained by the
bounds of the dynamic battery, as well as the number of vehicles charging at
each time period of the day. In Figure 5-8, the smart charging load results
can be seen for every scenario.
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Figure 5-8: Load results when smart charging is applied

The results have similar shape in every scenario. The optimization process
leads to zero charging power in the time periods from 18:00 to 21:00, where
the electricity price is at its highest, in all scenarios. It also tries to minimize
the charging energy during 8:00-9:00 due to the local maximum of the price.
In contrast, the PEV load maximizes at 5:00 and 14:00 when the electricity
price has global and local minimum values, respectively.

5.4.1 Low penetration scenario

In this scenario, the introduced load is quite small compared to the initial
load of the power system. This is why only small variations appear in both
price and load iterations, although it is evident that the increase of price in
the peak of 9:00 causes a slight increase to load valleys. The dynamic
battery cannot be charged more during the morning hours due to the
downward trend of its bounds (caused by the rush hour in the morning).
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Figure 5-9: Price alterations during the iterations (G2V only-Low)
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Figure 5-10: Load alterations during the iterations (G2V only-Low)
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Figure 5-11: Aggregated battery representation for the final iteration (G2V only-Low)

5.4.2 Medium penetration scenario

In this scenario, the PEV load is substantial compared to the initial load of
the power system. PEVs recharge their batteries during the morning hours
as much as possible (bounded by the dynamic battery and aggregated
electric power) or fulfill their midday charging needs during the valley
(10:00-16:00) of the load and they avoid the load peaks.
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Figure 5-12:Price alterations during the iterations (G2V only-Medium)
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Figure 5-13: Load alterations during the iterations (G2V only-Medium)
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Figure 5-14: Aggregated battery representation for the final iteration (G2V only-Medium)

5.4.3 High penetration scenario

In this case, the electricity price change is significantly affected by PEV load.
Due to the high enough PEV load, the midday valley is not deep enough to
satisfy the charging needs, so some charging during the smaller peak (9:00)
is necessary. Nevertheless, the highest peak is yet again avoided, so the
system does not need further facilities to accommodate the increased load.
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Figure 5-15: Price alterations during the iterations (G2V only-High)

57



load Iterations

8000 T T T T T T
initial
1st iteration
— 4
7500 / S final iteration

7000 AN / 1

)

= 6500 \ .

Power (M

000 /] .
5500 / .

5000 "

4500 1 1 1 1 1
04:00 07:00 10:00 13:00 16:00 19:00 22:00 01:00 04:00

Time Jun 21, 2020-Jun 22, 2020

Figure 5-16: Load alterations during the iterations (G2V only-High)
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Figure 5-17: Aggregated battery representation for the final iteration (G2V only-High)

5.5 Smart Charging — G2V & V2G

With V2G enabled, PEVs are able to inject energy to the grid and shift their
charging in low price time periods. As it can be seen in the figure below, the
introduced load has essentially the reverse shape of the initial load of the
power system, supporting the grid in high electricity price periods and
charging during low price periods. While in higher penetration scenarios
there should be a higher energy injection availability (greater vehicle
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number), it is observed that the support load is similar in all 3 cases. This
happens due to the proportional charging need, as well as the increased
value of the electricity price equilibrium. What mostly changes between
scenarios, is the charging load during the morning hours, as it still remains
the most economic time of recharging.
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Figure 5-18: Load results when V2G is applied

5.5.1 Low penetration scenario

In this scenario, the electricity price is affected more than in the simple
smart charging due to the benefits of V2G. On the other hand, the load is
not altering that much during the iterations, because the optimal load stays
almost the same. PEVs are injecting energy at almost full rate during the
peak of 19:00, while the same happens to a smaller extent at the smaller
peak of 9:00. The total charged energy during the morning valley is a little
higher, as a result of the ability to inject energy when possible and not
storing the extra energy for the next day.
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Figure 5-19: Price alterations during the iterations (G2V&V2G-Low)
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Figure 5-20: Load alterations during the iterations (G2V&V2G-Low)
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Figure 5-21: Aggregated battery representation for the final iteration (G2V&V2G-Low)

5.5.2 Medium penetration scenario

In this case, the electricity price is greatly affected by the PEV load, which in
turn results in an increased effect on the PEV load. As the price gradually
falls during the peak of 19:00, the total load is rising because it is no longer
so profitable to inject more energy. It can be seen that the highest peak
(19:00) has in fact become equal to the smaller one (9:00) due to the
auxiliary service of V2G, while the midday valley has been risen a little.
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Figure 5-22:Price alterations during the iterations (G2V&V2G-Medium)
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Figure 5-23: Load alterations during the iterations (G2V&V2G-Medium)
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Figure 5-24: Aggregated battery representation for the final iteration (G2V&V2G-Medium)

5.5.3 High penetration scenario

In this aggressive scenario for PEV penetration rate, the PEV load is of the
comparable magnitude as the initial load, which causes major changes to
electricity price and an unsteady convergence of the load. This results in a
quite flat price and load where the difference between valleys and peaks is
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around 350 MW. This proves that the electricity distribution grid can
support the penetration of a large fleet provided that the entire fleet can offer
auxiliary services to the system, which is an ideal condition.
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Figure 5-25: Price alterations during the iterations (G2V&V2G-High)
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Figure 5-26: Load alterations during the iterations (G2V&V2G-High)
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Figure 5-27: Aggregated battery representation for the final iteration (G2V&V2G-High)

5.6 Mixed charging strategy

The scenarios in the previous sections showcase the algorithms that were
developed in this study but assume that all the drivers will follow the same
charging strategy. In this paragraph, the PEV load results of a more realistic
mixed charging strategy are presented for every penetration scenario. It is
assumed that the shares of the charging strategies are the following:

e 40% simple smart charging

¢ 40% dumb charging (20% nominal and 20% smooth)

e 20% smart charging with V2G

realistic scenario
8000 T T T T T T T
initial
Low
Medium
High

7500

7000

~ 6500

MW

6000

Power

5500

5000

4500 [ b

4000 | . | | I
04:00 07:00 10:00 13:00 16:00 19:00 22:00 01:00 04:00

Time

Figure 5-28: Total system load by applying the mixed strategy
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It can be observed from Figure 5-29 and Figure 5-28 that, even with only
20% of PEVs actually applying V2G, the new system load does not have
higher peaks during the 19:00 peak and in the aggressive penetration
scenario the two peaks are equal at 7000 MW. The load valleys are
adequately filled, despite the quite large percentage of dumb charging,
although the difference from the ideal pure smart charging is evident
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Figure 5-29: Load results from the mixed strategy
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CHAPTER 6

This study aimed at estimating the possible future impact of plug-in electric
vehicle charging load, that will be introduced to a large electric power system
by 2030. Three different penetration scenarios were assumed according to
the study “Merge” to assess the effects of varied number of PEVs.

Traffic patterns from an extensive survey were analyzed and some
distributions like travel distances were truncated to fit Greek standards.

By applying different charging strategies, some interesting inference has
been drawn. The timing of the charging is a vital factor in the smooth
operation of the electric grid. If vehicles are left uncontrolled, the introduced
load can occur during peak load periods, which can have various
consequences both to the quality of service and to the cost of electricity. So
regulations must be encouraged in order to prevent increased load peaks. By
enabling the vehicles to inject energy to the grid, PEVs can actually become a
significant auxiliary service instead of a stability threat.

Finally, the iteration based method that has been used to model the impact
of the new load from PEVs to the electricity price, provides more realistic
results, as not only the PEVs respond to the system price, but also the price
is widely affected by new load.

With the observations of the results, it is concluded that the infrastructure
of Greece can support the penetration of 1,000,000 EVs but only if G2V and
smart charging is widely practiced.

The proposed method for PEV load forecasting can already be applied to a
large fleet but can become more accurate by using real life mobility of EVs.
This can happen when their use is more widespread and the relevant data
become publicly accessible.

Furthermore, the model can be enhanced by adding the ability of frequency
support to the grid by the PEVs, so they can suppress its fluctuations.
Lastly, the price model and fuzzy target system used in this study can be
enhanced by taking into account more parameters to ensure higher
accuracy.
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