
Functional Geometric Monitoring for Distributed Streams
Vasilis Samoladas

ECE, Technical University of Crete.

IMIS, Athena R.C.

vsam@softnet.tuc.gr

Minos Garofalakis

ECE, Technical University of Crete.

IMIS, Athena R.C.

minos@softnet.tuc.gr

ABSTRACT
We introduce Functional Geometric Monitoring (FGM), a substan-
tial theoretical and practical improvement on the core ideas of

Geometric Monitoring. Instead of a binary constraint, each site

is provided with a non-linear function, which, applied to its local

summary vector, projects it to a real number. The sites collec-

tively monitor the sum of these one-dimensional projections and

as long as the global sum is subzero, the monitoring bounds are

guaranteed. We demonstrate that FGM is as generally applicable

as Geometric Monitoring, and provides substantial benefits in

terms of performance, scalability, and robustness. In addition, in

FGM it is possible to prove worst-case results, under standard

monotonicity assumptions on the monitoring problem. In terms

of performance, the salient quality of FGM is that it can adapt

naturally to adverse changes in the monitored problem, such as

lack of monotonicity or very tight monitoring bounds, where

no method can deliver asymptotically good performance. We

provide formal proofs for many of the properties of FGM, and

present an extensive empirical performance evaluation under

adverse conditions, on real data.

KEYWORDS
distributed functional monitoring, geometric monitoring, dis-

tributed streaming

1 INTRODUCTION
The explosion in the amount of data generated online is entering

its next phase, as the Internet of Things (IoT) is set to increase

the number of networked data sources by orders of magnitude in

the near future. Thus, there is a clear need for ever more scalable

techniques for distributed stream processing, where the tsunami

of data generated by networked nodes is filtered and summarized

in near-real time at (or, near) the source, drastically reducing the

required communication costs.

Motivated by such needs, there has been significant research

effort on the distributed functional monitoring problem, over

the past decade. Much effort has concentrated on worst-case

communication complexity for particular types of important

queries, such as frequency moments, heavy hitters, percentiles,

distinct elements etc. Early on, it became apparent that many

of these problems can have very bad worst-case performance,

unless certain assumptions were made, in particular with respect

to monotonicity, about the input streams and/or the monitored

functions.

A problem not yet addressed by previous work on monitoring

algorithms, is that it can be a challenge to integrate them into

large stream processing frameworks, such as STORM and Spark,

or even more targeted systems such as Gorilla and InfluxDB.

© 2019 Copyright held by the owner/author(s). Published in Proceedings of the

22nd International Conference on Extending Database Technology (EDBT), March

26-29, 2019, ISBN 978-3-89318-081-3 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

Indeed, while such frameworks are a staple of modern infor-

mation systems, the algorithmic work on distributed functional

monitoring has not yet found practical adoption in them. Part

of the reason is, we believe, lack of uniformity; each distributed

monitoring algorithm imposes different requirements on the sys-

tem architecture and its communication patterns. Historically,

this was also the case with databases, until adoption of the rela-

tional model (its limitations notwithstanding) created a vibrant

industrial and research ecosphere.

A technique—to our knowledge, the only one—intended to

be applicable to arbitraty continuous queries is Geometric Moni-

toring (GM) [27]. A strong appeal of GM is that it separates the

complexities of the monitored query operator, from the commu-

nication protocol that executes the monitoring. Unfortunately,

although it can be very successful at reducing the communcation

cost in real-world applications, its performance can degenerate

under certain circumstances, such as high stream variability, or

skew between the relative rates of local streams. On the theoret-

ical side, the GM is not known to provide any cost guarantees,

even under monotonicity assumptions.

RelatedWork. After the introduction of (centralized) streaming

algorithms in the mid ’90s, several works proposed distributed
streaming techniques for particular important problems, such as

linear functions [16, 17, 23], top-k queries [3, 24], ratio threshold-

ing queries [15], and polynomials of scalar variables [26]. Of par-

ticular importance is the problem of tracking sketch synopses [7]

of local streams, which can be applied to the approximation of

self-join and join aggregates [5, 6].

The first (and, to our knowledge, only) general-purpose tech-

nique, Geometric Monitoring (GM), was first proposed in [27, 28].

This paper ignited a rich line of work, part of which related to

improving the basic method [14, 18–22], and also utilizing it in

important applications (e.g., [4, 11, 12, 25] to name but a few).

Interestingly, despite the rich mathematical techniques employed

in this body of work, to date there have been no analytical re-

sults on the communication cost of the method, even under strict

assumptions.

Starting with the fundamental results of Cormode et al. [9], the

problem of continuous query tracking over distributed streams

has also been studied in a theoretical setting in recent years,

within the broad framework of communication complexity; the

minimum amount of bits that needs to be exchanged between a

group of communicating parties, each party observing incremen-

tally a local dataset, so that a global function on the union of the

data possessed by all players can be continuously tracked with

some bounded error. Much of the work has concentrated on the

hardness of the problem. It has been shown [1] that the worst-

case communication cost of distributed function monitoring can

hardly improve upon the baseline method of centralizing all local

data, unless restrictive assumptions are made; this is true even for

the trivial problem of maintaining a distributed counter. Despite

the general negative results, there are also positive results for par-

ticular problems of interest, e.g., [1, 9, 29, 30] to name but a few.

Series ISSN: 2367-2005 85 10.5441/002/edbt.2019.09

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2019.09

In particular, [9] provides optimal results on the communication

complexity of monitoring a linear monotone function, while sub-

sequent papers [1, 29] prove strong lower-bounds showing that

guaranteeing better than linear worst-case communication costs

is probably impossible for complex, non-linear query functions.

Our Contributions. We propose Functional Geometric Monitor-
ing (FGM), a technique which can conceptually be applied to any

monitoring problem, in order to perform distributed monitoring

with communication costs that are lower (often by orders of mag-

nitude) compared to centralizing all data to a coordinator. The

FGM comprises of a distributed algorithm which is independent

of the monitoring problem. In order to perform a monitoring task,

the FGM must be parameterized by a problem-specific family

of functions (termed safe functions later in the paper); to this

end, the FGM draws on and can utilize the extensive previous

work on distributed monitoring, where such functions have been

proposed for a large variety of monitoring problems [11, 13, 21].

Combined with these previous results, FGM is a technique that

is ready to be utilized to real distributed monitoring applications.

The strict separation of concerns between distributed sys-

tems issues and the monitoring problem, is critically important

to anyone wishing to implement distributed monitoring on a

general-purpose middleware platform. In addition, despite this

strict separation, the FGM offers significant improvements to

the communication cost of distributed monitoring, compared to

previous monitoring techniques, notably the GM. In particular,

FGM has provably better performance than GM, regardless of

the monitoring problem. In fact, under FGM it is possible to pro-

vide good worst-case guarantees on the communication cost of

specific monitoring problems, comparable to the best known the-

oretical results on distributed functional monitoring. By contrast,

no such results are known for GM. In this paper, we provide such

worst case analytical results for monitoring frequency norms.

Another issue that has not been treated uniformly—and has

often been ignored—by previous techniques, is the detection and

response of the monitoring algorithm to circumstances where

the monitored constraints (thresholds) are too “tight”; in such

occasions, any distributed monitoring algorithm would be unable

to do better than to naively centralize all data to a coordinator.

Such situations occur frequently in practice, and practical mon-

itoring algorithms should be able to smoothly transition their

operation for handling such loads. An important fetaure of FGM

is that it can adapt to these high variability situations seamlessly;

that is, in a problem-independent manner, and within the logic

of the basic protocol.

In addition, FGM’s performance is resilient to the presense

of skew in the distribution of data among distributed nodes, as

well as in the relative rates of local streams; its performance is

fundamentally determined by the characteristics of the global

stream (i.e., the union of all distributed streams). Again, this is a

novel feature; the performance of previous techniques, notably

of GM, is adversely affected in the presense of skew. We have

performed extensive experiments that demonstrate and quantify

the resilience of FGM both in adverse streaming conditions of

high variability, and in the presense of skew.

2 FUNCTIONAL GEOMETRIC
MONITORING

The focus of this section is to present the basic principles and pro-

tocol of Functional Geometric Monitoring (FGM). Our discussion

employs standard notation and terminology from functional anal-

ysis: Vectors are denoted by boldface letters, and sets of vectors

are added by Minkowski addition:

A + B = {x +y | x ∈ A, y ∈ B}.

We write x +A instead of {x}+A; also, λA = {λx |x ∈ A}. Finally,
in some proofs, we assume some familiarity with the properties of

convex functions and sets; in particular, the biconjugate (convex

hull of a function), norms and semi-norms, gauge functions and

convex cones. The convex hull of A is convA.

2.1 Background: Approximate Query
Monitoring

We adopt the standard data model for distributed data streams.

Assume that there are k distributed sites, and that at each site, a

local stream is generated or collected, denoted as a (very high-

dimensional) vector in vector space RD . This vector can be the

frequency vector of the stream records, or a linear sketch thereof,

and changes as stream updates arrive. Let Si (t), i = 1 . . .k denote

the local state vectors. Every site communicates with a coordi-

nator, where users pose queries on the global stream. Without

loss of generality, assume that the global stream state is the av-

erage of the local stream states, i.e., S(t) = 1

k
∑k
i=1 Si (t). (Other

linear formulas, e.g., sum, can be treated by multiplying local

state vectors with scalars as needed.)

We consider two types of queries on this model. In the one-shot
query, the coordinator needs tomonitor for the eventQ(S(t)) ≤ T ,
whereQ is a query function andT a threshold. On the other hand,

for a continuous query, the coordinator needs to maintain at all

times a close estimate Q(E(t)) of the true value of the query

Q(S(t), so that

Q(S(t)) ∈ (1 ± ε)Q(E(t)). (1)

This guarantee is maintained by the local sites periodically

flushing the updates received to their local streams. In particular,

the coordinator maintains, for each site i , an estimated state

vector Ei . When a flush occurs, the site transmits its drift vector
X i (t) = Si (t) − Ei , and the coordinator updates Ei by adding X i
to it, while the site resets X i to 0. Then, the coordinator updates

the global estimate E = 1

k
∑k
i=1 Ei .

Note that a site can transmit its drift X i either as a vector of

size D, or as a list of the records that arrived since the previous

flush (whichever is smaller), therefore the total communication

cost for flushing is never worse than tranmitting all data to the

coordinator.

In geometric monitoring, the correctness criterion is described

as a geometric constraint, of the form S ∈ A, where A ⊆ RD is

the admissible region, that is, the set of global stream states where

the constraint holds. That is,

A =
{
x ∈ RD |Q(x) ≤ T

}
one-shot queries (2)

A =
{
x ∈ RD |Q(x) ∈ (1 ± ε)Q(E)

}
continuous queries(3)

2.2 Communication costs
We assume that each message consists of a sequence of words,
of sufficient size. In particular, we assume that each word can

store a real number; all our protocols are robust against finite

precision, so this is not an unrealistic assumption.

We distinguish two directions in communication. Downstream
communication consists of messages from local nodes to the coor-

dinator, while upstream communication consists of messages from

86

the coordinator to local nodes. We do not consider a multicast

capability, although our work can be adapted to such settings.

2.3 Safe functions
Our starting point relates to the representation of a safe con-
figuration, in a monitoring algorithm. The configuration of the

system of k sites is a is a (kD)-dimensional vector consisting of

the concatenation of the k local drift vectors, X i . The system is

in a safe state as long as E +
∑k
i=1 X i
k = S ∈ A.

To guarantee that a configuration is safe, FGM employs a real

function ϕ : RD → R, depending on A, E and k . Each site tracks

its ϕ-value, ϕ(X i), as X i is updated. System safety is guaranteed

by tracking the sign of the sum ψ =
∑k
i=1 ϕ(X i). In particular,

we need to guarantee thatψ ≤ 0 implies S ∈ A.

Definition 2.1 ((A,E,k)-safe function). A function ϕ : RD → R

is safe for admissible region A ⊆ RD , vector E ∈ RD , and k ≥ 1,

if, ϕ(0) < 0 and, for all X i ∈ R
D , i = 1, . . . ,k ,

k∑
i=1

ϕ(X i) ≤ 0 =⇒ E +

∑k
i=1X i

k
∈ A.

Much of previous work on distributed monitoring has pro-

posed safe functions for specific problems. Since we indend to

explore the FGM in terms of its generality, we are interested in

properties of safe functions as a class.

First, note that safety is preserved under common pointwise

operations: positive scaling, addition and pointwise supremum.

Consequently, (A,E,k) safety is monotone under pointwise dom-

inance, i.e., if ϕ is (A,E,k)-safe and ∀x ,ϕ(x) ≤ ϕ ′(x), then ϕ ′ is
also (A,E,k)-safe.

In fact, more can be said about addition and pointwise supre-

mum of safe functions; they can be employed to compose safe
functions for an admissible region A, defined by a set-algebraic

expression over some family of admissible regions {Ai }, when a

safe function ϕi for each Ai is available.

Theorem 2.2. Let ϕi be (Ai ,E,k)-safe, for each i ∈ I respec-
tively. Then,

• supi ∈I ϕi is (
⋂
i ∈I Ai ,E,k)-safe, and

•
∑
i ∈I ϕi is (

⋃
i ∈I Ai ,E,k)-safe, provided that I is finite.

On the dependence on k , note that, for any divisor k ′ of k , a
k-safe function is also k ′-safe , and 1-safe in particular. Therefore

a necessary condition for k-safety is that the 0-sublevel L(ϕ) =
{x |ϕ(x) ≤ 0}, shifted by E, be a subset of A:

E + L(ϕ) ⊆ A.

2.3.1 Safe functions and convexity. Intuitively, we can “im-

prove” a safe function ϕ by finding a function ϕ ′ ≤ ϕ that is still

safe; ϕ ′ is improved in the sense that the set of configurations

whereψ ≤ 0 is larger for ϕ ′ than for ϕ.
In this respect, of particular interest are functions that are

safe for all k (and fixed A, E). We denote such functions as (A,E)-
safe. The salient property of (A,E)-safe functions is that they can
always be “improved” into dominated, convex safe functions.

Theorem 2.3. If a functionϕ is (A,E)-safe, there exists a convex
function ζ ≤ ϕ which is also (A,E)-safe.

Proof. Ommitted due to space constraints. □

Convex safe functions are appealing because they admit a very

simple criterion for (A,E)-safety.

Lemma 2.4. A convex function ζ with ζ (0) < 0 is (A,E)-safe, if
and only if, E + L(ζ) ⊆ A.

Proof. We have already seen that E+L(ζ) ⊆ A is necessary for

safety. Sufficiency follows directly from the convexity of ζ . □

2.3.2 Quality of safe functions. Consider the set C ⊆ RkD of

safe configurations of a monitoring problem

C =
{
(X 1, . . . ,Xk) | E +

1

k

k∑
i=1

X i ∈ A
}

(4)

The FGM protocol under-approximates this set by the set of

configurations, where ψ ≤ 0. Call this the quiescent region Qϕ ,

which is determined by the choice of safe function ϕ. We would

like to characterize ϕ so that Qϕ is as large (inclusion-wise) as

possible, in order to improve the approximation of C. Such a

characterization is possible if we restrict our attention to (A,E)-
safe (and by virtue of the above theorem, convex) functions.

Intuitively, the issue that we examine can be presented with

an example: assume that A = {x |∥x ∥ ≤ 1} is the unit ball, and

take E = 0. It is easy to see that both convex functions ∥x ∥ − 1

and ∥x ∥2 − 1 are suitable safe functions. However, the former

choice is superior to the latter, when the size of the quiescent

region is taken into account. To see this, note that (1/2)(∥x ∥2−1)

strictly dominates ∥x ∥ − 1; therefore, a configuration say, (0,p)
with ∥p∥ =

√
3 is quiescent for ∥x ∥ − 1 but not for ∥x ∥2 − 1.

It turns out that safe functions that are best, are those that are

level-minimal, that is, they do not strictly dominate any function

with equal level set.

Theorem 2.5. A (A,E)-safe function ϕ has maximal quiescent
region, among all (A,E)-safe functions, for every k , iff,

• ϕ is convex
• L(ϕ) is a maximal convex subset of A, and
• ϕ is level-minimal

Proof. Ommitted due to space constraints. □

The above results highlight the centrality of convexity in the

monitoring problem; starting from very broad principles, we

have shown that convexity enters in a natural way from the

definition of safety, and furthermore, we have formally identified

the requirement of level minimality, in order to maximize the

quiescent region in FGM.

We will return to the issue of safe functions, with respect to

the communication costs they entail, after we present the FGM

distributed protocol.

2.4 The basic FGM protocol
The FGM protocol works in rounds. Monitoring the threshold

condition

k∑
i=1

ϕ(X i) ≤ 0, (5)

over the duration of the round is performed along the lines of

the algorithm in [9].

At the beginning of a round, the coordinator knows the current

state of the system E = S . It selects an (A,E,k)-safe function ϕ.

At each point in time, letψ =
∑k
i=1 ϕ(X i). The round’s steps are:

(1) At the beginning of a round, the coordinator ships ϕ to

every site (it is sufficient to ship vector E, sinceA can then

be determined from it). Local sites initialize their drift

vectors to 0. With these settings, initially it isψ = kϕ(0).

87

(2) Then, the coordinator initiates a number of subrounds,

to be described below. At the end of all subrounds, ψ >
ϵψ kϕ(0), for some small ϵψ (Note that ϵψ is not related to

the desired accuracy for the monitored query, ε , but only
to the desired quantization for monitoring ψ . We have

used ϵψ = 0.01 in our experiments).

(3) Finally, the coordinator ends the round by collecting all

drift vectors and updating E.

2.4.1 Execution of subrounds. The goal of each subround is to

monitor the conditionψ ≤ 0 coarsely, with a precision of roughly

θ , performing as little communication as possible. Subrounds are

executed as follows:

(1) At the beginning of a subround, the coordinator knows

the value ofψ . It computes the subround’s quantum θ =
−ψ/(2k), and ships θ to each local site. Also, the coordi-

nator initializes a counter c = 0. Each local site records

its initial value zi = ϕ(Xi), where 2kθ = −
∑k
i=0 zi . Also,

each local site initializes a counter ci = 0.

(2) Each local site i maintains its local drift vector X i , as

it processes stream updates. When Xi is updated, site i
updates its counter

ci := max{ci ,
⌊ϕ(X i) − zi

θ

⌋
}.

If this update increases the counter, the local site sends a

message to the coordinator, with the increase to ci .
(3) When the coordinator receives a message with a counter

increment from some site, it adds the increment to its

global counter c . If the global counter c exceeds k , the
coordinator finishes the subround by collecting all ϕ(X i)

from all local sites, recomputing ψ . If ψ ≥ ϵψ kϕ(0), the
subrounds end, else another subround begins.

The following simple statement guarantees the correctness of

the protocol.

Proposition 2.6. During the execution of a subround, if c ≤ k

then
∑k
i=1 ϕ(X i) < 0.

Proof. At each point in time and for any site, it must be

ϕ(X i) − zi
θ

− 1 <
⌊ϕ(X i) − zi

θ

⌋
≤ ci .

Summing both sides, we get
1

θ
(
ψ +2kθ

)
−k < c , which simplifies

to

∑k
i=1 ϕ(X i) < (c − k)θ ≤ 0. □

2.5 Performance analysis
Apart from the communication incurred during the subrounds of

the FGM protocol, the communication cost of a round consists of

two parts; an upstream cost Θ(kD) for shipping E to all sites at

the beginning of a round, and a downstream costO(min{kD,τ }),
for shipping drift vectors to the coordinator at the end of the

round. Here, τ stands for the total number of stream updates

processed by all sites during a round—as mentioned before, sites

that received few stream updates during a round, can ship them

verbatim to the coordinator.

2.5.1 The cost of subrounds. Each subround itself costs only

3k + 1 one-word messages: k messages to broadcast quantum θ ,
k messages to collect ζ -values at the end of a subround, and up

to k + 1 downstream messages carrying counter updates.

The problem of monitoringψ ≤ 0 is of course an instance of

the non-monotone distributed counting problem. As shown in

[9], if ψ is an increasing function of time, then the number of

subrounds is at most log
2

1

ϵψ
.

In general, there is no guarantee that ψ will be increasing;

therefore we also provide an analysis within the framework of

variability, as set out in [10]. In this framework, the cost of track-

ing a non-monotone counter f (t) within accuracy ε is shown

to take O(kε Vf) messages, where Vf (t) =
∑t
τ=0min{1,

|δ f (t) |
|f (t) | }.

They provide space-plus-time lower bounds for the tracking prob-

lem that match the communication cost.

In our setting, we are not interested in tracking the value ofψ .
Still, the definition of variability during a round can be given as

follows: let the sequenceψn represent the value ofψ at the end

of the n-th subround. Also, define the set of values that ϕ(X i)

takes, during subround n, as

Φi,n = {ϕ(X i (t)) | ∀t during subround n}
Then the change ∆ψn is

∆ψn =
k∑
i=1

supΦi,n − inf Φi,n

Finally, theψ -variability over a round with q subrounds is

V =

q∑
n=1

|∆ψn |

|ψn |
.

Theorem 2.7. The communication cost of all subrounds of a
round is O(kV) words.

Proof. Consider then-th subround, with quantumθ = −ψn−1/2k .
If the counter of site i is ci , then, at some point during this sub-

round we had

⌊
ϕ(X i) − zi

θ
⌋ = ci .

We conclude that, since c > k ,

∆ψn ≥ (k + 1)θ =
k + 1

2k
|ψn−1 | ≥

|ψn−1 |

2

.

On the other hand, |ψn −ψn−1 | ≤ ∆ψn , thus the variability has

increased by at least 1/3 during this subround. Therefore, the

total cost of all subrounds is at most (9k + 3)V words. □

At this point, we should report that in our extensive experi-

ments with complex non-monotone functions over sketches and

streams created from real data with deletions (using windows),

the number of subrounds per round q was always at most 10,

and almost always 7 ≈ log
2

1

0.01 . In fact, the total cost O(kq) of
all subrounds in a round, was dominated by several orders of

magnitude, by the upstream cost Θ(kD). This good fortune is

possibly due to tight monitoring bounds in our experiments, but

still, it is an interesting observation, considering how bad the

worst-case costs are.

An interesting open question is to relateψ -variability to the

variability of the query functionQ , and in particular derive lower

bounds based on this concept.

We should also discuss the role of ϵψ . Note that this bound is

unrelated to the approximation bound ε of themonitored queryQ .

It is simply a threshold of accuracy, with which the value ofψ is

approximated. In practice, a fixed value of 0.01 seemed to suffice.

The choice of ϵψ can be understood as the precision to which

ϕ(X i) are evaluated; their values are quantized to ϵψϕ(0) absolute
error. Selecting a different value depends on the geometry of a

particular problem; we omit the details.

88

2.5.2 Comparison to classic geometric monitoring. Both the

FGM protocol and the standard protocol of geometric monitoring

(GM) are generally applicable. The two protocols can be rendered

comparable; when FGM is used together with convex safe func-

tions, the condition ϕ(x) ≤ 0 is akin to testing membersip in a

convex Safe Zone [22]. However, the GM protocol adopts a much

stricter safeness condition, equivalent to

max

i=1, ...,k
ϕ(X i) < 0. (6)

When the above condition is violated, the GM protocol performs

substantial communication (either a partial, or a full synchroniza-

tion, by flushing the local state vectors). By contrast, the FGM

is much more patient; in fact, it is easy to see that, if the two

protocols start from the same estimate E at the beginning of a

round, as long as safeness condition (6) holds, the first subround

of FGM has not yet finished.

Proof. As long as ϕ(X i) < 0, it is 1 − ϕ(X i)/ϕ(0) < 1. The

quantum of the first FGM subround is θ = −ϕ(0)/2, therefore,
for each site i , it is

⌊
ϕ(X i) − ϕ(0)
−ϕ(0)/2

⌋ = ⌊2(1 −
ϕ(X i)

ϕ(0)
)⌋ ≤ 1,

and thus the coordinator has received at most k bits. □

The advantage of FGM over GM becomes more apparent by

considering the size of the quiescent regions for these protocols.

Each protocol will synchronize (flush local sites) as soon as the

system escapes the quiescent region. It is therefore advantageous

to admit a quiescent region that better approximates the set of

safe configurations C.

Fig. 1 depicts the situation for D = 1 and k = 2. Without loss

of generality, we are assuming A = [−1, 1]. The quiescent region

for GM is simply A × A, whereas for FGM the region depends

on the choice of ϕ. Choosing ϕ(x) = |x |p − 1 will be correct for

every p ≥ 1, but naturally the best function is the level-maximal

function |x | − 1 (i.e., p = 1). In fact, it can be seen in Fig. 1 that as

X1

X2

C
Q |x |−1
Q |x |2−1
QGM

Figure 1: Configuration space for A = [−1, 1] ⊆ R and k = 2,
depicting the set of safe configurations C, the FGM qui-
escent regions Q |x |p−1 for p = 1, 2 and the GM quiescent
region QGM.

p grows, the benefit of FGM over GM decreases; however, FGM

will never be inferior to GM.

3 COMPLEXITY RESULTS FOR Fp
MOMENTS

We now turn to an analysis of the worst-case communication

cost of FGM for Fp moments. In this analysis, it is necessary

to introduce monotonicity assumptions about the studied prob-

lems; otherwise, even the simplest problems can have very bad

worst case complexity. In particular, we assume that all local

state vectors and drifts are frequency vectors with nonnegative

coefficients; this assumption is compatible with an insert-only

stream.

Similar complexity results were obtained by [9], by an algo-

rithm which is similar to FGM; under monotonicity, each round

of their algorithm is essentially a round similar to ours, but with

carefully selected thresholds. Here, we will strive for a simpler

approach.

Since the functions to be monitored are convex, and in fact the

Fp (x) moment of a frequency vector x is just the norm ∥x ∥
p
p , we

use safe functions of the form ∥x+E∥p−T . Note that selecting not
to raise the norm to p yields better quiescent regions, although it

does not make much difference to the asymptotic results under

monotonicity.

We begin by examining the effect of a single FGM round. In

such a round, we start from some global state E and we allow the

protocol to proceed to termination, under an admissible region

of the form {x |∥x ∥p ≤ T }, where T depends on whether we are

interested in an one-shot query or a continuous one.

Lemma 3.1. Assume the problem of monitoring admissible re-
gion A = {x |∥x ∥p ≤ T } for p ≥ 1, starting at some E ∈ A.

Under monotonicity assumptions, at the end of a single FGM
round with safe function ϕ = ∥x + E∥p −T , the final stream state
S will have

∥S ∥
p
p ≥ (1 −

1

kp−1
)∥E∥

p
p +

1

kp−1
T̃p ,

where T̃ = T (1 − ϵψ) + ϵψ ∥E∥p ≈ T .

Proof. At the end of the round, the value of ψ has become

greater than ϵψ kϕ(0). Therefore, under our safe function, at the
end of the round, the coordinator collected drift vectors X i , with

T̃ ≤
1

k

k∑
i=1

∥X i + E∥p .

From Hölder’s inequality (thinking of the sum as an inner

product with vector 1 = (1, 1, . . . , 1)), we get

k∑
i=1

∥X i + E∥p ≤ ∥1∥q

(k∑
i=1

∥X i + E∥
p
p

)
1/p
,

where q = p/(p − 1) is the Hölder conjugate of p. Combining the

above inequalities by raising to p, and noting that ∥1∥pq = kp−1,
we get

k∑
i=1

∥X i + E∥
p
p ≥ kT̃p . (7)

To proceed, first observe that kS = kE +
∑k
i=1X i . Consider the

following real inequality (over nonnegative numbers):

(
ke +

k∑
i=1

xi
)p
=
(k∑
i=1

(xi + e)
)p

≥

k∑
i=1

(xi + e)
p + (kp − k)ep .

When applied to each coordinate of E and X i , it follows from 7

that

kp ∥S ∥
p
p ≥ kT̃p + (kp − k)∥E∥

p
p .

Dividing both sides with kp finishes the proof. □

89

Observe from the above lemma that the effect of ϵψ is localized

in reducing slightly the threshold T in each round; however, as

∥E∥p → T , the effect dissappears; this case makes apparent

that ϵψ does not affect the accuracy of the monitoring; it only

increases (slightly) the number of rounds. We do not discuss ϵψ
any further.

We can consider two scenaria for monitoring the Fp norm.

3.0.1 One-shot query. In this scenario, which is exactly the

framework of ditributed functional monitoring, we set an initialT
and we estimate the number of rounds needed until ∥S ∥p exceeds

(1 − ε)T , starting at E = 0. By solving a simple linear recurrence,

we get the following

Theorem 3.2. For safe function ∥x ∥p −T , the FGM protocol can
monitor the Fp moment of a monotone stream in O(kp−1 log 1

ε)

rounds.

For the actual communication cost, when using sketches or

other summaries for Fp norms, we refer to the discussion of [9].

3.0.2 Continuous query. In this case, the thresholdT given to

the FGM protocol at each round is set to (1 + ε)∥E∥p , that is, it
changes with each round. To describe the communication cost in

the continuous setting, we express the number n of rounds as a

function of a starting query value Q0 and an ending query value

Qn . Ommitting the easy details, we have

Theorem 3.3. For safe function ∥x ∥p −T , the FGM protocol can
monitor continuously the Fp moment of a monotone stream, as it

transitions from value O0 to Qn in O(k
p−1

ε log
Qn
Q0

) rounds.

3.0.3 Discussion. The above complexity results match those

of the original paper by Cormode et al. [9]. Our proofs show that

they can be obtained without resorting to a special-purpose pro-

tocol like the one proposed in [9]. By contrast, the FGM protocol

is built along the lines of greedy relaxation: setting a safe zone

and letting the protocol iterate to completion. Naturally, there

is nothing to forbid a clever coordinator algorithm to set more

precise targets, in order to achieve better results.

The real limitation of FGM comes from the fact that in FGM,

local nodes are memoryless; once a local drift is transmitted, the

node has no memory of its past state. It should not come as a

surpsise that better communication complexity can be achieved

with stateful nodes. In particular, the results of [29] on very good

upper bounds for frequency moments require nodes to retain

much information for a long time. On the other hand, this may

be quite undesirable from an implementation point of view. Thus,

such results are important in the context of communication com-

plexity with unrestricted parties, but arguably not immediately

practical.

Another point compares the implementation cost of algo-

rithms; arguably, the algorithms presented in [9] and elsewhere,

are harder to adapt to more general setting. To illustrate the point,

consider the problem of monitoring, say, the F2 moment, in a

stream allowing deletions as well as insertions. With FGM, it

suffices to augment the safe function: starting at state E, a good
safe function for admissible region A = {x |∥x ∥2 ≥ (1 − ε)∥E∥}
is defined as a half space, tangent to ball A at the projection of E
ontoA. Then, the safe functions for upper and lower bound of the
F2 moment can be combined via the pointwise-max operation:

ϕ(x) = max{−ε ∥E∥ − x
E

∥E∥
, ∥x + E∥ − (1 + ε)∥E∥}.

If the above function is employed in an insertion-only setting, it

will retain the cost guarantees proved above.

4 ROBUSTNESS UNDER ADVERSE
CONDITIONS

We now turn our attention to features of the FGM that allow it to

handle gracefully adverse streaming conditions. These conditions

can arise from a number of factors, such as:

• Setting the monitoring accuracy ε to a very low value,

resulting in tight thresholds for monitoring.

• In the absense of monotonicity, handling local streams

which tend to cancel each other (this is a multidimensional

version of the problem of non-monotone counter).

• Handling cases where the local stream rates are very un-

even (e.g., following a power-law distribution).

To handle the above situations, the FGM protocol offers a num-

ber of enhancements; the effect of these enhancements is quite

apparent in our experiments, but to our knowledge they do not

provide asymptotic improvements in communication cost.

The guiding intuition in the following is the observation that,

under a greedy view, it is preferable to have FGM rounds last

longer (consuming more stream updates), since then, not only

the streams are better summarized in local state vectors, but also,

the upstream overhead of shipping E to local sites at the the

beginning of a round is paid less often.

4.1 Rebalancing
Our starting point is the observation that

∑k
i=1 ϕ(X i) > 0 does

not generally imply that ϕ(1k
∑k
i=1X i) is also positive, or even

much different than ϕ(0), i.e., often, at the end of a round, the

global stream state S has not moved significantly far from E.
Therefore, the current safe function ϕ may still be quite useful,

and we would like to avoid the overhead of shipping a new safe

function to the sites.

Rebalancing is an important technique in classic Geometric

Monitoring. The idea in GM is to flush a subset of the local

sites, and then ship them the average of their previous drifts. A

straightforward adaptation of the rebalancing method of GM,

could benefit FGM. Unfortunately, the method is highly uncer-

tain as to the benefit it provides, versus the added upstream

communication overhead (which is a multiple of O(D)).
A simple approach to rebalancing, that incurs negligibly small

additional upstream communication cost, is to ship to the sites a

scaling factor, with which to scale their local drifts. We restrict

the discussion to convex safe functions.

In our rebalancing scheme, the coordinator holds an extra

state vector, the balance vector B, which is used to aggregate

drift vectors from local sites, without ending the round. At the

beginning of a round, the balance vector is set to 0. During the
round, sites update their drift vectors as local stream updates

arrive. However, with rebalancing allowed, it is possible for a

site to flush its current drift vector to the coordinator, during the

round. When a flush occurs, the coordinator updates the balance,

by adding X i to it. After drift vector X i is flushed, it is reset to 0.
Therefore, the global drift is always equal to

B/k +
1

k

k∑
i=1

X i . (8)

90

This can be rewritten as

µ
B

µk
+
λ

k

k∑
i=1

X i
λ

(9)

for some λ > 0, µ ≥ 0, with λ + µ = 1 (note that we allow µ = 0

when B = 0, namely at the beginning of a round).

If ϕ is a convex (A,E)-safe function, known to the sites, we

can adapt the safety condition by applying ϕ to Eq. 9. Define

ψ =
k∑
i=0

λϕ(
X i
λ
) and ψB =

{
(1 − λ)kϕ(B

(1−λ)k) λ < 1,

0 λ = 1.

Theorem 4.1. If ϕ is convex (A,E)-safe, then, for any λ ∈ (0, 1],

ψ +ψB ≤ 0 =⇒ E +
B +

∑k
i=1X i

k
∈ A.

Proof. Let µ = 1 − λ. By convexity,

kϕ(
B +

∑k
i=1X i

k
) ≤ µkϕ(

B

µk
) + λkϕ(

∑k
i=1X i

λk
) ≤ ψB +ψ .

Sincekϕ is (A,E)-safe, and dominated byψ+ψB , the claim follows.

□

Tomonitor conditionψ+ψB ≤ 0, the only modification needed

to the FGM algorithm during subrounds, is in the selection of a

suitable quantum θ at the beginning of each subround, so that

2kθ = −(ψ +ψB). (10)

4.1.1 Rebalancing FGM protocol. The extended protocol be-

gins exactly as described in §2.4, with λ = 1. At the end of all

subrounds, it is ψ > ϵψ kϕ(0). Where the basic protocol would

start a new round, the rebalancing protocol restores the invariant

ψ +ψB ≤ 0 as follows:

(1) The coordinator asks some or all of the sites to flush their

local drift vectors, and updates B. There are many possible

heuristics that can be employed to do this as conserva-

tively as possible, dealying flushes and thus giving the

opportunity to local streams to summarize their results

better.

(2) When all drift vectors have been received, the coordinator

recomputes ψB and ψ , choosing a new value for λ, or
failing. The choice of λ is discussed below.

(3) If conditionψ +ψB ≤ ϵψ kϕ(0) is restored, a new subround

is started with quantum θ = −(ψ +ψB)/(2k),
(4) else, the round finishes and a new round starts by comput-

ing the new E and shipping it to all sites.

4.1.2 Selection of λ. The choice of a good λ is a generally

dependent on the statistics of the monitored streams. Consider

the “ideal” case, where B was shipped back to the sites; then, the

sites could instead monitor function ϕ(x + B/k) (we would have

ψB = 0). This is “ideal” in the sense that for any λ > 0,

k∑
i=1

ϕ(X i +B/k) ≤
k∑
i=1

λϕ(X i/λ)+ µkϕ(B/(µk)) = ψ +ψB . (11)

Scaling the input streams. Let Z = L(ϕ). Geometrically, the

level set of ϕ(x + B/k) is Z − B/k , that is, it is a shift of Z along

the B-direction. The new safe zone, by our choice of λ has to be

a subset of this set. We could then “scale down” Z to λZ , so that

λZ ⊆ Z − B/k , and their boundaries touch at a point along the

axis of the shift, that is, at B/(µ∗k), where

µ∗ = inf{µ > 0 | ϕ(B/(µk)) = 0}.

This value of µ∗ can easily be found iteratively by bisection. Then,
λ = 1 − µ∗. This heuristic is well-behaved in practice and is the

one we have used in our experiments.

4.1.3 Discussion. To assess the effect of rebalancing on round

duration, assume that the statistics of the global stream are such

that the global state vector S maintains a rougly constant “veloc-

ity” over the stream data. Under this “statistical inertia” assump-

tion, which is often a realistic approximation of stream statistics,

our rebalancing protocol achieves a round duration at least 1/2

of the ideal maximum: if τ stream updates were processed, then

processing another τ updates would lead the total drift outside

the safety bounds (i.e., outside L(ϕ)). In such conditions, rebal-

ancing ameliorates the presence of skew in the trends and rates

of local streams.

4.2 Adaptively shipping safe zones to local
sites

In order to amortize the upstream cost of a round with commu-

nication benefits, it is necessary for a round to last for at least

twice this many updates totally; that is, the round must last for at

least 2kD updates, if the total communication cost of the round

is to be better than the naive method. This minimum duration

of a round (in terms of local stream updates) may not be not be

achievable when overall variability is high.

Another practical issue, even with low variability, is the case

where the stream rates of individual sites are highly unequal, e.g.,

they follow a 98-2 power law. Then, the cost of shipping safe

zones to 98% of the sites is probably wasteful; those sites could

just forward their local streams to the coordinator, and a protocol

should try to save communication on those 2% of the sites which

provide 98% of the stream updates.

Many previous protocols for distributed monitoring, includ-

ing much of the previous work on Geometric Monitoring, do

not adapt well to such problematic situations. In this section,

we introduce an enhancement the FGM protocol, where such

situations are handled within the protocol’s basic logic. There

are two subproblems addressed by our solution; (a) a systematic

way to eliminate the upstream cost of shipping E to selected sites

at the beginning of a round, and (b) a cost-based way to select

those sites.

4.2.1 Reducing the upstream costs. One simplistic way to

avoid shipping E to a site at the beginning of a round, is to put

this site into “promiscuous mode”, that is, to let it ship all local

stream updates to the coordinator, which can then “simulate” the

local node, and otherwise execute the protocol as is.

Naturally, this simplistic method will create many small mes-

sages, which we would like to avoid. This can be done if we

ship to the site a cheaper safe function, such as some function of

the form b(x) = ∥x ∥
q
p + a, which takes only 3 words (carrying

p,q,a) to tramsmit. To maintain correctness, it is sufficient to

guarantee simply that ϕ ≤ b. Given such a function, a site can

participate normally in the FGM protocol. Naturally, the fact that

this site is not equipped with the full function ϕ may cause it to

end subrounds prematurely (sending many bits rapidly) and thus

interfering with other sites. Although this is certainly possible,

our experiments revealed that, under adverse monitoring con-

ditions, the coordinator will often decide to ship the cheap safe

function to every site, in which case the interference problem

vanishes.

91

Selecting a function b ≥ ϕ depends on the analytic properties

ofϕ, and can in general be done easily. In general, we should avoid
higher-degree functions, as they grow too quickly; this is possible

if the degree of ϕ itself is small (which, is important for achieving

better quiescent region for ϕ, as discussed previously). In order

to keep our exposition simple, we do not discuss this issue in full

analytic generality. Instead, we note that a 1-degree requirement

can be met, if the safe zone function ϕ is nonexpansive:

∀x ,y ∈ V , |ϕ(x) − ϕ(y)| ≤ ∥x −y∥. (12)

This property is well-known in functional analysis, and is also

known as Lipschitz continuity. It is easy to see that, in this case,

|ϕ(x) − ϕ(0)| ≤ ∥x ∥,

which implies that

ϕ(x) ≤ ∥x ∥ + ϕ(0).

An important class of safe functions that are non-expansive are

the Signed Distance Functions of convex sets. Also, the gauge

functions with bounded level-set (including all norms and semi-

norms) can be scaled to be nonexpansive.

Selecting the sites which will use the “cheap” function b is

crucial.We propose a solution based on a cost model and some col-

lected statistics, much in the spirit of database query optimization.

In the rest of this section, we will ignore the FGM rebalancing

protocol, and instead focus on the basic FGM protocol. This is

done for the sake of keeping our optimization algorithm simple.

However, once the “plan” for a round is selected, the full FGM

protocol with rebalancing can be executed for the round.

4.2.2 Modeling the communication cost of a round. Assume

that the coordinator is at the beginning of a round, with current

estimate E and has selected a non-expansive safe function ϕ. Let
di , i = 1, . . . ,k be indicator variables; di is equal to 1 when the

full safe function ϕ is to be shipped to local site i , and 0 if the

cheap safe function is to be used. In other words, di encodes the
optimized “query plan” for the upcoming round. Let d denote the

vector of di values. Our goal is to select the pland that maximizes

the gain of the round.

Assume that, based on the decision d , the length of the next

round is going to be τ . Furthermore, assume that a fraction γiτ of

these updates arrives at local stream i . The benefit of the round
in terms of summarizing τ updates in the local state vectors, is

д0 = τ −
k∑
i=1

min{γiτ ,D}, (13)

where min{γiτ ,D} reflects the downstream cost of site i , which
will ship γiτ raw updates, instead of the D-dimensional drift

vector, if γiτ < D. In addition, the upstream cost of the round

is D
∑k
i=1 di (where we assume that the difference in the cost of

shipping ϕ vs. b isD). Therefore, we must selectd so as maximize

the round’s gain,

д = τ −
k∑
i=1

min{γiτ ,D} − D
k∑
i=1

di . (14)

The challenge is to predict τ (d), given a choice for d . To this

end, considerψ as function of “time” (updates):

ψ (t) =
∑
di=1

ϕ(Xi (t)) +
∑
di=0

∥X i (t)∥ − ϕ(0) (15)

The current round can be seen as the transition of the system

from a state whereψ = kϕ(0) to a state whereψ = 0. Of course,

this transition will in general follow a complicated, non-linear

trajectory in the quiescent region. However, we adopt a simplistic

linear estimate. In particular, we model the behaviour of each

local stream i by two rates, αi and βi , assuming simplistically

that

ϕ(X i (t)) ≈ ϕ(0) + |ϕ(0)|αi t (16)

∥X i (t)∥ + ϕ(0) ≈ ϕ(0) + |ϕ(0)|βi t (17)

We shall assume that 0 < αi < βi .
Based on this simple-mindedmodel, the prediction of a round’s

length τ , as a function of d , based on Eq. 15, is

τ =
k

βtot − d · θ
, (18)

where βtot =
∑k
i=1 βi and θ is the vector of values θi = βi − αi .

4.2.3 Maximizing the gain of a round. It is required to find

the value of d that maximizes the gain д (Eq. 14). An exhaustive

search of the solution space would require time O(2k), which
would not scale well to large k . Thankfully, it turns out that a
simple greedy algorithm is sufficient to maximize д. The key

observation is that д0(τ) (from Eq. 13) is non-decreasing in τ . Fix
some number 0 ≤ n ≤ k . We wish to find a feasible solution

d∗, with
∑
i d

∗
i = n, which maximizes д among all solutions d ′

with

∑
i d

′
i = n. But since д(d

∗) = д0(τ (d
∗)) − nD, and д0 is non-

decreasing in τ , it suffices to maximize τ (d∗). To do this, simply

set d∗i = 1, iff θi is among the n largest coordinates of θ (ties

are broken arbitrarily). Now, д can be optimized by comparing

among k+1 solutions, one for each value of n. Furthermore, since

an optimal solution for n + 1 subsumes an optimal solution for

n, the whole computation can be performed in O(k logk) steps
(essentially for sorting vector θ).

4.2.4 Obtaining estimates for local streams. It remains to dis-

cuss the estimation of αi , βi and γi in each round. In this paper,

we explored the simplest possible alternative: simply use the

data collected at the end of the previous round, to obtain fresh

estimates of all three parameters. Since at the end of a round the

coordinator has received each drift X i , together with a count of

updates to each local stream during the round, all three param-

eters can be computed directly, more or less from Eqs. 16 and

17.

Some care must be taken, to ensure 0 < αi < βi ; in particular,

Eq. 16 may yield a non-positive value. If this occurs, then simply

set αi to a small positive value (so that θi is minimum among the

components of vector θ . Also, when βi = 0 or γi = 0 (there were

no updates to the site in the previous round), simply set di = 0

and ignore this site in the optimization process.

4.2.5 Discussion. Our estimates for modeling local streams

are simple to acquire in practice, but may yield estimates which

may not represent well the evolution of the system. After all,

predictions are hard, especially about the future! Thankfully,

our approach, of estimating τ in order to decide on the next

round’s plan, is relatively insensitive to the exact value of τ , as it
is essentially a based of thresholds, determined by local stream

rate predictions, which can be predicted much more accurately.

In practice the algorithm managed to perform quite well, mak-

ing the FGM protocol quite robust in adverse situations of very

high variability, compared to executions that shipped a safe func-

tion to every site. Most of the time, the selection of d values

either resulted in almost all 1s (when variability was low) or in

almost all 0s (during high variability). Also, during periods of

92

medium variability, the algorithm would alternate between these

two decisions for a few rounds.

Improving on this algorithm is certainly an interesting prob-

lem. On the prediction side, higher-order polynomial models in

place of Eqs. (16–17) can in principle be constructed. Whether

these more elaborate modeling would benefit the final communi-

cation cost in real data settings, remains to be seen.

5 EXPERIMENTAL EVALUATION
We performed an extensive experimental study of the FGM pro-

tocol, over a variety of datasets and streaming parameters, with

emphasis on validating our claims of resilience to adverse si-

tuiations. For lack of space, we only present results from the

WorldCup dataset [2], which contains log traces of all requests

sent to the 1998 World Cup web site, consisting of 33 mirrors

spread around the globe and receiving 1.3 billion http requests.

Our experiments used only data from day 46, during which 50.3

million requests where received by 27 mirror sites. From this data,

we constructed stream records over the schema R(CID, TYPE),

where CID is the (anonymized) client address of the http request,

and TYPE is the type of file requested (HTML, image etc).

On this stream, we approximately monitored two continuous

queries. Both queries operate on Fast-AGMS sketches [8] on the

input streams. A Fast-AGMS sketch S is stored as a d×w matrix S
of integer counters, and can be used to estimate join and self-join

sizes within accuracyΘ(1/
√
w)with probability at least 1−2−Θ(d).

Each stream update changes the sketch by modifying one cell in

each row vector S[i] (totally, d cells) by ±1, according to certain

hash functions.

The first query monitors the self-join size of R ZCID R. To
estimate this query, an AGMS sketch is used as the state vector

to summarize all records. The query function is the self-join size

estimate,

Q1(S) = median

i=1, ...,d
{

w∑
j=1

S[i, j]2} = median

i=1, ...,d
{S[i]2}.

The second query monitors the join size of

σTYPE=HTML(R) ZCID σTYPE,HTML(R).

For this query, the state vector consisted of the concatenation of

two sketches, S1 and S2. The monitored query function is

Q2(S1S2) = median

i=1, ...,d
{

w∑
j=1

S1[i, j]S2[i, j]} = median

i=1, ...,d
{S1[i]S2[i]}.

Note that query functionQ2 is muchmore challenging than query

Q1 in terms of variability.

5.1 Experimental setup
We explored the space of four parameters: AGMS sketch size,

size of sliding window over the streams, monitoring accuracy ε
and the number of sites k .

We evaluated queries Q1 and Q2 both in the cash-register

model (each record was inserted one at a time), and also in the

turnstile model, where we used a time-based sliding window

(ranging from 1hr to 4hrs) to generate record deletions. Naturally,

the variability of our queries decreases as the time window in-

creases. Also, time-based windows yield higher variability than

fixed-size ones. We allowed the monitoring accuracy to vary as

ε ∈ [0.02, 0.1].

Finally, in order to study the effect of k (the number of sites)

on performance, we created synthetic streams by hashing the

original 27 local site ids to fewer site ids, fork ∈ [2 : 20]. Naturally,

we also used the original (real) data, for k = 27.

Note that, in all experiments presented, the “global” stream

was identical, and we simply changed the distribution of the data

in time (by sliding windows), and among local streams.

5.1.1 Safe functions employed. We implemented nonexpan-

sive, convex safe functions for queries Q1 and Q2 following the

technique of [13]. To monitor query Q1 for estimate sketch E we

need to ensure that (1 − ε)|Q1(E)| ≤ Q1(S) ≤ (1 + ε)|Q1(E)|.
We can rewrite it compactly (applying properties of the me-

dian) as

±
(
Q1(S) −T±

)
= median

i=1, ...,d
{±(S[i]2 −T±)} ≤ 0.

where, for ± ∈ {+,−}, T± = (1 ± ε)|Q1(E)|, respectively.
The safe function ϕ(X) we used is composed as

ϕ(X) = max

(
ϕ−(X),ϕ+(X)

)
,

where ϕ± is safe for condition ±
(
Q1(S) −T±

)
≤ 0 respectively.

Following the methodology of [13] for the median, we used

ϕ±(X) = max

I ∈(D±

|D± |−(d−1)/2)

∑
i ∈I |ϕ

±
i (0)| · ϕ

±
i (X [i])√∑

i ∈I |ϕ
±
i (0)|

2

,

where D± = {i | 1 ≤ i ≤ d and ± (E[i]2 −T±) < 0}. Note that

the notation I ∈
(D
n
)
means “I ranges over all n-subsets of D”.

Functions ϕ±i (x), i = 1, . . . ,d , must be safe for conditions

±(S[i]2 −T±) ≤ 0 respectively. We used

ϕ+i (x) = ∥x+E[i]∥−
√
T+ and ϕ−i (x) =

√
T−−

E[i]

∥E[i]∥
(E[i]+x).

The same methodology was applied to derive the safe func-

tions for theQ2 query; the derivation is very similar to the above,

however, the actual formulas for ϕ±i for conditions ±(S1[i]S2[i] −
T±) ≤ 0 are a bit involved and are omitted due to space con-

straints; we refer the reader to [13] (Section 6.3) for details, as

well as for the justification of the above steps.

5.1.2 Tested protocols. In order to compare the performance

of the FGM protocol to previous work, we implemented a well-

studied version of the GM protocol, based on Safe Zones [22],

with a rebalancing policy along the lines of [28]. The Safe Zones

used where defined using the safe functions of the FGM described

above, so as to fairly contrast the inherent communication costs

of the GM and FGM protocols.

To study the effect of our cost-based optimizer, we ran versions

of FGM with and without it. Overall, the acronyms of the 3

protocols tested are as follows:

Acronym Protocol

GM classic GM protocol with rebalancing.

FGM FGM protocol without cost-based optimizer.

FGM/O FGM protocol with cost-based optimizer.

5.2 Performance in typical workloads
Our first set of experiments concerns the behaviour of the pro-

tocols in a non-adverse scenario (using a 4ht window over the

data), monitoring accuracy ε = 0.1, and sketch sizes, D = 7000.

The results depicted in Figs. 2 and 3 (corresponding to semi-join

and join queries) depict this cost as a function of k , both in the

turnstile and in the cash-register model.

With respect to communication cost, observe that, as k grows,

the FGM protocols exhibit 2–3 times lower communication cost

93

query Q1 (selfjoin) ε = 0.1, D = 7000, turnstile model TW = 4hrs

0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0 5 10 15 20 25 30

k

comm.cost

FGM/O

FGM

GM

0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55
0.6

0 5 10 15 20 25 30

k

upstream cost (%)

query Q1 (selfjoin) ε = 0.1, D = 7000, cash-register model

0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0 5 10 15 20 25 30

k

comm.cost

0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55
0.6
0.65

0 5 10 15 20 25 30

k

upstream cost (%)

Figure 2: Performance of the GM and FGM protocols,
monitoring a self-join query, over k . The top row shows
the cost in the tunrstile model (with a window over the
streams) and the bottom row show the cost in the cash-
register model.

query Q2 (join) ε = 0.1, D = 7000, turnstile model TW = 4hrs

0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0 5 10 15 20 25 30

k

comm.cost

FGM/O

FGM

GM

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20 25 30

k

upstream cost (%)

query Q2 (join) ε = 0.1, D = 7000, cash-register model

0

0.1
0.2
0.3
0.4
0.5
0.6
0.7

0 5 10 15 20 25 30

k

comm.cost

0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55
0.6
0.65
0.7

0 5 10 15 20 25 30

k

upstream cost (%)

Figure 3: Performance of the GMand FGMprotocols, mon-
itoring a join query, over k . The top row shows the cost in
the tunrstile model (with a window over the streams) and
the bottom row show the cost in the cash-register model.

0

2

4

6

8

10

12

14

0 0.03 0.06 0.09 0.12

c
o
m
m
.
c
o
s
t

ε

Query Q1 (selfjoin)

FGM/O

FGM

GM

0

2

4

6

8

10

12

14

16

18

20

22

0 0.03 0.06 0.09 0.12

c
o
m
m
.
c
o
s
t

ε

Query Q2 (join)

Figure 4: Communication cost for queries Q1,Q2, under a
difficult workload. Observe that, except for FGM/*O, all
protocols exhibit much higher communication cost that
the size of the streamed data. Here, k = 27, D = 35000,
TW = 1hr .

than the GM protocols. On the other hand, for small values of k ,
the difference is not as pronounced.

The graphs on the right side, depicting upsteam communica-

tion costs as a percentage of total communication cost, reveals

the cause of this behaviour. It is shown that the upstream cost

of the standard geometric method grows as a percent of total, as

the number of sites increases. This is due to two causes: first, as

more sites partake in the monitoring, the strictness of the GM’s

monitoring condition causes frequent violations of the safety

invariant of GM, while most of these violations are false posi-

tives. The rebalancing strategy of GM algorithms is unable to

overcome this increase (note that, without rebalancing, the GM

algorithm’s total cost increases even faster, as each false violation

would cause a full synchronization).

By contrast, the upstream cost of FGM decreases (as a percent
of total communication). This is the case both with and without

the cost-based optimizer. When k is small, upstream and down-

stream costs are roughly similar, which is true for the GM as well.

As k increases however, the total cost (which increases with k nat-

urally) is dominated by the downstream cost, of shipping data to

the coordinator. This is both due to the improved safety condition

of FGM, but also to the ovehead-free rebalancing performed.

Note finally the effect of cost-based optimization, which tries

to aggressively minimize the upstream cost, even at the expense

of downstream cost. Although total cost does not change much,

the upstream percentage reduces much further. This is because

the cost-based optimizer will decide not to ship safe functions

to the sites in many rounds. This choice worsens the quality of

summarization at the local nodes, increasing downstream costs,

but manages to keep upstream costs low, while achieving good

total cost.

5.3 Performance in adverse conditions
We now evaluate the performance of FGM and GM protocols

under an adverse scenario, on the real WorldCup dataset, where

k = 27. We have a large D = 35, 000, and the stream’s window is

1hr, leading to high variability. Fig. 4.

Under these conditions, round lengths are too short to amor-

tize the cost of shipping safe zones to the sites. Therefore, all

methods except for FGM/O incur excessive communication costs,

in fact several times over the size of the streamed data. This

94

0

0.5
1

1.5
2

2.5
3

3.5
4

4.5

3600 7200 10800 14400

TW (seconds)

query Q1, D = 21000

0

1

2

3

4

5

6

7

8

3600 7200 10800 14400

TW (seconds)

query Q2, D = 21000

FGM/O

FGM

GM

0

0.5
1

1.5
2

2.5
3

3.5
4

4.5

7000 21000 35000

D

query Q1, TW = 7200

0

1

2

3

4

5

6

7

7000 21000 35000

D

query Q2, TW = 7200

Figure 5: Communication cost for queriesQ1 (left column)
and Q2 (right column), over varying sliding windows (Tw ,
top row) and sketch size (D, bottom row). In all cases, it
was k = 27 and ε = 0.06.

is not unexpected; consider that, shipping safe zones to all 27

sites, transmits roughly 3.8 Mbytes of data. Combined with short

rounds due to high variability and low values of ε results in

excessive overhead.

By contrast, the cost-based optimizer, although it did not de-

liver significant gains compared to the size of the streamed data,

managed to keep the total cost quite low. This was achieved by

selecting to avoid the overhead of shipping safe functions in most

of the rounds.

5.3.1 Dependence on size of state vectors and on variability.
The effect of variability, which decreases as the time window

sliding over the stream becomes wider, is quite strong on per-

formance. The top row of plots in Fig. 5 demonstrates this for

turnstile queries, where the time window TW changed from 1

hour to 4 hours. In particular, for the Q2 function, using the cost

model improved performance by two times over FGM (and by 4

over the GM methods), when TW =1hr.

Similarly strong is the effect of D on performance, as depicted

in the bottom row of plots of Fig. 5. In fact, the cost grows linearly

with D, except for the case of FGM/O, where the cost-based

optimizer switched to the cheap safe functions, achieving a small

amount of compression.

5.4 The effect of skew
In order to evaluate the behaviour of our protocols under the

presense of skew, we contrast the change in communicationwhen

the (real) dataset becomes more skewed. To introduce skew, we

constructed a new dataset as follows: we selected 8 sites (out of a

0

0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

0 0.03 0.06 0.09 0.12

ε

Query Q1 (selfjoin)

FGM/O (real)

FGM/O (skew)

FGM (real)

FGM (skew)

GM (real)

GM (skew)

0

0.5

1

1.5

2

2.5

3

0 0.03 0.06 0.09 0.12

ε

Query Q2 (join)

FGM/O (real)

FGM/O (skew)

FGM (real)

FGM (skew)

GM (real)

GM (skew)

Figure 6: Communication cost for queries Q1 (top) and Q2

(bottom), over varying accuracy ε . For each protocol, two
curves are shown, one for the real dataset and one for the
skewed dataset. For both plots: k = 27, D = 7000, turnstile
model (TW =4hrs)

total of 27), namely those with local streams of greatest size. Then,

we replaced the local stream of one of these sites—which will

be referred to as the hot site—by the union of all 8 local streams,

while the 7 remaining sites received empty local streams. In this

skewed dataset, one local stream now provides almost half the

data to the system, while 7 out of 27 local streams provide no data.

However, at each point in time, the global stream of the skewed

dataset is identical to the global stream of the real dataset.

Fig. 6 depicts the effect of skew on the communication cost.

Each protocol was run with both the real and the skewed dataset.

Unsuprisingly, the GM protocol’s communication cost increases

as skew is introduced; this is a well-known weakness of the

classic geometric method. The source of the increased cost is a

substantial increase in the upstream cost, because of frequent

local violations at the hot site.

The FGM prococol without the cost-based optimizer on the

other hand, shows resilience in the presence of skew; in fact,

the communication cost improves slightly under skew. The key

reason is that theψ -value of the system under the real dataset,

is always equal to theψ -value of the system under the skewed

dataset. Therefore, the coordinators in the two systems will per-

form the exact same number of rounds. The slight improvement

is due to a reduction in the downstream cost among the 8 sites;

the downstream cost of the hot site has not increased substan-

tially (since the number of rounds remains the same), but the

downstream costs of the 7 sites whose local stream vanished has

decreased to almost 0 (since these sites will not ship local vectors

to the coordinator).

95

The introduction of the cost-based optimizer is again largely

beneficial to the performance. In previous experiments under

adverse conditions (e.g., Fig. 4), the benefit of the optimizer was

in keeping the upstream cost from becoming too large. In this

scenario where skew is introduced, the benefit of the cost-based

optimizer materializes more consistently when ε ≥ 0.05, where

significant benefit to the upstream cost of a round accrues, since

the coordinator will undoubtedly choose the cheap safe functions

for the 7 sites with empty local streams. Note that, in this scenario,

theψ -values of the constrasted systems are no longer equal (since

different optimizer choices affect the actualψ).
In this experiment, one can also observe the somewhat erratic

effect of the cost-based optimizer, due to the crudeness of model-

ing local stream behaviour (interestingly, in the presense of skew,

the behaviour is less erratic). The erratic behaviour is observed

in the transition between the two extremes of small and large val-

ues of ε ; for values of ε around 0.05, it seems that the cost-based

optimizer will often be fooled into making sub-optimal choices.

However, this is preferable to not using it at all.

Overall, our experimental results demonstrate that the FGM

protocol manages to ameliorate the shortcomings of classic GM

protocols, both under adverse conditions as well as in the pre-

sense of skew in the distributed stream.

6 CONCLUSIONS AND IMPLICATIONS FOR
PRACTICE

We have proposed Functional Geometric Monitoring, a novel

method for distributed stream monitoring, which offers signifi-

cant improvements over previous techniques in terms of perfor-

mance, scalability and robustness. FGM is generally applicable,

it can provide worst-case guarantees for problems that were

hitherto provided only by problem-specific algorithms, and it is

robust in high variability and skew situations, curing an impor-

tant shortcoming of previous general techniques.

Real-world stream-processing engines are typically customized

by providing data-handling code (e.g., mapper/reducer functions

in Hadoop, spouts and bolts in STORM, etc), which is indepen-

dent of distributed execution concerns. The engine orchestrates

the distributed execution of this code on a distributed platform,

applying complex execution policies (resource allocation, load

balancing, networking patterns, failure tolerance, etc).

The salient practical feature of FGM is that it fits this pattern

extremely well, as it strictly encapsulates the specifics of moni-

tored queries into data-handling code, namely, routines and data

structures—such as sketches—to summarize local streams, and

safe function implementations on these summaries. This code

is platform-agnostic and an FGM implementation can deploy it

on a distributed platform and execute it in a black-box fashion,

under any desired execution policy.

Other aspects of FGM are alse important in practice. Although

high-quality safe functions for complex query operators can be

hard to derive, safe function composition can ease the burden

many cases. Furthermore, the FGM protocol is resilient to loss

of precision due to computational round-off errors. In addition,

since local nodes are memoryless from one round to the next,

the FGM protocol is compatible with relatively simple and cheap

failure recovery policies.

Acknowledgement. The research leading to these results has

received funding from the European Union’s Horizon 2020 re-

search and innovation programme under grant agreement No

825070.

REFERENCES
[1] C. Arackaparambil, J. Brody, and A. Chakrabarti. Functional monitoring

without monotonicity. In ICALP (1), 2009.
[2] M. Arlitt and T. Jin. A workload characterization study of the 1998 world cup

web site. Netwrk. Mag. of Global Internetwkg., 14(3):30–37, May 2000.

[3] B. Babcock and C. Olston. Distributed top-k monitoring. In SIGMOD ’03:
Proceedings of the 2003 ACM SIGMOD international conference on Management
of data, New York, NY, USA, 2003. ACM.

[4] S. Burdakis and A. Deligiannakis. Detecting outliers in sensor networks using

the geometric approach. In ICDE, 2012.
[5] G. Cormode and M. Garofalakis. “Sketching Streams Through the Net: Dis-

tributed Approximate Query Tracking”. In Proc. of the 31st Intl. Conference on
Very Large Data Bases, Trondheim, Norway, Sept. 2005.

[6] G. Cormode and M. Garofalakis. “Approximate Continuous Querying over

Distributed Streams”. ACM Transactions on Database Systems, 33(2), June 2008.
[7] G. Cormode, M. Garofalakis, P. J. Haas, and C. Jermaine. “Synopses for Massive

Data: Samples, Histograms, Wavelets, Sketches”. Foundations and Trends in
Databases, 4(1-3), 2012.

[8] G. Cormode and M. N. Garofalakis. Sketching streams through the net: Dis-

tributed approximate query tracking. In VLDB, 2005.
[9] G. Cormode, S. Muthukrishnan, and K. Yi. Algorithms for distributed func-

tional monitoring. In SODA, 2008.
[10] D. Felber and R. Ostrovsky. Variability in data streams. In Proceedings of

the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, PODS ’16, pages 251–260, New York, NY, USA, 2016. ACM.

[11] M. Gabel, D. Keren, and A. Schuster. Anarchists, unite: Practical entropy

approximation for distributed streams. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’17,

pages 837–846, New York, NY, USA, 2017. ACM.

[12] M. Garofalakis, D. Keren, and V. Samoladas. “Sketch-based Geometric Moni-

toring of Distributed Stream Queries”. In Proc. of the 39th Intl. Conference on
Very Large Data Bases, Trento, Italy, Aug. 2013.

[13] M. N. Garofalakis and V. Samoladas. Distributed query monitoring through

convex analysis: Towards composable safe zones. In 20th International Con-
ference on Database Theory, ICDT 2017, March 21-24, 2017, Venice, Italy, pages
14:1–14:18, 2017.

[14] N. Giatrakos, A. Deligiannakis, M. N. Garofalakis, I. Sharfman, and A. Schuster.

Prediction-based geometric monitoring over distributed data streams. In

SIGMOD, 2012.
[15] R. Gupta, K. Ramamritham, and M. K. Mohania. “Ratio threshold queries over

distributed data sources”. In Proc. of the 39th Intl. Conference on Very Large
Data Bases, Trento, Italy, Aug. 2013.

[16] S. R. Kashyap, J. Ramamirtham, R. Rastogi, and P. Shukla. Efficient constraint

monitoring using adaptive thresholds. In ICDE, pages 526–535, 2008.
[17] R. Keralapura, G. Cormode, and J. Ramamirtham. Communication-efficient

distributed monitoring of thresholded counts. In SIGMOD, 2006.
[18] D. Keren, G. Sagy, A. Abboud, D. Ben-David, A. Schuster, I. Sharfman, and

A. Deligiannakis. “Geometric Monitoring of Heterogeneous Streams”. IEEE
Transactions on Knowledge and Data Engineering, 26(8), Aug. 2014.

[19] D. Keren, I. Sharfman, A. Schuster, and A. Livne. Shape sensitive geometric

monitoring. IEEE Trans. Knowl. Data Eng., 24(8), 2012.
[20] A. Lazerson, M. Gabel, D. Keren, and A. Schuster. One for all and all for one:

Simultaneous approximation of multiple functions over distributed streams.

In Proceedings of the 11th ACM International Conference on Distributed and
Event-based Systems, DEBS ’17, pages 203–214, New York, NY, USA, 2017.

ACM.

[21] A. Lazerson, D. Keren, and A. Schuster. Lightweight monitoring of distributed

streams. In Proc. of the 22Nd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’16, pages 1685–1694, New York, NY,

USA, 2016. ACM.

[22] A. Lazerson, I. Sharfman, D. Keren, A. Schuster, M. Garofalakis, and V. Samo-

ladas. “Monitoring Distributed Streams using Convex Decompositions”. In

Proc. of the 41st Intl. Conference on Very Large Data Bases, Aug. 2015.
[23] S. Meng, T. Wang, and L. Liu. Monitoring continuous state violation in

datacenters: Exploring the time dimension. In ICDE, pages 968–979, 2010.
[24] S. Michel, P. Triantafillou, and G. Weikum. Klee: a framework for distributed

top-k query algorithms. In VLDB ’05. VLDB Endowment, 2005.

[25] O. Papapetrou and M. Garofalakis. “Continuous Fragmented Skylines over

Distributed Streams”. In Proc. of the 30th Intl. Conference on Data Engineering,
Chicago, Illinois, Apr. 2014.

[26] S. Shah and K. Ramamritham. Handling non-linear polynomial queries over

dynamic data. In ICDE, 2008.
[27] I. Sharfman, A. Schuster, and D. Keren. “A geometric approach to monitoring

threshold functions over distributed data streams”. In SIGMOD, 2006.
[28] I. Sharfman, A. Schuster, and D. Keren. “A geometric approach to monitoring

threshold functions over distributed data streams”. ACM Trans. Database Syst.,
32(4), 2007.

[29] D. P. Woodruff and Q. Zhang. Tight bounds for distributed functional moni-

toring. In Proceedings of the Forty-fourth Annual ACM Symposium on Theory
of Computing, STOC ’12, pages 941–960, New York, NY, USA, 2012. ACM.

[30] K. Yi and Q. Zhang. Optimal tracking of distributed heavy hitters and quantiles.

In PODS, 2009.

96

	Functional Geometric Monitoring for Distributed StreamsVasileios Samoladas, Minos Garofalakis

