
Technical University of Crete

School of Electrical and Computer Engineering

Reinforcement Learning

for Autonomous Unmanned

Aerial Vehicles

Nikolaos Geramanis

Thesis Committee

Associate Professor Michail G. Lagoudakis (ECE)

Professor Aggelos Bletsas (ECE)

Associate Professor Panagiotis Partsinevelos (MRE)

Chania, October 2020

Πολυτεχνείο Κρήτης

Σχολή Ηλεκτρολόγων Μηχανικών

και Μηχανικών Υπολογιστών

Ενισχυτική Μάθηση

για Αυτόνομα Μη-Επανδρωμένα

Ιπτάμενα Οχήματα

Νικόλαος Γεραμάνης

Εξεταστική Επιτροπή

Αναπληρωτής Καθηγητής Μιχαήλ Γ. Λαγουδάκης (ΗΜΜΥ)

Καθηγητής ΄Αγγελος Μπλέτσας (ΗΜΜΥ)

Αναπληρωτής Καθηγητής Παναγιώτης Παρτσινέβελος

(ΜΗΧΟΠ)

Χανιά, Οκτώβριος 2020

Abstract

Reinforcement learning is an area of machine learning concerned with how au-

tonomous agents learn to behave in unknown environments through trial-and-error.

The goal of a reinforcement learning agent is to learn a sequential decision policy that

maximizes the notion of cumulative reward through continuous interaction with the

unknown environment. A challenging problem in robotics is the autonomous navi-

gation of an Unmanned Aerial Vehicle (UAV) in worlds with no available map. This

ability is critical in many applications, such as search and rescue operations or the

mapping of geographical areas. In this thesis, we present a map-less approach for the

autonomous, safe navigation of a UAV in unknown environments using reinforce-

ment learning. Specifically, we implemented two popular algorithms, SARSA(λ)

and Least-Squares Policy Iteration (LSPI), and combined them with tile coding,

a parametric, linear approximation architecture for value function in order to deal

with the 5- or 3-dimensional continuous state space defined by the measurements

of the UAV distance sensors. The final policy of each algorithm, learned over only

500 episodes, was tested in unknown environments more complex than the one used

for training in order to evaluate the behavior of each policy. Results show that

SARSA(λ) was able to learn a near-optimal policy that performed adequately even

in unknown situations, leading the UAV along paths free-of-collisions with obstacles.

LSPI’s policy required less learning time and its performance was promising, but not

as effective, as it occasionally leads to collisions in unknown situations. The whole

project was implemented using the Robot Operating System (ROS) framework and

the Gazebo robot simulation environment.

Περίληψη

Η ενισχυτική μάθηση είναι ένας τομέας της μηχανικής μάθησης που ασχολείται με το

πως οι αυτόνομοι πράκτορες μαθαίνουν να συμπεριφέρονται σε άγνωστα περιβάλλοντα

μέσω μιας διαδικασίας δοκιμής και σφάλματος. Ο στόχος ενός πράκτορα ενισχυτικής

μάθησης είναι να μάθει μια πολιτική ακολουθιακής λήψης αποφάσεων, η οποία μεγιστοποιεί

την έννοια της αθροιστικής αμοιβής, μέσα από συνεχή αλληλεπίδραση με το άγνωστο

περιβάλλον. ΄Ενα απαιτητικό πρόβλημα στη ρομποτική είναι η αυτόνομη πλοήγηση ενός

μη-επανδρωμένου ιπτάμενου οχήματος (Unmanned Aerial Vehicle – UAV) σε κόσ-

μους χωρίς διαθέσιμο χάρτη. Αυτή η ικανότητα είναι κρίσιμη σε διάφορες εφαρμογές,

όπως αποστολές έρευνας και διάσωσης και χαρτογράφηση γεωγραφικών περιοχών. Η

παρούσα διπλωματική εργασία παρουσιάζει μια προσέγγιση για την αυτόνομη, ασφαλή

πλοήγηση ενός UAV χωρίς χρήση χάρτη, σε άγνωστα περιβάλλοντα χρησιμοποιώντας

ενισχυτική μάθηση. Πιο συγκεκριμένα, υλοποιήσαμε δύο γνωστούς αλγορίθμους, τον

SARSA(λ) και τον Least-Squares Policy Iteration (LSPI), και τους συνδυάσαμε με

την τεχνική τιλε ςοδινγ, μια παραμετρική, γραμμική αρχιτεκτονική προσέγγισης της

συνάρτησης τιμής με σκοπό να αντιμετωπίσουμε τον 5- ή 3-διάστατο συνεχή χώρο

καταστάσεων που ορίζεται από τις μετρήσεις των αισθητήρων απόστασης του UAV. Η

τελική πολιτική κάθε αλγορίθμου, μετά από μάθηση σε 500 επεισόδια, δοκιμάστηκε και

σε άγνωστα περιβάλλοντα πιο πολύπλοκα από αυτό της εκπαίδευσης με σκοπό να αξι-

ολογηθεί η συμπεριφορά κάθε πολιτικής. Τα αποτελέσματα δείχνουν πως ο SARSA(λ)

ήταν ικανός να μάθει μια σχεδόν-βέλτιστη συμπεριφορά, η οποία απέδωσε ικανοποι-

ητικά ακόμη και στις άγνωστες συνθήκες, οδηγώντας το UAV σε διαδρομές χωρίς

συγκρούσεις με εμπόδια. Η πολιτική του LSPI απαίτησε λιγότερο χρόνο μάθησης και

η απόδοσή της έδειξε καλές προοπτικές, δεν ήταν όμως τόσο αποτελεσματική, καθώς

σε κάποιες περιπτώσεις οδήγησε σε συγκρούσεις στις άγνωστες συνθήκες. Η εργασία

στο σύνολό της έχει υλοποιηθεί χρησιμοποιώντας το Robot Operating System (ROS)

και το περιβάλλον ρομποτικής προσομοίωσης Gazebo.

Acknowledgements

Firstly, I would like to express my gratitude and appreciation to all my professors at

the Technical University of Crete and especially to Michail G. Lagoudakis and Pana-

giotis Partsinevelos whose guidance and support have been invaluable throughout

this work.

I would also like to thank my colleagues Dimitris and Angelos whose assistance

was more than enough.

I cannot forget to thank Irho, Gerasimos, Giorgos, Maria, Iosif, Roza, Giannis,

Marietta, Chrisa, and Aria for all the memories we shared these beautiful years.

Last, but not least, I am grateful to my family for their continuous love, help,

and support.

Contents

1 Introduction

1.1 Thesis Contribution .

1.2 Thesis Outline .

2 Background 2

2.1 Reinforcement Learning . 2

2.1.1 Reward and Return . 3

2.1.2 Markov Decision Process . 4

2.1.3 Policy and Value Function . 4

2.1.4 Optimality . 7

2.1.5 Taxonomy of Reinforcement Learning Algorithms 8

2.1.6 Value Function Approximation 8

2.1.7 Dynamic Programming: Policy & Value Iteration 9

2.1.8 Monte Carlo Learning . 10

2.1.9 Temporal Difference Learning 11

2.2 Robot Operating System . 12

2.3 Unmanned Aerial Vehicle . 13

3 Problem Statement 16

3.1 Autonomous Navigation of UAVs in Unknown Environments 16

3.2 Related Work . 16

4 Our Approach 19

4.1 Model Description . 19

4.2 Linear Function Approximation . 22

4.2.1 Tile Coding . 23

4.3 SARSA(λ) . 24

4.3.1 n-step Methods . 25

4.3.2 λ-return Methods . 26

4.3.3 Eligibility Traces . 27

4.3.4 SARSA(λ) . 28

4.4 Least Squares Policy Iteration . 31

Reinforcement Learning for Autonomous Unmanned Aerial Vehicles

4.5 Implementation . 34

5 Experimental Results 35

5.1 SARSA(λ) in the 5D state space . 35

5.2 SARSA(λ) in the 3D state space . 39

5.3 LSPI in the 3D state space . 42

6 Conclusion 44

6.1 Future Work . 44

References 46

A Value Function Approximation and Gradient Methods 48

A.1 Gradient Descent . 48

A.2 Stochastic-gradient and Semi-gradient Methods With Value Function

Approximation . 49

Chapter 0 Geramanis Nikolaos

List of Figures

2.1 A trajectory. The trajectory from a starting state all the way to a

terminal state is called an episode . 2

2.2 A basic reinforcement learning model (figure from Sutton and Barto

2018) . 3

2.3 Back-up diagram for Vπ . 6

2.4 Back-up diagram for Qπ . 6

2.5 Taxonomy of reinforcement learning algorithms 8

2.6 Policy iteration approach (figure from Sutton and Barto 2018) 10

2.7 MC control (figure from Sutton and Barto 2018) 11

2.8 A geometry msgs/Twist message . 13

2.9 An example of the architecture of a ROS application 13

2.10 The pose of the UAV in three-dimensional space 14

2.11 Hokuyo UTM-30LX scanning area . 15

4.1 The first track . 19

4.2 The second track . 20

4.3 The third track . 20

4.4 A top down (2D) perspective of the UAV showing the LiDAR mea-

surements that were used . 21

4.5 An example of tile coding (figure from Sutton and Barto 2018) 24

4.6 The backup diagram of n-step methods (figure from Sutton and Barto

2018) . 25

4.7 The forward view of TD(λ) (figure from Sutton and Barto 2018) . . . 27

4.8 The backward view of TD(λ) (figure from Sutton and Barto 2018) . . 28

4.9 SARSA(λ)’s backup diagram (figure from Sutton and Barto 2018) . . 29

4.10 A basic offline (batch) learning model 31

4.11 Least-squares policy iteration (figure from Lagoudakis and Parr 2003) 33

4.12 The ROS graph of our implementation 34

5.1 Number of steps during training for SARSA(λ) in the 5D state space 36

5.2 Accumulated reward during training for SARSA(λ) in the 5D state

space . 37

Reinforcement Learning for Autonomous Unmanned Aerial Vehicles

5.3 Examples of trajectories from the final policy derived by SARSA(λ)

in the 5D state space . 38

5.4 Number of steps during training for SARSA(λ) in the 3D state space 39

5.5 Accumulated reward during training for SARSA(λ) in the 3D state

space . 40

5.6 Examples of trajectories from the final policy derived by SARSA(λ)

in the 3D state space . 41

5.7 Examples of trajectories from the final policy derived by LSPI in the

3D state space . 43

A.1 An illustration of the gradient descent method 48

Chapter 0 Geramanis Nikolaos

List of Tables

5.1 The difference of weights in each iteration of LSPI 42

List of Algorithms

1 SARSA(λ) . 30

2 LSTDQ . 32

3 LSPI . 33

Chapter 1

Introduction

Learning is a fundamental ability of all intelligent beings. The bird that acquires

the song of its species is a typical example of learning in the natural environment.

Psychologists have conducted thousands of experiments in laboratories to study

how animals can learn. Some of the ideas that they proposed inspired researchers to

apply them to artificial intelligence and with the help of optimal control theory this

trend led to the evolution of reinforcement learning. When thinking of reinforcement

learning, the first thing that comes to mind is the interaction with the environment.

The learner is not told how to behave, but instead must discover which actions

lead to better results by trying them. Furthermore, long-term planning is another

crucial idea of reinforcement learning. In many cases, actions may not only affect

the immediate situation, but also all the following ones. These two characteristics

are the core of reinforcement learning.

In recent years, researchers have achieved many impressive accomplishments by

using reinforcement learning. Mnih et al. 2013 have managed to attain superhuman

performance in many Atari games using only visual information. Furthermore, Silver

et al. 2017 developed AlphaGo, a system that was able to defeat the world champion

in the game of Go. All of that and many more show that reinforcement learning has

the potential to solve many challenging problems.

Autonomous navigation has always been an interesting and challenging problem

in robotics. For any mobile robot, the ability to autonomously navigate in its

environment is crucial to complete any kind of task. Being able to avoid obstacles

and/or find a safe route towards the target location in an unknown environment is

critical in many applications, such as search and rescue operations, mobile robots

in industrial environments, and mapping of geographical areas.

1.1 Thesis Contribution

This thesis describes an approach for the autonomous navigation of a UAV in un-

known environments using reinforcement learning. While the most common tech-

Reinforcement Learning for Autonomous Unmanned Aerial Vehicles

niques to solve this problem use Simultaneous Localization and Mapping (SLAM)

algorithms that consist of self-localization, map-building, and path planning, an

alternative mapless method based on reinforcement learning can also be effective

especially in very large environments.

In reinforcement learning, the agent learns how to behave through a trial-and-

error procedure. It interacts with the environment and by receiving rewards (or

penalties) it learns which actions are good and which are not in each state. In our

problem, the actions are velocity commands that control the UAV and states are

ranging measurements from a LiDAR sensor. Both actions and states contain some

form of stochasticity that represent real-world circumstances. Our goal is for the

UAV to navigate the environment successfully without crashing into walls.

We implemented and compared two different algorithms: SARSA(λ) (Rum-

mery and Niranjan 1994), which is an online, model-free, on-policy algorithm that

deals with the limitations of temporal difference and Monte Carlo learning and

Least-Squares Policy Iteration (LSPI) (Lagoudakis and Parr 2003) which is a batch

(offline), model-free, off-policy algorithm. Due to the large state space of the prob-

lem, we combined these algorithms with tile coding, a linear representation that was

used to approximate the value function. Furthermore, we used decaying ε-greedy

policy to deal with the exploration and exploitation trade-off.

The entire project was implemented in the Robot Operating System (ROS)

framework and was tested in the Gazebo robot simulator on three different in com-

plexity tracks. The training was conducted only on the first and simplest track of

the three. Then, we tested how each policy performs on the other two unknown and

more challenging tracks.

Results show that SARSA(λ) can find an efficient policy with good general-

ization that performs well in unknown and more complex environments in most

situations. LSPI also produced a promising policy, but not as efficient as the previ-

ous one.

1.2 Thesis Outline

In Chapter 2, we present all the background information needed for this thesis.

We give an overview of reinforcement learning. Specifically, we state the basic

reinforcement learning problem and give all the required definitions. Moreover,

we explain the use of the ROS framework and the Gazebo simulator. In addition

to that, we describe the model of the unmanned aerial vehicle that was used. In

Chapter 3, we specify the navigation problem and its importance in robotics and

we present some related work. Chapter 4 contains a detailed description of our

approach. We explicitly present the exact scenario of the experiments and analyze

the model of the environment, the representation methodology, and the proposed

Chapter 1 Geramanis Nikolaos

Reinforcement Learning for Autonomous Unmanned Aerial Vehicles

algorithms. The results from our experiments are shown in Chapter 5, in which we

also compare the two algorithms. Finally, Chapter 6 sums up the main parts of this

thesis and describes potential future work.

Chapter 1 Geramanis Nikolaos 1

Chapter 2

Background

2.1 Reinforcement Learning

Reinforcement learning (RL) (Kaelbling, Littman, and Moore 1996, Sutton and

Barto 2018) is an area of machine learning concerned with how agents learn to behave

in an unknown environment through trial-and-error. Reinforcement learning differs

from both supervised and unsupervised learning in the respect that the agent is not

told what actions to take, but instead is “guided” indirectly via a reward signal.

The goal of the agent is to find an optimal strategy (behavior) that maximizes the

total future reward.

Reinforcement learning is also described as sequential decision-making under

uncertainty, which is characterized by a stochastic environment and a long-term

goal. This means that the consequences of an action may not be always the same

and, may not be visible until later in the future and, for this reason, careful planning

is required.

Figure 2.2 shows a very basic reinforcement learning model and how the agent

interacts with the environment. At each time step t the agent receives a represen-

tation of the environment called state St and selects an action At. At the next

time-step t + 1 depending on the results of its action the agent receives a feedback

called reward Rt+1 and a new state St+1. This cycle that continues indefinitely or

until the environment reaches a terminal state can be represented as a trajectory

that is illustrated in Figure 2.1.

- - -St St+1 St+2
At At+1 At+2

Rt+1 Rt+2 Rt+3

...

Figure 2.1: A trajectory. The trajectory from a starting state all the way to a

terminal state is called an episode

2

Reinforcement Learning for Autonomous Unmanned Aerial Vehicles

Figure 2.2: A basic reinforcement learning model (figure from Sutton and Barto

2018)

One of the challenges of reinforcement learning is the exploration and exploita-

tion trade-off. To maximize the total amount of reward, the agent must choose

actions that knows from experience, are effective (exploit). However, to find such

actions the agent must first gain experience by trying actions that has never tried

before (explore). This dilemma becomes even more complicated in a stochastic en-

vironment. Therefore, a balance between exploration and exploitation is required

to find an optimal behavior.

2.1.1 Reward and Return

To determine the goal of reinforcement learning we use a reward signal. After each

action that the agent selects, it receives a feedback that indicates how “good” or

“bad” this action was. Although the reward function can be stochastic, for simplicity

reasons we will assume it is deterministic.

R : S × S × A→ R

The goal of the agent is to maximize the expected cumulative reward. This idea

is the core of reinforcement learning and is based on the reward hypothesis, which

states that all goals can be described in this way. Designing a good reward function

is a challenging task that is often solved by trial-and-error.

To define the total long-term reward of a trajectory after a time-step t, we use

a metric called the return Gt. The most commonly used model for this metric is the

infinite horizon discounted reward model. The discount factor γ is a value between

(0, 1] and is used not only to bound the return, but also to model the uncertainty

about the future.

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =
∞∑
k=0

γkRt+k+1 (2.1)

Chapter 2 Geramanis Nikolaos 3

Reinforcement Learning for Autonomous Unmanned Aerial Vehicles

2.1.2 Markov Decision Process

A finite Markov Decision Process (MDP, Puterman 1994, Bertsekas 2005) is a math-

ematical model that fully describes the environment in a reinforcement learning

problem. For example, given a state and an action, we can use the model to predict

the reward and the next state. More precisely an MDP is a tuple that consists of

the following elements:

MDP = (S,A, P,R, γ,D)

• The state space S is a finite set of all possible states of the environment.

• The action space A is a finite set of all possible actions that the agent can

choose. Each state can have its own action space, but for consistency reasons,

we will assume that all actions are available in all states.

• The transition model P is a matrix that defines transition probabilities from

all states s to all successor states s′ given the action taken a.

P a
ss′ = Pr(St+1 = s′|St = s, At = a)

• The reward model R defines the reward that the agent receives at each time

step.

• The discount factor γ is used to define the return.

• The starting state in an MDP is not always the same. For this reason, some

MDPs contain the initial state distribution D, which is a probability distribu-

tion for all the possible starting states.

An important property of MDPs, is the Markov property which denotes that the

next state is independent of the history given the current state. In other words, the

current state holds all the information we need. This is expressed mathematically

in Equation 2.2:

Pr(St+1|S1, S2, ..., St) = Pr(St+1|St) (2.2)

There are many extensions to the MDPs, like the Partially Observable Markov

Decision Processes or the Continuous Time Markov Decision Processes.

2.1.3 Policy and Value Function

A stationary policy π is the agent’s strategy. It determines how the agent behaves

in different situations. It’s a function that maps all possible states to some action.

π : S → A

Chapter 2 Geramanis Nikolaos 4

Reinforcement Learning for Autonomous Unmanned Aerial Vehicles

In general the policy can also be stochastic in which case π(a|s) denotes the proba-

bility of choosing action a in state s.

π : S → PD(A)

The goal of reinforcement learning is to find an optimal policy π∗ that maximizes

the expected cumulative reward and not the immediate reward. This means that

sometimes it has to sacrifice immediate reward for better long-term rewards. For

this purpose, we use a state-value function Vπ, which for state s predicts the total

future reward that the agent is expected to accumulate, if we follow the policy π.

Vπ : S → R

As mentioned before, we are interested in the expected return. Therefore, we

can define the state-value function for a given policy in the following way:

Vπ(s) = Eπ[Gt|St = s] = Eπ

[
∞∑
k=0

γkRt+k+1|St = s

]
(2.3)

Similarly, we can define the action-value function Qπ that predicts the expected

total future reward, if in state s we select action a and then follow policy π.

Q : S × A→ R

Qπ(s, a) = Eπ[Gt|St = s, At = a] = Eπ

[
∞∑
k=0

γkRt+k+1|St = s, At = a

]
(2.4)

The problem of finding a policy that maximizes the expected return can be

divided into two sub-problems. The first one is called prediction which is how to

calculate the value function of a given policy. The second one is called control which

is how to find an optimal policy. It is clear that to find an optimal policy we must

first be able to evaluate it. As a result, the problem of control involves the problem

of prediction.

The value function can be expressed recursively in terms of the next time-step

state-value function.

Vπ(s) = Eπ[Gt|St = s]

= Eπ[Rt+1 + γRt+2 + γ2Rt+3 + ...|St = s]

= Eπ[Rt+1 + γGt+1|St = s]

=
∑
a

π(a|s)
∑
s′

P (s′|s, a)
(
R(s, a, s′) + γEπ[Gt+1|St+1 = s′]

)
=
∑
a

π(a|s)
∑
s′

P (s′|s, a)
(
R(s, a, s′) + γVπ(s′)

)
(2.5)

Equation 2.5 is called the Bellman equation for Vπ. To better understand this

equation we can use a back-up diagram that is shown in Figure 2.3. White circles

Chapter 2 Geramanis Nikolaos 5

Reinforcement Learning for Autonomous Unmanned Aerial Vehicles

represent states and black circles actions. Starting from state s, the agent can choose

from a set of different actions, based on its policy π. By selecting these actions, the

agent can transition to a set of different states, based on the transition model P of

the MDP. It also receives a reward, based on the starting state s, the action it chose

a, and the next state s′.

Figure 2.3: Back-up diagram for Vπ

The Bellman equation for Qπ can be derived in a similar way.

Qπ(s, a) = Eπ[Gt|St = s, At = a]

= Eπ[Rt+1 + γRt+2 + γ2Rt+3 + ...|St = s, At = a]

= Eπ[Rt+1 + γGt+1|St = s, At = a]

=
∑
s′

P (s′|s, a)
(
R(s, a, s′) + γEπ[Gt+1|St+1 = s′]

)
=
∑
s′

P (s′|s, a)
(
R(s, a, s′) + γ

∑
a′

Eπ[Gt+1|St+1 = s′, At+1 = a′]
)

=
∑
s′

P (s′|s, a)
(
R(s, a, s′) + γ

∑
a′

π(a′|s′)Qπ(s′, a′)
)

(2.6)

Figure 2.4: Back-up diagram for Qπ

In the above equations, we assumed a stochastic policy and a reward function

dependent on the current state, the action, and the next state. The Bellman equation

can be written in a similar form for different definitions of the reward function and

the policy.

Chapter 2 Geramanis Nikolaos 6

Reinforcement Learning for Autonomous Unmanned Aerial Vehicles

The Bellman equations for Vπ and Qπ are linear systems and can be expressed

in matrix form. Therefore, to find the actual V or Q values of a policy we can solve

the systems either directly or iteratively.

2.1.4 Optimality

To solve an MDP, we have to find an optimal policy π∗. A policy π is better or

equal to a policy π′, if and only if it has a greater or equal value function for every

state.

π ≥ π′ ⇔ Vπ(s) ≥ Vπ′(s), ∀s ∈ S (2.7)

In general, there may be more than one optimal policy, but they all share the

same optimal value function, V ∗ or Q∗.

V ∗(s) = max
π

Vπ(s), ∀s ∈ S (2.8)

Q∗(s, a) = max
π

Qπ(s, a), ∀s ∈ S, ∀a ∈ A (2.9)

Moreover, we can write the Bellman equations for V ∗ and Q∗ that are called

Bellman optimality equations. Intuitively, we can think that the optimal value func-

tion of a state must be equal to the expected return of the best action from that

state.

V ∗(s) = max
a

∑
s′

P (s′|s, a)
(
R(s, a, s′) + γVπ(s′)

)
(2.10)

Q∗(s, a) =
∑
s′

P (s′|s, a)
(
R(s, a, s′) + γmax

a′
Qπ(s′, a′)

)
(2.11)

Unlike the Bellman equations, Bellman optimality equations are non-linear sys-

tems. For this reason, a direct solution is not possible and our only option is to use

iterative algorithms.

The last step is to derive an optimal policy from the value function. At each

state there will be at least one action that maximises the value function. Therefore,

acting greedily with respect to the value function produces an optimal policy which

is always deterministic.

π∗(s) = argmax
a

∑
s′

P (s′|s, a)
(
R(s, a, s′) + γV ∗(s′)

)
(2.12)

π∗(s) = argmax
a

Q∗(s, a) (2.13)

Note that using the action-value function (Equation 2.13) is simpler due to the fact

that it contains information about all possible actions for each state. Moreover, it

does not require the knowledge of the transition matrix P and the reward function,

R which are not always known. For this reason, in control we use the action-value

function instead of the state-value function.

Chapter 2 Geramanis Nikolaos 7

Reinforcement Learning for Autonomous Unmanned Aerial Vehicles

2.1.5 Taxonomy of Reinforcement Learning Algorithms

Reinforcement learning algorithms can be classified in some major categories based

on their approach, as shown in Figure 2.5.

Figure 2.5: Taxonomy of reinforcement learning algorithms

To solve an MDP, we can either make use of the model or use a more direct ap-

proach. Model-based algorithms utilize the dynamics of the environment (transition

function, reward function) to find an optimal policy. If these parameters are known,

we can use dynamic programming (e.g. Policy iteration, Howard 1960). However,

most of the time the dynamics of the environment are unknown. In this case, we

have to learn the model and then solve it by using planning (e.g. Dyna-Q, Sutton

1991). On the other hand, model-free algorithms do not learn any kind of model,

but instead are trying to learn an optimal policy and/or value function directly.

Model-free algorithms can be divided based on the function they are trying to

learn. Policy-based methods (e.g. REINFORCE, Williams 1992) explicitly learn a

policy, while value-based methods learn a value function. Actor-critic methods (e.g.

LSPI, Lagoudakis and Parr 2003) are the combination of the two and learn both a

policy (actor) and a value function (critic).

Last, but not least, reinforcement learning algorithms can either be on-policy

or off-policy. On-policy algorithms attempt to improve or evaluate a policy that

is used by the agent to behave and generate experience (e.g. SARSA, Rummery

and Niranjan 1994). On the contrary, in off-policy algorithms the agent follows a

different policy from the one we are trying to evaluate or improve (e.g. Q-Learning,

Watkins 1989).

2.1.6 Value Function Approximation

In simple cases, the state space consists of a few states and thus the value function

can be represented explicitly in a tabular form. However, most of the time and

especially in robotics (Kober, Bagnell, and Peters 2013) the state space is fairly

large. This is called curse of dimensionality and refers to the exponential increase

Chapter 2 Geramanis Nikolaos 8

Reinforcement Learning for Autonomous Unmanned Aerial Vehicles

of the number of states over the number of dimensions. Moreover, the state space

can also be continuous. This can not only cause problems in memory, but in time

of convergence. The time needed to visit every state enough times to evaluate it is

forbidding. Therefore, the agent must be able to generalize its past experiences to

similar states. To solve this we use a mathematical technique called value function

approximation (Busoniu et al. 2010) which tries to integrate function approximation

techniques for the function of interest within reinforcement learning. In value-based

algorithms, the function of interest is the value function V or Q.

The most commonly used value function approximation is the parametric ap-

proximation. This approximation uses a finite set of parameters (weights) w ∈ Rk

that can be tweaked appropriately in order that the approximate function fits the

target function.

V̂π(s; w) ≈ Vπ(s)

Q̂π(s, a; w) ≈ Qπ(s, a)

When using a function approximation, we must always have in mind that an

optimal solution is not guaranteed. We sacrifice some representation accuracy to

lower the storage requirements, since only the parameters w need to be stored and

calculated. There is a large variety of parametric approximation techniques that

can be divided into linear (e.g. polynomials, radial basis functions, tile coding) and

non-linear architectures (e.g. neural networks).

2.1.7 Dynamic Programming: Policy & Value Iteration

Dynamic Programming refers to a family of iterative algorithms that can calculate

the optimal value function by solving the Bellman (optimality) equation. However,

they require full knowledge of the MDP (transition function, reward function).

The first algorithm we are going to describe is called policy iteration (Howard

1960). It consists of two main steps. The first one is the policy evaluation (predic-

tion) step that calculates the state value function Vπ of a given policy π. This is

achieved by solving the Bellman Equation 2.5 for each state s ∈ S. Because the

Bellman equation is a recursive linear equation, this step amounts to solving a linear

system directly of iteratively. The next step is the policy improvement step. In this

step, we improve the policy by acting greedily, as stated in Equation 2.12. There-

fore, by repeatedly altering between policy evaluation and policy improvement, we

can slowly approach optimality. This idea is illustrated in Figure 2.6 and appears

in many reinforcement learning algorithms.

Chapter 2 Geramanis Nikolaos 9

Reinforcement Learning for Autonomous Unmanned Aerial Vehicles

Figure 2.6: Policy iteration approach (figure from Sutton and Barto 2018)

However, policy iteration can be very computationally expensive, although in

practice it converges in a small number of iterations. Another popular algorithm

that is called Value Iteration (Bellman 1957) does not explicitly store the policy,

but instead calculates the optimal state-value function V ∗ for each state s ∈ S

as stated in the Bellman Optimality Equation 2.10. This procedure needs to be

done iteratively, until we have convergence of the recurrence to a certain degree. It

should be noted that the number of recursive updates required for convergence may

be extremely large.

2.1.8 Monte Carlo Learning

Monte Carlo (MC) learning refers to a class of model-free reinforcement learning

methods that solve an MDP by averaging sample returns.

We begin by addressing the problem of prediction. As shown from Equation

2.3, an intuitive way of calculating the state-value function is to generate episodes

following the policy π and for every time-step t calculate the return Gt that corre-

sponds to a specific state s. Then, the value function for each state is the average

of the corresponding returns.

In order to find an optimal policy all we have to do is improve the current

policy by acting greedily as stated, in Equation 2.13. For this reason, the use of the

action-value function is a one-way road. This approach is illustrated in Figure 2.7

and resembles the policy iteration method that was presented in Section 2.1.7. By

repeatedly altering between these two steps we can slowly approach optimality. MC

learning can also be combined with value function approximation to handle cases in

which the state space is large and/or continuous (Appendix A).

Chapter 2 Geramanis Nikolaos 10

Reinforcement Learning for Autonomous Unmanned Aerial Vehicles

Figure 2.7: MC control (figure from Sutton and Barto 2018)

However, MC learning has some significant disadvantages. Firstly, the returns

can only be calculated only once the episode has finished. This means that all

episodes must terminate no matter what (episodic tasks) and that learning occurs

after the end of the episode and not in the process. Lastly, in many applications,

where each episode may contain many actions that can result in many different

states and rewards, the returns are “noisy”. Therefore, the MC estimator has a

high variance and slow convergence.

2.1.9 Temporal Difference Learning

Temporal difference (TD) learning is another popular class of model-free reinforce-

ment learning algorithms. TD learning uses the following general update rule to

calculate the value function of a policy.

NewEstimate← OldEstimate+ StepSize
(
Target−OldEstimate

)︸ ︷︷ ︸
error

(2.14)

The expression
(
Target − OldEstimate

)
is the error of the estimate and is

reduced by taking a small step towards the target. Moreover, it is often desirable

to decay the step size as the time passes, in order to prevent overshooting of the

target. For example, a learning rate that follows a logistic curve (sigmoid) is very

commonly used:

α =
α0

1 + ek(ep−ep0)

where ep is the number of the current episode, α0 is the initial learning rate, k is

the steepness of the curve and ep0 is the midpoint of the curve.

In MC learning the target is Gt, while in TD learning the target is Rt+1 +

γV (St+1). Therefore, in order to estimate the value function of a policy π, we need

to generate (s, r, s′) samples following this policy and then use the TD update rule:

V (s)← V (s) + a
(
r + γV (s′)− V (s)

)
, a ∈ (0, 1] (2.15)

This method is called TD(0) or one-step TD, because the target is expressed as

one-step roll-out of the return. The error
(
r+γV (s′)−V (s)

)
is known as Temporal

Difference (TD).

Chapter 2 Geramanis Nikolaos 11

Reinforcement Learning for Autonomous Unmanned Aerial Vehicles

In order to perform control, we need to use the action-value function. In this

thesis, we used a well-known on-policy TD control algorithm that is called SARSA

(Rummery and Niranjan 1994). In each time step, it generates a (s, a, r, s′, a′) sample

by acting greedily and then uses the rule 2.16 to update the value function.

Q(s, a)← Q(s, a) + a
(
r + γQ(s′, a′)−Q(s, a)

)
(2.16)

The update rules 2.16 and 2.15 are viable, only when the value function can

be expressed in tabular form. If we are using value function approximation, we rely

on stochastic gradient descent (SGD) methods to update the weights appropriately

(Appendix A).

w← w + a
(
r + γQ̂(s′, a′; w)− Q̂(s, a; w)

)
∇Q̂(s, a; w) (2.17)

Unlike MC learning, TD learning can be applied to both episodic and continuing

tasks. Moreover, it does not suffer from high variance, since it does not use the full

return. However, it uses another estimation to update the value function. This is

called bootstrapping and as a result TD estimators are biased.

2.2 Robot Operating System

Robot Operating System (ROS) is a framework (collection of software libraries) that

is used in robot software development. ROS provides tools for package management,

low-level control of various devices, communication between devices and processes,

debugging, and visualization. All those tools aim to hide abstraction, while keeping

the required flexibility, and simplify the development of a complex robotic applica-

tion. Another advantage of ROS is its integration ability with the Gazebo robot

simulator. Testing a robotic application in real hardware can be both costly and

dangerous. Gazebo is a powerful robotic simulator that offers the ability to test

algorithms in various robots, scenarios, and environments.

ROS architecture can be represented as a graph. The main components of ROS

are described below:

• A Node is a process that represents actuators, sensors, or parts of the robot’s

logic (e.g. decision making). Having nodes that control different parts of the

robot is crucial in complex robotic applications. Furthermore, nodes have the

ability to communicate with each other.

• A Message is a data type that is used in the communication between nodes.

It contains fields with the necessary data to describe information like a sensor

measurement or the position of the robot. It is possible to construct complex

messages, like the one in Figure 2.8, that contain other messages.

Chapter 2 Geramanis Nikolaos 12

Reinforcement Learning for Autonomous Unmanned Aerial Vehicles

Figure 2.8: A geometry msgs/Twist message

• One way that the nodes can communicate is by using a publish-subscribe

messaging pattern. ROS messages are published to topics by the nodes. For

a node to receive a message, it has to subscribe to the corresponding topic.

There is no limitation to the number of topics that a node can subscribe to or

publish to.

• Services is another way that nodes can communicate with each other. In

contrast to topics, a service is a two-way communication, where one node

(client) sends a request to another node (service) and receives a response.

Figure 2.9 shows the architecture of a simple ROS application represented by

a graph. The circles represent nodes and the arrows topics, while their direc-

tion indicates the subscriber and the publisher. In this scenario, we are trying

to control a virtual turtle. The node /teleop turtle receives commands from the

keyboard and publishes messages of type geometry msgs/Twist to the topic /tur-

tle1/command velocity. The node /turtlesim that has subscribed to this topic, re-

ceives these messages, and moves the turtle accordingly.

Figure 2.9: An example of the architecture of a ROS application

2.3 Unmanned Aerial Vehicle

Hector quadrotor (Meyer et al. 2012) is a framework that contains packages related

to modeling, control, and simulation of quadrotor UAV systems and is integrated

with ROS and Gazebo simulator. Some characteristics of the simulated UAV are

described below.

Chapter 2 Geramanis Nikolaos 13

Reinforcement Learning for Autonomous Unmanned Aerial Vehicles

The pose of the UAV in three-dimensional space is described by its position

and orientation. The position is a Euclidean vector that represents a point in space

(world frame), while the orientation is a vector of Euler angles that refer to the

rotation of the body around the corresponding axis.

x =

xy
z

 , θ =

ψθ
φ



Figure 2.10: The pose of the UAV in three-dimensional space

The motion of the UAV is the rate of change of its pose. Linear velocity

describes the rate of change of the position along each axis, while angular velocity

the rate of change of the orientation. Velocity commands are a way of controlling

the UAV. Note that unlike the pose, the velocities refer to the coordinate frame of

the UAV.

v =

xy
z

 , ω =

xy
z


The UAV is equipped with a Light Detection and Ranging system (LiDAR).

LiDARs are devices that measure distances by emitting laser light in a wide range

and then capturing the reflection of that light. By measuring the time that the light

takes to return to the receiver, we can calculate the distance from that object.

The LiDAR used in the simulation is the Hokuyo UTM-30LX whose scanned

area and specifications are shown in Figure 2.11.

Chapter 2 Geramanis Nikolaos 14

Reinforcement Learning for Autonomous Unmanned Aerial Vehicles

Figure 2.11: Hokuyo UTM-30LX scanning area

Additionally, to simulate real-world circumstances, all the above measurements

and commands share a common first-order Gauss Markov error model. Each simu-

lated measurement or command y is given by

y = ŷ + w

where ŷ is the true value and w is white Gaussian noise. Last, but not least, it is

important to state that all the above quantities are measured in the International

System of Units (SI).

Chapter 2 Geramanis Nikolaos 15

Chapter 3

Problem Statement

3.1 Autonomous Navigation of UAVs in Unknown

Environments

When thinking of a mobile robotic application, and specifically an UAV, autonomous

navigation is probably the most crucial ability that it has to possess. Moreover, in

real-world applications, certain constraints make the navigation of the UAV very

difficult. The exact map of the area is not always known beforehand. Furthermore,

the environment can also change dynamically even during the flight, making the

problem even more challenging. Search and rescue missions (e.g. a collapsed build-

ing) are an example in which such scenarios can occur. Therefore, the UAV must

be able to navigate successfully in an unknown environment and have the ability to

adapt to any change that might happen.

3.2 Related Work

Autonomous robotic navigation has always been an area of great research interest.

When the map is known, the robot can easily navigate by using a path planning

algorithm. In an unknown environment, the most standard approach is to use

simultaneous localization and mapping (SLAM) algorithms (Grzonka, Grisetti, and

Burgard 2009, Huang et al. 2016) that can construct a map of the environment,

while keeping track of the robot’s location within it. However, learning a map of

an environment that stretches for kilometers (e.g. drone delivery services) and then

plan a path based on it requires a lot of memory space and may be computationally

expensive.

In recent years, the development of powerful reinforcement learning algorithms

and their ability to solve difficult problems have urged researchers to apply them in

autonomous navigation problems. Imanberdiyev et al. 2016 have developed a real-

time model-based reinforcement learning algorithm, TEXPLORE, that can learn a

16

Reinforcement Learning for Autonomous Unmanned Aerial Vehicles

trajectory from a starting position to a goal by using a GPS signal. In this scenario,

the UAV must also monitor its battery level and alternate its route, when necessary

to recharge them. Moreover, the UAV cannot reach the target location without

recharging its batteries at least once in the recharging station which location is

unknown. Their approach was tested in Gazebo and proved to be more efficient

than Q-Learning. However, the map is represented as a grid (discrete state domain)

and does not contain any obstacles, thus making the problem less challenging.

Wang et al. 2017 also model the autonomous navigation problem as a discrete-

time continuous control problem. They argue that the navigation task is a Partially

Observable Markov Decision Process (POMDP) and that the Recurrent Determinis-

tic Policy Gradient (RDPG) algorithm that is used in such problems is not efficient

when used with a memory replay. As a result, they introduce a new approach called

Fast-RDPG that is based on an actor-critic architecture with function approxima-

tion. They experimented in simulation environments where the UAV flies in constant

altitude and velocity and uses range finder sensors and a GPS to navigate and reach

the target location. Results show that the proposed algorithm is able to learn an

efficient policy much faster which was tested in five virtual unknown environments

with different types of complex obstacles.

Yijing et al. 2017 propose an approach called Adaptive and Random Exploration

(ARE) in order to solve the UAV path planning problem in unknown scenarios.

Their architecture consists of three modules. The learning module implements a

2-layer neural network and with a deep Q-Learning algorithm that uses the UAV’s

position, distance from target and obstacles learns a strategy of action selection.

The trap-escape module helps the UAV escape dangerous situations via a random

tree search algorithm. And finally, the action module receives instructions from the

other two modules and let the UAV to take actions. Their method was tested in four

different simulated unknown maps and was able to learn fast an accurate policy.

Pham et al. 2018 also applied The framework of reinforcement learning was

also applied by Pham et al. 2018 to allow the UAV to successfully navigate in an

unknown environment, which exact mathematical model is not available. They

modeled the problem as an MDP and used a traditional Q-Learning algorithm in

order to teach the UAV to reach a target location. The state-space consists of the

position of the UAV in a discretized grid-like map and at each time step, the UAV

can choose to move in one of the four cardinal directions. They also combined the

learning algorithm with a PID controller in order to deal with the instability issues

during movement. Their proposed approach was tested in both simulation and real

implementation and showed that the UAV can successfully reach the target location

using the minimum number of steps. However, in their experiments, the map was

obstacle-free and consisted only of a few states.

Furthermore, Walker et al. 2019 presented a framework for UAV navigation in

Chapter 3 Geramanis Nikolaos 17

Reinforcement Learning for Autonomous Unmanned Aerial Vehicles

indoor environments. The proposed method separates the problem into two sub-

problems. The first one is the global planning problem which is modeled as a Markov

Decision Process (MDP) and uses a discretized map of the environment to provide

macro actions. The second problem is the local planning problem and is modeled as

a Partially Observable Markov Decision Processes (POMDP) in which must perform

continuous actions in order to search a local environment and avoid any obstacles.

In order to solve these problems, they implemented a deep reinforcement learning

algorithm. Experiments that were performed on Gazebo show that the UAV was

able to transit between rooms and successfully search each room while avoiding the

obstacles.

Zhang et al. 2013 addressed the path planning problem of multiple UAVs from

the perspective of reinforcement learning. They argue that traditional reinforcement

learning algorithms such as Q-Learning are unable to learn the geometric distance

information or handle the case of multiple UAVs. For this reason, they propose

a new algorithm called Geometric Reinforcement Learning (GRL) that utilize the

geometric distance and risk information from detection sensors and other UAVs in

order to build a general path planning.

Chapter 3 Geramanis Nikolaos 18

Chapter 4

Our Approach

4.1 Model Description

In this section, we describe the exact parameters of the MDP of the environment

we implemented to test our approach. The goal is for the UAV to automatically

navigate and complete the maze-like track without crashing into the wall. The tracks

that were created in Gazebo are shown in Figures 4.1, 4.2 and 4.3. Note that each

track has increasing complexity. The second one has more consecutive turns than

the first and the third track has additionally two diagonal corridors.

(a) As shown in Gazebo (b) As a plot

Figure 4.1: The first track

19

Reinforcement Learning for Autonomous Unmanned Aerial Vehicles

(a) As shown in Gazebo (b) As a plot

Figure 4.2: The second track

(a) As shown in Gazebo (b) As a plot

Figure 4.3: The third track

At the start of the episode, the UAV takes off and reaches its starting pose. This

is achieved with the help of the implemented, controllers that use the ground truth

pose of the UAV. When it has reached its starting pose, our algorithm takes control

of the UAV. The flying altitude remains constant during the flight (z = 1.5m) which

allows us to represent the problem in the 2D space. The starting pose (x position,

y position, yaw angle) and thus the initial state of the UAV is chosen randomly, but

with a safe distance from the walls. This randomness allows the UAV to visit more

a variety of states and learn to complete the track both clockwise and anticlockwise.

While implementing our approach, we came up against an interesting problem:

At each time step, the time required for the UAV to learn and select a new action

is not inconsiderable. Depending on the algorithm, a high action selection time can

cause various problems. During this time, the state of the environment changes and

Chapter 4 Geramanis Nikolaos 20

Reinforcement Learning for Autonomous Unmanned Aerial Vehicles

the action selected may no longer be an optimal one. For this reason, we tried to

optimize the algorithms as much as possible to have a negligible action selection

time. Moreover, a low velocity for each action has been chosen to ensure a low rate

of change in the environment.

As mentioned in Section 2.3, a LiDAR was used to detect the obstacles. How-

ever, due to its high dimensionality (1080 measurements), only a few measurements

were used. We experimented with two different state spaces. The first one is shown

in Figure 4.4. Apart from the first perspective measurement d2, it consists of two

more on each side with each one differing from the previous by θ = π
4
rad. These

five continuous variables make up the first state space of the MDP. The second state

space is like the first, but with reduced dimensionality. More precisely it contains

only the three front measurements d1, d2, d3. Due to the small number of mea-

surements, in a real-life application, the LiDAR could be replaced by different, less

expensive ranging sensors (e.g. ultrasonic sensors). However, in the simulation, we

used the LiDAR to have more versatility.

S1 = {(d0, d1, d2, d3, d4)}, 0.2 ≤ di ≤ 30 (4.1)

S2 = {(d1, d2, d3)}, 0.2 ≤ di ≤ 30 (4.2)

Figure 4.4: A top down (2D) perspective of the UAV showing the LiDAR measure-

ments that were used

The action space is composed by velocity commands, as described in Section

2.3. Unlike the state space, the action space is discrete and consists only of 3 actions.

Due to the fact that the UAV is flying at constant altitude (2D representation) the

commands consist only of linear velocity along the x axis and yaw angular velocities.

Moreover, each command lasts for 0.4 seconds.

A = {forward = [0.5, 0], yaw right = [0.1, 0.5], yaw left = [0.1,−0.5]} (4.3)

The reward function is relatively simple. When any of the 1080 LiDAR mea-

surements have a value lower than 0.4, we assume that the UAV has crashed into a

Chapter 4 Geramanis Nikolaos 21

Reinforcement Learning for Autonomous Unmanned Aerial Vehicles

wall. In this case, the episode terminates and the UAV receives a penalty of −200.

To encourage the UAV to move forward, every time it selects the corresponding ac-

tion, it receives a reward of +5. Furthermore, left or right yaw rotation is penalized

with a small value of −0.5. In this way, the UAV is encouraged to move forward

as much as possible and only turn to avoid collisions, by performing the minimum

number of rotations. Last, but not least, even though both algorithms can deal

with continuing tasks, the episode terminates after 500 actions to avoid infinite-long

episodes.

As stated in Section 2.3, to present a more realistic environment, we add white

Gaussian noise w to both commands and measurements.

w ∼ N (0, 0.01)

In order to deal with the exploration and exploitation trade-off, we use a popular

exploration method called decaying ε-greedy. According to this method, we behave

greedily most of the time, but in random time steps (probability ε) we explore by

selecting a random action among all available actions with equal probability. This

ensures that asymptotically all actions are selected enough times in order to ap-

proach optimality. Furthermore, it is desirable to explore more in the early episodes

and as time passes acting more and more greedily. For this reason, probability ε

is diminishing with each episode. This approach is expressed mathematically with

Equations 4.4 and 4.5. The practical advantage of this method is that it offers a

very computationally effective, yet powerful, way of exploration.

π(s)←

argmaxa′ Q(s, a′) with probability 1− ε

random action with probability ε
(4.4)

ε =
1

episode+ 1
(4.5)

4.2 Linear Function Approximation

Due to the high dimensionality of the state space and the fact that it consists of

continuous variables, we used linear function approximation (Lagoudakis 2017) to

represent the value function V̂π(s; w) or Q̂π(s, a; w) as a linear weighted combination

of k basis functions.

V̂π(s; w) = wTφ(s) =
k∑
i=1

wiφi(s) (4.6)

Q̂π(s, a; w) = wTφ(s, a) =
k∑
i=1

wiφi(s, a) (4.7)

Chapter 4 Geramanis Nikolaos 22

Reinforcement Learning for Autonomous Unmanned Aerial Vehicles

The vectors

φ(s) =


φ1(s)

φ2(s)

...

φk(s)

 , φ(s, a) =


φ1(s, a)

φ2(s, a)

...

φk(s, a)


are called feature vectors and represent every state or state-action pair. The gradient

of the value function can be easily calculated.

∇wV̂π(s; w) = φ(s)

∇wQ̂π(s, a; w) = φ(s, a)

Linear methods are interesting for various reasons. Even though non-linear

methods (neural networks) offer a better generalization, linear methods have their

own advantages. First of all, they are very easy to implement. Furthermore, in many

algorithms, linear approximation offers convergence guarantees. Moreover, they can

be computational efficient, due to the simple gradient of the feature vector. Last,

but not least, when a linear method does not work it is fairly easy to understand

why, by examining the value of the feature vector. However, the linear form does

not take into account any interaction between the features and their construction

requires a careful study of each problem separately.

There are many ways to construct the feature vector. Section 4.2.1 presents the

method that we used. However, this method describes how to construct features

φ(s) using only state s. In order to construct features for every state-action pair

φ(s, a) we use the same basis functions φ(s) repeated for each action, so that each

action has its own parameters. The derived feature vector has the following form:

φ(s, a) =



I(a = a1)φ1(s)

...

I(a = a1)φk(s)

...

I(a = an)φ1(s)

...

I(a = an)φk(s)


where I is the indicator function: I(TRUE) = 1, I(FALSE) = 0. Therefore,

depending on the action a, only one block of features is active within φ vector.

4.2.1 Tile Coding

Tile coding is a flexible and computationally efficient feature representation for

multi-dimensional continuous spaces. In tile coding we discretize the state space

into partitions, called tilings, and each element of the partition is called a tile. A

Chapter 4 Geramanis Nikolaos 23

Reinforcement Learning for Autonomous Unmanned Aerial Vehicles

tile can either be active (equal to 1) or inactive (equal to 0) and for a specific tiling,

a point is represented by the tile (feature) that falls into.

However, to have generalization, tile coding requires multiple overlapping tilings

that offset from each other by a fraction of a tile width that is indicated by a

displacement vector. A simple case of tile coding is shown in Figure 4.5. In this

example, the continuous 2D state space is partitioned in four different ways resulting

in four tilings. The point we want to represent (white dot) falls into exactly four

tiles, one for every tiling. These four tiles represent four active features in the feature

vector. Specifically, in this tile coding we have 4× 4× 4 = 64 total features. When

this state occurs, all of the features will be 0 except for the four corresponding tiles

that the point falls into.

Figure 4.5: An example of tile coding (figure from Sutton and Barto 2018)

For every possible state, the number of active tiles always equals the number

of tilings. This allows for an easy, intuitive way of setting the step-size parameter

a. For example, a = 1
10n

, where n is the number of tilings, will move the parameters

one-tenth of the way to target, while similar states will be moved less. Another

advantage of tile coding is that due to its binary representation of the features,

the value function of a state can be easily calculated. Instead of performing k

multiplications and sums as indicated in Equations 4.6 and 4.7 we simply need to

calculate the n� k indices of the active features and then add up the corresponding

n weights.

4.3 SARSA(λ)

λ-return algorithms are the middle ground between MC learning and TD learning

that combine the advantages of both worlds. We begin by presenting the n-step

methods and then extend that idea to derive the λ-return methods. A mechanism

that is called eligibility traces can be combined with SARSA to obtain an efficient

learning algorithm.

Chapter 4 Geramanis Nikolaos 24

Reinforcement Learning for Autonomous Unmanned Aerial Vehicles

4.3.1 n-step Methods

n-step methods offer a unification between MC learning and TD learning. As men-

tioned in Sections 2.1.8 and 2.1.9, MC learning methods update the value function

of a state by using the full sequence of rewards from that state. On the other hand,

TD learning methods use only the next reward and then bootstrap from the value

of the next state. An intermediate solution would be to use the n next rewards

and then bootstrap from the value of the state n steps later. Figure 4.6 shows the

backup diagram of the n-step methods. It illustrates the type of return that is used

for different values of n.

Figure 4.6: The backup diagram of n-step methods (figure from Sutton and Barto

2018)

In concrete terms, in MC learning the value function is updated in the direction

of the complete return of the episode. However, in one-step TD learning the target

is the one-step return:

Gt:t+1 = Rt+1 + γVt(st+1)

where Vt here is the estimate at time t of Vπ. In the same way we can define the

two-step return for the two-step TD learning:

Gt:t+2 = Rt+1 + γRt+2 + γ2Vt+1(st+2)

Similarly, the target for n-step TD learning is the n-step return:

Gt:t+n = Rt+1 + γRt+2 + ...+ γn−1Rt+n + γnVt+n−1(st+n), t+ n < T (4.8)

where T is the last step of the episode.

Chapter 4 Geramanis Nikolaos 25

Reinforcement Learning for Autonomous Unmanned Aerial Vehicles

Note that n-step return contains future rewards that have not yet been received

at time step t. For this reason, the value of the state at time step t can only updated

at time step t+ n. Therefore, the update rule for n-step TD prediction would be:

Vt+n(st)← Vt+n−1(st) + a
(
Gt:t+n − Vt+n−1(st)

)
, t < T (4.9)

We can combine SARSA with n-step methods to derive n-step SARSA that

can be used for control. We need only to switch the state-value function with the

action-value function:

Gt:t+n = Rt+1 + γRt+2 + ...+ γn−1Rt+n + γnQt+n−1(st+n, at+n), t+ n < T (4.10)

Then, we use rule 4.11 to update the action-value function:

Qt+n(st, at)← Qt+n−1(st, at) + a
(
Gt:t+n −Qt+n−1(st, at)

)
, t < T (4.11)

With the same way we can derive the update rules, if we are using a function

approximation.

4.3.2 λ-return Methods

While n-step methods use as target the n-step return, λ-return methods extend this

idea by using as target the average of n-step returns for different n’s. This quantity

is called λ-return and contains all the n-step returns each weighted proportionally

by λn−1 (λ ∈ [0, 1]) and is normalized by a factor of (1 − λ) to ensure that the

weights sum up to 1:

Gλ
t = (1− λ)

T−t∑
n=1

λn−1Gt:t+n (4.12)

Equation 4.12 can be written in the following way:

Gλ
t = (1− λ)

T−t−1∑
n=1

λn−1Gt:t+n + λT−t−1Gt (4.13)

Equation 4.13 will help us extract some interesting results. If λ = 0, the λ-return

is equal to the one-step return Gt:t+1, which is equivalent to one-step TD learning.

On the other hand, if λ = 1, the λ-return is equal to the full return Gt, which is

equivalent to MC learning.

Therefore, TD(λ) with function approximation uses the update rule 4.14:

wt+1 ← wt + a
(
Gλ
t − V̂ (s; wt)

)
∇V̂ (s; wt) (4.14)

This approach is called forward view, because we update each state by looking

forward in time and using future rewards and states. For this reason, the updates

occur only at the end of the episode.

Chapter 4 Geramanis Nikolaos 26

Reinforcement Learning for Autonomous Unmanned Aerial Vehicles

Figure 4.7: The forward view of TD(λ) (figure from Sutton and Barto 2018)

4.3.3 Eligibility Traces

As mentioned before, forward view TD(λ) updates the weights only once the episode

has terminated. This limitation can be dealt with the use of eligibility traces. Even

though this backward view algorithm that we are going to present approximates the

forward view, it is very efficient.

The weight vector w can be viewed as a long-term memory that is accumulating

experience over the lifetime of the agent. On the other hand, the eligibility trace is a

short-term memory vector z ∈ Rk that often last less than the length of an episode.

It is initialized to zero at the start of the episode and then it changes based on rule

4.15:

zt ← γλzt−1 +∇wV̂t(st; wt) (4.15)

According to Equation 4.15 at each time-step the eligibility trace is incremented by

the gradient of the value function of the current state and then fades away by γλ.

This means that the eligibility trace keeps track of which components of the weight

vector have contributed, positively or negatively, only to recent learning events. The

events we are interested are represented by the one-step TD error.

δt = Rt+1 + γV̂ (st+1; wt)− V̂ (st; wt) (4.16)

Then, the weight vector is updated proportionally to the TD error and the eligibility

trace vector:

wt+1 ← wt + aδtz (4.17)

This algorithm is called backward view TD(λ), because we look back in time.

At each time step, we calculate the TD error and assign it to past states depending

on the contribution of that state, which is represented by the eligibility trace and

fades away with time.

Chapter 4 Geramanis Nikolaos 27

Reinforcement Learning for Autonomous Unmanned Aerial Vehicles

Figure 4.8: The backward view of TD(λ) (figure from Sutton and Barto 2018)

Linear TD(λ) has been proved to converge in the on-policy case, if the step-

size parameter is reduced over time. To better understand the algorithm, we will

examine what happens for different values of λ. If λ = 0, then at each time step the

eligibility trace is equal to the gradient of the value function ∇V̂ (st; wt) and thus

the update rule 4.17 becomes equivalent to the one-step TD learning or TD(0). If

λ = 1, then at each time step the eligibility trace fades only by γ and it turns out

to be equivalent to MC learning or TD(1). For 0 < λ < 1, the larger the value of λ

the more past states are affected, but each preceding state is affected less.

4.3.4 SARSA(λ)

The above ideas can be combined with SARSA in order to produce a forward view

algorithm for control known as SARSA(λ) (Rummery and Niranjan 1994), which is

used extensively in reinforcement learning. It has the same update rules as TD(λ),

but we swap the state-value function with the action-value function:

zt ← γλzt−1 +∇Q̂(st, at; wt) (4.18)

δt = Rt+1 + γQ̂(st+1, at+1; wt)− Q̂(st, at; wt) (4.19)

wt+1 ← wt + aδtz (4.20)

SARSA(λ)’s backup diagram is shown in Figure 4.9. It illustrates the weighting

of each type of return. The one-step return is assigned to the largest weight, 1− λ.

The two-step return is assigned to the next largest weight, (1−λ)λ and so on. Note

that each weight fades by λ.

Chapter 4 Geramanis Nikolaos 28

Reinforcement Learning for Autonomous Unmanned Aerial Vehicles

Figure 4.9: SARSA(λ)’s backup diagram (figure from Sutton and Barto 2018)

Algorithm 1 shows the pseudocode for SARSA(λ) with linear function approx-

imation, decaying ε-greedy policy, and sigmoid learning rate. This implementation

contains some optimizations possible when using ε-greedy policy. More specifically,

in each-time step, it calculates the Q values for each action and stores them to be

used in later computations.

Chapter 4 Geramanis Nikolaos 29

Reinforcement Learning for Autonomous Unmanned Aerial Vehicles

Algorithm 1 SARSA(λ)

function calculate q values(s,w,φ)

for each action a do

Qs(a)← wTφ(s, a)

end for

return Qs

end function

function SARSA(λ)(γ, λ,φ, α0, k, ep0)

Initialize w arbitrarily

for each episode ep do

α← α0

1+ek(ep−ep0)

ε← 1
ep+1

Initialize s

z← 0

Qs ← calculate q values(s,w,φ)

a←

argmaxa′′ Qs(a
′′) with probability 1− ε

random action with probability ε

while s is not terminal do

Take action a, observe r, s′

Q′s′ ← calculate q values(s′,w,φ)

a′ ←

argmaxa′′ Q
′
s′(a

′′) with probability 1− ε

random action with probability ε

if s′ is terminal then

δ ← r −Qs(a)

else

δ ← r + γQ′s′(a
′)−Qs(a)

end if

w← w + αδz

z← γλz + φ(s, a)

a← a′

s← s′

Qs ← Q′s′

end while

end for

end function

Chapter 4 Geramanis Nikolaos 30

Reinforcement Learning for Autonomous Unmanned Aerial Vehicles

4.4 Least Squares Policy Iteration

All of the algorithms we have presented so far fall into the category of online re-

inforcement learning. However, learning a policy can also be done in an offline

way. This is also called batch reinforcement learning (Lange, Gabel, and Riedmiller

2019) and its model is slightly different from that we have presented in Figure

2.2. In batch reinforcement learning, the agent does not interact with the environ-

ment, but instead is trying to find an optimal policy using a fixed set of samples

D = {(st, at, rt+1, s
′
t+1), ...}, t = 1, 2, 3, .. that have been collected using an arbi-

trarily policy πa. This is illustrated in Figure 4.10. Batch reinforcement learning

algorithms come useful in applications in which gathering samples can be expensive

(e.g. robotics).

Figure 4.10: A basic offline (batch) learning model

Least-squares policy iteration (LSPI) (Lagoudakis and Parr 2003) is a well-

known algorithm that solves the control problem under the framework of policy

iteration that was presented in Section 2.1.7. However, LSPI does not store the

policy explicitly, but instead uses only the action-value function Q. The policy can

be derived by acting greedily (Equation 2.13). Moreover, LSPI uses a parametric

linear value function approximation, as described in Section 4.2.

For the policy evaluation step, the least-squares temporal-difference (LSTDQ)

algorithm is used. This algorithm calculates the action-value Qπ of a given policy

π by using the set of samples D. Both the input policy and the derived action-

value function are of course represented by a set of weights. Algorithm 2 shows

the pseudocode for LSTDQ. An important part of the algorithm is that A will not

be full rank and therefore its inverse matrix can not be calculated until enough

Chapter 4 Geramanis Nikolaos 31

Reinforcement Learning for Autonomous Unmanned Aerial Vehicles

samples have been processed. This can be dealt with by initializing A to δI for a

small positive δ. Another solution is to use SVD to calculate A−1.

Algorithm 2 LSTDQ

function LSTDQ(γ,D,φ,w)

A← 0 // (k × k)

b← 0 // (k × 1)

for all samples (s, a, r, s′) ∈ D do

if s′ is terminal then

A← A + φ(s, a)φT (s, a)

else

a′ ← argmaxa′′ w
Tφ(s′, a′′)

A← A + φ(s, a)
(
φ(s, a)− γφ(s′, a′)

)T
end if

b← b + φ(s, a)r

end for

w← A−1b

Return w

end function

After having evaluated the current policy, the policy improvement can be per-

formed by acting greedily in respect to the action-value function Qπ. This is identical

to the policy improvement step in policy iteration algorithm. However, LSPI does

not need to store the policy explicitly. Therefore, the policy improvement step

consists of overwriting the old weights with the ones calculated by LSTDQ. This

alternation between the two steps of LSPI that is illustrated in Figure 4.11 is re-

peated, until the policy (weights) converge to a certain degree. Algorithm 3 shows

the pseudocode for LSPI. Note that when the number of features is small, the fea-

ture vector φ(s, a) for each sample can be calculated once and stored to be reused

in each iteration of LSPI.

Chapter 4 Geramanis Nikolaos 32

Reinforcement Learning for Autonomous Unmanned Aerial Vehicles

Figure 4.11: Least-squares policy iteration (figure from Lagoudakis and Parr 2003)

Algorithm 3 LSPI

function LSPI(γ,D,φ, ε)

Initialize w′ arbitrarily

repeat

w← w′

w′ ← LSTDQ(γ,D,φ,w)

until ||w −w′|| < ε

end function

LSPI has proven to be quite effective compared to other reinforcement learning

algorithms. First of all, LSPI is an off-policy algorithm meaning that can calculate

an optimal policy from samples that have been collected by an arbitrary policy. This

is not to say that we can use any policy to collect the samples. The effectiveness of

the policy that LSPI will produce is closely related to the distribution of the samples.

Even though LSPI is an actor-critic algorithm, it does not explicitly stores the policy

(actor) which is not the case for other popular actor-critic algorithms. Therefore,

LSPI eliminates the error that can occur from the approximation method of the

policy. LSPI is also sample efficient, as it reuses the same set in every iteration,

which is not true for other batch algorithms that require to collect new samples in

later stages. Last, but not least, many reinforcement learning algorithms require

careful study concerning the learning rate and its scheduling and the exploration

policy and its scheduling. This parameters are not present in LSPI and thus there

is less need for fine-tuning.

Chapter 4 Geramanis Nikolaos 33

Reinforcement Learning for Autonomous Unmanned Aerial Vehicles

4.5 Implementation

In this chapter, we will discuss the implementation of the application without going

into details.

As mentioned, the whole project was implemented in ROS using Python. Figure

4.12 shows the ROS graph of our application. The node /train uav contains the

training algorithm that we implemented. At the start of each episode, the UAV must

reach its random initial pose. To achieve this we publish a PoseStamped message in

the /command/pose topic. Then, the controller that the Hector quadrotor package

provides (not shown in the figure) moves the UAV into its starting pose. Afterwards,

/train uav controls the UAV by publishing Twist messages in the /cmd vel topic

depending on the state. The state of the UAV (LiDAR measurements) is received

by the /scan topic as LaserScan messages.

Figure 4.12: The ROS graph of our implementation

The code follows an object-oriented structure and contains two main classes.

The environment class acts as a black box for the agent and implements all the

necessary logic and dynamics of the environment (state space, action space, reward

function, initial state, state transition, etc.). Note that the API of that class is

organized in a similar way to the environments of OpenAI Gym - a popular rein-

forcement learning tool (Brockman et al. 2016). The corresponding classes that Gym

provides were also used to define the state space and action space of the environ-

ment. The second class is the learning algorithm and contains the implementation

of the algorithm that interacts with the environment.

Chapter 4 Geramanis Nikolaos 34

Chapter 5

Experimental Results

In our experiments, we used SARSA(λ) and LSPI with tile coding. We also exper-

imented with radial basis functions as a linear representation, but the results were

not satisfying. Furthermore, to test how good the UAV behaves in environments

which has never seen before, training occurred only in the first track, and then we

measured the efficiency of the policy in the second and third track.

Since an episode can last for many actions, for both algorithms we chose a rel-

atively high discount factor, γ = 0.99 to highlight the importance of future rewards.

For the SARSA(λ) algorithm we chose λ = 0.5 which indicates that we look at the

not too distant future to calculate the value function. For the scheduling of the

learning rate the following parameters were used: k = 0.2, ep0 = 350, α0 = 0.1
#tilings

.

As mentioned before the maximum number of actions in our experiments is 500. In

the online algorithm SARSA(λ) training was occurred for 500 episodes that result

in approximately 24 hours, a characteristic that prevented us from performing many

experiments.

5.1 SARSA(λ) in the 5D state space

In the first experiment, we used the 5-dimensional state space S1 and SARSA(λ).

For the tile coding approximation, we discretize each dimension in 14 tiles and

an extra one tile to achieve overlap between the tilings. We used 7 tilings that differ

from each other by a tenth of tile width state space.high−state space.low
#tiles

= 29.8
10

= 2.98.

This results in 5, 315, 625 features. However, these features must be repeated for

each action (3 actions in total). Therefore the total number of features is 15, 946, 875.

This a very large number of features for a linear approximation. Nonetheless, as we

stated in Section 4.2.1 only 10 of them are active each time and thus calculations are

relatively fast. This is not to say that action selection and learning time is negligible.

In fact, during training approximately 0.2s will pass without the UAV receiving a

velocity command, which can obstruct the learning procedure. Of course, this time

is much lower, if we do not perform learning and simply act greedily.

35

Reinforcement Learning for Autonomous Unmanned Aerial Vehicles

Figure 5.5 shows the accumulated reward during the training. For demon-

stration purposes, the curve has been smoothed by averaging the rewards every 5

episodes. Note that these rewards correspond to the learning phase. This means that

they were gathered, while the UAV was exploring and thus some bad results could

be due to random actions. Figure 5.2 shows the number of steps in each episode. Of

course, these two curves have a similar shape. Both curves start to take-off around

the episode 100. However, they maintain a high variance. This variance is reduced

around episode 300 in which the learning rate starts to decrease and thus smaller

steps are being taken towards the target in each update of the value function. This

results in a more stable policy as illustrated by the curve.

Figure 5.1: Number of steps during training for SARSA(λ) in the 5D state space

Chapter 5 Geramanis Nikolaos 36

Reinforcement Learning for Autonomous Unmanned Aerial Vehicles

Figure 5.2: Accumulated reward during training for SARSA(λ) in the 5D state space

Figure 5.3 shows examples of trajectories in all three tracks that were produced

using the final policy of SARSA(λ). Note that in these figures only the position

(x, y) is illustrated and not the rotation (yaw). All the trajectories start from a

random position that is indicated by the green dot.

The UAV is able to complete the first track successfully both clockwise and

anti-clockwise, as indicated in the trajectories shown in Figures 5.3a and 5.3b. The

factor that decides if the UAV will complete the track clockwise or anti-clockwise

seems to be its starting orientation and will move towards the direction that it is

initially facing. Testing on the second track was quite successful too. The UAV can

complete the second track clockwise as shown in the trajectory plotted in Figure

5.3c. It is even capable of dealing with the π-shaped turns on the right side of the

track which are somewhat challenging. However, it was not able to complete the

track anti-clockwise. This is illustrated in the trajectory of Figure 5.3d in which it

fails to complete the bottom left turn. Testing on the third and more challenging

track was surprisingly successful. The trajectory in Figure 5.3e shows that the UAV

can complete the track anticlockwise. It is even capable of dealing with the left

angular turn on the right and on top sides of the track. This is quite impressive,

since the UAV has not seen this kind of turn during training. However, when moving

clock-wise the UAV failed to complete the right angular turn, as illustrated in the

trajectory of Figure 5.3f.

Chapter 5 Geramanis Nikolaos 37

Reinforcement Learning for Autonomous Unmanned Aerial Vehicles

(a) reward = 2093, steps = 500 (b) reward = 1999.5, steps = 500

(c) reward = 2752, steps = 700
(d) reward = 250, steps = 113

(e) reward = 2680.5, steps = 700 (f) reward = 1049.5, steps = 351

Figure 5.3: Examples of trajectories from the final policy derived by SARSA(λ) in

the 5D state space

Chapter 5 Geramanis Nikolaos 38

Reinforcement Learning for Autonomous Unmanned Aerial Vehicles

5.2 SARSA(λ) in the 3D state space

In the second experiment, SARSA(λ) was used to solve the MDP that consist of the

3-dimensional state space S2.

For the tile coding approximation, we used 10 + 1 tiles and 12 tilings that differ

from each other by a tile width of 2.48. This results in 47, 916 total number of

features.

The accumulated reward during the training and the number of steps are shown

in Figures 5.5 and 5.4 respectively. Again we smoothed both curves by averaging

them every 5 episodes. The first thing to notice is that even though the average

number of steps reaches the maximum value of 500 quite often, the average accu-

mulated reward is around 1400, which is lower compared to the first experiment.

This is due to a peculiarity that the produced policy contains. In this policy, the

UAV can successfully complete only right turns. This is not to say that it crashes in

left turns. As indicated by the trajectory examples in Figure 5.6, whenever it faces

a left turn, it performs a full right rotation and then starts moving in the opposite

direction. However, depending on the track, the UAV can be trapped between two

left turns. In this case, it will perform many rotations and for this reason, the ac-

cumulated reward is lower. Moreover, we can observe that the average accumulated

reward and the number of steps start to take off quite early.

Figure 5.4: Number of steps during training for SARSA(λ) in the 3D state space

Chapter 5 Geramanis Nikolaos 39

Reinforcement Learning for Autonomous Unmanned Aerial Vehicles

Figure 5.5: Accumulated reward during training for SARSA(λ) in the 3D state space

The trajectories that are shown in Figure 5.6 prove the peculiarity of the policy

discussed above. In the trajectories of Figures 5.6a, 5.6b, 5.6c and 5.6f the UAV is

trapped between two left turns. However, in Figure 5.6f it manages to escape and

perform a left turn. In the other trajectories (Figures 5.6d, 5.6e) it crashed when it

faced a left turn. However, the right turns were performed quite successfully.

Chapter 5 Geramanis Nikolaos 40

Reinforcement Learning for Autonomous Unmanned Aerial Vehicles

(a) reward = 1741.0, steps = 500 (b) reward = 1431.5, steps = 500

(c) reward = 1383.5, steps = 500 (d) reward = 490.5, steps = 171

(e) reward = 88.5, steps = 117 (f) reward = 695.0, steps = 444

Figure 5.6: Examples of trajectories from the final policy derived by SARSA(λ) in

the 3D state space

Chapter 5 Geramanis Nikolaos 41

Reinforcement Learning for Autonomous Unmanned Aerial Vehicles

5.3 LSPI in the 3D state space

In the third experiment, we used the 3-dimensional state space S2 in the MDP and

solved it with LSPI.

In LSPI, since the dimensions of the matrix, A, and thus the complexity of

the calculations are depending on the number of features, we had to use a low dis-

cretization resolution. Therefore, we used 5 + 1 tiles and 3 tilings that differ from

each other by a tile width of 9.73. This results in 1944 total number of features. In

order to train LSPI, we experimented with many different sample sets. In this ex-

periment, we gathered the samples by running SARSA(λ) with the same parameters

for 300 episodes resulting in 74367 samples. However, during training, A was not

always full rank. This was addressed by initializing it to 0.1I. Table 5.1 shows the

difference between the weights in each iteration. Note that it took only 8 iterations

(approximately one hour) in order to reach convergence.

Number of iteration ||w − w′||

1 295.642431562

2 741.483850835

3 378.808579275

4 61.8432844184

5 13.8270604234

6 0.503878575229

7 0.0

Table 5.1: The difference of weights in each iteration of LSPI

Examples of trajectories that are shown in Figure 5.7 that prove that the LSPI

method has a lot of potential. It manages to almost complete the first track, both

clockwise and anti-clockwise as illustrated in the trajectories shown in Figures 5.7a

and 5.7b. In the second track (trajectories in Figures 5.7c and 5.7d), the results

were not so positive. Note however that the policy was able to complete the left

turn at the bottom of the track in which the first method failed. The results on

the third track were also decent. The policy was able to complete successfully the

bottom part of the track (trajectory in Figure 5.7e), but when it faces the angular

turns it fails (trajectories in Figures 5.7e and 5.7f).

Chapter 5 Geramanis Nikolaos 42

Reinforcement Learning for Autonomous Unmanned Aerial Vehicles

(a) reward = 1268.5, steps = 430 (b) reward = 1363.5, steps = 471

(c) reward = 419.5, steps = 170 (d) reward = −41.5, steps = 135

(e) reward = 1455.0, steps = 500 (f) reward = 14.0, steps = 68

Figure 5.7: Examples of trajectories from the final policy derived by LSPI in the 3D

state space

Chapter 5 Geramanis Nikolaos 43

Chapter 6

Conclusion

This thesis describes a mapless solution for the problem of autonomous navigation

of a UAV in unknown environments that uses reinforcement learning. We designed

an MDP to model the problem and added stochasticity in the environment to rep-

resent real-world circumstances. To learn a good decision policy, we implemented

two different algorithms, SARSA(λ) and LSPI. Furthermore, tile coding, a linear

value function approximation method, was used due to the large state space of the

environment for the representation of the value function. Additionally, decaying ε-

greedy policy was used to deal with the exploration and exploitation trade-off. The

entire project was implemented in the ROS framework and was tested in the Gazebo

simulator in three different scenarios. Training took place in a simple environment.

SARSA(λ)’s produced policy was able to perform well in unknown and more com-

plex environments in most situations. LSPI was also able to learn a decent policy,

however, its efficiency was not as good as that of SARSA(λ).

6.1 Future Work

The method that was described was tested in a simulated environment. Even though

we used Gazebo, which is a powerful simulator, that can imitate real-world circum-

stances pretty accurately and added noise to both actions and sensor measurements,

the real world is much different. Further testing in real-world scenarios is required,

where the obstacles may vary in size and shape and the dynamics of the UAV are

different. However, due to the nature of the application, initial training in a simu-

lated environment is necessary to construct a very basic policy that can control the

UAV at a decent level. Afterward, this policy can be perfected with further training

in a real UAV.

Moreover, additional testing in different scenarios is required. In our experi-

ments, the UAV was flying at a constant altitude. This requires that all obstacles

can be avoided without changing the altitude of the UAV, and thus the problem

can be represented in 2D space. This assumption is not very realistic in real-world

44

Reinforcement Learning for Autonomous Unmanned Aerial Vehicles

applications. Besides, the advantage of using an aerial vehicle over a ground one is

that it can easily avoid more obstacles and navigate difficult terrains. Note, how-

ever, that in such implementation the complexity of the problem will increase. A 3D

LiDAR is required to take measurements in different heights and thus an increase of

the state space is unavoidable. Furthermore, the action space will also increase with

the addition of vertical movement. For this reason, linear methods may no longer

be effective and non-linear techniques, such as neural networks, may be required.

Additionally, adding a target location that the UAV has to reach is a very viable

scenario that can be tested.

The model we described is not the only one that can be used. Many extensions

can be implemented to make the model even more suitable for the application.

First, the action space consists of three actions with standard velocities. A more

realistic approach would be to have a continuous action space that consists of the

two velocities. This will allow for the construction of a policy that can potentially

complete the task faster. However, the algorithms that were presented do not deal

with a continuous action space and a different approach is necessary. Moreover,

due to the real-time characteristic of the application, a real-time Markov decision

process (RTMDP) could prove more appropriate.

Chapter 6 Geramanis Nikolaos 45

References

Bellman, R. (1957). “A Markovian Decision Process”. In: Journal of Mathematics

and Mechanics.

Bertsekas, D. P. (2005). Dynamic Programming and Optimal Control, Volume 1.

Massachusetts: Athena Scientific.

Brockman, G. et al. (2016). “OpenAI Gym”. In: arXiv.org.

Busoniu, L. et al. (2010). Reinforcement learning and dynamic programming using

function approximators. Boca Raton: CRC.

Grzonka, S., G. Grisetti, and W. Burgard (2009). “Towards a Navigation System

for Autonomous Indoor Flying”. In: IEEE International Conference on Robotics

and Automation.

Howard, R. (1960). “Dynamic Programming and Markov Processes”. In: MIT Press,

Cambridge, MA.

Huang, A. S. et al. (2016). “Visual Odometry and Mapping for Autonomous Flight

Using an RGB-D Camera”. In: Journal of Intelligent & Robotic Systems.

Imanberdiyev, N. et al. (2016). “Autonomous Navigation of UAV by Using Real

Time Model Based Reinforcement Learning”. In: 14th International Conference

on Control, Automation, Robotics and Vision (ICARCV).

Kaelbling, L. P., M. L. Littman, and A. W. Moore (1996). “Reinforcement Learning:

A Survey”. In: Journal of Artificial Intelligence Research.

Kober, J., A. J. Bagnell, and J. Peters (2013). “Reinforcement learning in robotics:

A survey”. In: The International Journal of Robotics Research.

Lagoudakis, M. G. (2017). “Value Function Approximation”. In: Sammut C., Webb

G.I. (eds) Encyclopedia of Machine Learning and Data Mining. Springer, Boston,

MA.

Lagoudakis, M. G. and R. Parr (2003). “Least-Squares Policy Iteration”. In: Journal

of Artificial Intelligence Research.

Lange, S., T. Gabel, and M. Riedmiller (2019). “Batch Reinforcement Learning”.

In: IEEE Aerospace Conference.

Meyer, J. et al. (2012). “Comprehensive Simulation of Quadrotor UAVs using ROS

and Gazebo”. In: 3rd Int. Conf. on Simulation, Modeling and Programming for

Autonomous Robots (SIMPAR).

46

Reinforcement Learning for Autonomous Unmanned Aerial Vehicles

Mnih, V. et al. (2013). “Playing Atari with Deep Reinforcement Learning”. In:

arXiv.org.

Pham, H. X. et al. (2018). “Autonomous UAV Navigation Using Reinforcement

Learning”. In: arXiv.org.

Puterman, M. L. (1994). Markov Decision Processes: Discrete Stochastic Dynamic

Programming. New York: Wiley.

Rummery, G. A. and M. Niranjan (1994). “On-line Q-learning using connectionist

systems”. In: Technical Report, Engineering Department, Cambridge University.

Silver, D. et al. (2017). “Mastering the game of Go without human knowledge”. In:

nature.com.

Sutton, R. S. (1991). “Dyna, an integrated architecture for learning, planning, and

reacting”. In: SIGART Bulletin.

Sutton, R. S. and A. G. Barto (2018). Reinforcement Learning An Introduction.

Cambridge, Massachusetts: The MIT Press.

Walker, O. et al. (2019). “A Deep Reinforcement Learning Framework for UAV

Navigation in Indoor Environments”. In: IEEE Aerospace Conference.

Wang, C. et al. (2017). “Autonomous Navigation of UAV in Large-Scale Unknown

Complex Environment With Deep Reinforcement Learning”. In: IEEE Global

Conference on Signal and Information Processing (GlobalSIP).

Watkins, C. J. C. H. (1989). “Learning from Delayed Rewards”. In: (Ph.D. thesis),

University of Cambridge.

Williams, R. J. (1992). “Simple statistical gradient-following algorithms for connec-

tionist reinforcement learning”. In: Machine Learning.

Yijing, Z. et al. (2017). “Q learning algorithm based UAV path learning and obstacle

avoidence approach”. In: 36th Chinese Control Conference (CCC).

Zhang, B. et al. (2013). “Geometric Reinforcement Learning for Path Planning of

UAVs”. In: Journal of Intelligent & Robotic Systems.

Chapter Geramanis Nikolaos 47

Appendix A

Value Function Approximation

and Gradient Methods

A.1 Gradient Descent

Gradient descent is a iterative optimization algorithm for finding a local minimum

of a differentiable function. Let F (w) ∈ Rn be a differentiable function of parameter

vector w ∈ Rn. The gradient of F (w) is:

∇F (w) =


∂F (w)
∂w1

...
∂F (w)
∂wn

 (A.1)

To find a local minimum of F (w) we take small steps proportional to the negative

of the gradient of the function:

w← w − a∇F (w) (A.2)

where a > 0 is the step-size parameter or learning rate. This process is illustrated

in figure A.1 in which we are trying to minimize a cost function.

Figure A.1: An illustration of the gradient descent method

48

Reinforcement Learning for Autonomous Unmanned Aerial Vehicles

A.2 Stochastic-gradient and Semi-gradient Meth-

ods With Value Function Approximation

As mentioned in chapter 2.1.6 our goal in value function approximation is to tweak

the parameters (weights) w appropriately in order that the approximate function

fits the target function.

V̂π(s; w) ≈ Vπ(s)

To achieve that, we first need to define the mean squared value error (V E)

between the two functions. V E is a metric that shows how much the approximate

values differ from the true values. We will use the state-value function V as the func-

tion of interest but the same principles can also apply for the action-value function

Q.

V E(w) = Eπ[(Vπ(s)− V̂ (s; w))2] =
∑
s

µ(s)(Vπ(s)− V̂ (s; w))2 (A.3)

where the state distribution µ(s),
∑

s µ(s) = 1 represent how much we care about

the error in each state.

Then we can use the gradient descent method that was described above to find

a weight vector w that minimizes the V E:

w← w − a∇V E(w) (A.4)

w← w − aEπ[(Vπ(s)− V̂ (s; w))∇V̂ (s; w)] (A.5)

We can further simplify the above update rule by using stochastic gradient

descent (SGD), an online version of gradient descent that samples the gradient:

w← w − a∇[Vπ(s)− V̂ (s; w)]2 (A.6)

w← w − a(Vπ(s)− V̂ (s; w))∇V̂ (s; w) (A.7)

However, the true value Vπ(s) is unknown. For this reason, we need to use an

estimate of the value function in its place. If the estimate is unbiased, the method

is guaranteed to converge to a local minimum. In MC learning the MC target Gt is

by definition an unbiased estimate and thus we can use the following update rule:

w← w − a(Gt − V̂ (s; w))∇wV̂ (s; w)

In TD learning however, the bootstrapping targets are biased estimates as they

depend on the current weight vector. For this reason, the step from equation A.6

to A.7 is no longer correct. In other words, the use of TD targets will not produce

the true gradient descent method because it includes only part of the gradient and

hence we call them semi-gradient methods. For example the update rule for TD(0)

is shown below. With the same way we can define the rules that use any TD target.

w← w − a(R + γV̂ (s′; w)− V̂ (s; w))∇wV̂ (s; w)

Chapter A Geramanis Nikolaos 49

	Introduction
	Thesis Contribution
	Thesis Outline

	Background
	Reinforcement Learning
	Reward and Return
	Markov Decision Process
	Policy and Value Function
	Optimality
	Taxonomy of Reinforcement Learning Algorithms
	Value Function Approximation
	Dynamic Programming: Policy & Value Iteration
	Monte Carlo Learning
	Temporal Difference Learning

	Robot Operating System
	Unmanned Aerial Vehicle

	Problem Statement
	Autonomous Navigation of UAVs in Unknown Environments
	Related Work

	Our Approach
	Model Description
	Linear Function Approximation
	Tile Coding

	SARSA()
	-step Methods
	-return Methods
	Eligibility Traces
	SARSA()

	Least Squares Policy Iteration
	Implementation

	Experimental Results
	SARSA() in the 5D state space
	SARSA() in the 3D state space
	LSPI in the 3D state space

	Conclusion
	Future Work

	References
	Value Function Approximation and Gradient Methods
	Gradient Descent
	Stochastic-gradient and Semi-gradient Methods With Value Function Approximation

